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Abstract
Molecular dynamics (MD) is an invaluable tool with which to study
protein folding in silico. Although just a few years ago the dynamic be-
havior of a protein molecule could be simulated only in the neighbor-
hood of the experimental conformation (or protein unfolding could
be simulated at high temperature), the advent of distributed comput-
ing, new techniques such as replica-exchange MD, new approaches
(based on, e.g., the stochastic difference equation), and physics-based
reduced models of proteins now make it possible to study protein-
folding pathways from completely unfolded structures. In this
review, we present algorithms for MD and their extensions and ap-
plications to protein-folding studies, using all-atom models with ex-
plicit and implicit solvent as well as reduced models of polypeptide
chains.
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NMR: nuclear magnetic
resonance

MD: molecular dynamics

1. INTRODUCTION

Interest in the dynamics of proteins derives from its application to many properties
of proteins, such as folding and unfolding, the role of dynamics in biological func-
tion, the refinement of X-ray and nuclear magnetic resonance (NMR) structures,
and protein-protein and protein-ligand interactions. This review is concerned with
protein-folding and -unfolding dynamics, and deals with molecular simulation tech-
niques with emphasis on molecular dynamics (MD) and its extensions. The advantage
of this approach is that, within the accuracy of the underlying potential energy func-
tions, it provides information about the folding and unfolding pathways, the final
folded (native) structure, the time dependence of these events, and the inter-residue
interactions that underlie these processes. We refer the reader to the literature for
experimental techniques such as fluorescence (1, 2), infrared (3, 4), and NMR (5–8)
spectroscopy, as well as electron-transfer experiments (9, 10) for the study of protein-
folding dynamics.

In the theoretical approach, based on empirical potential energy functions,
Newton’s or Lagrange’s equations are solved to obtain coordinates and momenta
of the particles along the folding and unfolding trajectories. Alternative approaches
are based on solving Langevin’s equations when the solvent is not treated explicitly.
Both approaches are time-consuming and require extensive computer power to solve
these equations. In fact, it is only the development of such computing power that has
made it possible to solve physical problems by MD calculations.

The modern era of MD calculations with electronic computers began with the
work of Alder & Wainwright (11, 12), who calculated the nonequilibrium and equilib-
rium properties of a collection of several hundred hard-sphere particles. By providing
an exact solution (to the number of significant figures carried) of the simultaneous
classical equations of motion, they were able to obtain the equation of state (pressure
and volume) and the Maxwell-Boltzmann velocity distribution. Rahman (13) carried
out the first MD simulations of a real system when he studied the dynamics of liquid
argon at 94.4 K.

Later, Rahman & Stillinger (14) applied the MD technique to explore the physical
properties of liquid water. Treating the water molecule as a rigid asymmetric rotor
with an effective Ben-Naim and Stillinger pair potential version of the Hamiltonian,
they computed the structural properties and kinetic behavior, demonstrating that the
liquid water structure consists of a highly strained random hydrogen-bond network,
with the diffusion process proceeding continuously by the cooperative interaction of
neighbors.

Karplus and coworkers (15) carried out the first application of MD to proteins.
However, this study did not deal with the protein-folding problem. Instead, it investi-
gated the dynamics of the folded globular protein bovine pancreatic trypsin inhibitor.
As in the work of Rahman and Stillinger, Karplus and coworkers (15) solved the clas-
sical equations of motion for all the atoms of the protein simultaneously with an
empirical potential energy function, starting with the X-ray structure and with ini-
tial velocities set equal to zero. Their results provided the magnitude, correlations,
and decay of fluctuations about the average structure, and suggested that the protein
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MC: Monte Carlo

UNRES: united-residue

interior is fluid-like in that the local atomic motions have a diffusional character.
Researchers have applied this technique extensively in the refinement of X-ray and
NMR structures, but because of the need to take small (femtosecond) time steps
along the evolving trajectory to keep the numerical algorithm stable, it has not been
successful in treating the real long-time folding of a globular protein, except for very
small ones. However, many of the applications of MD of globular proteins have been
made to the initial unfolding steps, followed by refolding. In applying the MD tech-
nique, one must consider numerous trajectories, rather than a single one, to cover
the large multidimensional, conformational potential energy space and obtain proper
statistical mechanical averages of the folding/unfolding properties.

Since the first papers from the Karplus lab, numerous MD calculations have
been carried out in the laboratories of Brooks (16), van Gunsteren (17), Levitt (18),
Jorgensen (19), Daggett (20, 21), Kollman (22), Pande (23), Berendsen (24), Baker
(25), McCammon (26), and others. This review is concerned with recent theoretical
developments in protein-folding dynamics. Several reviews (20, 27, 28) have discussed
earlier work in this field. The discussion here focuses on techniques to solve the clas-
sical equations of motion, using both an all-atom approach and an approach based
on simplified models of the polypeptide chain, and to assess how far the field has
progressed to be able to compute complete folding trajectories, as well as the final,
native structure, based on physical principles (i.e., the interatomic potential energy
and Newtonian mechanics).

2. SIMULATION TECHNIQUES

In this section, we briefly describe the equations of motion used in classical MD
and the algorithms for integrating these equations. More extensive information can
be found in recent review articles (26) and textbooks (29). For techniques based on
Monte Carlo (MC) methods that are also used to study protein folding, we refer the
reader to other review articles (30, and references therein; 31).

2.1. Equations of Motion in Molecular Dynamics

For a system of molecules treated at the classical level, Newton’s equations of motion
are applied, each atom treated as a point with a mass mi (Equation 1):

mi r̈i = Fi i = 1, 2, . . . , N r̈i = d 2ri

d t2
, (1)

where ri = (xi, yi, zi) is the vector of Cartesian coordinates of the i-th atom, r̈i is the
corresponding acceleration, Fi is the vector of forces acting on the i-th atom, and N
is the number of atoms. If the objects to move are more complex than atoms (e.g.,
α-helical segments in rigid-body dynamics or the interaction sites in coarse-grained
protein models) or when the dihedral angles or other curvilinear coordinates are used,
generalized Lagrange equations of motions are recommended (29) instead; we used
such an approach to derive the working equations of motion of our coarse-grained
united-residue (UNRES) model of polypeptide chains (32).
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When the system (including the solvent) is treated at the fully atomic level, the
forces are only potential forces. Otherwise, the collisions and friction forces should
be introduced to mimic the collisions of the solute molecule with its environment.
Such a treatment is referred to as Langevin or Brownian dynamics, and Langevin
(33) presented its theoretical foundation in a paper published in 1908 on the motion
of Brownian particles in a fluid. Equation 1 then becomes a stochastic differential
equation with the forces on its right side expressed by Equation 2:

Fi = −∇ri U (r1, r2, . . . , rN) − miγi ṙi + Ri (t) i = 1, 2, . . . , N, (2)

where ṙi and γi are the velocity and the friction coefficient of atom i, respectively;
U is the potential energy of the system (−∇ri U being the potential force acting on
atom i); and Ri (t) is the vector of random forces arising from the collision of atom
i with the molecules of the environment (solvent) that are not considered explicitly.
Ri (t) has zero mean (Equation 3), and the Ris taken at different times are δ-correlated
(Equation 4):

〈Ri (t)〉 = 0, (3)

〈Ri (t) · Ri (t′)〉 = 2miγi kB Tδ(t − t′), (4)

where T is the absolute temperature of the system, kB is the Boltzmann constant, and
δ(x) is the Dirac δ-function.

In the overdamped limit γ � 2ω (where ω is the characteristic frequency of the
system), the dissipative terms (−miγi ṙi ) prevail over the inertial terms (mi r̈i ), and the
latter can be neglected in Equation 1 (with forces expressed by Equation 2), resulting
in the system of first-order differential equations:

miγi ṙi = −∇ri U (r1,r2, . . . ,rN) + Ri (t) , i = 1, 2, . . . , N. (5)

Brownian dynamics is usually the method of choice for coarse-grained models of
proteins. Although it is frequently used, it does not provide control over the kinetic
energy because of the neglect of the inertial term, and, therefore, it cannot lead to
correct values of thermodynamic properties. Complete Langevin dynamics avoids
this problem.

2.2. Integrating the Equations of Motion

A system of equations given by Equation 1, together with initial coordinates and
velocities, constitutes an initial-value problem. Consequently, one can use a variety
of algorithms for numerical solution of the initial-value problem to integrate the
equations of motion; the predictor-corrector Gear method (34) is often applied as a
general-purpose algorithm in this field. An undesirable feature of the general-purpose
algorithms is that they usually require high-order time derivatives to work with good
accuracy. Because of the demand for low computational cost and high accuracy, a
variety of specific integrators have been designed for MD algorithms of which the
Verlet-type algorithms (the Verlet, velocity-Verlet, and the leap-frog algorithm) are
the most common (29); all three of these algorithms are mathematically equivalent.
Their most important property is the conservation of a slightly perturbed original
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SHAKE: an algorithm for
constrained molecular
dynamics

RATTLE: a velocity
version of the SHAKE
algorithm

LINCS: linear constraint
solver

Hamiltonian (the shadow Hamiltonian); in other words, when the nonconservative
forces are not present, the total energy oscillates about a value close to the initial
energy and does not drift from the initial value, the magnitude of the oscillations
increasing with increasing time step �t.

It has been shown recently (35, 36) that this property is a consequence of the
fact that all three algorithms can be derived from the Liouville formulation of the
equations of motion, by splitting the Liouville propagator into parts corresponding
to the momenta and coordinates. In addition, the Liouville formulation facilitated the
extension of Verlet-type algorithms to Langevin dynamics (36–39). The conservation
of the shadow Hamiltonian and, consequently, the avoidance of energy drift are
important in the correct reproduction of thermodynamic averages (29). Therefore,
although the Verlet-type algorithms are only fourth-order algorithms (i.e., the error
scales as the fourth power of the integration time step, �t), for long trajectories they
are better than higher-order nonsymplectic algorithms that involve smaller errors for
short trajectories but induce energy drift in the long run (29, 40). We present the
velocity-Verlet algorithm below for illustration.

Step 1 (updating coordinates):

r(t + �t) = r(t) + ṙ(t)�t + r̈(t)�t2/2. (6)

Step 2 (updating velocities):

ṙ(t + �t) = ṙ(t) + [r̈(t) + r̈(t + �t)] �t/2. (7)

For the integration algorithm to be stable, the value of the time step �t must be
an order of magnitude smaller than the fastest motions of the system. Typically, this
motion is the vibration of a bond that involves a hydrogen atom with a period of the
order of 10 fs, and consequently the time step is of the order of 1 fs when explicit
solvent is used. When implicit solvent is used, the time step can be larger, from 2 to
5 fs (41). This is much less than the timescale of the fastest biochemically important
motions such as helix formation, which takes a fraction of a microsecond, or folding
of the fastest α-helical proteins, which takes several microseconds (27, 42). In one
option, known as the variable step method (32, 43), the time step is reduced when
hot events result in occasional significant variation of forces, but this violates time
reversibility and energy conservation.

The correct procedure is to use the time-split algorithms (35, 36), which are an
extension of the basic Verlet-type algorithms. In these algorithms, the forces are
divided into fast-varying ones that are local (as, e.g., the bond-stretching forces) and,
consequently, inexpensive to evaluate and slow-varying forces that are nonlocal forces
and expensive to evaluate. Integration is carried out with a large time step for the slow
forces and an integer fraction of the large time step for the fast-varying forces. Such a
procedure enables the use of up to a large 20-fs time step at only a moderate increase
of the computational cost (37, 40). One can achieve further effective increase of the
timescale by constraining the valence geometry of the solvent molecules [the SHAKE
(44), RATTLE (45), and LINCS (46) algorithms] and, yet further, by using torsional-
angle dynamics (43, 47) and rigid-body dynamics (29) in which elements of structure
(e.g., α-helical segments) are considered fixed. The use of simplified protein models
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NVE: constant number of
particles, volume, and
energy ensemble

NVT: constant number of
particles, volume, and
temperature ensemble

NPT: constant number of
particles, pressure, and
temperature ensemble

CHARMM: Chemistry at
Harvard Molecular
Mechanics

AMBER: assisted model
building with energy
refinement

GROMOS: Groningen
molecular simulation

CVFF: consistent valence
force field

enables one to increase the timescale further because of averaging out fast motions
that are not present at the coarse-grained level (37, 40).

2.3. Relationship Between the Solutions of the Equations
of Motion and Ensembles

Equation 1, with conservative forces on the right-hand side, describes the motion of
an isolated system, and consequently the ensembles of conformations resulting from
its solutions are the microcanonical (NVE) ensembles. In reality, protein folding
occurs in systems coupled to a temperature bath, and consequently we want the solu-
tion of the equations of motion to give the canonical (NVT) or isothermal-isobaric
(NPT) ensembles. This remark pertains to all simulations regardless of whether the
solvent is considered explicitly or implicitly. This can be accomplished by rescaling
velocities to adjust the kinetic energy of the system to the required temperature, a
procedure known as Berendsen’s thermostat (48). However, such a treatment does not
generate true canonical ensembles (49). In more sophisticated methods, known as the
Nosé-Hoover (50, 51) and Nosé-Poincaré (51) thermostats, the Hamiltonian of the
system is modified to correspond to temperature, and not total-energy, conservation.
These methods generate canonical ensembles as demonstrated by Nosé (50, 52), and
symplectic algorithms can be designed to solve the equations of motion.

If included (Equation 2), the friction and stochastic forces provide a thermostat
by themselves. The temperature of the system simulated is maintained because of
the appearance of the friction coefficient γ in the expression for both frictional and
random forces. The frictional forces result in energy dissipation because of collisions
opposing the motion, whereas the random forces result in energy gain; consequently,
the solution of the system given by Equation 1 with friction and random forces
included generates a canonical ensemble of conformations. Inclusion of these forces
instead of the Berendsen or other thermostats may be preferable, even when explicit
solvent is considered, because it results in more uniform distribution of temperature
between the solute and the solvent (53).

3. ALL-ATOM APPROACH

3.1. Force Fields

Traditionally, the potential forces in Equation 2 are calculated using empirical all-
atom potential functions, such as CHARMM (Chemistry at Harvard Molecular
Mechanics) (54), AMBER (assisted model building with energy refinement) (41),
GROMOS (Groningen molecular simulation) (55), and CVFF (consistent valence
force field) (56), which include the solvent either explicitly or as a continuum (implicit-
solvent treatment). We discuss the treatment of solvent in more detail in Sections 3.2
and 3.3. For a description of the all-atom force fields, we refer the reader to recent
reviews (57, 58).

The functional forms of the force fields are a trade-off between accuracy in repre-
senting forces acting on atoms and low computational cost or ease of parameterization.
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TIP3P, TIP4P, and
TIP5P: three-, four-, and
five-point models of the
water molecule

Thus, one usually considers only interactions between point charges in the compu-
tation of the electrostatic-interaction energy, thereby neglecting higher moments
of electron-charge density and polarization effects. Harmonic functions for bond
stretching and bond-angle bending are used instead of more refined ones with an-
harmonicity included. However, this approximation can result in unreasonably large
distortions of the bond angles (59). The inherent inaccuracies also result in an in-
compatibility of properties obtained by using different force fields (60–62). Although
the per-residue errors inherent in force-field inaccuracies amount to a fraction of a
kilocalorie per mole, they translate into tens of kilocalories per mole for the entire
protein. Therefore, optimization of the whole force field, as for simplified models
(Section 5), needs to be performed for all-atom force fields; Fain & Levitt (63) and
Schug & Wenzel (64) have already initiated this work.

3.2. Simulations with Explicit Solvent

Explicit inclusion of water molecules provides, as realistically as possible, the kinetic
and thermodynamic properties of the protein-folding process. Simulations with ex-
plicit water are carried out in a periodic box scheme; the box is usually rectangular,
but other shapes are also possible (26). A less common treatment is to perform sim-
ulations in a thin layer of water around a protein molecule restrained with a weak
harmonic potential (26).

There are currently a number of water models used in MD simulations. These
include the ST2 model of Stillinger (65), the SPC model of Berendsen et al. (66),
and Jorgensen’s TIP3P, TIP4P, and TIP5P models (67). These models were param-
eterized assuming that a cut-off is applied to nonbonded interactions, but they are
often used with Ewald summation to treat long-range electrostatics. Horn et al. (68)
recently developed an extension of the TIP4P model to be used with Ewald summa-
tion termed TIP4P-Ew. All these models treat water as a rigid molecule. Although
bond stretching and bond-angle bending (69), or polarization effects and many-body
interactions (70), have been introduced into water models, they involve a large in-
crease of computational expense, which has limited their use as widely as the SPC
or TIP models. The water models are usually parameterized at a single tempera-
ture (∼298 K) and therefore do not correctly capture the temperature dependence
of properties such as the solvent density or diffusion coefficients (68).

The presence of water molecules in the system dramatically increases the number
of degrees of freedom (typically by more than 1000 degrees of freedom). Because
of this limitation, along with the small values of the time step in integrating the
equations of motion (of the order of femtoseconds), explicit-solvent all-atom MD
algorithms can simulate events in the range of 10−9s to 10−8s for typical proteins
and 10−6s for very small proteins (20, 42). These timescales are at least one order of
magnitude smaller than the folding times of proteins (10). The most impressive and
the longest explicit-solvent ab initio canonical MD simulation starting from unfolded
conformations is one by Duan & Kollman (22) on the villin headpiece. They observed
conformations with significant resemblance to the native state in a 1-μs run. However,
their simulation fell significantly short of the folding time for this protein, which is
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GBSA: generalized Born
surface area

∼5 μs. Therefore, at present, explicit solvent MD by itself is not capable of simulating
the folding pathways of proteins in real time, except for very small proteins. However,
it has been combined successfully with other search methods in some interesting and
ingenious algorithms to study energy landscapes and folding pathways. We discuss
some of these algorithms in Section 6.

3.3. Implicit-Solvent Methods

The use of continuum representations of the solvent greatly decreases the number of
degrees of freedom in the system and, consequently, the sampling time. The rigorous
implicit treatment of solvent in MD involves (a) designing an effective potential
function that describes the change of the free energy of the system on the change of
the conformation of the solute molecule and (b) direct effect of the solvent on the
dynamics of the solute molecule through collisions, which results in the appearance
of net friction and random forces. We discuss point a in this section, whereas point b
is discussed in Section 2.1.

The most common treatment of electrostatic interactions between the solute and
solvent makes use of the generalized Born surface area (GBSA) model (71), which
includes an approximation to the solution of the Poisson-Boltzmann equation for a
system comprising the solute molecule immersed in a dielectric with counter-ions
and also takes into account the loss of free energy owing to the formation of a cavity
in the solvent; for details, we refer the reader to References 72 and 73. Simpler models
have also been developed in which the free energy of solvation is expressed in terms
of solvent-accessible surface areas of solute atoms (74) or solvent-excluded volumes
owing to the contributions from pairs of atoms (75, 76), but they are used in other
applications than MD. The GBSA model can lead to discontinuous forces because
of its explicit use of molecular surface area (77); an algorithm that overcomes this
shortcoming by introducing a smoothing function has been designed recently (78).
Use of the GBSA model eliminates the need for the lengthy equilibration of water
necessary in explicit water simulations. However, this model does not reproduce the
all-atom free-energy landscape of folding and can overestimate the stability of the
native state (79).

With the addition of the Berendsen thermostat or other thermostats discussed in
Section 2.3, canonical simulations can be carried out with implicit-solvent models;
such a treatment corresponds to a low-viscosity limit and has been applied with success
to all-atom ab initio folding simulations of proteins by canonical MD. Jang and col-
leagues (80) were able to fold protein A, a 46-residue protein with a three-helix-bundle
fold, and the villin head piece from the extended state with all-atom MD and the gen-
eralized Born model of solvation. However, ignoring solute-solvent friction makes
the folding times, calculated with implicit-solvent MD simulations, the lower bounds
of the true experimental folding times of proteins (81). The folding rates depend
strongly on solvent viscosity (82), and the absence of viscosity in simulations leads to
a fast collapse to a nonnative globule, with folding proceeding from this globule (83).

Even when friction and stochastic forces are included, the continuum models do
not account for differences in protein-folding dynamics such as cooperative expulsion
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ACM: amplified collective
motion

of water on folding (84). Structured water plays a role in the folded state of many
proteins (85). The dewetting effect around the hydrophobic group is a liquid-vapor-
phase equilibrium process, which is not described accurately with the implicit-solvent
models (83).

3.4. Constant pH Simulations

The most accurate treatment of solvent effects should include the proton exchange be-
tween protein ionizable groups and solvent. A number of models have been proposed
for performing MD at constant pH with dynamic protonation states with explicit
treatment of the solvent (86, 87). Each of these uses MC sampling to select protona-
tion states based on calculated energy differences between the possible protonation
states. Recently researchers have extended this method to include a generalized Born
implicit solvation model (88, 89); this eliminates the necessity of solvent equilibration
for a new protonation state. However, the typical error in the predicted pKa values
of ionizable groups is from 0.5 to 2 logarithmic units (86–89). Recently, we used this
approach to explore the conformational space of an 11-residue alanine-based pep-
tide containing basic amino acids (90). The theoretical titration curves determined
in dimethylsulfoxide and in methanol were in good agreement with the experimen-
tal ones, whereas we observed more significant discrepancies for water, which we
attributed to a more significant contribution of specific hydration.

4. COLLECTIVE COORDINATE ALGORITHMS

Functionally relevant motions of proteins occur along the direction of a few collective
coordinates, which dominantly contribute to the atomic fluctuations (91). The use
of collective coordinates results in the extraction of functionally relevant motions
from the simulation results. Collective coordinates are extracted by methods such as
essential dynamics (91) from a large number of MD or MC trajectories. Among the
methods that use collective coordinates to increase the sampling efficiency of MD
simulations are conformational flooding (92), essential dynamics sampling (93), and
the amplified collective motion (ACM) method (94).

In the conformational flooding method (92), one uses collective coordinates to
extract fast-moving degrees of freedom from MD trajectories produced prior to pro-
duction simulations. Deep minima in the subspace spanned by the fast degrees of free-
dom are filled with a Gaussian biasing potential; this operation decreases the energy
barriers between different minima and, consequently, produces conformational tran-
sitions beyond the time domain reached by conventional MD. Schulze et al. (92) have
applied conformational flooding in a series of room-temperature simulations to ac-
celerate molecular motions of the native fold of carbonmonoxy myoglobin and define
the lower-tier hierarchy of substate structure. The computed conformational space
and associated transitions coincide with previously suggested putative ligand-escape
pathways and support a hierarchical description of protein dynamics and structure.

In the essential dynamics sampling method (93), the protein motions are con-
strained to move along the essential collective modes. The disadvantage of this
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method is that the collective modes must be calculated from a predetermined set
of protein conformations that have been simulated for a short period of time and
represent only the local motions of the protein. Because collective modes are treated
as a linear combination of Cartesian coordinates, they are conformation dependent,
and the essential subspace is different when the protein conformation belongs to
different local states. An example of the application of this method is the study of
thermal unfolding of horse heart cytochrome c (95)

ACM uses the collective modes obtained by the coarse-grained/anisotropic net-
work model (96), instead of carrying out initial MD simulations, to guide the
atomic-level MD simulations. This method overcomes the limitation of the essential
dynamics sampling method, which is the invariance of essential subspace in the con-
formational space. The motions along the collective modes are amplified by coupling
them to a thermal bath at a higher temperature than the rest of the motions. Although
different motions are coupled to different temperatures, the temperature averaged
over all degrees of freedom of the system is usually approximately 300 K (94). ACM
drives the system to escape from unfolded local minima and, as opposed to high-
temperature unfolding simulations, expands the sampling region selectively without
extending the accessible conformational space to high-energy regions. Therefore,
it expands the accessible conformational space while still restricting the sampling
within the lower-energy region of the conformational space. Zhang and colleagues
(94) applied ACM to two test systems: the ribonuclease A S-peptide analog, in which
they observed refolding of the denatured peptide in eight simulations out of ten,
and bacteriophage T4 lysozyme, in which they observed extensive domain motions
between the N and C termini.

5. SIMPLIFIED MODELS

Reduced (mesoscopic, coarse-grained) models of proteins, in which each amino-acid
residue is represented by only a few interaction sites, in principle offer an extension
of the timescale of simulations compared with that of all-atom models (30, 97). The
development of these models started with the pioneering work of Levitt (98), who
derived a coarse-grained potential for a polypeptide chain by averaging the all-atom
energy surface. Reduced models can be divided as follows: general models of protein-
like polymers, knowledge-based models, physics-based models, and models biased
toward the native structure or elements of the native structure (99). Recently, Shih
et al. (100) have extended the coarse-grained treatment to protein-lipid systems.
There is no explicit solvent in the simplified models and, consequently, researchers
use Langevin or Brownian dynamics in simulations to mimic the nonconservative
forces from the solvent.

The general models usually assume a single interaction site per residue (31, 101,
102), and the potentials used are Lennard-Jones-type or simpler contact potentials
reflecting hydrophobicities of interacting residues. These potentials are not meant
to reproduce the detailed features of the protein energy surface, but rather to study
general properties of folding. Nevertheless, simulations with general reduced models
have contributed significantly to our understanding of the events that occur in the
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PDB: Protein Data Bank

folding process and of foldability criteria (31, 102). These models are most commonly
applied in lattice simulations (102).

In the Gō-like models (103), the potentials for those pairs of residues in contact in
the native structure are attractive and those between other pairs repulsive (38, 104).
Such potentials provide minimum frustration but are specific for a given sequence and
a given native structure (105). Use of these models is based on the assumption that
the native-state topology largely determines folding, whereas nonnative interactions
are of secondary importance. Examples of application are studies of the kinetics and
sequence of folding events (38, 104), and the thermal (106) and mechanical (107)
unfolding of proteins. The model developed by Sorenson & Head-Gordon (108)
contains a bias toward native secondary structure by the choice of the potentials for
rotation about the Cα· · ·Cα virtual bonds. Interactions between side chains depend
on their hydrophobicities, as opposed to a Gō-like model. Researchers have used
this model to study the folding kinetics of ubiquitin-like sequences (108), as well as
protein L and G (99) by Langevin dynamics. He & Scheraga (109) used a simpler
model with secondary-structure bias to study the folding of model β-sheet sequences.

The knowledge-based potentials are derived from protein structural databases
(30, 110, 111), both in their form and parameterization. A large part of these is
based on the Boltzmann principle (110) to derive the components (30, 110, 112)
from the relevant distribution and correlation functions calculated from the Protein
Data Bank (PDB) (113). The other approach is the derivation of the potentials for
threading; the principle is to locate the native-like structures as the lowest in energy
(111) among a large number of decoys derived from the PDB. The potentials based
on the Boltzmann principle also require calibration on known protein structures
to obtain an appropriate balance of different energy terms. The knowledge-based
potentials are used mostly for fold recognition and other knowledge-based methods
of protein-structure prediction. Nevertheless, Kolinski and colleagues (114, 115) used
the potentials derived by Kolinski & Skolnick (30) in protein-folding simulations
using lattice MC dynamics and unfolding simulations of proteins.

We define the final category, the physics-based reduced models, as those that
have connection to physics in the derivation and the functional form, although they
are usually parameterized using information from the PDB or structures of selected
proteins. The earliest model was the one developed by Levitt (98); however, it was
not used in actual protein-folding simulations. The model developed by Wolynes’
group (116, and references therein) is a partially physics-based one. It assumes a de-
tailed description of the backbone and united side chains and can, therefore, be termed
semimesoscopic. It contains a knowledge-based part known as an associative-memory
Hamiltonian, which is based on the set of correlations between the sequence of the
protein under study and the set of sequence-structure patterns in a set of memory pro-
teins. The parameters of the force field have been determined by potential-function
optimization, which is based on energy-landscape theory (116), according to which
the ratio of the folding (Tf ) to the glass-transition (Tg) temperature is maximized.
This ratio is approximated by the ratio known as the Z-score, Z = δEs/�E, where
δEs is the difference between the energy of the native and nonnative states (the sta-
bility gap), and �E is the standard deviation of the energy of the nonnative states. A
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similar model is that developed by Takada and colleagues (117), which does not have
any knowledge-based part of the Hamiltonian. This model was applied in studying
folding mechanisms and in protein-structure prediction (117).

The physics-based UNRES model developed in our laboratory (118–120) assumes
two centers of interaction per residue: the united peptide group located in the mid-
dle between two consecutive Cα atoms and the united side chain attached to the
Cα atom by a virtual bond. As opposed to the simplified models described above,
which use arbitrary expressions for energy or analogs from all-atom force fields, the
UNRES effective energy function is derived as a restricted free energy of the virtual
chain (118); the degrees of freedom not present in the model (the solvent degrees
of freedom, the internal degrees of freedom of the side-chain angles, and angles of
rotation of the peptide groups) have been integrated out because they are assumed to
vary much faster than the coarse-grain degrees of freedom. The force field was op-
timized using a method based on a hierarchy of folding developed in our laboratory
(119). When implemented in MD, UNRES was able to fold a 75-residue protein
in 4 h on average with a single processor (120). Comparison with all-atom MD
revealed that UNRES offers a 4000-fold speed-up relative to all-atom simulations
with explicit solvent and more than a 200-fold speed-up compared with simulations
with implicit solvent (37). Consequently, real-time folding simulations are readily
possible.

6. SOME ASPECTS AND EXTENSIONS
OF MOLECULAR DYNAMICS

6.1. The Choice of Reaction Coordinate

A reaction coordinate is an abstract one-dimensional coordinate that represents
progress along a reaction pathway. For more complex reactions (e.g., protein folding),
this choice can be difficult. Free energy is often plotted against a reaction coordinate
to illustrate the energy landscape or potential energy surface associated schematically
with the reaction.

A good reaction coordinate is one that can distinguish between the unfolded and
folded and the unfolded/near-folded ensemble successfully. Projecting the trajecto-
ries onto one or several reaction coordinates, such as the fraction of native contacts
(Q), can produce a landscape that shows a clear difference between the native and
the unfolded states. But in general, the folding transitions cannot be projected onto
two dimensions without overlap of kinetically distinct conformations. We recently
observed either a two-state or three-state folding behavior for protein A (121), de-
pending on the choice of the reaction coordinate (Q or Cα RMSD). However, re-
searchers have achieved accurate projections of simulations onto appropriate reaction
coordinates, which agreed with the experiment. For example, Onuchic and colleagues
(122) used the Gō model for reversible folding of CI2, Src SH3, barnase, RNase H,
and CHe Y, and their results matched experiment.

Radhakrishnan & Schlick (123) developed the transition-path sampling method
for all-atom MD in which a number of MD trajectories are focused near the
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conformational-transition path, and they applied it to map out the entire closing
conformational profile of RNA polymerase. They found that there is a sequence of
conformational checkpoints involving subtle protein-residue motion that may regu-
late fidelity of the polymerase repair or replication process.

6.2. Multiple Trajectories

In MD, one usually generates a statistical ensemble [e.g., a canonical ensemble
(NVT)], and the quantity of interest is an ensemble average (e.g., the average struc-
ture of the native basin). To obtain a good ensemble average, many trajectories have
to be simulated so that the statistical errors owing to insufficient sampling are min-
imized. However, owing to the computational expense of MD simulations, this is
not possible using direct all-atom simulations with explicit solvent and difficult us-
ing implicit solvent. An example of a multitrajectory all-atom study with implicit
solvent is the work by Duan and coworkers (124) on the folding of the Trp-cage
(a 20-residue peptide). They generated 14 trajectories and derived the kinetic equa-
tions for folding. They found two folding routes: a fast one that proceeded directly
to the native state and a slow one that proceeded through a misfolded interme-
diate. The calculated folding time was in good agreement with the experimental
value.

More trajectories can be run in a given amount of time, and consequently more re-
liable folding statistics can be collected when using simplified models of polypeptide
chains (Section 5). For example, using their coarse-grained potential biased toward
native secondary structure, Brown & Head-Gordon (99) have calculated the fold-
ing pathways, the folding temperature, thermodynamic characteristics of folding,
kinetic rate, denatured-state ensemble, and transition-state ensemble of protein L
by a reduced representation of proteins and Langevin dynamics simulations of 1000
trajectories, and we recently determined the folding kinetics for protein A by running
400 Langevin dynamics trajectories of this protein from the extended state, with our
united-residue potential (UNRES) (121).

Pande and coworkers (125) designed a method based on simulating multiple tra-
jectories at the all-atom level that enables one not only to study folding pathways but
also to estimate rate constants. The method is based on the observation that, with
the assumption that crossing of a single barrier obeys a single-exponential kinetics,
the probability for a system to cross the free-energy barrier for the first time is in-
creased M times if M parallel trajectories are simulated. With M ≈10,000, the chance
to observe a folding event is amplified to a real timescale of simulations. Pande and
coworkers use worldwide distributed computers to carry out parallel simulations; the
task is ideal for such a computation scheme because no synchronization is required.
The barrier crossing on a given trajectory is detected by monitoring the change of
heat capacity computed from the energy variance along the trajectory; the appearance
of a maximum signals barrier crossing. Because folding events occur only on a small
fraction of trajectories in real simulation time (i.e., t ≤ 1/k, where k is the first-order
rate constant), one can assume that f(t) ≈ kt, where f(t) is the fraction of folded con-
formations over all trajectories. Consequently, the rate constant corresponding to a
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REMD: replica-exchange
molecular dynamics

given event can be estimated from Equation 8:

k = Nfolded

t · Ntotal
±

√
Nfolded

t · Ntotal
, (8)

where Nfolded and Ntotal are the number of folded structures and the total number of
structures collected in all trajectories, respectively, and ± denotes the error estimate
(125), which was estimated based on the fact that, consistent with the first-order
kinetics, Nfolded obeys the Poisson distribution.

The above procedure is sufficient for two-state folders with single-barrier crossing.
For multistate folders, the final configurations from the trajectory for which the
crossing of the first barrier has occurred are distributed over all processors, and the
calculation is restarted (125). Then, the same procedure is used to estimate the rate
constant corresponding to crossing the next barrier. However, the method is not as
successful as for small two-state folders because the time for initial equilibration and
for diffusion across the barrier scales with chain length (126). Also, the fraction of
folded conformations does not obey the Poisson distribution for too short simulation
time (127), and the simulations are also quite sensitive to the choice of the unfolded
ensemble (128).

6.3. Replica-Exchange Molecular Dynamics

In this method, pioneered for proteins by Sugita & Okamoto (129), a number of MC
or MD simulations are started at different temperatures. After a certain time, the tem-
peratures are exchanged between trajectories, a decision made by using a Metropolis
criterion. This assures that the sampling follows a Boltzmann distribution at each
temperature. The kinetic trapping at lower temperatures is avoided by exchanging
conformations with higher-temperature replicas. Each pair of replicas must have an
overlapping energy distribution (129); this means that the number of replicas scales
as N3/2, where N is the chain length (129). If care is taken to reach equilibrium (130),
replica-exchange molecular dynamics (REMD) is a powerful tool for sampling the
folding landscape and is easily parallelizable. For these reasons, REMD has wide appli-
cability and has been used with implicit-solvent MD simulations (131) and simplified
models (132) to study protein folding. However, it does not provide direct information
about kinetics, as opposed to regular multiple-trajectory simulations (133).

Among the well-known explicit solvent REMD simulations is that of Berne and
colleagues (134), who applied it to obtain the free-energy landscape of a β-hairpin,
and that of Garcia & Onuchic (135), who used it to determine the free-energy land-
scape of protein A. Both sets of researchers obtained convergence to the equilibrium
distribution with quantitative determination of the free-energy barrier of the folding.

6.4. High-Temperature Unfolding Simulations of Proteins

The key assumption invoked in this method, pioneered by Daggett & Levitt (18), is the
principle of microscopic reversibility, which states that the unfolding of a protein is the
reverse of the folding process. The protein-unfolding simulations are usually run at
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temperatures above 498 K, at which the native structure is lost in a few nanoseconds.
Simulations start from the native crystal or NMR structure, which improves the
probability of sampling a relevant region of the conformational space. Care must be
taken to set the water density to that of liquid water at high temperatures, so the
excess pressure is reduced and the water remains liquid for up to 498 K (136).

The features of the unfolding process such as the transition-state ensemble and the
unfolded ensemble obtained by this method have shown remarkable agreement with
those determined experimentally by �-value analysis in a number of studies. This
method has been applied successfully to study a number of proteins (such as BPTI,
myoglobin, protein A, ubiquitin, the SH3 domain, and the WW domain) and to study
processes from amyloidogenesis to domain swapping. For details of the results, we
refer the reader to the review by Day & Daggett (20).

Importantly, the free-energy landscape and the transition-state ensemble can be
altered by thermal or chemical denaturant, and there may be significant differences
between high-temperature and physiological free-energy landscapes (137, 138). At
high temperatures, the transition state shifts toward the native state, and at very
high temperatures, the rapid unfolding events are irreversible. However, for a wide
range of temperatures, the nature of the protein-unfolding transition is temperature
independent (139). Furthermore, Shea & Brooks (28) have shown that the principle
of microscopic reversibility does not hold under strongly nonequilibrium conditions.

6.5. Folding Dynamics from the Free-Energy Landscape

Shea & Brooks (28) pioneered the landscape approach to folding dynamics. The
free-energy landscape is obtained from the equilibrium population distribution of the
protein. This distribution can be obtained only by an umbrella-sampling method, in
which an additional harmonic potential is added to the Hamiltonian of the system
to bias the sampling. The starting conformations are generated by unfolding simu-
lations. Specific structures are selected from this ensemble as starting conformations
for umbrella sampling under a set of desired thermodynamic constraints (such as the
fraction of native contacts or radii of gyration). After each constrained trajectory has
been simulated for a long enough time, the conformations from each trajectory are
clustered to generate the density of states from which the free energy is calculated.
Brooks and colleagues have applied their method successfully to determine the free-
energy landscapes and folding dynamics for protein A, GB1, and Src-SH3, with good
agreement with experiment (28).

However, this method assumes that the degrees of freedom orthogonal to the
reaction coordinate equilibrate quickly, which might not always be the case. Also,
the simulation time needed for large chain movement could significantly exceed the
length of a typical umbrella-sampling simulation used in this method (140).

6.6. Stochastic Difference Equation Method

In this method, pioneered by Elber and colleagues (141), the classical action over the
folding pathway(s) is minimized, which is an alternative to solving Newton’s equations
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of motion with a small time step. As opposed to solving Newton’s equations, both
the initial unfolded conformations (Yu) and the final folded conformation (Yf ) must
be known. The action is defined as an integral over the trajectory length, l, as given
by Equation 9:

S =
∫ Y f

Yu

√
2(E − U)dl, (9)

where S is the action, E is the total energy, U is the potential energy of the system, and
dl is the step length. This equation is discretized, so minimization of S of Equation 9
is equivalent to minimizing the following target function:

T =
∑

i

(
∂S/∂Yi

�li,i+1

)2

�li,i+1 + λ
∑

i

(�li,i+1 − 〈�l 〉)2
, (10)

where �li,i+1 is the step length, and λ is the strength of a penalty function that restrains
the step length to the average length.

Ghosh et al. (142) used the stochastic difference equation method to study the fold-
ing pathways of protein A. They performed the minimization of T of Equation 10 for
130 initial unfolded conformations obtained by thermal unfolding of the experimen-
tal structure of this protein. They found that the C-terminal α-helix is the most stable
one and forms first, and the formation of secondary- and tertiary-structure elements
is strongly coupled with the somewhat earlier formation of secondary structure. This
observation is consistent with some experimental and simulation results (37, 143)
but contradicts others (144, 145), according to which the middle helix forms first.
In a recent extensive all-atom MD study, A. Jagielska & H.A. Scheraga (submitted
manuscript) have shown that the relative rates of formation of the three α-helices de-
pend on temperature; consequently, a different order can be observed under different
conditions of simulation and experiment.

6.7. Quantum-Classical Molecular Dynamics

The classical equations of motion (Section 2.1) are valid when chemical reactions are
not involved because the typical amplitudes of motions are much smaller than the cor-
responding thermal De Broglie wavelengths. Furthermore, some biological processes
(such as oxygen binding to hemoglobin, enzymatic reactions, and the light-induced
charge transfer in the photosynthetic reaction centers) involve quantum effects such
as a change in chemical bonding, noncovalent intermediates, tunneling of proton
and electron, and dynamics on electronically excited states that cannot be modeled
with the classical formulas. One can handle processes involving proton transfer by
introducing a special potential function for the proton(s) exchanged between the
proton-acceptor atoms (146). For a general purpose, a hybrid approach known as
QM/MM has been designed (147), in which the system is partitioned into a small
core (within which the actual chemical reaction occurs) and the surroundings. The
core is treated at the quantum-mechanical level, whereas the surroundings are treated
at the classical level. The electrostatic potential from the surroundings contributes
to the Hamiltonian of the core part.
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7. CONCLUSIONS AND OUTLOOK

The recent developments of MD both in theory (more accurate force fields, reduced
models of proteins and other polymers, and more efficient and stable integration
algorithms) and computational techniques (use of distributed computing) provide a
convincing reason to believe that ab initio simulations of protein-folding dynamics
are at hand. Despite successful folding simulations on relatively small proteins us-
ing an all-atom scheme (22, 80), the robust approach is likely to involve the use of
physics-based reduced models of proteins that require less than one processor day
of simulations per trajectory (120). However, in-depth understanding of protein-
folding pathways must ultimately involve atomic details. In our view, the robustness
and low cost of simplified models and accuracy of atomic ones can be combined by
using a hybrid approach in which folding trajectories are first calculated using meso-
scopic models and then are converted to all-atom trajectories using, for example, the
physics-based approach developed in our laboratory (148, 149).

SUMMARY POINTS

1. MD is an invaluable tool for studying protein folding and dynamics as well
as thermodynamics in silico. Because of computational cost, ab initio fold-
ing simulations with explicit water are limited to peptides and very small
proteins, whereas simulations of real-size proteins are confined to high-
temperature unfolding and refolding, or dynamics of the experimental struc-
ture.

2. The use of mesoscopic models with physics-based potentials (e.g., UNRES)
is a reasonable trade-off between computational cost and accuracy, and en-
ables one to carry out ab initio folding simulations in real time. This ap-
proach appears preferential to the use of collective coordinates, rigid-body,
or dihedral-angle dynamics, which provide less speed-up.

3. When water is not considered explicitly, it is imperative to account for
protein-water interactions through the introduction of implicit-solvent
models. However, water also influences the dynamics through collisions with
the protein molecule; this effect can be handled by introducing Langevin
dynamics. Care must be taken when implicit-solvent simulations are carried
out in a non-Langevin mode (i.e., without introducing friction and random
forces) because the simulated events then occur in too short a time.

4. Symplectic algorithms for integrating the equations of motion are most
reliable because they provide stable trajectories in the long run and control
of the accuracy of the solution by monitoring the property that should be
conserved.

5. Protein folding must be analyzed in terms of time evolution of ensembles
and not of a single molecule; therefore, parallel simulations must be run to
discern all possible folding pathways. As for now, this is possible only for
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mesoscopic models. Also, more than one observable must be used to monitor
the progress of folding. Multiple-trajectory simulations are easily paralleliz-
able and can, therefore, take full advantage of distributed computing.

6. Extensions of MD such as replica-exchange MD enhance the scope of sim-
ulations in terms of size and timescale, although this comes at the expense
of losing detailed information about the folding pathways.

FUTURE ISSUES

1. Currently, force fields are not perfect (even the all-atom ones). It is possible
to obtain different results with different force fields. Therefore, improving
force fields (both the all-atom and the reduced ones, and the water potentials)
is a priority.

2. Because use of reduced models is the most reasonable option for large-scale
ab initio folding simulations, and atomistically detailed results are required
in most applications, there is a need to design a method for converting
coarse-grained trajectories to all-atom trajectories.

ACKNOWLEDGMENTS

This work was supported by grants from the National Institutes of Health
(GM14312), the National Science Foundation (MCB00-03722), the NIH Fogarty
International Center (TW7193), and grant 3 T09A 032 26 from the Polish Min-
istry of Education and Science. This research was conducted by using the resources
of (a) our 392-processor Beowulf cluster at the Baker Laboratory of Chemistry and
Chemical Biology, Cornell University, (b) the National Science Foundation Tera-
scale Computing System at the Pittsburgh Supercomputer Center, (c) our 45-
processor Beowulf cluster at the Faculty of Chemistry, University of Gdańsk, (d ) the
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