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Abstract

As we enter the post-genome era, widespread availability of genomic data promises to

revolutionize biomedicine, providing fundamental insights into the molecular mech-

anisms of disease and pointing the way to developing novel therapies. However im-

portant hurdles remain, including understanding the function and mechanism for the

proteins encoded by genomic sequences. While function and mechanism are dictated

by a protein’s native structure, prediction of protein structure from sequence remains

a difficult unsolved problem.

In this dissertation, I develop a novel framework for protein structure prediction

from amino acid sequence, based on a new class of generalized stochastic models

for sequence/ structure relationships. I introduce a formal Bayesian framework for

synthesizing the varied sources of sequence information in structure prediction using

joint sequence-structure probability models based on structural segments. I describe

a set of probabilistic models for structural segments characterized by conditional in-

dependence of inter-segment positions, develop efficient algorithms for prediction in

this class of models, and evaluate this approach via cross-validation experiments on

experimental structures. This approach yields secondary structure prediction accu-

racies comparable to the best published methods, and provides accurate estimates

of prediction uncertainty, allowing identification of regions of a protein predicted at

even higher accuracies.

I then generalize this Bayesian framework to models of the non-local interactions

in protein sequences involved in tertiary folding. I develop Monte Carlo algorithms

for inference in this class of models, and demonstrate this approach with models

for correlated mutations in β-sheets. Case studies and cross-validation experiments
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demonstrate this approach for predicting β-strand contact maps, providing important

information about protein tertiary structure from sequence alone.

This dissertation provides a suite of statistical models and computational tools

for protein structure prediction. In addition, the models developed here generalize

existing stochastic models in important ways. I relate these new models to existing

generalized hidden Markov and stochastic segment models, showing the latter to be

special cases of the former. Further, the interaction models developed here represent

a novel class of stochastic models for sequences of random variables with complex

long-range dependency structure. These new models, and the associated algorithms,

are likely to be of broader statistical interest.
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Chapter 1

Introduction

1.1 Structural bioinformatics in the post-genome

era

The Human Genome Project is nearing completion, with rough-drafts currently in the

public and private domain (Consortium, 2001; Venter et al., 2001). Many complete

genomes for pathogenic organisms have been available for some time (Fleischmann

et al., 1995; Fraser et al., 1995; Tomb et al., 1997), with many more under way.

Widespread availability of this data promises to revolutionize biology and medicine,

providing fundamental insights into the molecular mechanisms of disease and pointing

the way to the development of novel therapeutic agents. Before this promise can be

fulfilled however, a number of significant hurdles remain. Each individual gene must

be located within the 3 billion bases of the human genome, and the functional role

of its associated protein product identified. This process of functional characteriza-

tion, and subsequent development of pharmaceutical agents to affect that function,

is greatly aided by knowledge of the 3-dimensional structure into which the protein

folds. Unfortunately, while the sequence of the protein can be determined directly

from the DNA of the gene which encodes it, prediction of the 3-dimensional structure

of the protein from that sequence remains one of the great open problems of science.

Moreover, the scale of the problem (the human genome is currently estimated to

1



2 CHAPTER 1. INTRODUCTION

contain approximately 35,000 genes) necessitates the development of computational

solutions which capitalize on the laboriously acquired experimental structure data.

The field of research which has sprung up in support of these efforts is known as

“structural bioinformatics”, a sub-field of the emerging discipline of bioinformatics.

It is to this field that the majority of the developments in this dissertation belong.

Structural bioinformatics is not limited to protein structure prediction. Already

looking beyond the completion of the Human Genome Project, efforts are emerging

to develop and make public a large, structurally diverse set of high-resolution exper-

imentally determined protein structures mapping the universe of naturally occurring

folds (Burley et al., 1999; Montelione and Anderson, 1999). As discussed below, such

developments will continue to magnify the importance of the work presented here.

Moreover, realization of such a goal will provide a multitude of new computational

and statistical problems with the potential to make enormous contributions to molec-

ular biology. The wide range of scientifically important and theoretically challenging

problems emerging makes it an exciting time for Bioinformatics as a field.

The problems addressed in this dissertation lie in the realm of protein structure

prediction. Interest in protein structure prediction ranges far beyond Bioinformati-

cians, as practical solutions to this problem have implications for nearly all of biology

and molecular medicine. In particular, accurate and interpretable models for pro-

tein structure prediction have implications throughout the protein science aspects of

molecular biology, which encompass the study of protein chemistry and mechanism;

the kinetics and thermodynamics of protein folding, including protein engineering;

protein-protein interactions and signaling; and protein-ligand interactions, including

nucleotide-binding proteins and regulation of gene expression as well as small-molecule

binding and pharmaceutical development. The fundamental principles of protein fold-

ing lie at the core of each of these problems. The enormous variety of roles played by

proteins in living organisms, among them structural, enzymatic, regulatory, and sig-

naling, makes a rigorous understanding of this process all the more critical. Progress

in these areas is expected to yield a greater understanding of the biochemical processes

of life and disease than ever before.

The study of protein structure, folding, and function has a long and distinguished
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history in the 20th century. Since Linus Pauling first predicted theoretically the exis-

tence of α-helices and β-sheets in 1951 (Pauling et al., 1951; Pauling and Corey, 1951),

predictions which were later verified experimentally and which greatly influenced the

discovery of the double-helical structure of DNA (Watson and Crick, 1953), protein

folding and its role in determining function has been the subject of intensive research

effort. Still, the long sought-after goal of theoretical models for protein folding which

provide practical algorithms for prediction of protein tertiary structure from sequence

remains unrealized.

In this dissertation, I provide a fresh look at the problem of protein structure

prediction from the perspective of probability theory and statistics. I develop a for-

mal framework for synthesizing the varied sources of information about a protein’s

structure under a framework of Bayesian inference. Within this framework I develop

a class of probabilistic models of structural segments which can be fit to experimental

data, and demonstrate the practicality of this approach by applying it to the predic-

tion of protein secondary structure and β-sheet topology from amino acid sequence.

The methods developed in this dissertation are evaluated via computational experi-

ments involving blind prediction on a database of experimentally determined protein

structures and shown to be both accurate and informative. The interpretability of

these models, and links with statistical mechanical theories of folding, make them

novel tools for studying protein folding on a computer. In particular, they enable

calculation of the contribution of various physicochemical properties of protein se-

quences to the accuracy of prediction, and allowing the models developed here to be

extended to incorporate future advances in the understanding of protein folding.
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Figure 1.1: The Central Dogma of molecular biology. Genetic information is stored
and replicated as DNA, transcribed to RNA, and translated to proteins. Proteins
perform the vast majority of biochemistry required by living organisms.

1.2 Proteins and their structures

1.2.1 Role of protein structure in the flow of genetic infor-

mation

To place the problem of protein structure prediction in context, I briefly review the

“central dogma” of molecular biology, summarized in Figure 1.1. The genetic in-

formation of an individual organism is stored in its DNA, located in the nucleus of

cells for eukaryotes such as humans. This DNA is transcribed into messenger RNA

(mRNA) and transported out of the nucleus, where the (majority of) RNA is trans-

lated into protein sequence by ribosomes. Proteins are therefore the tangible product

of expressing genes stored in the DNA. In actuality, this process of genetic expression

is highly complex and carefully regulated, and the subject of numerous branches of

scientific study (Stryer, 1995).

The primary concern of this dissertation is the protein sequence produced by this

process of translation. The basic structure of a protein sequence is shown in Fig-

ure 2.1, and is discussed in more detail in Chapter 2. Proteins perform the vast

majority of the biochemistry required by living organisms, playing various catalytic,

structural, regulatory, and signaling roles required for cellular metabolism, devel-

opment, differentiation, and replication. The key to the wide variety of functions

exhibited by individual proteins is not the linear sequence as shown in Figure 2.1

however, but the three dimensional configuration adopted by this sequence in its na-

tive environment (shown in Figure 2.2). In order to understand protein function at

the molecular level then, it is crucial to study the structure adopted by a particular
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sequence. Unfortunately our understanding of the physical process by which a se-

quence achieves this structure, known as protein folding, remains inadequate despite

decades of study. In particular, serious difficulties present themselves when one at-

tempts to simulate this folding process computationally in order to learn the structure

of a given protein sequence (Chapter 3).

1.2.2 Predicting structure from sequence

In the absence of practical methods for simulating protein folding, significant effort

has shifted to the problem of protein structure prediction. In structure prediction, we

abandon any attempt to simulate the actual physical process of folding, and instead

content ourselves with using any means to identify the 3D configuration of the native

protein structure. Most methods for protein structure prediction attempt to leverage

the growing database of experimentally determined structures. Having observed the

known native structures of these protein sequences, we hope to abstract principles of

protein sequence and structure which may be used to accurately predict the struc-

ture of novel sequences. This process draws heavily on data-analytic techniques and

statistical reasoning.

A more careful discussion of this branch of study, and indeed a precise formulation

of the problem, will be given in Chapter 3. However, we may summarize by saying

that the goal of accurate predictions for arbitrary sequences remains elusive. In the

absence of absolute accuracy, it is therefore equally important that methods reliably

indicate this inaccuracy, providing a degree of confidence which may be ascribed to

their predictions. In other words, methods are desired which indicate predictions or

portions of predictions that can be taken as credible, and those which must be viewed

with skepticism. Once again, the techniques of statistical inference provide a solution.

Even for a hypothetical prediction algorithm with complete accuracy, we might

impose further desideratum. While the prediction methodology may not reflect the

physical process of folding, it should be interpretable, so that prediction may be used

to gain further insight into the important factors of protein folding. This criteria

will continue to grow in importance as large numbers of protein folds are determined
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experimentally (Burley et al., 1999; Montelione and Anderson, 1999), and protein

structure tools are applied to aid in understanding folding and function, and even

designing new proteins, rather than simply making predictions.

1.3 Statement of hypothesis

The hypothesis of the research in this dissertation is that:

Bayesian inference provides a general framework for the prediction of protein structure

from sequence. Moreover, this framework can be practically realized via the develop-

ment of two components:

(i) Statistical models of sequence/structure relationships estimated from databases

of experimentally determined protein structures

(ii) Computational methods, especially Monte Carlo methods, for inference with

these models.

In combination with these components, Bayesian inference provides a set of tools for

accurate predictions of aspects of protein structure from sequence, including reliable

estimates of prediction uncertainty.

In order to demonstrate and evaluate this hypothesis, this dissertation contains the

following:

1) A general framework for protein structure prediction problems via probabilistic

modeling and Bayesian inference.

2) A set of parameterized sequence/structure models which can be estimated from

experimental protein structure databases.

3) Computational tools for practical implementation of Bayesian inference using

these models.

4) Evaluation of this approach on two different formulations of protein structure

prediction: prediction of secondary structure, and prediction of β-sheet topology

and tertiary contacts.
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Figure 1.2: Secondary structure prediction for Cytochrome C obtained from the
Bayesian segmentation algorithm. Bars indicate predicted probability of α-helical
structure. Residues which take on helical conformation in the X-ray crystallography
structure are shown in red. Probabilities are calculated using methods developed in
Chapters 4 and 7.

1.3.1 Example

Figures 1.2 and 1.3 demonstrate an example use of the methods developed in this dis-

sertation. A newly sequenced protein is analyzed to provide prediction of secondary

structure and β-sheet topology. In Figure 1.2 the approach developed in Chapter 4

is applied to produce estimated secondary structure probabilities at each position of

the sequence. In Figure 1.3, methods described in Chapter 5 produce an estimated

probability-of-contact map which predicts potential tertiary interaction of β-strands

forming β-sheets. As shown in Chapter 9, these outputs provide accurate and infor-

mative predictions of important features of the protein conformation based only on

sequence information.
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Figure 1.3: Prediction of tertiary β-sheet contact map for pancreatic trypsin inhibitor.
Axes represent position in sequence, and shading of pixels (x,y) is proportional to the
predicted probability of residues x,y forming contacts within a β-sheet. Probabilities
are calculated using methods developed in Chapters 5 and 8.

1.4 Organization of this document

The remainder of this document is organized as follows. Chapter 2 presents a brief

overview of the current understanding of protein structure and protein folding, empha-

sizing factors important for protein structure prediction used later in the dissertation.

Chapter 3 reviews previous work in the field of protein structure prediction, with a

detailed treatment of the two main problems addressed in this dissertation: predic-

tion of the secondary structure and β-sheet topology of a protein from its amino

acid sequence. Chapter 4 introduces the general framework developed in this dis-

sertation, describing a probabilistic formulation of the protein structure prediction

problem and an explicit set of probabilistic models for protein sequence/structure

relationships. The application of these models for prediction of secondary structure

is described. Chapter 5 generalizes the framework described in Chapter 4 to include

models for non-local interactions in protein sequences, and demonstrates this ap-

proach by developing models for the prediction of β-sheet topology from sequence.

Chapter 6 diverges from the theme of protein structure prediction to formalize in an

abstract way the statistical developments of this dissertation, describing new classes

of stochastic models for sequences of random variables with complex dependency

structure. Chapters 7 and 8 provide the algorithms required to utilize the models of
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Chapters 4-6 in practical applications. Chapter 9 discusses the evaluation of these

models in support of the dissertation thesis given in Section 1.3, and Chapter 10

provides some concluding remarks as well as a perspective on future work.

This dissertation crosses several disciplines and is expected to make contribu-

tions to the fields of bioinformatics and computational molecular biology, statistics,

and protein science. Chapter 2 provides a review of basic ideas of protein structure

and folding, which may be useful to statisticians and computer scientists lacking for-

mal exposure to molecular biology. Chapters 4-8 form the core of this dissertation.

Bioinformaticians interested primarily in protein structure prediction may safely skip

Chapter 6 and much of Chapters 7 and 8. Statisticians interested primarily in the

methodology developed here may wish to skip directly to Chapters 6-8. Throughout,

a working knowledge of probability theory at the undergraduate level is assumed.
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Chapter 2

Protein Structure and Protein

Folding

This dissertation develops a statistical methodology for addressing the problem of

protein structure prediction. In this Chapter I present a brief introduction to the basic

concepts of protein structure and review our current understanding of the biophysical

factors important for protein folding. This discussion is necessarily abbreviated, and

more thorough discussions can be found in (Stryer, 1995; Branden and Tooze, 1999;

Creighton, 1993) which are still relatively accessible to non-experts.

2.1 Basics of protein primary, secondary, and

tertiary structure

A protein sequence is a linear hetero-polymer, meaning simply that it is an un-

branched chain of molecules where each “link” in the chain is one of the twenty

amino acids (see Figure 2.1). The amino acids in a sequence are linked by asym-

metric peptide bonds, allowing the designation of a beginning (N-terminus) and end

(C-terminus) to the chain. Because each amino acid can be denoted by a canonical

letter of the alphabet, this sequence of molecules can be represented succinctly by a

11
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Alanine A Leucine L
Arginine R Lysine K
Asparagine N Met hionine M
Aspar tic acid D Phenylalanine F
Cysteine C Proline P
Glut amine Q Serine S
Glut amic acid E Threonine T
Glycine G Tryp tophan W
Hist idine H Tyrosine Y
Isoleucine I Valine V

Amino Acids

Peptide Bonds Primary Sequence

 . . . NWVLSTAADG. . .

C C00-
H

R
+H3N

C
C0

H

R1

+H3N C

H
HN

C C00-
H

C0
HN

R2
R3

Figure 2.1: The basic components of protein structure. Proteins are made up of
twenty naturally occurring amino acids linked by peptide bonds to form linear poly-
mers. Each amino acid is represented by a letter of the alphabet to produce a protein
sequence.

sequence of letters (Figure 2.1). This sequence, along with the linear chain of peptide-

bonded amino acids it represents, is called the primary structure of the protein. In

its native environment, a protein sequence folds into a compact structure in 3 dimen-

sions (Figure 2.2), the tertiary structure. It is a general property of proteins that the

primary sequence uniquely specifies the folded tertiary structure (Anfinsen, 1973),

although examples exist where other factors may be required for efficient folding. It

is this structure which provides the scaffolding for chemical or structural activity of

the protein in vivo. Within the tertiary structure, regular conformations of the Cα

backbone are observed. Figure 2.3 shows the two most commonly occurring confor-

mations, a helical conformation known as an α-helix and an extended conformation

known as a β-strand. As shown in Figure 2.3, β-strands are joined together by hy-

drogen bonds to form β-sheets. Together, such local conformations are referred to as

the secondary structure of the protein. Protein structure can be viewed hierarchically
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PISPIETVPVKLKPGMDGPKVKQWPLTEEKIKALVEICTEMEKEGKISKIG
PENPYNTPVFAIKKKDSTKWRKLVDFRELNKRTQDFWEVQLGIPHPAGLKK
KKSVTVLDVGDAYFSVPLDEDFRKYTAFTIPSINNETPGIRYQYNVLPQGW
KGSPAIFQSSMTKILEPFKKQNPDIVIYQYMDDLYVGSDLEIGQHRTKIEE
LRQHLLRWGLTTPDKKHQKEPPFLWMGYELHPDKWTVQPIVLPEKDSWTVN
DIQKLVGKLNWASQIYPGIKVRQLCKLLRGTKALTEVIPLTEEAELELAEN
REILKEPVHGVYYDPSKDLIAEIQKQGQGQWTYQIYQEPFKNLKTGKYARM
RGAHTNDVKQLTEAVQKITTESIVIWGKTPKFKLPIQKETWETWWTEYWQA
TWIPEWEFVNTPPLVKLWYQLEKEPIVGAETFYVDGAANRETKLGKAGYVT
NKGRQKVVPLTNTTNQKTELQAIYLALQDSGLEVNIVTDSQYALGIIQAQP
DKSESELVNQIIEQLIKKEKVYLAWVPAHKGIGGNEQVDKLVSAGI
PISPIETVPVKLKPGMDGPKVKQWPLTEEKIKALVEICTEMEKEGKISKIG
PENPYNTPVFAIKKKDSTKWRKLVDFRELNKRTQDFWEVQLGIPHPAGLKK
KKSVTVLDVGDAYFSVPLDEDFRKYTAFTIPSINNETPGIRYQYNVLPQGW
KGSPAIFQSSMTKILEPFKKQNPDIVIYQYMDDLYVGSDLEIGQHRTKIEE
LRQHLLRWGLTTPDKKHQKEPPFLWMGYELHPDKWTVQPIVLPEKDSWTVN
DIQKLVGKLNWASQIYPGIKVKQLCKLLRGTKALTEVIPLTEEAELELAEN
REILKEPVHGVYYDPSKDLIAEIQKQGQGQWTYQIYQEPFKNLKTGKYARM
RGAHTNDVKQLTEAVQKITTESIVIWGKTPKFKLPIQKETWETWWTEYWQA
TWIPEWEFVNTPPLVKLWYQ

Sequence of 984 amino acids:

3D coordinates 
of 7404 atoms:

HIV reverse transcriptase

Figure 2.2: Protein folding. An amino acid sequence folds into a unique compact
structure in 3 dimensions. The example protein shown is HIV reverse transcriptase,
a DNA polymerase required for HIV replication and therefore a target for pharma-
ceutical development.

(a) (b)

Figure 2.3: Protein secondary structure. (a) α-helix - The B helix from sperm whale
myoglobin (5mbn). (b) β-sheet - Three β-strands of the D β-sheet in mouse im-
munoglobulin (1a6w). Each β-strand forms hydrogen bonds with neighboring strands
to form the sheet. The β-strands are antiparallel to each other, with two forming a β-
hairpin and one coming from a sequentially distant region of the sequence. β-strands
may also form parallel β-sheets (not shown).
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as elements of secondary structure (α-helices and β-sheets) packed together to form

a tertiary fold. Such folds may be classified based on a number of criteria including

secondary structure content (all-α, all-β, α+β, α/β, etc.) and the pattern into which

these secondary structure elements pack, known as super-secondary structure. Ex-

amples of super-secondary structure are coiled-coils, which involve multiple α-helices

entwined in a super-helical structure, and α-β barrels, made up of concentric rings

of β-sheets and α-helices. Such classifications have become an important tool for

studying evolutionary and functional relationships between large numbers of protein

folds (Murzin et al., 1995).

2.2 Protein folding

The process by which a linear protein sequence folds into its final tertiary structure

is known as protein folding (Figure 2.2). Protein folding is a subject of intense

research aimed at understanding the underlying biophysical mechanisms which drive

it. Forces involved in protein folding can be roughly divided into local effects and

non-local effects.

2.2.1 Local effects

Amino acid propensities

Local forces in protein folding refer to the contribution made by individual amino

acids of the primary sequence towards determining the conformation of the backbone

at their respective positions. These forces are side chain dependent, giving rise to the

widely accepted idea that amino acids have varying “propensities” for different types

of secondary structure. These propensities were first observed in statistical analyses

of experimental structures (Chou and Fasman, 1974b; Levitt, 1978), revealed by the

different frequencies of occurrence of the various amino acids in each type of secondary

structure (see Figure 2.4). In the last decade, experimental work has demonstrated

that substitution of different amino acids alters thermodynamic stability of folded

α-helices (Padmanabhan et al., 1990; Lyu et al., 1990) and β-sheets (Kim and Berg,
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(a) (b)

(c)

Figure 2.4: Marginal frequencies of the twenty amino acids measured at internal posi-
tions for (a) α-helices, (b) β-strands, and (c) loops/coils. Frequencies were calculated
from the database of proteins described in Chapter 9.

1993; Minor and Kim, 1994b; Smith et al., 1994), using peptide and protein host-guest

studies. Such experiments provide a physical meaning for the notion of propensity.

These amino acid propensities, either statistical or physical, form the basis of es-

sentially all successful methods for prediction of protein secondary structure from

sequence (Chapter 3). Although secondary structure propensities have been observed

experimentally as changes in free energy differences (∆∆G), this does not illuminate

the physical basis for these changes. The exact mechanism by which different side

chains yield different contributions to the free energy of secondary structure formation

remains somewhat uncertain. For some side chains such as Proline, the mechanism
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is clear: the Proline side chain forms a covalent bond with its amino nitrogen, pre-

venting formation of hydrogen bonds and constraining backbone rotation. This effect

makes Proline unfavorable in all but the first 4 positions of an α-helix (Kim and Kang,

1999). Glycine, which has no side chain, can be expected to disrupt regular secondary

structure based on entropic arguments. Glycine also provides little steric hindrance

and hence is common in positions requiring sharp changes in backbone conformation

such as β-turns (Wilmot and Thornton, 1988; Hutchinson and Thornton, 1994).

The physicochemical basis for the variations observed in other side chains is some-

what less clear. An important factor in determining α-helical propensity is likely to

be side chain conformational entropy loss (Creamer and Rose, 1992; Creamer and

Rose, 1994; Doig and Sternberg, 1995). For example, large or β-branched side chains

in α-helices encounter steric clashes with backbone atoms in some rotamer positions.

Because such rotamers remain unpopulated (McGregor et al., 1987), these residues

experience less conformational entropy in an α-helical backbone conformation than

in a random coil, decreasing the relative free energy. Examination of Figure 2.4 lends

some support to this explanation, where Val, Ile, Phe, and Tyr have lower occurrence

in helices than Leu. Similar entropic arguments may be made to explain β-strands

propensities (Baldwin and Rose, 1999a; Street and Mayo, 1999).

Side chain entropy is not the only possible explanation for secondary structure

propensities, however. Other proposed contributions include the amount of side chain

hydrophobic surface area buried in α-helices (Blaber et al., 1993), side chain steric

screening of solvent competition for main-chain hydrogen bonding in β-sheets (Bai

and Englander, 1994), and side chain screening and desolvation of backbone po-

lar atom electrostatic interactions (Avbelj and Moult, 1995; Avbelj and Fele, 1998;

Baldwin and Rose, 1999a).

The extent to which each of these effects contributes to overall propensity remains

unresolved (Avbelj and Fele, 1998). The difficulty in distinguishing such effects ex-

perimentally makes the question a difficult one; however, recent theoretical studies

indicate that conformational entropy may be a dominant factor in both α-helices and

β-strands (Creamer and Rose, 1992; Creamer and Rose, 1994; Street and Mayo, 1999).

It is worth pointing out that all side chain entropic effects are destabilizing, and so
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the relative contributions of these terms have implications for different views on the

driving forces of protein folding. For example, if secondary structure propensity is in

fact largely determined by entropic effects, other (backbone) forces must be driving

the formation of these elements. The most likely factors are hydrogen bonding and

burial of hydrophobic surface area, corresponding to the backbone centric and side

chain centric views of protein folding, respectively (Dill, 1999).

Position-specific propensities

Like Proline described above, other amino acids exhibit a varying propensity for α-

helix formation depending on their position within the helix. In particular, the N-

and C-terminal positions of α-helices have been shown to have distinctive amino acid

propensities, measured both statistically (Chou and Fasman, 1974a; Presta and Rose,

1988; Richardson and Richardson, 1988; Doig et al., 1997; Schmidler et al., 2000) and

experimentally (Doig and Baldwin, 1995; Petukhov et al., 1998). These effects, and

the biophysical mechanisms which lead to them, are referred to as helix capping (Au-

rora and Rose, 1998). A number of factors contribute to this position-dependence of

propensities. These include the differences in side chain rotamer restrictions, solvent

exposure, and steric contacts encountered in various positions of a helix (Petukhov

et al., 1998) due to the lack of amino and carboxyl group hydrogen bonds at the

4 N- and C- terminal positions respectively, as well as specific side chain-backbone

interactions (Presta and Rose, 1988; Harper and Rose, 1993; Zhou et al., 1994),

and interactions with the helix dipole (Aqvist et al., 1991; Armstrong and Baldwin,

1993). A somewhat related position-specificity has been observed in the propensities

of amino acids to form β-strands. In this case however, position is defined not with

respect to the strand, but with respect to the β-sheet in which it occurs. In particular,

edge strands of a sheet (those with only one hydrogen bonded neighboring strand)

have been shown to have different amino acid propensities from those measured at

internals strands within sheets (Minor and Kim, 1994a). Figure 2.5 shows some of

the position-specific amino acid distributions calculated from the database described

in Chapter 9. As previously observed, there is a prevalence of Pro at position N1 and

Glu and Asp at position N2 in α-helices, and an abundance of Pro in position N2 as
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(a) (b)

(c) (d)

(e) (f)

Figure 2.5: Marginal frequencies of the twenty amino acids in helical capping po-
sitions. N- and C-terminal and positions in α-helices (a,b), β-strands (c,d), and
loops/coils (e,f). Frequencies were calculated from the database of proteins described
in Chapter 9.
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25

Table 1 Ð Segment capping positions

Cap position Kullback-Leibler divergence from internal position

a-helix b-strand Loop/coil

N1 . 1 4 6 . 0 5 3 . 0 5 0

N2 . 1 9 6 .034 . 0 3 2

N3 . 1 1 5 .025 .020

N4 . 0 8 - .014

C4 .019 - .008

C3 .029 .020 .012

C2 .037 .015 .011

C1 . 0 5 9 . 0 7 7 . 0 5 6

Table 2.1: Kullback-Leibler divergence (cross-entropy) measured from the amino acid
distribution at internal segment positions to N- and C- terminal positions. The 4 N-
and C- terminal positions are shown for α-helices and loops, and 3 for β-strands
(due to sparse data). Positions shown in boldface are included in the capping models
described in Chapter 4. Kullback-Leibler divergence between two probability distri-
butions p and q is defined as KL(p,q) =

∑

i pi log(pi

qi
). Data comes from Dataset#1

described in Chapter 9.

an initial helix-terminating position in loops/coils1. Table 2.1 taken from (Schmidler

et al., 2000) shows the statistical deviance among the distributions at these positions.

Helix-capping effects can be seen to be among the strongest.

2.2.2 Non-local effects

Amino acid propensities are not the only forces which drive protein structure forma-

tion. A major source of difficulty in predicting protein structure at high accuracy

is the importance of non-local contacts in protein folding. Amino acids which are

sequentially distant in the primary structure may be in close physical proximity in

1The occurrence of Pro in N2 rather than N1 is an artifact of the structure assignments provided
by DSSP (Kabsch and Sander, 1983) as described in Chapter 9. DSSP helix boundaries do not
include the first and last hydrogen bonded residues in a helix, and hence the Ncap and Ccap positions
are included in the loops preceding and following the α-helix, respectively.



20 CHAPTER 2. PROTEIN STRUCTURE AND FOLDING

the tertiary structure, as the sequence folds back on itself in three dimensions (Fig-

ure 2.2). Interactions between such residues are non-local from the standpoint of

sequence. The relative importance of local vs. non-local effects in determining pro-

tein folds is still a subject of some debate (Baldwin and Rose, 1999a; Baldwin and

Rose, 1999b; Dill, 1999). However, it is clear that non-local effects can be impor-

tant. For example, (Kabsch and Sander, 1984; Cohen et al., 1993) have located

identical penta- and hexa-peptides which take on very different local conformations

in different proteins. Moreover, (Minor and Kim, 1996) have designed an 11 amino

acid “chameleon” sequence which folds into an α-helical conformation when placed

at one position in a particular protein, and a β-strand conformation when placed at

a different position in the same protein. A possible explanation for such observations

is the effect of non-local contacts in determining local structure.

A general type of non-local interaction which has been studied extensively is hy-

drophobic interaction (Kellis et al., 1988; Sandberg and Terwilliger, 1989; Dill, 1990).

Amino acids distant in the primary sequence may form contacts in the tertiary struc-

ture if doing so helps to bury their hydrophobic surfaces against each other. Strong

evidence suggests that burial of hydrophobic residues is an important factor driving

protein folding (Dill, 1990; Dill, 1999). In the extreme view, hydrophobic contacts

may dominate tertiary and secondary structure formation, and it is widely accepted

that they are at least responsible for determining the packing of secondary structure

in most folds.

α-helices

In addition to the general hydrophobic interactions described above, specific side chain

interactions have been observed in α-helices, particularly at the (i, i + 4) positions

brought into spatial proximity by the 3.6 residue/turn rate of the helical rotation.

These interactions have been shown to contribute significantly to stabilization of α-

helices both experimentally (Padmanabhan and Baldwin, 1994; Huyghues-Despointes

et al., 1995; Baldwin and Rose, 1999a) and theoretically (Creamer and Rose, 1995;

Shalongo and Stellwagen, 1995; Stapley et al., 1995). Stabilizing side chain interac-

tions have also been discovered statistically by looking at pairs of co-occurring amino
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Sequence of
helical peptide:  NLAKMVVKTAEAILKD

Figure 2.6: Amphipathic α-helix from β-lactamase (4blm). The helix is shown in its
native environment, where one side is buried against a β-sheet. Hydrophobic amino
acid side chains on the helix are shown in white, and tend to cluster on the buried
side of the helix where they are not exposed to solvent. When the helix is viewed
alone, these hydrophobic amino acids are seen to induce an approximate periodicity
in the linear sequence, giving clues about the underlying backbone conformation.

acids in experimental structures (Klingler and Brutlag, 1994), findings later verified

experimentally. General hydrophobic interactions also lead to an interesting set of

side chain patterns within α-helices. Because of the periodic nature of the helical

backbone, amino acids at (for example) positions (i, i+ 4) share a common chemical

environment. This common environment, in combination with possible hydrophobic

side chain interactions (Creamer and Rose, 1995), leads to correlations in hydropho-

bicity at positions along a helix. This effect is most striking in amphipathic α-helices,

where one side is buried and the other exposed to solvent (Figure 2.6). Such periodic

correlations have been quantified using Fourier transforms, yielding the hydropho-

bic moment of helical subsequences (Eisenberg et al., 1982; Eisenberg et al., 1984a;

Eisenberg et al., 1984b). Figure 2.7 shows a hydrophobic moment plot for α-helices

extracted from the dataset described in Chapter 9. The hydrophobic moment is cal-

culated as the modulus of the Fourier transform, and can also be given a geometric

interpretation (Eisenberg et al., 1982). The quantification of amino acid hydropho-

bicity required for such analyses is somewhat subjective however, as a large number
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(a) (b)

Figure 2.7: Hydrophobic moment plots for (a) α-helices and (b) β-strands. The
hydrophobic moment (Eisenberg et al., 1982) is defined as the modulus of the Fourier

transform: µ(δ) = {[
∑N

n=1Hn sin(δn)]2 + [
∑N

n=1Hn cos(δn)]2}
1
2 Peaks are observable

at approximately 100◦ for α-helices and 150−160◦ for β-strands, corresponding to the
backbone rotations of 3.6 residues/turn and 2.1 residues/turn, respectively. Helices
and strands were extracted from the dataset described in Chapter 9.

of experimental, theoretical, and empirical scales have been reported - (Cornett et al.,

1987) cite 38 such scales from the literature.

These general and specific side chain interactions lead to an observed increase in

the frequency of certain pairs of amino acids at appropriately spaced positions along

the helical backbone as seen in (Klingler and Brutlag, 1994) and Figure 2.8, when

measured relative to the marginal propensities shown in Figure 2.4. It is difficult

to distinguish which correlations may be explained by actual side chain interactions

and which can simply be ascribed to similarity of chemical environment of the type

indicated by Figures 2.6 and 2.7. Entropic arguments suggest that some types of side

chain interactions may be rare (Padmanabhan and Baldwin, 1994). However, for pur-

poses of predicting α-helices from sequence the distinction is irrelevant (Chapter 4).

The side chain and hydrophobic interactions in α-helices just described are non-

local in the sense that they depend on amino acids which are not immediately adjacent

in the primary sequence. However, these interactions are still “semi”-local, because

they occur within the same secondary structural segment. A second type of side chain
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Figure 2.8: Odds ratios ( P (A1,A2)
P (A1)P (A2)

) for occurrence of amino acid pairs in α-helices
at positions i, i+ 4. Ratios over 1.5 are highlighted. Helices were extracted from the
dataset described in Chapter 9

interaction has been observed in α-helices which is truly non-local in sequence. This

involves interaction between side chains in distinct α-helices which pack together to

form coiled-coils. Side chains at specific positions in these neighboring helices have

been shown to interact (Krylov et al., 1994), and in fact to determine specificity for

the type of tertiary fold. I refer to such interactions as inter -segment interactions,

in contrast with the intra-segment interactions described above. These inter-segment

non-local interactions, and those discussed below for β-sheets, are difficult to model

in standard protein structure prediction schemes. This issue will be taken up again

in Chapter 5.

β-strands

The same type of periodicity in side chain environment discussed for α-helices also

holds for β-strands, and similar hydrophobic patterns can be observed. However the

differences in rate of backbone rotation between α-helices and β-strands (Figure 2.3)

lead to a different observed period for β-strands. In particular, β-strands alternate

by placing every second side chain on the same side of a sheet. Combined with the

“twisting” of β-sheets induced by hydrogen bond angles (Creighton, 1993), this leads

to a period of approximately 2.1 in β-strands (Eisenberg et al., 1984b), s can be seen
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in the hydrophobic moment plot (Figure 2.7).

β-sheets

As with α-helices forming coiled-coils, β-strands forming β-sheets exhibit inter -segment

side chain interactions in addition to the intra-segment hydrophobic periodicity. In

fact, there is now substantial evidence that inter-segment side chain interactions be-

tween neighboring strands lend specificity and stability to formation of β-sheets dur-

ing protein folding. This evidence is provided by both statistical (Lifson and Sander,

1980; Wouters and Curmi, 1995; Hutchinson et al., 1998) and experimental (Smith

and Regan, 1995; De Alba et al., 1997) analyses, and has recently been used advan-

tageously in the design of novel peptides which fold into β-sheets (Kortemme et al.,

1998; De Alba et al., 1999). Statistical analyses and simulation experiments also show

that these side chain interactions in β-sheets are context-dependent, with different in-

teractions being energetically favorable in hydrogen bonded and non-hydrogen bonded

amino acid pairs (Wouters and Curmi, 1995; Hutchinson et al., 1998). Combined with

the edge-dependence of amino acid propensities in β-sheets discussed in Section 2.2.1,

this suggests that non-local factors play a particularly important role in the formation

of β-sheets. Again, these types of non-local, inter-segment interactions are difficult

to incorporate into standard protein structure prediction schemes. We will return to

this issue in Section 3.2 of Chapter 3, and again in Chapter 5.

Disulfide bonds

A final set of non-local interactions worth mentioning briefly are those involving disul-

fide bonds. In contrast to the other interactions discussed, disulfide bonds are covalent

bonds formed between two Cysteine residues to form a Cystine. These residues are

often quite distant in sequence, and the Cys-Cys bond that forms when the two

residues are in close proximity in the tertiary structure can significantly stabilize the

folded protein. Disulfide bonds commonly occur in secreted (extracellular) proteins

(Branden and Tooze, 1999; Stryer, 1995).



Chapter 3

Previous Work in Protein

Structure Prediction

Chapter 2 discussed the basic principles of the structure of proteins. In this Chapter

I review the problem of predicting this structure from the amino acid sequence, the

central problem addressed in this dissertation. The field of protein structure predic-

tion has a long history and enormous literature, and the discussion here is necessarily

limited. Emphasis will be on specific formulations of the problem considered later in

the dissertation. The interested reader is referred to (Sternberg, 1996) for a broader

and more comprehensive introduction to the field.

Protein structure prediction methods can be broadly divided into two classes,

physical and statistical. On the one hand are methods which attempt to model the

physical determinants of protein structure at the molecular level. The most extreme

examples of the physical approach are attempts to predict protein structure by molec-

ular dynamics simulation (Leach, 1996; Frenkel and Smit, 1996) of the physical pro-

tein folding process (Levitt and Sharon, 1988; Duan and Kollman, 1998). Currently,

computational considerations make such approaches impractical for ab initio protein

structure prediction, although promising progress is being made (Duan and Kollman,

1998; Doniach and Eastman, 1999). I do not attempt to provide an overview here of

molecular dynamics simulation, as the literature is vast and the approaches developed

in this dissertation are quite different.

25
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The second class of methods for protein structure prediction are statistical in na-

ture. The common thread shared by these approaches is an attempt to leverage the

existing database of experimentally determined structures (Bernstein et al., 1977) in

order to infer structure for new sequences. Statistical methods thus broadly encom-

pass techniques such as sequence homology search followed by structural homology

modeling, threading and fold recognition, secondary structure prediction, and a vari-

ety of other methods which at some level involve fitting statistical models to database

structures.

These two classes of methods, physical and statistical, are of course not mutually

exclusive. The most successful approaches to date rely on a combination of physic-

ochemical principles and experimental structure data in order to develop predictive

models. Using the understanding of protein folding principles developed in Chapter 2

to provide the general structure of predictive models, and then estimating the model

parameters from experimental data, is a central theme of the work presented in this

dissertation.

The methodology developed in this dissertation will be demonstrated using two

particular problems in protein structure prediction, which represent intermediate

steps along the path to full tertiary structure prediction. These two problems are

(i) the prediction of secondary structure from sequence, and (ii) the prediction of

β-sheet tertiary contacts and topology from sequence. In this Chapter I provide a

review of the history and current status of work in these two areas. The Chapter con-

cludes with a brief discussion of empirical potential functions for protein structure

prediction, a topic which will serve as a basis for later discussion in Chapters 4 and 5.

3.1 Secondary structure prediction

The secondary structure prediction problem is the task of predicting the location of

α-helices and β-strands in an amino acid sequence, in the absence of any knowledge

of the tertiary structure of the protein. The task is thus to predict a 1-dimensional

summary of the 3-dimensional folded structure, as shown in Figure 3.1. This 1-

dimensional summary is typically formulated as a 3-state problem, with all positions
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a-helix and anti-parallel b-sheet:

Residue Sequence: NWVLSTAADMQGVVTDGMASFLDKD
     ... . . .

Secondary Structure: LLEEEELLLLHHHHHHHHHHLHHHL

Fig. 1: Syntactic formulation of secondary structure problem

Residue Sequence: NWVLSTAADMQGVVTDGMASFLDKD
     ... . . .

Secondary Structure: LLEEEELLLLHHHHHHHHHHLHHHL

Fig. 1: Syntactic formulation of secondary structure problem

Figure 3.1: The secondary structure of a protein sequence. Secondary structure of
a protein is defined by the local backbone conformation at each position. Secondary
structure elements of greatest interest include α-helices (shown in red) and extended
β-strands which come together to form β-sheets (shown in yellow). These are repre-
sented as H and E respectively in the 1-dimensional summary.

classified as being in either α-helix (designated by H), extended β-strand (E), or

loop/coil (L) conformation. Hence the problem can be viewed abstractly as a map-

ping from a 20n-dimensional amino acid sequence space to a 3n-dimensional structural

sequence space, for a sequence of length n. Accurate secondary structure predictions

are of considerable interest, in part because knowledge of the location of secondary

structure elements can be used for approximate folding algorithms (Monge et al.,

1994; Dandekar and Argos, 1996; Friesner and Gunn, 1996; Ortiz et al., 1998; Eyrich

et al., 1999b; Eyrich et al., 1999a; Zhu and Braun, 1999) or to improve fold recog-

nition algorithms (Fischer and Eisenberg, 1996; Russell et al., 1996), which can in

many cases yield low-resolution 3D structures for the folded protein. Because of

this, secondary structure prediction has received a great deal of attention over several

decades, but remains a difficult problem. I discuss several important historical and

modern approaches here (see (Barton, 1995; King and Sternberg, 1996) for additional

references.)
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3.1.1 Early methods

Essentially all methods for predicting protein secondary structure from sequence are

based on the observation that different amino acids have different propensities for

each type of secondary structure, as described in Section 2.2.1. As discussed, such

propensities can be understood both as physical effects measured as free energy con-

tributions to thermodynamic stability, and statistical effects measured as marginal

distributions of amino acids conditional on secondary structure. Statistical estimates

of propensities are most commonly used in the prediction schemes discussed here,

although attempts have been made to base predictions on experimentally determined

parameters (Qian, 1996) as well.

Chou-Fasman

Among the earliest published methods to utilize these amino acid propensities for

secondary structure prediction were the Chou-Fasman (Chou and Fasman, 1974b)

and Garnier-Osguthorpe-Robson (GOR) (Garnier et al., 1978) approaches. (Chou

and Fasman, 1974a) defined a conformational parameter for each amino acid based

on the observed frequency of occurrence in each secondary structural type. These

parameters were motivated by work on helix-coil transition theories, but were simply

empirical frequencies defined as:

Ps(a) =
na,s/n.,s

na,./n.,.

(3.1)

where a is an amino acid, s ∈ {H,E, L} a class of secondary structure, nx,y the

empirical count of amino acids of type x seen in secondary structure y, and nx,. rep-

resents the marginalization
∑

y nx,y. This is seen to be an estimate of the likelihood

ratio P (a|s)
P (a)

, or alternatively of the posterior distribution P (s | a) assuming a uniform

prior over s. Multiplication of these parameters for a series of neighboring amino

acids is seen to give a simple sequence likelihood calculated under the assumption

of conditional independence. Based on these estimated conformational parameters,

(Chou and Fasman, 1974b) divided the twenty amino acids into distinct classes shown
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Symbol Class Amino Acids
Hα strong α-former EAL
hα α-former HMQWVF
Iα weak α-former KI
iα α-indifferent DTSRC
bα α-breaker NY
Bα strong α-breaker PG
Hβ strong β-former MVI
hβ β-former CYFQLTW
Iβ weak β-former A
iβ β-indifferent RGD
bβ β-breaker KSHNP
Bβ strong β-breaker E

Table 3.1: Assignment of amino acids to secondary structure classes used by the
Chou-Fasman algorithm (Chou and Fasman, 1974b).

in Table 3.1, such as “strong α-helix former”, “weak β-strand former”, and “α-helix

breaker”. These classifications can be seen to roughly conform to the modern un-

derstanding of physical amino acid propensities discussed in Section 2.2.1. Based on

this discrete classification of the amino acids, (Chou and Fasman, 1974b) scores were

assigned to tetra- and hexa-peptide subsequences in a new protein sequence based

on the number of amino acids of each class contained in the peptide. High scoring

regions were considered “nucleation sites” for potential α-helices and β-strands, and

a set of heuristic rules were defined for extension of nucleation sites in each direction,

termination criteria, and resolution of overlaps. These rules provided one of the first

algorithms for prediction of 3-state secondary structure from sequence. (Chou and

Fasman, 1974b) reported accuracies of 77-80% on a per-residue basis (measurement

of predictive accuracy will be discussed in detail in Chapter 9). This was later shown

to be a significant overestimate by (Nishikawa, 1983), whose experiments estimated

the accuracy at about 55%.
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Garnier-Osguthorpe-Robson

A second early method for secondary structure prediction, also based on observed

amino acid frequencies, was developed by (Garnier et al., 1978). Described as an

information-theoretic approach, the Garnier-Osguthorpe-Robson (GOR) method de-

fines the “information content” of an amino acid a in a particular secondary struc-

ture s as I(s; a) = log P (s|a)
P (s)

, which is easily seen to be equivalent to (the log of)

the Chou-Fasman parameter. (Garnier et al., 1978) go on to define the “information

difference” I(∆s; a) = I(s, a)− I(¬s; a), which can be seen to be the likelihood ratio

log P (r|S)
P (r|¬s)

. Like the Chou-Fasman parameter, this ratio can be evaluated on a residue

by residue basis for predicting a new sequence. (Garnier et al., 1978) applied this

for a local “window” around each residue, predicting the residue based on it’s local

subsequence. This was done by summing the information differences for each position

in the window, resulting in an implicit assumption of conditional independence in the

likelihood. Higher order dependencies have since been introduced into newer versions

of the GOR algorithm (Garnier et al., 1996). Predictions for the entire sequence were

then obtained by “sliding” this window along the length of the sequence. As with the

method of (Chou and Fasman, 1974b), accuracies reported by (Garnier et al., 1978)

were shown to be overestimates by (Nishikawa, 1983), who estimated the accuracy of

the original GOR method at about 55%.

3.1.2 Modern methods

Perhaps one of the most influential contributions of the GOR method was the no-

tion of window-based prediction. By reducing the problem to one of mapping a

fixed-length input vector to a set of output classes, (Garnier et al., 1978) opened the

door to application of a variety of statistical classification techniques developed in

the statistics, machine learning, and pattern recognition communities. A wide range

of such techniques has been applied over the years (Qian and Sejnowski, 1988; Hol-

ley and Karplus, 1989; Stolorz et al., 1992; Munson et al., 1993a; Munson et al.,

1993b; Munson et al., 1994; Rost and Sander, 1993b; Yi and Lander, 1993; Mehta

et al., 1995; Salamov and Solovyev, 1995; King and Sternberg, 1996; Riis and Krogh,
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1996; Chandonia and Karplus, 1999). Many of the more successful approaches have

been based on non-linear predictive models such as neural networks and nearest-

neighbor classifiers. A recognized advantage of these approaches was the ability to

capture dependency among the sequence positions in an efficiently parameterized

way, in contrast to the implicit conditional independence assumptions of the early

methods. As discussed in Section 2.2.2, such dependencies can be an important clue

towards identifying backbone conformation. As with the GOR approach, most of

these window-based classifiers predict each sequence position independently based on

the local surrounding subsequence. In many cases, post-prediction filtering is applied

to smooth the predictions in order to remove very short predicted segments (Holley

and Karplus, 1989; Rost and Sander, 1993b; Zimmermann, 1994; Frishman and Ar-

gos, 1996). I describe a few of these window-based approaches here, focusing on those

which have proven most successful.

Probably the most widely recognized progress in secondary structure prediction

was achieved by the PHD system (Rost and Sander, 1993b). PHD was the first rig-

orously validated prediction scheme to break the “70% barrier” which had previously

been hypothesized for secondary structure prediction. (Discussion of percentage ac-

curacy measurements will be taken up in Chapter 9.) PHD was based on multiple

neural network models, which were improved by the inclusion of a multiple alignment

of homologous sequences (Rost and Sander, 1993a; Rost and Sander, 1993b; Rost and

Sander, 1994) to the sequence of interest. However, PHD applied to single protein

sequences performed no better than other existing methods, at about 63% (Rost and

Sander, 1993b). The use of homologous sequences has proven to be a powerful source

of information in secondary structure prediction (Section 3.1.3).

Further improvements in the accuracy of single sequence predictions were demon-

strated by the use of nearest-neighbor algorithms (Yi and Lander, 1993; Frishman

and Argos, 1996). (Yi and Lander, 1993) had the advantage of giving theoretically

justifiable prediction probabilities as estimates of prediction confidence. (Frishman

and Argos, 1996) were among the first to incorporate non-local information into an

algorithm which achieved competitive performance. This was done by using pair po-

tentials for β-sheets (see Section 3.2 below) and combining maximum pairing scores
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over the rest of the sequence with a standard nearest-neighbor classifier. This incor-

poration of non-local information is cited as a source of the algorithm’s predictive

accuracy, both nearest-neighbor algorithms (Yi and Lander, 1993; Frishman and Ar-

gos, 1996) report accuracy levels of approximately 68%.

Generalizing the work on nearest-neighbor algorithms (Yi and Lander, 1993;

Salamov and Solovyev, 1995; Frishman and Argos, 1996), (Salamov and Solovyev,

1997) showed that use of local sequence alignment as a technique for identifying

“nearest neighbors” yielded improvements in single sequence accuracy to 71%.

3.1.3 Use of evolutionary information

Discussion to this point has centered on predictions for individual sequences. In the

last decade, a number of authors have demonstrated significant increases in accuracy

by the use of multiple sequence alignments in prediction (Rost and Sander, 1993a;

Rost and Sander, 1994; Salamov and Solovyev, 1995; Di Francesco et al., 1996). This

is achieved by replacing each amino acid in the single input sequence by a vector

of amino acid frequencies computed over the alignment column at that position.

Typically other indicators for insertions/deletions are included as well. Intuitively,

alignments of multiple homologous sequences provide information about tolerance

of the structure to mutations, insertions, and deletions. Since highly homologous

sequences will represent other viable forms of the protein, the underlying structure is

presumed to be essentially identical. Thus substitutions occurring in positions of the

alignment can be assumed not to destabilize the secondary structure at that position

significantly. The variety of allowed substitutions is therefore a valuable clue towards

identifying local backbone conformation.

Interestingly, the use of multiple sequence information appears to provide rela-

tively uniform improvement across a range of published methods, leading to accuracy

improvements of approximately 4-6%.
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3.1.4 Segmentation algorithms

While the vast majority of work on secondary structure prediction has taken a

window-based approach as described in Section 3.1.2, there have been notable ex-

ceptions. Because the methodology developed in this dissertation involves the more

general approach of segmenting an input sequence into structural regions, I briefly

describe some related work here.

The algorithm of (Chou and Fasman, 1974b) described in Section 3.1.1 can be

viewed as a segmentation-type approach, based on locating and extending potential α-

helix and β-strand segments. However, initial identification of these sites is identified

by window-based scanning. In a similar approach, (Solovyev and Salamov, 1994) use

linear discriminant analysis to predict structure of all short segments of the sequence,

and then resolve conflicting predictions for overlapping segments. In contrast with

the original (Chou and Fasman, 1974b) algorithm, this approach does not assume

conditional independence for segment predictions, but instead uses predictive features

derived from hydrophobic moments and residue pairs. (Cohen et al., 1986; Presnell

et al., 1992) use deterministic pattern-matching methods to locate turns and helices,

using regular expressions to identify potential segment boundaries. Although many of

these approaches are similar in spirit to the models developed in this dissertation, none

achieve accuracies competitive with the window-based classifiers discussed above. The

methodology developed in Chapter 4 can be viewed as a unifying framework for many

of the ideas motivating this earlier work, achieving accurate prediction by developing

a firm theoretical grounding of probabilistic modeling and inference to synthesize

these various sources of information.

(Auger and Lawrence, 1989; Liu and Lawrence, 1996) describe preliminary ap-

proaches to protein sequence segmentation which helped motivate some of the ideas

in Chapter 4. (Burge and Karlin, 1997) develop a model very similar to that given

by Equation 4.1 of Chapter 4 for modeling introns and exons in DNA, which has

been applied to gene parsing in eukaryotic DNA with great success; other related

approaches to gene prediction include (Kulp et al., 1996). Early work on biologi-

cal sequence segmentation using stochastic models dates back at least to (Churchill,

1989).



34 CHAPTER 3. PROTEIN STRUCTURE PREDICTION

In all of these approaches, no attempt has been made to generalize these ideas to

include segment interactions of the type developed in Chapters 5 and 6.

3.1.5 Modeling helical correlations

As mentioned in Section 2.2.2, correlations between amino acids in α-helices due

to amphipathicity and side chain interactions are well known. To provide historical

context for the development of α-helix models described in Chapter 4, I point out pre-

vious attempts to use this information in prediction. (Stultz et al., 1993) use a model

for amphipathic helices in their development of hidden Markov models for specific

structural families. (Solovyev and Salamov, 1994) use helical residue pair frequencies

and hydrophobic moments to classify short segments by linear discriminant analysis

as described above, and (Munson et al., 1994) build helical periodicity into logistic

regression models. (Frishman and Argos, 1996) include residue pair information for

hydrogen-bonded positions in α-helices into a nearest-neighbor metric, and (Riis and

Krogh, 1996) develop structured neural networks which build these helical correla-

tions into the topology of their networks. (Berger and Wilson, 1995; Berger et al.,

1995; Berger, 1995) use residue correlation in helices to identify coiled-coils based on

the well-known heptad repeat. Finally, (Klingler and Brutlag, 1994; Klingler, 1996)

developed local probabilistic models for correlated residues pairs in α-helices and ex-

amined their use in structure prediction. The development of this aspect of the helix

models provided in Chapter 4 was originally motivated by the work of (Klingler and

Brutlag, 1994; Klingler, 1996).

3.1.6 Current status

Among the methods described above, best published results are currently at the level

of 68% (Yi and Lander, 1993; Frishman and Argos, 1996) to 71% (Salamov and

Solovyev, 1997) for predictions based on individual protein sequences. When multi-

ple sequence alignments are available, these approaches have reached 73% (Salamov

and Solovyev, 1997) to 75% (Frishman and Argos, 1997). Evaluation methodology

for estimating these prediction accuracies will be discussed in Section 9.1. Small
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variations in these accuracies must of course be treated with skepticism.

Although these non-linear, window-based statistical classifiers currently perform

at the highest published accuracy levels, a widely recognized drawback of all such

approaches is the lack of interpretability of model parameters. Such “black-box” pre-

dictors provide little insight into the important factors in achieving better prediction,

making them far less valuable as tools for studying protein folding, mechanism, and

design. The methodology developed in this dissertation achieves similar levels of sec-

ondary structure prediction accuracy (Schmidler et al., 2000) and Chapter 9, while

maintaining a clear interpretation from a physicochemical standpoint. In addition,

this dissertation provides a unified framework for treatment of secondary structure

prediction and non-local tertiary interactions simultaneously in a rigorous fashion.

3.2 Prediction of β-sheets

A step beyond secondary structure prediction but short of predicting full tertiary

structure is the prediction of β-sheet topology. Because β-sheets involve the formation

of specific tertiary contacts between secondary structure elements (β-strands) which

are non-local in sequence, the problem is well beyond the scope of standard secondary

structure prediction.

Indeed, identification of β-sheet contacts is a significant step in identifying the

packing of secondary structural elements into a tertiary fold, and drastically reduces

the conformational search space for the problem of predicting tertiary structure from

knowledge of secondary structure. Such reduction may prove to be critical for these

hierarchical approaches to protein folding. For example, (Ortiz et al., 1998) point

out the need for better predictions of tertiary contacts to enable tertiary structure

prediction from secondary, while (Eyrich et al., 1999b) note in particular that large

β-sheet proteins are difficult to predict from knowledge of secondary structure alone,

and suggest development of methods which can consider strand pairing efficiently.

(Zhu and Braun, 1999) show that if the strand segments are assumed known, cor-

rect alignments between paired strands can be used to provide approximate contact

distances which can then be used for tertiary structure prediction.
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While α-helices appear to form primarily from local effects and have been widely

studied for some time (Chapter 2), the principles of β-sheet formation are far less

well understood. This is due partly to the importance of non-local effects in form-

ing β-sheets, and partly to the fact that β-sheets are often hydrophobic and buried

in the protein core, making model systems more difficult to work with experimen-

tally. However these same factors are making a detailed understanding of β-sheet

formation a subject of increasing interest, in part because of the growing implication

of β-sheet misfolding and hydrophobic aggregation in important neuro-degenerative

diseases (Prusiner, 1997; Prusiner, 1998; Benzinger et al., 1998; Janek et al., 1999).

3.2.1 Previous work

In contrast to secondary structure prediction, attempts to predict the topology of β-

sheets from individual sequences have been somewhat rare. The majority of attempts

to model β-sheets have been directed towards improving secondary structure predic-

tion (Frishman and Argos, 1996) or developing empirical potentials for fold recog-

nition based on known protein architectures (Hubbard, 1994; Hubbard and Park,

1995). However several authors have considered the problem of β-sheet prediction,

and I briefly review their approaches here.

Statistical analysis of cross-strand pairwise frequencies in sheets goes back some

time (Lifson and Sander, 1980; Wouters and Curmi, 1995; Hutchinson et al., 1998).

The first serious attempt to use these statistical correlations for prediction of β-sheets

from sequence appears to be (Hubbard, 1994; Hubbard and Park, 1995). Hubbard

defines a set of pairwise potentials (see Section 3.3) of the following form:

energy(i, j) =

j+2
∑

k=j−2

− log

(

P (Ri, Rk)

P (Ri)P (Rk)

)

(3.2)

where P (a, b) is the proportion of residues pairs of the form (a, b) and P (a) are

marginals. This can be viewed as the log of a likelihood ratio, or equivalently as an

empirical ∆∆G of interaction (Section 3.3). A distinct set of potential parameters are

defined for parallel vs. antiparallel sheets, hydrogen-bonded vs. non-hydrogen bonded
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pairs, and N- terminal vs. C-terminal directions (so P (a, b) 6= P (b, a)). Hubbard tests

the ability of these potentials to discriminate among registers in known β-strand

pairs, and reports accuracies of approximately 85%. In a similar experiment (Zhu

and Braun, 1999) obtains accuracies of only 63%.

These pairwise potentials are used in (Hubbard, 1994; Hubbard and Park, 1995)

for sequence-to-structure threading (Bowie et al., 1991; Jones et al., 1992) to im-

prove fold recognition in structures containing β-sheets. However, (Hubbard, 1994)

also shows that these potentials may be used to attempt to predict β-strand contacts

from sequence alone. This is done by evaluating (3.2) for each pair of amino acids

in the sequence. A single test sequence is shown by way of example, but no attempt

is made to evaluate this approach systematically. The example shown indicates low

specificity in identifying potential pairing, and Hubbard concludes that the approach

is not useful for single sequences. In the presence of a significant number of multi-

ply aligned homologous sequences, he shows that specificity is improved somewhat.

The potentials developed by (Hubbard, 1994) are similar in form to those used in

Chapter 5, but Hubbard does not attempt to include these in a general secondary

structure prediction scheme. Thus false positives also arise from predicting strands to

pair with helical regions, further decreasing specificity. Nevertheless, the potentials

derived by Hubbard and others (Lifson and Sander, 1980; Wouters and Curmi, 1995;

Hutchinson et al., 1998) help motivate the models developed in Chapter 5.

(Krogh and Riis, 1996) take a somewhat different approach, by training a two-

window neural network to recognize correctly paired β-strands. This can be viewed

as a discriminative approach for fitting the type of empirical potential given by (3.2)

above. By scanning all pairs of windows in a proteins sequence, predictions similar in

spirit to those of Hubbard can be obtained. (Krogh and Riis, 1996) show predictions

for two example protein sequences, exhibiting very little specificity. The overwhelming

number of false positives obtained lead them to speculate that inter-strand correla-

tions are very weak. They then go on to formulate an energy function based on a

weighted combination of neural network predictions of secondary structure and these

predicted β-strand contact propensities, and optimize this function using simulated

annealing. This approach to include pairwise potentials into full secondary structure
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prediction is quite similar in spirit to the approach developed in Chapter 5. However

a rigorous underlying model is not specified and the performance reported is limited.

(Frishman and Argos, 1996; Frishman and Argos, 1997) use a similar window-

scanning approach in combination with a pairwise potential of the form given by

(3.2). Their primary purpose is to improve secondary structure predictions, but they

show two examples of using the potential to predict β-strand contact maps. As with

those above, the examples reported show little specificity and no attempt is made to

evaluate the contact predictions systematically.

(Asogawa, 1997) uses a Hopfield neural network to incorporate more global con-

straints into predictions based on the approach of (Hubbard, 1994). These constraints

involve contiguity of residue structures, and can be viewed as defining a Gibbs dis-

tribution on the space of possible interactions. This approach bears some semblance

to the approach of (Krogh and Riis, 1996) and that developed in Chapter 5. As with

the approach of (Krogh and Riis, 1996) however, no attempt is made to evaluate the

prediction of β-strand contacts rigorously, and improvements on secondary structure

prediction are reported only for 2-state prediction (β-strand vs. coil), a significantly

easier problem than the standard 3-state prediction described in Section 3.1. Some

improvement in specificity over the approach of (Hubbard, 1994) is reported by in-

troducing the dependencies model of the Hopfield network.

(Zhu and Braun, 1999) show that if the strand segments are assumed known,

predicted pair alignments using a potential of the form (3.2) can be used to provide

approximate contact distances which can then be used for tertiary structure predic-

tion; however, they make no attempt to predict the strands, and hence the structure,

from sequence ab initio.

Finally, (Gobel et al., 1994) attempt to use residue correlations from multiple

sequence alignment in protein families to predict general non-local contacts in the

tertiary structure, but limited results indicate the problem to be very difficult.
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3.2.2 Current status

As discussed, work on prediction of β-sheets is still in its infancy. Of the literature

reviewed in the last section, almost no attempt is made to evaluate the prediction

of β-sheets systematically. In many cases, the authors report that performance on

test cases is insufficient to warrant more extensive evaluation. While (Krogh and

Riis, 1996; Asogawa, 1997) report preliminary attempts to measure effects of adding

β-strand pairwise potentials on improving secondary structure prediction accuracy,

no published systematic evaluation of prediction of β-sheet contacts or topology has

been undertaken.

It is worth pointing out that among the approaches surveyed, only (Krogh and

Riis, 1996) and (Frishman and Argos, 1996) attempt to predict β-sheet topology

in the context of simultaneous full secondary structure prediction from sequence.

This simultaneous prediction is important in considering competing “hypotheses” for

predicted segments, allowing strong helix predictions to reduce spurious predictions

of β-strand contacts.

3.3 Empirical potentials

This section briefly reviews a final topic in protein structure prediction, that of empir-

ical potentials for proteins. Discussion of this topic in the current context will prove

valuable for discussions undertaken in later chapters.

The importance of energy functions in the study of protein structure derives from

widespread acceptance of the thermodynamic hypothesis (Anfinsen, 1973) which states

that the native structure of a protein is the one which minimizes Gibbs free energy

of the system. Hence physical models of protein structure prediction are typically

formulated as problems of global energy minimization. I will not discuss the de-

velopment of physically-motivated energy functions here, which involve theoretically

and experimentally fitted terms for electrostatic and Van der Waals interactions,

bond vibrations, and so forth. Development and validation of such potentials is an

important area of research which is quite mature (Leach, 1996; Frenkel and Smit,
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1996). Instead I describe the development of empirical potentials, which help provide

links between statistical mechanical models and the probabilistic models developed

in Chapters 4 and 5.

Empirical potentials for proteins are energy functions derived from statistical anal-

ysis of protein structural databases (Sippl, 1995). An example is the energy function

for β-sheet amino acid pair interactions defined by (3.2). The theoretical basis for

use of energy functions such as this is provided by the following relation between the

probability of a state q of a system and its energy E(q):

P (q) = Z−1 exp

(

−
E(q)

kT

)

(3.3)

where T is the temperature, k is Boltzmann’s constant, and Z =
∫

q∈Q
exp

(

−E(q)
kT

)

is the normalization constant (probability) or the partition function (physics) when

viewed as a function of external parameters such as T . Equation (3.3) is referred to

as the Boltzmann or canonical distribution, and derives from statistical physics. It

holds for a system in equilibrium contact with a heat reservoir, and follows directly

from the fundamental postulate of statistical mechanics (Reif, 1965).

The implications of this relation for development of protein structure potentials

can be seen by simply rewriting (3.3):

∆E(q, q′) = E(q) − E(q′) = −kT log

(

P (q)

P (q′)

)

(3.4)

This means that by estimating probabilities of occurrence P (q) by empirical frequen-

cies nq

n.
, we can obtain estimates of free energy differences. Since empirical frequencies

can be calculated directly from observed structures, it is possible to define empirical

potentials for use in protein structure simulation and prediction. Such potentials

have been crucial to the success of threading and fold-recognition algorithms (Bowie

et al., 1991; Jones et al., 1992). Although empirical potentials cannot be expected to

provide the fine resolution of atomic-level potentials, they have a number of advan-

tages. For example, they can be defined on arbitrary parameters, and hence can be

used for reduced representation models of proteins (Wilson and Doniach, 1989; Sippl,
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1995). In addition, empirical potentials implicitly incorporate aspects of folded pro-

teins which are quite difficult to model at the atomic level, such as the effects of

solvent and conformational entropy.

Use of (3.4) suffices to estimate energies for all states in the system. Note that ab-

solute free energies are meaningless, and differences may be defined with respect to an

arbitrary ground state q0 by setting E(q0) = 0. For example, the amino acid propen-

sities in Section 2.2.1 were given both statistical interpretation based on frequency of

occurrence and physical interpretation based on experimental measurements of free

energy differences. It is now easy to see that the former can be viewed as an estimate

of the latter. Similarly, the odds ratios for pairwise frequencies given in Section 2.2.2

can be viewed as ∆∆G’s, or free energy differences due to interaction. Experimental

measurements calculated for α-helical and β-strand propensities, N-capping prefer-

ences, and side chain interactions in α-helices and β-sheets, have been compared with

empirical scales estimated from protein structure databases, and show general agree-

ment. Measurements taken on model systems are not expected to agree precisely with

empirical estimates, which represent averages over possible environments in folded

proteins. Finally, it is important to point out that the use of propensities estimated

from databases for the purposes of secondary structure prediction (Section 3.1) and

β-strand contact prediction (Section 3.2) can also be viewed as empirical free ener-

gies. In most of these prediction algorithms however, these energies are combined in

ad hoc ways which inhibit this interpretation. In Chapter 10, I will point out that the

probability models developed in this dissertation can be viewed alternatively as em-

pirical free energy potentials, and that the Bayesian inference framework developed in

Chapters 4 and 5 provides correct combination of these energies for prediction based

on statistical mechanical principles.
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Chapter 4

A Bayesian Framework for Protein

Structure Prediction

This Chapter presents the basic framework developed in this dissertation. The first

section describes broadly the formulation of protein structure prediction as a problem

of Bayesian inference. Following sections develop a class of probability models for

proteins based on structural segments which instantiate this framework, develop a

particular set of models which capture many of the principles described in Chapter 2,

and develop computational methods for prediction of secondary structure under this

class of models.

4.1 Protein structure prediction as a Bayesian in-

ference problem

The general approach of this dissertation is to formulate protein structure predic-

tion as a problem of Bayesian inference. By specifying a joint probability model

over the space of protein sequences and structures P (Sequence, Structure), we re-

duce the problem of structure prediction to the conceptually simple task of com-

puting the conditional or posterior distribution P (Structure | Sequence) and from

it the desired predictive quantities. For a particular probability model and a given
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protein sequence, structure prediction reduces to maximization or integration over

P (Structure | Sequence). In addition to the elegance and simplicity of Bayesian esti-

mators, their optimality properties for related problems of estimation, prediction, and

pattern recognition are well established (Berger, 1985). The probabilistic formulation

has the additional advantage of being flexible and extensible, enabling consistent in-

corporation of other relevant information as well. For example, the primary sequence

is only one type of “observation” on the underlying structure, and Bayesian inference

may be applied to other experimental measures on structure (Altman, 1995), or used

to synthesize evidence from multiple sources.

A Bayesian view of protein structure prediction is not new, although not widely es-

tablished. Many existing statistical or probabilistic approaches to structure prediction

can be viewed as instances of this framework, although not all are explicitly presented

as Bayesian (Stolorz et al., 1992; Stultz et al., 1993; White et al., 1994; Altman, 1995;

Berger, 1995; Klingler, 1996). Many of the secondary structure prediction methods

described in Chapter 3 can also be viewed as Bayesian, yielding exact or approximate

posterior inference under a set of (often implicit) modeling assumptions. However,

while the general principles of Bayesian inference guide many of these approaches,

the realization in terms of problem formulation and parameterization, model devel-

opment, and computational issues, yield significantly different methodologies. These

aspects of the Bayesian framework developed in this dissertation are introduced in

the following sections.

In this dissertation I develop a Bayesian approach to protein structure prediction

using a parameterization of protein sequence/structure relationships in terms of struc-

tural segments. I develop a Bayesian approach to the assignment of these parameter

values, by defining a joint probability distribution for an amino acid sequence and its

structural assignment. With such a model defined, I show how to compute the con-

ditional or posterior probability distribution over structural assignments given a new

sequence via Bayesian inference, and to predict those secondary structure assignments

which maximize this posterior distribution.

In Section 4.2, I define a general class of segment-based joint probability models

which lend themselves to efficient exact calculation of the posterior. Section 4.3
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Figure 4.1: Representation of the secondary structure of a protein sequence in terms
of structural segments. The parameters shown represent the segment types T =
(L,E, L, E, L,H, L, . . .) and endpoints S = (4, 9, 11, 15, 18, 25, . . .). The associated
structural sequence is LLLLEEEEELLEEEELLLHHHHHHHLLL . . ..

provides specific models for α-helices, β-strands, and loops/coils, and shows how such

models can be used to capture key aspects of protein structure formation discussed

in Chapter 2. Section 4.4 describes application of these models to the prediction of

protein secondary structure by extracting the relevant predictors from the posterior

distribution P (Structure | Sequence). Chapter 7 addresses computational issues and

provides algorithms for computation of these predictors under the class of models

developed. Evaluation of this approach based on experimental data is provided in

Chapter 9. Having established the core methodology, Chapter 5 will go on to show

how this framework may be generalized to incorporate non-local aspects of protein

structure and move beyond secondary structure prediction into prediction of tertiary

contacts.

4.2 Segment-based probability models for proteins

4.2.1 Parameterization

I begin by choosing a representation of sequence/structure relationships in proteins

which is based on segments of secondary structure (Schmidler et al., 2000). This

model is parameterized in a convenient fashion by representing the segment positions

and structural types. Segment locations are denoted by the position of the last

residue in the segment. The requirement that segments be contiguous implies that this

parameterization uniquely identifies a set of segment locations for a given sequence.

Let R = (R1, R2, . . . , Rn) be a sequence of n amino acid residues. and let S = { i :

Struct(Ri) 6= Struct(Ri+1)} be a sequence of m positions denoting the end of each

structural segment (with Sm = n), and T = (T1, T2, . . . , Tm) be the corresponding
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sequence of secondary structural types1. Together S and T completely determine a

secondary structure assignment for a given amino acid sequence. An example is given

in Figure 4.1. In the case of secondary structure prediction, the quantities of interest

are the values of m, S = (S1, S2, . . . , Sm) and T = (T1, T2, . . . , Tm) corresponding to

the known amino acid sequence R = (R1, R2, . . . , Rn), that is, the number, locations

and types of the secondary structural segments. The problem is to infer the values

of (m,S, T ) given a residue sequence R. We will refer to the set S = (m,S, T ) =

{Si, Ti}
m
i=1 as a segmentation of the sequence R.

4.2.2 Likelihood

A general class of segment-based joint distributions can now be defined over (R,S)

of the form:

P (R,S) ∝ P (S)
m
∏

j=1

P (R[Sj−1+1:Sj ] | S) (4.1)

The key aspect of this joint distribution is the decomposability of P (R | S) into

individual segment terms. In other words, the joint distribution may be factored by

conditional independence of inter-segment residues, so that the sequence likelihood

may be written as a product of segment likelihoods.

The jth term in the right-hand side of (4.1) is the likelihood of the subsequence ofR

contained in segment j (beginning at position Sj−1+1 and ending at position Sj). The

exact form of this segment likelihood is structure-dependent, and the specification of

this form for each structural type amounts to developing a probabilistic model of the

given type of segment. A particular set of models are developed below in Section 4.3.

Note that this model does not assume conditional independence of intra-segment

residues. It is explicitly chosen to allow the modeling of correlations among positions

within a segment of the type described in Chapter 2. Thus the terms for individual

segments may take on arbitrary form, and may depend on global properties of the

1I will restrict attention to the 3-state problem where ∀i Ti ∈ {H, E, L}, although generalizations
may be desirable and are easily accommodated.
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segment as a whole (such as hydrophobic moment or helix dipole) beyond properties

of individual residues.

4.2.3 Prior

Given (4.1), it remains to provide a prior distribution P (S) = P (m,S, T ) to com-

pletely specify the joint distribution P (R,S). The approach taken here is to factor

P (S, T | m) as a semi-Markov process:

P (m,S, T ) = P (m)
m
∏

j=1

P (Tj | Tj−1)P (Sj | Sj−1, Tj) (4.2)

yielding the joint distribution:

P (R,m, S, T ) =

P (m)

m
∏

j=1

P (R[Sj−1+1:Sj ] | m,S, T )P (Tj | Tj−1)P (Sj | Sj−1, Tj) (4.3)

Under this model, each segment type depends only on its neighbors, and the segment

length distributions P (Sj | Sj−1, Tj) are conditioned on segment type. This allows

explicit modeling of the differences in length observed in experimental protein struc-

tures (see Figure 4.2). P (m) may be arbitrary here, but affects the computational

complexity of inference as described in Chapter 7. This factorization of P (S, T ) pro-

duces a model closely related to the class of hidden semi-Markov or semi-Markov

source models discussed in (Russell and Moore, 1985; Levinson, 1986; Rabiner, 1989)

for applications in speech recognition. In the speech recognition literature however,

observations during a given state occupancy are typically modeled as independent

and identically distributed (iid). As demonstrated in Section 4.3 below, the ability to

model both non-independence and non-identity of distributions is a major motivation

for this segment-based approach. A more detailed comparison of the relation between

HMMs, HSMMs, and segmentation models is given in Chapter 6.

The factorization given by (4.2) is only one of many possible choices for the prior
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Figure 4.2: Empirical length distribution of observed structural segments for α-helices
(red) and β-strands (green). Distributions are calculated from the structural database
described in Chapter 9.

P (S). Alternate priors are discussed in some detail in Chapter 6.

4.3 Example models for α-helices and β-strands

I now introduce a set of concrete probability models for secondary structure segments

which will serve to demonstrate the approach developed in Section 4.2. The goal is to

choose a specific form of the segment likelihood P (R[Sj−1+1:Sj ] | S, T ) which captures

the core aspects of protein secondary structure formation described in Chapter 2:

amino acid propensities, helical capping signals, hydrophobicity patterns, and side

chain interactions. In other words, the goal is to develop probabilistic models for

protein structural segments. For example, the function P (R[i:j] | i, j, H) provides

the likelihood of the subsequence R[i:j] under the assumption that a helix begins at

position i and ends at position j. Given such a segment likelihood for each structural

class {H,E, L}, computing the likelihood of a sequence under any given structural

assignment is trivially done by evaluating the joint distribution (4.1). Here I provide

the specific form for a set of such segment likelihoods. These segment models will

be used in Chapter 9 to evaluate the methodology developed here. Development of

alternative segment models is discussed briefly in Chapter 10.
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4.3.1 Helix model

As discussed in Chapter 2, the presence of correlated side chain mutations in α-helices

has been well studied, deriving from both environmental constraints and stabilizing

side chain interactions. Because the α-helical and β-strand backbone conformations

yield different periodicities (Figure 2.7), these correlations can provide important clues

for identifying the secondary structure from sequence. Another important source

of information for identifying α-helical segments are the helix capping signals dis-

cussed in Section 2.2.1. This capping effect results in amino acid distributions at

end-segment positions which differ significantly from those in other positions of the

helix (Table 2.1).

The goal is to develop a helical segment model which captures such position-

specific preferences and probabilistic dependence of intra-segment residues, in addi-

tion to standard amino acid propensities. The model chosen must also account for

helices of various lengths. The following form can be used to capture all of these

sources of information:

P (R[Sj−1+1:Sj ] | Sj−1, Sj, H) =

Sj−1+`H
N

∏

i=Sj−1+1

PH
Ni−Sj−1

(

Ri | R[Sj−1+1:i−1]

)

× (4.4)

Sj−`H
C

∏

i=Sj−1+`H
N

+1

PH
I

(

Ri | R[Sj−1+1:i−1]

)

×

Sj
∏

i=Sj−`H
C

+1

PH
CSj−i+1

(

Ri | R[Sj−1+1:i−1]

)

Here `HN indicates the length of the helixNcap model, Ni and Ci indicate the ith position

from the N- and C-termini respectively; and I indicates an internal (non-cap) posi-

tion. Figure 4.3 shows graphically how this model is applied to the particular amino

acid subsequence of the helix in Figure 2.6: the first product in (4.4) models the distri-

bution of amino acids at each of the first N-terminal positions (Ncap, N1, N2, N3, . . .),

and similarly the last term for the C-terminal positions (. . . , C3, C2, C1, Ccap), while

the middle term models all internal positions as identically distributed but dependent.
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Figure 4.3: Evaluation of the α-helix segment model for a particular amino acid
subsequence. Grayed areas are the N- and C-capping positions, specified by distinct
amino acid probability distributions. Internal positions are modeled as identically
distributed but dependent. Throughout, amino acid distributions are conditioned on
neighboring residues according to known helical side chain interactions, as described
in Section 4.3.1.

Choosing the length of the helix cap models amounts to deciding which positions of

the helix have position-specific propensities which differ significantly from internal

positions. Based on the observations discussed in Chapter 2 with regard to capping

effects, hydrogen bonding patterns, and dipole interactions, the first and last 4 po-

sitions are the most likely candidates to consider. Figure 2.5 shows distributions for

these positions observed in the database compiled in Chapter 9. Table 2.1 shows the

statistical deviance between the amino acid distribution at each end-segment position

and the amino acid distribution at internal positions. The strongest signal appears in

the first two positions of the helical N-terminus (N1 and N2). The positions chosen for

the experiments described in Chapter 9 are highlighted (so that lHN = 4, lHC = 1). It

is worth noting that such information is inherently difficult to include in the window-

based prediction methods described in Chapter 3, which must scan a residue across

each position in the window in turn.

Equation (4.4) does not provide the exact intra-segment residue dependencies

PH
i

(

Ri | R[j:i−1]

)

in the model. This is again an issue of model choice. Because mod-

eling the full joint distribution of 3 or more amino acids leads to an explosion in
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Figure 4.4: Graphical model (Whittaker, 1990) representing the conditional inde-
pendence structure for amino acids in an example α-helix. Ri are the amino acids,
and Hi are their associated hydrophobicity classes as assigned by (Klingler and Brut-
lag, 1994). The model provides for dependence among the hydrophobicity classes
at appropriate periodicity, allowing the amino acid distributions to be modeled as
conditionally independent, thus reducing the dimensionality of the model.

the number of parameters which quickly outstrips the amount of experimental data

available for estimation, it is desirable to model the intra-segment dependencies in

some more restrictive fashion. The following model, used in the experiments of Chap-

ter 9 and elsewhere (Schmidler et al., 2000), attempts to capture the hydrophobicity

patterns displayed in Figures 2.6 and 2.7:

PH
i

(

Ri | R[j:i−1]

)

= PH
i (Ri | hi)P

H
i (hi | hi−2, hi−3, hi−4) (4.5)

where hi ∈ {hydrophobic, neutral, hydrophilic} indicates the hydrophobicity class of

residue Ri as assigned by (Klingler and Brutlag, 1994). In other words, dependency

between positions is modeled using a reduced alphabet in order to avoid combinato-

rial explosion of parameters. Figure 4.4 provides a graphical model (Whittaker, 1990)

representation of the dependency structure given by (4.5). This form of the distri-

bution captures explicitly the previously described intra-segment residue correlations

corresponding to the periodicity of an α-helix by conditioning the probability of a

particular residue on the i− 4th, i− 3rd, and i− 2nd residues. Internal positions are

therefore modeled as identically distributed, but dependent. This of course is not the
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only possible choice for this residue dependency, and approaches to optimizing this

model are suggested in Chapter 10.

4.3.2 β-strand and loop/coil models

The general form given by (4.4) is convenient for modeling variable-length segments,

and can be retained when developing β-strand and loop segments as well. However

the utility of distinguishing end-capping residues in β-strands and loops is less obvi-

ous than in the case of α-helices. For example, there are no positions in β-strands

which are physically analogous to the capping positions of α-helices. Table 2.1 shows

the statistical deviance of segment-end positions of both β-strands and loop/coil seg-

ments, and there is little evidence of variation in these positions. Accordingly, the

models used in Chapter 9 set `EN = 1, `EC = 1, `LN = 2, `LC = 1. Figure 2.5 shows the

distributions at these positions.

Another difference between the models for α-helices, β-strands, and loops lies in

the form of the intra-segment residue dependency. The dependency given by (4.5)

reflects the intra-segment correlations induced by the underlying backbone-side chain

geometry of α-helices. These correlations are expected to differ for β-strands (Fig-

ure 2.7) and loops/coils. To account for these differences, conditioning is done on

residues i − 1 and i − 2 for both β-strands and loops. Again, the issue of selecting

the best form for such interactions is discussed briefly in Chapter 10.

4.4 Secondary structure prediction

Assuming a probability model given by (4.1) in conjunction with a set of segment

models such as (4.4,4.5), we require a method for deriving structure predictions for

a new protein sequence R. This is accomplished by inferring the secondary structure

assignment parameters (m,S, T ) for R. In the Bayesian framework developed here,

such inferences are based on the posterior distribution over parameters P (m,S, T | R).

The goal is thus to find (m,S, T ) such that P (m,S, T | R) is maximized. There are
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two plausible definitions for predictors which maximize P (m,S, T | R):

StructMAP = arg max
(m,S,T )

P (m,S, T | R) (4.6)

StructMode = {arg max
T

P (TR[i]
| R)}n

i=1 (4.7)

where P (TR[i]
| R) denotes the marginal posterior distribution over structural types

at a single position i in the sequence:

P (TR[i]
| R) =

∑

(m,S,T )

P (m,S, T | R)1{TRi
=t} (4.8)

and StructX is a segmentation of R.

StructMAP defined by (4.6) provides the maximum a posteriori (MAP) segmenta-

tion of a sequence, the segmentation which maximizes the joint posterior probability

P (m,S, T | R). However, a large number of sub-optimal segmentations may exist

which also contribute significant probability mass to the posterior. In addition, the

most common accuracy measure for protein secondary structure prediction is the Q3

value, the percentage correct on a per-residue basis (see Chapter 9). Thus the MAP

segmentation is not as desirable as StructMode (4.7), the predictor defined by the

sequence of marginal posterior modes, those structural assignments which maximize

P (TR[i]
| R) at each position i. Note that calculation of P (TR[i]

| R) in (4.7) involves

marginalization over all possible segmentations, while (4.6) involves maximization

over this space. Clearly calculation by direct enumeration is infeasible, and more

efficient algorithms are required. Algorithms for computation of (4.6) and (4.7) are

given in Chapter 7.

It is worth noting that the Bayesian framework can easily incorporate prior knowl-

edge about regions or positions in the sequence if such is available. The algorithms

provided in Chapter 7 may be easily modified to calculate probabilities conditional

on certain positions or segments taking on known conformations. This might be the

case if experimental evidence exists such as circular dichroism data or foot-printing

experiments, or if highly significant motif hits occur on the sequence and provide

structural information, for example with helix-turn-helix DNA binding motifs. Again,
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such information is inherently difficult to include in most existing secondary structure

prediction methods.

4.5 Concluding remarks

In this Chapter I have developed a Bayesian framework for protein structure predic-

tion based on a segment-decomposition of the joint probability distribution. I have

defined a set of probabilistic models for protein structural segments, and shown how

prediction of protein secondary structure may be achieved under this general class

of models. In Chapter 9 I will subject the methods developed here to experimental

validation, and show that they perform at the level of the best existing algorithms for

secondary structure prediction. Before proceeding to this evaluation however, I will

introduce a generalization of this framework in Chapter 5, which allows incorporation

of non-local interactions. Chapter 5 shows how the framework introduced here may

be applied beyond the realm of secondary structure prediction to obtain predictions

of tertiary contacts and β-sheet topology.



Chapter 5

Bayesian Modeling of Non-Local

Interactions

In Chapter 4, I introduced the basic modeling framework developed in this disser-

tation. This framework formulates protein structure prediction in terms of Bayesian

inference and provides a class of joint probability models factored by structural seg-

ments. I then showed how this framework can be applied in practice by providing a

concrete set of models for secondary structure segments. Algorithms for inference of

secondary structure from sequence will be discussed in Chapter 7.

In this Chapter, I demonstrate the generality of this framework by extending the

class of segment-based models to include non-local interactions in protein sequences.

This enables treatment of a significantly broader class of protein structure predic-

tion problems than standard secondary structure prediction. I show that probability

models for non-local interactions can be incorporated into the Bayesian framework in

a conceptually simple manner by the introduction of joint-segment models. I demon-

strate this approach by developing models for correlated mutations in neighboring

β-strands of a β-sheet. I show how the Bayesian framework naturally incorporates

these interactions into secondary structure prediction, and also yields predictors for

tertiary β-strand contacts and β-sheet topology.

The methods developed here provide a rigorous framework for synthesizing these

55
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diverse types of information in an optimal way, and hence obtaining structure predic-

tions which combine all available information. These benefits do not come without

a price however, as computation in this more general class of models is significantly

more difficult. Methods for computing with the joint-segment models introduced here

will be developed in Chapter 8.

5.1 Motivation

A fundamental assumption of the class of models described by (4.1) is the conditional

independence of amino acids which occur in distinct segments. This assumption

enables the exact calculation of posterior probabilities using the recursions provided

by (7.1-7.7), and hence the predictors StructMAP and StructMode given by (4.6) and

(4.7) can be computed efficiently.

However, this assumption is clearly violated in the case of protein sequences. Non-

local sequence dependencies are introduced by evolutionary pressure to maintain non-

local interactions important for for protein folding of the type described in Chapter 2.

I define an interaction to be non-local if it involves amino acids occurring in distinct

structural segments. By expanding the set of segment classes as needed, all non-local

interactions in protein folding may therefore be represented.

For example, a β-sheet consists of multiple β-strands linked by backbone hydro-

gen bonds (Figure 2.3). Correlation between amino acids on different strands within

a β-sheet was described in Section 2.2.2. Hence β-sheets form a major structural

motif in proteins which relies on interaction between sequentially distant segments,

or non-local interaction, to form a stable native fold. Other common examples in-

clude disulfide bonds and coiled coils (Section 2.2.2), and the presence of correlated

mutations in such motifs is well known (Krylov et al., 1994; Lifson and Sander, 1980;

Wouters and Curmi, 1995; Hutchinson et al., 1998). Again, such dependencies arise

through evolutionary pressure as a consequence of common chemical environment or

stabilizing side chain interactions.

It has been often been suggested that the difficulty of capturing such non-local pat-

terns in protein sequences may be responsible for the low accuracy typically achieved
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by secondary structure prediction algorithms in identifying β-strands. In the next sec-

tion, I show how the framework developed in Chapter 4 may be extended to account

for such inter-segment residue correlations by introducing joint segment probability

models.

5.2 Segment interactions and β-sheet topologies

The important new idea introduced in this Chapter is that the class of stochastic

segment models described by (4.1) can be generalized to a much larger class of models

involving segment interactions. We may write a joint distribution over the set of

interacting segmentations in the following form:

P (R,S, I) ∝ P (S, I)

p
∏

i=1

P ({R[sj :ej ]}Sj∈Hi
| S, I) (5.1)

which factors by conditional independence of sets of interacting segments. Here mod-

eling of inter-segment sequence dependencies is achieved by introducing joint-segment

likelihoods, replacing the terms

P (R[sj :ej ] | Sj) and P (R[sk:ek] | Sk)

for two interacting segments Sj and Sk in the product of (4.1) above with a joint

term:

P (R[sj :ej ], R[sk:ek] | Sj, Sk) (5.2)

Hence positions Ri in different segments may be made conditionally dependent by

introducing an interaction between the two segments, and we may include arbitrary

joint segment distributions for segment pairs into the model. The extension to three

or more segments (as may be required for 4-helix bundles or β-sheets, for example)

is obvious.

In order to define a joint distribution of the form (5.1), we must first define what

is meant by a segment interaction. In this Chapter I will do so by developing an

example, developing joint-segment models for β-sheets. I begin by introducing models
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for a restricted class of β-sheets known as β-hairpins, and then extend this approach

to arbitrary β-sheet topologies. Chapter 6 provides a more formal treatment of the

general class of probability models on segment interactions represented by (5.1) and

introduced in this dissertation.

5.2.1 β-hairpins

Representing β-hairpins

In order to demonstrate the approach, we first consider a simple example of inter-

segment interactions: the pairing of two β-strands in an anti-parallel orientation to

form a β-hairpin.

A β-hairpin is an anti-parallel β-sheet made up of two strands separated by a short

hairpin loop (see Figure 5.2.1a) and linked by inter-strand hydrogen bonds. β-hairpins

have been well-studied, and detailed classifications exist (Sibanda et al., 1989). In

order to capture the interaction between strands which makes up a β-hairpin, we must

extend the segmentation notation S = (m,S, T ) to include additional parameters.

For simplicity, we may consider a β-hairpin to be any anti-parallel β-sheet involv-

ing two β-strands separated by a single segment. A simple representation of such

a β-hairpin involves an interaction between only two segments1, the participating

β-strands Si and Sj with j = i + 2. In order to specify the interaction between Si

and Sj, we must specify which positions of each segment interact2. In the case of

β-hairpins, this is particularly simple. The relative orientation of the two strands

is known (anti-parallel), and if we assume that interaction among positions in a β-

hairpin occurs in one contiguous stretch (excluding for the moment non-contiguous

interactions such as β-bulges)3, we need only specify the register of the C-terminal

strand (Sj) relative to the N-terminal strand (Si). We specify this interaction by

introducing the parameters hi,j, hj,i, `i,j, with the following interpretations:

1A more complicated model might include the hairpin loop segment, in order to model correlations
between strand and loop residues.

2Interaction between positions here does not necessarily mean physical interaction, but more
generally a (conditional) dependence in the structure of the joint probability distribution.

3More generally, interacting positions may be specified by a contact matrix of binary interaction
indicators, but we do not pursue this here.
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(a)

Figure 5.1: (a) β-hairpin from bovine pancreatic phospholipase (1bp2). (b) Parame-
terization of β-hairpin segment interaction.

(i) hi,j is the first (N-terminal) position of segment i which interacts with a position

on segment j

(ii) `i,j is the number of (contiguous) interacting positions in the interaction of

segment i with segment j

A simple example of this notation is given in Figure 5.2.1b. The notation h is used to

suggest hydrogen bonding, one determinant of which positions interact in β-sheets.

A β-hairpin interaction is thus specified by:

I = (H, h) = ({Si, Si+2}, {hi,i+2, hi+2,i, `i,i+2}) (5.3)

and a set of p β-hairpins for a sequence denoted by:

I =
{

I i
}p

i=1
=

{

(Hi, hi)
}p

i=1
(5.4)

We are now in a position to define probability models for segmentations containing

β-hairpin segment interactions, using the parameterization developed in this section.

Joint-segment likelihoods for β-hairpins

Having parameterized a β-hairpin, we now define a joint-segment likelihood for the

interacting β-strand segments. We begin with a simple model which accounts only
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for pairwise correlation between cross-strand neighboring residues:

P (R[si:ei], R[sj :ej ] | S, I) =

∏

k =

si,...,hi,j−1

sj ,...,hj,i−1

hi,j+`i,j ,...,ei
hj,i+`i,j ,...,ej

P (Rk | S, I)

`i,j−1
∏

k=0

P (R[hi,j+k], R[hj,i+`i,j−1+k] | S, I) (5.5)

Terms in the right-hand product model the joint probability of cross-strand neighbor-

ing residues, while terms in the left-hand product account for the N- and C- terminal

ends.

The β-hairpin model given by (5.5) is a concrete example of joint-segment likeli-

hoods of the form (5.2). It is also perhaps the simplest possible model which accounts

for cross-strand dependency. Notice that each cross-strand residue pair is modeled as

iid, and no intra-segment dependency is included for any position. The intra-segment

dependency and position-dependent probability models developed for β-strands in

Chapter 4 may of course be added here.

Priors for β-hairpin interactions

In order to complete the joint distribution (5.1) we must also specify the prior dis-

tribution P (S, I). It may now be desirable to specify prior distributions on segment

locations, lengths, and types within a segment interaction jointly :

P (Sj, Sk | Sj−1, Sk−1, Tj, Tk)P (Tj, Tk) (5.6)

It is also necessary to specify a prior distribution over the topology parameters them-

selves:

P (I | S) = P (({Si, Si+2}, {hi,i+2, hi+2,i, `i,i+2})
p
i=1 | S) (5.7)

We will return to the issue of priors in the next section.
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Stochastic Segment Interaction Model for β-hairpins

Restricting ourselves to only β-hairpin interactions then, the joint distribution over

segmentations may be written as:

P (R,S, I) = P (S, I)

m−2p
∏

i=1

P (R[si:ei] | S, I)

p
∏

i=1

P (R[sHi
:eHi

], R[sHi+2:eHi+2] | S, I) (5.8)

where as before S is a set of segments, and I is a set of hairpin interactions of the form

(5.3). Recall also the restriction that the sets of interacting segments are disjoint, so

that by definition no strand may participate in > 1 β-hairpin simultaneously.

Experiments using the model given by (5.8) to predict β-hairpins in real protein

sequences are described in Chapter 9.

5.2.2 β-sheets

Representing arbitrary β-sheets requires further extensions to the segmentation pa-

rameters, beyond those introduced for the special case of β-hairpins.

We adopt the following specification of segment interactions for representing strand-

pairing and β-sheet formation:

(i) k is the number of segments (β-strands) participating in the sheet

(ii) hi,j are the parameters specifying the interaction between segments i and j.

For β-sheets, hi,j will be non-empty for only the 2k − 2 neighbors, where we

require that each segment in the sheet interact with ≥ 1 and ≤ 2 other segments

(referred to as Left and Right partners).

(iii) A β-sheet I is therefore specified as:

- A set of segment indices H = {Hj}
k
j=1

- For each segment Hj in H, the parameters

i) Left interaction = (nHj ,l, aHj ,l, b
N
Hj ,l, b

C
Hj ,l) = hHj ,nl

ii) Right interaction = (nHj ,r, aHj ,r, b
N
Hj ,r, b

C
Hj ,r) = hHj ,nr
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Symbol Values Description
ni,l {1, . . . , m} Segment number of Left interaction partner of

segment i.
ai,l {1,−1} Parallel or anti-parallel orientation of segment i

with Left interaction partner.
bi,l,N {Si−1 + 1, . . . , Si} First (N-terminal) position in segment i which

interacts with Left interaction partner positions.
bi,l,C {bi,l,N , . . . , Si} Last (C-terminal) position in segment i which

interacts with Left interaction partner positions.

Table 5.1: Parameters used to specify topology of a β-sheet.

Figure 5.2: Put a figure here showing (a) a β-hairpin and (b) a 3-stranded parallel
β-sheet along with the associated parameters for specifying each.

(iv) Interaction parameters hi,j = (j, ai,j, b
N
i,j, b

C
i,j) represent the interaction of seg-

ment i with segment j. Here

- ai,j: Specifies the relative orientation of i with respect to j (ai,j = 1:

parallel; ai,j = −1: anti-parallel)

- b
N/C
i,j : Specifies the N/C-terminal position of segment i which interacts with

positions in segment j. Interacting positions are assumed to be contiguous

(e.g. no β-bulges).

- For β-sheets the following symmetries are imposed:

- ai,j = aj,i

- `i,j = (bCi,j − bNi,j) = (bCj,i − bNj,i) = `j,i, the interacting subsequences are

of equal length.

This parameterization is slightly redundant, but will prove convenient for notational

purposes. Parameters are summarized in Table 5.1. Examples of this parameteriza-

tion are given in Figure 5.2. Note that edge strands of a sheet have only one partner.

Further restrictions on allowable sheet topologies (such as requiring all neighbors

to have the same orientation a), may be introduced via the probability model, as

described in Section 5.2.3.
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Joint segment models for β-sheets

The model described in Section 5.2.1 can be extended to arbitrary β-sheet topologies

in a relatively straightforward manner. We proceed by specifying the β-sheet model

in terms of pairwise interactions between neighboring strands. More sophisticated

models specifying the joint distribution of residues on > 2 strands may be desirable,

but this approach suffices for the current demonstration. The joint distribution for

sheet interaction I i is then given by:

P ({R[sHj
:eHj

]}Hj∈Hi
| S, I) =





ki−1
∏

j=2

eHj
∏

i=sHj

P (R[i])





−1

×

ki−1
∏

j=1





























∏

i =

sHj
,...,bN

Hj,Hj+1
−1

sHj+1
,...,bN

Hj+1,Hj
−1

bC
Hj ,Hj+1

+1,...,eHj

bC
Hj+1,Hj

+1,...,eHj+1

P (R[i] | S, I)

`Hj,Hj+1
−1

∏

i=0

P (R[bN
Hj,Hj+1

+i], R[ptnr] | S, I)





























(5.9)

where

ptnr =

{

bCHj+1,Hj
− i if ai,j = −1 (pairing is anti-parallel)

bNHj+1,Hj
+ i if ai,j = 1 (pairing is parallel)

(5.10)

As with the β-hairpin model, this model captures only the simplest possible depen-

dency structure for amino acids within a β-sheet.

5.2.3 Sheet interaction priors

Having specified the joint-segment likelihood for β-hairpins and general β-sheets, we

return to the issue of priors over segment interaction parameters.

The same priors on segmentations discussed in Chapter 4 may be applied here.
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In this case, a uniform prior:

P (S, I) ∝ 1 (5.11)

will yield the maximum likelihood segmentation with interactions. Another approach

is to specify the prior on interactions conditionally:

P (S, I) = P (I | S)P (S) (5.12)

using e.g. one of the priors P (S) described in Chapter 4. To make this more concrete,

consider the interaction parameterization developed in previous sections for modeling

β-sheets. We might consider all interactions for a given segmentation to be equally

likely:

P (I | S) = 1/c(S) (5.13)

where c(S) is the number of possible sets of segment interactions I for a given set of

segments. Using the parameterization of the previous sections, we may calculate this

as follows:

Let S be a segmentation with k β-strand segments {Sj}
k
j=1 with lengths {`j}

k
j=1.

Then the number of possible sets of β-sheets is given by:

c(S) =
∑

p∈P(k)

∏

U∈p

∑

σ∈S|U|

(2|U |−1 − 1)

|U |−1
∏

i=1

(`U
σ−1(i)

+ `U
σ−1(i+1)

− 1) (5.14)

where:

- P is the set of partitions of the integers 1, . . . , k, corresponding to the various

groupings of strands into interaction sets (β-sheets)

- U are subsets in partition p, each corresponding to a β-sheet

- Sn is the group of permutations of n elements, each corresponding to a possible

topology connecting β-strands within the β-sheet

- (2|U |−1−1) is the number of possible orientations of strands in a given topology
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- (`1 + `2 − 1) is the number of possible registers for aligning two neighboring

β-strands, requiring ≥ 1 pair of interacting positions

Clearly (5.14) grows very rapidly in k. This indicates that prior (5.13) has a sub-

stantially different effect than (5.11). In particular, the marginal distribution P (S) of

(5.11) is highly biased towards segmentations containing many β-strands. In contrast,

(5.13) preserves the marginal distribution P (S) by requiring

∑

I

P (I | S) = 1 ⇒
∑

I

P (S, I) = P (S) (5.15)

In other words, (5.11) produces a sensible noninformative prior over interactions, but

marginally produces a highly biased prior for the segments S themselves, whereas

(5.13) specifies a prior which is highly biased against any interactions I, but marginally

sensible on segmentations.

In practice, (5.14) is infeasible to compute for large sequences. However, given

this structure of the interaction space, we may define another sensible prior which

also preserves (5.15):

P (I | S) = P (p | S)
∏

U∈p

P (σ | U)P (aU)

|U |−1
∏

i=1

P (align(Uσ(i), Uσ(i+1)))

Here

P (aU) = P ({aσ−1(i),σ−1(i+1)}
|U |−1
i=1 )

is the joint distribution of all β-strand orientations in a β-sheet. Currently we restrict

strand pairing in β-sheets to be either all parallel or all anti-parallel, corresponding

to the two major classes of β-sheet observed in experimental protein structures:

P (aU) =















q ai,j = 1 ∀ai,j ∈ {aσ−1(i),σ−1(i+1)}
|U |−1
i=1

1 − q ai,j = −1 ∀ai,j ∈ {aσ−1(i),σ−1(i+1)}
|U |−1
i=1

0 otherwise

With q representing the relative frequency of parallel vs. anti-parallel β-sheets. q
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may be estimated from the databases described in Chapter 9. The remaining terms

are specified as follows:

P (p | S) = 1 (5.19)

P (σ | U) = |U |!−1 (5.20)

P (align(i, j)) = P (bNi,j)P (bCi,j)P (bNj,i)P (bCj,i)

where we set:

P (bNi,j) =







1
3

(bNi,j − Si) ≤ 3

0 otherwise

This states that all topologies of strands are equally likely, and for two paired strands

the first (last) interaction or hydrogen bond is uniform over the first (last) 3 positions

of the strand. The latter assumptions, including uniformity and independence of the

offsets, is clearly untrue and it may be desirable to estimate these distributions from

data.

Hence our prior on a set of sheet interactions is of the form:

P (I | S) =

p
∏

j=1

P (Ij | S) (5.22)

= p(aIj
)

p
∏

j=1

(kj!)
−1

kj−1
∏

i=1

P (bNHj,i,Hj,i+1
)P (bCHj,i,Hj,i+1

)P (bNHj,i+1,Hj,i
)P (bCHj,i+1,Hj,i

)

recall that p = |I| so {Ii}
p
i=1 is the set of β-sheets.

For a single β-hairpin as shown in Figure 5.2a, this reduces to:

P (I | S) = P (H = (j, k), bNj,k, b
C
j,k, b

N
k,j, b

C
k,j, aj,k = ak,j = −1 | S)

= p(aI1 = −1)
1

2
P (bNi,j)P (bCi,j)P (bNj,i)P (bCj,i) (5.23)

Non-conditional interaction priors: In some cases it may be sensible to specify

the joint distribution of (S, I) directly, allowing the prior on S to reflect the nature of

interactions specified in I. For example, using a semi-Markov prior on segmentations
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(4.2) we may wish to model the length distributions of interacting segments jointly,

as in (5.6). For the β-hairpin example (Figure 5.2a), this produces:

P (I,S) =
P (`j, `k)

P (`i)P (`j)

m
∏

i=1

P (Ti | Ti−1)P (`i) ×

p(aI1 = −1)

p
∏

j=1

1

2
P (bNi,j)P (bCi,j)P (bNj,i)P (bCj,i) (5.24)

5.2.4 More sophisticated β-sheet models

Distinguishing residues pairs

The model given by (5.9) assumes all residue pairs are iid. However, as discussed in

Chapter 2, there is a well studied distinction between amino acid pairs linked by two

surrounding backbone hydrogen bonds, and those pairs whose hydrogen bonds form

with the alternate neighboring strand (Wouters and Curmi, 1995; Hutchinson et al.,

1998). These differences arise due to different Cβ distances for the two different types

of pairs. It is straightforward to incorporate this distinction into the model given by

(5.9).

Inclusion of other neighbors

Another way in which (5.9) differs from previously developed empirical potentials for

β-sheet prediction is through modeling each position as dependent only on immedi-

ately adjacent residues. However, the form given by (3.2) may have some advantages,

and the dependencies in (5.9) may be extended to include other immediate neighbors

as well.

Distinguishing edge strand positions

Another source of information discussed in Chapter 2 is the measurable difference in

amino acid propensity which is observed in the edge strands of β-sheets (Minor and

Kim, 1994a). This source of information has been lost in previous work using poten-

tials of the form (3.2), because this work does not attempt to predict β-sheets, but
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rather pairs of β-strand residues. Within the Bayesian framework developed in this

dissertation however, the joint distribution is evaluated conditional on a particular

structural assignment and this distinction may be made between various strands in a

β-sheet. This may help introduce further accuracy and strand-pairing specificity into

the prediction of β-sheets as described in the next Section.

5.3 Prediction of β-sheet topology and

tertiary contact maps

In the previous section I defined joint-segment probability models for β-sheets. Sec-

tion 5.2 defined joint distributions over the space of segmentations involving sheet

interactions via (5.1). Here I show how predictive quantities are derived under this

more general class of models, in a fashion analogous to Section 4.4. Computation of

these quantities is more difficult, and will be discussed in Chapter 8. A more general

treatment of interaction models is given in Chapter 6.

5.3.1 Secondary structure prediction

Prediction of secondary structure under the generalized framework proceeds exactly

as in Chapter 4. In a direct parallel to predictors (4.6,4.7), we define

StructMAP = arg max
(S,I)

P (S, I | R) (5.25)

StructMode = {arg max
T

P (TR[i]
| R)}n

i=1 (5.26)

where P (TR[i]
| R) again denotes the marginal posterior distribution over structural

types at a single position i in the sequence, but now marginalized over the significantly

enlarged space of segmentations including segment interactions:

P (TR[i]
| R) =

∑

(S,I)

P (S, I | R)1{TRi
=t} (5.27)
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As discussed in Section 5.2.3 the space of possible segmentations has been considerably

expanded via the introduction of segment interaction parameters. Thus the arguments

made in Chapter 4 against use of the MAP estimate are even more relevant here.

Once again, the marginal posterior mode (5.26) serves as an alternative secondary

structure predictor which addresses this problem by marginalizing over all possible

segmentations. Notice that the discussion of interaction priors (e.g. (5.11) vs. (5.13))

becomes very relevant here. Since (5.11) yields a marginal prior P (S) which is highly

biased towards β-strands, it is expected to perform very poorly in secondary structure

prediction via (5.26). On the other hand, prior (5.13)) significantly downweights the

effects of interaction for any particular β-strand pairing, and so is unlikely to improve

secondary structure prediction accuracy. Instead, we may focus on prediction of the

contacts themselves.

5.3.2 Contact map prediction

It should be noted that the maximum a posteriori segmentation StructMAP defined

by (5.25) has a different form than that of (4.6). This difference is due to the change

in definition: specification of a segmentation now requires specification of the inter-

action parameters defined in Section 5.2 as well. Hence StructMAP is no longer a

set (m,S, T ), but a set (S, I) where I as previously defined represents the sets of

segment interactions and their associated parameters. In other words, StructMAP

provides the maximum a posteriori set of segment interactions, in addition to the

segment locations and types (m,S, T ). In the context of the β-sheet models devel-

oped in Section 5.2, this means the MAP values of sheet parameters p, {H}p
j=1, and

{hi,j}
p
i,j=1 are specified, identifying the strands involved in sheets and their topology

and relative orientations. Hence the StructMAP predictor includes β-sheet assignment

and topology in addition to secondary structure assignment.

We may summarize a set of β-sheet topologies for a given sequence R by consider-

ing the associated predicted β-strand contact map, defined by a matrix Cn×n = {ci,j}
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where

ci,j =







1 If Ri and Rj are paired in a sheet

0 otherwise
(5.28)

We will denote the contact map derived from StructMAP as ContactMAP :

ContactMAP = {ci,j}
n
i,j=1 =







1 Ri, Rj paired in a sheet in StructMAP

0 otherwise
(5.29)

ContactMAP therefore represents an estimator of C using the single highest proba-

bility set of β-sheet interactions, as found in StructMAP . However we have already

seen reasons why MAP estimation is undesirable. Unfortunately, the marginaliza-

tion involved in computing StructMode via (5.27) at each position fails to retain the

interactions of any particular segmentation, and so unlike StructMAP , the predictor

StructMode does not predict the topology of β-sheets. However, we may also estimate

C in an analogous manner to (5.27), by defining the marginal predicted β-strand

contact map, given by the matrix:

ContactMode = {ci,j}
n
i,j=1

where

ci,j = P (i↔ j) =
∑

S,I

P (S, I | R)1{i↔j} (5.31)

with P (S, I) given by (5.1). As with StructMode, the matrix ContactMode predicts

each potential contact marginalized over all possible segmentations and segment in-

teractions. Hence it may be expected to provide more accurate predictions of C than

ContactMAP by more formal arguments given in Chapter 6.

Calculation of the quantities StructMAP , StructMode, ContactMAP , and ContactMode

defined here is more difficult than the analogous computation in Chapter 4, and

is described in Chapter 8. Experiments with using the matrices ContactMAP and

ContactMode as predictors of true β-strand contacts are reported in Chapter 9.



Chapter 6

Stochastic Segment Models and

Stochastic Segment Interaction

Models

In this chapter I provide a more formal discussion of the class of models introduced

in this dissertation. I relate the non-interacting models introduced in Chapter 4

to better-known models such as hidden Markov models and generalizations. The

interacting-segment models developed in Chapter 5 are defined carefully and given

the name stochastic segment interaction models (SSIMs), and their relation to exist-

ing models such as stochastic grammars for RNA structure discussed. The issue of

segmentation priors is considered in more detail, and the resulting impact on predic-

tors is discussed. This chapter provides a more concise and general statement of the

class of models introduced in this dissertation for analysis of biopolymer sequences.

Computational issues are left until Chapters 7 and 8.

71
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6.1 Stochastic segment models

6.1.1 Notation

Let R = (R1, . . . , Rn) be an observed sequence of random variables taking values in a

finite alphabet AR, and T = (T1, . . . , Tn) an associated sequence of unobserved states

from a finite alphabet AT (see Section 6.1.1). We are particularly interested in the

case where R is the sequence of a biological polymer (protein or nucleic acid). AR

is then the set of 20 naturally-occurring amino acids or 4 nucleotide bases, and the

notation is chosen to be suggestive of applications to protein modeling (R for amino

acid residue). The alphabet AT is application dependent, but may include backbone

conformation in proteins (Asai et al., 1993; Stultz et al., 1993; Schmidler et al., 2000)

or genome structure in DNA (Churchill, 1989; Stormo and Haussler, 1994; Kulp et al.,

1996; Burge and Karlin, 1997).

Segmentations: The unobserved state sequence T may also be represented by

a sequence of segments, defined as (type, length) pairs, obtained by grouping con-

secutive Ti’s of identical values. We denote this sequence by S = (S1, . . . , Sm) =

((T1, `1), . . . , (Tm, `m)), and refer to S as a segmentation of the sequence R.

Although S completely specifies a unique segmentation, it is convenient to intro-

duce the following additional notation:

(i) m = |S|, the number of segments

(ii) si = 1 +
∑

j<i `j, the sequence position at which segment i begins

(iii) ei = si + `i − 1, the sequence position at which segment i ends

The segment locations {si}
m
i=1 (or equivalently {ei}

m
i=1) are referred to as change

points in the statistical literature. Note the implicit constraints s1 = 1, em = n, and

si = ei−1 + 1 for i = 2, . . . , m.

Segment interactions: In this dissertation I introduce the additional notion of

segment interactions. A segment interaction specifies a relation between two or more

segments in a segmentation.
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In general terms, given a sequence of random variables R and a segmentation S,

we may define a segment interaction I to be a pair (H, H) where H ⊂ S is a set

of segments and H a set of parameters specifying the precise pattern of interaction

among them. More formally, let S = {Si}
m
i=1 be the segmentation of R, then I =

(H, H) = ({SH(i)}
k
i=1, {hi}

2k

i=1) where k = |H| > 1 and hi are parameters specifying

the interactions of the ith subset of H. There may be multiple segment interactions

for a sequence, and we denote the set of interactions as I = {Ii}
p
i=1. An interaction

I is defined to be maximal 1, so Hi ∩ Hj = ∅ holds ∀i 6= j. If we further define any

non-interacting segment in S to be an interaction of size 1 (so Ij = ({Sj}, ∅) and

kj = |Hj| = 1), then I induces a partition of S of size p, yielding 1 ≤ p ≤ m mutually

exclusive and exhaustive subsets with S =
⋃p

i=1 Hi. We refer to the set (S, I) as an

interacting segmentation.

As a concrete example of a segment interaction, I may denote the set of β-sheets in

a protein, Hi the set of strands making up the ith sheet, and Hi parameters specifying

the relative orientation and registration of neighboring strands. This example is

developed in detail in Chapter 5. Similarly, I ∈ I might represent a helical bundle

or other super-secondary structure.

6.1.2 Stochastic segment models

In Chapter 4 (see also (Schmidler et al., 2000)), I developed a class of probability

models defined on segmentations, of the following form:

P (R,S) ∝ P (S)
m
∏

j=1

P (R[sj :ej ] | S) (6.1)

The key assumption of (6.1) is the conditional independence of positions Ri occur-

ring in different segments, given a segmentation S. (Note that marginally, the ob-

served sequence R has a complex dependency structure.) The segment likelihoods

P (R[si:ei] | S) may be of general form. In Chapter 4 this class of distributions

1An interaction is a maximal clique in a triangulated graphical model defined on segments of the
sequence.



74 CHAPTER 6. STOCHASTIC SEGMENT MODELS AND SSIMS

was shown to be particularly appropriate for modeling aspects of protein sequence-

structure dependencies and hence for a Bayesian approach to protein structure pre-

diction. When the segmentation prior P (S) in (6.1) is factored appropriately, these

models lend themselves to efficient exact calculation of posterior quantities (see Chap-

ter 7).

A slightly less general form of (6.1) is discussed in (Ostendorf et al., 1996) under

the name of stochastic segment models, and I adopt this terminology here. A number

of related models have been developed in the speech recognition and bioinformatics

communities. The relations among these models are discussed in Section 6.2.

6.1.3 Stochastic segment interaction models

The class of stochastic segment models described by (6.1) can be generalized to a much

larger class of models involving the segment interactions introduced in Section 6.1.1.

We may write a joint distribution over the set of interacting segmentations in the

following form:

P (R,S, I) ∝ P (S, I)

p
∏

i=1

P ({R[sj :ej ]}Sj∈Hi
| S, I) (6.2)

which factors by conditional independence of sets of interacting segments. We refer

to this new class of models as stochastic segment interaction models (SSIMs). Here

modeling of inter-segment sequence dependencies is achieved by introducing joint-

segment likelihoods, replacing the terms

P (R[sj :ej ] | Sj) and P (R[sk:ek] | Sk)

for two interacting segments Sj and Sk in the product of (6.1) above with a joint

term:

P (R[sj :ej ], R[sk:ek] | Sj, Sk) (6.3)

Hence positions Ri in different segments may be made conditionally dependent by

introducing an interaction between the two segments, and we may include arbitrary
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joint segment distributions for segment pairs into the model. The extension to three

or more segments (as may be required for 4-helix bundles or β-sheets, for example)

is obvious.

This class of models is sufficiently general to capture the significant non-local

dependencies in protein sequences; see Sections 6.2.4 and 5.2 for examples. Letting

p = m reduces (6.2) to (6.1), so this class of models strictly generalizes those developed

previously here and elsewhere.

As described in Chapter 7, many models of the form (6.1) enjoy nice computa-

tional properties. In contrast, models of the form (6.2) usually present significant

computational difficulties. While the joint distribution (6.2) is easily evaluated for

any fixed segmentation S of R, calculation of relevant predictive quantities under this

model rarely permits efficient exact algorithms. Approximation algorithms based on

Monte Carlo simulation are developed in Chapter 8.

6.2 Hidden Markov models and stochastic segment

models

The class of models described by (6.1) above has close ties to other stochastic sequence

models, and it is helpful to make these explicit.

6.2.1 Hidden Markov models

Hidden Markov models (HMMs) have been widely used in bioinformatics (Churchill,

1989; Baldi et al., 1994; Krogh et al., 1994; Asai et al., 1993; Stultz et al., 1993;

Eddy, 1996), as well as many other areas of engineering and statistics (Rabiner, 1989;

MacDonald and Zucchini, 1997).

Letting Ti once again be the hidden state at position i (rather than the type of
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the ith segment; see Section 6.1.1), a HMM may be written in the form2:

P (R, T ) =
n

∏

i=1

P (Ti | Ti−1)P (Ri | Ti) (6.4)

Rewriting (6.4) in segment form with Ti now denoting the type of segment i (Sec-

tion 6.1.1), we obtain:

P (R,S) =
m
∏

i=1

[

P (Ti | Ti − 1)P (Rsi
| Ti)

ei
∏

j=si+1

P (Rj | Ti)P (Ti | Ti)

]

=

[

m
∏

i=1

P (Ti | Ti−1)P (Ti | Ti)
`i−1

]

×

[

m
∏

i=1

ei
∏

j=si

P (Rj | Ti)

]

(6.5)

From (6.5) we observe that HMMs are stochastic segment models with the following

additional assumptions:

(i) Geometric lengths: Lengths of segments of type T follow a geometric distribu-

tion with parameter p = P (T | T ), so

P (` = k) ∝ pk (6.6)

(ii) Conditional IID: Observed sequence positions are conditionally independent

given the hidden state sequence, including those within the same segment:

P (Ri| S, Rj 6=i) = P (Ri| S) (6.7)

Moreover, within a given segment individual positions are also identically dis-

tributed :

P (R[si,ei] | Si) =

ei
∏

j=si

P (Rj | Ti) (6.8)

Hence HMMs are a special case of stochastic segment models in which the above

additional restrictions are imposed.

2To simplify notation, throughout we let P (T1 | T0) to denote P (T1).
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6.2.2 Hidden semi-Markov models

Assumption (6.6) has been recognized as inappropriate for applications in speech

recognition, leading to the development of “explicit state duration density” HMMs

(Russell and Moore, 1985; Levinson, 1986; Rabiner, 1989). Such models may be

written in the form:

P (R,S) =

[

m
∏

i=1

P (Ti | Ti−1)

] [

m
∏

i=1

P (`i | Ti)

][

m
∏

i=1

ei
∏

j=si

P (Rj | Ti)

]

(6.9)

Note that (6.9) differs from (6.4) by changing the (prior) distribution of S from a

Markov process:

P (S) =

n
∏

j=1

P (Tj | Tj−1) (6.10)

to a semi-Markov process3:

P (S) =
m
∏

j=1

P (Tj | Tj−1)P (`j | Tj) (6.11)

and so (6.9) is referred to as a hidden semi-Markov model (HSMM). This model

incorporates explicit segment length distributions conditioned on segment type.

Explicit modeling of segment length has proven useful in bioinformatics for mod-

eling distributions of intron/exon length in eukaryotic DNA (Kulp et al., 1996; Burge

and Karlin, 1997) and different types of secondary structure in proteins (Schmidler

et al., 2000). Figure 4.2 (taken from (Schmidler et al., 2000)) shows data on the

differing length distributions of two types of protein secondary structure segments.

3Note the change in indices from n to m, reflecting the change in notation: Ti goes from being
the state at position i to being the state of segment i.
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6.2.3 Generalized hidden Markov models and stochastic seg-

ment models

Recently, assumption (6.7) has been relaxed for applications in bioinformatics and

speech recognition by allowing models of intra-segment position dependence. Such

models are written in the form:

P (R,S) ∝
m
∏

j=1

P (R[sj :ej ] | Tj)P (Tj | Tj−1)P (`j | Tj) (6.12)

and have been developed under various names, including generalized HMMs (Stormo

and Haussler, 1994; Kulp et al., 1996; Burge and Karlin, 1997) and stochastic segment

(Ostendorf et al., 1996) or segmentation (Schmidler et al., 2000) models. Here we

adopt the term stochastic segment models (SSMs) to denote the slightly more general

class of models described by (6.1), and use generalized HMMs (GHMMs) to refer

to the special case of (6.1) where the prior distribution P (S) takes the special form

(6.12).

It is perhaps worth pointing out explicitly the additional modeling capabilities

obtained by adopting SSMs in place of HSMMs. SSMs relax the assumption of

intra-segment conditional independence among sequence positions. Several models

developed for protein secondary structure prediction violate this assumption, includ-

ing neural networks, later versions of GOR, and other segment-based and empirical

potential methods described in Chapter 3. Generally speaking, we may expand the

logarithm of the joint distribution over positions in the segment:

logP (R[s:e] | ·) ∝

∑

s≤i≤e

fi(Ri) +
∑

s≤(i,j)≤e

gi,j(Ri, Rj) +
∑

s≤(i,j,k)≤e

hi,j,k(Ri, Rj, Rk) + . . . (6.13)

where it can be seen that the HSMM model, which sets all but the first set of terms

on the rhs to zero, is quite restrictive.

Other examples of segment likelihoods which fall into the class of SSMs but not
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HSMMs which are particularly relevant for modeling proteins are given in Chapter 4

and (Schmidler et al., 2000).

6.2.4 Stochastic segment interaction models

As pointed out in Section 6.1.1, SSIMs relax the assumption of conditional inde-

pendence of inter-segment sequence positions by introducing a structured notion of

segment interaction. Of course the general form of SSIMs given by (6.2) is somewhat

too general, and an important tradeoff must be found in modeling strong dependencies

and ignoring others.

Pair potentials

To see this generality, note that (6.2) includes standard pair potentials as a special

case by setting m = n the length of R and p = 1. If we relax the disjoint assumption

of sets of interacting segments, pair potentials may be described more conveniently

by taking p =
(

n
2

)

all pairs of segments.

Given this, it is clear that other models for interactions in biopolymer sequences

may be seen as special cases of SSIMs. For example, the models of Hubbard described

in Chapter 3 impose a pair potential (3.2) model of β-sheets

RNA folding and stochastic grammars

Interestingly, RNA secondary structure prediction models based on stochastic context-

free grammars (SCFGs) also fall into the SSIM framework. RNA secondary structure

formation has been successfully modeled using statistical mechanical models and ex-

perimentally determined energetic parameters (Zuker and Stiegler, 1981; Zuker and

Sankoff, 1984; Zuker, 1989; McCaskill, 1990).

The secondary structure of an RNA sequence is represented by a set of ordered

base pairs H = {(i, j)} under the constraints that for two pairs (i1, j1), (i2, j2) ∈ H
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such that i1 ≤ i2, we have:

i1 = i2 ⇔ j1 = j2 (6.14)

i2 < j1 ⇒ i1 < i2 < j2 < j1 (6.15)

Biologically these constraints allows each nucleotide to participate in only one base

pair, and restrict the structure from forming pseudo-knots. Mathematically the struc-

ture may be drawn as a planar graph, and may be represented by a context-free gram-

mar (Searls, 1993). Stochastic context-free grammar models have been successfully

applied to RNA secondary structure prediction (Eddy and Durbin, 1994; Sakakibara

et al., 1994; Durbin et al., 1998).

Given such a secondary structure, the probability of a ribonucleotide sequence R

may be written as a Gibbs measure:

P (R | H) ∝ exp(−U(R,H)/kT ) (6.16)

with

U(R,H) =
∑

i6∈H

f(Ri) +
∑

(i,j)∈H

g(Ri, Rj) (6.17)

a pair potential with nucleotide-interaction free energy terms. Typically U is defined

over neighboring pairs to account for effects such as base stacking.

It can be seen that the above models fall into the general form given by 6.2 above,

and form a restricted subset of non-local interactions. As described in Chapter 8, this

restricted class is amenable to efficient algorithms for predictive inference.

Note that it is precisely the tendency of protein β-sheets to violate the con-

straints given by (6.15) which makes SSIMs more desirable, and less computationally

tractable. It is of interest to relate SSIMs to attempts in the RNA folding literature

to account for pseudo-knots, but I do not pursue this here.
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6.3 Priors on segmentations

We have not yet discussed the specification of P (S) in SSMs. As pointed out in

in Section 6.2, the definition of SSMs without interactions (6.1) adopted here (from

(Schmidler et al., 2000)) is slightly more general than that of GHMMs (6.12). In

particular, it allows for alternative forms for the marginal probability distribution

on segmentations P (S). From a Bayesian perspective, GHMMs are SSMs4 with a

specific form of segmentation prior.

It is often convenient to specify a segmentation prior by first conditioning on the

the number of segments m:

P (S) = P (m)P ({Sj}
m
j=1 | m) (6.18)

As noted in Section 6.2.2, implicit in GHMMs (and therefore HSMMs and standard

HMMs) is an assumed prior of this form, with P ({Sj}
m
j=1 | m) factored as a semi-

Markov process (6.11). However in comparing with (6.18), we can see that (6.11)

embodies certain assumptions:

(i) Uniform number segments: We have

P (m) ∝ 1 (6.19)

and so P (S) is improper (m is unbounded), but yields a proper posterior by

conditioning on an observed sequence R of fixed length n.

(ii) Markovian segment types: The sequence of segment types is given a Markov or

nearest-neighbor dependency structure

P ({Tj}
m
j=1 | m) =

m
∏

j=1

P (Tj | Tj−1) (6.20)

4SSMs as originally defined in (Ostendorf et al., 1996) also used this form of prior.
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(iii) Lengths IID: The length distributions of all segments are conditionally indepen-

dent, and are identically distributed for all segments of the same type:

P ({`j}
m
j=1 | m, {Tj}

m
j=1) =

m
∏

j=1

P (`j | Tj) (6.21)

The wide application of HMMs in practice suggests that these assumptions are often

reasonable; however, they may be inappropriate in some domains. In this section, we

describe several other possible forms of segmentation priors. In Chapter 7 we discuss

how the choice of priors affects computational complexity of inference. Chapter 5

describes an application where some of these assumptions are undesirable.

6.3.1 Alternative segmentation priors

SSMs are not limited to the priors adopted implicitly in GHMMs. We briefly outline

some natural alternatives:

(i) Uniform prior A simple approach considers a prior that is uniform across seg-

mentations:

P (S) ∝ 1 (6.22)

yielding the joint distribution

P (R,S) ∝
m
∏

j=1

P (R[sj :ej ] | S) (6.23)

Again, (6.22) is improper but yields a proper posterior. Prior (6.22) is adopted

implicitly in related work on DNA and protein sequence segmentation (Auger

and Lawrence, 1989; Stormo and Haussler, 1994; Liu and Lawrence, 1996) and

the resulting MAP segmentation (see (6.36) in Section 6.4) may be interpreted

as a maximum likelihood segmentation of the sequence R.

(ii) Semi-Markov process prior : The semi-Markov process prior described above

has been used by (Snyder and Stormo, 1993; Kulp et al., 1996; Burge and
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Karlin, 1997) for DNA and (Schmidler et al., 2000) for proteins. It may also be

combined with any proper marginal prior P (m), yielding the joint distribution:

P (R,S) = P (m)

m
∏

j=1

P (R[sj :ej ] | S)P (Tj | Tj−1)P (`j | Tj) (6.24)

Choice of P (m) may affect computational complexity of inference; see Chap-

ter 7.

(iii) Sequence-specific prior : Priors (6.22) and (6.11) model the distribution over

general segmentations. We may also consider priors over segmentations of a

particular sequence R, which we call sequence-specific priors. For example,

conditioning on the observed sequence length n gives prior probability mass

only for segmentations subject to the constraint5

m
∑

j=1

`j = n (6.25)

Here n becomes fixed in the model, rather than an observed quantity. This

approach is used by (Liu and Lawrence, 1999), who adopt a combinatorial prior

which is uniform on m-segmentations given m. Adapting this to the current

formulation, we get:

P (S | n) ∝ P (m)

(

n− 1

m− 1

)−1

(|AT | − 1)−(m−1)/|AT | (6.26)

Similarly, one can adapt the uniform prior (6.22) to the sequence-dependent

case, where conditioning on n:

P (S | n) ∝ 1 (6.27)

has no effect other than to make the prior a proper distribution.

5Note that under priors (6.22,6.11), the posterior distribution over segmentations P (S | R) has
mass restricted to segmentations satisfying (6.25), but this results from the likelihood term and not
the prior.
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(iv) Other segment-decomposable priors: The above priors all share an important

property, which we will call segment decomposability :

Definition. A probability distribution P on S is segment-decomposable if

P (S) ∝
m
∏

j=1

f(ej−1, ej, Tj−1, Tj) (6.28)

for some f independent of j.

Definition. P is conditionally segment-decomposable given X if

P (S | X) ∝ g(X)
m
∏

j=1

f(ej−1, ej, Tj−1, Tj | X) (6.29)

We will see in Chapter 7 that segment decomposability has a dramatic impact on

computational complexity of inference. Note that for a SSM given by (6.1), the

posterior distribution P (S | R) is segment decomposable if and only if the prior

P (S) is. Priors given above are examples of this class of segment-decomposable

priors.

(v) General segmentation priors: It is easy to construct desirable priors which do

not have the decompositions specified above. For example, one may wish to

specify a prior on secondary structure content via

P (S) = P (m)P (#(H ∈ T ),#(E ∈ T ),#(L ∈ T ) | m) (6.30)

Such general priors which depend on global features of a segmentation impose

a non-decomposable structure on the joint distribution (6.1) which significantly

complicates posterior inference (see Chapter 8).

As described in Chapter 7 below, the different structure imposed on the joint distri-

bution by these various priors alters the computational complexity of algorithms for

posterior inference. In Chapter 9, we will see that they may also significantly affect

the quality of posterior inference.
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6.3.2 Priors on segment interactions

We now consider segmentation priors in the case of SSIMs, namely the specification

of P (S, I). Again, we distinguish several types:

(i) Uniform: Analogous to (6.22), we may adopt a uniform prior on interacting

segmentations:

P (S, I) ∝ 1 (6.31)

which yields a maximum likelihood interacting segmentation.

(ii) Conditionally uniform: Given any of the priors discussed previously in Sec-

tion 6.3.1, the prior may be extended by a conditionally uniform prior on seg-

ment interactions. This yields a joint prior of the form:

P (S, I) ∝ P (S)/c(S) (6.32)

where c(S) is the number of possible interactions formed on segments in S, and

P (S) may for example be a semi-Markov prior of the form (6.11).

(iii) Noninformative: A related approach sets

P (S, I) ∝ P (S) (6.33)

Note that this is equivalent to multiplying (6.32) by a factor c(S), and so

strongly favors segment types which interact, as discussed in Chapter 5.

(iv) Conditionally informative: Alternatively, a non-uniform conditional prior on

interactions may also be used in combination with segmentation priors:

P (S, I) ∝ P (S)P (I | S) (6.34)

Some care is required in specifying P (I | S); examples of this approach are

developed in Sections 5.2.1 and 5.2.3.
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(v) General informative Alternatively, general priors on interacting segmentations

may be specified. By analogy to (6.30) for example, we might write

P (S, I) = P (m)P (#(H ∈ T ),#(L ∈ T ),#(I ∈ I) | m) (6.35)

in order to model the observed frequency of occurrence of various numbers of

various types of sheets.

Sections 5.2.1 and 5.2.3 develop concrete examples of some of these forms. Experi-

mental results are described in Chapter 9.

6.4 Inference and prediction in stochastic segment

interaction models

In this section we discuss the inferential and predictive tasks with SSMs and SSIMs.

Chapters 7 and 8 discusses algorithmic issues associated with these tasks. Where

appropriate, we use as an example the problem of protein secondary structure pre-

diction.

6.4.1 Segmentation

We refer to the task of recovering the unobserved (S, I) given an observed sequence

R as segmentation of R. Many applications may be cast as segmentation problems,

including parsing of human speech, identification of gene structure in DNA, prediction

of protein secondary structure, and identification of change points in time series data.

Segmentation is inherently a problem of statistical inference, and it will not be

surprising that multiple estimators of the quantities (S, I) exist which exhibit different

properties6.

We first consider the case of SSMs without interactions. The most commonly used

estimate of S is the maximum a posteriori (MAP) value, which we refer to as the

6The computational problem of segmentation concerns the development of efficient algorithms
for calculating various estimators, and is discussed in Chapters 7 and 8.
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MAP segmentation:

SMAP = arg max
S

P (S | R, θ) (6.36)

= arg max
(m,{`i}m

i=1,{Ti}m
i=1)

P (m, (`i, Ti)
m
i=1 | R, θ)

where θ denotes the model parameters. If we define the expected loss of a segmentation

estimator S∗:

ES|R,θ(L,S
∗) =

∑

S

P (S | R, θ)L(S,S∗) (6.37)

for some loss function L, it is easily checked that the MAP segmentation (6.36)

minimizes the expected loss under 0-1 loss:

L(S,S∗) =







0 for S = S∗

1 otherwise
(6.38)

and is therefore an optimal estimator of S in the sense of minimizing Bayesian risk

(Berger, 1985).

An alternative estimator for S is the marginal mode predictor, often referred to

as “smoothing” in the case of HMMs:

SMode = {arg max
T

P (TR[i]
| R, θ)}n

i=1 (6.39)

where P (TR[i]
| R, θ) denotes the marginal posterior distribution over segment types

at a single position i in the sequence:

P (TR[i]
| R, θ) =

∑

(m,S,T )

P (m,S, T | R, θ)1{TRi
=t} (6.40)

Hence (6.39) provides the sequence of marginal posterior modes at each position.

Note that (6.39) involves marginalization over all possible segmentations.

It is easily checked that the marginal mode predictor (6.39) is optimal under a
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Hamming distance loss function:

L(S,S∗) =

n
∑

i=1

1{TRi
=T ∗

Ri
} (6.41)

which counts the number of positions assigned to an incorrect segment type. If our

interest is in maximizing the number of correctly classified positions, the marginal

mode predictor (6.39) is to be preferred. Chapter 9 reports experiments showing

a significant improvement of SMode over SMAP when applied to protein secondary

structure prediction. A disadvantage of SMode is that the resulting segmentations

may have posterior mass zero.

6.4.2 Segmentation with interactions

Segmentation under the more general framework of SSIMs introduced in this disser-

tation proceeds in an analogous manner. In a direct parallel to predictors (6.36,6.39),

we define

(S, I)MAP = arg max
(S,I)

P (S, I | R) (6.42)

SI
Mode = {arg max

T
P (TR[i]

| R)}n
i=1 (6.43)

where P (TR[i]
| R) again denotes the marginal posterior distribution over structural

types at a single position i in the sequence, but now marginalized over the significantly

enlarged space of segmentations including segment interactions:

P (TR[i]
| R) =

∑

(S,I)

P (S, I | R)1{TRi
=t} (6.44)

As before, MAP and Mode predictors (6.42,6.43) are Bayes estimates under 0-1 and

Hamming distance losses, respectively. However, as in Section 5.2.3 of Chapter 5, the

space of possible segmentations has been considerably expanded via the introduction

of segment interaction parameters, and the same discussion of interaction priors is

relevant. Since (6.31) yields a marginal prior P (S) which is highly biased towards
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interacting segments, it is expected to perform very poorly in prediction of marginal

quantities P (S) via (6.43). On the other hand, prior (6.32)) significantly downweights

the effects of interaction for any particular interaction, and so is unlikely to improve

marginal predictions through incorporation of joint-segment information. Instead, we

may focus on prediction of the interactions themselves.

6.4.3 Contact map prediction

It should be noted that the maximum a posteriori segmentation (S, I)MAP defined

by (6.42) has a different form than that of SMAP in the SSM case (6.36). This differ-

ence is due to the change in definition: specification of a segmentation now requires

specification of the interaction parameters defined in Section 6.1.1 as well. Hence the

MAP segmentation is no longer a set S, but a set (S, I) where I as previously defined

represents the sets of segment interactions and their associated parameters. In other

words, (S, I)MAP provides the maximum a posteriori set of segment interactions, in

addition to the segment locations and types. In the context of the β-sheet models de-

veloped in Chapter 5, this means the MAP values of sheet parameters p, {H}p
j=1, and

{hi,j}
p
i,j=1 are specified, identifying the strands involved in sheets and their topology

and relative orientations. Hence the StructMAP predictor includes β-sheet assignment

and topology in addition to secondary structure assignment.

In the case of SSIMs, it is also of interest to look specifically at predicted inter-

actions. As in the example of β-sheet prediction developed in Chapter 5, we may

summarize interactions by a contact map, a matrix Cn×n = {ci,j} where

ci,j =







1 If Ri and Rj are paired in a segment interaction

0 otherwise
(6.45)

We will denote the contact map derived from (S, I)MAP as CMAP :

CMAP = {ci,j}
n
i,j=1 =







1 Ri, Rj paired in (S, I)MAP

0 otherwise
(6.46)
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CMAP therefore represents an estimator of C using the single highest probability set of

interactions, as found in (S, I)MAP . However we have already seen reasons that MAP

estimation is undesirable. Unfortunately, the marginalization involved in computing

SI
Mode via (6.44) at each position fails to retain the interactions of any particular

segmentation, and so unlike (S, I)MAP , the predictor SI
Mode does not predict the

topology of interactions. However, we may also estimate C in an analogous manner

to (6.44), by defining the marginal predicted contact map, given by the matrix:

CMode = {ci,j}
n
i,j=1

where

ci,j = P (i↔ j) =
∑

S,I

P (S, I | R)1{i↔j} (6.48)

with P (S, I) given by (6.2). As with StructMode, the matrix CMode predicts each po-

tential contact marginalized over all possible segmentations and segment interactions.

Hence it may be expected to provide more accurate predictions of C than CMAP , as

it yields a Bayes estimator for C under a Hamming distance loss.

Calculation of the quantities (S, I)MAP , SI
Mode, CMAP , and CMode defined here

for SSIMs is more difficult than the analogous computations in SSMs, and will be

discussed in Chapter 8. Experiments with using the matrices CMAP and CMode as

predictors of true contacts in the context of protein structure is described in Chapter 9.



Chapter 7

Dynamic Programming Algorithms

for Stochastic Segment Models

In this Chapter I discuss computation with the SSM models described in Chapter 6.

Efficient algorithms are given for several types of SSMs using dynamic programming.

The next chapter will introduce computational methods for inference with the more

general class of SSIMs introduced in Chapter 6.

7.1 Algorithms for inference in stochastic segment

models

In order to perform prediction and inference with SSMs, we require algorithms for

computing quantities such as (6.36) and (6.39) given an observed sequence R. As

mentioned briefly in Section 6.3, the algorithms required depend on the form of the

joint distribution (6.1), including the form of the prior. We consider three cases:

segment-decomposable priors; conditionally segment-decomposable priors; and non-

decomposable priors. See Section 6.3.1 for definitions.
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7.1.1 Segment-decomposable priors

The most efficient algorithms for SSMs (barring special cases such as HMMs) occur

for segment-decomposable priors. Several examples of segment-decomposable priors

are given in Chapter 6. For example:

(i) Uniform priors (6.22 and 6.27)

(ii) Semi-Markov process priors (6.24) with P (m) ∝ 1 improper (6.11)

In this case, the joint distribution has conditional independence structure similar to

that of a hidden semi-Markov model (6.9). Thus computation can be done exactly

using a generalization of the standard forward-backward and Viterbi algorithms for

hidden Markov models (HMMs) to the case of hidden semi-Markov models (HSMMs),

as described in (Rabiner, 1989; Stormo and Haussler, 1994; Schmidler et al., 2000).

In particular, the MAP segmentation (6.36) may be calculated using the forward

variables:

δ(j, t) = max
(v=1,...,j−1

l∈AT
)
[δ(v, l)f(e− = v, e = j, T− = l, T = t | θ)] (7.1)

with appropriate initialization, in a procedure analogous to the Viterbi algorithm

for HMMs (Rabiner, 1989). Here e+/− represents the endpoint of the next/previous

segment.

For example, the SSM for protein secondary structure prediction developed in

Chapter 4 has a prior of the form (6.11), and the above becomes:

δ(j, t) = max
(v=1,...,j−1

l∈AT
)

[

δ(v, l) P (R[v+1:j] | e− = v, e = j, T = t, θ) ×

P (e = j | T = t, e− = v, θ)P (T = t | T− = l, θ)

]

(7.2)

The algorithm proceeds by recursively calculating δ(j, t) for j = 1, . . . , n and t ∈ AT ,

and then reconstructing the MAP segmentation by setting

S∗
m = n

T ∗
m = arg max

l∈AT

δ(n, l)
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and tracing backwards.

This calculation requires O(n3) steps. Often, a maximum segment length D may

be imposed, in which case the maximization (7.1) ranges over v = j−D, . . . , j−1 and

the algorithm is linear (O(nD2)) in n. Experiments in Chapter 9 set D = 30, large

enough to account for nearly all observed structural segments (Figure 4.2). The model

given by (4.4) in fact allows reduction to O(nD), but this does not hold in general,

and the additional computational savings is unnecessary for protein sequences.

The recursion (7.1) provides an efficient algorithm for computing the MAP seg-

mentation (6.36). The marginal posterior distributions P (TR[i]
| R) required for (6.39)

may be calculated similarly, by defining forward variables:

α(j, t) =

j−1
∑

v=1

∑

l∈AT

α(v, l)f(e− = v, e = j, T− = l, T = t | θ) (7.3)

and backward variables:

β(j, t) =

n
∑

v=j+1

∑

l∈AT

β(v, l)f(e = j, e+ = v, T = t, T+ = l | θ) (7.4)

For the protein secondary structure models of Chapter 4, these become:

α(j, t) =

j−1
∑

v=1

∑

l∈AT

α(v, l)P (R[v+1:j] | e− = v, e = j, T = t, θ)×

P (e = j | T = t, e− = v, θ)P (T = t | T− = l, θ) (7.5)

and

β(j, t) =
n

∑

v=j+1

∑

l∈AT

β(v, l)P (R[j+1:v] | e+ = v, e = j, T+ = l, θ)×

P (e+ = v | e = j, T+ = l, θ)P (T+ = l | T = t, θ) (7.6)
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Given (7.3,7.4), we may then compute the marginal posteriors (6.40) required for

(6.39) via:

P (TRi
= t | R, θ) =

i−1
∑

j=i−D+1

j+D−1
∑

k=i

∑

l∈AT

α(j, l)β(k, t)f(e− = j, e = k, T− = l, T = tθ)/Z (7.7)

using (7.3,7.4) above. Here Z is the normalizing constant or marginal likelihood

P (R | θ), available directly from the forward pass (7.3). Calculation of (7.3) and

(7.4) can be done in O(n3) (or O(nD2) for fixed D), and (7.7) yields the marginal

posterior distribution at each position in O(n2) (or O(nD)) time, using the following

calculation:

P (TR[i+1]
= t | R, θ) = (7.8)

P (TR[i]
= t) −

i−1
∑

j=i−D

∑

l∈AT

[α(j, l)β(i, t)f(e− = j, e = i, T− = l, T = t | θ)] /Z

+
i+D
∑

k=i+1

∑

l∈AT

[α(i, l)β(i+ 1, k)f(e− = i, e = k, T− = l, T = t | θ)] /Z

In the context of the protein models of Chapter 4, (7.7) becomes:

P (TRi
= t | R, θ) =

i−1
∑

j=i−D+1

j+D−1
∑

k=i

∑

l∈AT

α(j, l)β(k, t)P (R[j+1:k] | e− = j, e = k, T = t, θ)×

P (e = k | e− = j, T = t, θ)P (T = t | T− = l, θ)/Z (7.9)
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and (7.8) becomes

P (TR[i+1]
= t | R, θ) =

P (TR[i]
= t) −

i−1
∑

j=i−D

∑

l∈AT

[

α(j, l)β(i, t)P (R[j+1:i] | e− = j, e = i, T = t, θ)

P (e = i | e− = j, T = t, θ)P (T = t | T− = l, θ)] /Z

+
i+D
∑

k=i+1

∑

l∈AT

[

α(i, l)β(i+ 1, k)P (R[i+1:k] | e− = i, e = k, T = t, θ)

P (e = k | e− = i, T = t, θ)P (T = t | T− = l, θ)] /Z

(7.10)

The algorithms given in this section demonstrate that both predictors (6.36,6.39) may

be calculated efficiently under segment-decomposable priors.

7.1.2 Conditionally segment-decomposable priors

I consider here the specific case where the prior P (S) is conditionally segment-

decomposable given m the number of segments. Thus the prior is of the form

P (S) ∝ g(m | θ)
m
∏

j=1

fj(ej−1, ej, Tj−1, Tj | m, θ) (7.11)

with g(m, θ) itself not segment-decomposable. Examples include:

(i) Semi-Markov process priors (6.24) with non-uniform marginal prior P (m), where

g(m | θ) = P (m)

and

fi(e−, e, T−, T | m, θ) ≡ f(e−, e, T−, T | m, θ)

= P (e = j | T = t, e− = v, θ)P (T = t | T− = l, θ)
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(ii) Sequence dependent priors with P (S | n) = h(m,n) such as (6.26), where

g(m | n, θ) = h(m,n)

and

fi(S−, S, T−, T | m,n, θ) ≡ 1

In this case, the algorithms of the previous section do not apply, and must be adapted.

Algorithms for this case are given by (Auger and Lawrence, 1989; Liu and Lawrence,

1996) utilizing the following forward and backward variables:

δ(j, t, k) = max
(v=1,...,j−1

l∈AT
)

[

δ(v, l, k − 1)P (R[v+1:j] | ek−1 = v, ek = j, Tk = t, θ)×

fk(ek−1 = v, ek = j, Tk−1 = l, Tk = t, θ)] (7.12)

α(j, t, k) =

j−1
∑

v=1

∑

l∈AT

α(v, l, k − 1)P (R[v+1:j] | ek−1 = v, ek = j, Tk = t, θ)×

fk(ek−1 = v, ek = j, Tk−1 = l, Tk = t, θ) (7.13)

β(j, t, k) =

n
∑

v=j+1

∑

l∈AT

β(v, l, k − 1)P (R[j+1:v] | e+ = v, e = j, T+ = l, θ)×

fk(e=j, e+ = v, T = t, T+ = l, θ) (7.14)

defined for k = 1, . . . , n.

As before, the MAP segmentation can be reconstructed by setting:

(m∗, T ∗
m∗) = arg max

(m∈{1,...,n}
l∈AT

)
δ(n, l,m)g(m) (7.15)

S∗
m∗ = n

T ∗
m∗ = arg max

l∈AT

δ(n, l,m∗)
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and tracing back recursively. (Note that the MAP segmentation does not necessarily

have the MAP number of segments m.) Here the forward/backward computations

require O(n4) (or O(n2D2)) operations, a factor of n more expensive than those in

the previous section.

In this case, computation of the marginal posterior distributions P (TR[i]
| R)

requires marginalization over m:

P (TRi
= t | R, θ) =

n
∑

m=1

g(m | θ)
m

∑

q=1

i−1
∑

j=i−D+1

j+D−1
∑

k=i

∑

l∈AT

α(j, l, q − 1)β(k, t,m− q + 1) ×

fq(eq−1 = j, eq = k, Tq−1 = l, Tq = t | θ)/Z (7.16)

The above provide efficient algorithms for calculation of posterior quantities such as

SMAP and SMode in the case of SSMs with conditionally segment-decomposable priors

P (S).

7.1.3 Non-decomposable priors

In the case of general non-decomposable priors of the form (6.30), efficient algorithms

do not exist. However computations may be done approximately using the techniques

introduced in the next Chapter of this dissertation for inference with SSIM models.

7.2 General remarks

The previous sections provided efficient algorithms for calculation of the SMAP and

SMode predictors of secondary structure under several classes of models. It is worth

reiterating that (7.7,7.16) provide the exact marginal posterior distribution over seg-

ment types at each position, averaging over all possible segmentations, and hence

provide an exact measure of the uncertainty of prediction at each position (subject to

modeling assumptions). Figure 9.2 in Chapter 9 shows that this measure correlates

very strongly with prediction accuracy. Figure 9.1 shows how this uncertainty varies
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along true and predicted segments.



Chapter 8

Markov Chain Monte Carlo

Algorithms for Stochastic Segment

Interaction Models

Previous chapters introduced the formalism of segment interactions and SSIMs (6.2),

and showed an example of their use in modeling protein β-sheets. In this chapter

I discuss computational issues which arise in dealing with SSIMs. Unlike the case

of SSMs discussed in Chapter 7, efficient algorithms do not exist for SSIMs beyond

certain special cases. After discussing one such case, I focus instead on develop-

ing Markov chain Monte Carlo simulation algorithms for approximate inference and

prediction with general SSIMs.

8.1 Computing with stochastic segment interac-

tion models

The joint distribution given by (6.2) is easily evaluated for any fixed segmentation

(S, I) of a sequence R. However, serious difficulties arise in attempting to calculate

posterior quantities such as (S, I)MAP , SI
Mode, CMAP , or CMode, or the normalizing

constant Z = P (R) in SSIMs. This is because the conditional independence structure

99



100 CHAPTER 8. MCMC ALGORITHMS FOR SSIMS

of SSMs (6.1) is critical for recursive decomposition of the joint distribution P (R,S),

which in turn enables the efficient exact calculation of posterior probabilities via

dynamic programming algorithms described in Chapter 7. Although I will show that

restricted classes of SSIMs may still admit efficient algorithms, general SSIMs will

require other solutions. To address this difficulty, I develop a set of Markov chain

Monte Carlo algorithms for approximate computation of posterior quantities under

SSIM models.

8.2 Exact calculation with limited interactions

Before treating general SSIMs, I consider limited segment interactions such as those

introduced in Chapter 5 for modeling β-hairpins. We will see that inference in such

models may be performed exactly via dynamic programming. This is useful both for

prediction with such restricted models, and for understanding the modeling issues of

SSIMs without the confounding issue of approximate computation.

The key assumption of the β-hairpin model defined in Section 5.2.1 is that a β-

hairpin consists of two strand segments separated by a single loop. This restricts the

maximum distance between interacting segments, but more importantly it prevents

“interleaving” of segments in different β-hairpins, which violate the constraints of

(6.15). Because of this restriction on the interaction parameters, exact calculations

may be done in polynomial time. (This should not be surprising, as we may consider

the strand-loop-strand structure of a β-hairpin as a “supersegment” of sorts, and

apply the algorithms of Chapter 7, modified slightly to account for strand interaction

parameters within this supersegment.) Although I consider only β-hairpin models

here, it is clear that stochastic context-free grammar (SCFG) algorithms used for

models of the form (6.16) may be applied here, and this is an interesting area for

further study.

One way to perform the exact calculation with β-hairpin models is by defining
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the forward variables in terms of segment triples, for example using:

δ(j, t, j−1, t−1, j−2, t−2) =

max
(v=1,...,j−2−1

l∈AT
)
P (R[v+1:j] | S = j, S−1 = j−1, S−2 = j−2, S−3 = v,

T = t, T−1 = t−1, T−2 = t−2, T−3 = l, θ) × priors (8.1)

and the analogous definitions of α and β forward and backward variables for compu-

tation of marginal distributions. Again, more efficient calculations may be possible

using SCFG-type algorithms, and this will be explored in future work.

8.3 Markov chain Monte Carlo segmentation

Unfortunately, more general forms of SSIMs do not lend themselves to such efficient

algorithms. In general, introduction of joint-segment models into SSMs makes exact

calculation of posterior probabilities intractable. Nevertheless, approximate inference

in these models may be achieved using Monte Carlo approximation. While it appears

quite difficult to develop approximation schemes that are provably efficient in a formal

sense (Motwani and Raghavan, 1995), I show that Monte Carlo inference based on

Markov chain simulation provides satisfactory empirical performance.

Markov chain Monte Carlo (MCMC) inference has become a standard tool in

the Bayesian statistics community for inference with complex models (Gelfand and

Smith, 1990; Smith and Roberts, 1993; Gelman et al., 1995; Gilks et al., 1996). In

this Section I introduce basic concepts of MCMC required to develop an algorithm

for inference with models of the form (6.2). For the purposes of this dissertation, it

is sufficient to introduce two MCMC approaches, the Metropolis-Hastings algorithm

and the Gibbs sampler.

8.3.1 Metropolis-Hastings and Gibbs sampling

The primary tool to be used in developing a MCMC segmentation algorithm will be

the Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970).
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Let X be a finite set, and π(x) for x ∈ X a probability distribution on X. The

Metropolis-Hastings construction yields a Markov chain on X with transition kernel

defined by the product of a proposal distribution T (x, y), x, y ∈ X and an acceptance

ratio:

ρ(x, y) = min

{

1,
π(y)T (y, x)

π(x)T (x, y)

}

(8.2)

The algorithm proceeds by iterating the following steps:

Algorithm 8.1 (Metropolis-Hastings).

1) Initialize x(0)

2) Iterate:

(a) For state x(t) at time t, draw y ∼ T (y | x(t)).

(b) Set

x(t+1) =







y with probability ρ(x, y)

x(t) otherwise

It is easily checked that the resulting transition kernel is reversible with respect to π:

π(x)P (x, y) = π(y)P (y, x) ∀x, y ∈ X (8.4)

where P (x, y) = T (x, y)ρ(x, y), and therefore P has unique stationary measure π for P

ergodic. Therefore Algorithm 8.1 defines a Markov chain with stationary distribution

π(x), and simulation yields (dependent) samples from π(x).

It is also useful to briefly describe a special case of the Metropolis-Hastings

(MH) algorithm known as Gibbs sampling (Geman and Geman, 1984; Smith and

Roberts, 1993). For a multidimensional state space X = X1 × X2 × . . . × Xk, and

X 3 x = (x1, x2, . . . , xk), the Gibbs sampler iteratively samples from the conditional

distributions:

Algorithm 8.2 (Gibbs Sampling).
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1) Initialize x(0) = (x
(0)
1 , x

(0)
2 , . . . , x

(0)
k )

2) Iterate:

for i = 1 : k draw x
(t+1)
i ∼ π(xi | x

(t+1)
1 , . . . , x

(t+1)
i−1 , x

(t)
i+1, . . . , x

(t)
k )

Algorithm 8.2 is a systematic-scan Gibbs sampler; a random scan may also be used.

The Gibbs sampler requires direct sampling from conditional distributions π(xi |

x{j 6=i}), which is often infeasible. Note that exact conditional sampling yields Metropolis-

Hastings moves with acceptance probability ρ(x, y) = 1. Hence we may refer to both

schemes as MH samplers when convenient.

8.3.2 Reversible-jump Markov chain Monte Carlo segmenta-

tion

The MCMC approach may be applied to inference under posterior distribution P (S, I |

R) for models (6.2), by taking π = P (S, I | R) ∝ (6.2). Because the dimension of

the parameter space varies during the Markov chain simulation (for example, the

number of segments m and the segment interactions I are among the parameters

being inferred), the Metropolis-Hastings scheme is applied using a reversible-jump

approach (Green, 1995). Briefly, this requires that jumps between models of differing

dimension also be reversible.

Markov chain Monte Carlo segmentation with independent segment mod-

els

To begin, I describe a reversible-jump MCMC algorithm for sampling from SSM joint

distributions (6.1). Although exact algorithms exist for SSMs as seen in Chapter 7,

this MCMC algorithm will be extensible to models of form (6.2). The construction of

a Markov chain on the space of segmentations will use the following set of Metropolis

proposals:

• Type change:

Given a set of segments S = (m,S, T ) = (S1, . . . , Sm, T1, . . . , Tm), propose a
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move to segments S∗ = (m,S, T ∗) with T ∗ = (T1, . . . , Tk−1, T
∗
k , Tk+1, . . . , Tm),

where T ∗
k ∼ Uniform[{H,E, L}] for k chosen uniformly at random or via sys-

tematic scan.

• Position change:

Given S, propose S∗ = (m,S∗, T ) with S∗ = (S1, . . . , Sk−1, S
∗
k, Sk+1, . . . , Sm),

where S∗
k ∼ Uniform[Sk−1 + 1, Sk+1 − 1].

• Segment split :

Given S, propose S∗ = (m∗, S∗, T ∗) with m∗ = m + 1 by splitting segment k

into two new segments (k∗, k∗ + 1) as follows:

(i) Set Sk∗+1 = Sk

(ii) Set Sk∗ ∼ Uniform[Sk−1 + 1, Sk − 1]

(iii) With probability 1
2
, set Tk∗ = Tk and Tk∗+1 = Tnew with Tnew ∼ Uniform[{H,E, L}];

with probability 1
2

do the reverse.

• Segment merge:

Similar to segment split, but a randomly chosen segment is merged into a neigh-

bor and m∗ = m− 1.

Type change and Position change moves may be performed directly by Gibbs sam-

pling, and hence require no acceptance criteria (ρ = 1). (It may still be more efficient

to Metropolize such moves (Liu, 1996).) The form of (6.1) makes exact calculation of

conditionals efficient, involving only terms that are local with respect to the affected

segment:

P (Tk = t | S \ {Tk}) ∝ P (Tk = t | Tk−1)P (Sk | Sk−1, Tk = t)P (Tk+1 | Tk = t)×

P (R[Sk−1+1:Sk] | Sk−1, Sk, Tk = t)

Segment split and Segment merge moves jump between models of different dimension,

and are accepted or rejected according to a reversible-jump Metropolis criteria. For
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example, for Segment split the acceptance probability becomes:

ρsplit(k)(S,S
∗) =

∏m+1
j=1 P (T ∗

j | T ∗
j−1)P (S∗

j | S∗
j−1, T

∗
j )P (R[S∗

j−1+1:S∗
j ] | S

∗
j−1, S

∗
j , T

∗
j )

∏m
j=1 P (Tj | Tj−1)P (Sj | Sj−1, Tj)P (R[Sj−1+1:Sj ] | Sj−1, Sj, Tj)

×

m(Sk − Sk−1 − 1)|AT |

(m+ 1)
(8.5)

Again, the factorization of (6.1) allows this ratio to be calculated locally when dimen-

sion changes move to subsets or supersets of the current segmentation, which holds

for the Segment split, Segment merge moves defined above.

ρ(S,S∗) =
∏k+1

j=k P (R[S∗
j−1+1:S∗

j ] | S
∗
j−1, S

∗
j , T

∗
j )P (S∗

j | S∗
j−1, T

∗
j )P (T ∗

j+1 | T
∗
j )

P (R[Sj−1+1:Sj ] | Sj−1, Sj, Tj)P (Sj | Sj−1, Tj)P (Tj+1 | Tj)
×

m(Sk − Sk−1 − 1)|AT |

(m+ 1)
(8.6)

Hence the full joint distribution (6.1) need not be evaluated at each step.

Combining these four steps yields the following algorithm for MCMC segmentation

of a protein sequence under the joint distribution (6.1):

Algorithm 8.3 (MCMC Segmentation - Independent segments).

1) Initialize S(0) = (m(0), S(0), T (0)).

2) Iterate:

(a) Draw k ∼ Uniform[1, m(t)]

(b) Set

S ′ =







segment split(k) with probability .5

segmentmerge(k) otherwise
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(c) Set

S(t+1) =







(m′, S ′, T ′) with probability ρsplit(k)

(m(t), S(t), T (t)) otherwise

(d) For k = 1 : m(t+1)

draw S
(t+1)
k ∼ P (Sk | m(t+1), S

(t+1)
j<k , S

(t)
j>k, T

(t+1)
j<k , T

(t)
j≥k)

(e) For k = 1 : m(t+1)

draw T
(t+1)
k ∼ P (Tk | m(t+1), S

(t+1)
j≤k , S

(t)
j>k, T

(t+1)
j<k , T

(t)
j>k)

In general, the parameters (S
(t)
j , T

(t)
j ) are dependent and so it is more efficient to draw

them jointly (Liu et al., 1994). However this would significantly complicate things

when the algorithm is extended to consider segment pairing during the sampling of

Tj’s as well.

The following result for the algorithm described can now be stated:

Lemma 8.1. The Markov chain constructed by Algorithm 8.3 has invariant distri-

bution given by (6.1).

Proof: Each individual move is invariant with respect to (6.1) by construction, and

both systematic and random scans of reversible moves are also reversible (see for

example (Gelman et al., 1995)). �

Together the 4 steps given above suffice to obtain an ergodic Markov chain. How-

ever, it is helpful to add two additional moves which facilitate mixing of the Markov

chain:

• Segment introduction:

Given S, propose S∗ with m∗ = m + 2 segments by splitting segment k into

three segments (k, k + 1, k + 2):

(i) Draw k ∼ Uniform[1, m]

(ii) Set S∗
k+2 = Sk

(iii) Draw l1 ∼ Uniform [Sk−1 + 1, Sk − 1]
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Figure 8.1: Convergence of MCMC sampling algorithm. Plot shows mean Kullback-
Leibler (KL) divergence between marginal distributions P (TR[i]

) obtained from exact
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(iv) Draw l2 ∼ Uniform [Sk−1 + 1, Sk − 1] \ {l1}

(v) Set S∗
k = min(l1, l2)

(vi) Set S∗
k+1 = max(l1, l2)

(vii) Set T ∗
k = T ∗

k+2 = Tk

(viii) Draw T ∗
k+1 ∼ Uniform[AT\{Tk}].

• Segment removal :

Similar to segment introduction, but segment k with Tk+1 = Tk−1 is removed

and merged with its immediate neighbors, yielding m∗ = m− 2.

These are dimension-altering Metropolis moves, and calculation of the reversible-

jump Metropolis acceptance follows exactly as above. The result is an increase in the

mixing rate of the underlying Markov chain (see Figure 8.1).

MCMC segmentation with joint-segment models

In order to perform inference under joint segment models (6.2), the Metropolis moves

above must be supplemented by additional moves involving interacting segments:

• Segment join:

Given an interacting segmentation (S, I), propose a new interaction Inew in-

volving two non-interacting segments Sj and Sk, so that I∗ = I ∪ {I}. The

proposal must also generate interaction parameters Hnew, and the acceptance

ratio must account for this. For the β-sheet application described in Chapter 5,

this move takes two non-interacting β-strands and proposes to join them into a

β-sheet, generating the register at random.

• Segment separate:

Reverse of segment join. For example, splits a 2-strand sheet into two indepen-

dent strands.

• Segment align:

Given a segment interaction I ∈ I, sample the associated interaction parame-

ters. For β-sheets, samples the register of paired β-strands.
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• Segment insert and Segment remove Insert a non-interacting segment Si into an

existing interaction I, or remove a segment from the interaction. Corresponds

to adding or removing a β-strand from a β-sheet, allowing buildup of β-sheets

with more than two β-strands.

The modified algorithm proceeds as follows:

Algorithm 8.4 (MCMC Segmentation).

1) Initialize (S(0), I(0)).

2) Iterate:

(a) Draw k ∼ Uniform[1, m(t)], and set

(S ′, I ′) =







segment split(k) with probability .5

segmentmerge(k) otherwise

and then set

(S(t+1), I(t+1)) =







(S ′, I ′) with probability ρsplit(k)

(S(t), I(t)) otherwise

(b) With probability .5,

i. draw j 6= k ∼ Uniform[1, m(t)]

ii. draw aj,k ∼ Uniform[1, |{alignmentsj,k}|]

iii. set Inew = ({j, k}, aj,k)

iv. set

(S(t+1), I(t+1)) =







(S(t), I(t) ∪ {Inew}) with prob. ρjoin(j,k)

(S(t), I(t)) otherwise

Otherwise,
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i. draw I = (j, k, aj,k) ∼ Uniform[1, |I(t)|]

ii. set

(S(t+1), I(t+1)) =







(S(t), I(t)\I) with prob. ρjoin(j,k)

(S(t), I(t)) otherwise

(c) For k = 1 : m(t+1), draw S
(t+1)
k ∼ P (Sk | m(t+1), S

(t+1)
j<k , S

(t)
j>k, T

(t+1)
j<k , T

(t)
j≥k)

(d) For k = 1 : m(t+1), draw T
(t+1)
k ∼ P (Tk | m(t+1), S

(t+1)
j≤k , S

(t)
j>k, T

(t+1)
j<k , T

(t)
j>k)

Here {alignmentsj,k} represents the set of possible interaction parameters between

the jth and kth segments. (E.g. the set of strand-register alignments between two

β-strands.) Of course other more complicated transitions may be imagined, but

the general flow of the algorithm remains similar these pose no problem so long as

individual transitions are constructed in a reversible manner.

Initialization of Algorithm 8.4 may be done at random or using the results of

precomputation. A reasonable approach, taken in Chapter 9 is to initialize I = ∅

and S to the SMAP obtained under the simpler independent segment model (6.1) as

described in Chapter 4.

The following result formalizes the statement that this algorithm provides a basis

for posterior inference in SSIMs:

Lemma 8.2. The Markov chain constructed by Algorithm 8.4 has invariant distri-

bution given by (6.2).

Proof: Again, this follows by construction. �

Hence Algorithm 8.4 provides a Monte Carlo approximation scheme for comput-

ing functionals of the posterior distribution P (S, I | R) under the class of SSIM

models (6.2). In particular, predictive quantities of interest such as StructMAP and

StructMode can be computed approximately via this algorithm.

I have therefore established a computational machinery for dealing with the gen-

eralized class of SSIM models, analogous to the exact algorithms of Chapter 4 for

inference with SSM models. Having provided the tools for inference and prediction
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with this generalized class of segment-interaction models, the next and final chap-

ter of this dissertation will evaluate the SSM and SSIM models developed in earlier

chapters by applying them to prediction of protein structure data.
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Chapter 9

Evaluation

This chapter presents an evaluation of the methodology developed in this dissertation,

by applying it to prediction of protein structure data obtained from databases of

experimentally determined protein structures. I describe the evaluation of both the

SSM models and algorithms developed in Chapters 4, 6, and 7, and the SSIM models

and algorithms developed in Chapters 5, 6, and 8.

I begin by discussing well-established standards for evaluation of secondary struc-

ture prediction, and present the results of experiments evaluating the SSM methodol-

ogy of Chapter 4 according to these criteria. I show that the Bayesian segmentation

algorithm using the SSM models performs at the level of the best-published results

in the field.

I then present examples and experiments demonstrating the SSIM methodology

developed in Chapter 5. I provide evidence that the StructMAP and Ci,j matrix

predictors defined in Section 5.3 can yield informative estimates of β-sheet topology

and β-strand contact maps respectively, by application to example protein sequences.

I briefly discuss the difficulty of systematically evaluating contact map predictions

across large numbers of proteins.

113
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9.1 Issues in evaluating predictions of protein struc-

ture

Methodology for accurate evaluation of secondary structure predictions has progressed

substantially since early work showing that many traditional methods had far over-

estimated their predictive accuracies (Nishikawa, 1983). A number of standards have

emerged for measuring predictive accuracy in a relatively unbiased fashion. I describe

the relevant issues here.

9.1.1 Data sets

Early experiments were often performed on small datasets using homologous struc-

tures, due to the lack of available data. Often prediction error rates were computed

on training data, leading to upwardly biased estimates of accuracy. It is now standard

in the field to report leave-one-out or 10-fold cross-validation results on a carefully

screened database of experimental structures (Rost and Sander, 1993b; Frishman and

Argos, 1996; Salamov and Solovyev, 1997; Schmidler et al., 2000) and algorithms not

subjected to such evaluation are no longer publishable. The database used for evalua-

tion is typically restricted to high-resolution (< 3Å) X-ray crystallographic structures,

without identifiable sequence homology (< 25% sequence identity). Construction of

appropriate datasets is greatly facilitated by the availability of graph algorithms which

find maximal such datasets (Heringa et al., 1992; Hobohm and Sander, 1994) over

the entire Brookhaven Protein Data Bank (PDB) (Bernstein et al., 1977). Two such

datasets are used for the results reported in this dissertation:

• Dataset #1 - The OBSTRUCT program (Heringa et al., 1992) was used in

November 1997 to create a maximal non-redundant (< 25% sequence identity)

set of high-resolution (< 2.5Å) globular protein structures from the PDB. From

this set, structures classified as membrane proteins by SCOP (Murzin et al.,

1995) were removed, as were sequences less than 50 amino acids in length,

leaving 451 proteins.

• Dataset #2 - The PDB-SELECT algorithm (Hobohm and Sander, 1994) was
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used in May 1998 to obtain a maximal non-redundant (< 25%) set of high-

resolution (< 3Å) structures from the PDB. These 685 proteins were reduced to

660 by removal of membrane proteins and and those for which DSSP produced

no output.

The PDB continues to grow at a rapid rate, making larger datasets continu-

ally available. This growing data resource allows more accurate estimation of model

parameters, as well as fitting of more complicated models. The intent of the exper-

iments shown here is to demonstrate the basic approach of Bayesian segmentation

and segment-interaction models for protein structure prediction, and not necessarily

to obtain optimal performance. Approaches to maximizing predictive performance

given available data by applying automated model selection procedures are suggested

in Section 10.1.

9.1.2 Gold standard definition of secondary structure

Given the 3D atomic coordinates of a protein structure as determined by X-ray crys-

tallography, a gold-standard definition of secondary structure is needed. Several al-

gorithms exist for automatic secondary structure assignment from coordinates, using

φ/ψ angles, putative hydrogen bonding patterns, or combinations of the two.

Significant variation exists among the assignments resulting from different algo-

rithms (Colloc’h et al., 1993); common disagreements include exact boundaries for

α-helices and β-strands, and assignments for very short secondary structure seg-

ments. Here I use the DSSP algorithm (Kabsch and Sander, 1983) for gold standard

assignments, by far the most common choice in the secondary structure prediction

literature. DSSP assignments are used for automated annotation of PDB structures.

These assignments are adjusted as suggested by the literature (Frishman and Argos,

1996) to restrict the minimum β-strand length to 3, and the minimum α-helix length

to 5.

For the segment-based models developed here, DSSP assignments raise a difficulty

in the treatment of helix end positions. DSSP helix assignments exclude first and

last hydrogen bonded residues, so the Ncap and Ccap positions are typically omitted.
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Effects of this can be observed in Figure 2.5. As described in Chapter 2, these N- and

C- terminal positions provide important signals for identifying α-helices in protein

sequences. To partially account for this, I allow the segment transition term in (4.1)

to depend on the last residue of the previous segment.

9.1.3 Accuracy measures

Given a non-redundant, high-resolution database and a gold standard secondary

structure assignment, prediction accuracies may be estimated by cross-validation ex-

periments. It is common to report several quantities from these experiments:

• Overall 3-state accuracy (Q3):

The most commonly reported measure of secondary structure prediction accu-

racy is the percentage of individual amino acids in the database assigned to the

correct state. Accuracies quoted in Chapter 3 for existing algorithms are Q3

values. An undesirable property ofQ3 is the dependence on underlying database

composition; however it remains attractive as a single numerical summary of

overall accuracy.

• Sensitivity (Qobs
α , Qobs

β , Qobs
L ):

The sensitivity of predicting α-helical positions (Qobs
α ) is estimated by the the

percentage of helical residues predicted to be helical. Sensitivity is calculated

as TP
TP+FN

where TP = true positives and FN = false negatives.

• Positive predictive value (Qpred
α , Qpred

β , Qpred
L ):

The positive predictive value (PPV) for α-helices (Qpred
α ) is estimated by the

percentage of predicted helical residues which are truly helical. PPV is calcu-

lated as TP
TP+FP

, where FP = false positives.

• Matthew’s correlation (Cα, Cβ, CL):

The correlation coefficient introduced by (Matthews, 1975) is insensitive to the
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underlying database composition, and is defined by

Ci =
(TP )(TN) − (FN)(FP )

√

(TP + FN)(TP + FP )(TN + FN)(TN + FP )
for i ∈ {α, β, L}

(9.1)

where TN = true negatives.

Several other accuracy measures have been proposed for secondary structure pre-

diction, including attempts to measure prediction of secondary structure segments

rather than individual residues (Taylor, 1984; Presnell et al., 1992; Rost et al., 1994).

However, such a measure is difficult to define satisfactorily, and none have achieved

common usage in the literature. Here I provide results only for those quantities given

above, which serve as a standard basis for comparison to other secondary structure

prediction algorithms.

9.2 Evaluation of stochastic segment models

The previous section discussed widely accepted experimental methodology for evalu-

ation of protein secondary structure prediction algorithms. In this section I describe

the evaluation of the secondary structure prediction approaches developed in this

dissertation according to these criteria.

Table 9.1 shows the results of applying the SSM models of Chapter 4 toDataset#1,

using the algorithms of Chapter 7. Under the semi-Markov segmentation prior, the

marginal mode predictor is seen to significantly outperform the MAP segmentation

by the Q3 measure, as expected from the optimality arguments given in Chapter 6.

The marginal mode predictor achieves an accuracy of 68.8%, competitive with the

best published results as described in Section 3.1.6.

By way of example, Figure 9.1 shows a typical sequence prediction, where we see

that segment endpoints are the regions of highest uncertainty, as expected. These

positions also reflect the highest variability among different structure assignment

algorithms (Colloc’h et al., 1993).
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Total Helix Strand Loop Helix Strand Loop

Q3 Qobs
α (Qpred

α ) Qobs
β (Qpred

β ) Qobs
L (Qpred

L ) Cα Cβ CL

Mode 68.8 64.0 (69.7) 46.0 (61.0) 81.0 (70.5) .54 .43 .47
MAP 64.2 67.3 (61.8) 23.3 (61.3) 79.1 (65.9) .49 .30 .38

Table 9.1: Dataset#1 cross-validation results for Bayesian segmentation algorithm
using SSM models. Results are given for MAP segmentation and marginal mode
predictors using a semi-Markov prior. Data from (Schmidler et al., 2000)
.

Figure 9.1: Prediction of secondary structure for Cytochrome C. Bars indicate pre-
dicted probability of α-helical structure. Positions in red (white) are correctly pre-
dicted to be in a helical (coil) conformation. Positions in green are over-predicted
(true structure coil, predicted structure helix). Positions in yellow are under-predicted
(true structure helix, predicted structure coil). Over- and under- predictions occur
primarily near segment endpoints, and are predicted at lower probability in general.
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Figure 9.2: Plot of predictive accuracy versus probability assigned to prediction
(Dataset#1). The strong correlation indicates accurate estimation of prediction un-
certainty at each sequence position.

In addition to accuracy, the thesis of this dissertation requires that the methodol-

ogy provide accurate estimates of prediction uncertainty. The success of the Bayesian

framework developed here according to this criteria is clearly shown in Figure 9.2,

which plots the empirical accuracy for residues predicted at a series of probability

thresholds. As can be seen from the strong correlation, a clear advantage of the ex-

plicit probabilistic approach developed in this dissertation is accuracy of estimated

prediction confidence at each position. At a threshold prediction probability of 0.6,

predictions are made for 58% of positions and achieve an accuracy of 80.6%. At a

threshold probability of 0.8, the algorithm achieves an accuracy of 91.4%, but predicts

only 21% of positions with this level of confidence. According to (Rost and Schneider,

1998), these threshold percentages indicate that the Bayesian segmentation approach

using independent segments performs 6 times as well as other single sequence methods

which provide reliability estimates, and methods based on multiple sequence align-

ments such as PhD (Rost and Sander, 1994) perform only 7
6

times better than the

Bayesian approach applied to single sequences.

Table 9.2 shows the results of experiments using Dataset#2. Here a comparison

between two alternative segmentation priors is made: the semi-Markov prior (4.2)
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Alg & Total Helix Strand Loop Helix Strand Loop

Prior Q3 Qobs
α (Qpred

α ) Qobs
β (Qpred

β ) Qobs
L (Qpred

L ) Cα Cβ CL

ModeSM 67.9 64.8 (68.0) 44.8 (58.7) 79.1 (70.4) .53 .41 .46
MAPSM 63.9 70.5 (60.1) 23.1 (60.6) 76.6 (66.7) .49 .29 .38
ModeU 50.3 58.1 (53.7) 71.9 (33.2) 37.0 (77.4) .36 .28 .31
MAPU 50.2 62.2 (48.1) 59.0 (34.8) 39.5 (72.6) .32 .26 .28

Table 9.2: Dataset#2 cross-validation results for Bayesian segmentation algorithm
using SSM models. Results are given for MAP segmentation and marginal mode
predictors for two priors: semi-Markov (SM) and uniform (U) as defined in Chapter 6.

used previously, and a uniform prior (6.22) yielding a maximum likelihood segmen-

tation. The uniform segmentation prior is seen to yield significantly lower predictive

performance, demonstrating the important role played by the prior in the Bayesian

segmentation algorithm. This may be explained in part by the 1-to-1 growth of the

number of “parameters to be estimated” (i.e. the number of secondary structure

assignments) with the number of “data points” (i.e. sequence length). Thus prior

specification is an important part of the modelig process, and further experimenta-

tion with alternative priors may yield further improvements. Figure 9.3 shows that

prediction confidence once again correlates strongly with prediction accuracy.

9.3 Evaluation of stochastic segment interaction

models

The previous sections were concerned with evaluation of SSM models as predictors

of protein secondary structure. In this section I consider the use of SSIM models

for prediction of both secondary structure and β-sheet contact maps, as described in

Chapters 5 and 6.
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Figure 9.3: Plot of predictive accuracy versus probability assigned to prediction
(Dataset#2), for semi-Markov and Uniform priors. The strong correlation repre-
sents accurate estimation of prediction uncertainty at each position in a sequence.

9.3.1 Impact of segment interaction models on secondary

structure prediction

I begin by evaluating the impact of including non-local segment interactions into the

Bayesian framework on the resulting secondary structure prediction accuracy. This

can be done by repeating the cross-validation experiments described in the previous

section using, the MAP and Mode predictors of segmentation defined in Chapters 5

and 6 as predictors of protein secondary structure. This will measure the effect of

adding non-local β-sheet models to the accuracy of predicting secondary structure.

As described in Chapters 5 and 6, the chosen prior on segment interactions may

have a dramatic impact on the marginal distribution over segmentations. In par-

ticular, uniform priors such as (5.11) highly bias the marginal distribution towards

β-strand, and the resulting predictors are not useful for secondary structure predic-

tion. Hence I consider only priors which preserve the marginal distribution (5.15).

The experiments described in this section utilize a segment-interaction prior of the
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Total Helix Strand Loop Helix Strand Loop

Q3 Qobs
α (Qpred

α ) Qobs
β (Qpred

β ) Qobs
L (Qpred

L ) Cα Cβ CL

SSM 68.0 65.1 (68.1.) 44.9 (58.7) 79.2 (70.6) .53 .41 .46
SSIM 65.1 48.5 (76.3) 59.6 (46.7) 77.0 (69.9) .49 .39 .44
SSMMC 67.9 64.7 (68.1) 44.7 (58.4) 79.1 (70.4) .53 .41 .46

Table 9.3: Comparison of secondary structure prediction results for independent seg-
ment models (SSM) vs joint-segment models for β-sheets (SSIM). Also shown are
results under the SSM model using MCMC inference (SSMMC) in place of exact
algorithms. Data consists of 100 randomly chosen proteins from Dataset#2.

form (5.23) as described in Chapter 5.

Table 9.3 shows the results of secondary structure prediction under the SSIM

model defined by (5.9) and (5.23) on 100 randomly-sampled proteins fromDataset#2,

compared to the predictions for the same proteins obtained from the SSM models de-

fined by (4.3), (4.4), and (4.5) used in the previous sections. The SSIM model predic-

tions were made using the MCMC algorithm developed in Chapter 8; each simulation

was run for 25,000 iterations and the first 1,000 “burn-in” samples discarded. It can

be seen that the result is a small decrease in performance, resulting from a higher

sensitivity (but lower specificity) in predicting β-strand positions. A small amount

of error is also introduced by using the Monte Carlo approximation, as demonstrated

by the results shown for prediction under the SSM model via the MCMC algorithm.

9.3.2 Evaluation of tertiary contact prediction

SSIM models are of interest not only for the possibility of improving marginal seg-

mentation accuracy (e.g. secondary structure prediction), but also for the potential

to predict interactions (e.g. β-sheet contact maps) as described in Chapter 6. In fact,

for application to protein structure prediction, the latter is of significantly greater

interest. Predicting non-local contacts in protein sequences would constitute a major

step beyond traditional secondary structure prediction. In this Section I report on

experiments aimed at evaluating the ability of the non-local β-sheet models developed

in Chapter 5 to predict non-local β-sheet contacts and topology in real proteins.
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Examples

The SSIM model for β-sheet interactions (5.9,5.23) used in the previous section may

easily be applied to predict β-sheet contacts using the approach developed in Sec-

tion 5.3. In this section I demonstrate this application to a range of example proteins.

Figure 9.4 shows the true and predicted β-strand contact maps for two example

protein sequences, bovine pancreatic trypsin inhibitor (BPTI), and flavodoxin. BPTI

is a small protein with a two-strand anti-parallel β-sheet (a β-hairpin); flavodoxin is

larger with an interior 5-strand parallel β-sheet. Contact maps are calculated using

the marginal mode estimator (5.31) to compute probability of contact for all pairs of

sequence positions. Figure 9.5 shows the results obtained under a model restricted

to consider strand pairings of only the correct orientation (parallel for BPTI, anti-

parallel for flavodoxin). It can be seen that the latter exhibits less uncertainty. In

both cases the strand regions of the sequence are identified with high probability,

and true contacts assigned relatively high probability. However various non-native

contacts are also assigned comparable probabilities, making predictions largely non-

specific. Proper alignment of register between paired strands is a noticeable source

of noise. Flavodoxin shows significantly more uncertainty in the predicted contacts,

possibly because it contains more β-strands for possible pairings, and these strands

are buried in a hydrophobic core, potentially making specific side chain interactions

less dominant.

Figure 9.6 shows the results of applying the model to predict β-sheet contacts on

the sample of 100 proteins from Dataset#2 analyzed in Table 9.3. The ROC curve

plots sensitivity vs. (1-specificity) for a range of thresholds for the probability of a

predicted contact. It can be seen that it is possible to obtain approximately %80

sensitivity and %75 specificity simultaneously, or %90 specificity with a sensitivity of

about %63. %90 sensitivity occurs at only about %56 specificity. In order to explore

the implications of these results, I consider in the next section a set of “case studies”.
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Figure 9.4: β-sheet contact map prediction for BPTI (5pti) and flavodoxin (5nul).
Shown are (a,b) X-ray crystallographic structure obtained from Protein Data Bank,
(c,d) true contact map derived from crystal structure, and (e,f) probability of contacts
predicted from sequence. Contact map axes represent position in sequence. Shading
of pixels (x,y) indicates predicted probability of residues x,y forming contacts within
a β-sheet.
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Figure 9.5: β-sheet contact map prediction for BPTI (5pti) and flavodoxin (5nul),
under model restricted to correct strand orientation. Shown are (a,b) X-ray crystal-
lographic structure obtained from Protein Data Bank, (c,d) true contact map derived
from crystal structure, and (e,f) probability of contacts predicted from sequence.
Contact map axes represent position in sequence. Shading of pixels (x,y) indicates
predicted probability of residues x,y forming contacts within a β-sheet.
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Figure 9.6: ROC curve for β-sheet contact predictions as a function of (log) prob-
ability of predicted contact. ROC curve plots Sensitivity vs. (1-Specificity). Data
consists of the 100 randomly sampled proteins from Dataset#2 analyzed in Table 9.3.

Case studies

In this section I explore specific examples the application of segment-interaction mod-

els to prediction of β-sheet contacts. The proteins studied here are listed in Table 9.4,

and were chosen with the goal of obtaining representatives from each of the major

β-containing structural classes defined by SCOP (Murzin et al., 1995).

All β proteins Figures 9.7 and show predictions for three proteins in the All β class:

an immunoglobulin (1igt A), a heat-shock protein (1shs A), and a protease inhibitor

(1ecz A). In each case, many native contacts are predicted with significant probability.

However in each case many non-native contacts receive comparable probability, and

the overall result is low specificity in the predictions. Significant uncertainty occurs in

both strand pairing and pair orientation, while individual strands tend to be located

fairly well.
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Figure 9.7: β-sheet contact map prediction for two all-β proteins. Shown are (a,c,e)
an immunoglobulin (1igt A) and (b,d,f) a heat-shock protein (1shs A). Shown are
(a,b) X-ray crystallographic structure obtained from Protein Data Bank, (c,d) true
contact map derived from crystal structure, and (e,f) probability of contacts predicted
from sequence. Contact map axes represent position in sequence. Shading of pixels
(x,y) indicates predicted probability of residues x,y forming contacts within a β-sheet.
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Figure 9.8: β-sheet contact map prediction for one all-β and one small protein. Shown
are (a,c,e) a protease inhibitor (1ecz A) and (b,d,f) heparin-binding growth factor
(1mkn A). Shown are (a,b) X-ray crystallographic structure obtained from Protein
Data Bank, (c,d) true contact map derived from crystal structure, and (e,f) prob-
ability of contacts predicted from sequence. Contact map axes represent position
in sequence. Shading of pixels (x,y) indicates predicted probability of residues x,y
forming contacts within a β-sheet.
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ID Class Protein
5pti Small BPTI
7pti Small BPTI mutant
1igt A All β Immunoglobulin
1shs A All β Heat shock protein
1ecz A All β Protease inhibitor
5nul α/β Flavodoxin
1tph 1 α/β TIM barrel
1rbx α + β RNase A
1b10 A α + β Prion
1mkn A Small Heparin binding growth factor
2bb8 Small Integrase DNA recombination domain
1aho Small Scorpion neurotoxin

Table 9.4: Case study proteins: PDB identifier, SCOP classification, common name,
comments.

Small proteins Figures 9.8, 9.9, and 9.10 show predictions for several proteins from

the Small protein class: BPTI (5pti) and a BPTI mutant (7pti), a heparin-binding

growth factor (1mkn A), a DNA recombination domain from integrase (2bb8), and

a scorpion neurotoxin (1aho). In comparison with the larger proteins, these show

significantly fewer false predicted contacts. This may be attributed in part to the

fewer number of β-strands per sequence, making strand pairing less variable. Alter-

natively, small proteins may exhibit stronger side-chain correlations as a mechanism

for additional stabilization of the tertiary structure.

While the native contacts in these small proteins are typically among the high

probability predicted contact regions, at least one alternative pairing for each strand

commonly exists. An interesting case is BPTI, where by comparing the mutant struc-

ture (7pti) with the native (5pti) we see that the mutant sequence has significantly

fewer false predictions. This may be explained by the mutant sequence which substi-

tutes Cys (51) to Ala (51) and Cys (30) to Ala (30). Hence we see that the predictions

for BPTI are misled by identifying the disulfide bond (51-30) as a potential strand

pairing. This illustrates the limitations of the current model - because β-strand are

permitted to interact but not α-helices, the algorithm predicts a β-strand pairing at
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(51-30) in order to account for the Cys-Cys bond. When these Cys are removed in

the mutant structure, no significant pairings besides the native one are predicted.

α/β proteins Figure 9.11 shows predictions for two proteins from the α/β class:

flavodoxin (5nul) and a TIM barrel (1tph 1). Both contain large numbers of β-strands,

and while these strands are fairly well identified, little specificity in strand pairing is

observed in the predicted maps.

α+β proteins Figure 9.12 shows predictions for two proteins from the α+β class:

ribonuclease A (1rbx) and a prion protein (1b10 A). The ribonuclease prediction

shows similar properties to those above - native contacts predicted non-specifically,

with significant uncertainty in both strand pairing and pair orientation. The prion

structure predicts β-contacts in a non-native region of the sequence, but fails to

identify the native contacts. This is interesting in light of the current hypothesis that

prion proteins may find a thermodynamically favorable (lower free energy) state than

the native state by refold to form significant non-native β-structure.

Remarks

As noted above, low specificity in predicted β-strand contacts is observed in many of

the case study proteins. One potential remedy is the introduction of more detailed

β-sheet models as described in Section 5.2.4.

Comparison of Figures 9.4 and 9.5 suggests an additional approach. In particular,

we may perform the predictions under two separate models each protein analyzed:

one in which all β-strand pairings are restricted to parallel orientations, and another

with restriction to anti-parallel orientations. The resulting predictions may provide

a clearer picture of which strand pairings are spurious, and which are indeed native

contacts, as native pairings will not be intermixed with orientation-reversals and

other obscuring interactions. While this approach will rule out simultaneous parallel

and anti-parallel pairings within a single β-sheet, such pairings are relatively rare

in known proteins, and therefore of limited concern. For a given set of interacting

segments, or an entire protein, it is also possible to compute formally the marginal
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Figure 9.9: β-sheet contact map prediction for two small BPTI proteins. Shown
are (a,c,e) BPTI (5pti) and (b,d,f) a BPTI mutant (7pti). Shown are (a,b) X-ray
crystallographic structure obtained from Protein Data Bank, (c,d) true contact map
derived from crystal structure, and (e,f) probability of contacts predicted from se-
quence. Contact map axes represent position in sequence. Shading of pixels (x,y)
indicates predicted probability of residues x,y forming contacts within a β-sheet.
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Figure 9.10: β-sheet contact map prediction for two small proteins. Shown are (a,c,e)
an integrase DNA recombination domain (2bb8) and (b,d,f) a scorpion neurotoxin
(1aho). Shown are (a,b) X-ray crystallographic structure obtained from Protein Data
Bank, (c,d) true contact map derived from crystal structure, and (e,f) probability of
contacts predicted from sequence. Contact map axes represent position in sequence.
Shading of pixels (x,y) indicates predicted probability of residues x,y forming contacts
within a β-sheet.
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Figure 9.11: β-sheet contact map prediction for two α/β proteins. Shown are (a,c,e)
flavodoxin (5nul) and (b,d,f) a TIM barrel (1tph 1). Shown are (a,b) X-ray crystallo-
graphic structure obtained from Protein Data Bank, (c,d) true contact map derived
from crystal structure, and (e,f) probability of contacts predicted from sequence.
Contact map axes represent position in sequence. Shading of pixels (x,y) indicates
predicted probability of residues x,y forming contacts within a β-sheet.
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Figure 9.12: β-sheet contact map prediction for two α+β proteins. Shown are (a,c,e)
a ribonuclease A (1rbx), and (b,d,f) a prion protein (1b10 A). Shown are (a,b) X-ray
crystallographic and NMR structures obtained from Protein Data Bank, (c,d) true
contact maps derived from experimental structures, and (e,f) probability of contacts
predicted from sequence. Contact map axes represent position in sequence. Shading
of pixels (x,y) indicates predicted probability of residues x,y forming contacts within
a β-sheet.
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probability under the full model that a particular pairing or set of pairings is parallel

vs. anti-parallel. Exploring these options for improving strand-pairing specificity will

be the subject of future research.
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Chapter 10

Summary and Future Work

In this dissertation proposal, I have developed a novel framework for the prediction

of protein structure from amino acid sequence, based on a new class of generalized

stochastic models for sequence/structure relationships. I have introduced a Bayesian

framework for protein structure prediction, involving a set of joint probability models

for sequence-structure mappings based on structural segments. I have described a set

of probabilistic models for structural segments characterized by conditional indepen-

dence of inter-segment positions, developed efficient computational tools for inference

and prediction with this class of models, and demonstrated that this approach yields

predictive accuracies comparable to the best published methods via extensive cross-

validation experiments on experimentally determined structures. In addition, I have

shown that such models provide accurate estimates of prediction uncertainty, allow-

ing users to identify regions of each individual protein which may be predicted with

especially high accuracy.

I have then gone on to generalize this Bayesian framework to models of non-local

interactions in protein sequences, allowing incorporation of factors which contribute

significantly to tertiary fold formation. I have shown that computation in this class

of models may be performed via Markov chain Monte Carlo algorithms, and have

demonstrated this approach by developing a particular set of models for correlated

mutations in β-strands which pair to form β-sheets. I have shown via case studies

and large cross-validation experiments that this approach can provide predictions of

137
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β-strand contact maps in proteins, providing important information about protein

tertiary structure from sequence alone.

10.1 Future work

In this section I briefly describe future directions for the contributions developed in

this dissertation. These consist primarily of directions for improvement of the protein

structure prediction algorithms developed in this dissertation. More broadly, other

statistical applications of the SSM and especially the novel SSIM models developed

in this dissertation remain to be pursued. Of particular interest are problems in

time-series analysis or other sequential data with long-range dependencies.

10.1.1 Tertiary folding using predicted secondary structure

and tertiary β-sheet contacts

The algorithms developed in this dissertation provide probabilistic segmentation of

a protein sequence into secondary structure segments. The ability to generate sam-

ple segmentations according to their posterior probability may prove to be useful in

the continued development of algorithms to predict low-resolution tertiary structures

from secondary structure predictions. In particular, by allowing initialization of such

algorithms from multiple high-probability regions of conformational space which may

be separated by large energy barriers, a much larger class of structural space may be

explored.

Moreover, the inclusion of non-local contacts into such algorithms can significantly

improve the ability to search relevant regions of conformational space, as described

in Section 3.2. Use of the β-sheet contact map predictions developed in Chapter 5

for this purpose may help provide this important information. In particular, if high

probability contact predictions can be developed further to achieve high specificity,

only very few such high probability contacts may be needed to significantly improve

tertiary folding results. Again, the ability to generate predicted β-sheet topologies

according to their posterior probability under the full joint model may further aid in
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the exploration of conformational space.

In combination with the MCMC methodology discussed in Chapter 8, I hope to

use these structural segment predictions to formulate a Bayesian algorithm for full

tertiary structure prediction using stochastic dynamics simulations in the space of

torsional angles between secondary structure segments. In combination with more

explicit physical potentials, these ideas may allow the computation of high-level ther-

modynamic properties of proteins which are unattainable using standard Monte Carlo

or molecular dynamics simulations.

10.1.2 Membrane proteins

An area of particular interest for targeting future work is in application to predicting

and simulating the structure of membrane proteins. While the methods developed

here have only been applied to globular proteins, membrane proteins make up an

important class of targets for protein structure prediction and simulation. Membrane

proteins by their nature are difficult to analyze by experimental methods, and are un-

likely to yield to large-scale structure determination efforts. In addition, membrane

proteins make up almost 50% of pharmaceutically relevant proteins, playing major

roles in cellular signaling and transport. It is straightforward to apply the methodol-

ogy developed in Chapter 4 to the prediction of transmembrane helices in membrane

proteins. I hope to explore the use of other structure prediction and Monte Carlo

simulation ideas developed in this thesis for application to prediction and simulation

of membrane proteins.

10.1.3 Model selection

In Chapter 4 I introduced the general framework of this dissertation and developed

a class of segment-based probability models. Example models for α-helices and β-

strands were presented in Sections 4.3.1 and 4.3.2. The structure of these models

arose from attempts to model known residue dependencies of the type discussed in

Chapter 2. However it is also of interest to consider the problem from a purely

statistical perspective. In particular, automated model selection techniques may be
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applied to determine the form of these segment models which best fits the existing

data. Optimization of these models to provide improved predictive performance is an

interesting avenue for future research.

Along these lines, several possible improvements to the simplified β-sheet models

used in evaluation experiments were suggested in Chapter 5. These may provide

directions for improved specificity of the contact predictions obtained in Chapter 9.

10.2 Conclusions

In conclusion, I have developed a Bayesian framework for protein structure predic-

tion and a suite of statistical models and computational tools for implementing this

framework. I have evaluated these approaches on large datasets, showing secondary

structure prediction accuracies at the level of best-published methods in the field. I

have also demonstrated the use of SSIM models for prediction of β-sheet contacts

in proteins. These results, while showing low specificity, show promise in develop-

ing methods which synthesize multiple sources of information (local and non-local)

to predict protein structure from sequence. Finally I have developed a novel class

of stochastic models for sequences of random variables with long-range dependency

structure, along with a set of computational algorithms for inference with these mod-

els, which will be of interest in a broader class of statistical problems beyond protein

structure prediction.
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