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Computer simulations of proteins, lipids and nucleic acids at equilibrium have become
largely routine. The basic methodology is well established and has been extensively ver-
ified.1 The challenge for the future is to use such approaches to understand composition
and concentration depend phenomena such as those which give rise to spontaneous self-
organization in (bio)molecular systems and which by their very nature cannot be readily
probed by experiment. Examples of such processes include the folding and aggregation
of peptides and proteins,2, 3 the aggregation of lipids and surfactants into micelles4, 5 bilay-
ers6 and vesicles,7 as well as the assembly of mixed systems into functional complexes, all
fundamental to living cells.

Peptide folding: It is not yet possible to fold complete proteins using atomic models.
Nevertheless, dramatic process is being made regarding the folding and aggregation of
peptides. For example, in certain cases it is now possible, to simulate the folding of small
(10-15 a.a.) peptides under reversible conditions from an arbitrary initial configuration
with experimental precision.2, 3 Such work has lead to a reassessment of the nature of the
unfolded state and point the way forward to the folding of larger systems.8–10

Lipid aggregation: Cell membranes are the archetypal example of a self-organized
system which in addition to various types of lipids can contain peptide, proteins and high
concentrations of molecules such as cholesterol. Previously it was believed that it was only
possible to such collective behavior in such systems using simplified or coarse-grained
models. We have recently shown however that it is possible to simulate the self-assembly
for a random mixture of lipids (or surfactants) in water into their correct phase in atomic
detail. This has proved to be an extremely powerful approach to investigate processes such
as the pore formation in bilayers, domain formation in mixed bilayers, and the mechanism
of vesicle formation and fusion.7, 11 By performing simulations of the same phenomena
using a specifically parameterized course-grained model as well as in atomic detail has also
been possible to investigate for what aspects modeling in atomic detail is truly needed.

Assembly of functional complexes: The process of assembly of a membrane-water in-
terface can also provide a powerful driving force to initiate the folding and self-assembly
of peptides and proteins. For example the protein hydrophobin SC3 is largely unstructured
in solution but rapidly forms extended b-sheet at hydrophobic/hydrophilic interfaces.12 In
the same manner multiple copies of pore forming peptides can be included in simulations
leading to spontaneously formed bilayers. This is shedding light on exactly how such
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peptides manage to insert, assemble and function within membranes.13

Examples illustrating the extent to which simulations both at an atomic level and at
a more coarse grained level can be used to understand cooperative phenomena such as
those mentioned above will be presented. In particular the lecture focus on to what extent
the results we obtain from such simulations are reasonable14 and how basic traps when
simulating biomolecular systems can be avoided.
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