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We show that the acceptance probability for swaps in the parallel tempering Monte Carlo method for
classical canonical systems is given by a universal function that depends on the average statistical
fluctuations of the potential and on the ratio of the temperatures. The law, called the incomplete beta
function law, is valid in the limit that the two temperatures involved in swaps are close to one
another. An empirical version of the law, which involves the heat capacity of the system, is
developed and tested on a Lennard-Jones cluster. We argue that the best initial guess for the
distribution of intermediate temperatures for parallel tempering is a geometric progression and we
also propose a technique for the computation of optimal temperature schedules. Finally, we
demonstrate that the swap efficiency of the parallel tempering method for condensed-phase systems
decreases naturally to zero at least as fast as the inverse square root of the dimensionality of the
physical system. €2004 American Institute of Physic§DOI: 10.1063/1.1644093

I. INTRODUCTION as in theg-jumping Monte Carlo methoff, or suitable modi-

fications of the potential, as in the Hamiltonian replica ex-
Ergodic Monte Carlo simulations of large dimensional change methodf:*8

systems having complicated topologies with many discon-  In parallel tempering, swaps involving two temperatures

nected local minima are difficult computational tasks, thoughg and 8’ are attempted from time to time in a cyclic or

indispensable for many physical applicatidn®Among the  random fashion and accepted with the conditional probability

various methods dealing with such problems, the parallel

tempering methald?®is one of the most successful, espe- min{1,e(8'~AIVC) -Vl (1)

cially given the simplicity of the idea and the ease of imple- ’ '

mentation. For sure, the idea of coupling two independenfyhere \/(x) is the potential of the physical system under
Markov chains characterized by different parameters in ordegqnsigeration. This acceptance rule ensures that the detailed

to ensure the transfer of information from one to the othelygjance conditioff is satisfied and that the equilibrium dis-
has a long history. In physical sciences, coupllng ?trateg'et?ibutions are the Boltzmann distributions. As Hd) sug-

have been employed for the development of specialized sanyegts; the efficiency of the temperature swaps depends on the
pling techniques such as replica Monte Carlo samplinGyitference between the inverse temperatyeand 8’. In

H H H 21,22 H

of spin 3%?338%7 jump-walking; and simulated 4 ger to maintain high acceptance ratios, only swaps between
tempering??* to give a few_examples. How this coupling neighboring temperatures in a given schedBie,=5,<5;
mL_ls_t be perfc_)rmed in the smplest_, most general, and mosg-,,<'3N=,Bmax are attempted. An optimal schedule of tem-
efficient way is, however, quite a difficult problem. 534,165 has the property that the acceptance ratios between

_The parallel tempering method, as we utilize it in this neighhoring temperatures are equal to some predetermined
article, addresses the question of coupling independenfy e b value that is usually greater than or equal to 0.5.
Monte Carlo chains that sample classical Boltzmann distrithe getermination of the optimal schedule is complicated by
butions for different temperatures and which are usually geng, o tact that the distributions of the coordinateandx’ are

erated by the Metropoliet al. algorithm?>?° The method 4154 temperature depende(they are, of course, the Boltz-
has been formalized seemingly independently by Geyer and,5 distributions at the temperatur@sand B’, respec-
Thompsor® as well as by Hukushima and NemdfoOf tively).

course, it is not necessary that the distributions involved in | this article. we attempt to answer the following im-

swaps differ through their temperature. For instance, the Corbortant question: What are the main properties of the physi-

trolling parameter may be the chemical potential, as in they| system that control the acceptance ratio in the limit that
hyperparallel tempering methdd delocalization parameter, the differenceg’ — B is small? The answer to this question

allows for a better understanding of the applicability as well
dElectronic mail: cpredescu@comcast.net as the limitations of the parallel tempering method. In addi-
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tion, it allows for the development of optimal temperatureglobal minimum of the potential is O, perhaps after the addi-
schedules in a way that seems more direct and easier t@mn of a constant. Clearly, the addition of a constant does not
implement than other adaptive stratedi®s. change the acceptance probabilities for swaps.

In Sec. Il, we demonstrate in a rigorous mathematical In the parallel tempering algorithm, swaps involving two
fashion that the acceptance probabilities for parallel tempetemperature@ andB’ occur with the conditional probability
ing swaps are controlled, within a@(|8’— 8|%) error, by
the ratio of the two temperatures involved in swaps and by

the average potential fluctuationsf the system, at the in- e joint probability distribution density of the pointsand

verse temperatur8=(S+ B')/2. The acceptance probabili- x’ in an equilibrated system is given by the formula
ties are well approximated by the so-called incomplete beta
function law, which has the additional property that it is ex- 1 e~ BV(¥Ng—B'V(X)
act for harmonic oscillators. Under the assumption that the Q(B)Q(B8’) ’
relation between the average fluctuations and the average,
i o ere

square fluctuations of the potential is roughly the one for
harmonic oscillators, we develop an empirical version of the
. . . Q(B) = e_BV(X) dx
incomplete beta function law, version that connects the ac- Rd
ceptance probabilities for parallel tempering swaps with the ] o
temperature ratios and the heat capacity of the system. IS the configuration integral. It follows that the acceptance

In Sec. 111 B, we show how the incomplete beta function Probability Ac(B,8") for swaps between neighboring tem-
laws can be employed for the determination of optimal temPeratures is given by the average
perature schedules. We also explain the empirical observa- 1 o
tion that a geometric progression is the best schedule foAc(B3,8')= 0BaE) x| dx’ e AV AV
systems and ranges of temperatures for which the heat ca- K f
p_acity is almost consta_ﬁ’_f. In Sec. IlIC, we demonstra?e X min{1,e" ~AVK) =V 2)
rigorously that the efficiency of the parallel tempering _ _ _
method for harmonic oscillators decreases naturally to zero By constructionAc(B,8") is symmetrical under the ex-
at least as fast as the inverse square root of the dimensiondlhange of variables. Without loss of generality, we may as-
ity of the physical system. We then argue that the loss irfumeg’=pg. Then,
efficiency is even greater for condensed-phase systeatk i ' , , . ,

) i ) ) o (B =B)IV(X') =V = a(B" = BIMIKOV(x") = V(x)}
solids and liquids This result seems to be in contradiction min{1.e j=e

min{ 1,8~ AV -Vly,

with the findings of Kofke?® who suggested that such a curse — (B~ AV V()2
of dimension does not appear for parallel tempering. How-
ever, the result is in agreement with the explanation of Fuku- x e~ (B'=B) V(") =V(3li2. (3

nishi, Watanabe, and Takadfalt is for this reason that we . ] .

insist that our findings be proven in a mathematically rigor-R€placing Eq(3) in Eq. (2), we obtain

ous way. 1 _ _
The rigorous form of the incomplete beta function law  Ac(B,8')= —,f dxf dx’ e AVXe=AV(X)
involves average potential fluctuations at certain tempera- QUBQ(A") Jrd ™ Jue
tures. An evaluation of this property by Monte Carlo simu- R—1_
lations would require the computation of a double integral Xexp{— mB|V(X')—V(X)| : 4
over the configuration space. For this reason, current Monte .

Carlo codes would have to be modified extensively in ordein Eq. (4), the variableR and g are defined by the equations
to take advantage of the incomplete beta function law for the , ,

design of optimal temperature schedules. To circumvent this R '8_ and E: B+B (5)
undesirable situation, we propose an empirical version of the B 2

incomplete beta function law, version that is derived unde'?espectively. Due to the nature of the results we prove, it is

the assumption that the relation between the average ﬂucw?ﬁore convenient to express the various formulas in terms of

i h fl i f th ial i . —
tions and the average square uqtuatlons of the potentlg It?m new variablefR and 8. BecauseB'= 3, we need only
roughly the one for harmonic oscillators. In Sec. IV, we il- .

S L consider the casB=1.

lustrate the good applicability of the empirical law by per- . . . .
formi . . As announced in the Introduction, we are interested in

orming a Monte Carlo simulation for a cluster made up Ofestabl'sh'n asvmptotic laws in the limit tHat 1 for which
13 atoms of neon that interact through Lennard-Jones poten:- IShing asymptoti V,V ! 3 imi . whi
tials the error is of orderO(|B’—B|°) or, alternatively,O(|R
' —1]3). At this point, let us see that the acceptance probabil-

ity given by Eq.(4) is alternatively given by the formula

Il. THE INCOMPLETE BETA FUNCTION LAW

, Q(B)? -1
Consider ad-dimensional physical system described byA¢(8.8")= Q(B)QB) exp - R+1B|U —Ul|)_, ®
the potentialV(x), which is assumed to be bounded from B
below. To simplify the notation, we may also assume that thavhere, in generalf(U,U")) ; denotes the statistical average
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1 S EPTT In Egs.(12) and(13), the prime sign denotes the respective
T,B)zfo fo e Ple” PV Q(U)Q(U")f(U,U)DU V. averages or quantities obtained from their definitiof {lU)
@) is replaced byQ'[U,d(B)]. From Egs.(8) and (13), we
ded
In Eq. (7), Q(U) denotes the density of states. educe

In these conditions, the following proposition holds true.  Ac'(B8,8')=Ac(B,8')+O(|R-1[3), (14)

Proposition 1: We have for all Q'[U,d(B)] that satisfy Eq(12). This simple obser-
, R-1 _ 3 vation allows us to construct approximatioAs’ (3,8') of
Ac(B.B')=1— R+ 1 M(B)+O(|R-1[%), ® order O(|R—1|3) for the acceptance probabilitke(3,8")

by considering a special functional dependence for the den-

where o sity of states(2’[U,d(B)], such that the resulting approxi-
M(B)=pB(JU’— U|>E. 9 mation is exact for a certain class of physical systems.
Proof: A Taylor expansion of the exponential functionto  We take this class to be the harmonic oscillators, for
the third order and the identifU’ —U) ;=0 imply which Q' (U,d) = (27) T (d/2)" "UT="~. We prove in Ap-
pendix A that for anyd-dimensional harmonic oscillator,
QBB R-1_
_2 = eX _R_,’_lB(U _U) _ A ry — 2 fl/(1+R) d/2—1 1 d/2—1d
1{rR-1\%_ (15)
=1+—| —| BX|U'=U|35
2\ R+1 :8 <| | >B and
) 92—d -1
+O(R-1[). My(B)=2"°B(d/2,d/2)"~. (16)
Therefore Here, B(d/2,d/2) denotes the respective Euler’s beta func-
_ tion.
Q(B)? i 1/R-1 - U —Uf?y; For a harmonic oscillaton is the dimension. For gen-
Q(BQB) ~ 2\R+1 A '8 eral systemsg=d(p) is just a fitting parameter chosen such
3 that Eq.(12) is satisfied. In fact, Eq12), which in our case
+O(IR-1J%). (10 reads as
On the other hand, _
Ro1 2279B(d/2,d/2) " t=M(B),
<ex;{ - mﬁw = U|} >_ has always a unique solution becauge %B(d/2,d/2) "t in-
B creases strictly from 0O te-, asd also increases from 0 to

R-1 _ + . The following theorem is an immediate consequence of
=1-2 7 M(B) Eq. (14) and of the discussion above.
Theorem 1 (Incomplete beta function law): Consider

1(R-1\%, an arbitrary thermodynamic system for which(B) is given
2122 B2 — 12y _113 en
* 2 ( R+1 AHIU = UI%s+ O(IR=1P%). (D as a function of temperature. Le{ @) be the unique solution
Equations(10) and (11) imply of the equation
Q(B)? R—1_ 22-98(d/2,d/2) " 1=M(B). 17)
e exg — o= B|U’ —U|
QBB R+1 3 Then
R-1 1U(1+R) —
—1- - TM(B)+O(R-1]%, Ac(BB) = —————— [ g
B[d(B)/2d(B)/2] 7°
and the proof is concluded. O —
Proposition 1, while a powerful asymptotic result, has X (1—0)4P2"dg+O(|R-1%), (19

the disadvantage that it may produce negative nUMbers fQfi, he error term canceling for harmonic oscillators
the acceptance probability in actual simulations. However,

we can repair this in very straightforward fashion. Notice

that the fact that)(U) does not depend upon the tempera-||. CONSEQUENCES OF THE INCOMPLETE BETA

ture isnot crucialfor the proof of Proposition 1. Thus, given FUNCTION LAW

any other well-behaved density of stat@s[U,d(B8)] de- )

pending perhaps on the inverse temperature through an ad- There are several important consequences of Theorem 1.

justable parameted(3) and such that The first one concerns the development of an empirical law

_ , — connecting the acceptance probabilities with the heat capac-
ﬂ<|U_U’|>EZ M(B), (12) ity and the ratio of the temperatures involved in the parallel

we still have tempering swap. The second one regards the optimal distri-
RO1 bution of temperatures in parallel tempering Monte Carlo

Ac'(B,B)=1— m|\/|(B)+o(|R_1|3)_ (13) simulations. Yet a third one is the statement that the effi-
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ciency of the swaps between neighboring temperatures déer large dimensional harmonic oscillators. The relation has a
creases naturally as the inverse square root of the dimensiolirear scaling with the dimensionality of the systéthat is,
ality of the system. We analyze these consequences in somdgth the number of particlgs This scaling appears also for
detail in the remainder of the section. the heat capacity of harmonic oscillators,

Chv(B)=d/2.

For condensed phase systems, for which a harmonic su-
o perposition is roughly a good approximation of the Boltz-

The propertyM (8) is not usually determined in simula- mann distribution, one may safely assume that the functional
tions, nor is it measured in experiments. It is therefore necrelationship betweeM (8)2 andCy(3) is not very far from
essary to relate it to other thermodynamic properties, morgne one for the harmonic oscillator. Of course, this is always
precisely to the heat capacity. In addition, it is desirable tarye in the low temperature limit. In these conditions, the
develop a version of the incomplete_beta function law in'solutiond(ﬁ) of the equation
volving the heat capacity rather thah(g), even if the law _
has an empirical validity only. 2279B(d/2,d/2) " *=M(p),

The quantity

A. The empirical incomplete beta function law

is approximatelyd(8) = 2Cy(8). Replacing the last result in
/1) — Eq. (18), we obtain the followingempirical incomplete beta
M(B)=pB{(|U'-U X
(B)=A( s function law
measures the statistical fluctuations of the potem{a) and

is connected to the heat capacity of the system. More pre- Ac(B,B')~ — — fllm R HCV(E)fl
cisely, the Cauchy—Schwartz inequality says that B(Cy(B),Cy(B)) “°

Y. ’ 2_ ’ — 8 —

BV = Uy =pX|U" - U*)5. X(1—g)CvB-1dg, (22)
However, The good applicability of Eq(22) for realistic physical sys-

tems will be illustrated in Sec. IV for the case of a Lennard-

— it e — 1 S TRy Jones cluster. Equatid@2) can be expressed in terms of the
BNV -U[%)=8 Q(B)? fo fo ere full heat capacity of the system with the help of EtQ). The
empirical incomplete beta function law is still exact for har-
XQ(U)Q(U")(U'-U)%dU dU’ monic oscillators.

[ 1 %
_op2) -BU 2
=2p ‘Q(/g) fo e 7 0u)uTdu B. On the optimal schedule of temperatures

for the parallel tempering simulation

f e PUQ(U)U dU
0

2
] ) It is an empirical observatidfithat the optimal schedule
(i.e., the schedule for which all the acceptance probabilities

1

Q(B)?

The last term in the equation above is twice the potentiaf(?r Swaps between_ nelghborlng temperatures are pasial
o — i given by a geometric progression of temperatures, if the heat

contributionCy(p) to the total heat capacity of the system. ;ana6ity of the system is approximatively constant for the

(In this article, the heat capacity is always express_ed in umt§ange[,8min Bmad- The incomplete beta function law gives a

of the Boltzmann constai .) The total heat capacity SUms iract explanation of this phenomenon. As discussed in the

both the potential and the kinetic average square quctuauonsrevious section. the quantitied (E) and C (E) measure

and is given by the well-known formula P ' q v

essentially the same information: average potential fluctua-

C(_)=Cv(E) +d/2. (19) tions and average pote_ntial square fluctuations, respectively.
_ _ Thus, we expect tha¥l (B) is also constant in regions where
Then, the identity Cy(B) is. As shown by Eq(18), in these conditions, the
12— — acceptance probabilities are functions of the ratio of the tem-
BX|U" U s=2Cu(B) (20 peratures involved in swaps, only. Therefore, if the predeter-
implies the inequality mined number o_f replicas i (wi_th N large eno.ugh so that
- o Theorem 1 appligs then the optimal schedule is
M(B)*<2Cy(B). (21) B=R 8., 1<i<N, (23)

Equation(21) suggests thatl (E)2 is an extensive prop- where
erty of the physical system, property that may be very large

_ \I(N-1)
for systems for which the heat capacity is also large. In fact, R=(Bmax! Brmin) ' 249
Sterling’s formula shows that If one trusts it, the empirical incomplete beta function
o law can be used to evaluate the optimal schedule for arbitrary
2_ro2-d 192,44 systems in the following way. First, one computes a set of
Mu(B)"=[2""B(d/2.d/2) "] T’ values for the potential pa@,(8) of the heat capacity over
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the interval[ Bmin,Bmax] USINg a geometric progression law. ] 2
The results are then interpolated by a cubic spline, for ex- Jmm
ample. Only a rough estimate is necessary. Given a pre-

scribed valug for the acceptance probability and given theif and only if
inverse temperatur@;, one computeg; ,; by solving the

fll[lm(d’p)] g2 1(1— g)¥2-1gg=p,

0

equation . 1 1 1

am ﬁ[z TrR@Ap)| o TP
2 (1+Bi+1/8i) cu(B)-1 -

B(C (E) c (E)) fo 0 where erf! is the inverse of the error function. Straightfor-
VARV - ward manipulations show that the last relation is equivalent
X(1—)vA-1dg=p, (25

whereﬁz (Bi+ Bi+1)/2. One starts with8;= B, and con- _ 2v2 1 _12

tinues the procedure until the current inverse temperature R(d,p)—1+ﬁerf (1=p)+o(d™7),

becomes greater than or equal@g.y. This way, one deter-

mines both the optimal distribution of temperatures and thér to

minimal number of temperatures compatible with the pre- y

scribed acceptance probabilipy To ensure the validity of 2—2erf*1(1—p)+o(d*1’2). (27)

In[R(d,p)]= e

the approximation furnished by Theorem 1, the valuegof
should be large enough. In fact, values larger than or equal ind th der that. i | th tali
0.5 are necessary anyway in order to have good mixing be- € remin € reader that, In general, the notakgs X

tween the Monte Carlo walkers running at neighboring tem-" 0(d®) means

peratures. lim (xg—x)/d*=0.
Sure enough, one may use the full incomplete beta func- d—«
tion law to find the optimal schedule. However, the compu-

tation of M(8) requires extensive changes to the existing
codes. In addition, as illustrated by the example described in
Sec. 1V, the empirical version of the incomplete beta function
law may be sufficiently accurate for most systems of practi- o
cal interest. The applicability of the law can also be tested€lation that is similar to Eq9) of Ref. 18. o
during the computation of the heat capadity(3), by com- For condensed-phase sysFems, the_ hegt capac!ty iS usu-
paring the observed values for the acceptance probabilitiedlly larger than what a harmonic approximation predicts and,
with the ones predicted by the empirical incomplete betaherefore, so isVi(B). Consequently, for such systems, the
function law. acceptance ratio for harmonic oscillatéxsy(3,8') is usu-

ally not attained. In these conditions, all we can say is that

N(d,p) must satisfy the relation

C. Loss of efficiency with increasing dimension V2 IN(Bmax! Bmin)
for the parallel tempering method N(d,p)?dllzm, (29)

From Egs.(26) and (27), we learn that

V2 In(IBmax/Bmin)

— 412
NH(dyp)_d 4erf—1(1_p) to

(d*?), (28)

int In tfgs fu?sectmn,t we SSOW tt::att bl numtber 0finequality which demonstrates our claim that there is a curse
n ek;m;'I'tla € en:pertart] urég(d, p) Tltensures an acc;ep ance ot dimension for the parallel tempering method. In this re-
probability greater than or equal 1o some prese value spect, notice that runnin§l(d,p) independent replica re-

€ (0,1) for ad-dimensional system increases naturally at

. . . uiresN(d,p) times more computational power. However,
least as the square root of the dimensionality for condensecg- (d.p) P P

. . . ) iven the improvement in the quality of the sampling
phasg systemgboth SO"dS. and liquigs This observation brought in by parallel tempering, this loss of efficiency is an
was first made by Hukushima and Neméfo. acceptable price to pay

We begin with a rigorous mathematical analysis for har- '
monic oscillators. For them, the optimal schedule is a geo-

metric progressiofbecauseM (E) is independent of tem-
peraturé and the minimum value dfi(d,p) is given by IV. A NUMERICAL EXAMPLE

In(IBmax/,Bmin)

IN[R(d,p)] 2, (26)  incomplete beta function law for the neon realization of the
. . . . LJ,5 cluster. This example is representative of the type of
where[x] is the integer part ok andR(d,p) is the solution  gpnpjications one s likely to encounter in practice. We shall

In this section, we verify the validity of the empirical
NH(d!p):

of the equation also illustrate the use of the incomplete beta function law for
2 U1+R) the design of optimal schedules for parallel tempering. With
B(d2d/2) fo 092" (1-60)%* tdo=p. the help of the identityC(8) = C\(8) +d/2, the empirical
incomplete beta function law is expressed as a functional of
As shown by Theorem 2 of Appendix B, the full heat capacity as

Downloaded 30 May 2008 to 152.3.22.23. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



4124 J. Chem. Phys., Vol. 120, No. 9, 1 March 2004 Predescu, Predescu, and Ciobanu

Ac(B,B')~2B(C(B)—dI2C(B)~d/2)* 200
Va+R) c(@)—di2—1 c(@)—di2—1 Hauid
X —deml— —diz- Gas
fo 0 (1=6) de, 1504 solid "
2
(30
(=9
whered=3x13=39 is the dimensionality of the cluster. 3100
The total potential energy of the Necluster is given by §
ey i 50+
Vior= 2, Vialrij) + 2 Ve(ri), (3D
i<j i=
where V| y(rj;) is the pair interaction of the Lennard-Jones 0 :
potential, 0 10 &) 20 30
12 6
Vi (ri)=4e E _ G_U (32) FIG. 1. Heat capacitieén units ofkg) as a function of the temperatuile
LA L Fij rij ' (in Kelvin). The data for the plot have been computed with the help of the
] o ) optimal schedule determined in Sec. IV. The error kamsce the standard
and V,(r;) is the confining potential, deviation are smaller than the plotting symbols.

|ri - Rcm| ) 20
. (33

V(i) = 5LJ<R—
C
—13is of h ¢ icles in th tation, so that each of the acceptance ratios eventually lies
Np=13 is, of course, the number of particles in the Systempqyyeen 40% and 60%. The 3gtatistically independent
The values of the Lennard-Jones parametggsande ; used  gyeams of random numbers necessary for the simulation are

are 2.749 A and 35.6 K, respectively. The mass of the Ng piained with the help of the Dynamic Creator packZ®.
atom was set tan,=20, the rounded atomic mass of the  aq 5 counting device, we definepmssas the minimal
most abundant isotop&, is the coordinate of the center of ot o Monte Carlo attempts over all particles in the system.
mass of the cluster and is given by Because we update the neon atoms in a successive fashion, a
1 N pass consists of 13 basic steps. One also defildsca as a
Rcm=N—2 ri. (39 computational unit made up of 100 thousand passes. The size
pi=1 of the block is sufficiently large that the block averages of
Finally, R,=40; is the confining radius. The role of the the various quantities computed are independent for all prac-
confining potentialV,(r;) is to prevent atoms from perma- tical purposes. The accumulation phase of the simulation has
nently leaving the cluster, since the cluster in vacuum at angonsisted of 100 blocks for a total of 10 million passes per
finite temperature is metastable with respect to evaporatiorfemperature. The accumulation phase has been preceded by

The range of temperatures employed is 3 to 30 K. In thigan equilibration phase of 20 blocks.
range of temperatures, the system undergoes two phase tran- Parallel tempering swaps between neighboring tempera-
sitions: a solid—liquid transition at about 10 K and a liquid— tures are attempted every 100 passes in an alternating fashion
gas transition at about 18 K, respectively. Surely, the termi{first, with the closest lower temperature and then, with the
nology we employ is more or less abuse of languageglosest higher temperatyréfhe only exceptions are the two
because true first-order phase transitions happen only in tfend temperatures, which are involved in swaps every 200
limit of an infinite number of particles. However, Fig. 1 passes, only. The acceptance probability of swagsat a
clearly shows two pronounced maxima in the heat capacitgiven temperaturg; is computed as the fraction of accepted
of the system, maxima that separate the three phases. In tR&aps involving that temperature. Thus, except for the end
limit of infinite number of particles, these maxima sharpen totemperatures, the computed values are equal to
a delta function and their temperature value is usually low-
ered to the corresponding bulk values.

The parallel tempering Monte Carlo simulations are car-
ried out using a total of 32 parallel streams, each running a
replica of the system at a different temperature. The tempera- Because the intermediate temperatures are distributed in
tures range from 3 to 30 K and are distributed in geometriggeometric progressiorR=(30/3)"*! is a constant. In this
progression. For each stream, the coordinate sampling is petase, the empirical incomplete beta function law given by
formed with the help of the Metropolis algorith?hThe ba-  Eq. (30) says that the dependence of the acceptance prob-
sic Monte Carlo steps consist in attempted moves of thabilities with the temperature is a functional of the heat ca-
physical coordinates associated with a given particle. Eacpacity, only. This observation is well supported by the ob-
attempted move is then accepted or rejected according to tteerved acceptance probabilities, which are plotted in Fig. 2.
Metropolis logic. By attempting to move the particles one at  During the Monte Carlo simulation, besides acceptance
a time, we can increase the maximum displacements angtios, we have also evaluated the heat capacities at different
ensure a better quality of sampling. The maximum displacetemperatures. Then, the heat capacities have been interpo-
ments are adjusted in the equilibration phase of the compuated using a cubic spline and acceptance ratios have

1
aCiIE[AC(ﬁi—lugi)_"AC(,Bi Biv)]
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FIG. 2. Observed acceptance ratios as a function of the tempeihtine FIG. 4. Observed acceptance ratios for the optimal schedule of temperatures
Kelvin). A geometric progression schedule has been utilized. The plot is in aletermined with the help of the empirical incomplete beta function law. The
direct relationship with the heat capacity curfeee Fig. 1, as predicted by  deviations from the ideal result @gf=0.75 are comparable to the statistical
the incomplete beta function law. The error bars are about the size of thaoise.

plotting symbols.

quence, the acceptance probabilities increase to 1. At the
been computed with the help of the empirical incompletecritical points, the acceptance probabilities for parallel tem-

beta function law. More precisely, we have computed pering swaps decrease very much, as the heat capacities in-
1 crease suddenly. This analysis is consistent with the results
ac/ ==[Ac'(Bi_1,8) +Ac (Bi.Bi+1)]: shown in Fig. 2. Therefore, the loss of efficienc/y for solids
2 and liquids is even more pronounced than the"? decay

whereAc’(8,8') is given by the right-hand side of E(O). comqued ford-dimensional h.armo.nic oscillators.

In Fig. 3, we plot the absolute values of the differences be-  USing the strategy described in Sec. Il B, we have de-
tween the observed and computed acceptance probabilitie@.rm'”ed the optimal schedule of temperatures necessary to
These values are smaller than the estimated error bars for tf@€hieve a constant acceptance probabilitpef0.75 for all
same differences. In fact, the maximum difference betwee§Waps between neighboring temperatures. The minimal num-
the two curves is less than 0.008. Therefore, for all practicaP®r of temperatures needed has been found to lher84 the
purposes, the empirical version of the incomplete beta functemperatures located in the intervalK, 30 K) are countefi

tion law is correct. Then, we have performed a second Monte Carlo simulation

As discussed in Sec. Il C, the heat capacity for solids id0 verify the validity of the schedule. The plot in Fig. 4
usually larger than what the harmonic approximation predeémonstrates that the computed schedule works very well.
dicts, except for the low temperature limit. The liquid phaseTh'S explicit appllcatlo_n illustrates the utility of thg empmca!
has an even larger heat capacity, whereas the gas phase hd8@mplete beta function law for the determination of opti-
smaller one. In the high-temperature limit, t8g(8) com- mal temperature schedules in parallel tempering simulations.

ponent of the heat capacity decreases to zero. As a conse-
V. SUMMARY AND CONCLUSIONS

We have successfully and rigorously related the accep-
tance probabilities for parallel tempering swaps to the ratio
between the temperatures involved in the swap and the av-

1 A erage statistical fluctuations of the potential at some interme-
1 H‘ . . .
TAnd \A, diate temp_erature. The respective law, _called.the incomplete
_/‘ R S beta function law, is exact for harmonic oscillators and of

H A orderO(|B’ — B|®) for arbitrary systems. We have also dem-

: onstrated that there is a loss of efficiency in parallel temper-
ing simulations of condensed-phase systems with the in-
crease of dimensionality. The loss of efficiency is at least
d~*2, the value computed for harmonic oscillators.

Motivated by the fact that the existent Monte Carlo
codes do not allow for the computation of the average po-
0 70 tential fluctuations without extensive reprogramming, we

T(K) have developed and tested the empirical incomplete beta
FIG. 3. The dotted line shows the absolute value of the differences betweefunCtion law. This empirical law connects the acceptance
the .ob.served values for the acceptance probability of swaps and the on J Obab llities of the parallel tempering swaps Wl_th the h_e_at
predicted by the empirical incomplete beta function law. Also plotted CaPacity of the system. The law has been extensively verified
(dashed lingare the estimated error bars for the differen@s—ac;|. for the LJ 5 cluster, on a range of temperatures that spanned

0.01 L L

0.00
0
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function law given by Theorem 1 is an exact mathematicaPUbJeCt'

statement, valid for all systems asymptotically, for close

enough temperatures. For strongly anharmonic systémns AppeNDIX A: EVALUATION OF INTEGRALS

instance, systems for which the sampling is performed on a

lattice, such as spin glasses and self-avoiding random yyalks ~ For an arbitrary d-dimensional harmonic oscillator
the empirical version of the incomplete beta function lawwhose global minimum is zero, the density of states is given
may fail. In such cases, the rigorous incomplete beta functioly the formula)(U) = (2m)92U%2- 11 (d/2). In these con-
law should be used for the development of optimal temperaditions, it is but a simple exercise to show that the accep-
ture schedules. As discussed in the text, the evaluation of tHance probability for the parallel tempering swaps is given by
average, the equation

(Bﬁl)dlz « *© _ _n! ’ _
1 ’ ACH(ﬁ,ﬁ’):—zf J’ e ,BUe .3 u Udlz 1
QB2 e AVgmAVEX) ['(d/2)
M(B) B fRddeRddX e e o Jo

rdl2—1 i (B'=pB)(U'—U) ’
XBIV(X')=V(x), (35) xU min{1e 1du d(U .)
Al

requires however a double integral over the configurationye also want to evaluate the quantiy,(3) [see Eq(16)],
space. This integral can be computed by doubling the numhich is given by the formula

ber of temperatures in the parallel tempering schedule, as

follows A dl
: _ Pk —BUA—BU’ | ydi2—1
Mu(B) r(d/2>2fo foe e v
Bo=B1<P2= B3<Ps=Ps< " <Lon-2= Pon-1- xU'92-1y’ —uldU du’. (A2)

Then, to computév (3;), one collects the values of the dif- While for a harmonic qscillator the parametkrs an integer, _
ferences;|V(x)—V(x')| any time a swap between equal We cor_npute t_he two |_n_tegrals above under the assumption
neighboring temperatures;, and B,., is attempted. Of thatd is a strictly p_osmve real nu_mber. We prove that_the
course, swaps between equal temperatures are always a@lue ofAcy(B,8') is given by the incomplete beta function
cepted. The valuell(3;) are interpolated by a cubic spline. 2 1/(1+R)

The determination of the optimal temperature schedule theACH(B,8’)= WJ
proceeds in a way similar to the approach utilized in Sec. IV. '

ed/Z*l( 1_ 0)d/2*l d 0
0

While the reader may object that the introduction of an (A3)
intercalated set of identical temperatures is an additionavhereB(a,b) is Euler’s beta function,
computational burden, many times, there are certain advan- 1
tages in doing so. For large dimensional systems, coupled B(a,b)zf 0 H(1-6)""1d6
independent replica running at identical temperatures consti- 0
tute an elegant device for parallelizing the Monte Carlo codeand
whenever the number of available computer nodes is at least ,
twice the number of temperatures in the parallel tempering R= max{ B_ﬁl}
schedule. Nowadays, with the advent of inexpensive cluster BB
computing, this is the case with many research groups. Fulin addition, we prove that
thermore, in this setting, the computation of the heat capacity n2-d 1
and other properties of the system can be done by means of Mu(B)=2"""B(d/i2di2) "~ (A4)

unbiased estimators, as shown by E[). Because the functiohcy(B,8') is symmetrical in its

On a more general level, we hope that a better underarguments, we may assume without loss of generality that
standing of the laws governing the acceptance probabilitieg’= g, so thatR=3'/8=1. By decomposing the domain of
for swaps in parallel tempering methods may lead to usefulhe integral against)’ in Eq. (A1) in two regions withU’
research in improving the efficiency of the methods. In the<U and U’=U, respectively, it is straightforward to see
meantime, we recommend that the dimensionality of the systhat
tems be maintained as low as possible, for instance, by adia- L , ,
batically reducing those degrees of freedom that do not lead ACH(B,B)=1=1(B.B)+I(B.B),
to a significant degradation in the quality of the final results.where

(A5)
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(BB’ )"’ZF fu Ry
1(B,B")= T(d2)2 du . du’ e
Xe—ﬁ/U'UdIZ—lurd/Z—l_ (AB)

Performing the substitutiod’=U #, we obtain

IBd d/r2
I(BB )_F(dlz f dUJ doe B(1+R0)Uud 10d/2 1
F(d)Rdlz 1 0d/271
~T(d2)? f Y TrRe) (A1)

Performing the change of variables=R (t " 1—1), we
conclude

1
" — d2—174 _4\d2—1
1(B8,B8") B(d/2.d72) 1/(R+1)t (1-1) dt

1U(R+1)
=1—- —B(d/Zd/z)f td/Z*l(l_t)dlzfldt,
(A8)
where
L(d2? (i, i
B(d/Zd/Z)— (d) :jotd/Z l(l_t)d/Z ldt

is Euler’s beta function. The value bfB’,8) is obtained by
replacingR with 1/R in the first expression of EqA8). We
compute

\(8".8)= d/2 a2) f

Equation(A3) follows from Eqgs.(A5), (A8), and(A9), after
easy simplifications.

1/(1+R)
td/Z* 1( 1_ t)d/Z*l dt

ordinate transformations used in the proof of E&3) lead to
the equation

r(d+1)

1
f(20—1)9d/2—1(1—0)d’2-1d9
12
1 1
=2dB(d/2,d/2) 2|1—§B(d/2,d/2) . (A9)
where
1
|1=J 09%(1- )" 1 do.
12
Integrating by parts the last integral, we obtain
= +fl 69%" 1 (1-6)"*do= 2 (A10)
1od29 " ) d2d "2
where
|2:

1/2
(1 _ 0)d/2* 10d/2 d 0
0

Combining Eq.(A10) with the identity
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1
|1 +1,=B(d/2d/2+ 1) = 5 B(d/2/2),

we obtain

2 1
21 1:@4‘ EB(d/Z,d/Z),

which, after replacement in EGA9), produces Eq(A4).

APPENDIX B: A LIMITING THEOREM

Theorem 2: Let{aq4}4=1 be a sequence of positive num-

bers convergent te>0. Then

V2-agld? 4o g o1
B(d/2d/2)f o7 (1= )7 do

=1—erf(2%a), (B1)

where

erf(x)= —

X 7t2
e
\/Efo

is the error function

Proof. We compute

2 (1v2magid gy dpen
la= B(d/2d/2)f g7 (1= 6)7" " de

2 12
-1 d/2—1 _ di2—1
Y BAR2d) S yqe® L7070

S — f”"’dm 1-4t%)92 14t
T 2972B(d/2,d/2) Jo ( ) ’

where we have used the transformation of coordinates
If applied to Eq.(A2), the same decomposition and co- =1/2—t for the last expression. Next, we perform the sub-
stitution t= fary/d¥? and obtain

Idzl_

4ad 1(

402a§ dr—-1
T T8 (d2.d2) Jo | 1T ) do

d
Sterling’s formula implies

1 I'(d) 1

B(d/2d/2)2 1d™~ M T (d72)? 27 1a™?

lim

d—oe

1
2w
Therefore, remembering that,— «, we obtain
- 1 202a§ d2—1
J'fl'd_l_J__d'Tlf (1— a2 ) de.
The equality,

lim

d—o

di2—
( _202a§> 2 1:e_202a2
d/r2

the fact that the above sequences are bounded by 1 for all
6#e[0,1], and the dominated convergence theorem imply
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1 1
. _ 2 2
Ilmf =fe2"“d0.
d—owJ 0 0

Thus,

1_

2020’5 d2—1
a7 ) 0

fim 11— 2 fl
imly=1—— 1| e
dﬁocd V2w Jo

=1-erf(2Y%),

and the theorem is proven. O

2“292d0=1—1f2”2aet2dt
T o

IR. H. Swendsen and J.-S. Wang, Phys. Rev. 155t2607(1986).

Predescu, Predescu, and Ciobanu

11Q. Yan and J. J. de Pablo, J. Chem. PHyis} 1727(2001).

12F. calvo and J. P. K. Doye, Phys. Rev6B, 010902(2001).

13D, Bedrov and G. D. Smith, J. Chem. Phy45 1121(2001).

1D. Gront, A. Kolinski, and J. Skolnick, J. Chem. Phy45 1569(2001).

15y, Ishikawa, Y. Sugita, T. Nishikawa, and Y. Okamoto, Chem. Phys. Lett.
333 199(2001).

18A. Bunker and B. Dunweg, Phys. Rev.@3, 016701(2002).

R. Faller, Q. Yan, and J. J. de Pablo, J. Chem. Phy8.5419(2002.

18H. Fukunishi, O. Watanabe, and S. Takada, J. Chem. PH\&.9058
(2002.

19C. J. Geyer and E. A. Thompson, J. Am. Stat. As€f%;.909 (1995.

20K, Hukushima and K. Nemoto, J. Phys. Soc. J§5. 1604 (1996.

21D, D. Frantz, D. L. Freeman, and J. D. Doll, J. Chem. Pi9&.2769
(1990.

22T, W. Whitfield and J. E. Straub, Phys. Rev6B, 066115(2001).

2M. C. Tesi, E. J. Janse van Rensburg, E. Orlandini, and S. G. Whittington’>A. P. Lyubartsev, A. A. Martsinovski, S. V. Shevkunov, and P. N.

J. Stat. Phys82, 155(1996.
3U. H. E. Hansmann, Chem. Phys. Le281, 140(1997).
4M. G. Wu and M. W. Deem, Mol. Phy€7, 559 (1999.
SM. Falcioni and M. W. Deem, J. Chem. Phyid.0, 1754(1999.
6Q. Yan and J. J. de Pablo, J. Chem. Py, 9509(1999.

7J. P. Neirotti, F. Calvo, D. L. Freeman, and J. D. Doll, J. Chem. PHi3.

10340(2000.

8F. Calvo, J. P. Neirotti, D. L. Freeman, and J. D. Doll, J. Chem. Ptiy3.

10350(2000.
9Q. Yan and J. J. de Pablo, J. Chem. PHy3 1276(2000.
10y, Sugita, A. Kitao, and Y. Okamoto, J. Chem. Ph§$3 6042(2000.

Voronstsov-Velyaminov, J. Chem. Phyg6, 1776(1992.

24E. Marinari and G. Parisi, Europhys. Lett9, 451 (1992.

25N, Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. M. Teller, and E.
Teller, J. Chem. Phy1, 1087(1953.

%M. Kalos and P. Whitlock,Monte Carlo MethodgWiley-Interscience,
New York, 1986.

27, Andricioaei and J. E. Straub, J. Chem. Phi87, 9117(1997.

28D, A. Kofke, J. Chem. Physl17, 6911(2002.

29M. Matsumoto and T. Nishimura, iMonte Carlo and Quasi-Monte Carlo
Methods 1998Springer-Verlag, New York, 2000pp. 56—69.

SOhttp://www.math.keio.ac.jpfmatumoto/emt.html

Downloaded 30 May 2008 to 152.3.22.23. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



