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We have implemented the serial replica exchange method �SREM� and simulated tempering �ST�
enhanced sampling algorithms in a global distributed computing environment. Here we examine the
helix-coil transition of a 21 residue �-helical peptide in explicit solvent. For ST, we demonstrate the
efficacy of a new method for determining initial weights allowing the system to perform a random
walk in temperature space based on short trial simulations. These weights are updated throughout
the production simulation by an adaptive weighting method. We give a detailed comparison of
SREM, ST, as well as standard MD and find that SREM and ST give equivalent results in reasonable
agreement with experimental data. In addition, we find that both enhanced sampling methods are
much more efficient than standard MD simulations. The melting temperature of the Fs peptide with
the AMBER99� potential was calculated to be about 310 K, which is in reasonable agreement with
the experimental value of 334 K. We also discuss other temperature dependent properties of the
helix-coil transition. Although ST has certain advantages over SREM, both SREM and ST are
shown to be powerful methods via distributed computing and will be applied extensively in future
studies of complex bimolecular systems. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2908251�

I. INTRODUCTION

Adequately sampling the conformational space of bio-
molecules is important for understanding molecular func-
tions. Computer simulation, such as molecular dynamics
�MD� and Monte Carlo �MC�, is a powerful technique for
exploring conformation space. However, such simulations
often become trapped in local energy minima when applied
to complex biomolecular systems.1,2 Recently, it has been
shown that a large ensemble of individual MD trajectories
generated by a distributed computing network makes it pos-
sible to study the folding of some miniproteins in explicit
solvent.3–8 Unfortunately, due to the local trapping problem,
it is still difficult to satisfactorily sample the entire configu-
ration space of a biomolecule in explicit solvent even with a
distributed computing effort. Tempering methods such as
simulated tempering9,10 �ST� and parallel tempering �or rep-
lica exchange method �REM��11–14 were developed to over-
come this kinetic trapping problem by inducing a random
walk in temperature space. At high temperatures the free
energy landscape is more or less flat, allowing broad sam-
pling of configuration space. Conformations found at high
temperatures may then be exchanged to lower temperatures
in order to explore the relevant free energy minima. Both ST
and parallel tempering have proved useful for sampling
phase space and have been widely used to simulate biomo-
lecular systems.2,15–21 Therefore, the combination of the tem-
pering methods and a distributed computing network such as
FOLDING@HOME �FAH�, currently with more than 200 000

computer processors �CPU’s�, should greatly enhance our
ability to sample the conformation space of complex biomo-
lecular systems.

In the REM, independent MD or MC simulations are
performed in parallel at different temperatures. Exchanges of
configurations between neighboring temperatures are at-
tempted periodically and accepted according to the detailed
balance condition.13,14 The standard REM scheme requires
synchronization and frequent communication between differ-
ent processors, which makes it unsuitable for a heteroge-
neous distributed computing environment lacking direct
communication between hosts. Rhee and Pande developed
the multiplexed replica exchange method �MREM� for run-
ning replica exchange on distributed computers.22 In MREM,
multiplexed replicas with more than one independent simu-
lation at each temperature are run, and exchanges of configu-
rations between these multiplexed replicas are attempted pe-
riodically. This algorithm still requires synchronization
between multiplexed replicas, resulting in short idle times, as
in another serial algorithm called Asynchronous Replica
Exchange.23 Recently, Hagen et al. proposed another method
called serial replica exchange method �SREM� that is suit-
able for distributed computing.24 In SREM, a single, inde-
pendent simulation performs a random walk in temperature
space by making regular attempts to change temperatures.
The transition probability for this move is determined by one
potential energy from the simulation and a second one from
a prestored potential energy distribution function �PEDF� at
the new temperature. In contrast to MREM, SREM does not
require any synchronization between different simulations,a�Electronic mail: pande@stanford.edu.
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so no CPUs are left idle. Thus SREM is substantially more
efficient than MREM. The main difficulty with SREM is
determining the PEDFs because SREM is only approxi-
mately correct unless the exact PEDFs are adopted.

ST, an inherent serial algorithm, is another enhanced
sampling method suitable for distributed computing
environments.9,10 In ST, an expanded canonical ensemble,
where canonical ensembles at different temperatures are
weighted differently, is used to sample the conformation
space. A single simulation is performed, again making peri-
odic attempts to change temperatures according to a well
defined transition probability determined by the detailed bal-
ance condition. In contrast to SREM, ST is an exact method.
Each temperature is assigned a weight and the difference
between the weights of neighboring temperatures determines
the probability of making an exchange between them. If
these weights are not determined properly then simulations
will be constrained to a subset of temperature space and be-
come inefficient.9,10,25,26 Therefore, determining a good set of
weights is essential for ST. A number of attempts have been
made to obtain weights allowing the system to perform a
random walk in temperature space.27–33 However, these algo-
rithms normally require an interactive procedure and rela-
tively expensive trial simulations such as REM. In this study,
we propose a simple method to compute good initial weights
from short trial MD simulations. The combination of this
scheme with an adaptive weighing method is shown to effi-
ciently determine a set of weights enabling the system to
perform a random walk in temperature space.31

In this paper, we apply both SREM and ST to the Fs
peptide in order to study the helix-coil transition using a
distributed computing network. Our aim is to make an exact
comparison between SREM, ST, and MD. We show that both
enhanced sampling methods outperform standard MD and
give reasonable agreement with experimentally determined
thermodynamic properties of the Fs peptide.

II. SYSTEM AND METHODS

A. Serial replica exchange

The SREM algorithm,24 a serial version of the REM, is
designed to run asynchronously on a worldwide distributed
computing environment such as FAH.34 We will first review
the original REM. REM, also referred to as parallel temper-
ing, involves running independent MD or MC simulations in
parallel at different temperatures.13,14 After a certain interval,
an attempt is made to exchange the configurations of the
neighboring replicas �closest neighbors in temperature
space�, typically as shown by the following

�Xi,Ti� → �Xj,Ti� ,

�1�
�Xj,Tj� → �Xi,Tj� ,

where Xi and Ti are the configuration and the temperature of
the ith replica, respectively. In the current study, we will
focus on using MD to propagate each replica.

The transition probability for exchanging adjacent repli-
cas i and j must satisfy the detailed balance condition,

Pi�Xi,pi�Pj�Xj,pj�P�i → j� = Pj�Xi,pi��Pi�Xj,pj��P�j → i� ,

�2�

where P�i→ j� is the transition probability for the exchange
i→ j and Pi�Xj , pj� is the probability of finding configuration
Xj with momenta pj at temperature i.

The equilibrium probability of state i for the canonical
ensemble is

Pi�Xi,pi� =
1

Zi
exp�− �iH�Xi,pi�� , �3�

where �i=1 / �kBTi�, pi is the momenta, and Zi is the partition
function. The Hamiltonian Hi�Xi , pi� is the sum of the kinetic
energy �K� and potential energy �U� �Hi�Xi , pi�=K�pi�
+U�Xi��.

A rescaling of the momenta13 �pi�=�Tj /Tipi� following
the exchange causes the kinetic energy to cancel out in the
detailed balance equation, and the transition probably can be
rewritten as

P�i → j�
P�j → i�

= exp�− �ij� , �4�

where

�ij = − �� j − �i��U�Xi� − U�Xj�� . �5�

If the Metropolis criteria is applied then one of the tran-
sition probabilities will always be one. Thus, they can be
written as

P�i → j� = min�1,e−�ij� ,

�6�
P�j → i� = min�1,e�ij� .

From Eq. �6�, it is easy to show that the average accep-
tance ratios for the forward and backward transitions in REM
are equal,

�P�i → j�	 = �P�j → i�	 . �7�

The above REM scheme requires synchronization and
frequent communication between different processors. This
requirement is not suitable for a distributed computing envi-
ronment which consists of a heterogeneous network of dis-
tributed computers that are unable to communicate directly
with one another. Recently, Hagen et al.noticed that in REM
energy is the only property involved in the detailed balance
condition, They derived the SREM based on this property.24

In SREM, PEDFs, P�E ,Tn�, are stored at different tempera-
tures. The algorithm works as follows: A single replica is
propagated with MC or MD at temperature Tn using a single
processor. After a certain interval, it attempts to move to the
neighboring temperature Tn+1. At this time, two potential en-
ergies En and En+1 are required to determine the transition
probability as shown in Eq. �5�. En is the potential energy of
the current simulation system and En+1 is sampled from the
energy distribution P�E ,Tn+1� at Tn+1. If the move is ac-
cepted, the replica will continue propagating at the new tem-
perature Tn+1, otherwise the replica will stay at the initial
temperature Tn. In this way, a single replica can walk through
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the whole temperature space and thermodynamic averages
can be computed at different temperatures.

The main difficulty with SREM is determining the
PEDFs. SREM is only approximately correct unless the ex-
act PEDFs are used. Hagen et al.suggest that the PEDFs be
updated iteratively until they are stationary.24 We apply
SREM on a distributed computing network to study the
helix-coil transition. In Sec. III, we will discuss the conver-
gence of the PEDFs and show that SREM predicts correct
thermodynamic properties for the Fs peptide system.

B. Simulated Tempering

ST is another enhanced sampling method suitable for a
distributed computing environment because it is inherently a
serial algorithm.9,10 In ST, configurations are sampled from
an expanded canonical ensemble in which the canonical en-
semble with different temperatures are weighted differently.
A generalized hamiltonian �n�X , p� is defined as

�n�X,p� = �nH�X,p� − gn, �8�

where �n=1 / �kBTn�, H�X , p� is the Hamiltonian for the ca-
nonical ensemble at temperature Tn, and the a priori deter-
mined constant gn is the weight for the temperature Tn.

In practice, ST works as follows: A single simulation is
performed at a particular temperature using MC or MD, and
after a certain interval, an attempt is made to change the
configuration to another temperature among a list of choices
�T1 , . . . ,Tn� as shown by the following:

�Xi,Ti� → �Xi,Tj� , �9�

where Xi is the configuration of the system and Ti is the
temperature.

The transition probability for moving from Ti to Tj has to
satisfy the following detailed balance condition:

Pi�Xi,pi�P�i → j� = Pj�Xi,pi��P�j → i� . �10�

The probability of state i for the expanded canonical
ensemble is

Pi�Xi,pi� =
1

Z
exp�− �i�Xi,pi�� , �11�

where �i=1 / �kBTi�, pi is the momenta, and Z is the partition
function for the expanded canonical ensemble.

The momenta are rescaled just as in REM, again causing
them to drop out of the detailed balance condition. The tran-
sition probabilities after applying the metropolis criteria are
shown by the following:

P�i → j� = min�1,exp�− �� j − �i�Ui�X� + �gj − gi��� ,

�12�
P�j → i� = min�1,exp�− ��i − � j�Uj�X� + �gi − gj��� ,

where Ui�x� and Uj�x� are potential energies sampled from
the canonical ensembles at Ti and Tj, respectively.

In contrast to SREM, which is an approximate method
unless the exact PEDFs are employed, ST is an exact method
regardless of the selection of the weights. However, without
proper weighting, ST will only explore a subset of tempera-
ture space and becomes inefficient. In ST, the “optimal”

weights are typically defined to be a set of weights which
lead the system to perform a random walk in temperature
space, resulting in uniform sampling of each
temperature.9,10,25,26,30–33 In Sec. III, we show that such
uniform sampling does not necessarily produce optimal
sampling, and could oversample at high temperatures and
undersample at low temperatures or around the melting tem-
perature. Thus, we refer to weights leading to uniform sam-
pling as “free energy” weights rather than optimal weights in
this study, for reasons explained in the next section.

How to choose weights leading to uniform sampling? In
ST, the probability that temperature Ti is visited in the
expanded canonical ensemble is

Pi = Zie
gi/Z , �13�

where Zi and Z are partition functions for the canonical
ensemble at Ti and for the expanded ensemble, respectively.

In the canonical ensemble, the partition function is
related to the Helmholtz free energy,

f i = −
1

�i
ln Zi. �14�

Uniform sampling where P1= P2= . . . = Pn can be
achieved if

gi = �i f i. �15�

Since the weights leading to uniform sampling equal the
unitless free energies at different temperatures, we refer to
them as free energy weights. It is not an easy task to deter-
mine these free energy weights. In principle, these unitless
free energies can be estimated from trial simulations using
the weighted histogram analysis method.27,28,31 However,
this still requires an interactive procedure and relatively
expensive trial simulations such as REM.31

In this study, we propose a simple method to compute
approximate free energy weights from short trial MD simu-
lations. Our method is based on the following property:25

The “free energy” weights leading to uniform sampling must
yield the same acceptance ratios for both forward and back-
ward transitions from Ti to Tj as shown by the following:

�P�i → j�	 = �P�j → i�	 . �16�

From Eq. �13�, we can compute the average acceptance
ratios,

�P�i → j�	 = egj−gi

−�

U0

e−��j−�i�UiP�Ui�dUi

+ 

U0

�

P�Ui�dUi,

�17�

�P�j → i�	 = 

−�

U0

P�Uj�dUj

+ egi−gj

U0

�

e−��i−�j�UjP�Uj�dUj ,

where P�Ui� is the PEDF at Ti and U0= �gi−gj� / ��i−� j�.
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PEDFs for each temperature are estimated from the short
trial MD simulations by assuming the distributions are
Gaussian.

P�Ui� =
1

�2��i

exp�− �Ui − �Ui	�2

2�i
2 � , �18�

where �Ui	 and �i can be computed from the trial simula-
tions.

By solving Eq. �16�, we can obtain a set of near free
energy weights with a given temperature list. This scheme is
an extension of the method proposed by Park and Pande,25 in
which the weights were also computed by ensuring equal
average acceptance ratios for the forward and backward tran-
sitions. However, in their original scheme, they only consid-
ered the average potential energy at each temperature. By
taking into account the potential energy distribution our
method provides greater efficiency, especially around the
melting temperature where PEDFs are normally wider. To
gain this advantage we assume that the PEDFs are Gaussian.
This assumption has been shown to be valid in a variety of
biological systems26,35 including the Fs peptide studied here.
More generally, we believe that the central limit theorem36

implies the overall PEDFs are nearly Gaussian for any
biological system in explicit solvent due to the large number
of degrees of freedom.

Recently, Park26 showed that the two methods for ob-
taining approximate free energy weights discussed above are
consistent, i.e., �P�i→ j�	 and �P�j→ i�	 become identical
only if gi=�i f i. These near free energy weights are still ap-
proximate considering the limited length of the trial MD
simulations. For example, it is particularly difficult for these
simulations to capture slow conformational changes, e.g.,
protein folding/unfolding. Therefore, in our study we com-
bined the above scheme with an adaptive weighing method.
The latter regularly updates the weights during the ST simu-
lations using an adaptive weighted histogram analysis
method �WHAM� by Bartels and Karplus.31

In ST, choosing free energy weights only ensures
�P�i→ j�	= �P�j→ i�	. But the value of the acceptance ratio
is determined by the temperature gap �Tij =Ti−Tj. Transition
probabilities diminish quickly with increasing temperature
gap. For example, when Ti	Tj, �P�i→ j�	= �P�j→ i�	0,
thus it will take forever to achieve uniform sampling even if
the equilibrium probabilities are equal for the two states
�Pi= Pj�. Therefore, the attempted moves in ST are usually
between neighboring temperatures and a good temperature
list will yield relatively large and equal acceptance ratios
between them.

C. Simulation details

In this study we examined the capped Fs
�Acc-A5�AAAR+A�3A-NMe� peptide. The AMBER-99

potential,5 a modified version of AMBER99,37 was selected
because it was found to better reproduce experimental helix-
coil properties compared to earlier AMBER potentials.5 Both
the ST and SREM algorithms were implemented in a version
of the GROMACS molecular dynamics simulation package38

modified for the FAH �Ref. 34� infrastructure �http://
folding.stanford.edu�.

Two initial configurations are used, as shown in Fig. 1.
The first is a prehelix structure with a helical content of 58%
and the second is a random coil structure with no helical
content. Each system is solvated in a 42 Å cubic box using
2039 TIP3P water molecules.39 Three Cl− counterions were
included to neutralize the charged peptide. The simulation
systems were minimized using a steepest descent algorithm,
followed by a 100 ps MD simulation applying a position
restraint potential to the peptide heavy atoms. All simulations
were conducted using constant NVT with a Nosé-Hoover
thermostat having a coupling constant of 0.02 ps−1.40 Long-
range electrostatic interactions were treated using the reac-
tion field method with a dielectric constant of 80. 9 Å cutoffs
were imposed on nonbonded interactions. Neighbor lists
were updated every ten steps. A 2 fs time step was used and
covalent bonds involving hydrogen atoms were constrained
with the LINCS algorithm.41

Starting from the two initial configurations, 1300 simu-
lations were performed on a distributed computing environ-
ment using both the SREM and ST enhanced sampling meth-
ods. The total simulation time was aggregated to more than
250 �s. The same 50 element, roughly exponentially distrib-
uted temperature list covering a range from 285 to 592 K
was used for both SREM and ST. The initial temperatures
were uniformly selected from the temperature list. Thus,
there are 26 simulations starting from each temperature, each
with a different set of initial velocities. In both SREM and
ST simulations, exchanges were attempted every 2 ps. In
SREM, potential energies were saved every 0.4 ps. To obtain

FIG. 1. �Color� The two initial configurations used for simulations of the
capped Fs peptide �Ace-A5�AAAR+A�3A-NMe�: �a� A prehelical structure
and �b� a random-coil structure.
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initial estimates of the PEDFs in SREM, we performed two
hundred 500 ps SREM simulations where every move was
accepted, resulting in a continuous walk in temperature
space. The above simulations were first equilibrated for
2.5 ns at different initial temperatures. In a subsequent up-
dating phase, slightly different from what was suggested by
Hagen et al.,24 we continued updating the PEDFs, though the
updates became less frequent with time. The PEDFs were
updated every 40 ns for about 40 iterations at first, then ev-
ery 400 ns for about 20 iterations, and at last every 1000 ns.
In ST, the initial weights were computed using the data ob-
tained from 50 short 100 ps trial simulations. Subsequently,
the weights were updated approximately every 400 ns by an
adaptive weighing scheme.31

In the SREM/ST simulations run on a distributed com-
puting environment described above, PEDFs or weights were
updated based on data gathered from a heterogeneous net-
work of computers with different rates of progress for each
of a number of parallel simulations. Thus, it is difficult to do
an exact comparison of the efficiency of SREM and ST using
distributed computing data. To overcome this issue, we per-
formed additional SREM, ST, and MD simulations on a local
computer cluster. To ensure these simulations could be com-
pared exactly, they were run with the same parameters and
for the same duration. In addition, the same protocol was
used for updating the SREM PEDFs and the ST weights. To
be more specific, 50 24 ns simulations were run with SREM
and ST. For MD 50 simulations were run with constant NVT
at each of the three temperatures: 285, 308, and 592 K. For
SREM and ST a 1 ns MD simulation with constant NVT was
run for each of the 50 temperatures in our temperature list.
We obtained initial weights for ST by solving Eq. �16� and
PEDFs for SREM from these 1 ns simulations. These simu-
lations were then extended using the SREM and ST algo-
rithms. The PEDFs or weights were updated every 500 ps for
six iterations. Then they were updated every 4 ns for five
iterations. Thus, just as for MD at each of the three tempera-
tures, a total of 50 24 ns simulations were run for both
SREM and ST. The first 4 ns of each simulation was disre-
garded for equilibration purposes regardless of the algorithm
used.

D. Lifson-Roig helix-coil counting theory

Helical properties were computed using the Lifson–Roig
helix-coil counting theory.42,43 In this model, a residue is
considered to be helical if 
� �−60�x�° and 
� �−47�x�°, where x is typically 30 �Refs. 5 and 18� but
may be varied. We set x to 40°, and show that this choice
gives the best agreement with the melting temperature using
the AMBER-99
 potential in Sec. III C. Following the Lifson–
Roig model, a helical segment is defined as three or more
consecutive helical residues because a minimum of three
residues are required to form a helical hydrogen bond. Each
segment has a length of n−2, where n is the total number of
consecutive helical residues. Thus, the maximum helical
length of our 21 residue Fs peptide system is 19. This maxi-
mum is used to calculate the helical content as

Nc =
�h=1

Ns Nh

Nmax
, �19�

where Nc is the helical content, Ns is the number of helical
segments, Nh is the length of segment h, and Nmax is the
maximum possible helical length.

The Lifson–Roig model also gives average helix nucle-
ation and propagation parameters called ��	 and ��	, respec-
tively. Mathematically, ��	 is the average statistical weight of
a residue being in a helical state and is found as follows:

��	 = 

helical

eF�
,�/kTd
d , �20�

where F�
 ,� is the free energy of the given 
 , angles.5

The ��	 parameter is the statistical weight of a residue par-
ticipating in a helical segment and thus requires a residue to
be helical itself and belong to a group of at least three
consecutive helical residues. It can be calculated as

��	 = 

helical

eW�
,�/kTd
d , �21�

where W�
 ,� is similar to F�
 ,� but includes the interac-
tion of the given residue with its neighbors when they form a
helical segment.5

III. RESULTS AND DISCUSSION

A. Comparison of SREM, ST, and MD

To demonstrate the usefulness of the generalized en-
semble methods examined in this work we first discuss the
results of an exact comparison between SREM, ST, and stan-
dard MD. This comparison is based on simulation data gen-
erated using each of the algorithms with the same amount of
sampling, as described in the Methods section. We also in-
vestigate the rate of the convergence for PEDFs in SREM
and weights in ST. The data generated by the distributed
computing network are shown to be well converged and used
as the gold standard for this comparison.

1. Convergence of the PEDF in SREM

As stated in Sec. II A, the main obstacle for SREM is
determining the PEDFs. This algorithm cannot be used for
production unless the PEDFs are converged. Thus, we first
investigate the convergence of the PEDFs.

�2 convergence measure. The �2 convergence measure
was proposed by Hagen et al.24 to verify the convergence of
PEDFs. �2 is defined to be an integrated error,

�2�t� = �
i=1

N

�Pi�t� − Pi
ref�2, �22�

where N is the number of bins in the potential histogram,
Pi�t� is the value of the ith bin of the potential energy histo-
gram generated by potential energies collected over time t at
a particular temperature, and Pi

ref is the reference PEDF.
Reference PEDFs. In order to demonstrate convergence

we need a set of converged PEDFs as a reference.
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Figure 2�a� shows two nearly identical sets of SREM PEDFs
from massive distributed computing simulations. Each set is
from one of the two starting configurations. To quantitatively
test their convergence we applied an integrated difference
measure �D2�T�� which is analogous to the �2 measure.24

D2�T�=�i=1
N �Pi

helical�T�− Pi
coil�T��2. The D2�T� values at dif-

ferent temperatures are close to zero ��10−9 or smaller�, in-
dicating strong convergence of the two sets of PEDFs. Sec-
tion III B also shows that these massive distributed
computing SREM simulations generate converged thermody-
namics properties. We thus use these well converged PEDFs
as our reference point.

Convergence of PEDFs. When the well converged
PEDFs �Pi

FAH� from distributed computing simulations are
used as the reference distributions, �2�t� should decay to
zero. On the other hand, when PEDFs from initial trial
simulations�Pi

trial� are used as the reference, �2�t� should
grow to a plateau value. Using Pi

trial as the reference distri-
bution has certain advantages, since it does not require a
prior knowledge of the correct PEDFs.

In a previous study, Hagen et al. showed that the average
�2�t� over all temperatures is a good convergence measure
for the alanine dipeptide system they studied.24 However, we
show here that such an average �2�t� measure misrepresents
the convergence of PEDFs for the Fs peptide system because
PEDFs at different temperatures do not converge at the same
rate. Figure 3 displays the average �2�t� measures using both
Pi

FAH and Pi
trial as reference distributions. Although PEDFs

obtained from simulations starting from a helical structure
converge slightly faster than those obtained from simulations

starting from a coil structure, both sets of average �2�t�
curves seem to converge after about 6 ns. Curves using Pi

FAH

as the reference distribution decay to a value very close to
zero ��10−7� while curves using Pi

trial as the reference distri-
bution start to reach a plateau. However, not all the PEDFs
have converged within 6 ns, as shown in Fig. 4. This figure
shows PEDFs from SREM simulations performed on the
cluster as well as PEDFs from our distributed computing
simulations at three representative temperatures: 285, 308,
and 592 K. When T=308 K, PEDFs obtained from 50 6 ns
cluster simulations display a visible deviation from the cor-
responding curves obtained from distributed computing. In
particular, the whole potential distribution corresponding to
the coil starting structure �the center column of Fig. 4�b�� is
clearly shifted to higher energy. On the other hand, all the
PEDFs at 285 and 592 K have nearly converged. Most of the
PEDFs at other temperatures are also converged, except a
few around T=308 K.

In Fig. 5, we show �2�t� and average �2�t� curves for our
cluster simulations at three representative temperatures using
Pi

FAH as the reference distribution. At 285 and 592 K all the
�2�t� curves are similar to the average �2�t� plot and decay to
a value below 10−7 within 6 ns regardless of the initial con-
figuration. However, the �2�t� plot at 308 K decays much
slower than those at other temperatures. At 308 K the �2�t�
plot starting from the prehelical structure converges at about
10 ns �see Fig. 5�a�� while the plot starting from the coil
structure decays even slower and never falls below 10−7 dur-
ing our 24 ns SREM simulations �see Fig. 5�b��.

A further investigation shows that the melting tempera-
ture occurs around 308 K, which explains the slow conver-
gence of the PEDFs at this temperature. At the melting tem-
perature, the potential energy distribution is likely to be
wider due to the more or less equal probability of finding the
folded and unfolded states. As shown in Fig. 2�a�, potential
energy distributions around T=308 K �the seventh curve
from the left� are indeed wider than adjacent distributions. In
addition, the value of the melting temperature is confirmed
by the location of the dominant peak in the heat capacity
plot, which occurs at around 310 K as shown in Fig. 2�b�.

FIG. 2. �Color� �a�. Potential energy distribution functions �PEDFs� gener-
ated from FOLDING@HOME data at each of the 50 temperatures used. The
black and red curves show the converged PEDFs from simulations starting
from a prehelix structure and a coil structure, respectively. �See Fig. 1 for
the two initial configurations.� �b�. Heat capacity �Cv=�U /�T� as a function
of temperature generated from Folding@home simulations starting from the
two initial configurations.

FIG. 3. �Color online� The �2 convergence measure averaged over all tem-
peratures as a function of time. Triangles correspond to using Pi

FAH as the
reference point while circles are used when Pi

trial is the reference. The black
curves are from simulations starting from a prehelical structure, while gray
�red� curves are obtained from simulations starting from a coil structure.
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Uniform sampling convergence measure. As stated
above, PEDFs at different temperatures do not necessarily
converge at the same rate. Furthermore, PEDFs converge
slower around the protein melting temperature. Thus, the av-
erage �2�t� is not a good convergence measure, and all 50
�2�t� plots must be monitored instead. In this section, we
describe a new convergence measure based on how uniform
the sampling is across temperature space.

As shown in Eq. �7�, the average forward and backward
transition probabilities from Ti to Tj in SREM are equal,
implying that each simulation should spend an equal amount
of time at each temperature given infinite sampling. Given
finite sampling, approximately uniform sampling would also
be achieved if there are no large gaps in the acceptance ratios
between neighboring temperatures. Since all the acceptance
ratios in our SREM simulations are between 20% and 40%,
approximately equal sampling at each temperature should be
obtained if the exact PEDFs are applied �see Fig. 11 for the
acceptance ratios�. However, if the PEDFs are not converged
then �Pij	� �Pji	, resulting in nonuniform sampling. Thus,

uniform sampling could serve as an indirect convergence
measure for PEDFs. We define u�t�, the average deviation
from uniform sampling, as

u�t� =� 1

N
�
i=1

N � ni

�ni	
− 1�2

, �23�

where N denotes the number of temperatures, ni represents
the total amount of time spent at temperature Ti in a window
of time centered at t over all the simulations, and �ni	 is the
average of ni over all the temperatures. Given this definition,
u�t�=0 when the sampling is perfectly uniform and increases
the more nonuniform the data are.

Figure 6 shows the amount of time our SREM simula-
tions spent at each temperature during a series of 4 ns win-
dows as well as the corresponding u�t� curves. When starting
from a prehelical structure, the sampling is already roughly
uniform in the second window �from 4 to 8 ns� but slightly
more time is still spent at low temperatures before t=16 ns.
The corresponding u�t� plot is always below 0.4 and even
falls below 0.2 after 16 ns, indicating that the PEDFs are

FIG. 4. �Color� Potential energy distri-
bution functions �PEDFs� for three
temperatures: 285 K �left column�,
308 K �middle column�, and 592 K
�right column�. �a� Rough PEDFs from
the 1 ns trial MD simulations per-
formed on the local cluster. The black
and red curves correspond to simula-
tions starting from a prehelix structure
and a coil structure, repetitively. �b�
Comparison of PEDFs obtained from
6 ns SREM simulations at each of the
50 temperatures on the local cluster
with those from distributed computing
simulations. The black and red curves
show results from the local cluster
simulations starting from the prehelix
and coil structures, respectively. The
green and blue curves show the results
from FOLDING@HOME simulations
again starting from a prehelix and coil
structure, respectively. �c� The same as
�b� except that 50 24 ns SREM simu-
lations are used to compute the
PEDFs.
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converged. The convergence time predicted by u�t� �16 ns� is
slightly longer than that predicted by the average �2�t�
�10 ns� since uniform sampling can only be achieved after
the converged PEDFs have been applied for a while. On the
other hand, Fig. 6�b� clearly shows more sampling at low
temperatures for simulations starting from a coil structure,
though the sampling starts to become uniform as time
progresses. The u�t� curve for these simulations decrease
from 0.8 to 0.3, but never falls below 0.2, indicating that not

all the PEDFs have converged within the 24 ns simulations.
This observation is consistent with the prediction from the
temperature specific �2�t� measures �as opposed to the
average �2�t��.

The uniform sampling �u�t�� measure has the advantage
that only one function is necessary to evaluate the conver-
gence of all of the PEDFs, whereas the �2�t� measure re-
quires the user to monitor one curve for each temperature.
For the u�t� measure to be valid, the time window has to be
long enough for the system to explore the whole temperature
space. One additional caveat is that there should not be any
large gaps in the acceptance ratios, otherwise it will take a
long time for the system to reach uniform sampling. Finally,
we note that the u�t� measure is still an average measure and,
therefore, may smooth out one or two deviant temperatures.
However, the above analysis demonstrates that it is a more
sensitive measure than the �2�t� metric and should provide a
reasonable gauge of the level of convergence.

2. Convergence of the weights in ST

As stated in Sec. II B, ST is an exact method regardless
of the selection of the weights. However, ST simulations will
be constrained to a subset of temperature space without
proper weighing. A set of free energy weights will lead the
system to perform a random walk in temperature space. In
this study, we combined a method to obtain near free energy
weights from trial simulations as described in Sec. II B with
an adaptive weighting scheme using WHAM �Ref. 31� to
determine the free energy weights. In this section, we inves-
tigate the convergence properties of the weights in our ST
simulations.

Figure 7 shows the time evolution of �g=gi+1−gi during
simulations on the cluster for three pairs of neighboring tem-
peratures: One at low temperature, one at high temperature,
and one around the melting temperature. The differences be-
tween weights are plotted rather than the weights themselves
as it is the differences that determine the acceptance ratios,
as shown in Eq. �13�. The weights obtained from our massive
distributed computing ST simulations starting from different
initial configurations are well converged, as shown in Table
I. We note that the weights for temperatures below the melt-
ing temperature are not converged as well as the other

FIG. 5. �Color online� �2 convergence measure of the PEDFs as a function
of time at three representative temperatures, 285 �green triangles�, 308 �blue
diamonds�, and 592 K �red asterisks� are shown and compared to the aver-
aged �2 �black circles�. The plots are averaged over 50 SREM simulations,
and Pi

FAH are used as the reference distributions. �a�. �2 convergence mea-
sure obtained form simulations starting from a prehelical structure. �b� The
same as �a� except that the results are obtained form simulations starting
from a coil structure.

FIG. 6. �Color� �a�. The amount of time each of the SREM simulations starting from a helical structure spent at each temperature. �b�. The same as �a� except
that data is collected from SREM simulations starting from a coil structure. �c�. The uniform sampling convergence measure u�t� as a function of time obtained
from simulations starting from a helical structure �black curve� and a coil structure �red curve�. Each data point is averaged over the 50 SREM simulations
using a time window of 4 ns.
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weights. Differences of up to 0.42 KJ /mol in free energy
differences ��f ji=gj /� j −gi /�i� are observed below the melt-
ing temperature but differences of not more than 0.1 KJ /mol
occur elsewhere. This difference indicates that thermody-
namic properties are more difficult to converge below the
melting temperature. Regardless, the differences in �f ji are
still much less than a KT so we consider them to be well
converged �see Table I�. Thus, we chose to use the weights
from our distributed computing simulations starting from a
prehelical configuration as our reference point for the con-
vergence of weights from our cluster simulations. As shown
in Fig. 7, the weights computed from short trial MD simula-
tions are already close to the correct values �within 0.5%� for
three temperature pairs. However, weights around the melt-
ing temperature �T=308 K� still converge slower than those
at other temperatures.

As discussed above, a set of converged weights will pro-
duce uniform sampling in ST. In Figs. 8�a� and 8�b�, we
again plot the amount of time spent at each temperature over
a series of 4 ns windows. It is clear that the sampling is not
uniform before 12 ns for simulations starting from either of
the initial configurations. Before 12 ns, the system spends

considerably more time exploring high temperatures. This
biased exploration of temperature space results from the fact
that the weights are not converged. When the weights are not
converged, �Pij	� �Pji	, resulting in nonuniform sampling. In
Fig. 9, we plot Pi→i−1− Pi−1→i for the transitions between all
neighboring temperatures. When t�12 ns there is a signifi-
cant difference between the forward and backward transition
probabilities, especially around the melting temperature
where i=6. After 12 ns the differences appear to be more
randomly distributed around 0. These differences are prob-
ably due to the limitations of finite sampling rather than un-
converged weights. To quantify the convergence of the
weights we apply the same uniform sampling measure �u�t��
as used for SREM. As shown in Fig. 8�c�, the u�t� curves for
each of the starting configurations decrease to a value below
0.2 after 16 ns, indicating that the weights are converged.

3. Convergence of helical properties

The convergence of various thermodynamic properties
serves as another indirect measure of the convergence of our
simulations. In theory, any thermodynamic property will de-

FIG. 7. �Color online� �g=gi+1−gi

from ST simulations as a function of
time for three pairs of neighboring
temperatures: 285 and 288 K �left col-
umn�, 304 and 308 K �center column�,
and 583 and 592 K �right column�.
Black and gray �red� curves corre-
spond to �g values obtained from
simulations starting from a helical and
a coil structure, respectively. The well
converged weights from distributed
computing simulations are used as a
reference �blue curve without
symbols�.

TABLE I. �g=gj −gi obtained from distributed computing simulations starting from a helical structure �third
column� and a coil structure �fourth column� at representative temperature pairs. In the fifth column, differences
between free energy differences �f ji=gj /� j −gi /�i obtained from simulations starting from a helical structure
and a coil structure are displayed. KT at temperature i is shown in the sixth column. �f ji�helical�−�f ji�coil� is
much smaller than KT at all temperature pairs.

Ti Tj �gji�helical� �gji�coil� �f ji�helical�−�f ji�coil� �KJ/mol� KTi �KT/mol�

285 288 360.36 360.38 −0.06 2.37
288 292 466.48 466.39 0.22 2.39
292 296 451.13 450.95 0.42 2.43
296 300 436.41 436.30 0.28 2.46
300 304 422.25 422.29 −0.09 2.49
304 308 408.41 408.45 −0.09 2.53
308 312 394.65 394.69 −0.11 2.56
312 317 475.35 475.37 −0.06 2.59
317 322 457.33 457.33 −0.02 2.63
322 327 440.48 440.48 0.00 2.68
347 352 368.18 368.18 −0.01 2.88
399 405 314.38 314.39 −0.01 3.32
447 454 277.36 277.35 0.04 3.71
497 506 273.58 273.57 0.04 4.13
583 592 184.33 184.33 0.00 4.84
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pend on the underlying PEDFs in SREM or weights in ST. In
practice, however, thermodynamic properties may not con-
verge at the same rate as these underlying variables. They are
an attractive measure of convergence because, at least in this
study, they are the primary quantities of interest. Measuring
the convergence of thermodynamic properties also allows a
direct comparison to MD.

In this study we will focus on the helical content. Other
measures, such as number of helical residues, number of he-
lical segments, and the maximum length of a single helix
were also examined and showed similar trends �data not
shown�. To visualize the convergence of our simulations we
plot the average helical content as a function of time
for simulations starting from extended configurations
and prehelical configurations, as shown in Fig. 10 for a few
representative temperatures. Each point in Fig. 10 shows the
average helical content over a 4 ns window with error bars
corresponding to one standard deviation. The first 4 ns are
omitted to allow for equilibration. The mean values and
statistical uncertainties are computed by using WHAM
�Ref. 28�.

From Fig. 10�c� it is clear that both SREM and ST con-
verge quickly at high temperatures and yield very small error
bars. However, neither converges as quickly as the high tem-
perature MD simulations. The small error bars make sense in
light of the fact that the free energy surface is more smooth

at higher temperatures. In addition, the high fidelity of the
convergence of MD compared to SREM and ST is probably
due to the fact that the MD plot is for 50 24 ns simulations
at constant temperature while 50 24 ns simulations
are performed for all temperatures in SREM or ST.

At low temperatures SREM appears to converge more
quickly than ST. This is not an inherent advantage of SREM,
however. Rather, this phenomenon is the result of SREM
being biased towards lower temperatures and ST being bi-
ased towards higher temperatures before their PEDFs and
weights converge, as shown in Figs. 6 and 8. The fact that
SREM converges faster than ST at lower temperatures in this
case indicates that uniform sampling of temperature space
may not be optimal. Various methods of exploiting this
observation are now being implemented.

MD simulations starting from the prehelical configura-
tion at low temperatures converge to the correct value
quickly, most likely because the system tends to explore the
free energy basin around the native structure. MD simula-
tions starting from an extended configuration fail to converge
to the correct value, however, because of the presence of
large free energy barriers at low temperatures. The much
faster convergence of our SREM and ST simulations starting
from an extended state demonstrates that configurations
accepted from high temperatures do indeed help sampling at
lower temperatures.

FIG. 8. �Color� �a�. Amount of time the 50 ST simulations starting from a helical structure spent at each of the 50 temperatures. �b�. The same as �a� except
that data are collected from simulations starting from a coil structure. �c�. The uniform sampling convergence measure u�t� as a function of time obtained from
simulations starting from a helical structure �black curve� and a coil structure �red curve�. Each data point is averaged over 50 ST simulations using a time
window of 4 ns.

FIG. 9. Average probability difference
��P� between transitions to lower and
higher temperatures over 50 ST simu-
lations. �P= Pi→i−1− Pi−1→i. �a� �P
obtained from simulations starting
from a helical structure. �b�. The same
as �a� except that �P is obtained from
simulations starting from a coil
structure.
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Around the melting temperature both SREM and ST
converge more slowly than at higher temperatures. SREM
also converges more slowly than at lower temperatures, and
this would probably be true for ST as well if it were not
initially biased towards higher temperatures in this system.
As for the PEDFs and weights, this slow convergence results
from the broad energy distribution, more or less equal
occurrence of the folded and unfolded states, and slow
folding/unfolding transitions. Even at the melting tempera-
ture SREM and ST still converge within 10 ns, whereas MD
fails to converge within the 24 ns simulations. Thus, both
SREM and ST provide faster and more accurate thermody-
namic predictions than MD. In this case they converge at
least twice as quickly, though we cannot exactly quantify the
advantage provided since our MD simulations fail to con-
verge at all. Interestingly, the thermodynamic properties also
converge faster than the PEDFs and weights �10 ns as op-
posed to 16 ns�. Thus, convergence of the PEDFs and
weights in SREM and ST is not necessarily a prerequisite for
the convergence of thermodynamic properties of interest.

The weights in ST are converged after 16 ns regardless
of the starting configuration. PEDFs from our SREM simu-
lations converge after 16 ns starting from the prehelical con-
figuration but take more than 24 ns to converge when started
from a coil configuration. Regardless of these small differ-
ences, both algorithms are capable of reaching convergence
within a small number of short simulations for this system

�50 24 ns simulations here�. More interestingly, certain ther-
modynamic properties such as helical content converge even
faster than the PEDFs and weights. Given the utility of these
short simulations, a large number of simulations run in a
distributed computing environment should be able to yield
converged weights or PEDFs, even for a larger system. Thus,
both of the enhanced sampling methods studied here should
prove useful for studying the folding free energy landscapes
of biomolecules in a distributed environment.

ST does have certain advantages over SREM. First, ST

FIG. 11. �Color� Comparison of acceptance ratios from SREM and ST.

FIG. 10. �Color online� Comparison
of helical content as a function of time
between SREM, ST, and standard MD
using the same amount of sampling at
three temperatures: �a�. 285, �b�. 308,
and �c� 592 K. �Black curve� Data ob-
tained from simulations starting from
a prehelical structure. �Gray/red curve�
Data obtained from simulations start-
ing from a prehelical structure. �Blue
curve without symbols� The converged
value from distributed computing
simulations. The mean values and sta-
tistical uncertainties are estimated us-
ing WHAM. �Ref. 30�.
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is an exact method, while SREM is only approximately cor-
rect unless the exact PEDFs are used. Second, ST has higher
acceptance ratios than SREM as shown in Fig. 11. This ob-
servation is in agreement with Park’s recent analytic proof
that ST should give higher acceptance ratios than SREM for
any system given the same temperature list.26 The primary
difficulty with ST is determining the free energy weights. As
discussed above, we show that obtaining initial weights from
short trial simulations followed by refinement by an adaptive
weighing method such as an adaptive WHAM �Ref. 31� very
efficiently determines a set of free energy weights, which
allows the system to perform a random walk in temperature
space.

B. Study of helical-coil transitions by SREM/ST
in a distributed computing network

Distributed computing environments are able to generate
a massive amount of sampling. Thus, converged PEDFs and
weights can be more readily achieved, as shown in Fig. 2 and
Table I. The convergence of these underlying variables leads
to better convergence of thermodynamic properties. For ex-

ample, Fig. 12 shows helical content melting curves demon-
strating that simulations starting from the prehelical and un-
folded states converge excellently for both SREM and ST.
Such exact convergence was not possible on our local com-
puter cluster, where curves starting from different initial con-
figurations converged only within very large error bars �data
not shown�.

In fact, Fig. 12 also shows that SREM and ST simula-
tions run on a distributed computing environment give al-
most identical results. Each gives a melting temperature of
about 310 K, in reasonable agreement with the experimental
value of 334 K.44 Again, this level of agreement was not
found in our cluster simulations �data not shown�. Thus, it
appears that large-scale SREM simulations are able to yield
converged PEDFs, leading to thermodynamic predictions
with the same level of accuracy as ST even though SREM is
an approximate method. However, for larger systems where
converging the PEDFs may be more difficult, ST is probably
still more useful since it is an exact method. Regardless, it is
clear that SREM and ST are both powerful tools when em-
ployed on a distributed computing network.

At present there is no straightforward way to apply the
u�t� convergence measure to FAH data due to its asynchro-
nous nature. To ensure that uniform sampling was achieved
50 short 4 ns simulations were performed uniformly starting
from different temperatures on a local cluster using the final
FAH PEDFs in the case of SREM and the final FAH weights
in the case of ST. Application of the u�t� metric to these data
sets yielded values of 0.10 and 0.18 for SREM simulations
starting from helical and coil structures, respectively, and
values of 0.11 and 0.17 for ST simulations. These values are
below the empirically determined cutoff of 0.2 used previ-
ously, indicating that near uniform sampling is achieved.

In addition to the average thermodynamic properties
such as helical content, we also demonstrate the convergence
of the free energy landscape starting from different initial
configurations as projected onto the 
 and  axis. Figure 13
shows the convergence of the 
- free energy landscape for
both SREM and ST simulations at 308 K. Visual inspection
of Fig. 13�a� shows that the free energy landscapes computed
from ST simulations started from both prehelical and random

FIG. 12. �Color� Helical content as a function of temperature obtained from
distributed computing simulations. �Black curve� SREM starting from a he-
lical structure. �Red curve� SREM starting from a coil structure. �Blue
curve� ST starting from a helical structure. �Green curve� ST starting from a
coil structure. The mean values and statistical uncertainties are estimated
using WHAM �Ref. 28�.

FIG. 13. �Color online� Free energy
landscape projected onto the � and �
axis in units of kcal/mol at 308 K. �a�
Obtained from ST simulations started
from the prehelical state �left figure�
and from a random coil state �right
figure�. �b� The difference map be-
tween the free energy landscapes in
�a�. �c� The same as �a� except that
free energy landscapes are obtained
from SREM simulations. �d�. The dif-
ference map between the free energy
landscapes in �c�.
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coil states are almost identical. Figure 13�b� shows the dif-
ference map between the two free energy landscapes and
quantitatively demonstrates the agreement between the two
landscapes. Differences larger than kT mostly appear at the
edges where the probability is low and therefore more vari-
able. Results from SREM simulations are also converged as
shown in Figs. 13�c� and 13�d�. Furthermore, these free en-
ergy landscapes are in agreement with those from an earlier
work employing ensemble MD simulations.5

The utility of the SREM and ST algorithms may be fur-
ther increased by moving away from uniform sampling.
Relative to short cluster simulations, our distributed simula-
tions are approaching infinite sampling. In this case our melt-
ing curves are based on 12 times as much sampling while
still throwing out 6 times as much data for equilibration. In
fact, these numbers give an underestimate since other simu-
lations not included in these calculations still contributed to
the convergence of the PEDFs and weights. Aggregate simu-
lation times for SREM and ST were 64.3 and 185.8 �s, re-
spectively. Even so, the error bars at lower temperatures, the
primary area of interest, are still greater than those at higher
temperatures as shown in Fig. 12. Adaptive sampling meth-
ods may serve to decrease the uncertainty at temperatures of
interest even on a distributed computing network. One pos-
sibility would be to start more simulations from regions of
temperature space that are not well converged. Another pos-
sibility would be to update the temperature list and or
weights in order to bias simulations towards a specific set of
temperatures.

C. Temperature dependent properties

Sorin and Pande5 define a helical residue as having 

� �−60�30�° and �−47�30°. They chose a cutoff of 30°
because slight variations in this number caused the least dif-
ference in their results. Basing their cutoff on this variance
relies on the assumption that the Fs peptide is a two state
folder. Two distinct state would imply some range of cutoffs
that would give more or less the same results.

In this work, we use a cutoff of 40°. To arrive at this
cutoff we started with the definition of the transition tem-
perature, which is the temperature at which half the popula-
tion is folded and the other half is unfolded. We assume that
the folded state is completely helical while the unfolded state
has no helical content, thus the helical content at the transi-
tion temperature would be 0.5. The helical content was then
plotted as a function of temperature using cutoffs of 30°, 35°,
40°, 45°, and 50°, as shown in Fig. 14. Both curves obtained
from simulations starting from a helical structure and a coil
structure converge well at every cutoff angle. The plots using
a 40° cutoff are found to give 0.5 helical content at the tran-
sition temperature of 310 K, so 40° was selected as the
optimal cutoff.

We also calculated the Lifson–Roig average helix nucle-
ation and propagation propensity parameters, ��	 and ��	,
respectively, for our simulations. Our values for ��	 were an
order of magnitude greater than the experimentally measured
values �data not shown�, in agreement with previous
calculations.5,45 This overestimate may be attributed to the

AMBER99� force field over stabilizing helices. As shown in
Fig. 15, our results for ��	 are converged well for simula-
tions starting from different configurations and more prom-
ising. At low temperatures we find reasonable agreement
with the experimentally measured values. The overall trend
of our ��	 curve is qualitatively similar to the experimentally
measured curve, although our values fall off less quickly
with increasing temperature. This can probably be attributed
to some combination of the poor temperature dependence of
the force field and the overstabilization of alpha helices at
high temperatures.

IV. CONCLUSION

Generalized ensemble methods such as the replica ex-
change method �REM� and simulated tempering �ST� have
led to important advances in the sampling of conformations
of biomolecular systems on computer clusters of all sizes. As
demonstrated in this work, they can significantly speedup
convergence relative to ensemble MD for the helical peptide
studied here. However, it is still difficult to get convergence
within the constraints of the computing power available on

FIG. 14. �Color� Helical content as a function of temperature obtained from
distributed computing ST simulations starting from a helical structure or a
coil structure. Each curve uses a different cutoff angles to define a helical
residue.

FIG. 15. �Color online� Average helix propagation parameters as a function
of temperature obtained from distributed computing ST simulations starting
from a helical structure �black circles�, ST simulations starting from a coil
structure �red squares�, and from experiments �Ref. 47� �blue diamonds�.
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most local clusters. One common way of testing the conver-
gence of such simulations is to determine whether the sam-
pling is Boltzmann weighted. However, a simple thought ex-
periment shows that it is possible to achieve Boltzmann
weighted sampling of only a subset of the conformational
space. A good measure of convergence is to achieve
“reversible folding”46 �i.e., multiple unfolding and refolding
events in the same trajectory�. However, even for a small
protein, it is extremely difficult to achieve enough sampling
to simulate reversible folding with all-atom force field in the
explicit solvent. The difficulty is mostly due to the limit of
the computing resources. With the large-scale distributed
computing, we are able to gain higher level of convergence
than those work using local clusters. Another less strict mea-
sure for the convergence is to run simulations starting from
very different conformations, such as the prehelical and ran-
dom coil states used in this work and compare the results as
it demonstrates their robustness. Furthermore, it is important
to look at a number of properties as some may converge
faster than others. Besides thermodynamic properties, two
obvious candidates are the PEDFs in SREM and the weights
in ST.

Generalized ensemble methods have proved extremely
powerful when taking these considerations into account in
the context of a massive distributed computing environment.
For ST, we demonstrate the efficacy of a new scheme for
determining weights allowing the system to perform a ran-
dom walk in temperature space that employs short trial simu-
lations to make an initial estimate of the weights followed by
massive simulations with an adaptive weighting method us-
ing WHAM. By making use of the extensive sampling capa-
bilities of such an environment we are able to obtain con-
verged energy distributions, weights, and temperature
dependent thermodynamic properties. Both relatively short
cluster simulations and large-scale distributed computing
simulations demonstrate that SREM and ST converge to
equivalent results within error on a small system. The per-
formance of these methods may be improved through judi-
cious use of nonuniform sampling. Thus, both methods could
serve as powerful tools for further studies of more compli-
cated systems on distributed computing networks. However,
we note that ST may be more appropriate for larger systems
because it is an exact solution, yielding valuable results even
if a set of unconverged weights are used whereas SREM may
not provide accurate predictions until after its PEDFs have
converged.
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