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Multiscale methods for macromolecular simulations
Paul Sherwood1, Bernard R Brooks2 and Mark SP Sansom3
In this article we review the key modeling tools available for

simulating biomolecular systems. We consider recent

developments and representative applications of mixed

quantum mechanics/molecular mechanics (QM/MM), elastic

network models (ENMs), coarse-grained molecular dynamics,

and grid-based tools for calculating interactions between

essentially rigid protein assemblies. We consider how the

different length scales can be coupled, both in a sequential

fashion (e.g. a coarse-grained or grid model using

parameterization from MD simulations), and via concurrent

approaches, where the calculations are performed together

and together control the progression of the simulation. We

suggest how the concurrent coupling approach familiar in the

context of QM/MM calculations can be generalized, and

describe how this has been done in the CHARMM

macromolecular simulation package.
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Introduction
Recent years have seen a significant increase in the ability

of computational approaches to help us understand the

structure and function of complex biological systems.

Alongside the advances in available computer power,

we have seen a steady progress in the development

and validation of modeling methods spanning a variety

of length and time scales. Explicitly correlated electronic

structure methods with linear scaling with system size

now offer the prospect of chemical accuracy for the

energetics of biological chemical reactions [1]. However,

there is a massive disparity in the time and length scales

on which the important cellular events occur and those

that are accessible using these quantum-based tools.
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Much larger length scales and longer timescales can be

addressed by atomistic treatments based on much sim-

pler, molecular mechanical expressions for the energy

(important examples being molecular dynamics (MD) [2]

and the elastic network models [3]), in addition to the

methods based on larger primitive particles, for example,

those in which each bead represents a small number of

atoms. At longer length scales still, we will describe

approaches, which treat whole macromolecules as the

building blocks, allowing the study of intermolecular

interactions. This being of particular interest in docking

and in structural studies of macromolecular assemblies.

To make predictions of macromolecular behavior from

first principles, it is clearly necessary to incorporate

knowledge from studies at the small length scales into

the more coarse-grained (CG) approaches. Since every

method (except for first principles quantum chemistry)

depends on parameters to describe the energy of inter-

actions, one can foresee a process by which we can ascend

the length scale ladder; each successive method deployed

incorporating parameters taken from the previous one.

This approach is already the key to atomistic simulation

using MD techniques, as in the widely used parameter

sets (force fields), which incorporate data from QM cal-

culations, and other examples will be given below. This

methodology has been referred to in a recent review in

this journal [4] as the serial multiscale approach. Others

have used the terms sequential [5], implicit, or message-

passing methods to describe the approach. The serial

approach has the weakness that any fitted parameter

set, no matter how carefully constructed, is likely to have

limits to its applicability or accuracy. For example, MD

simulation using standard force fields will break down

when a chemical bond is significantly stretched or an

electronically excited state is present. For this reason, it

necessary to find other ways to integrate the calculations

at the different length scales in a more closely coupled

way. Invariably this requires the execution of multiple

component calculations as part of a given simulation,

leading to their description as parallel multiscale treat-

ments (also known as concurrent [5] or explicit schemes).

One obvious approach is to introduce the concept of a

spatial decomposition, whereby most of the system trea-

ted using the simpler method and the part for which that

method fails is treated by a higher level of theory. The

most widely used example is the mixed quantum

mechanics/molecular mechanics (QM/MM) approach

[6], and one can imagine this description working at other

length scales, but with more difficulty. While QM and

MM share the same atomistic character, at the longer

length scales mapping between the system descriptions
www.sciencedirect.com
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necessarily becomes more complex. In this article, we will

follow [5] and use the terms sequential and concurrent,

reserving the term parallel for the use of multiple com-

pute processors.

It is possible to subdivide the sequential and concurrent

approaches further, by looking into the nature of the

information transfer between the different calculations

[4]. This classification of methodologies is perhaps best

developed in the field of process engineering [7], where

the drive is to integrate detailed materials models into a

predictive model of macroscopic behavior.

QM/MM methods
As noted already, the close coupling of QM and classical

MM approaches is an important example of a concurrent

multiscale scheme. When applied to enzymic catalysis, a

quantum mechanical method is used to study the reactive

process (active site and some or all of the substrate) and

the surroundings, which will include the remainder of the

enzyme, solvent, counterions, etc., is treated by classical

MM models. The QM/MM scheme, especially when

used with a cost-effective QM method, such as a semi-

empirical theory, allows exploration of the potential

energy surface (PES) and molecular dynamics to obtain

free energies of reactions. It is now established as the

method of choice for the study of enzymatic reactions. It

is not necessary to discuss the history of QM/MM models,

as there are many good reviews on the subject. In particu-

lar, we refer the reader to the comprehensive article by

Senn and Thiel [6], in which many aspects of the method

are described and a summary table of applications is

provided, and to the forward-looking discussion of Lin

and Truhlar [8].

QM/MM models — the conventional and
subtractive approaches
We start with a description of the established QM/MM

methodology in which the QM and MM calculations are

performed on different parts of the chemical system. The

separate regions are coupled, of course, and the coupling

terms can take a variety of forms depending on the

particular model, usually on the basis of classical electro-

statics and parameterized nonbonded interactions. Sub-

sequently, Morokuma and his coworkers have introduced

a subtractive [6] QM/MM model exemplified by the

ONIOM scheme [9]. In this case, the domain chosen

for the lower level (or more CG) calculation includes

those parts of the system treated at a higher level. The

multiple-counting is tackled by subtracting a third

energy, that of the inner domain at the lower level of

theory. In this way, the interactions between the domains

appear within the lower level calculation and no coupling

terms have to be devised. A similar approach has been

developed for solid-state modeling by Sauer and Sierka

[10], and the technique can simply be applied to other

levels of theory. Mixing different QM models, for
www.sciencedirect.com
example density functional theory (DFT) with coupled

cluster models, is one important application. At longer

length scales, we can now integrate atomistic and coarse-

grain treatments, as discussed below.

Energetics of reaction pathways
QM/MM calculations have been widely deployed in the

study of enzymatic reactions. Many different QM

methods have been used, ranging from semiempirical

to high level; correlated [11] approaches and many of

the techniques of small molecule computational chem-

istry can be used to explore the PES for macromolecules.

Although there are serious limitations arising from the

lack of sampling inherent in such an approach [12], the

gross features of the PES can provide useful information

in the discussion of reaction mechanisms.

Typical QM/MM studies in the past involved a single

QM system embedded in a classical MM region. There

has been a major effort to streamline QM/MM calcu-

lations, so that as many as 100 QM calculations are

performed simultaneously in a single computer run.

For example, a QM/MM potential energy function has

been implemented between the CHARMM [13] and Q-

Chem software packages [14]. This interface supports the

minimization and dynamics via analytical first derivatives

at the Hartree–Fock, DFT, and post-HF (RIMP2, MP2,

and CCSD) levels of theory. In addition, the replica path

(RPATH) [15], nudged elastic band (NEB) [16], and the

combination of RPATH restrained distance (RPA-

TH + RESD) [17] reaction pathway methodologies are

fully supported. These are powerful techniques for study-

ing reaction pathways in a multilevel parallel (or parallel/

parallel) fashion, with each QM/MM pathway point being

distributed to a different node of a Beowulf cluster. The

software is designed to facilitate the optimization and

analysis of a pathway in a single run.

QM/MM approaches to free energies
Integrating QM into a macromolecular dynamical simu-

lation provides a route to the free energy differences

associated with biochemical processes. Direct compu-

tation of the free energy of a chemical system from the

thermodynamical partition function is rarely practical and

many creative approaches to extracting the relevant free

energy changes for processes of biological interest from

tractable MD simulations have been devised. The ad-

equate sampling for conformational space remains a

challenge, especially when higher-level QM calculations

are used. The reader is referred to Ref. [18] for a review of

the methods by which free energies based on ab initio free

energy results may be obtained. In many cases, it is

satisfactory to determine the zero-temperature reaction

path for the QM system (with the MM surroundings

relaxed at each point) and then use MD to sample the

entropic contribution of the enzyme or solvent dynamics.

Where the motion of the QM atoms needs to be included,
Current Opinion in Structural Biology 2008, 18:630–640
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Scheme 1
a promising approach would appear to be that based on

thermodynamic cycles [19], see Scheme 1.

The desired transformation (between states A and B at

the high level computational technique) is shown by the

white arrow. It is not usually directly accessible because of

the cost of achieving adequate conformational sampling

at the high level of theory. However, it can be computed

by summing the three gray arrows, whereby the free

energy difference between A and B is computed using

a cheaper Hamiltonian (either MM or a semiempirical

QM scheme such as EVB [19]). States A and B can be

either distinct chemical states in a proposed reaction

mechanism or different chemical systems, in which case

the A–B transformations are nonphysical (known as

‘alchemical’ free energy perturbation). Recently Woods

et al. [20] have suggested an approach to improving the

accuracy of the two vertical integrals by using Metropolis–
Hastings scheme (performing a Monte Carlo sampling at

the MM level but using a QM/MM acceptance test).

In some cases, it is possible to estimate free energy

changes without recourse to dynamical sampling. Within

a harmonic approximation, the second derivatives of the

energy with respect to the atomic coordinates (the Hes-

sian) allow the computation of the vibrational entropy. As

a result, there is also a renewed effort to utilize partial or

full multiscale Hessians to calculate molecular flexibility

and to estimate thermodynamic properties, such as reac-

tion free energies. Expanding on the previous function-

ality, full QM/MM analytic second derivatives have

recently been implemented into Q-Chem and interfaced

with CHARMM’s VIBRan module [21]. Efficiency in

calculating the Hessian can be achieved by limiting

the number of environmental (i.e. MM) degrees of free-

dom and solving couple perturbed calculations on the

allowed degrees of freedom. This is most easily done by

treating distant molecular groups as rigid objects with

only rotational and translational degrees of freedom.

A new vibrational subsystem analysis (VSA) method has

been developed and implemented that couples global

motion to a local subsystem while including the inertial

effects of the environment [21]. The premise of the VSA

method is partitioning of a system into a smaller region of

interest and usually a larger part is referred to as environ-
Current Opinion in Structural Biology 2008, 18:630–640
ment. This method allows for researchers to address a vast

array of interesting problems. Examples of these include,

but are not limited to, more accurately estimating

vibrational free energy contributions for parts of a large

system; elimination of the ‘tip effect’ in elastic network

model (ENMs) calculations; probing specific degrees of

freedom that may contribute to free energy differences

and estimating activation free energies in QM/MM reac-

tion path calculations. The main use of this method will

most probably be the estimation of pathway free energies

as opposed to just enthalpies, without the need for

extensive dynamic sampling.

Adaptive schemes
We now consider the recent attempts to move beyond a

static definition of the QM region. This has been a topic

of research in the materials modeling community for

some time [22] where it is required for problems such

as crack propagation. A recent development of the Learn

on the Fly (LOTF) method [23] has led to its application

to biological systems, in which the AMBER QM/MM

implementation [24] has been used (Gabor Csanyi,

unpublished data). For biological systems, the most

important application is solvation, where solvent mol-

ecules may move into the active site and thus require

QM treatment for part of the dynamics trajectory. Hey-

den et al. have recently proposed the adaptive partitioning

[25] approach, which addresses issues of discontinuities in

the energy and gradients characteristic of some of the

earlier methods.

Electronic excitations
To finish this section of the review, it is worth mentioning

the recent developments in two areas of protein science in

which the QM/MM approach can be used to explore

biologically important electronic transitions. We first con-

sider the application of the QM/MM approach to photo-

chemistry and the study of excited state PESs. Till date,

the most popular QM methods for these studies are those

based on multiconfigurational wavefunctions (e.g.

CASSCF) and the availability of second order pertur-

bation theory corrections for dynamical correlation (the

CASPT2 scheme) now enables highly accurate energetics

to be computed for excited state PESs. The CASPT2

scheme has recently been incorporated into a QM/MM

approach [26] and used to study the fluorescence of the

green fluorescent protein (GFP) used in the design a

prototype light-driven molecular switch.

It is also possible to use QM/MM molecular dynamics to

explore the influence of enzyme and solvent on redox-

active transition metals. One approach, within the frame-

work of Marcus theory, uses classical MD to sample the

conformational space, combined with DFT calculations

of the vertical ionization process at a number of snapshots.

This approach was able to compute a difference in redox

potential of 60 mV (between mesophilic and thermophilic
www.sciencedirect.com
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forms of Rubridoxin) to within 20 mV [27]. A scheme that

incorporates dynamics on both the oxidized and reduced

PES and switches between them in a grand-canonical

MD scheme has been derived and applied to the redox

potential of cupper in azurin [28]. Very recently, a new

approach to the simulation of redox processes has been

suggested. The oxidation state is considered continuously

variable, using fractional electron count [29] and can,

therefore, be used as an order parameter in a thermodyn-

amic integration free energy scheme.

Elastic network models
One of the most important tools for the CG study of

protein conformation changes is the ENM. Given the Ca

atomic coordinates for a protein’s native structure, we

build an ENM by using a harmonic potential with a single

force constant C to account for pairwise interactions

between all Ca atoms that are within a cutoff distance

(RC = 10 Å). The energy in the elastic network repres-

entation of a protein is

Enetwork ¼
1

2

X

d 0
i j
<Re

Cðdi j � d0
i jÞ

2
;

where dij is the distance between the dynamical coordi-

nates of the Ca atoms i and j, and d0
i j is the distance

between Ca atoms i and j, as given in the reference

structure. For recent reviews see [3,30]. It is especially

useful for multiscale modeling in that it provides a simple

CG model that allows protein flexibility while preserving

a structure that is reasonably close to an experimentally

observed structure. This model is purely harmonic, thus

proteins cannot unfold. The low-frequency modes from

an ENM model present an excellent basis for examining

global motion. Limitations of ENM for examining pro-

cesses with some local character have been observed [31],

suggesting that more than a few lowest modes are often

needed. However, the robustness of modes to ENM

parameter perturbations was found to be useful in iden-

tifying functionally important modes [32], which may

further reduce the subset of low-frequency modes

required for focused conformational sampling.

ENMs can be used to facilitate structure refinement at

low resolution [33] and a multibase generalization of

ENM has been the basis for several recently proposed

techniques for efficient generation of conformational

transition pathways [34–36]. ENM-based methods for

predicting dynamic coupling and ligand-binding-induced

conformational changes have been successfully applied to

HCV NS3 helicase [37].

Recent work with ENM models demonstrate that ENM

modes can provide an efficient sampling of conformation-

al space covered by the large number of available HIV-1

protease structures, in a manner similar to MD trajectory

or NMR ensemble analysis [38] and that the existing
www.sciencedirect.com
elastic models [ENM and Gaussian network model

(GNM)] can be improved to achieve an optimal descrip-

tion of both protein conformational motions and thermal

fluctuations [39].

A more complex ENM approach to conformational

change is to combine information from multiple confor-

mational states of the protein [40], for example to gen-

erate double-well models. This approach has been used

to explore, for example, conformational changes in aden-

ylate kinase [36], also see [41], a well-studied model

system for such transitions [42]. A number of other

models for conformational flexibility merit further

exploration, including those which combine rigid ‘blocks’

within a protein with flexible connections [43].

Coarse-grained MD simulations
Atomistic simulations of complex biomolecular systems

provide a detailed picture of, for example, conformational

dynamics and protein/ligand interactions. However, even

with large-scale computational resources and well-scaling

simulation codes, it is still challenging to reach long time

scales (>1 ms) for large and complex systems (e.g. [44]).

Consequently, there has been considerable interest in the

application of CG models to proteins and related bio-

logical systems.

A number of different levels of CG models are possible,

varying in the number of atoms, which are represented by

a single particle. For example, an amino acid residue

within a protein could be represented by a single particle

or by three to four particles where each particle represents

two to five nonhydrogen atoms. In each case, both bonded

and nonbonded interactions have to be parameterized to

reproduce either thermodynamic properties of the con-

stituent monomers (e.g. amino acids) or the overall

dynamic properties of the resultant protein. Such

coarse-graining reduces by an order of the magnitude

the interactions that have to be evaluated for a given

system and also enables the use of longer time steps (e.g.

40 fs for CG rather than 1 fs for atomistic). Together this

may provide several orders of magnitude of speedup

relative to atomistic simulations, thus enabling longer

timescale processes for more complex systems to be

explored.

Following the development and initial exploration of CG

models for proteins (previously reviewed by e.g. [3]) and

for membranes (previously reviewed by [45]), there has

been considerable interest in exploring the potential for

this approach and applying it to a number of key systems.

In what follows this will be illustrated in terms of: firstly,

modeling conformational changes of proteins; secondly,

applications to membrane proteins; and thirdly, CG and

related multiscale approaches to more complex assem-

blies. We will not discuss the history of CG simulations in

the context of protein folding as this has recently been
Current Opinion in Structural Biology 2008, 18:630–640
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reviewed in COSB [46] but will discuss some very recent

developments later in this section.

Conformational changes in proteins
A number of CG models have been used to explore

mechanisms of conformational change in proteins. For

all of these a major issue is that of how to parameterize. A

promising general approach to this is a force-matching

scheme in which the CG model is parameterized to match

atomistic simulations for the same or a related system.

This has been explored for, for example, ENMs [47] and

for two particles per amino acid models [48] of proteins.

Membranes and their proteins
There has recently been considerable interest in extend-

ing CG models previously used for lipid bilayers [49–51]

and for simple models of membrane proteins [52–54] to

more complex membrane proteins and peptides. This

required the modification of existing CG models for lipids

[55] to also include amino acids. It also required the issues

of parameterization of amino acid/hydrocarbon inter-

actions in CG models to be addressed, both by the

comparison with experimental thermodynamic (partition-

ing) data and via comparison with atomistic-simulation

based free energy profiles for amino acid sidechains

versus location within a lipid bilayer [56].

Initial studies using CG models to simulate membrane/

peptide and membrane/protein systems have been very

encouraging, reproducing a range of experimental data on

the location of model peptides and proteins within mem-

branes [56,57] and reproducing patterns of protein/lipid

interactions seen in extended atomistic simulations [58]. It

should be noted that in general such models require either

dihedral angle or elastic network restraints in order to retain

the secondary and tertiary structure of the protein.

CG-MD may be used to selfassemble lipid bilayers

around membrane proteins, thus enabling the prediction
Figure 1

Schematic representation of a CG-MD simulation of the selfassembly of a lipi

shown) molecules plus a known membrane protein structure. After �0.25 ms

of the protein on the left illustrates the use of an elastic network model (in r
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of the localization and orientation of a protein within a

lipid bilayer (see Figure 1). The smaller computational

unit (CPU) demands of CG-MD mean that it is feasible to

use this method to compare different families of mem-

brane proteins and their interactions with lipids [59]. For

example, the application to a nonredundant set of �100

membrane proteins [60] enabled comparative analysis of

protein/bilayer interactions, indicating how local bilayer

deformations may be related to membrane protein class

(e.g. a-helix bundle versus b-barrel trans membrane

(TM) domains). CG-MD has used to explore bilayers

containing multiple (e.g. 16) rhodopsin molecules [61] to

reveal how local bilayer deformation influences protein–
protein association within a membrane.

CG-MD simulations may also be used to characterize the

interactions of proteins with the surface of a lipid bilayer,

as has been shown both for small (�30-residue) toxins

that bind to membrane surfaces and inhibit ion channels

[62], and for more complex membrane-binding enzymes

such as phospholipase A2 [63].

CG simulations have been used to explore functional

aspects of a number of channel and related proteins in

membranes. For example, CG simulations of lipid–protein

interactions of isolated voltage sensor domains from K+

channels [64] suggested a degree of bilayer deformation as

a result of interactions of lipid headgroups with the charged

sidechains of the voltage-sensing S4 helix, as is also seen in

(shorter) atomistic simulations [65,66]. CG simulations

have been used to study possible mechanisms of gating

of a number of channels and related proteins, including the

mechanosensitive channel MscL [67], the voltage-gated

channel Kv1.2 [68], and the translocon [69].

CG and multiscale approaches to complex
assemblies
One of the key areas for the future, which is only just

beginning to be explored, is the application of CG and
d bilayer/protein system from randomly positioned lipid (and water — not

of simulation, the protein is stably inserted in a bilayer. The representation

ed) to restrain the structure of the protein.

www.sciencedirect.com
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multiscale approaches to more complex systems. A num-

ber of groups have successfully applied multiscale

approaches to (reasonably complex) enzymes (e.g. acetyl-

choline esterase [70] and OmpT [71]) proving the utility

of this approach. CG simulations have been used to

selfassemble more complex systems such as lipoprotein

particles [72]. Initial explorations of combining CG

models of protein and of DNA in simulations of the

nucleosome [73] are very promising. Highly CG models

of lipids combined with radically simplified representa-

tions of proteins have been used to simulate protein-

induced membrane vesiculation [74]. More recently, a

multiscale approach has been used to explore bending

and dynamics of membranes by multiple copies of a BAR

domain [75], demonstrating that multiscale simulations

have the potential to link structural and systems descrip-

tions of cell biological processes.

Protein folding in presence of osmolytes —
the molecular transfer model
One limitation of many of these CG models is that the

folding/unfolding reaction can only be initiated by a

change in temperature, although many in vitro exper-

iments use osmolytes (i.e. small organic molecules such as

urea, guanidinium hydrochloride, trimethylamine-N-

oxide, and sucrose) to modulate native state stability

[76]. Recently, a novel method referred to as the mol-

ecular transfer model (MTM) has been developed to

predict, rapidly and accurately, the effect of osmolytes

on the thermodynamic properties of proteins [77]. It does

this by combining information from CG molecular simu-

lations using the BLN (hydrophoBic, hydrophiLic, Neu-

tral) scheme, experimentally measured transfer free

energies of individual amino acids, and the Tanford

transfer model, all of which estimate the free energy of

transferring a given protein conformation from water to

aqueous osmolyte solution. With this information the

MTM computes the partition function for any osmolyte

type and osmolyte concentration of interest, thereby

allowing almost any thermodynamic property to be com-

puted. The MTM, being a postsimulation processing

technique, is rapid. In a matter of minutes it can predict

the effect of a large number of aqueous osmolyte solution

conditions on the thermodynamics of protein folding and

unfolding. The MTM has been validated against exper-

imentally measured m-values (the rate of change of DG as

a function of denaturant concentration and a quantitative

measure of the breadth of the unfolding transition) and

single molecule fluorescence resonance energy transfer

(FRET) measurements for protein L and a highly stable

cold shock protein [77].

The MTM is a significant breakthrough in modeling

because never before have molecular simulations been

able to study protein folding/unfolding thermodynamics

as a function of osmolyte concentration; it can accurately

predict experimentally measurable quantities and offers
www.sciencedirect.com
a molecular interpretation of experimental results.

Although, in theory, the MTM can be applied to all-atom

simulations, in practice it is only currently accurate for CG

models, where adequately converged sampling can be

achieved.

Grid-based methods
Molecular modeling has been a powerful approach to

provide structural insights into biological procedures at

the atomic level. New developments in experimental

technologies, such as electron microscopy, provide an

approach to obtain low-resolution structure information

of large molecules and their assemblies. Extracting struc-

ture information from these low resolution maps and

obtain atomic interpretation of the large biomolecular

assemblies has become a powerful tool in modern struc-

tural biology. This requires molecular modeling to be

conducted in conjunction with these low-resolution maps,

as well as high-resolution atomic structures, to maximize

the capability in structural biology studies.

Grid-based molecular modeling differs from the center-

based models in that molecular properties are assigned to

regions of space that are broken up into many smaller

volume elements. This is a natural way to interact with

electron microscopy data and X-ray data where electron

densities are partitioned in the same manner. The main

advantage of the grid approach is that operations, such as

docking, can be performed rapidly and with a simplified

energy function. One major drawback is that it is not easy

to incorporate flexibility in a straightforward manner.

As with the development of structural biology, molecular

modeling is now applied to larger and larger biomolecular

machineries. As the systems become large, the atomic

description becomes very inefficient and time-consuming

and it is more efficient to treat large biomolecules as

simplified shape objects, while ignoring their internal

structures. Although molecular flexibility plays an import-

ant role in biological activity, in many cases molecular

geometric shapes together with their surface properties

are sufficient to describe many cellular processes such as

molecule assembling and protein–protein binding.

As an example of the use of grid-based CG molecular

modeling, we summarize the capabilities of CHARMM’s

[13] EMAP facility [78], which was originally developed

to assist in structure determination with electron micro-

scopy. Later, this facility was expanded to allow protein–
protein docking analysis in the absence of experimental

data. EMAP uses map objects (Figure 2) to represent

space occupation of molecular structures. Unlike chemi-

cal descriptions of molecules that contains atoms and

atoms are linked by chemical bonds, a map does not have

internal chemical structures. Instead, a map represents a

spatial distribution of certain properties, typically, elec-

tron density. This distribution is generally described by
Current Opinion in Structural Biology 2008, 18:630–640
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Figure 2

A map object and its properties. A map object is defined as a grid with a

given property mapped on the grid points. This could be either, for

example, experimentally determined electron density or properties (e.g.

electrostatic charges) generated from reference molecules.
scalar values at discrete grid points because of the irre-

gularity of the distributions and because of limits in

storage.

Map comparison provides a metric for fitting one map into

another. Four types of cross correlation functions [78] are

available for the comparison between map objects.

The energetics of molecular systems is the basis of

molecular modeling. Calculation of molecular interaction

using map objects is the crucial step to a successful

modeling or simulation study. For atomic objects, inter-

action calculation is pairwise and is very time-consuming

for large molecular assemblies. For map objects, we

propose to use field interactions that can be calculated

much more efficiently. Four types of energies are defined

to describe the interaction between map objects: electric

field interaction; surface charge–charge interaction; van
Current Opinion in Structural Biology 2008, 18:630–640
der Waals interaction; and desolvation interaction. The

parameters in these functions are obtained by fitting

into energies calculated with using standard force fields,

making these another example of a serial multiscale

algorithm.

The grid-threading Monte Carlo (GTMC) search algor-

ithm [78] uses a combination of the grid search and Monte

Carlo sampling to provide an efficient way for robustly

fitting rigid domains to a target map. The conformational

space is split into grid points and short Monte Carlo

searches are performed to identify local maxima around

the grid points. The global maximum is identified among

the local minima.

The derivation of high-resolution molecular assembly

structures from microscopy maps is a major application

of the map approach. This method has been successfully

applied into several experimental studies [79]. Figure 3

illustrates the steps to perform a fitting of high-resolution

molecular structure into electron microscopy maps.

The structure obtained from map fitting generally is not

optimized in atomic details. There are often atom over-

laps or improper spacing between components. This

structural mismatch can be removed by standard

approaches such as energy minimization and simulated

annealing as long as the fitting result is very close to the

right structure. After the minimization, the root-mean-

square (rms) deviation for the system illustrated in

Figure 3 is 0.97 Å.

With map energy functions, it is possible to determine

complex structures through minimizing the map inter-

action energy even in cases where the EM complex map

is not available. It should be noted that the map object

assumes a certain rigidity of a molecular object. Some

flexibility of a loop region can be accommodated by the

low-resolution character, while large flexibilities like

domain movement should be dealt with multiple map

objects. Recently, this method was successfully applied to

modeling of the peroxiredoxin (Prx) complex [80].

MSCALE — a generalized approach to
multiscale simulation
With the exception of QM/MM, all of the multiscale

methods reviewed in this article are typically deployed

according to the sequential multiscale methodology, data

from the high accuracy models being used to parameter-

ize the coarser ones. However, it is interesting to consider

the potential of a concurrent coupling of these disparate

methods, by generalizing the ideas underpinning the

additive and subtractive QM/MM schemes. Within a

single framework, it is possible to support both additive

and subtractive approaches (or a combination of these)

and to allow a single energy and force calculation to be
www.sciencedirect.com
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Figure 3

Steps to derive molecular assembly structures by fitting molecular structures into electron microscopy maps. This is illustrated using a T-cell receptor

(TCR) variable domain (PDB code: 1a7n) as an example complex to illustrate the modeling process with map objects. The TCR variable domain is a

complex of two chains. The two chains are first blurred into maps of the same resolution (here 15 Å) as the EM map. Then each map is fitted into the

EM map to get complex map. The complex map is projected back to atomic structures, which is the complex structure we are looking for. The root-

mean-square (rms) deviations of the fitting result from X-ray complex is 3 Å.
done with diverse set of software and computer hardware.

With such a tool, the multiscale combinations are endless.

CHARMM’s recently implemented MSCALE command

is such a general tool, supporting multiple, independent

but connected calculations using defined molecular sub-

systems. Programs are run in parallel in a client–server

mode, with basic communication. The server calculations

can employ either CHARMM or several other supported

programs (e.g. the quantum chemistry programs

NWChem, Molpro, PSI3, and Gaussian 03) with a con-

sistent interface.

This flexible implementation allows any number of sub-

systems, each running as a separate process, usually on a

separate computer (or parallel cluster). The client process

maps the forces and Hessian elements from the various

atomic or CG centers, either by colocating them or by

connecting them through constraints or restraints. For
www.sciencedirect.com
example, the lone-pair facility in CHARMM can be

employed to constrain one CG center to be at the center

of mass of a collection of atoms. In constructing the total

energy, a scale factor is applied to each subsystem;

additive models will have all positive factors, with nega-

tive factors used for subtractive models. Scale factors can

be tied to parameters (lambda), allowing free energy

perturbation simulations with complex multiscale mod-

eling.

With this capability, it is possible to mix models of

different resolutions in a completely general manner. It

is also possible to mix models at the same level of

resolution, for example, combining the two residue-based

CG schemes, ENM and BLN, to perform CG protein

docking that allows protein flexibility but not protein

unfolding. When used with all-atom modeling, it is

possible to mix and match force field types in a single

calculation. For example in simulating protein absorption
Current Opinion in Structural Biology 2008, 18:630–640
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on a surface, the protein can be modeled with the

CHARMM force field, while the surface could be mod-

eled with the CFF force field.

Conclusions
We have reported encouraging progress in the modeling

of biomolecular systems at a range of different length

scales. QM/MM techniques are now in routine use and

the underlying quantum mechanical methods are becom-

ing steadily more accurate. Significant methological

approaches to many chemically significant properties,

such as redox potentials, free energy changes, and excited

state reactivity have been made during the past few years.

The coupling of QM and MM Hessian information has

led to the development of new vibrational partitioning

schemes with the application to harmonic free energies

analyses for large molecular assemblies. We have reported

on recent work with a number of different CG MD

schemes and though there are still limitations to the types

of processes that can be modeled with predictive

accuracy, systematic studies of many complex biomole-

cules and assemblies are made possible by the compu-

tational efficiency of the methods. Likewise, ENMs are

specialized for the study of local conformational changes,

but recent developments allow the study of a broader

range of processes and they also find the application in

CG schemes where they can be used as soft restraints on

protein structure. At the longest length scales, grid-based

methods sacrifice flexibility of the biomolecule to allow

rapid computation of interaction energies of multimillion

atom systems, and fast interpretation of cryo electron

micrograph (cryo-EM) images.

As the individual methods mature, a key challenge over

the next few years will be the closer integration of the

methods. The applicability of the CG schemes will be

greatly enhanced if the detailed information required can

be generated from accurate studies as part of a closely

integrated computational scheme. Till date only QM/

MM is really used this way, but the generalization of

the ideas of additive and subtractive coupling to a wider

range of multiscale models offers a route to explore many

other concurrent coupling possibilities.
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