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We show that the acceptance probability for swaps in the parallel tempering Monte Carlo method for
classical canonical systems is given by a universal function that depends on the average statistical
fluctuations of the potential and on the ratio of the temperatures. The law, called the incomplete beta
function law, is valid in the limit that the two temperatures involved in swaps are close to one
another. An empirical version of the law, which involves the heat capacity of the system, is
developed and tested on a Lennard-Jones cluster. We argue that the best initial guess for the
distribution of intermediate temperatures for parallel tempering is a geometric progression and we
also propose a technique for the computation of optimal temperature schedules. Finally, we
demonstrate that the swap efficiency of the parallel tempering method for condensed-phase systems
decreases naturally to zero at least as fast as the inverse square root of the dimensionality of the
physical system. ©2004 American Institute of Physics.@DOI: 10.1063/1.1644093#

I. INTRODUCTION

Ergodic Monte Carlo simulations of large dimensional
systems having complicated topologies with many discon-
nected local minima are difficult computational tasks, though
indispensable for many physical applications.1–18Among the
various methods dealing with such problems, the parallel
tempering method19,20 is one of the most successful, espe-
cially given the simplicity of the idea and the ease of imple-
mentation. For sure, the idea of coupling two independent
Markov chains characterized by different parameters in order
to ensure the transfer of information from one to the other
has a long history. In physical sciences, coupling strategies
have been employed for the development of specialized sam-
pling techniques such as replica Monte Carlo sampling
of spin glasses,1 jump-walking,21,22 and simulated
tempering,23,24 to give a few examples. How this coupling
must be performed in the simplest, most general, and most
efficient way is, however, quite a difficult problem.

The parallel tempering method, as we utilize it in this
article, addresses the question of coupling independent
Monte Carlo chains that sample classical Boltzmann distri-
butions for different temperatures and which are usually gen-
erated by the Metropoliset al. algorithm.25,26 The method
has been formalized seemingly independently by Geyer and
Thompson19 as well as by Hukushima and Nemoto.20 Of
course, it is not necessary that the distributions involved in
swaps differ through their temperature. For instance, the con-
trolling parameter may be the chemical potential, as in the
hyperparallel tempering method,6 a delocalization parameter,

as in theq-jumping Monte Carlo method,27 or suitable modi-
fications of the potential, as in the Hamiltonian replica ex-
change method.10,18

In parallel tempering, swaps involving two temperatures
b and b8 are attempted from time to time in a cyclic or
random fashion and accepted with the conditional probability

min$1,e(b82b)[V(x8)2V(x)]%, ~1!

where V(x) is the potential of the physical system under
consideration. This acceptance rule ensures that the detailed
balance condition26 is satisfied and that the equilibrium dis-
tributions are the Boltzmann distributions. As Eq.~1! sug-
gests, the efficiency of the temperature swaps depends on the
difference between the inverse temperaturesb and b8. In
order to maintain high acceptance ratios, only swaps between
neighboring temperatures in a given schedulebmin5b1,b2

,¯,bN5bmax are attempted. An optimal schedule of tem-
peratures has the property that the acceptance ratios between
neighboring temperatures are equal to some predetermined
value p, value that is usually greater than or equal to 0.5.
The determination of the optimal schedule is complicated by
the fact that the distributions of the coordinatesx andx8 are
also temperature dependent~they are, of course, the Boltz-
mann distributions at the temperaturesb and b8, respec-
tively!.

In this article, we attempt to answer the following im-
portant question: What are the main properties of the physi-
cal system that control the acceptance ratio in the limit that
the differenceb82b is small? The answer to this question
allows for a better understanding of the applicability as well
as the limitations of the parallel tempering method. In addi-a!Electronic mail: cpredescu@comcast.net
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tion, it allows for the development of optimal temperature
schedules in a way that seems more direct and easier to
implement than other adaptive strategies.20

In Sec. II, we demonstrate in a rigorous mathematical
fashion that the acceptance probabilities for parallel temper-
ing swaps are controlled, within anO(ub82bu3) error, by
the ratio of the two temperatures involved in swaps and by
the average potential fluctuationsof the system, at the in-
verse temperatureb̄5(b1b8)/2. The acceptance probabili-
ties are well approximated by the so-called incomplete beta
function law, which has the additional property that it is ex-
act for harmonic oscillators. Under the assumption that the
relation between the average fluctuations and the average
square fluctuations of the potential is roughly the one for
harmonic oscillators, we develop an empirical version of the
incomplete beta function law, version that connects the ac-
ceptance probabilities for parallel tempering swaps with the
temperature ratios and the heat capacity of the system.

In Sec. III B, we show how the incomplete beta function
laws can be employed for the determination of optimal tem-
perature schedules. We also explain the empirical observa-
tion that a geometric progression is the best schedule for
systems and ranges of temperatures for which the heat ca-
pacity is almost constant.10 In Sec. III C, we demonstrate
rigorously that the efficiency of the parallel tempering
method for harmonic oscillators decreases naturally to zero
at least as fast as the inverse square root of the dimensional-
ity of the physical system. We then argue that the loss in
efficiency is even greater for condensed-phase systems~both
solids and liquids!. This result seems to be in contradiction
with the findings of Kofke,28 who suggested that such a curse
of dimension does not appear for parallel tempering. How-
ever, the result is in agreement with the explanation of Fuku-
nishi, Watanabe, and Takada.18 It is for this reason that we
insist that our findings be proven in a mathematically rigor-
ous way.

The rigorous form of the incomplete beta function law
involves average potential fluctuations at certain tempera-
tures. An evaluation of this property by Monte Carlo simu-
lations would require the computation of a double integral
over the configuration space. For this reason, current Monte
Carlo codes would have to be modified extensively in order
to take advantage of the incomplete beta function law for the
design of optimal temperature schedules. To circumvent this
undesirable situation, we propose an empirical version of the
incomplete beta function law, version that is derived under
the assumption that the relation between the average fluctua-
tions and the average square fluctuations of the potential is
roughly the one for harmonic oscillators. In Sec. IV, we il-
lustrate the good applicability of the empirical law by per-
forming a Monte Carlo simulation for a cluster made up of
13 atoms of neon that interact through Lennard-Jones poten-
tials.

II. THE INCOMPLETE BETA FUNCTION LAW

Consider ad-dimensional physical system described by
the potentialV(x), which is assumed to be bounded from
below. To simplify the notation, we may also assume that the

global minimum of the potential is 0, perhaps after the addi-
tion of a constant. Clearly, the addition of a constant does not
change the acceptance probabilities for swaps.

In the parallel tempering algorithm, swaps involving two
temperaturesb andb8 occur with the conditional probability

min$1,e(b82b)[V(x8)2V(x)]%.

The joint probability distribution density of the pointsx and
x8 in an equilibrated system is given by the formula

1

Q~b!Q~b8!
e2bV(x)e2b8V(x8),

where

Q~b!5E
Rd

e2bV(x) dx

is the configuration integral. It follows that the acceptance
probability Ac(b,b8) for swaps between neighboring tem-
peratures is given by the average

Ac~b,b8!5
1

Q~b!Q~b8!
E

Rd
dxE

Rd
dx8 e2bV(x)e2b8V(x8)

3min$1,e(b82b)[V(x8)2V(x)]%. ~2!

By construction,Ac(b,b8) is symmetrical under the ex-
change of variables. Without loss of generality, we may as-
sumeb8>b. Then,

min$1,e(b82b)[V(x8)2V(x)]%5e(b82b)min$0,V(x8)2V(x)%

5e(b82b)[V(x8)2V(x)]/2

3e2 (b82b) uV(x8)2V(x)u/2. ~3!

Replacing Eq.~3! in Eq. ~2!, we obtain

Ac~b,b8!5
1

Q~b!Q~b8!
E

Rd
dxE

Rd
dx8 e2b̄V(x)e2b̄V(x8)

3expF2
R21

R11
b̄uV~x8!2V~x!uG . ~4!

In Eq. ~4!, the variablesR andb̄ are defined by the equations

R5
b8

b
and b̄5

b1b8

2
, ~5!

respectively. Due to the nature of the results we prove, it is
more convenient to express the various formulas in terms of
the new variablesR and b̄. Becauseb8>b, we need only
consider the caseR>1.

As announced in the Introduction, we are interested in
establishing asymptotic laws in the limit thatR→1 for which
the error is of orderO(ub82bu3) or, alternatively,O(uR
21u3). At this point, let us see that the acceptance probabil-
ity given by Eq.~4! is alternatively given by the formula

Ac~b,b8!5
Q~ b̄ !2

Q~b!Q~b8! K expF2
R21

R11
b̄uU82UuG L

b̄

, ~6!

where, in general,̂f (U,U8)&b denotes the statistical average
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1

Q~b!2 E
0

`E
0

`

e2bUe2bU8V~U !V~U8! f ~U,U8!dU dU8.

~7!

In Eq. ~7!, V(U) denotes the density of states.
In these conditions, the following proposition holds true.
Proposition 1: We have

Ac~b,b8!512
R21

R11
M ~ b̄ !1O~ uR21u3!, ~8!

where

M ~ b̄ !5b̄^uU82Uu&b̄ . ~9!

Proof: A Taylor expansion of the exponential function to
the third order and the identitŷU82U&b̄50 imply

Q~b!Q~b8!

Q~ b̄ !2
5K expF2

R21

R11
b̄~U82U !G L

b̄

511
1

2
S R21

R11
D 2

b̄2^uU82Uu2&b̄

1O~ uR21u3!.

Therefore,

Q~ b̄ !2

Q~b!Q~b8!
512

1

2 S R21

R11D 2

b̄2^uU82Uu2&b̄

1O~ uR21u3!. ~10!

On the other hand,

K expF2
R21

R11
b̄uU82UuG L

b̄

512
R21

R11
M ~ b̄ !

1
1

2 S R21

R11D 2

b̄2^uU82Uu2&b̄1O~ uR21u3!. ~11!

Equations~10! and ~11! imply

Q~ b̄ !2

Q~b!Q~b8! K expF2
R21

R11
b̄uU82UuG L

b̄

512
R21

R11
M ~ b̄ !1O~ uR21u3!,

and the proof is concluded. h

Proposition 1, while a powerful asymptotic result, has
the disadvantage that it may produce negative numbers for
the acceptance probability in actual simulations. However,
we can repair this in very straightforward fashion. Notice
that the fact thatV(U) does not depend upon the tempera-
ture isnot crucial for the proof of Proposition 1. Thus, given
any other well-behaved density of statesV8@U,d(b)# de-
pending perhaps on the inverse temperature through an ad-
justable parameterd(b) and such that

b̄^uU2U8u&b̄
85M ~ b̄ !, ~12!

we still have

Ac8~b,b8!512
R21

R11
M ~ b̄ !1O~ uR21u3!. ~13!

In Eqs.~12! and ~13!, the prime sign denotes the respective
averages or quantities obtained from their definition ifV(U)
is replaced byV8@U,d(b)#. From Eqs.~8! and ~13!, we
deduce

Ac8~b,b8!5Ac~b,b8!1O~ uR21u3!, ~14!

for all V8@U,d(b)# that satisfy Eq.~12!. This simple obser-
vation allows us to construct approximationsAc8(b,b8) of
order O(uR21u3) for the acceptance probabilityAc(b,b8)
by considering a special functional dependence for the den-
sity of statesV8@U,d(b)#, such that the resulting approxi-
mation is exact for a certain class of physical systems.

We take this class to be the harmonic oscillators, for
which V8(U,d)5(2p)d/2G(d/2)21Ud/221. We prove in Ap-
pendix A that for anyd-dimensional harmonic oscillator,

AcH~b,b8!5
2

B~d/2,d/2!
E

0

1/~11R!

ud/221~12u!d/221 du,

~15!

and

MH~ b̄ !5222dB~d/2,d/2!21. ~16!

Here, B(d/2,d/2) denotes the respective Euler’s beta func-
tion.

For a harmonic oscillator,d is the dimension. For gen-
eral systems,d5d(b) is just a fitting parameter chosen such
that Eq.~12! is satisfied. In fact, Eq.~12!, which in our case
reads as

222dB~d/2,d/2!215M ~ b̄ !,

has always a unique solution because 222dB(d/2,d/2)21 in-
creases strictly from 0 to1`, asd also increases from 0 to
1`. The following theorem is an immediate consequence of
Eq. ~14! and of the discussion above.

Theorem 1 „Incomplete beta function law…: Consider
an arbitrary thermodynamic system for which M(b) is given

as a function of temperature. Let d(b̄) be the unique solution
of the equation

222dB~d/2,d/2!215M ~ b̄ !. ~17!

Then,

Ac~b,b8!5
2

B@d~ b̄ !/2,d~ b̄ !/2#
E

0

1/(11R)

ud(b̄)/221

3~12u!d(b̄)/221du1O~ uR21u3!, ~18!

with the error term canceling for harmonic oscillators.

III. CONSEQUENCES OF THE INCOMPLETE BETA
FUNCTION LAW

There are several important consequences of Theorem 1.
The first one concerns the development of an empirical law
connecting the acceptance probabilities with the heat capac-
ity and the ratio of the temperatures involved in the parallel
tempering swap. The second one regards the optimal distri-
bution of temperatures in parallel tempering Monte Carlo
simulations. Yet a third one is the statement that the effi-
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ciency of the swaps between neighboring temperatures de-
creases naturally as the inverse square root of the dimension-
ality of the system. We analyze these consequences in some
detail in the remainder of the section.

A. The empirical incomplete beta function law

The propertyM (b̄) is not usually determined in simula-
tions, nor is it measured in experiments. It is therefore nec-
essary to relate it to other thermodynamic properties, more
precisely to the heat capacity. In addition, it is desirable to
develop a version of the incomplete beta function law in-
volving the heat capacity rather thanM (b̄), even if the law
has an empirical validity only.

The quantity

M ~ b̄ !5b̄^uU82Uu&b̄

measures the statistical fluctuations of the potentialV(x) and
is connected to the heat capacity of the system. More pre-
cisely, the Cauchy–Schwartz inequality says that

b̄2^uU82Uu&b̄

2
<b̄2^uU82Uu2&b̄ .

However,

b̄2^uU82Uu2&b̄5b̄2
1

Q~b!2 E
0

`E
0

`

e2bUe2bU8

3V~U !V~U8!~U82U !2dU dU8

52b̄2H 1

Q~b!
E

0

`

e2bUV~U !U2 dU

2
1

Q~b!2 F E
0

`

e2bUV~U !U dUG2J .

The last term in the equation above is twice the potential
contributionCV(b̄) to the total heat capacity of the system.
~In this article, the heat capacity is always expressed in units
of the Boltzmann constantkB .) The total heat capacity sums
both the potential and the kinetic average square fluctuations
and is given by the well-known formula

C~ b̄ !5CV~ b̄ !1d/2. ~19!

Then, the identity

b̄2^uU82Uu2&b̄52CV~ b̄ ! ~20!

implies the inequality

M ~ b̄ !2<2CV~ b̄ !. ~21!

Equation~21! suggests thatM (b̄)2 is an extensive prop-
erty of the physical system, property that may be very large
for systems for which the heat capacity is also large. In fact,
Sterling’s formula shows that

MH~ b̄ !25@222dB~d/2,d/2!21#2'
2d

p
,

for large dimensional harmonic oscillators. The relation has a
linear scaling with the dimensionality of the system~that is,
with the number of particles!. This scaling appears also for
the heat capacity of harmonic oscillators,

CH,V~ b̄ !5d/2.

For condensed phase systems, for which a harmonic su-
perposition is roughly a good approximation of the Boltz-
mann distribution, one may safely assume that the functional
relationship betweenM (b̄)2 andCV(b̄) is not very far from
the one for the harmonic oscillator. Of course, this is always
true in the low temperature limit. In these conditions, the
solutiond(b̄) of the equation

222dB~d/2,d/2!215M ~ b̄ !,

is approximatelyd(b̄)52CV(b̄). Replacing the last result in
Eq. ~18!, we obtain the followingempirical incomplete beta
function law:

Ac~b,b8!'
2

B~CV~ b̄ !,CV~ b̄ !!
E

0

1/(11R)

uCV(b̄)21

3~12u!CV(b̄)21 du. ~22!

The good applicability of Eq.~22! for realistic physical sys-
tems will be illustrated in Sec. IV for the case of a Lennard-
Jones cluster. Equation~22! can be expressed in terms of the
full heat capacity of the system with the help of Eq.~19!. The
empirical incomplete beta function law is still exact for har-
monic oscillators.

B. On the optimal schedule of temperatures
for the parallel tempering simulation

It is an empirical observation10 that the optimal schedule
~i.e., the schedule for which all the acceptance probabilities
for swaps between neighboring temperatures are equal! is
given by a geometric progression of temperatures, if the heat
capacity of the system is approximatively constant for the
range@bmin ,bmax#. The incomplete beta function law gives a
direct explanation of this phenomenon. As discussed in the
previous section, the quantitiesM (b̄) and CV(b̄) measure
essentially the same information: average potential fluctua-
tions and average potential square fluctuations, respectively.
Thus, we expect thatM (b̄) is also constant in regions where
CV(b̄) is. As shown by Eq.~18!, in these conditions, the
acceptance probabilities are functions of the ratio of the tem-
peratures involved in swaps, only. Therefore, if the predeter-
mined number of replicas isN ~with N large enough so that
Theorem 1 applies!, then the optimal schedule is

b i5Ri 21bmin , 1< i<N, ~23!

where

R5~bmax/bmin!
1/(N21). ~24!

If one trusts it, the empirical incomplete beta function
law can be used to evaluate the optimal schedule for arbitrary
systems in the following way. First, one computes a set of
values for the potential partCV(b) of the heat capacity over
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the interval@bmin ,bmax# using a geometric progression law.
The results are then interpolated by a cubic spline, for ex-
ample. Only a rough estimate is necessary. Given a pre-
scribed valuep for the acceptance probability and given the
inverse temperatureb i , one computesb i 11 by solving the
equation

2

B„CV~ b̄ !,CV~ b̄ !…
E

0

(11b i 11 /b i )

uCV(b̄)21

3~12u!CV(b̄)21 du5p, ~25!

whereb̄5(b i1b i 11)/2. One starts withb15bmin and con-
tinues the procedure until the current inverse temperature
becomes greater than or equal tobmax. This way, one deter-
mines both the optimal distribution of temperatures and the
minimal number of temperatures compatible with the pre-
scribed acceptance probabilityp. To ensure the validity of
the approximation furnished by Theorem 1, the value ofp
should be large enough. In fact, values larger than or equal to
0.5 are necessary anyway in order to have good mixing be-
tween the Monte Carlo walkers running at neighboring tem-
peratures.

Sure enough, one may use the full incomplete beta func-
tion law to find the optimal schedule. However, the compu-
tation of M (b̄) requires extensive changes to the existing
codes. In addition, as illustrated by the example described in
Sec. IV, the empirical version of the incomplete beta function
law may be sufficiently accurate for most systems of practi-
cal interest. The applicability of the law can also be tested
during the computation of the heat capacityCV(b), by com-
paring the observed values for the acceptance probabilities
with the ones predicted by the empirical incomplete beta
function law.

C. Loss of efficiency with increasing dimension
for the parallel tempering method

In this subsection, we show that the minimum number of
intermediate temperaturesN(d,p) that ensures an acceptance
probability greater than or equal to some preset valuep
P(0,1) for a d-dimensional system increases naturally at
least as the square root of the dimensionality for condensed-
phase systems~both solids and liquids!. This observation
was first made by Hukushima and Nemoto.20

We begin with a rigorous mathematical analysis for har-
monic oscillators. For them, the optimal schedule is a geo-
metric progression@becauseM (b̄) is independent of tem-
perature# and the minimum value ofN(d,p) is given by

NH~d,p!5F ln~bmax/bmin!

ln@R~d,p!# G12, ~26!

where@x# is the integer part ofx andR(d,p) is the solution
of the equation

2

B~d/2,d/2!
E

0

1/~11R!

ud/221~12u!d/221 du5p.

As shown by Theorem 2 of Appendix B,

lim
d→`

2

B~d/2,d/2!
E

0

1/@11R(d,p)#

ud/221~12u!d/221 du5p,

if and only if

lim
d→`

AdF1

2
2

1

11R~d,p!G5
1

&
erf21~12p!,

where erf21 is the inverse of the error function. Straightfor-
ward manipulations show that the last relation is equivalent
to

R~d,p!511
2&

Ad
erf21~12p!1o~d21/2!,

or to

ln@R~d,p!#5
2&

Ad
erf21~12p!1o~d21/2!. ~27!

We remind the reader that, in general, the notationxd5x
1o(da) means

lim
d→`

~xd2x!/da50.

From Eqs.~26! and ~27!, we learn that

NH~d,p!5d1/2
& ln~bmax/bmin!

4 erf21~12p!
1o~d1/2!, ~28!

relation that is similar to Eq.~9! of Ref. 18.
For condensed-phase systems, the heat capacity is usu-

ally larger than what a harmonic approximation predicts and,
therefore, so isM (b̄). Consequently, for such systems, the
acceptance ratio for harmonic oscillatorsAcH(b,b8) is usu-
ally not attained. In these conditions, all we can say is that
N(d,p) must satisfy the relation

N~d,p!>d1/2
& ln~bmax/bmin!

4 erf21~12p!
, ~29!

inequality which demonstrates our claim that there is a curse
of dimension for the parallel tempering method. In this re-
spect, notice that runningN(d,p) independent replica re-
quires N(d,p) times more computational power. However,
given the improvement in the quality of the sampling
brought in by parallel tempering, this loss of efficiency is an
acceptable price to pay.

IV. A NUMERICAL EXAMPLE

In this section, we verify the validity of the empirical
incomplete beta function law for the neon realization of the
LJ13 cluster. This example is representative of the type of
applications one is likely to encounter in practice. We shall
also illustrate the use of the incomplete beta function law for
the design of optimal schedules for parallel tempering. With
the help of the identityC(b)5CV(b)1d/2, the empirical
incomplete beta function law is expressed as a functional of
the full heat capacity as
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Ac~b,b8!'2B„C~ b̄ !2d/2,C~ b̄ !2d/2…21

3E
0

1/(11R)

uC(b̄)2d/221~12u!C(b̄)2d/221 du,

~30!

whered53313539 is the dimensionality of the cluster.
The total potential energy of the Ne13 cluster is given by

Vtot5(
i , j

Np

VLJ~r i j !1(
i 51

Np

Vc~r i!, ~31!

whereVLJ(r i j ) is the pair interaction of the Lennard-Jones
potential,

VLJ~r i j !54eLJF S sLJ

r i j
D 12

2S sLJ

r i j
D 6G , ~32!

and Vc(r i) is the confining potential,

Vc~r i!5eLJS ur i2Rcmu
Rc

D 20

. ~33!

Np513 is, of course, the number of particles in the system.
The values of the Lennard-Jones parameterssLJ andeLJ used
are 2.749 Å and 35.6 K, respectively. The mass of the Ne
atom was set tom0520, the rounded atomic mass of the
most abundant isotope.Rcm is the coordinate of the center of
mass of the cluster and is given by

Rcm5
1

Np
(
i 51

Np

r i . ~34!

Finally, Rc54sLJ is the confining radius. The role of the
confining potentialVc(r i) is to prevent atoms from perma-
nently leaving the cluster, since the cluster in vacuum at any
finite temperature is metastable with respect to evaporation.

The range of temperatures employed is 3 to 30 K. In this
range of temperatures, the system undergoes two phase tran-
sitions: a solid–liquid transition at about 10 K and a liquid–
gas transition at about 18 K, respectively. Surely, the termi-
nology we employ is more or less abuse of language,
because true first-order phase transitions happen only in the
limit of an infinite number of particles. However, Fig. 1
clearly shows two pronounced maxima in the heat capacity
of the system, maxima that separate the three phases. In the
limit of infinite number of particles, these maxima sharpen to
a delta function and their temperature value is usually low-
ered to the corresponding bulk values.

The parallel tempering Monte Carlo simulations are car-
ried out using a total of 32 parallel streams, each running a
replica of the system at a different temperature. The tempera-
tures range from 3 to 30 K and are distributed in geometric
progression. For each stream, the coordinate sampling is per-
formed with the help of the Metropolis algorithm.26 The ba-
sic Monte Carlo steps consist in attempted moves of the
physical coordinates associated with a given particle. Each
attempted move is then accepted or rejected according to the
Metropolis logic. By attempting to move the particles one at
a time, we can increase the maximum displacements and
ensure a better quality of sampling. The maximum displace-
ments are adjusted in the equilibration phase of the compu-

tation, so that each of the acceptance ratios eventually lies
between 40% and 60%. The 32~statistically! independent
streams of random numbers necessary for the simulation are
obtained with the help of the Dynamic Creator package.29,30

As a counting device, we define apassas the minimal
set of Monte Carlo attempts over all particles in the system.
Because we update the neon atoms in a successive fashion, a
pass consists of 13 basic steps. One also defines ablockas a
computational unit made up of 100 thousand passes. The size
of the block is sufficiently large that the block averages of
the various quantities computed are independent for all prac-
tical purposes. The accumulation phase of the simulation has
consisted of 100 blocks for a total of 10 million passes per
temperature. The accumulation phase has been preceded by
an equilibration phase of 20 blocks.

Parallel tempering swaps between neighboring tempera-
tures are attempted every 100 passes in an alternating fashion
~first, with the closest lower temperature and then, with the
closest higher temperature!. The only exceptions are the two
end temperatures, which are involved in swaps every 200
passes, only. The acceptance probability of swapsaci at a
given temperatureb i is computed as the fraction of accepted
swaps involving that temperature. Thus, except for the end
temperatures, the computed values are equal to

aci5
1

2
@Ac~b i 21 ,b i !1Ac~b i ,b i 11!#.

Because the intermediate temperatures are distributed in
geometric progression,R5(30/3)1/31 is a constant. In this
case, the empirical incomplete beta function law given by
Eq. ~30! says that the dependence of the acceptance prob-
abilities with the temperature is a functional of the heat ca-
pacity, only. This observation is well supported by the ob-
served acceptance probabilities, which are plotted in Fig. 2.

During the Monte Carlo simulation, besides acceptance
ratios, we have also evaluated the heat capacities at different
temperatures. Then, the heat capacities have been interpo-
lated using a cubic spline and acceptance ratiosaci8 have

FIG. 1. Heat capacities~in units of kB) as a function of the temperatureT
~in Kelvin!. The data for the plot have been computed with the help of the
optimal schedule determined in Sec. IV. The error bars~twice the standard
deviation! are smaller than the plotting symbols.
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been computed with the help of the empirical incomplete
beta function law. More precisely, we have computed

aci85
1

2
@Ac8~b i 21 ,b i !1Ac8~b i ,b i 11!#,

whereAc8(b,b8) is given by the right-hand side of Eq.~30!.
In Fig. 3, we plot the absolute values of the differences be-
tween the observed and computed acceptance probabilities.
These values are smaller than the estimated error bars for the
same differences. In fact, the maximum difference between
the two curves is less than 0.008. Therefore, for all practical
purposes, the empirical version of the incomplete beta func-
tion law is correct.

As discussed in Sec. III C, the heat capacity for solids is
usually larger than what the harmonic approximation pre-
dicts, except for the low temperature limit. The liquid phase
has an even larger heat capacity, whereas the gas phase has a
smaller one. In the high-temperature limit, theCV(b) com-
ponent of the heat capacity decreases to zero. As a conse-

quence, the acceptance probabilities increase to 1. At the
critical points, the acceptance probabilities for parallel tem-
pering swaps decrease very much, as the heat capacities in-
crease suddenly. This analysis is consistent with the results
shown in Fig. 2. Therefore, the loss of efficiency for solids
and liquids is even more pronounced than thed21/2 decay
computed ford-dimensional harmonic oscillators.

Using the strategy described in Sec. III B, we have de-
termined the optimal schedule of temperatures necessary to
achieve a constant acceptance probability ofp50.75 for all
swaps between neighboring temperatures. The minimal num-
ber of temperatures needed has been found to be 34@only the
temperatures located in the interval~3 K, 30 K! are counted#.
Then, we have performed a second Monte Carlo simulation
to verify the validity of the schedule. The plot in Fig. 4
demonstrates that the computed schedule works very well.
This explicit application illustrates the utility of the empirical
incomplete beta function law for the determination of opti-
mal temperature schedules in parallel tempering simulations.

V. SUMMARY AND CONCLUSIONS

We have successfully and rigorously related the accep-
tance probabilities for parallel tempering swaps to the ratio
between the temperatures involved in the swap and the av-
erage statistical fluctuations of the potential at some interme-
diate temperature. The respective law, called the incomplete
beta function law, is exact for harmonic oscillators and of
orderO(ub82bu3) for arbitrary systems. We have also dem-
onstrated that there is a loss of efficiency in parallel temper-
ing simulations of condensed-phase systems with the in-
crease of dimensionality. The loss of efficiency is at least
d21/2, the value computed for harmonic oscillators.

Motivated by the fact that the existent Monte Carlo
codes do not allow for the computation of the average po-
tential fluctuations without extensive reprogramming, we
have developed and tested the empirical incomplete beta
function law. This empirical law connects the acceptance
probabilities of the parallel tempering swaps with the heat
capacity of the system. The law has been extensively verified
for the LJ13 cluster, on a range of temperatures that spanned

FIG. 2. Observed acceptance ratios as a function of the temperatureT ~in
Kelvin!. A geometric progression schedule has been utilized. The plot is in a
direct relationship with the heat capacity curve~see Fig. 1!, as predicted by
the incomplete beta function law. The error bars are about the size of the
plotting symbols.

FIG. 3. The dotted line shows the absolute value of the differences between
the observed values for the acceptance probability of swaps and the ones
predicted by the empirical incomplete beta function law. Also plotted
~dashed line! are the estimated error bars for the differencesuaci2aci8u.

FIG. 4. Observed acceptance ratios for the optimal schedule of temperatures
determined with the help of the empirical incomplete beta function law. The
deviations from the ideal result ofp50.75 are comparable to the statistical
noise.
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three thermodynamic phases. The empirical incomplete beta
function law provides a direct justification of the observation
that a geometric progression is the optimal schedule for sys-
tems and regions of temperatures where the heat capacity is
almost constant. Finally, the use of the empirical incomplete
beta function law for the construction of optimal temperature
schedules has been demonstrated.

As opposed to its empirical version, the incomplete beta
function law given by Theorem 1 is an exact mathematical
statement, valid for all systems asymptotically, for close
enough temperatures. For strongly anharmonic systems~for
instance, systems for which the sampling is performed on a
lattice, such as spin glasses and self-avoiding random walks!,
the empirical version of the incomplete beta function law
may fail. In such cases, the rigorous incomplete beta function
law should be used for the development of optimal tempera-
ture schedules. As discussed in the text, the evaluation of the
average,

M ~b!5
1

Q~b!2 E
Rd

dxE
Rd

dx8 e2bV(x)e2bV(x8)

3buV~x8!2V~x!u, ~35!

requires however a double integral over the configuration
space. This integral can be computed by doubling the num-
ber of temperatures in the parallel tempering schedule, as
follows:

b05b1,b25b3,b45b5,¯,b2N225b2N21 .

Then, to computeM (b i), one collects the values of the dif-
ferencesb i uV(x)2V(x8)u any time a swap between equal
neighboring temperaturesb i and b i 61 is attempted. Of
course, swaps between equal temperatures are always ac-
cepted. The valuesM (b i) are interpolated by a cubic spline.
The determination of the optimal temperature schedule then
proceeds in a way similar to the approach utilized in Sec. IV.

While the reader may object that the introduction of an
intercalated set of identical temperatures is an additional
computational burden, many times, there are certain advan-
tages in doing so. For large dimensional systems, coupled
independent replica running at identical temperatures consti-
tute an elegant device for parallelizing the Monte Carlo code,
whenever the number of available computer nodes is at least
twice the number of temperatures in the parallel tempering
schedule. Nowadays, with the advent of inexpensive cluster
computing, this is the case with many research groups. Fur-
thermore, in this setting, the computation of the heat capacity
and other properties of the system can be done by means of
unbiased estimators, as shown by Eq.~20!.

On a more general level, we hope that a better under-
standing of the laws governing the acceptance probabilities
for swaps in parallel tempering methods may lead to useful
research in improving the efficiency of the methods. In the
meantime, we recommend that the dimensionality of the sys-
tems be maintained as low as possible, for instance, by adia-
batically reducing those degrees of freedom that do not lead
to a significant degradation in the quality of the final results.
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APPENDIX A: EVALUATION OF INTEGRALS

For an arbitrary d-dimensional harmonic oscillator
whose global minimum is zero, the density of states is given
by the formulaV(U)5(2p)d/2Ud/221/G(d/2). In these con-
ditions, it is but a simple exercise to show that the accep-
tance probability for the parallel tempering swaps is given by
the equation

AcH~b,b8!5
~bb8!d/2

G~d/2!2 E
0

`E
0

`

e2bUe2b8U8Ud/221

3U8d/221 min$1,e(b82b)(U82U)%dU dU8.

~A1!

We also want to evaluate the quantityMH(b) @see Eq.~16!#,
which is given by the formula

MH~b!5
bd11

G~d/2!2 E
0

`E
0

`

e2bUe2bU8Ud/221

3U8d/221uU82UudU dU8. ~A2!

While for a harmonic oscillator the parameterd is an integer,
we compute the two integrals above under the assumption
that d is a strictly positive real number. We prove that the
value ofAcH(b,b8) is given by the incomplete beta function

AcH~b,b8!5
2

B~d/2,d/2!
E

0

1/(11R)

ud/221~12u!d/221 du,

~A3!

whereB(a,b) is Euler’s beta function,

B~a,b!5E
0

1

ua21~12u!b21 du

and

R5maxH b8

b
,

b

b8 J .

In addition, we prove that

MH~b!5222dB~d/2,d/2!21. ~A4!

Because the functionAcH(b,b8) is symmetrical in its
arguments, we may assume without loss of generality that
b8>b, so thatR5b8/b>1. By decomposing the domain of
the integral againstU8 in Eq. ~A1! in two regions withU8
,U and U8>U, respectively, it is straightforward to see
that

AcH~b,b8!512I ~b,b8!1I ~b8,b!, ~A5!

where
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I ~b,b8!5
~bb8!d/2

G~d/2!2 E
0

`

dUE
0

U

dU8 e2bU

3e2b8U8Ud/221U8d/221. ~A6!

Performing the substitutionU85Uu, we obtain

I ~b,b8!5
bdRd/2

G~d/2!2 E
0

`

dUE
0

1

du e2b(11Ru)UUd21ud/221

5
G~d!Rd/2

G~d/2!2 E
0

1

du
ud/221

~11Ru!d . ~A7!

Performing the change of variablesu5R21(t2121), we
conclude

I ~b,b8!5
1

B~d/2,d/2!
E

1/(R11)

1

td/221~12t !d/221 dt

512
1

B~d/2,d/2!
E

0

1/(R11)

td/221~12t !d/221 dt,

~A8!

where

B~d/2,d/2!5
G~d/2!2

G~d!
5E

0

1

td/221~12t !d/221 dt

is Euler’s beta function. The value ofI (b8,b) is obtained by
replacingR with 1/R in the first expression of Eq.~A8!. We
compute

I ~b8,b!5
1

B~d/2,d/2!
E

0

1/(11R)

td/221~12t !d/221 dt.

Equation~A3! follows from Eqs.~A5!, ~A8!, and~A9!, after
easy simplifications.

If applied to Eq.~A2!, the same decomposition and co-
ordinate transformations used in the proof of Eq.~A3! lead to
the equation

MH~b!52
G~d11!

G~d/2!2 E
1/2

1

~2u21!ud/221~12u!d/221 du

52dB~d/2,d/2!21F2I 12
1

2
B~d/2,d/2!G , ~A9!

where

I 15E
1/2

1

ud/2~12u!d/221 du.

Integrating by parts the last integral, we obtain

I 15
2

d2d 1E
1/2

1

ud/221~12u!d/2 du5
2

d2d 1I 2 , ~A10!

where

I 25E
0

1/2

~12u!d/221ud/2 du.

Combining Eq.~A10! with the identity

I 11I 25B~d/2,d/211!5
1

2
B~d/2,d/2!,

we obtain

2I 15
2

d2d 1
1

2
B~d/2,d/2!,

which, after replacement in Eq.~A9!, produces Eq.~A4!.

APPENDIX B: A LIMITING THEOREM

Theorem 2: Let $ad%d>1 be a sequence of positive num-
bers convergent toa.0. Then,

lim
d→`

2

B~d/2,d/2!
E

0

1/22ad /d1/2

ud/221~12u!d/221 du

512erf ~21/2a!, ~B1!

where

erf~x!5
2

Ap
E

0

x

e2t2 dt

is the error function.
Proof: We compute

I d5
2

B~d/2,d/2!
E

0

1/22 ad /d1/2

ud/221~12u!d/221 du

512
2

B~d/2,d/2!
E

1/22 ad /d1/2

1/2

ud/221~12u!d/221 du

512
2

2d22B~d/2,d/2!
E

0

ad /d1/2

~124t2!d/221 dt,

where we have used the transformation of coordinatesu
51/22t for the last expression. Next, we perform the sub-
stitution t5uad /d1/2 and obtain

I d512
4ad

d1/22d21B~d/2,d/2!
E

0

1S 12
4u2ad

2

d D d/221

du.

Sterling’s formula implies

lim
d→`

1

B~d/2,d/2!2d21d1/25 lim
d→`

G~d!

G~d/2!2

1

2d21d1/2

5
1

A2p
.

Therefore, remembering thatan→a, we obtain

lim
d→`

I d512
4a

A2p
lim

d→`
E

0

1S 12
2u2ad

2

d/2 D d/221

du.

The equality,

lim
d→`

S 12
2u2ad

2

d/2 D d/221

5e22u2a2
,

the fact that the above sequences are bounded by 1 for all
uP@0,1#, and the dominated convergence theorem imply
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lim
d→`

E
0

1S 12
2u2ad

2

d/2 D d/221

du5E
0

1

e22u2a2
du.

Thus,

lim
d→`

I d512
4a

A2p
E

0

1

e22a2u2
du512

2

Ap
E

0

21/2a
e2t2 dt

512erf~21/2a!,

and the theorem is proven. h
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