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We have studied the efficiency of parallel tempering simulations for a variety of systems including
a coarse-grained protein, an atomistic model polypeptide, and the Lennard-Jones fluid. A scheme is
proposed for the optimal allocation of temperatures in these simulations. The method is compared
to the existing empirical approaches used for this purpose. Accuracy associated with the computed
thermodynamic quantities such as specific heat is also computed and their dependence on the
trial-exchange acceptance rate is reported. ©2005 American Institute of Physics.
@DOI: 10.1063/1.1831273#

I. INTRODUCTION

Parallel tempering or replica-exchange Monte Carlo1–4

provides an efficient means for improving conformational
sampling in systems with rugged energy landscapes, particu-
larly at low temperatures. The basic premise behind the
method’s usefulness is that at high temperatures the system
of interest can explore phase space relatively unhindered.
This method relies on simultaneously simulating multiple
replicas of the system. Exchanges or swaps of low- and high-
temperature configurations are attempted periodically,
thereby allowing low-temperature configurations to escape
local free energy minima. Parallel tempering and its variants
have been applied for the study of complex fluids and mac-
romolecules, including proteins.5–12

In parallel tempering or replica exchange,N noninteract-
ing copies or replicas of the protein molecule are simulated
in N boxes, each at a different temperature. In addition to the
standard Monte Carlo~parallel tempering! or molecular dy-
namics~replica exchange! moves in each box, the conforma-
tions in different replicas are swapped at regular intervals.
Trial swaps are accepted with probability

p~E1 ,b1→E2 ,b2!5min@1,exp~DbDE!#, ~1!

whereDE is the difference in energy between conformations
in two adjacent boxes, andDb is the difference between their
inverse temperatures. To satisfy detailed balance,N replicas
should be synchronized whenever a swap move is proposed.
This is usually implemented by performing an equal number
of Monte Carlo or molecular dynamics steps on each replica
before attempting a swap move. The exchange between the
structures in different replicas facilitates relaxation of struc-
tures that might otherwise be trapped in local energy minima.

For parallel tempering simulations to be most efficient,
each replica should spend the same amount of time at each
temperature. This can be achieved by a temperature distribu-
tion that yields the same acceptance probability for swap
moves between all adjacent pairs of replicas. A protocol for

determining such an optimal distribution has not been iden-
tified yet. A simplistic approach assumes a geometric distri-
bution of temperatures; this approach yields an optimal dis-
tribution if the specific heat of the system of interest stays
constant with temperature. However, if the specific heat does
change with temperature, the performance of a geometric-
distribution approach is suboptimal, particularly near a phase
transition.

An alternative approach for optimal replica allocation is
proposed in this work. We derive a near-optimal distribution
analytically by considering the particular case of Gaussian
energy distributions of varying widths. The formalism is then
extended to realistic model systems, including proteins and
the Lennard-Jones fluid. A rigorous comparison with existing
schemes for replica allocation is presented. We also discuss
how the statistical errors in several computed thermody-
namic quantities change with the number of replicas. The
thermodynamic quantities are calculated for a given tempera-
ture range using histogram reweighting.13 Results are pre-
sented in the form of deviations in estimated specific heat
from its final value for a model protein. Using a larger num-
ber of replicas results in more accurate thermodynamic-
property estimates, this increased accuracy, however, comes
at the expense of higher computational demands.

II. MODEL

The generality of the proposed approach is explored by
considering a range of model systems. Sample calculations
are performed for a Go-type model of protein A, an atomistic
b-hairpin system in the continuum, a coarse-grained lattice
protein, and the Lennard-Jones fluid. These models are de-
scribed only briefly; the reader is referred to the literature for
additional details.

A. Protein A using Go-type model

The majority of our calculations are performed on a
Go-type14 representation of protein A, Fig. 1. Protein A is a
three helix bundle protein consisting of 46 residues@residues
10–55 of the B domain ofStaphylococcus aureusprotein A
~Protein Data Bank No. 1BDD!#.15 Very briefly, the protein
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model is coarse grained so that each amino acid is repre-
sented by individual beads located at theCa atoms. Con-
secutive beads along the chain interact through an anhar-
monic potential given by

VBB5 (
i 51

N21

UBB~di !, ~2!

wheredi is the distance between beadi and i 11 and

UBB5k1~d2do!21k2~d2do!4, ~3!

wheredo53.8 Å is the equilibrium separation between the
beads,k151e/Å2 and k25100e/Å4. In addition to these
bond potentials, the nonadjacent beads that form native con-
tacts in the folded structure interact through a Lennard-Jones
potential, whereas the non-native contacts interact solely
through a repulsive potential. In our calculations we have
usede51 kcal/mol.

B. b-hairpin using atomistic model

The C-terminal domain~GEWTYDDATKTFTVTE! of
protein G ~Protein Data Bank accession No. 1GB1! is also
used for some of our calculations. Thermodynamic and
structural studies have shown that this hairpin exhibits many
of the basic features of protein folding, including the forma-
tion of a hydrophobic core and hydrogen bonds that stabilize
the native conformation. Figure 2 shows a schematic repre-
sentation of this peptide in its native hairpin configuration.
The CHARMM19 ~Ref. 16! force field is used with a united
atom representation where the nonpolar hydrogen atoms are

combined with the heavy atoms to which they are bonded.
We use the EEF1 model parameters,17 where the partial
charges on the amino acids are modified to neutralize the
side chains and the patched molecular termini. The density of
states was computed for this system in our previous work,18

readers are referred to that reference for further details.

C. Polyalanine on a lattice

To capture the behavior of a non-Gaussian system~see
below! we have also considered the folding transitions of
helical @-Ala-#28 on a lattice. The lattice model employed
here is based on the SICHO~side chain only! model by Ko-
linski et al.19–22 Each amino acid is represented by the cen-
troid of its side chain~Fig. 3!; a protein is modeled as a chain
connecting these virtual particles on a cubic lattice, with the
lattice spacing corresponding to 1.45 Å in real proteins. The
chain vectors representing virtual bonds between interaction
centers are of variable length, ranging from 91/2 to 301/2 lat-
tice units. The knowledge-based force field proposed by

FIG. 1. Go-type model representation of the three helix bundle protein,
protein A. Each amino acid is replaced by a single bead at the position of the
alpha carbon atom.

FIG. 2. United atom representation of the native hairpin structure of the
C-terminal fragment of protein G.

FIG. 3. Schematic representation of the side chain only lattice model.
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Kolinski et al.19–22 is employed. It includes a chain stiffness
potential, a secondary structure bias, short-range interactions,
hydrogen-bond interactions, and long-range interactions.
Such a model shows high cooperativity in the folding behav-
ior and a clear coexistence of two phases~folded and un-
folded! near the folding transition.23

In addition to these peptide models, we also present re-
sults for the Lennard-Jones fluid.24

III. SIMULATION METHOD

Conventional molecular dynamics is employed to per-
form ‘‘control runs.’’ To determine the optimal distribution of
temperatures, replica-exchange simulations are conducted by
performing swap moves between adjacent replicas. The con-
figurations in individual boxes are propagated simulta-
neously and independently using molecular dynamics. The
swap moves are performed at regular molecular dynamics
step intervals by using the acceptance criteria given in Eq.
~1!. The momenta in the boxes are rescaled uniformly ac-
cording to the new temperatures. This algorithm is discussed
in detail in Ref. 5.

In a canonical Monte Carlo simulation, sample confor-
mations with potential energyE are generated based on the
distribution

Pb~E!}exp~2bE!. ~4!

In parallel tempering simulations, swap moves are accepted
according to the acceptance criteria given in Eq.~1!.

If the density of states of a systemV(E) is known, this
probability of acceptance for the swap moves between repli-
cas at inverse temperaturesb1 andb2 can be computed ana-
lytically based on the following expression:

Pacc~b1 ,b2!5E
1
E

2
Pb1

~E1!Pb2
~E2!

3min@1,exp~DbDE!#dE1dE2 , ~5!

where

Pb~E!5
exp~2bE!V~E!

Q~b!
, ~6!

andQ(b) is the canonical partition function, given by

Q~b!5E exp~2bE!V~E!dE. ~7!

We have computed the density of states of the systems of
interest by using a Wang-Landau approach.18,23,25,26Based
on Eq.~5! we could then compute the probability of accep-
tance of swap moves for different overlapping ranges of en-
ergy distributions without performing any additional simula-
tions. This information provide us with a means of arriving
at optimal temperatures that will ensure equal acceptance of
swaps.

IV. RESULTS AND DISCUSSION

Our goal is to determine the temperature distribution that
ensures equal acceptance probability of swap moves between
all the adjacent pairs of replicas. This approach would maxi-

mize the flux of configurations from low- to high-
temperature boxes. In the canonical ensemble, the probabil-
ity of accepting a swap between two replicas is correlated
with the area of overlap between the corresponding energy
distributions. We therefore start by looking at the dependence
of this area of overlap between two model Gaussians as a
function of the separation between them.

A. Model Gaussians

A normalized Gaussian distribution in energy centered at
Ē and having widths is given by

P~E!5
1

A2ps
expF2~E2Ē!2

2s2 G . ~8!

Now consider two such Gaussian distributions centered atĒ1

andĒ2 (Ē2.Ē1) and having widthss1 ands2 . The area of
overlap is calculated by finding the energy valueEi at which
the two Gaussians intersect@have the sameP(E)]. The area
is then computed by integrating the Gaussian on the right
from 2` to Ei and the Gaussian on the left fromEi to 1`.

Aoverlap5E
2`

Ei 1

A2ps2

expF2~E2Ē2!2

2s2
2 GdE

1E
Ei

1` 1

A2ps1

expF2~E2Ē1!2

2s1
2 GdE

5
1

2
erfcFEi2Ē1

A2s1
G1

1

2
erfcF Ē22Ei

A2s2
G , ~9!

where

erfc~x!5E
x

1` 2

Ap
exp~2t2!dt. ~10!

For the case where the two Gaussians have equal widths, i.e.,
s15s25s, we get

Ei5
Ē11Ē2

2
~11!

and hence,

Aoverlap5erfcF Ē22Ē1

2A2s
G5erfcF DE

2A2s
G , ~12!

whereDE is the difference between the means of the two
distributions. Figure 4 shows how the area of overlap
changes with the spacing between the means of the two
Gaussians of equal widths. However, as shown in inset of
Fig. 4, these curves collapse onto a single curve if the energy
spacing is divided by the width of the Gaussians.

In most systems of interest to our work the width of the
Gaussian distributions~s! changes with energyE. We there-
fore now consider the case of overlap between two Gauss-
ians of different widths. The exact solution to the area of
overlap is given by Eq.~9!. The two complementary error
functions can be merged and Eq.~9! can be rewritten as
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Aoverlap5erfcF z

2A2
G2

ez2/gS s2

s1
21D 2

2~A2pz!
1OF S s2

s1
21D 3G ,

~13!

where z5DE/sm and sm5(s11s2)/2. Therefore, to first
order, we have

Aoverlap5erfcF DE

2A2sm
G . ~14!

This relation, which is exact if the two Gaussians have the
same width, is true for the case of unequal widths to the
order of the second term in Eq.~13!.

This approximation turns out to provide an excellent es-
timate of the area of overlap between two Gaussians. For
practical purposes, however, it is more relevant to look at the
probability of acceptance of swaps rather than the area of
overlap. The following section discusses how these two
quantities are related to each other.

B. Complex systems

We begin by computing the density of states for Go-type
model of protein A, an atomistic model of ab-hairpin, and
the Lennard-Jones fluid. Once the density of states of a sys-
tem is known, the energy distribution can be calculated at
any temperature. The area of overlap is then determined from
the area under the curves that is common to any two adjacent
distributions. The probability of acceptance of swaps is com-
puted by solving Eq.~5!. Figure 5 shows how these two
quantities are correlated with each other for the case of pro-
tein A. The curve is generated by considering a broad range
of locations and spacings between the overlapping replicas.
We can see from Fig. 5 that the relationship is not linear and
that the proportionality changes considerably depending on
the extent of overlap between the two replicas.

Throughout the remainder of this work, only the prob-
ability of accepting trial swap moves,Pacc is considered.
Based on our findings for model Gaussians, we examine the
dependence ofPacc with DE/sm . Figure 6 presents data for
three different systems. For all systems,Pacc has the same
functional dependence onDE/sm . To obtain a certain target
acceptance of swaps, we need to allocate the temperatures so
as to achieve the same value ofDE/sm for each of the ad-
jacent pairs. This target value ofDE/sm is not system de-
pendent. Such an agreement suggests that all the three sys-
tems considered here behave like Gaussians and follow the
relationship given under Eq.~13!.

Figures 7 and 8 show the energy distribution and the
specific heat as a function of temperature for protein A. This
Go-type model exhibits a sharp folding transition~as evi-
denced by the dominant peak of the specific heat plot!, the
energy distributions are nearly Gaussian, even close to the
transition temperature.

FIG. 4. Area of overlap between two Gaussians as a function of energy
spacingDE between them. Inset: Area of overlap between Gaussians as a
function of energy spacing normalized by the Gaussian widths. Separate
curves collapse on top of each other implying that the overlap area is a
function of DE/s.

FIG. 5. The probability of accepting a swap move as a function of overlap
area. The data is generated for Go-type model of protein A using DOS
simulations. The dashed line corresponds to slope of one whenPacc is equal
to area of overlap.

FIG. 6. The probability of acceptance of swap moves as a function of
DE/s. It is observed that for three different systems the plots collapse on a
single curve.
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For the particular case of our model protein on a lattice,
as shown in Fig. 9, the distributions deviate from Gaussian
behavior near and at the transition temperatures. In Fig. 10
we compare the swap acceptance probability for this system
with that of a model Gaussian. One can see clear deviations
in the middle range ofDE/sm . However, even with these
deviations, if the targetPacc is more than 15%, one can an-
ticipate with reasonable confidence the value ofDE/sm re-
quired to achieve a givenPacc.

C. Replica-exchange simulations

More generally, one does not havea priori knowledge of
the density of states. One can perform a short simulation run
with a few replicas and obtain the average energyE(T) as a
function of temperature. Similarly,s(T) can be roughly es-
timated. For a target value ofPacc, the correspondingDE/s
value can be obtained from Fig. 6. We then set the tempera-
ture in the first box (T1) to be equal to the starting point of

the temperature range of interest (Tbegin) and the following
temperaturesTi8s are determined by iteratively solving the
equation:

DE

sm
U

Ti

5FDE

s G
target

, ~15!

where DE5E(Ti)2E(Ti 21) and sm5@s(Ti)
1s(Ti 21)#/2. SinceE(T) and s(T) are preestimated, the
iteration is relatively fast and simple to implement. One can
thus arrive at a distribution that assigns equalDE/sm to all
the adjacent replicas and yield equal acceptance probability
of swaps.

We now compare the performance of this scheme with
other available empirical approaches. The simplest of these
consists of assigning temperatures in a geometric progres-
sion. It has been shown that, for the case when the specific
heat of the system is independent of temperature, such a
distribution does lead to equal acceptances.27 However, when
the specific heat varies with temperature, such as in the case

FIG. 7. Energy distribution for Go¯model of protein A as obtained using
DOS simulations. For the entire temperature range including the transition
temperature (T5208 K) the system is Gaussian-like.

FIG. 8. Specific heat as a function of temperature for the Go model of
protein A as obtained using DOS simulations.

FIG. 9. Energy distribution for lattice model of polyalanine for the entire
temperature range as obtained using DOS simulations. The system is non-
Gaussian close to the transition temperature.

FIG. 10. The probability of acceptance of swap moves as a function of
DE/s for a lattice system.
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of protein A~see Fig. 8!, a geometric distribution may result
in highly unequal swap acceptances. Table I shows thePacc

obtained for protein A when a geometric distribution is em-
ployed. Near the transition temperature, where the specific
heat increases, the flux of configurations between replicas is
low and the geometric approach is inefficient.

Another scheme employed in the literature10 does take
into account the thermodynamic behavior of the system.
Short equilibration runs are performed at fewer temperatures
and the data are used to obtain a polynomial fit for average
energiesE(T) as a function of temperature. This information
is then used to determine the target temperatures by itera-
tively solving the following equation:

exp~DbDE!5Paccutarget. ~16!

The performance of such a scheme is better than that ob-
tained for a geometric progression of temperatures in the
respect that it gives more uniformPacc. However for the
systems we studied we always obtained a higher value of
Pacc as compared to the target value used to solve Eq.~16!.
This is also shown in Table II, where Eq.~16! is solved
iteratively for protein A for a targetPacc of 0.3. The resultant
swap acceptances are consistently higher than the target
value.

In Table III results are presented for the optimal distri-
bution determined by setting equalDE/sm for all adjacent
pairs and solving Eq.~15! iteratively. We conclude that this

scheme consistently yields the most uniform acceptance
probabilities of swap moves that are closest to the desired
value.

D. Optimal number of replicas

The goal of this section is to explore how the perfor-
mance of a parallel tempering simulation changes as the
number of replicas is increased~for a given temperature
range!. The performance is assessed in terms of the accuracy
of simulated specific heat estimates. As the number of repli-
cas is increased, the overlap between the neighboring energy
distributions also increases, thereby helping the system relax
better. Faster relaxation, however, comes at the cost of added
computational demands. Also, as the number of replicas is
raised, the round-trip time that is required for a specific con-
figuration to reach the highest temperature and return also
increases, thus affecting the performance. As a result, simply
increasing the number of replicas does not guarantee an in-
crease in the quality of results that can be achieved in a given
amount of computational time.

For systems considered in this work, simulation times of
the order of 10–100 ns are sufficient to arrive at a precise
estimate of specific heat. Once these ‘‘true’’ values are
known, we can determine the deviation of results obtained
over a course of multiple short simulations. Specific heat
data are generated over a given temperature range by histo-
gram reweighting.13 For the purpose of determining the op-
timal number of replicas, short replica-exchange simulations
~2 ns for protein A and 0.2 ns for LJ fluid! are performed
with varying number of replicas~to collect statistics, six runs
are conducted for each replica number!.

The performance is reported in Figs. 11 and 12 in terms
of the deviation from the true estimate for a fixed total com-
putational time. The total computational time is the cpu time
for each replica, times the number of replicas. Figures 11 and
12 show how the specific heat for our Go-type Protein model
and Lennard-Jones system approaches the true values for dif-
ferent swap acceptances. The computational time per replica
is kept constant when reporting the deviations on the ordi-
nate axis. It is evident from the figures that there exist an
optimum ~20% swap acceptance! for the number of replicas
to be used. Further increases in the number of replicas do not
contribute to an increase in the accuracy that can be achieved

TABLE I. Probability of acceptance of swap as achieved in replica-
exchange simulation when the temperatures are assigned based on geometric
distribution.

S. No.
Ti /Ti 11

~geometric! Ptarget Pacc

1 100/113 0.3 0.43
2 113/128 0.3 0.38
3 128/144 0.3 0.40
4 144/163 0.3 0.35
5 163/184 0.3 0.28
6 184/208 0.3 0.13
7 208/235 0.3 0.18
8 235/265 0.3 0.31
9 265/300 0.3 0.38

TABLE II. Probability of acceptance of swaps as achieved in replica-
exchange simulation when the temperatures are assigned based on the itera-
tive solutions to exp(DbDE)5Pacc.

S. No.
Ti /Ti 11

(exp(DbDE)5Pacc) Ptarget Pacc

1 100/113 0.3 0.43
2 113/127 0.3 0.45
3 128/141 0.3 0.44
4 144/157 0.3 0.43
5 157/172 0.3 0.44
6 172/186 0.3 0.48
7 186/198 0.3 0.50
8 198/210 0.3 0.42
9 210/227 0.3 0.41

TABLE III. Probability of acceptance of swap as achieved in replica-
exchange simulation when the temperatures are assigned so as to have equal
DE/sm for all pairs.

S. No.
Ti /Ti 11

~equalDE/s) Ptarget Pacc

1 100/117 0.3 0.31
2 117/136 0.3 0.34
3 136/157 0.3 0.31
4 157/176 0.3 0.34
5 176/194 0.3 0.33
6 194/211 0.3 0.25
7 211/235 0.3 0.26
8 235/269 0.3 0.31
9 269/305 0.3 0.31
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in a given total computational time. The optimal number of
replicas will also depend on the rate at which the configura-
tions are swapped, a parameter which has been kept constant
in this study. This dependence, however, does not change the
fact that a uniform swap acceptance for all the replica pairs is
necessary to achieve ideal performance. As shown in Fig. 13,
given a system and a temperature range, an optimal alloca-
tion of temperatures always yields estimates of higher qual-
ity ~than those obtained by other schemes! irrespective of the
number of replicas used. As the simulation time is increased,
both estimates~one from the optimal and one from the geo-
metric distribution! get better, but our proposed approach
leads to smaller errors consistently.

V. CONCLUSIONS

In this work we have presented a protocol for optimal
allocation of temperatures in parallel tempering or replica-
exchange simulations. These temperatures are assigned
based on a recipe that ensures thatDE/sm is equal for all the
simulation boxes. The algorithm was devised from a study of
model Gaussians, and is extended to a variety of systems,
including proteins where the specific heat is a strong function
of temperature. Approximate initial guesses forE(T) and
s(T) are needed for the algorithm; these can be easily ob-
tained with sufficient accuracy from relatively short simula-
tion runs. The method is shown to be superior to available
protocols for obtaining a uniform swap acceptance in mul-
tiple replicas.

We have also discussed how the performance of parallel
tempering simulations changes as the number of replicas is
varied. It is observed that an optimum exists~;20% swap
acceptance for the cases studied in this work!, beyond which
additional replicas fail to improve the performance of our
simulations~evaluated in terms of the accuracy achieved in a
given computational time!. The optimum may depend on the
system under study and the swap frequency employed. How-
ever, irrespective of the number of simulation boxes used,
the optimal allocation of temperatures yields results of
higher accuracy than those obtained using other prescrip-
tions, thus highlighting the need for determining an optimal
distribution according to the guidelines proposed in this
work.
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FIG. 11. Percentage deviation in estimated specific heat of Go-type protein
as compared to its true value. The true value is computed from 150 ns
simulation. The total simulation length~computational time per replica
times the number of replicas! is fixed for each data point.

FIG. 12. Percentage deviation in estimated specific heat of LJ fluid as com-
pared to its true value. The true value is computed from 20 ns simulation.
The total simulation length~computational time per replica times the num-
ber of replicas! is fixed for each data point.

FIG. 13. Percentage deviation in specific heat estimates for Go-type protein
A as obtained for two different allocation schemes: the proposed optimal
allocation ~solid lines! and the geometric distribution of temperatures~in
dashed lines!. For a range of replicas employed the proposed distribution
achieves higher accuracy in a given time.
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