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Fast evaluation of polarizable forces
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Polarizability is considered to be the single most significant development in the next generation of
force fields for biomolecular simulations. However, the self-consistent computation of induced
atomic dipoles in a polarizable force field is expensive due to the cost of solving a large dense linear
system at each step of a simulation. This article introduces methods that reduce the cost of
computing the electrostatic energy and force of a polarizable model from about 7.5 times the cost
of computing those of a nonpolarizable model to less than twice the cost. This is probably sufficient
for the routine use of polarizable forces in biomolecular simulations. The reduction in computing
time is achieved by an efficient implementation of the particle-mesh Ewald method, an accurate and
robust predictor based on least-squares fitting, and non-stationary iterative methods whose fast
convergence is accelerated by a simple preconditioner. Furthermore, with these methods, the
self-consistent approach with a larger timestep is shown to be faster than the extended Lagrangian
approach. The use of dipole moments from previous timesteps to calculate an accurate initial guess
for iterative methods leads to an energy drift, which can be made acceptably small. The use of a zero
initial guess does not lead to perceptible energy drift if a reasonably strict convergence criterion for
the iteration is imposed. © 2005 American Institute of Physics. �DOI: 10.1063/1.2056544�
I. SUMMARY

Polarization refers to the electron density redistribution
due to the ambient electric field. Current generation nonpo-
larizable force fields for biomolecular simulations have seri-
ous limitations because polarization is treated only in an av-
erage sense by the parameterizations.1,2 The treatment can
neither reflect the dependency of the electron density on
atomic positions, nor can it respond dynamically to different
environments, which vary from almost nonconductive inside
protein cavities to very conductive on protein-water inter-
faces. The explicit inclusion of polarization can significantly
improve a force field’s: �i� Accuracy, when being compared
to quantum computation or experimental results,3 and �ii�
transferability, when applying the same force field to a wide
range of temperatures and pressures.4 Much research has
shown promising results for polarizable force fields.5–9 Po-
larizable models have the prospect to enable accurate com-
putation of the binding energies of proteins and ligands in
drug design.1 What is more, polarizability is indispensable
for studies of interfaces10 and solvation processes.11 How-
ever, proposed models and algorithms for polarizability incur
a high computational cost and/or employ dubious approxi-
mations. As a result, few simulations actually incorporate the
effects of induced polarization. Presented in this article is a
self-consistent algorithm for modeling induced dipoles that is
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only twice the cost of simulating a fixed-charge model and is
practically free of numerical artifacts.

Several reviews1,12–14 survey polarizable force field
modeling principles and their computational costs.

A. Polarization models

Two principal types of polarization models are point di-
pole models and fluctuating charge models.12 A variation of
the first of these is the shell �Drude� model, and similar to the
second are charge-flow polarizabilities.15

A point dipole model represents the charge distribution
of an atom by a charge and an induced dipole. In such a
model, the pairwise potential energy between atoms at r�i and

r� j, with charges qi and qj and dipole moments d� i and d� j,
respectively, is

�qi + d� i · �i��qj + d� j · � j�
1

�r�i − r� j�
. �1�

In general, there is also a constant pre-factor, which is omit-
ted here. The total electrostatic energy for an N-atom system
can be represented in matrix form as

Eel�r,d� =
1

2
qTG0�r�q + dTG1�r�q +

1

2
dTG2�r�d

+
1

2
dTD�

−1d , �2�

where q is the collection of charges, d is the collection of
dipole moments, G0, G1, and G2 are charge-charge, charge-

dipole, and dipole-dipole interaction matrices defined
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through Eq. �1�, D� is a block diagonal matrix incorporating
the polarizability of each atom, and T denotes the transpose.
The last term is the energy needed to create dipoles. Induced
dipole moments assume values that minimize the energy �2�:

�

�d
Eel�r,d� = 0 ⇒ �D�

−1 + G2�d = − G1q . �3�

Once the dipole is known, the energy and force can be com-
puted. It is necessary that D�

−1+G2 be positive definite for the
energy to have a minimum. However, D�

−1+G2 can become
indefinite when two dipoles are too close to each other—a
shortcoming of the model known as a “polarization
catastrophe.”16

In shell models,4,17 each polarizable atom is represented
by a pair of point charges of opposite sign bound by a stiff
spring. Shell models can be easily implemented in a com-
puter program since the charge-charge and bonding interac-
tions are already present in force fields. However, the num-
ber of charges is doubled and the computational cost is
doubled at least.

Polarization can also be modeled by allowing the value
of partial charges to change in response to the local electric
field. Computationally speaking, the fluctuating charge
model is probably the most efficient model: It does not have
dipole interactions, and its number of charges remains the
same as the number of atoms. However, the fluctuating
charge model has limitations. For example, according to this
model, water, a planar three-atom molecule, should not re-
spond to the electric field perpendicular to the plane, al-
though experiments show nearly isotropic polarizability for
water.12,18 To overcome this shortcoming, fluctuating charge
models are combined with point dipole models.19

In this study, we choose to implement the point dipole
model, since it has less modeling limitations and has been
implemented in AMBER.20

B. Computational methods

Forces are computed in various contexts—deterministic
dynamics, stochastic dynamics, Monte Carlo simulations,
and energy minimization—and the context has important im-
plications for polarizable force computation. Considered here
is deterministic molecular dynamics �MD�.

Two methods are widely used for polarizable force field
computation:12,18 The self-consistent method and the ex-
tended Lagrangian method. At each timestep, the self-
consistent method overtly minimizes the electrostatic energy
with respect to the polarizable degrees of freedom, which are
induced dipoles in a point dipole model, auxiliary charge
positions in a shell model, and charge values in a fluctuating
charge model. This is generally very expensive. The ex-
tended Lagrangian method21,22 treats the polarizable degrees
of freedom as dynamic variables, which are assigned kinetic
energies with fictitious masses. Their masses serve for com-
putational convenience and do not have physical meaning.
Starting from a configuration with the electrostatic potential
minimized, the method simply does dynamics with a small
timestep. Although it does not explicitly minimize the elec-

trostatic energy at each timestep, it can keep the electrostatic
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energy close to its minimal values for a certain time. The
length of the time depends on the coupling of the fictitious
subsystem with the rest of the system: Weaker coupling leads
to longer time.

The extended Lagrangian method is faster than the self-
consistent method, but it has drawbacks:

�1� The fictitious mass must be small to reduce coupling
between polarizable degrees of freedom and atomic co-
ordinates so that a low temperature of the polarizable
degrees of freedom is maintained.23 This, in turn, re-
quires a smaller integration timestep. For example,
timesteps of 0.2 and 1 fs have to be used in Refs. 24
and 25, respectively.

�2� It introduces artifacts. First, the physical system’s linear
momentum is no longer conserved.26 Second, since the
polarizable degrees of freedom are, in fact, at a much
lower temperature than that of the rest of the system,
the system is in a metastable state.27 The heat flow from
other degrees of freedom to the polarizable degree of
freedom is undesirable, yet unavoidable. In a recent
study,28 even though the timestep is limited to
0.75–1 fs, the system has to have a full energy mini-
mization every 300 ps.

In this article, we choose the self-consistent approach
because it is suitable for kinetic as well as thermodynamic
calculations and because it is a standard for induced dipole
calculation against which other more compromised ap-
proaches can be compared.

The self-consistent computation of point dipole models
has been very expensive. In fact, the slow adoption of polar-
izable force fields is partly due to its much higher computa-
tion cost.13 Compared with the charge-only models, Refs. 29
and 30 report, respectively, a nine- and eight-fold increase in
the computational cost with the standard Ewald sum imple-
mentation, while Ref. 25 reports a more than six-fold in-
crease with the particle-mesh Ewald31 implementation.
Review12 says the computation of the Ewald sum of a point
dipole model is, as “a widely used rule of thumb,” four times
more expensive than that of a charge-only model.

C. Outline

The fundamental problem is solving Eq. �3� for the di-
pole moments efficiently. This is addressed in Sec. IV. The
problem is intimately related to two other topics in MD: Fast
electrostatic solvers and dynamics. The first topic is treated
in Sec. II and the second in Sec. V.

The slow 1/r decay of the charge-charge interaction
makes the computation of the electrostatic interaction the
most expensive task in biomolecular simulations. A simple
cut-off treatment can have serious unphysical effects. On the
other hand, the Ewald sum is considered a reliable way for
describing the electrostatic interaction, although it could lead
to bias in free energy computations32 and to artificial stability
if the cell size is too small.33 For a given accuracy, direct
implementation of the Ewald sum is O�N3/2� at best. Fast
electrostatic solvers, which have cost O�N� or O�N log N�,

31
include the particle-mesh Ewald �PME� method, particle-
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particle particle-mesh �P3M� method,34 fast multipole
method,35 and multilevel summation method.36,37 We choose
the PME method because it is efficient and widely used in
biomolecular simulators, such as CHARMM,38

AMBER, and
NAMD.39

Section II presents a matrix formulation and an imple-
mentation of the Ewald sum and the PME method for a point
dipole model. The energy/force computation with the dipole
moments given incurs only about one quarter extra cost com-
pared to a charge-only model. The most significant extra cost
of the implementation in Ref. 25 comes from solving the
dipole Eq. �3� iteratively: One iteration is almost as expen-
sive as one full energy/force evaluation for a charge-only
model. The main contribution of this section is an algorithm
that reduces the cost to one-third by storing selected interme-
diate values to avoid most re-computations.

Section III presents two water models and simulation
details for tests of accuracy and efficiency of the methods.

Section IV presents new methods that reduce the number
of iterations from six in Ref. 25 to two when solving the
dipole equation to the same accuracy level. The improve-
ment comes from: �i� A more accurate initial guess and �ii� a
faster converging iteration. We first show that polynomial
extrapolation of degree from four to six gives very accurate
predictions �even though the underlying integrator is only
second order accurate�. However, the accuracy of polynomial
extrapolation is sensitive to the degree selected. So, we pro-
pose and implement a new predictor based on a least-squares
fitting of previous values of the dipole moment. The new
predictor is as accurate or more accurate than polynomial
extrapolation, and it is robust, because the prediction quality
does not degrade if too many previous values are used. To
accelerate convergence for the iteration process, we propose
and implement the Chebyshev semi-iterative method40 and a
modified conjugate gradient �CG� method. A disadvantage of
the standard CG implementation is that two matrix-vector
multiplications are needed to get the first update to the solu-
tion. We make use of the extra matrix-vector multiplication
by a suboptimal last step so that CG becomes competitive
with the Chebyshev method. The performance of the two
iterative methods depends on the condition number of the
matrix in the linear system being solved. To reduce the con-
dition number, a simple preconditioner is constructed from a
local approximation to the dipole-dipole interaction matrix
and a polynomial approximation to the inverse of the local
approximation.41 The comparison of the computational cost
between a polarizable point-dipole model and a charge-only
model shows that our implementation incurs less than 100%
extra cost. Table I summarizes the computational costs of the

TABLE I. Computational costs of reference and new algorithms in work
units.

Cost of computing dipoles
�cost per iteration� iterations�

Cost of computing
energy and force

Overal
cost

Reference 25 ��1��6 1.4 7.5–7.8
New algorithm 0.34�2 1.28 1.94
new algorithm. Costs are expressed in work units where one
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work unit is the computation cost for a full energy/force
evaluation of a charge-only model. Additionally, the new al-
gorithm with a larger timestep, e.g., 2 fs, is faster than the
extended Lagrangian method.

Section V discusses the effect of dipole moment quality
on dynamics. Foremost, we discuss the energy drift problem
of the self-consistent computation. For Hamiltonian dynam-
ics, conservation of the Hamiltonian is strongly aided by
symplectic integration. However, self-consistent computation
compromises the symplecticness in two ways: �i� Inexact so-
lution makes the force nonconservative, and �ii� prediction
from previous values makes the inexact solution history de-
pendent. By examining each effect separately, we find non-
conservativeness alone does not cause significant energy
drift if the computed dipole moments are reasonably accu-
rate. But history dependence is more detrimental and for tol-
erable energy drift, it requires the computed dipole moments
to be two orders of magnitude more accurate than what is
suitable in MD simulations. If the self-consistent computa-
tion does not use history, it preserves volume in phase space.

Additional details omitted from this article are available
in Ref. 42. Also presented there is a noniterative method that
avoids the secular energy drift problem: The electrostatic en-
ergy is �re�defined through a polynomial approximation to
the matrix inverse and the force is computed as the exact
negative gradient of the energy.

D. Discussion

Following are recommendations for methods and param-
eters. For a short timestep ��t=1 or 2 fs�, use the least-
squares predictor with 8 or more previous dipoles and re-
quire high accuracy �4 parts per million �ppm�� for the
dipole solution �to keep the energy drift tolerable�. If a
longer timestep ��t�2 fs� is used, e.g., in a multiple-time-
stepping method, prediction helps very little to obtain an
accurate initial guess. So use zero as an initial guess and
declare convergence for a relatively low accuracy
�400 ppm�, which is good enough to compute the force with
an accuracy suitable for MD simulations and maintain the
energy at a constant level for long time simulations. For
simulations of very long duration, use the noniterative
method.

II. COMPUTATION OF THE EWALD SUM

Sections II A and II B present the matrix formulation of
the Ewald sum of an induced point dipole model and the
PME method, respectively.

A. Ewald sum for a point dipole model

With periodic boundary conditions, the system is repli-
cated infinitely often to fill space. The simulation box is
commonly a parallelepiped with edges given by linearly in-
dependent basis vectors a�1 ,a�2 ,a�3 and with volume V
=det�a�1 ,a�2 ,a�3�. For a system of atoms, each having a point
charge and an induced point dipole, the electrostatic potential

with periodic boundary conditions is given as
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Eel =
1

2�
i=1

N

�
j=1

N

�
n�r

��qi + d� i · �i��qj + d� j · � j�
1

�r�i − r� j + n�r�

+ Epolar. �4�

Here n�r is a lattice vector defined as n�r=n1a�1+n2a�2+n3a�3 for
integers n1, n2, and n3. The prime on the summation over n�r

means some terms might be excluded: if j���i�, where ��i�
is the list of excluded atoms for atom i including i itself, the
n�r=�� term is excluded where �� =���r�−r��� is the lattice vector
such that �r�−r��+�� � is minimal among all possible lattice vec-
tors. The polarization energy is

Epolar =
1

2�
i=1

N

d� i
T�i

−1d� i, �5�

where the polarizability �i of atom i is a 3�3 matrix, which
is diagonal for a simple model.

Unfortunately, the infinite sum in Eq. �4� converges only
conditionally, if the total charge is 0, and diverges otherwise.
Reference 43 proves that for the standard summation order
the result is the Ewald sum plus a surface term. However,
most biomolecular simulations omit the surface term, and
this practice is adopted here.

Before presenting the Ewald sum, define reciprocal lat-

tice basis vectors b�1, b�2, and b�3 so that for � ,�=1,2 ,3,

a�� ·b��=���, where ��� is 1 if �=�, and 0 otherwise. Also,
define the following functions:

gdir�r�,r��� = �
n�r

erfc���r� − r�� + n�r��
�r� − r�� + n�r�

, �6�

gdirx�r�,r��� = �
n�r���

erfc���r� − r�� + n�r��
�r� − r�� + n�r�

−
erf���r� − r�� + �� ��

�r� − r�� + �� �
,

�7�

grec�r�,r��� =
1

	V
�

m� �0

�
exp�− 	2�m� �2/�2�

�m� �2
exp�2	im� · �r� − r���� , �8�

where erf�x�=2	−1/2�0
x exp�−t2�dt, erfc�x�=1−erf�x�, � is a

positive adjustable parameter, and m� =m1b�1+m2b�2+m3b�3, for
integers m1 ,m2 ,m3. Here, gdirx�r� ,r�� is taken to be the limit-
ing value �n�r��� erfc���n�r�� / �n�r�−2� /		. Then,

Eel = Edir + Erec + Epolar, �9�

where

Edir =
1

2�
i

�
j���i�

�qi + d� i · �i��qj + d� j · � j�gdir�r�i,r� j�

+
1

2�
i

�
j���i�

�qi + d� i · �i��qj + d� j · � j�gdirx�r�i,r� j� ,
�10�
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Erec =
1

2�
i

�
j

�qi + d� i · �i��qj + d� j · � j�grec�r�i,r� j� . �11�

Note that the self-energy �j= i� has been absorbed into the
direct sum.

Next, we define the matrix form of Eqs. �9�–�11� and �5�.
Define the “direct sum” G matrices as

�G0
dir�ij = gdirx�r�i,r� j�, �G1

dir�ij = �gdirx�r�i,r� j� , �12�

�G2
dir�ij = �����Tgdirx�r�i,r� j�

for j���i� and

�G0
dir�ij = gdir�r�i,r� j�, �G1

dir�ij = �gdir�r�i,r� j� , �13�

�G2
dir�ij = �����Tgdir�r�i,r� j� ,

otherwise, where � and �� are gradients with respect to the
first and second arguments of the target functions. Define the
reciprocal G matrices as

�G0
rec�ij = grec�r�i,r� j�, �G1

rec�ij = �grec�r�i,r� j� , �14�

�G2
rec�ij = �����Tgrec�r�i,r� j�

and define the overall G matrices as the sum of the direct and
reciprocal G matrices:

G0 = G0
dir + G0

rec, G1 = G1
dir + G1

rec, G2 = G2
dir + G2

rec.

�15�

Note that G1
dir is an N�N matrix of 3�1 blocks, each block

being a gradient of the corresponding G0
dir element; G2

dir is an
N�N matrix of 3�3 blocks, each block being a Hessian of
the corresponding G0

dir element. Note, also, that �G0
dir�ij

= �G0
dir� ji, �G1

dir�ij =−�G1
dir� ji, and �G2

dir�ij = �G2
dir� ji. The same

properties hold for the Grec and G matrices. Combining Eqs.
�10�–�14�, we get

Edir/rec�r,d� =
1

2
qTG0

dir/rec�r�q + dTG1
dir/rec�r�q

+
1

2
dTG2

dir/rec�r�d , �16�

where q= �q1 ,q2 , . . . ,qN�T and d= �d�1
T ,d�2

T , . . . ,d�N
T�T. From

Eqs. �9�, �16�, �15�, and �5�, the total electrostatic energy is
as given by Eq. �2�, Eel�r ,d�= 1

2qTG0�r�q+dTG1�r�q
+ 1

2dTG2�r�d+ 1
2dTD�

−1d, where D�=diag��1 ,�2 , . . . ,�N� is
the block diagonal polarizability matrix.

The induced dipole moments take the values that mini-
mize the total electrostatic energy, �� /�d�Eel�r ,d�=0, which
gives Eq. �3� for the dipole moments, �D�

−1+G2�d=−G1q. A
component of the force Fk
, 1�k�N, 
=x ,y ,z, is defined
as the negative derivative of Eel�r ,d� with respect to rk
,
taking into account the dependence of d on r. However, it
can be shown that because of the minimizing property, Eq.
�3�, the force is obtained by differentiating Eq. �2� as though

d were independent of r, yielding
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Fk

el = −

1

2
qT
 �

�rk


G0�q − dT
 �

�rk


G1�q

−
1

2
qT
 �

�rk


G2�d �17�

with analogous equations for Fk

dir and Fk


rec. With the optimal
dipole vector satisfying Eq. �3�, the energy given by Eq. �2�
simplifies to

Eel =
1

2
qTG0q +

1

2
dTG1q . �18�

B. Particle-mesh Ewald method

In this article, PME method refers to the smooth PME
method.31 In PME, the Ewald parameter � is chosen to be
large, so that for the direct sum a small cut-off radius is
needed for a given accuracy. This leads to an O�N� compu-
tational cost for the direct sum. For the reciprocal sum, fast
Fourier transforms �FFTs� are used and the computation cost
is O�N log N�. The implementations of the direct sum and the
reciprocal sum are considered separately.

1. Direct sum implementation

The direct sum is truncated beyond a specified cutoff
distance rc. The implementation employs the recurrence
given in Refs. 25, 42, and 44. The matrix G2 is used repeat-
edly when solving the dipole equation iteratively. To reduce
re-computation of G2 for each iteration, three scalar quanti-
ties are stored for each pair of atoms within the real space
cutoff radius rc. The typical biomolecular systems has a den-
sity of 0.1 atom/Å3, so for rc=8 Å, the memory requirement
is 3003N bytes, and for rc=10 Å, the memory requirement is
less than 6000N bytes. For a system with N=10 000 atoms,
this requires only 30 or 60 megabytes of memory, respec-
tively. For larger systems, parallel computation is needed.
For example, NAMD recommends 1000 atoms per processor
for optimal efficiency.45 The idea of storing dipole-dipole
tensors to speed up iterations has been tried before, in a
reaction-field model.46

2. Reciprocal sum

Two approximations are made in PME for the reciprocal
sum computation.

The first approximation is

grec�r�,r��� �
1

	V �ˆ

m� �0�;

exp�− 	2�m� �2/�2�
�m� �2

�exp�2	im� · �r� − r���� , �19�

where the hat denotes a truncated sum with −K� /2�m�

�K� /2−1, �=1,2 ,3, and where K1, K2, and K3 are large
even integers chosen so that the truncation error is negli-
gible.

Corresponding to the truncated reciprocal lattice, we
have a grid in real space with K1, K2, and K3 grid points
along each dimension. This motivates the following “u-

�
representation” for a position vector r:
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r� = r�corner + �a�1a�2a�3��u1/K1

u2/K2

u3/K3
 , �20�

where r�corner is the position of a corner of the simulation box,
chosen so that 0�u��K�, �=1,2 ,3, constitutes the simu-
lation box. Equivalently,

u� = �K1b�1
T

K2b�2
T

K3b�3
T
�r� − r�corner� = T�r� − r�corner� . �21�

The second approximation made by PME is an interpo-
lation using periodic B-spline basis functions. Define a
B-spline function of period K by

K�u� = �
i=−�

�

Mp�u − iK� , �22�

where Mp�u� is a B-spline of degree p−1 with integer break
points and support 0�u� p.

The basic approximation is

exp
2	i
mu

K
� � bK�m��

n=0

K−1

K�u − n�exp
2	i
mn

K
� , �23�

where m is an integer, and

bK�m� = 1��
n=1

p−1

K�n� · exp�2	im�n − p�/K� . �24�

Remarkably, this approximation is exact at integer values of
u; hence, this is an interpolation of exp�2	imu /K� from the
grid.

The actual three-dimensional interpolation is

exp�2	im · �r� − r�corner��

= exp
2	i�u1m1

K1
+

u2m2

K2
+

u3m3

K3
��

� bK� �m� ��
n�

�n��r��exp
2	i�m1n1

K1
+

m2n2

K2
+

m3n3

K3
�� ,

�25�

where

bK� �m� � = bK1
�m1�bK2

�m2�bK3
�m3� , �26�

�n��r�� = K1
�u1 − n1�K2

�u2 − n2�K3
�u3 − n3� . �27�

So

exp�2	im� · �r� − r�corner�� � �
n�

�n��r��Fn� ,m� bK� �m� � , �28�
with
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Fn� ,m� = exp
2	i�m1n1

K1
+

m2n2

K2
+

m3n3

K3
�� . �29�

Multiplication by F corresponds to a discrete Fourier trans-
form. �The range of indices m� is not what is needed by the
FFT, but this discrepancy is easily fixed.�

From Eqs. �19� and �28�, we have

grec�r�,r��� � �
m� �0�;

ˆ �
n�

�
n��

�n��r��Fn� ,m� D�m� �Fn��m�
*

�n���r��� , �30�

where

D�m� � = bK� �m� �
1

	V

exp�− 	2�m� �2/�2�
�m� �2

bK� �m� �*. �31�

This gives

grec�r�,r��� � �
n�

�
n��

�n��r���FDFH�n�n���n���r��� , �32�

where D is the diagonal matrix having diagonal elements
D�m� � and H denotes the complex conjugate transpose.

Equation �14� gives

�G0
rec�ij � �Ih

0FDFH�Ih
0�T�ij, or G0

rec � Ih
0FDFH�Ih

0�T,

�33�

with

�Ih
0�in� = �n��ri� . �34�

The matrix Ih
0 is a prolongation �or interpolation� opera-

tor which maps grid values to particle positions. Correspond-
ingly, �Ih

0�T restricts data at particle positions onto the grid. Ih
0

is sparse due to the local support of the B-spline basis func-
tions and the �Ih

0�in� can be regarded as weights for distribut-
ing charge qi to grid nodes n� .

From Eqs. �33�, �14�, �32�, and �34�, we have

G0
rec � Ih

0�FDFH��Ih
0�T, G1

rec � Ih
1�FDFH��Ih

0�T, �35�

G2
rec � Ih

1�FDFH��Ih
1�T,

where each “element”

�Ih
1�in� = ��n��ri� �36�

is a 3�1 block. The matrix-vector multiplication for each
Gi

rec is simple and direct from the above expressions. For
example, to compute G2

recd, first restrict �distribute� d to grid
nodes, then do a backward FFT, then multiply by the diago-
nal matrix D, then do a forward FFT, and, in the end, inter-
polate back to real space.

We define the following quantities:

Grid charges: qh�Ih
0�Tq , �37�

Grid potential: vh = FDFH�qh + �Ih
1�Td� . �38�

From Eqs. �18� and �35�, the reciprocal energy is

Erec =
1

2
qh

Tvh, �39�
while from Eqs. �17� and �35�, the force is
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Fk

rec � − 
qT
 �

�rk


Ih
0� + dT
 �

�rk


Ih
1��vh, �40�

giving

Fk
rec � − �

n�
����n��r�k��qk + ���T�n��r�k��d�k��vh�n� . �41�

The cost for computing the energy and force, assuming the
dipole is known, is low since for a given value of k, �n��r�k�
�0 for only p3 values of n� . Also, only two FFTs are needed
regardless of whether or not there are dipoles.

The property �G1
rec�ij =−�G1

rec� ji no longer holds after in-
terpolation. Because of this, the sum of all the forces con-
tributed by the reciprocal sum is not zero but a small number
instead. A consequence is the loss of linear momentum con-
servation. If the small extra force is subtracted out25 to con-
serve linear momentum, then the force is no longer an exact
negative gradient, leading to a small energy drift for long
simulations.

3. Overall computation sequence

The computation has three major steps: Preparation,
solving the dipole equation iteratively, and computing the
electrostatic energy and force.

The iteration scheme should be formulated carefully to
avoid unnecessary cost. For example, the iteration25

dm+1 = D��− G1q − G2dm� , �42�

is formulated as follows to save two FFTs:

dm+1 = − D��G1
dirq + G2

dirdm + Ih
1FDFH��Ih

0�Tq

+ �Ih
1�Tdm�� . �43�

The sequencing of the computation is summarized as
follows:

�1� Preparation

�a� Direct sum: Compute and store 1
2qTG0

dirq, −G1
dirq.

Compute and store three scalar quantities for each
pair of atoms within the cutoff distance.

�b� Reciprocal sum: Compute and store qh= �Ih
0�Tq, and

partially compute and store Ih
1 and Ih

2.

�2� Solving the dipole equation:

�a� Use some predictor to compute the initial guess.
�b� Use some iterative method to solve the dipole

equation, e.g., Eq. �43�.

�3� Computing the electrostatic energy and force:

�a� Direct sum: compute 1
2dTG1

dirq, add it to 1
2qTG0

dirq
to get Edir. Compute force Fdir from Eq. �10�.

�b� Reciprocal sum: compute vh=FDFH�qh+ �Ih
1�Td�.

Then compute Erec and Frec according to Eqs. �39�
and �41�.

�c� The electrostatic energy is Edir+Erec, the electro-
static force is Fdir+Frec.
The total number of FFTs is 2+2�number of iterations.
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III. WATER MODELS

Presented here are two water models for tests of accu-
racy and efficiency of the methods.

In the revised polarizable �RPOL� water model,47 water
molecules are rigid. The distance between the oxygen atom
and a hydrogen atom is 1 Å and the H–O–H angle is 109.5°.
The Lennard-Jones interaction ELJ�r�=4���
 /r�12− �
 /r�6�,
with 
=3.196 Å and �=0.160 kcal/mol, is present only be-
tween oxygen atoms. Effective charges are qO=−0.730e and
qH=0.365e, where e is the charge of a proton. The isotropic
polarizabilities are �O=0.52 Å3 and �H=0.170 Å3. Electro-
static interactions between atoms in the same molecule are
excluded.

In the nonpolarizable simple point charge �SPC� water
model,48 water molecules are rigid. The O–H bond length is
1 Å and the H–O–H bond angle is 109.28°. The hydrogen
atom has charge 0.41e, and the oxygen atom has charge
−0.82e.

For both systems, there are 216 water molecules. The
simulation box is a cube of length 18.688 Å. The direct sum
cutoff radius is 8 Å �chosen so that the direct sum and the
Lennard-Jones interactions can be computed together�, the
grid size for the reciprocal sum computation is 18�18
�18, and � is chosen25 so that the equal sign in
erfc��rc� /rc�� is satisfied for �=10−6 /Å.

Correctness of the implementation is confirmed in Ref.
42 by comparison of constant temperature simulations to
Ref. 25.

IV. SELF-CONSISTENT SOLUTION

Define the root-mean-square �rms� error= �1/	N��dm

−dm−1�2, where m is the iteration step. Since the rms error
can badly overestimate the true error for a fast converging
iteration, at least two iterations are needed unless the initial

FIG. 1. Average number of iterations for different methods. The rms con-
vergence criterion is 4 ppm. A “vector” is a set of dipoles moments at an

TABLE II. The polynomial extrapolation error.

Degree 0 1 2

�d �ppm� 1.6e4 2.2e3 4.9e2
instant in time.
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guess is very close to the exact solution. In this study, con-
vergence is claimed if the rms error is less than 10−6 or
10−7 Debye �1 Debye=3.33564�10−30 Coul m�. The aver-
age dipole moment of an atom in the RPOL water system is
0.25 Debye,42 so the above convergence criteria is 4 or
0.4 ppm. Typical forces due to dipoles contribute about 28%
of the total electrostatic force.

A. Initial guess

Previous predictors25 are based mostly on polynomial
extrapolation, which is ill conditioned, meaning a small error
in the previous dipoles is magnified by the prediction.
Degree-�k−1� polynomial extrapolation uses k previous di-
pole moments to predict the dipole moment at timestep n
+1:

d0
n+1 = �

i=1

k

�− 1�i+1
k

i
�dn+1−i, �44�

where superscripts index timesteps.
Table II shows the prediction error in terms of relative

errors

�d =
�d − dexact�2

�dexact�2
�45�

computed for some snapshots from a MD simulation. The
numbers change from case to case, but the trend remains
about the same.

A good initial guess reduces the computational cost sig-
nificantly �see Figs. 1 and 2; the various iterative methods
are described later; the number of iterations is an average
over 1000 timesteps�. The results degrade when the degree is
greater than five.

The least-squares prediction is obtained by answering
the following question after dn is computed: What is the best

4 5 6 7 8

e2 58 26 29 53 99

FIG. 2. Average number of iterations for different methods. The rms con-
3

1.4
vergence criterion is 0.4 ppm.
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prediction of dn obtainable from a linear combination of
dn−1 , . . . ,dn−k? One answer is to choose coefficients
c1 ,c2 , . . . ,ck that minimize

�dn − �
i=1

k

cid
n−i�

2

2

. �46�

The coefficients are obtained by solving the normal equa-
tions. After computing them, we use them to predict the di-
pole moment at the next timestep:

d0,least sqaures
n+1 = �

i=1

k

cid
n+1−i. �47�

The data show that least-squares prediction is a little
better than the optimal polynomial prediction:
�doptimal,polynomial�2�10−5 and �doptimal,least squares�1�10−5.

The least-squares prediction incurs a negligibly small
amount of extra work at each step: In our test cases, the
prediction cost is less than 1% of the overall electrostatic
computation.

B. Iteration method

Iterative methods for linear systems can be classified as
stationary, e.g., the Jacobi method, and nonstationary, e.g.,
the CG method and the Chebyshev semi-iterative method.

Stationary methods split the coefficient matrix into the
sum of two matrices, one of which is easy to invert. For our
problem, there is little choice but to split the matrix into D�

−1

plus G2, and use the iteration dm+1=D��−G1q−G2dm�, given
previously as Eq. �42�. We call it the Picard iteration due to
the natural breakup into a simple dominant part plus a lesser
part. It is not a Jacobi iteration because the diagonal elements
of G2, although small, are not zero. The eigenvalues of the
iteration matrix −D�G2 cluster around zero, as shown in Fig.
3. If we decompose the error vector into components, each
parallel to an eigenvector, those components whose corre-
sponding eigenvalues are close to zero are damped away
after one Picard iteration. So, the method is fairly efficient
for solving the dipole equation, and it is widely used in the
literature.

The convergence factor of a stationary method is deter-

FIG. 3. Typical eigenvalue distribution of matrix −D�G2.
mined by the spectral radius of the iteration matrix. For Pi-
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card iteration, the spectral radius ��−D�G2� is about 0.34
�see Fig. 3�. If the spectrum of the iteration matrix is not
symmetric about zero, a damping scheme can be used and
the optimal damping factor can be determined by the largest
and smallest eigenvalues of the iteration matrix. In our tests,
damping gives only a marginal improvement, reducing the
convergence factor from 0.34 to 0.29.

The CG and Chebyshev semi-iterative methods are for
solving symmetric positive-definite systems. The CG method
minimizes the “energy norm” of the error, while the Cheby-
shev method, with optimal parameters, is targeted at mini-
mizing the 2-norm of the error. The error is bounded by40

�dm − dexact�
�d0 − dexact�

� 2
	� − 1
	� + 1

�m

, �48�

where �=�max/�min is the condition number of the precondi-
tioned matrix and �·� is the energy norm for CG and the
2-norm for the Chebyshev method.

It takes two matrix-vector multiplications for the stan-
dard CG method to get the first update of the solution: One
for computing the residual to determine the search direction,
another for computing the optimal distance to move along
the search direction. After that, each iteration requires one
matrix-vector multiplication. So for the same number of up-
dates of the solution, CG does one more �expensive� matrix-
vector multiplication than other methods. This extra cost can
be saved by a “peek” step which uses the available residual r
to do one Picard iteration: d�=d+D�r=D��−G1q−G2d�.
The following is the pseudo-code adapted from Ref. 40 �Sec.
8.3� for the modified CG method:

rª−G1q− �D�
−1+G2�d;

solve Ms=r for s;
cªrTs;

FOR iterª1,2 , . . . ,maximum� iteration
uª �D�

−1+G2�s;
aªc /sTu; dªd+a ·s; rªr−a ·u;

/�peek�/ d�ªd+D�r; IF ��d�−d�2
2��2� BREAK;

solve Mt=r for t;
cnewªrTt; sª t+ �cnew/c� ·s; cªcnew;

END iter;
claim d� as the solution.

Here, s is the search direction, M is a preconditioner, t
and u are temporary vectors, � is the convergence criteria, a
is a scalar marking the optimal distance along the direction s,
and c and cnew are scalars. Compared to the standard CG
implementation, the only change is the added “peek” step.
This inexpensive O�N� computation does not alter the CG
search path, but finds a converged solution one step earlier
than the standard CG method in most cases. It does not ac-
tually peek at the next solution computed by the CG method;
rather it substitutes a suboptimal but acceptable solution for
the last CG step.

The implementation of the Chebyshev method is
straightforward �Ref. 40, Sec. 8.2�. The method requires a
good estimation of the spectral range, which, according to
our experience, changes little during MD simulations. So,
this expensive computation can be done once for all, and the

long-time performance suffers little.
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C. Preconditioner

A preconditioner, an easy-to-invert approximation to the
coefficient matrix of a linear system, is used to reduce the
condition number � of that matrix, thereby accelerating con-
vergence according to Eq. �48�. Because only the inverse of
the preconditioner is used in the iteration process, we can
approximate the inverse of D�

−1+G2 directly by

�D�
−1 + G2�−1 = D� − D�G2D� + D�G2D�G2D� − ¯

�49�

�D� − D�G2D� � D� − D�ND�, �50�

where N is a “local approximation” to G2. In particular, de-
fine

Nij = �T�r�ij� , �r�ij� � rc and j � ��i� ,

0, otherwise,
� �51�

where the cutoff radius rc is a parameter different from that
of the direct sum and T�r�� is the 3�3 dipole-dipole interac-
tion tensor

T�r�� =
1

r3
I − 3
r�r�T

r2 � , �52�

with r as the 2-norm of r� and I as the identity matrix. The
above preconditioner considers only pairs of dipoles with
separation distance �rc. On average, for rc=3 Å, we need
only maintain a list of average length �4 for each atom. If
the cutoff is 4 Å, the list has an average length �12.

Table III provides the convergence factor for a typical
matrix arising from MD simulations. For a cutoff radius
larger than 4 Å, the reduction in number of iterations is less
significant, but the cost in applying the preconditioner, pro-
portional to rc

3, increases significantly.
The two preconditioners used by Ref. 49 are similar to

ours but not as effective in reducing total computational cost
because their main concern is to use existing software mod-
ules of the underlying fast electrostatic solver.

TABLE IV. The cost for computing the electrostatic energy and force of the
RPOL and SPC models.

Time �s� SPC RPOL Increase

Direct sum 0.02116 0.02651 25%
Reciprocal sum 0.00204 0.00331 62%
Solving dipole ¯ 0.01511 ¯

Overall 0.023 20 0.044 94 94%

TABLE III. Convergence factors of different iteratio

Method

Picard
Damped Picard
CG, Cheby preconditioned by M with rc=0 Å
CG, Cheby preconditioned by M with rc=3 Å
CG, Cheby preconditioned by M with rc=4 Å
Downloaded 28 Jan 2009 to 152.3.22.23. Redistribution subject to A
D. Timing results

Table IV shows a comparison between the computation
of the polarizable RPOL water model and the charge-only
SPC �Ref. 48� water model. The time is averaged over 1000
MD steps with a 1 fs timestep. To solve the dipole equation
for the RPOL water model, the least-squares prediction is
used with ten previous dipoles and the peek-CG method is
used with the preconditioner designed in Sec. IV C having a
4 Å cutoff. The code is tested on a 3.06 GHz Intel Pentium 4
CPU; the compiler is Intel C�� Compiler 8.0 with flags
“-fast -unroll -xN.” We define the cost for computing the
charge-only model to be 1 work unit. Then, the cost of one
iteration is about 0.33 work units, much faster than about 1
unit in Ref. 25 It is not clear how they implement the matrix-
vector multiplication. Possibly, they do not use a neighbor
list or reuse previously computed values �see Sec. II B 1�.
Note also that with dipole moments given, the polarizable
model incurs only about 28% overhead with respect to the
nonpolarizable model computations. This is consistent with
Ref. 25, in which the corresponding cost is 25–30%. De-
tailed timing results are given in Fig. 4.

The prediction cost is negligible: Even when 15 previous
dipole moments are used and only two iterations are needed
for convergence, the extra cost for prediction is only 0.88%
of the total electrostatic computation.

The preconditioner is constructed before the beginning
of the iteration process. This has an estimated cost of 0.08
work units. This step could be integrated into the “prepara-
tion” phase, thereby saving even more time.

Table V provides timing results in work units for the
peek-CG method with 4 Å cutoff when the initial guess is

thods.

Condition number Convergence factor

¯ 0.34
¯ 0.29

1.80 0.15
1.44 0.09
1.38 0.08

FIG. 4. Computational cost in work units for different timesteps. The rela-
n me
tive rms convergence criteria is 4 ppm.
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zero. Estimated from Table V, each iteration costs less than
0.3 work units. Note that when we do not make a prediction,
the computational cost is independent of the timestep. Table
V is discussed further in Sec. V.

E. Comparison to the extended Lagrangian approach

The extended Lagrangian approach is considered faster
than the self-consistent approach, since the former does not
solve the dipole equation. However, the longest timestep an
extended Lagrangian method can take is 1 fs,24,25 while the
self-consistent approach does not pose an upper limit on the
possible timestep and the cost increase is modest when a
larger timestep is used. In MD simulations, the timestep for
computing the electrostatic energy/force can vary from 1 fs
for velocity-Verlet method with fully flexible bonds, to 2 fs
when covalent hydrogen bonds are rigid, to as large as 6 fs
using multiple-time stepping.45,50 We carry out simulations
with timesteps up through 4 fs, the largest that one can use
without incurring significant energy drift with the velocity-
Verlet method for the RPOL and SPC water systems.

Table VI tells us that the self-consistent computation
with a timestep of 2 fs or more is faster than the extended
Lagrangian approach. The dipole equation is solved by least-
squares prediction with ten previous dipoles and the
peek-CG method whose preconditioner is built with a 4 Å
cutoff radius. Timing results are given in Fig. 4.

The average number of iterations needed for different
timesteps is given in Fig. 5. The upper left figure is the same
as Fig. 1. The relative rms convergence tolerance is 4 ppm,
and all graphs in the figure have the same legend. For all
timesteps, the least-squares predictor is consistently better
than, or as good as, the polynomial predictor, which is not
shown here. For larger timesteps, prediction helps less, while
the iteration method is more important.

V. ENERGY DRIFT

For deterministic simulations, conservation of energy or
equivalent conserved quantity is very important. But Fig. 6
shows that self-consistent computations can lead to signifi-
cant energy drift unless fully converged. This is because the
symplecticness of the underlying integrator is compromised

TABLE V. The cost of the self-consistent computation if the iteration starts
from d0=0.

Relative convergence criteria 400 ppm 40 ppm 4 ppm

Average number of iterations 4.000 5.000 6.000
Computational cost 2.50 2.77 3.09

TABLE VI. The cost in work units per femtosecond for computing the
electrostatic energy and force.

Timestep 1 fs 2 fs 3 fs 4 fs
Extended

Lagrangiana

Computational
cost per fs

1.94 1.11 0.83 0.70 1.25–1.30

a
See Ref. 25.
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in two ways: �i� The computed force is not conservative due
to the iterative solution being inexact, and �ii� the solution is
history dependent due to the prediction. We find that �ii�,
which destroys the volume-preserving property, is more det-
rimental than �i� in causing the energy drift. The volume-
preserving property is maintained if history is not used.42

Integrators which do not preserve volume can lead to serious
problems, such as the flying-ice cube phenomenon.51

Because energy drift is unavoidable for MD simulations,
some energy drift should be tolerated when evaluating a
method. Currently, typical simulation lengths are tens of
nanoseconds, so a reasonable criterion is that the total energy
drift in a 20 ns simulation should be no more than a 5 K
change in system temperature.

We first, however, determine a suitable convergence cri-
terion for the iteration based on the PME error. For this pur-
pose, we look at relative 2-norm errors of the dipole moment
and the electrostatic force �with exact values computed by
the standard Ewald sum method using very stringent error
tolerances�.

Table VII shows the error introduced by PME as well as
by iteration with different convergence criteria. The quantity
�d is defined in Eq. �45� and �Fel is defined similarly. For the
“0 ppm” column, the relative dipole convergence criteria is
set to 4�10−15, so the observed error comes from the PME

FIG. 5. Average number of iterations for different timesteps.

FIG. 6. Energy drifts from 1 ns simulations for a RPOL water system with

timestep 1 fs.
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method. Observe that the relative rms convergence tolerance
can be as high as 400 ppm without introducing significant
error.

To study dependency of energy drift on predictions, we
exclude other factors which can cause the energy drift. Con-
straints are enforced by the SETTLE method,52 the net force
generated by the PME method is not subtracted out, and the
van der Waals potential is cut off with a C1 switching func-
tion. Specifically, the potential is multiplied by s�r�= �rc

2

−r2�2�rc
2+2r2−3rs

2� / �rc
2−rs

2�3 for rs�r�rc, where rs=6 Å
and rc=8 Å.

The energy drift is not perceptible using 400 ppm as the
relative rms convergence criteria with 0 initial guess. The
integrator is the velocity-Verlet method, the iteration method
is the peek-CG method, and the preconditioner is constructed
with a 4 Å cutoff. Hence, an inexact solution alone, and a
nonconservative force, does not necessarily cause significant
energy drift.

On the other hand, when history is used, the drift can be
significant as is seen from Fig. 7. The iteration method is
peek-CG with an rc=4 Å cutoff preconditioner. The line
with legend “400 ppm, 0” is the energy drift from a simula-
tion in which the dipole equation is solved by 0 initial guess
and a relative rms convergence criteria of 400 ppm. We ob-
serve from Fig. 7 that the energy drift is approximately pro-
portional to the rms convergence error. Also, for polynomial
extrapolation, the energy drift strongly depends on the poly-
nomial degree. Higher degree leads to less drift in general.
For least-squares prediction, the dependence on the number
of previous dipole moments is not so strong.

Accuracy needs and cost determine which method to
use. Although symplecticness is not preserved if the dipole
solution is not exact, phase space volume preservation and
energy conservation probably suffice. So, with respect to

TABLE VII. The error of the dipole and the electrostatic force for the PME
method for different convergence criteria.

0 ppm 4 ppm 40 ppm 400 ppm 4000 ppm

�d �ppm� 153 153 153 167 689
�Fel �ppm� 136 136 136 138 240

FIG. 7. Energy drifts when dipoles from previous timesteps are used for an

accurate initial guess.
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quality, zero-guess self-consistent computation is better.
However, as Table V shows, the extra cost will be about
150% compared to the charge-only computation. On the
other hand, if we use accurate prediction, we can obtain very
accurate dipole moments with about 94% extra cost com-
pared with the charge-only computation and keep the energy
drift negligibly small. When the computed dipole moment
has a small error, we expect the phase space volume change
to be small.

The always-stable-prediction-corrector �ASPC� method
proposed in Ref. 53 tries to reduce the energy drift by par-
tially recovering the time reversibility of the numerical inte-
gration. With a timestep of 1 fs, the ASPC method can main-
tain a constant energy level with only one damped Picard
iteration by using a quasi-time-reversible predictor and a
proper damping factor. The method is very fast since only
one iteration is needed, but it fails to conserve energy when
the timestep is 2 fs. The major drawback of the method is
that it is not volume preserving. A minor drawback of the
method is its low accuracy and lack of direct accuracy con-
trol. In Ref. 42, the ASPC method is improved by an accu-
racy control mechanism with a small extra cost, which is
achieved by the efficient iteration algorithm as well as the
combination of the quasi-time-reversible predictor in the
ASPC method with the least-squares predictor.
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