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Standard force fields used in biomolecular computing describe
electrostatic interactions in terms of fixed, usually atom-
centered, charges. Real physical systems, however, polarize
substantially when placed in a high-dielectric medium such as
water — or even when a strongly charged system approaches
a neutral body in the gas phase. Such polarization strongly
affects the geometry and energetics of molecular recognition.
First introduced more than 20 years ago, polarizable force
fields seek to account for appropriate variations in charge
distribution with dielectric environment. Over the past five
years, an accelerated pace of development of such force fields
has taken place on systems ranging from liquid water to
metalloenzymes. Noteworthy progress has been made in better
understanding the capabilities and limitations of polarizable
models for water and in the formulation and utilization of
complete specifically parameterized polarizable force fields for
peptides and proteins.
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Abbreviations
FQ fluctuating charge
PD point dipole
RDF radial distribution function
SDFF spectroscopically derived force field
SIBFA sum of interactions between fragments ab initio computed
SPC simple point charge
TIP transferable intermolecular potential

Introduction
Computational studies of biomolecular systems routinely
make use of empirical potential energy functions or force
fields. In such studies, success often depends in a substan-
tial part upon the quality of the molecular force field.
Current-generation force fields, such as OPLS [1,2],
CHARMM [3], AMBER [4], MMFF [5] and GROMOS
[6], however, all have serious theoretical and practical lim-
itations. In particular, all are pairwise additive force fields
that describe the electrostatic interactions that dominate
molecular recognition events solely in terms of fixed
charges, usually centered on atoms. In this article, we will
review progress made in developing polarizable molecular
force fields that seek to overcome limitations inherent in
such approaches and will focus on studies that show why
these limitations are important.

A main cause of these limitations is that the high-dielectric
medium in a condensed-phase simulation (e.g. water)

polarizes the molecular charge distribution. Current bio-
molecular force fields, however, describe this
polarization only in an averaged way — typically by
increasing the atomic charges in order to obtain molecu-
lar or fragment dipole moments that are about 10–20%
larger than those  observed in the gas phase. Such
enhanced charges are needed to properly describe the
bulk properties of liquid water and (given that the wide-
ly employed nonpolarizable water models use such
charges) to obtain a proper balance between solvent–sol-
vent, solute–solvent and solute–solute interactions. The
mean field approximation they embody, however, limits
their accuracy because the dielectric environment, and
the resultant polarization response, can vary widely
across a biomolecular system — which, for example, may
extend from the nearly gas-phase environment of a non-
polar pocket in the protein interior to a nearly bulk-water
environment at the protein surface. Moreover, even in a
gas-phase environment, inclusion of polarizability can
strongly affect intermolecular interaction energetics, as
Caldwell and Kollman [7] showed in a seminal study on
aromatic–cation interactions.

In such situations, ‘one size’, in atomic charge, definitely
does not ‘fit all’ and yet every widely used force field
makes this approximation. Polarizable force fields, in con-
trast, allow the charge distribution to vary with the
demands of the dielectric environment. In this article, we
review methods that have been used to account for polar-
ization and summarize the progress made to date in
treating systems ranging from pure water to biomacromol-
ecules in aqueous solution. Such methods have been
explored at least since the studies by Vesely [8], Stillinger
and David [9], Barnes et al. [10], and Warshel [11] more
than 20 years ago (the earliest we are aware of), but never
as intensively as during the past five years, the time period
covered by this first review of polarizable force fields for
Current Opinion in Structural Biology.

Methods used to account for polarization
Inducible point dipole model
In this method, a point dipole (PD) ppind is induced at each
contributing center in response to the total electric field
according to:

ppind = α(EE0 + EEp) (1)

where EE0 is the field due to the permanent atomic charges
and EEp is the field due to the (other) induced dipoles. The
total field is determined self-consistently via an iterative
procedure that minimizes the polarization energy or by
means of the extended Lagrangian method [12]. The con-
tribution of the polarization energy to the total nonbonded
energy is then given by:
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Epol = –1/2 Σ ppi•EEi
0 (2)

where the summation is over polarizable centers, i.

Fluctuating charge model
In this method, the atomic charges fluctuate in response to
the environment according to the principle of electronega-
tivity equalization, which states that charge flows between
atoms until the instantaneous electronegativities of the
atoms are equal. In this approach, the fluctuating charges
(FQs) are assigned fictitious masses and are treated as
additional degrees of freedom in the equations of motion.
In the context of molecular dynamics, the equations that
result are efficiently solved using the extended Lagrangian
method [13] at a computational cost little greater than that
required for a fixed-charge, pairwise-additive force field.
This model has also been implemented, though less effi-
ciently, for use in Monte Carlo simulations [14].

Water models
Most efforts to develop polarizable force fields have
focused on liquid water because its elaborate network of
cooperative interactions provides fruitful grounds for test-
ing methods and because it plays such a central role in
biological processes. In the PD model, the additional
empirical parameters are the polarizabilities, α, of
Equation 1. Some approaches include isotropic point
polarizabilities on all atoms. These approaches subdivide
into cases in which the molecular polarizability is taken to
be a simple additive sum of the atomic polarizabilities [15]
and others in which the point polarizabilities interact
intramolecularly with those on neighboring atoms (1,2- and
1,3-bonded) [16]. Other force fields place a single point
polarizability, often set to the experimental value of
1.444 Å3, at the oxygen atom or positioned along the
H–O–H bisector [17–19].

In the FQ approach, the parameters that determine the
atomic charges and the polarization response can be adjust-
ed empirically [13], but have also been fit to reproduce
quantum mechanical two-body and three-body (i.e. nonad-
ditive) interaction energies for water dimers and trimers
[20]. As applied to water, this model, though highly effi-
cient, has the disadvantage that the polarizability is
confined to the molecular plane, whereas experimentally
the polarizability is nearly isotropic.

The PD models cited above were parameterized to repro-
duce the experimental value of the dipole moment of the
water monomer in the gas phase and the heat of vaporiza-
tion and density of bulk water at ambient temperatures.
These water models use either the experimentally based
transferable intermolecular potential (TIP) TIP3P
[21]/TIP4P [22] geometry or the idealized tetrahedral sim-
ple point charge (SPC) [23] geometry (which has an
H–O–H bond angle of 109.5°). From results obtained to
date, it is not yet clear which is to be preferred; however,
as force-field parameterization usually involves fitting to

quantum mechanical data, the TIP geometry is often a
better choice for a polarizable force field.

Jedlovsky and Richardi [24••] have compared the perfor-
mance of the Chialvo–Cummings (CC) [17], Brodholt–
Samploi–Vallauri (BSV) [18] and Dang–Chang (DC) [19]
models under ambient conditions and at higher tempera-
tures. In relation to the nonpolarizable TIP4P and SPC
models, the polarizable models obtain a diffusion constant
that is in much better agreement with experiment.
Recently, Sorensen et al. [25•] completed new measure-
ments of the radial distribution functions (RDFs) for water
and compared them with predictions made for both polar-
izable and nonpolarizable water models. They found that
the calculated RDFs for the polarizable models (CC,
TIP4P-FQ [13]) were generally in better agreement with
experiment than those for the pairwise-additive TIP3P
and SPC three-site models. The RDFs for the polarizable
force fields, however, were not significantly better than
those for the four-site TIP4P model and not as good as
those for the new nonpolarizable five-site TIP5P model
[26•]. This suggests that improved force fields for general
molecules need to include some representation of
anisotropic charge distributions (e.g. off-center charges or
‘lone pairs’ on heteroatoms), as well as polarizability.

The only critical bulk property that is not satisfactorily
reproduced by these PD models is the dielectric constant,
which generally is too large [27,28]. This appears to result
from the fact that these models predict an average dipole
moment for bulk-phase water monomers of 2.8–3.2 Debye,
whereas empirical evidence indicates that only an average
dipole moment of about 2.6 Debye can reproduce the exper-
imental dielectric constant of approximately 80 [28,29].

For the BSV model, Alfredsson et al. [27] found that the
dipole moment calculated for the dimer is too large only for
H�O separations of less than 1.8 Å. As such distances are
rarely observed in simulations of bulk water, the authors
concluded that the overestimation of the bulk-phase
dipole moment does not arise from the inherent inaccura-
cy of using PDs instead of finite charge distributions (PDs
in principle could, and in practice sometimes do, lead to a
‘polarization catastrophe’, in which the magnitude of the
induced dipole increases rapidly, without bound, as the
internuclear separation decreases). Rather, they suggest
that it may not be appropriate to use the full experimen-
tally derived polarizability of the isolated water molecule
for calculation in the dense fluid phase. The Friesner
group came to a similar conclusion in the course of devel-
oping a PD model for water almost entirely from ab initio
quantum mechanics. They found that the reference quan-
tum mechanical polarizabilities need to be based on large,
but not limiting, basis sets (thereby leading to smaller cal-
culated values) and argue that Pauli exclusion effects
should reduce the effective polarizability of the water mol-
ecule in the condensed phase (RA Friesner, personal
communication). In contrast, many of the FQ models yield



238 Theory and simulation

reasonable values for the dielectric constant [13,20], but in
this approach, the polarizabilities are fitted, rather than
preassigned quantities, and yield average bulk-phase
dipole moments of approximately 2.6 Debye when the
dielectric constant is obtained accurately.

Aqueous solution and aqueous interfaces
Recent studies by Dang and co-workers have demonstrat-
ed the importance of polarizability in modeling aqueous
phenomena. For example, the paper that introduced the
DC model [19] also characterized the manner in which the
average water molecule dipole moment falls off from the
bulk value (2.75 Debye for the DC model) toward the gas-
phase value (1.85 Debye) as the water/vapor interface is
approached and crossed. Interestingly, the transition is
smooth and takes place over a distance of several
angstroms, such that even water molecules a few angstroms
deep into the water layer have noticeably reduced polarity.
A second study examined the water/CH2Cl2 interface and
found that the average dipole moment of water falls by
about 30% as the interface is approached from the aqueous
side and individual water molecules begin to penetrate into
the organic phase. Similarly, the approach to the interface
and penetration into the aqueous phase of CH2Cl2 mole-
cules raises their dipole moment by about 10% [30•].
Similar results had previously been reported for the
water/CCl4 interface using an earlier version of the polariz-
able potential [31]. Of course, no variation in dipole
moment is permitted in a nonpolarizable model.

A third study characterized the structure of iodide ion com-
plexed to water clusters containing 2–10 water monomers
[32•]. A main finding was that the iodide ion prefers to sit
at the surface of the cluster, rather than at an interior posi-
tion, where it would be surrounded to a greater degree
(‘solvated’) by water monomers. Interestingly, this
attribute is lost if the iodide ion is taken to be nonpolariz-
able; energetic analysis indicates that the origin of the
seemingly counterintuitive preference for a surface posi-
tion is the enhancement by iodide polarization of the
strength of the favorable interactions within the attached
water clusters. A fourth study examined the free energy of
transport of chloride and cesium ions across a water/CCl4
liquid/liquid interface [33]. In contrast to an earlier report
on a related system that used nonpolarizable potentials,
this study found no free energy minimum for Cl– (or for
Cs+) at the interface, indicating that these ions are not sur-
face active with the DC potential. On the other hand,
transport of benzene across the water liquid/vapor inter-
face encounters a substantial free energy minimum of
–4 kcal/mol [34], indicating that benzene is surface active.

An intriguing free energy perturbation study by Soetens
et al. [35] examined the potential of mean force for the
approach of a pair of coplanar guanidinium ions in fixed-
charge SPC/E (extended SPC) water and in PSPC
(polarizable SPC) water. Surprisingly (at least to us), this
study found free energy minima of –4.7 and –2.7 kcal/mol,

respectively, for a contact like-ion pair. This is contrary to
simple effective-dielectric-constant thinking, which would
hold that water would greatly reduce the repulsion
between the like ions — but that repulsion there would be,
nonetheless. Especially for the polarizable force field,
however, the computed free energy minimum was sub-
stantially smaller in magnitude than the minimum of
–10 kcal/mol calculated for the guanidinium contact ion
pair in TIP4P water, also cited in the paper. Thus, inclu-
sion of polarizability markedly reduces the stability of the
contact ion pair; we are tempted to say that this is a more
‘physical’ result, but perhaps this is just our prejudice talk-
ing. Further studies are clearly warranted.

Polarizable force fields for small molecules
Polarizable force fields for small molecules — for example,
CCl4, CH2Cl2, benzene and the guanidinium ion — were
employed in the studies reviewed above. Others have been
reported recently by Hermida-Ramon and Rios [36], and
by Krimm and co-workers [37•] for formaldehyde; by Levy
and co-workers [38] for small aliphatic amines and small
amides; by Kollman and co-workers [39] for small amines;
and by Krimm for N-methylacetamide (S Krimm, personal
communication). These force fields all utilize inducible
PDs, though Krimm’s formulation [37] — a more complex,
polarizable analog of his SDFF (spectroscopically derived
force field) model — also uses FQs in part. For both their
polarizable and nonpolarizable SDFF models, Krimm and
co-workers (in the references cited) computed dipole
moments and molecular electrostatic potentials for small-
molecule dimers as a function of orientation. Their results
are noteworthy because they demonstrate that inclusion of
polarizability markedly improves the agreement with
ab initio quantum mechanics for these measures of the
charge distribution. Thus, we see that neglect of polariz-
ability will cause other parts of a system to experience
erroneous electrostatic interactions with hydrogen-bonded
moieties contained within it.

The studies of amine and amide hydration by Levy and
co-workers [38], and of amine hydration by Kollman and
co-workers [39] are especially noteworthy because they
agree, despite quite different parameterizations, that inclu-
sion of polarizability substantially improves the
reproduction of the experimental free energies of aqueous
solvation upon successive replacement of amino hydro-
gens by relatively highly polarizable methyl groups. In
particular, their polarizable models gave the change in free
energy of hydration on going from ammonia to trimethy-
lamine as about +3 kcal/mol. This is still larger than the
experimentally determined difference of +1.1 kcal/mol,
but is in much better agreement with experiment than the
estimates of +4.4 to +6.6 kcal/mol obtained from their pair-
wise-additive fixed-charge force fields [38,39]. Inclusion of
polarizability, however, did not resolve a key qualitative
discrepancy — namely, that the first methylation in each
case increases the magnitude of the experimental, but
decreases that of the calculated, solvation free energy. The
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explanation for these discrepancies may rest in the finding
by Freisner, Honig and co-workers [40] that, when used in
force-field calculations, atomic charges determined by fit-
ting to quantum mechanical electrostatic potentials (or,
equally, to experimental dipole moments, as in [38])
underestimate the binding energy of hydrogen-bonded
dimers for the more highly methylated systems; as a result,
systems such as trimethylamine are calculated to be too
poorly solvated by the force-field model. Evidently, a
proper physical resolution will require both the inclusion
of polarizability and the assignment of permanent charges
that reproduce quantum mechanical dimerization ener-
gies. An approach along these lines has been taken by
Rizzo and Jorgensen [41•], using the nonpolarizable
OPLS-AA force field. These workers are able to reproduce
the amine hydration series quite accurately, but find that
their amine–water dimerization energies need to become
increasingly more negative (i.e. larger in magnitude) than
the benchmark large basis set localized MP2 ab initio cal-
culations as additional methyl groups are added — perhaps
to compensate for the lack of polarizability, which favors
the hydration of the more highly methylated members of
the series.

Peptides and proteins
An approach to polarizability commonly taken by Kollman
and co-workers [4,39] builds on AMBER by adding point
polarizabilities, usually based on the Applequist model
[42], and by compensatingly reducing the permanent
charges, typically to 88% of the values used for the pair-
wise-additive fixed-charge force field. This protocol
provides a convenient way of generating polarizable force
fields for general organic molecules. However, the practice
of keeping all other parameters set at values taken from
the additive force field affects the performance of the
polarizable force field to some degree, for example, for
conformational energies [4].

A major effort to develop polarizable force fields for pep-
tides and proteins has been reported by Friesner, Berne
and co-workers [43••,44•]. Following closely on the heels
of the two initial publications [43••,44•], this work has now
led to a complete protein force field covering all 20 natu-
rally occurring amino acids (RA Friesner, personal
communication). The first of the cited papers [43••] uti-
lizes the FQ model exclusively. It derived polarizability
parameters by fitting to the quantum mechanical response
to electric fields generated by charged probe particles
placed strategically around the van der Waals envelope of
the system. The second paper [44•] uses PD polarizabili-
ties in a mixed PD/FQ model for substituted benzenes to
overcome limitations of the FQ framework (such as the
limitation of the polarizability to the plane of a phenyl ring,
analogous to the limitation of the polarizability to the plane
of the water molecule in the FQ model for water). This
paper also presents a PD model for a limited set of amino
acid residues, which the unpublished work has now
extended to produce a complete protein force field.

A hallmark of the Friesner–Berne effort has been the
development of nearly completely automated techniques
for deriving electrostatic and polarization parameters from
ab initio quantum mechanics. The unpublished work also
derives Lennard–Jones parameters or, most recently,
Buckingham exp-6 van der Waals parameters (in which the
repulsive term is described by an exponential function) by
fitting to small-molecule hydrogen-bonded dimers com-
puted at very high levels of ab initio theory; the approach
then adjusts the dispersion parameters that multiply the
r–6 term in the expression for the interatomic potential to
fit the experimental density for organic liquids that relate
to fragments of amino acids (e.g. for methanol and for-
mamide). In preliminary work, this approach yielded
predicted heats of vaporization in excellent agreement
with experiment, even though the heat of vaporization was
not a fitted quantity (RA Friesner, personal communica-
tion). In addition, good reproduction of high-quality
ab initio conformational energies for peptides has 
been demonstrated in both the published [43••,44•] and
unpublished work.

Gresh et al. [45•] have also developed polarizable models
for proteins and peptides. Most of their work is reviewed
below, but we include here an application to the energetics
of hydrogen bonding by dimers of formamide, cis-N-
methylacetamide and alanine and glycine dipeptides. This
study derived PD models within the framework of the
SIBFA (sum of interactions between fragments ab initio
computed) method described below. It is of particular
interest in this context because it supports a conjecture
one of us made [46] that more than simple atom-centered
charges (e.g. lone pairs or higher multipole moments) are
needed to properly account for the directionality and ener-
getics of hydrogen bonding between amide groups. Of
course, the influential study by Dixon and Kollman [47],
which appeared at about the same time as [46], leaves lit-
tle room for doubt on this score, though the systems
examined are different. This study [47] found, for exam-
ple, that coordination of pyridine by a hydrogen-bonding
water molecule in which the water oxygen lies in the plane
of the ring is favored over a coordination by a water mole-
cule displaced vertically over the ring nitrogen by 3–4
kcal/mol quantum mechanically, but by only a few tenths
of a kcal/mol for the standard, pairwise-additive AMBER
force field. Addition of an off-center charge site in the ‘lone
pair’ region proved essential for recovering the proper
hydrogen-bond directionality and energetics; polarization
alone was ineffective.

Protein metals and metalloenzymes
Gresh and co-workers [48–54] have published more than a
dozen papers on the SIBFA method since 1995. Most have
defined the force field or have described its parameteriza-
tion for the binding of prototype ligands to protein metals,
usually Zn2+. Some, like the paper cited above [45•], have
pursued complete applications of interest in biomolecular
computing. SIBFA uses the PD approach, but places it
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within a complex framework in which induced-dipole and
other attractive interactions are damped at close range, and
in which polarizabilities, together with ‘van der Waals bod-
ies’, are placed at bond and lone-pair centroids, rather than
on atoms. SIBFA also incorporates a complex mechanism
for accounting for geometric and some energetic (but not
explicitly for charge redistribution) effects of the charge
transfer from protein ligands to protein metals that takes
place in the course of partial bond formation [48]. In this
approach, individual terms are constructed to reproduce
ab initio supermolecule calculations that have been parti-
tioned into corresponding contributions via the restricted
variational space procedure of Stevens and Fink [55].
Because of this attention to detail, we would expect SIBFA
calculations to reproduce many facets of the true physics of
the system far better than a more standard approach can. A
drawback, however, is that analytic gradients are not avail-
able, precluding application to molecular dynamics
simulations. A second drawback is that all SIBFA calcula-
tions reported to date have had to use the ‘rigid rotor’
approximation — that is, bond angles and bond lengths
cannot yet be relaxed during energy minimization.
Moreover, despite the good work done here, it remains to
be seen whether a complete molecular mechanics
approach such as SIBFA or a mixed quantum/classical
mechanics (QM/MM) approach [56] will be more success-
ful for metal-containing systems.

The mutation of protonated His231 to alanine in a close
relative of thermolysin is an especially interesting applica-
tion. This mutation almost completely abolishes the
binding of phosphoramidate inhibitors, but scarcely affects
that of thiolates, such as thiorphan. To probe the physical
basis for this difference, Gresh and Roques [57] studied a
model system in which torsional flexibility was allowed for
key sidechains, but in which the protein coordinates for
the 27 amino acid residues were otherwise taken from the
crystallographically determined thiorphan–thermolysin
complex (again reflecting the current inability to treat
internal degrees of freedom other than torsions). On the
basis of energy balances computed in continuum solvent,
the authors concluded that the difference arises because an
unfavorable change upon mutation in the energy for direct
interaction (i.e. such as would be found in the gas phase) is
compensated for in thiorphan, but not in the phospho-
ramidate, by a more favorable solvation energy of the
mutated site, which bears a larger net ionic charge.

Conclusions
Polarizable force fields were introduced more than 20 years
ago, but most progress on their formulation and application
has occurred during the past five years. Such force fields
unquestionably provide a far superior physical description
of organic and biomolecular systems. Even though the
properties of bulk water do not, in general, come out bet-
ter with current polarizable force fields, studies at
interfaces have shown large changes in charge distribution
and dipole moment that can only be described by an

approach of this kind. Polarizability has also been found to
contribute strongly to the directionality and/or energetics
of hydrogen-bond formation and of cation–aromatic inter-
action, and thus of molecular recognition.

But, despite the clear logical and practical arguments that
can be made, the necessity of including polarizability (plus
a representation of the permanent charge distribution
beyond fixed, atom-centered charges) for accurately pre-
dicting, say, ligand–receptor binding affinities has not yet
been proven — that is, there is as yet no ‘smoking gun’.
Simpler nonpolarizable force fields have undeniably had
many successes (along with many failures) in predicting
relative binding affinities. Given the accelerated progress
made in the past five years, however, the next few years
bode well to establish the limitations of standard, nonpo-
larizable fixed-charge force fields and to make the case for
routinely including polarizability in biomolecular calcula-
tions.
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