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Summary

We present a Bayesian approach to comparison of geometric shapes with ap-
plications to classification of the molecular structures of proteins. Our ap-
proach involves the use of distributions defined on transformation invariant
shape spaces and the specification of prior distributions on bipartite match-
ings. Here we emphasize the computational aspects of posterior inference
arising from such models, and explore computationally efficient approxima-
tion algorithms based on a geometric hashing algorithm which is suitable for
fully Bayesian shape matching against large databases. We demonstrate this
approach on the problems of protein structure alignment, structural database
searching, and structure classification. We discuss extensions to flexible shape
spaces developed in previous work.

Keywords and Phrases: Bioinformatics; Geometric Hashing; Protein
Structure; Shape Analysis.

1. INTRODUCTION

Analysis of data obtained as measurements on geometric objects arises in a number
of fields, including image processing and computer vision, biological anthropology
and anatomy, molecular biology and chemistry, and mechanical engineering to name
but a few. Such data differs from standard high dimensional, multivariate data
by the necessity of accounting for natural invariances with respect to geometric
transformations such as rigid body motions, viewpoint and projection, and scaling.
Treatment of such problems falls under the heading of statistical shape analysis
and a several different directions of theoretical and methodological work have been
developed by various authors (Bookstein, 1991; Small, 1996; Dryden and Mardia,
1998; Kendall et al., 1999; Lele and Richtsmeier, 2001). In the current paper we
focus on landmark methods for shape analysis, which represent objects by a set of
n landmark points in d dimensions. An observed configuration is then given by an
n × d matrix X, with xi ∈ R

d the ith row of X representing the coordinates of the
ith landmark.

2. SHAPE AND SHAPE SPACE

For simplicity and concreteness we consider in this paper only rigid-body shape (or
size-and-shape) arising from invariance under special Euclidean transformations.
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The shape of X denoted by [X] is then defined as the equivalence class

[X] = {XR + 1µ′ | R ∈ SO(d), µ ∈ R
d}

which is the orbit of X under the special Euclidean group SE(d). In general SE(d)
may be replaced with a more general class of transformations; common examples
include similarity group (including scaling), the affine group, projective transfor-
mations, various smooth nonlinear mappings, and piecewise combinations (Dryden,
1999; Schmidler, 2006).

The set of equivalence classes arising from all configurations of n landmarks
in d dimensions is called the (size-and-)shape space and denoted by SΣd

n. Shape
analysis involves the analysis of observed configuration data in this space, which
is invariant under rigid-body transformations. Distances in shape space for two
observed configurations with corresponding landmarks may be obtained via the
Procrustes distance,

d2
P (X, Y ) = min

µ∈R
3

R∈SO(3)

‖Y − (XR + 1µ′)‖2
F = ‖Xc‖2 + ‖Yc‖2 − 2tr(D)

where ‖X‖F denotes Frobenious norm, Xc denotes centering, and Y ′X = UDV ′

is a singular value decomposition. Procrustes distance and related metrics pro-
vide one approach to development of distribution theory and multivariate analysis
methodology for statistical analysis of shape data (e.g. Dryden and Mardia (1998)).

To date such analyses have largely been predicated on the existence of a one-
to-one landmark correspondence between X and Y . However, an important aspect
of shape matching in many applied problems is the need to identify such a corre-
spondence, or to determine if one exists. We have previously developed a Bayesian
approach to this problem.

3. BAYESIAN SHAPE MATCHING

We have recently developed a Bayesian approach to shape matching motivated
by problems in structural proteomics (Schmidler, 2006; Rodriguez and Schmidler,
2006a; Wang and Schmidler, 2006; Rodriguez and Schmidler, 2006b). Let Xn×3 and
Ym×3 be two configuration matrices. We define an alignment between X and Y to
be a pair A = [M, θ] where θ is a transformation (here θ = (R, µ) ∈ SE(3)) and
M is a bipartite matching. Denote the set of matchings by Mn,m; a convenient
representation for M ∈ Mn,m is a match matrix Mn×m = [mij ] such that mij = 1
if landmarks Xi and Yj are matched, and 0 otherwise. Denote by XM and YM the p
non-zero rows of MX and M ′Y respectively, giving the coordinates of the matched
residues.

We have developed a Bayesian approach to shape alignment which defines a
prior distribution on alignments P (M) and obtains the posterior distribution:

P (M |X, Y ) =
P (X, Y |M)P (M)

P

M P (X,Y |M)P (M)

under a likelihood defined on shape space given by the joint density:

P (X, Y |M) = P (YM |XM )P (XM )P (YM̄ )P (XM̄ )

= (2πσ2)−
3p
2 exp− 1

2σ2
d2

P (XM , YM )
Y

yi∈YM̄

f(yi; λ)
Y

xi∈XM̄

f(xi; λ) (1)
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where ‖X‖F = tr(X ′X) is the Frobenious norm and f( · ; λ) is a one-parameter
density for unmatched landmarks with λ having an interpretation as a soft threshold
for landmark deviations. This density corresponds to an additive model on shape
space

[YM ] = [XM ] + ε ε ∼ N(0, σ2I)

with εp a matrix-normal random perturbation; other forms for the error distribution
can also be accommodated (Rodriguez and Schmidler, 2006a).

Strictly speaking the density (1) is defined on a tangent-space approximation
to shape space, the difference being in the integral required for normalization (see
Small (1996); Dryden and Mardia (1998) and Schmidler (2006)); in our case this
normalization cannot be ignored.

An alternative approach is to place prior distributions on transformation pa-
rameters θ and obtain a posterior distribution over the alignment pair A = [M, θ],
from which the marginal posterior for M may be obtained by integrating out the
“nuisance” parameters θ (Schmidler, 2006; Wang and Schmidler, 2006); see also
Green and Mardia (2006) for a related approach developed independently. In com-
parison, the likelihood defined directly on shape space (1) identifies transformations
θ directly with matchings M , but can also be viewed as a profile likelihood for A.
Schmidler (2006) considers both approaches for protein registration, including the
marginalization approach under affine transformations where integration may be
done analytically. The marginalization approach has the advantage of accounting
for uncertainty in θ given M . In addition, in some applications of image analysis
(e.g. tracking), θ is the parameter of interest while M may be the nuisance param-
eter. In this paper, we restrict attention to models of the form (1) for concreteness;
the computational approach described in the next sections applies equally to both
approaches.

3.1. Priors on bipartite matchings and MCMC

Priors on matchings P (M) may be specified in a variety of ways. Rodriguez and
Schmidler (2006a) use a gap-penalty prior:

P (M) ∝ exp−(g ng(M) + h

ng(M)
X

i=1

li(M)) (2)

based on affine gap opening and extension penalties used in biological sequence anal-
ysis; this is essentially a Markovian process on M . The prior encourages grouping of
matches together but requires pre-specification of a landmark ordering, equivalent
to assuming a topological equivalence of two proteins.

The advantage of the class of priors (2) is that it enables exact sampling of
P (M | θ) via an efficient dynamic programming algorithm, thus producing an effi-
cient Gibbs sampling algorithm for iteratively drawing P (M | θ) and P (θ |M) (Wang
and Schmidler, 2006) or efficient Metropolis proposals for the posterior obtained
from (1) (Rodriguez and Schmidler, 2006a). However, this MCMC scheme suf-
fers from the combination of facts that P (M | θ) may be multimodal and that M
and θ are strongly coupled in the posterior P (M, θ |X, Y ); mixing between multi-
ple modes, when they exist, is therefore unacceptably slow. A solution to this is
given by (Rodriguez and Schmidler, 2006a) which constructs a library of θ’s to a
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proposal distribution used during the Metropolis sampling; this approach is effec-
tive but somewhat computationally intensive and is less efficient for multiple shape
alignment (Wang and Schmidler, 2006). The approach described in this paper is
in a sense a generalization of this library approach, which may potentially replace
MCMC sampling entirely.

In this paper we avoid the order-preserving assumptions of (2) and consider
priors on unrestricted matchings. Thus the approach described here is applicable to
general shape matching when such a priori assumptions are not acceptable. More
general priors are also considered briefly in (Rodriguez and Schmidler, 2006a), where
other MCMC moves are mixed with the dynamic programming steps. Further work
is needed to explore the impact of informative priors on bipartite matchings.

3.2. Posterior summaries

The model given in the previous section allows for the fully Bayesian comparison of
geometric objects. A key advantage of this approach is the ability to accounting for
uncertainty in the point correspondences and accurately estimate variability in the
resulting matchings, which in many cases may be multimodal. Quantities of interest
under such a model include distance measures such as the posterior expectation of
Procrustes distance or root-mean-square deviation:

E(rmsd |X, Y ) =
X

M∈Mn,m

|M |− 1

2 dP (XM , YM )P (M |X, Y )

or the posterior probability of a match, which may be calculated e.g. as the marginal

posterior probability P (|M |− 1

2 dP |X, Y ) ≤ δ for some δ or the posterior probability
that the fraction of landmarks matched is greater than ε. Other important posterior

summaries include the posterior mode M̂ = arg max
M

P (M |X, Y ), or the marginal

alignment matrix which gives the marginal posterior probability of matching any
pair of landmarks:

P (mij |X, Y ) =
X

M∈Mn,m

mijP (M |X, Y ) (3)

integrating out all other parameters in the model. The space M grows exponen-
tially in n and m, making exact calculation of these quantities infeasible. Under
the gap-penalty based prior, Rodriguez and Schmidler (2006a); Wang and Schmi-
dler (2006) provide Markov chain Monte Carlo (MCMC) sampling algorithms for
approximation of such posterior quantities, which take advantage of efficient Gibbs
steps involving stochastic dynamic programming recursions. However, the combi-
natorial nature of the space M and the existence of multiple posterior modes makes
MCMC slow. Thus for applications involving large numbers of shape comparisons
such as searching molecular structure or image databases for shapes similar to some
query shape, the Bayesian approach remains infeasible. Below we explore determin-
istic computational approximations based on geometric algorithms to address this
issue.

4. BAYESIAN SHAPE CLASSIFICATION

In this paper we also consider the problem of shape classification, using a simple
Bayesian classifier. Wang and Schmidler (2006) describe Bayesian estimation of
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mean shape under the Bayesian framework above, applied to multiple protein struc-
ture alignment and analysis of functional conservation. Given a mean shape Zc for
each class c ∈ C of interest, we may classify based on the posterior distribution

P (Y ∈ c |Y ) =
P (Y |Zc)P (c)

P

c′∈C P (Y |Zc′ )P (c′)
=

P

M∈M P (Y |Zc, M)P (M)P (c)
P

c′∈C

P

M′∈M P (Y |Zc′ , M ′)P (M)P (c′)

This requires calculation of the marginal likelihood P (Y, Zc) which, as with the
posterior summaries above, involves a sum over the exponential space of all possible
alignments. More generally, suppose that for each class c of interest we have kc

example shapes Xc
1 , . . . , Xc

kc
from class c, and obtain a posterior distribution over Zc

and associated parameters ζc represented by a finite set of samples (Z
(i)
c , ζ

(i)
c ) from

P (Zc, ζc |Xc
1 , . . . , Xc

kc
). Denote the set of examples by X = ∪c∈C{Xc

1 , . . . , Xc
kc
}.

Then we may approximate the posterior classification probability of new observation
Y by

P (Y ∈ c |Y,X) =

R R

P (Y |Zc, ζc)P (Zc, ζc |Xc
1 , . . . , Xc

k1
) dZc dζcP (c)

P

c′∈C

R R

P (Y |Zc, ζc′)P (Zc, ζc′ |Xc′

1 , . . . , Xc′

kc′
) dZc′ dζc′P (c′)

≈
P

i

P

M
P (Y |Z(i)

c , ζ
(i)
c )P (Z

(i)
c , ζ

(i)
c |Xc

1 , . . . , Xc
k1

)P (c)
P

c′∈C

P

i

P

M
P (Y |Z(i)

c , ζ
(i)
c′

)P (Z
(i)
c , ζ

(i)
c′

|Xc′

1 , . . . , Xc′

kc′
)P (c′)

In each case we require calculation of the marginal likelihood P (Y |Zc, ζc). In fact
this is a closely related problem to that of Bayesian shape matching for database
search described above, as can be seen by considering the collected posterior samples

{(Z(i)
c )}c∈C as a database of shapes. Thus the shared problem is that of marginal-

izing over the combinatorial space of matchings for a large set of target shapes
simultaneously.

5. APPROXIMATE POSTERIORS VIA GEOMETRIC HASHING

As described, computation of posterior quantities by MCMC methods suffers from
several drawbacks, including the requirement of order-preserving matchings for effi-
cient Gibbs steps, the difficulty of mixing between multiple posterior modes in the
combinatorial space of bipartite matchings, and general infeasibility of Monte Carlo
methods for calculations which must be repeated thousands or millions of times to
search large databases. In this paper we explore the adaptation of an algorithm
from the image processing literature, geometric hashing, to compute approximate
posterior quantities much more efficiently. Our goal is to approximate the marginal
likelihood

P (Y |Zc, ζc) =
X

M∈M

P (Y |M, Zc, ζc)P (M)

≈
X

M∈M∗

P (Y |M, Zc, ζc)P (M)

by consideration of some high posterior density set M∗ which can be calculated
efficiently.
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5.1. Geometric hashing

Geometric hashing is an algorithmic technique developed in the computer vision
literature for object recognition and image analysis to rapidly match scenes to a
database of models (Wolfson and Rigoutsos, 1997). It has also been applied effec-
tively to alignment and substructure analysis of protein molecules (Nussinov and
Wolfson, 1991; Wallace et al., 1996). A key advantage of the approach is the abil-
ity to match against a library of models simultaneously in polynomial time. There
are several variations on the algorithm; here we describe and implement one of
the simplest although not necessarily the most computationally efficient. Here we
briefly introduce the algorithm; see above references for more details. In the next
section we show how this algorithm may be adapted to perform the Bayesian shape
calculations of Section 3 very efficiently.

Geometric hashing begins by representing each object in the database in a
hashtable, to which search objects are then compared. All objects are represented
as follows: choose three non-collinear landmarks from X denoted by xa, xb, and xc,
and define the unique coordinate frame having s = xa, xb, xc lying in the xy-plane
with xa at the origin and xb on the positive x-axis, and z-axis given by the right-
hand rule. Denote by es

1, e
s
2, e

s
3 the associated orthogonal basis. All other points

X[4:n] are represented in this coordinate frame as xi −xs
0 = as

i e
s
1 + bs

i e
s
2 + cs

i e
s
3 where

xs
0 is the chosen origin; note that the resulting coordinates (as

i , b
s
i , c

s
i ) are invariant

under SE(3). These coordinates are then used to index a location in a table, where
the coordinates are stored along with a pointer to the reference set s. This process
is then repeated for (a) every ordered subset s of landmark triplets in X, and (b) for
every X in the database. This indexing takes O(n4) processing time per database
object, but can be precomputed once offline and then used repeatedly.

To match a newly observed object Y to the database, a landmark triple s is
chosen (perhaps randomly) and used to compute coordinates (as

i , b
s
i , c

s
i ) for the re-

maining landmarks. These coordinates again serve as indices into the table, where
the associated entry contains a list of (point, reference set, object) triplets for match-
ing points in database objects. Each such element of the list is then assigned a “vote”
for the associated (object,reference set) pair. The database (object, reference set)
pair receiving the most such votes is considered the best match. This voting can
be given a probabilistic semantics and the resulting best match considered to be a
maximum likelihood match among objects in the database (Wolfson and Rigoutsos,
1997). The key to the approach is that comparison of a new object Y to an entire
database may be done rapidly in order O(nc∗) where c∗ is a constant giving the
average entry list length, related to the density of points.

6. FULLY BAYESIAN SHAPE MATCHING BY GEOMETRIC HASHING

The geometric hashing technique allows rapid large-scale parallel comparison of ob-
ject configurations against a database. In the paper we explore the use of this
technique for approximation of marginal posterior quantities under the models de-
scribed in Sections 3.2 and 4.

We consider approximation of marginal posterior quantities such as (3) or 95%
credible sets:

C95 = {M ∈ M : P (M |X, Y ) ≥ cα} (4)

where cα = min s.t. P (C95 |X, Y ) ≥ .95. As mentioned, the original geomet-
ric hashing algorithm may be viewed as an approximation of the MAP estimate
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arg maxM∈M P (M |X, Y ) under a uniform prior; however, if the posterior P (M |X, Y )
is multimodal, the MAP estimate may be a poor summary.

6.1. Priors

We consider two simple classes of priors. The first are uniform priors on matchings
P (M) = |M|−1, where

|M| =

min(nX ,nY )
X

k=0

 

nX

k

!

nY !

(nY − k)!

The second are exchangeable priors:

P (M) = f(|M |) = g(k)

which depend only on the number of matches but not the precise pattern.

6.2. Likelihood bound

In order to approximate quantities such as high posterior density credible sets (4)
and marginal posterior probabilities (3) to within a given accuracy, we must be able
to identify a subset M∗ ⊂ M of elements with high posterior probability. Suppose
we wish to find all alignments M such that

Z(X, Y )−1g(k)(2πσ2)−
3k
2 e

− 1

2σ2
d2

P (XM ,YM )
P (yi ∈ YM̄ , xi ∈ XM̄ ) ≥ p∗

Where Z(X, Y ) denotes the normalizing constant or marginal likelihood. For a
match of size |M | = k and conditional on σ2, we then require

dP (XM , YM ) ≤
√

2σ

»

log(
p∗

g(k)λ(n+m−2k)Z(X, Y )−1
) +

3k

2
log(2πσ2)

– 1

2

= d∗
k

Thus we may construct such a set by

M∗ =
[

k

{M ∈ M : |M | = k, dP (XM , YM ) ≤ d∗
k}

We may adapt the geometric hashing algorithm of Section 5.1 to approximate this
set very quickly as described in the following section.

Identification such a set M∗ would allow us to obtain theoretical guarantees on
the accuracy of our approximation of the posterior. For example, we would like to
guarantee that

1 − α ≤
X

M∈M∗

P (M |X, Y ) =
X

M∈M∗

L(X, Y |M)P (M)
P

M′ L(X, Y |M ′)P (M ′)

However, in practice we do not know the marginal likelihood Z(X, Y ) needed to
compute d∗

k. In order to bound the contributions of individual alignments to the
posterior we therefore require a bound on Z(X, Y ) as well, so that

X

M∈Cα

L(X, Y |M)P (M) ≥ β and
X

M 6∈Cα

L(X, Y |M ′)P (M ′) ≤ γ
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where βγ−1 ≥ α. If we can find M∗ such that it contains all M ∈ M with
P (M)L(X, Y |M) ≥ δ∗, a weak bound on Z(X, Y ) may be obtained from

P (X, Y ) ≤
X

M∈M∗

P (X, Y |M)P (M) + (|M | − |M∗|)δ∗

It is as yet unclear whether this can lead to a practical algorithm with guaranteed
bounds. Nevertheless, the above argument shows that there exists such a d∗

k which
will give accurate approximations. Even if we cannot choose d∗

k by theoretical ar-
guments with guarantees, we may be able to obtain accurate approximations with
good empirical performance by experimentation; we explore this below.

6.2.1. Bounding Procrustes distance based on geometric hashing

The above argument shows that there exists a sequence d∗
k, k = 0, . . . , min(n, m)

such that the set M∗ = {M ∈ M : dP (XM , YM ) ≤ d∗
|M|} yields a high posterior

credible set and good approximations to posterior quantities. Even if we cannot
determine such a d∗ directly to obtain theoretical guarantees, this suggests that
choosing a d∗ large enough may give good empirical performance. Denote by

d2
GH(a,b,c)(X, Y ) = ‖X − Y R̂GH(a,b,c)‖2

F =

p
X

i=2

‖xi − ŷj‖2

the sum-of-squared Euclidean distances of matched landmarks under the geometric
hashing transform described above using reference set (a, b, c). For all (a, b, c) ⊂ X
we have

dP (X, Y ) ≤ dGH(a,b,c)(X, Y )

Thus a sufficient condition for dP (XM , YM ) ≤ d∗
k for |M | = k is that max ‖xi−ŷj‖ ≤

d∗
k/

√
k where ŷ = yR̂GH(a,b,c). Thus we need only find all matchings with maximum

distance between matched points less than d∗ = maxk d∗
k/

√
k. (Alternatively we

may build n different hashtables for matches of size k = 1, . . . , n, but we have not
implemented this here.)

To obtain all such matching points for a given reference set, we need simply adapt
the geometric hashing algorithm as follows: choose the resolution of the hashtable
indexing to be d∗. Now when matching an object to the database, each point used
as an index into the table at entry (a, b, c) say, must also check the 26 neighboring
entries in the surrounding cube: {(a − 1, b, c), (a, b − 1, c), (a, b, c − 1), (a − 1, b −
1, c), . . . )}. In this way every point within d∗ of the indexed point may be identified
with only a constant factor increase in computational time.

We further adapt the geometric hashing algorithm as follows: we use all
`

n

3

´

unordered triplets of the query object. For each reference set we find all landmark
matches within d∗, to construct the maximal matching. Using the corresponding
matching we then compute the full least-squares Procrustes distance to obtain the
associated likelihood. The resulting matching algorithm has increased computa-
tional complexity of O(n4).

Note that there are multiple approximations being made here. First, the ap-
proximation to the posterior by a high density credible set. Second the set itself is
approximated: since the above condition is sufficient but not necessary, the hashing
algorithm is not guaranteed to obtain all matches with dP ≤ d∗. Finally, each match
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M ∈ M∗ is maximal, effectively giving a mode approximation for each region of
high posterior probability matches.

Nevertheless, this approach has strong advantages over MCMC-based matching,
inheriting the strengths of the original geometric hashing algorithm. First, it is
deterministic and non-iterative, making it suitable for rapid, large scale repeated
search. Second, it computes the marginal likelihood for the Bayesian match of
the query object against an entire set of target objects simultaneously rather than
sequentially. Third and related, it is inherently parallelizable. Thus one could imag-
ine a distributed database server which performs shape queries in a fully Bayesian
fashion rather than by a standard heuristic optimization criteria.

6.3. Alternative priors on M
It is unclear how general P (M) may be and still be amenable to this rapid hashing
approach; this merits further exploration. Priors of the form (2) seem difficult to
incorporate into the algorithm, but other types of spatial process priors may prove
tractable. In addition, the approximating set M∗ obtained under uniform prior
as above may be used to obtain approximations to other priors via importance
reweighting:

P (Y |Zc, ζc) ≈
X

M∈M∗

P (Y |M, Zc, ζc)w(M)/
X

M′∈M∗

w(M ′)

where w(M) = P (M)/g(|M |). Bounds for this case seem to more difficult and rely
on the maximum and minimum of w(M) over M ∈ M.

7. EXAMPLES

We apply this approach to the problem of pairwise protein structure alignment
developed previously (Rodriguez and Schmidler, 2006a). Figure 1 shows the results
obtained from applying the geometric hashing technique to approximate marginal
posteriors as described in Section 6 to match two short protein fragments taken
from the N-terminal Helix A region of human deoxyhemoglobin β-chain (4hhb A)
against sperm whale myoglobin (5mbn). The figure shows the marginal posterior
match matrices (3) obtained from the hashing approximation, compared with an
exact calculation obtained by exhaustive enumeration, which is just feasible for this
short n = 7 problem.

Figure 3 shows the approximate marginal match matrix obtained from a larger
problem which is chosen to exhibit multimodality, where MCMC performs poorly.
An N-terminal fragment of the Helix A region of human deoxyhemoglobin β-chain
(4hhb A) is matched against a stretch of 30 N-terminal residues from sperm whale
myoglobin spanning both helices A and B. There are expected to be at least two
reasonable matches, to each of the two helices, separated by a break for the loop in
between. We see this from the hashing-based posterior, as well as lower posterior
modes obtained from reversing the N- to C-terminal orientation of the query helix.
Exact calculation for this example is infeasible.

8. CONCLUSIONS AND FURTHER WORK

We have described an approximate calculation technique for Bayesian shape match-
ing under the framework described by (Rodriguez and Schmidler, 2006a) using an
extension of the geometric hashing technique developed by (Nussinov and Wolfson,
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1991). This technique has the advantage of being highly computationally efficient
and inherently parallel, allowing particularly efficient simultaneous calculation when
shape matching against a large set of shapes is required. As described, this addresses
the fundamental computational problem of Bayesian shape matching of a query ob-
ject against a large database of possible targets, or for calculation of key quantities in
Bayesian shape classification when classes are described by mean shapes or posterior
distributions summarized by Monte Carlo samples.

This basic approach has been demonstrated for test examples in the alignment of
protein structures. Further experimentation and optimization of the implementation
is needed to explore the large scale applications which motivate this approach; the
algorithm is inherently parallelizable and development of a distributed database
server which performs shape queries in a fully Bayesian fashion may be feasible.

There are a number of directions for further work along these lines. It is an
interesting question whether more sophisticated bounds for the posterior quantities
may be obtained to provide theoretical guarantees on the accuracy of approximation.
A simple approach is suggested here but more work is needed to determine if this can
be useful in practice. However it is worth pointing out that the MCMC approach,
which is also in standard usage for an enormous variety of Bayesian computational
problems, also comes with few guarantees in practical problems where the mixing
time of the Markov chain cannot be bounded polynomially.

It may be fruitful to view the use of maximal matchings to construct the set M∗

as a finite space analog to standard integral approximation algorithms in continuous
spaces based on normal approximations at posterior modes (Tierney et al., 1989;
Tanner, 1993). In this sense, the “width” of a mode is clearly missing and it may be
helpful to construct a multiplicative factor for the posterior contribution of elements
in M∗, e.g. based on the number of subsets of size k′ < k for a maximal matching
of size k.

The additive error model used here is particularly simple and does not account
for spatial covariation between landmark deviations, for example. Addressing this
while preserving the efficiency of the hashing calculation requires some care, but
increasing d∗ and computing the Procrustes distance using appropriate Mahalanobis
inner product may be feasible and warrants investigation. Alternatively, as with the
discussion of non-factorable priors in Section 6.1, importance reweighting of M∗

may be effective. It remains unclear how practically significant such covariance
structure may be for shape matching and classification, and this is likely to be
problem specific. It is worth noting that the hashing approach of standardizing
the coordinate frame to a single triplet seems reminiscent of Bookstein coordinates
(see e.g. Bookstein (1986); Dryden and Mardia (1998)), which is known to induce
spurious covariance on the other landmarks. It would be interesting to explore how
this affect manifests in the geometric hashing case presented here.

A major advantage of the hashing technique over MCMC sampling is the ability
to quickly generate multiple modes which may be well-separated and difficult for
a Markov chain algorithm to cross between. One possibility for improving on the
hashing approximation described here is to use it to develop a fast approximation
which is then refined by MCMC sampling, using the identified modes to generate
move proposals in the Markov chain. This has the combined advantage of allowing
the MCMC to mix between modes, and of refining the hashing answer in a way
which will converge with the usual theoretical guarantees. This is a more powerful
generalization of the library-sampling extension to MCMC matching given in Ro-
driguez and Schmidler (2006a); Wang and Schmidler (2006) without requiring the
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order-preserving constraints assumed there. This approach would also allow the in-
corporation of more general covariance structure and more informative priors. While
very promising for improving the quality of the approximation, this approach suffers
from the fact that any MCMC technique will be significantly slower than the rapid
and simultaneous hashing technique described in this paper, and thus infeasible for
large-scale comparison against large databases. More experience with this approach
is needed in order to understand the impact of trading off these computational and
modeling alternatives.
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Figure 1: Marginal posterior match probability matrix obtained for short
7-residue N-terminal fragment including portion of Helix A for human deoxy-
hemoglobin β-chain (4hhb A) against sperm whale myoglobin (5mbn). Shown
are results from (a) exact calculation, and (b) geometric hashing-based ap-
proximation as described in text.
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Figure 2: Marginal posterior match probability matrix obtained for short
7-residue N-terminal fragment including portion of Helix A for human deoxy-
hemoglobin β-chain (4hhb A) against sperm whale myoglobin (5mbn). Shown
are results from (a) exact calculation, and (b) geometric hashing-based ap-
proximation as described in text.
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Figure 3: Application of Bayesian matching algorithm using geo-
metric hashing to larger example exhibiting multimodality: comparison of
N-terminal helical fragment of human deoxyhemoglobin β-chain (4hhb A)
against residues 8-32 of sperm whale myoglobin (5mbn) which include he-
lices A and B.


