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ABSTRACT
Motivation: Use of complex data-derived models is prevalent in bio-
informatics. However in many cases additional data may be difficult,
time-consuming, or expensive to obtain, and not all data is crea-
ted equal. We outline the Bayesian decision-theoretic approach to
designing experiments by collecting maximally informative data. We
develop the approach in the context of a statistical mechanical model
for helical peptide folding, and provide Monte Carlo calculations of the
required quantities. We demonstrate the use of this approach in desi-
gning helical peptide studies which will maximally improve predictive
performance of the current state-of-the art helix formation model.
Results: The Bayesian experimental design methodology is applied
to choose sets of polypeptides for further experimental study under
a variety of different design constraints and utility measures. We dis-
cuss the resulting peptide sets chosen, which show interesting areas
where properties of helical peptide folding are insufficiently under-
stood based on current experimental data in the protein science
literature.
Availability: The program for helical peptide design will be made
available via the corresponding author’s website.
Contact: schmidler@stat.duke.edu

1 INTRODUCTION
Probabilistic and statistical models are now a staple of bioin-
formatics research. A wide variety of specialized models have
been developed for problems including biological sequence analy-
sis (Churchill, 1989; Krogh et al., 1994; Durbin et al., 1998; Liu
and Lawrence, 1999) molecular structure analysis (Sippl, 1995; Wu
et al., 1998; Schmidler, 2006), sequence-structure prediction (Eddy
and Durbin, 1994; Schmidler et al., 2000, 2004; Lathrop et al.,
1998), biological networks (Friedman, 2004), and tissue classifica-
tion from mRNA expression (too many to mention), to name just a
few. Such models are typically derived from a combination of biolo-
gical knowledge, computational considerations such as existence of
efficient algorithms, and statistical selection criteria such as fit to an
existing data set or out-of-sample prediction accuracy. Parameters
of these models are typically obtained by some manner of fitting to
one or more experimental datasets.

When such models fail to perform adequately it may be a fai-
lure of the model structure itself, or simply the lack of sufficient
data to adequately estimate all model parameters. In the latter case,
we can consider improving the model by gathering new data, even
running new experiments. However, not all data are created equal
from the perspective of model improvement, and since data are
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often expensive, time-consuming, or risky (in the case of clinical
data) to generate, we would like to maximize the information obtai-
ned while minimizing the associated costs. Principles of statistical
experimental design may be brought to bear on this problem.

While a variety of statistical parameter estimation and statisti-
cal model selection criteria are well known and frequently used
in the bioinformatics literature, statistical experimental design has
received relatively little attention. A rare exception is in certain
mRNA expression studies where (Kerr and Churchill, 2001) elu-
cidate design principles; however this approach is somewhat dif-
ferent from the Bayesian model-based approach to experimental
design described here. Almost nothing appears in the bioinformatics
literature on experimental design in sequence and structure contexts.

In this paper we review the fundamental principles of Bayesian
experimental design for general statistical models. We then deve-
lop this approach for a predictive sequence-structure model derived
from biophysical statistical mechanics, for which we have pre-
viously applied statistical parameter estimation and model selection
techniques (Schmidler et al., 2006; Lucas, 2006). We use this exam-
ple to demonstrate the advantages and challenges of doing Bayesian
design in bioinformatics-type models.

2 BAYESIAN EXPERIMENTAL DESIGN
Statistical experimental design dates to the early days of formal sta-
tistical theory (Fisher, 1935). Non-Bayesian experimental design
methodology involves a series of related “alphabetical” optimality
criteria (Box, 1982), for example maximization of the determi-
nant of the information matrix (D-optimal designs). Sequential D-
optimal designs (Wynn, 1970) are widely used used in applications
(Coffey et al., 2005; Berger, 1994; Fujiwara et al., 2005).

The Bayesian approach to experimental design advocated in this
paper is based on decision theory and the maximization of expected
utility (Lindley, 1992). Given a set of possible actions A, outcomes
O, and a utility function U(o) : O → R assigning values to each
outcome, decision theory dictates that we choose the action which
maximizes expected utility:

A∗ = arg max
A∈A

Z

O

U(O | A)P (dO | A, I)

where I represents the current information available to the decision
maker, before taking any action. Expected utility decision making
has a long tradition and forms a foundational basis for statistics
(Savage, 1954; Berger, 1985), as well as theories of rational beha-
vior in economics (Raiffa, 1968) and artificial intelligence (Horvitz
et al., 1988; Russell and Norvig, 2003).
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Experimental design involves a two-stage decision process: first
an experiment is selected among the many possibilities, the experi-
ment is then performed and data collected, after which the observed
data are used to inform some future decision. Thus in applying
decision-theoretic reasoning to experimental design, the principle
of maximizing expected utility is applied twice. In the first deci-
sion, the action set A1 is the set of possible experimental designs, or
possible sets of measurements to be performed.1 The outcomes O1

associated with the first decision are the set of possible experimen-
tal observations. However, the goal of experimentation is to collect
information, and the actions and outcomes of the second decision
depend on to what use that information is to be put. Indeed, one of
the strengths of the Bayesian approach to design is that it forces the
experimenter to be explicit about the goal(s) of the experiment.

When applying design principles to statistical models, the action
set A2 is often taken to be the set of possible choices for model
parameter estimates θ̂ ∈ Θ, with O2 being the true (unknown) para-
meter value θ ∈ Θ; alternatively, A2 may be a set of predictions
for some unknown quantity or future event, with O2 the true value.
In each case, I2 is represented by a posterior distribution p(θ | O1)
which incorporates the data collected as a result of the first (experi-
ment choice) decision as well as any additional prior information or
constraints. In such statistical estimation/prediction problems, U(θ)
is typically taken to be a (negative, expected) loss function L(θ̂, θ)
(see e.g Berger (1985)).

Applying expected utility maximization to this two-stage design
problem yields the Bayesian optimal design:

A∗ = arg max
A1∈A1

Z

O1

P (dO1) max
A2∈A2

Z

O2

U(O2 | A2)P (dO2 | A2, I2)

For a given statistical model, the key steps in Bayesian experimental
design are thus to identify the set of possible experiments and their
respective outcome possibilities, and to choose a utility or loss func-
tion. This approach is quite general and in fact gives rise to many
non-Bayesian experimental design criteria (e.g. alphabetical opti-
mality criteria such as D-optimality) as special cases under specific
utility functions (Bernardo, 1979; Chaloner and Verdinelli, 1995).
A comprehensive survey of Bayesian experimental design is given
in Chaloner and Verdinelli (1995); see also (Clyde, 2001; Bernardo
and Smith, 1994).

3 THE HELIX-COIL MODEL FOR PEPTIDES
The helix-coil model of state transitions in polymers has a long
history (see Poland and Scheraga (1970); Qian and Schellman
(1992) for reviews), and was pioneered for the study of α-helix for-
mation in protein folding by Scholtz and Baldwin (1992), followed
by significant additional work (Qian and Schellman, 1992; Doig
et al., 1994; Shalongo and Stellwagen, 1995; Stapley et al., 1995;
Andersen and Tong, 1997). Building on the work of Munoz and Ser-
rano (1994), we have developed a predictive statistical mechanical
model for the helix-coil transition in polypeptides (Schmidler et al.,
2006). Let R = (R1, . . . , Rl) denote the amino acid sequence of a

1 We limit our discussion to sequential design, where measurements are
taken one at a time, and I is updated to reflect the new data obtained from an
experiment before the next experiment is chosen. The Bayesian framework
applies without modification to batch (multi-experiment) design, although
computation of the optimal design may be more difficult.

peptide of length l, and X = (x1, . . . , xl) the an associated vector
of binary indicators with xi = 1 if the ith amino acid is in helical
conformation and 0 otherwise.

The model is a Gibbs random field with short-range neighborhood
interactions, with potential U(X, R) given by

U(X, R) =

l
X

i=1

xi∆GRi
+

l−3
X

i=1

xi:i+3∆∆G3
RiRi+3

+

l−4
X

i=1

xi:i+4∆∆G4
RiRi+4

(1)

where xi:k =
Qk

j=i
xi, individual side chain helical propensities

are described by free energies

∆GRi
= ∆Hxi−1:i+1 − T∆SRi

xi (2)

and the ∆∆G terms in (1) represent energetic contributions of i, i+
3 and i, i + 4 side chain-side chain interactions. Although we have
suppressed the dependence in the notation above for clarity, in fact
∆H and ∆SR are functions of both temperature

∆H(T ) = ∆H0 + ∆Cp(T − T0)

∆S(T ) = ∆S0 + ∆Cp log(T/T0)

and pH
∆SR = f+∆SR+ + (1 − f+)∆SR−

where f+ = (1 + 10pH−pK)−1 represents the fraction protonated
for ionizable sidechains.

The resulting Boltzmann-Gibbs distribution over conformations
is given by

P (X ∈ X | R) = Z−1e
− 1

kB T
U(X,R)

where Z is the normalizing constant or partition function involving a
sum over all configurations X ∈ X = Z

l
2. The helicity of a peptide

is then given by the expectation or ensemble average

H(R) =
X

X∈X

h(X)P (X | R)

where h(X) = l−1
Pl

i=1 xi, and it is this ensemble average quan-
tity which can be compared with experimental measures of peptide
helical content obtained by circular dichroism (CD).

Additional details of the model, including energetic terms for
inclusion of N- and C-terminal blocking groups, capping effects,
and positional parameters, and efficient algorithms for calculation
of the partition function and helicity, are described in Schmidler
et al. (2006).

3.1 Bayesian inference
Bayesian estimation of the parameters of the above helix-coil model
(including ∆H; ∆SR for all R; ∆∆G3

R1R2
and ∆∆G4

R1R2
for all

R1, R2; ∆Cp; and other parameters) is described in Schmidler et al.
(2006). Using θ to denote the vector of all of these parameters, we
assign prior distributions π0(θ) to all parameters, and given a set
of experimental data denoted by D consisting of pairs of sequences
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and associated experimental (CD) helicities {Ri, h̃i}n
i=1, we obtain

the posterior distribution

π(θ | D) =

P

x
P (R,x,h | θ)P (θ)
P

x
P (R,x,h)

∝ π0(θ)(2πσ2)−
n

2

n
Y

i=1

e
− 1

2σ2 (h̃i−H(Ri,θ))2 (3)

which corresponds to the additive noise model h̃R = H(R, θ) + ε
with ε ∼ N(0, σ2). Informative priors based on the protein science
literature and model selection shrinkage priors are described in
detail in Schmidler et al. (2006) and Lucas (2006), but we do not
focus on this here. Instead we consider the use of (3) for performing
Bayesian design calculations. Inference under the posterior distri-
bution (3) is performed via a Markov chain Monte Carlo simulation
algorithm described in Schmidler et al. (2006), yielding a finite set
of samples θ(i) ∼ π(θ | D), i = 1, . . . , m from which we may
easily obtain most posterior quantities of interest by Monte Carlo
approximation of expectation integrals:

Eπ(f(θ)) =

Z

f(θ)π(θ | D)dθ

≈ 1

m

m
X

i=1

f(θ(i)) (4)

for some function f(θ). (See Gilks et al. (1996) for an introduction
to Markov chain Monte Carlo methods.)

The posterior predictive distribution for the helicity of a new
observation R∗ is given by the mixture distribution

q(h∗ | R∗, D) =

Z

P (h∗ | R∗, θ)π(θ | D)dθ (5)

which involves integration with respect to the posterior distribu-
tion of θ and accounts for the remaining uncertainty in the model
parameters. Prediction of helicity based on this posterior predictive
distribution is our second-stage decision problem; if we measure
prediction utility using (negative) squared loss L(ĥ(R∗), h∗) =
(ĥ(R∗) − h∗)

2 for predictor ĥ, then the predictor which maximi-
zes expected utility or minimizes Bayesian/posterior expected loss is
given by the posterior predictive mean:

ĥ(R∗) = Eq(h∗) = Eπ(E(h∗ | θ))

=

Z

H(R∗, θ)π(θ | D)dθ = µH(R∗) (6)

The predictor (6) is approximated by

µ̂H(R∗) =
1

m

m
X

i=1

H(R∗, θ
(i))

from Monte Carlo samples θ(i) ∼ π(θ | D) as in (4) above.

4 BAYESIAN DESIGN IN THE HELIX-COIL MODEL

4.1 Helical peptide studies via circular dichroism
The vast majority of helical peptide studies are performed via cir-
cular dichroism (CD). Peptides are synthesized or isolated from

natural protein digests and purified. The CD spectrum of a peptide
residue is sensitive to its backbone conformation, which determines
the optical activity of the chromaphore environment. The spectrum
of a helical residue has been observed to contain a strongly nega-
tive peak at 222nm, and the relative intensity of the peak at this
wavelength has been used to estimate the helical content of polypep-
tides (Scholtz and Baldwin, 1992). A large number of such studies
have been performed on a wide variety of synthetic peptides and
naturally-occurring protein fragments.

There are an exponential number of polypeptides for potential
study. Due to the time, effort, and expense involved in such stu-
dies, we wish to guide future studies by choosing those experiments
which are most likely to provide maximal additional information on
top of currently available data. In particular, we wish to improve the
predictive accuracy (and reduce predictive uncertainty) of the helix-
coil model, enabling peptides of future interest to be predicted as
accurately and precisely as possible. We may also be interested in
clarifying the role of specific energetic contributions or interactions
by reducing uncertainty about the corresponding model parameters.
We approach this goal of selecting maximally informative expe-
riments by applying the principles of Bayesian decision-theoretic
experimental design described in Section 2 to the statistical helix-
coil model described in Section 3, under the parameter posterior
distributions obtained using all currently available data (Schmidler
et al., 2006).

4.2 Basic set-up
To apply the Bayesian design framework of Section 2 to helix-coil
studies, we must specify the set of possible actions, outcomes, and
utilities for the first-stage decision. For convenience we will restrict
ourselves to sequential design, so the possible actions are simply the
possible peptides R∗ that we may consider synthesizing and stu-
dying experimentally via CD. Denote this design set by P . Note
that extension to batch design, where P is a set of subsets of pos-
sible peptides, is conceptually straightforward, but will demand a
combinatorial increase in computational effort.

The set of possible outcomes is also clear: it is the set of possible
experimental results h̃∗ ∈ [0, 1] obtained for the peptide chosen,
along with the corresponding state of the model after incorporating
the new results, represented by a posterior probability distribution
on the helix-coil model parameters which we denote by π(θ | D ∪
h̃∗).

Finally, we require a utility function on this outcome space. Since
we are interested in improving out-of-sample predictive accuracy
of the model, a natural choice is to define utility as the (nega-
tive) expected predictive loss. However, we must now be precise
about which population of peptides we are interested in predicting.
Let R denote the set of all possible polypeptides, which is infinite
|R| =

S∞
l=1 20l. Let ω(R) denote a distribution on R. Defining

the population ω(R) of interest is up to the experimenter; it may
be as large as the set of all naturally occurring peptides, or as small
as sequence variations on a specific peptide of interest; it may be
peptides of a certain length range, or only peptides which arise as
fragments of naturally occurring proteins, or highly helical pepti-
des only, or those whose helicity is stable under temperature or
pH changes. Further, many peptides in R will form aggregates and
ω(R) may be chosen to assign zero weight to predicting such pep-
tides. Choice of ω(R), especially the range of peptides assigned
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non-zero weight, will have a significant impact on the difficulty of
the resulting optimization problem as described below.

As before, let h denote the true helicity of peptide R, and let
ĥD(R) denote our predicted helicity for R as given by (6), where
the dependence on the data D through the posterior distribution over
model parameters is now made explicit. We use the shorthand πD

to denote the posterior distribution π(θ | D) given in (3). Using
squared loss L(ĥ, h) = (h−ĥ)2, we define our utility function U as
the negative expected prediction loss over the predictive population
ω(R) of interest:

U(D) = Eω

h

EhR|πD

“

L(ĥD(R), hR)
”i

=
X

R∈R

ω(R)

Z

L(ĥD(R), hR)q(hR | R, D)dhR

=
X

R∈R

ω(R)

Z Z

L(ĥD(R), hR)P (hR | θ)π(θ | D)dθdhR

=
X

R∈R

ω(R)varπD
(hR) = Eω [varπD

(hR)] (7)

where q(hR | R,D) is the predictive distribution (5). Note that only
the last line is specific to quadratic loss, and although we assume
this below for ease of exposition, the approach holds for arbitrary
loss functions. Since U(D) is an expectation over R, when R is too
large to enumerate we may simply approximate U(D) by Monte
Carlo sampling from ω(R) similar to (4).

The expected utility to be obtained by studying R∗ then becomes

EU(R∗) = EhR∗
|D (U(D ∪ h∗))

=

Z

U(D ∪ h∗)q(h∗ | R∗, D)dh∗

= Eω

Z

ˆ

varπD∗

(hR)q(h∗ | R∗, D)dh∗

˜

(8)

where πD∗
= π(θ | D ∪ h∗). (EU(R) is sometimes called

the pre-posterior expected utility, see e.g. Clyde (2001)). The
design problem is therefore reduced to a computational problem of
maximizing EU(R) over all R ∈ P .

In practice, improvement of predictive accuracy is not the only
consideration when choosing when experiments to perform; relative
time and cost may also play a role. For example, synthesis of longer
peptides may be more difficult or expensive. Similarly, producing 10
point mutants of a single peptide is generally easier experimentally
than synthesizing 10 unrelated peptides. Let EC(Ri) denote the
expected cost associated with the experiment to study peptide Ri.
Then our expected utility becomes

EU(R) − EC(R)

Since costs may vary from lab to lab and because incorporating cost
is only a trivial modification of the computation of expected utility,
for examples in this paper we use EC(Ri) constant and so suppress
the notation in what follows.

4.3 Importance sampling
Calculation of (7) requires the evaluation of the expected prediction
error ΛR,D = varπD

(hR) for every peptide R in the prediction set

R, or perhaps for some Monte Carlo sample R1, . . . , Rm ∼ ω(R).
Since hR | θ ∼ N(H(R, θ), σ2) and recalling that σ ∈ θ, we have

ΛR,D =

Z
»
Z

(hR − ĥR)2φ

„

hR −H(R, θ)

σ

«

dhR

–

π(θ | D)dθ

=

Z

h

(H(R, θ) − ĥR)2 + σ2
i

π(θ | D)dθ

= varπD
(HR) + EπD

σ2 = varπD
(hR)

Given samples θ(i) ∼ π(θ | D) as described above, we have the
Monte Carlo approximation

ΛR,D ≈ Λ̂R,D =
1

m

m
X

i=1

“

µ̂H(R) −H(R, θ(i))
”2

+ σ2(i)

= σ̂2
ĥR

+ σ̂2

We must then integrate this quantity, which depends on D through
πD, over the predictive distribution of the measurement h∗ to be
taken on the peptide R∗, in order to obtain the expected utility
(8). Because varπD∗

(hR) depends on the unknown observation h∗,
integrating numerically by quadrature or Monte Carlo requires gene-
rating samples θ(i) ∼ π(θ | D∗) for each distinct value of h∗

considered. However, sampling from the posterior π(θ | D) for
some D involves a large MCMC simulation requiring multiple days
(Schmidler et al., 2006). Thus repeating this for sufficiently many
values of hR∗

to evaluate the integral (8), and doing so for a large
number of possible R∗’s in order to maximize (7) over the design
set R, is prohibitively expensive.

Alternatively, if πD and πD∗
are “sufficiently close” in the sense

that the observation h∗ does not dramatically shift the posterior
mass into the tails of πD, then we may achieve a dramatic savings
in computational time by importance reweighting: given samples
θ(i) ∼ π̃(θ | D), i = 1, . . . , m drawn from some distribution
π̃(θ) 6= π(θ), we may approximate expectations under π(θ) by
replacing (4) with

Eπ(f(θ)) ≈
Pm

i=1 wif(θ(i))
Pm

i=1 wi

where wi = π(θ(i))/π̃(θ(i)) are the importance weights. Applying
this to the samples θ(i) drawn from πD, we get:

ΛR,D∗
≈ Λ̂w

R,D∗

=
m
X

i=1

wi

w

»

“

µ̂w
H(R) −H(R, θ(i))

”2

+ σ2(i)

–

(9)

where

µ̂w
H(R) =

m
X

i=1

wi

w
H(R, θ(i)) and w =

m
X

i=1

wi

and

wi =
πD∗

(θ(i))

πD(θ(i))
= L(R∗, h∗; θ

(i))

=
1√

2πσ(i)
e
− 1

2σ
2(i)

(h∗−H(R∗,θ(i)))2

Thus (9) can be calculated very quickly without the need to sam-
ple directly from πD∗. Note that the assumption that πD ≈ πD∗
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is somewhat suspect here, since we are searching for peptides R∗

which will have the greatest effect on the posterior; however the
examples in Section 5 show that this assumption can work well in
practice.

To calculate (8), we must integrate (7) over the predictive distribu-
tion (5). This may easily be done by Monte Carlo integration as well,
by drawing h

(i)
∗ from q(· | R∗, D) for each θ(i). However, because

it is a one-dimensional integral, direct quadrature is more efficient.
Given the θ(i)’s, we have the mixture density approximation

q(h∗ | R∗, D) ≈ 1

m

m
X

i=1

φ
““

h∗ −H(R, θ(i))
”

/σ(i)
”

leading to the numerical integral

EU(R∗) = Eω

Z

ΛR∗,D∗
q(h∗ | R∗, D)dh∗

≈ Eω

Z

Λ̂w
R∗,D∗

m

m
X

i=1

φ

„

h∗ −H(R, θ(i))

σ(i)

«

dh∗

The expected change in prediction error due to studying peptide R∗

is then
X

R∈R

ω(R) (ΛR,D − ΛR,D∗
)

≈
X

R∈R

ω(R)

 

Λ̂R,D −
Z m
X

i=1

φ

„

h∗ −H(R, θ(i)

σ(i)

«

Λ̂w
R,D∗

dh∗

!

If the predictive set {R ∈ R : ω(R) > 0} contains k peptides
and the design set is of size |P| = p, then

P

i
wiH(R, θ(i)) must

be calculated kp times for each of the t quadrature points in the
numerical integration over h∗, taking O(kpmt) time overall.

5 EXAMPLES
We demonstrate the Bayesian design methodology described above
for helical peptides on several examples. For convenience, in this
section we let R denote the prediction set of peptides, which may
in practice be a Monte Carlo sample from ω(R). Recall that P
denotes the design set of peptides under consideration for possible
experimental study.

5.1 Example: Individual Peptides
In the first example, we obtained a random subsample RS of size
220 from the database of peptides described in Schmidler et al.
(2006). For each peptide R ∈ RS , we performed a design calcu-
lation using R = {R} as the prediction set, and P = RS as the
design set. That is, we consider the effect of studying any single
peptide in RS on the predictive accuracy for peptide R.

The expected utilities resulting from these 220 design calculations
are shown as a single matrix in Figure 1, with peptides sorted alpha-
betically by sequence. The strong diagonal reflects the intuitively
obvious fact that the greatest improvement in predictive accuracy
for a particular peptide is typically obtained by studying the peptide
itself. The block-diagonal patterns reflect the sequence similarity
implied by the alphabetical ordering, and the presence of some pep-
tides in the random sample which may have identical sequence but
distinct temperature or pH, or be point mutations of one another.
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Fig. 1. Expected improvement in predictive accuracy for 220 randomly sam-
pled peptides when any single peptide in the set is chosen for experimental
study.

The large off-diagonal values are more interesting. For example,
one of these (circled in red) corresponds to the peptide ‘PANLKA-
LEAQKQKEQR’, where studying ‘Y(AEAAKA)8F’ yields an
expected prediction improvement for ‘PANLKALEAQKQKEQR’
of .10, compared to .11 for studying the peptide itself. Predic-
ted helicities for these two peptides both depend on several model
parameters: the temperature dependence, the individual amino acid
parameters for A,E, and K, and the i, i + 3 interaction parame-
ters K-E, E-K, K-R, and L-L. Of these, K-E and E-K occur seven
and eight times respectively in the longer polypeptide. Figure 2
shows histograms of the posterior distributions for all side chain
interaction model parameters which appear in ‘PANLKALEAQK-
QKEQR’. Both L-L and K-R have maximum a-posteriori esti-
mates of zero and significant mass both above and below zero.
Thus, ‘Y(AEAAKA)8F’ contains multiple repetitions of both of the
non-zero interactions present in ‘PANLKALEAQKQKEQR’.

In fact, there is a temperature curve in the prediction set associated
with ‘Y(AEAAKA)8F’. Returning to the full database of 1085 pep-
tides and querying this temperature curve against the prediction set
containing only ‘PANLKALEAQKQKEQR’ we see that the amount
of information about model parameters that is available in a par-
ticular polypeptide shows a striking temperature dependence (see
Figure 3). The helicity of this peptide along the temperature curve
ranges from 10% at the highest temperature to 92% at the lowest
temperature, with the largest amount of information about the para-
meters available at around 50% helicity (at a temperature of 311).
The Bayesian design approach tells us not only which peptides are
most informative to study, but other aspects of the experimental set
up such as temperature as well.

5.2 Example: Point Mutations
Naturally-occurring peptides often have low intrinsic helicity.
Because helix formation can be a bottleneck in protein folding, the
relative differences in these small helicities can have a significant
impact on protein folding mechanisms (Burton et al., 1998). Thus
it is of particular interest to improve the predictive accuracy of the
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Fig. 2. Posterior distributions for the i, i + 3 interaction terms (at relevant
pH) occurring in the peptide of example 1. Shown are Lys-Glu, Glu-Lys,
Lys-Arg, and Leu-Leu ∆∆G parameters.
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Fig. 3. The expected gain in prediction accuracy for the polypeptide
‘PANLKALEAQKQKEQR’ associated with the study of polypeptide
‘Y(AEAAKA)8F’ at all of the temperatures available in the full data set.
The points marked with ’x’ are the ones that were randomly chosen to be a
part of the prediction and design sets.

model for peptides in the low helicity range. To address this, we
select a prediction set R from our database containing only those
peptides with measured helicity < .3 and temperature 273-280K
(nearly all peptides have low helicity at high temperatures). This
yields |R| = 335 peptides in our prediction set. As our design
set, we consider host-guest studies on the neuropeptide Y analog
‘APAELKAAXAAFKRHGPY’ (Petukhov et al., 1996) consisting
of point mutations at the X position, measured at pH of either 4, 7,
or 10. This gives a design set of size |P| = 60.

Figure 4 shows the expected utility to be obtained by studying
each peptide in the design set, for each peptide in the prediction set.
One peptide which stands out is at position 298 in Figure 4. Peptide
298 of the prediction set is ‘YGKFRFEQQKKEKEARKK’, which
contains a number of parameters in common with the design host.
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Fig. 4. Expected utility for each peptide in the prediction set to be obtained
by studying each peptide in the design set at pH 4 (a) or pH 10 (b). The
results for pH 7 (not shown) are nearly identical to those for pH 4.

This includes ∆Sr parameters for E,G,Y,K,R,A, and F, as well as
potential i, i + 3 and i, i + 4 parameters involving ’X’.

It is also interesting that in general there appears to be more infor-
mation to be gained by performing this experiment at higher pH: of
the 20 point mutants, fifteen yield their maximum expected utility
at pH 10. This may be attributed to the potential gain of information
regarding ∆SK and ∆∆SK , ∆SY and ∆∆SY , and the interaction
parameters ∆∆Gi,i+3

KX and ∆∆Gi,i+4
XK . In particular, peptide 124 of

the prediction set (‘YGGKAVAAKAVAAKAVAAK’) shows large
expected improvement when the design peptide is studied at pH 10,
but significantly less at pH 4 or 7. This peptide contains several
Lysines (pKa just over 10), and a Tyrosine (pKa just under 10), so
the parameters ∆∆SY , ∆∆SK , ∆pKK and ∆pKY will have a
more significant effect on the helicity of this polypeptide at higher
pH (due to the relative fractions of protonated versus unprotonated
side chains), and three of these occur in the design peptides. Of the
five amino acid substitutions that are not best studied at high pH, 3
of them (P, G, and M) show no discernable difference at different
pH’s.

The two mutants offering the lowest gain in expected utility are
‘X=G’ and ‘X=P’ (peptides 1 and 2 of the design set in Figure 4).
Although we are targeting prediction of low helicity peptides, there
appears to be little to learn from studying these well-known helix-
breakers, presumably because these sidechains do not participate
in interactions, and their individual ∆S parameters are already
sufficiently well-determined to have large values.

Maximizing expected utility over the entire prediction set leads
to choice of the design peptides ‘X=I’ and ‘X=L’ (peptides 5 and
6 in Figure 4). Both are hydrophobic sidechains and have potential
i, i + 3 interactions with Phe and i− 4, i interactions with Leu. The
remainder of the top five desings are listed in table 1.

Table 2 shows the number of peptides in the prediction set con-
taining hydrophobic interactions in these positions relative to ‘F’
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Rank 1 2 3 4 5
Substitution L I R D E
pH 10 10 10 4 10
Expected gain (%) .0055 .0053 .0051 .0051 .0049

Table 1. The top five peptides recommended for study, ordered by the
expected gain in accuracy of helicity prediction.

Amino Interaction Count Interaction Count Total
Acid Pair Pair Count
L L...L 7 L..F 5 12
I L...I 8 I..F 3 11
V L...V 5 V..F 1 6
F L...F 2 F..F 2 4
M L...M 0 M..F 0 0

Table 2. Counts of hydrophobic i, i + 3 and i, i + 4 sidechain interac-
tions occurring in prediction set. Interactions involving Leu and Ile occur
substantially more often than the other hydrophobic amino acids.

and ‘L’; all five amino acids in the hydrophobic interaction parame-
ter group are shown. Interactions involving Leu and Ile are seen to
be the most abundant, suggesting that reducing uncertainty in these
parameters will contribute to improving prediction of the largest
number of prediction set peptides. This also serves to demonstrate
the impact of choice of prediction set on the resulting optimal
design.

5.3 Helicity prediction variability
One might expect that the optimal choice of peptides to study would
simply be those with high uncertainty in their predicted helicity
under the model (predictive variance), or those containing amino
acids or interactions for which the model parameters have high
uncertainty (posterior variance). In that case, such criteria could be
used for heuristic design of experiments. However, that turns out not
to be the case: the full Bayesian design framework utilizes additional
important information in choosing peptides.

To demonstrate this, we estimated the fraction of each peptide’s
predictive variance which can be attributed to a particular parameter,
by fixing all other parameters at their posterior means and calcula-
ting the resulting predictive variance integrating the free parameter
over its posterior marginal distribution. Figure 5 shows that this
does not correlate well with the design calculation of Section 5.2.
For example, there appears to be significant uncertainty associated
with parameter ∆SK , which might seem to suggest that substituting
Lys into the host peptide would provide a high level of information.
However, such a design criteria fails to account for the details of the
host peptide: the peptide ‘APAELKAAKAAFKRHGPY’ contains
both i, i + 3 and i, i + 4 ‘K-K’; as a result, the Lys guest peptide is
significantly less helical (14% versus 21% when Alanine is substitu-
ted in its place) and therefore provides little information about any
parameters which contribute to helicity. Choosing Lys because of
the uncertainty associated with ∆SK parameter is therefore a poor
choice. Similarly, the design calculation tells us that Pro and Gly
(well known helix breakers) are the two worst choices for the guest
peptide.
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Fig. 5. The variance of mean helicity in the prediction set attributable to
each of the individual amino acid ∆S parameters. Amino acids are ordered
(lowest to highest) according to the expected gain obtained from the design
calculation in Section 5.2; the two criteria show little correlation.

The parameter contributing the greatest variability to predicted
helicities in the database is ∆H . This is not surprising since ∆H
contributes to all peptides regardless of sequence. However, it also
has high posterior correlation with ∆SA, since Ala appears in
nearly all peptides as well. In the presence of such correlation, our
procedure of fixing all parameters except one will tend to signifi-
cantly overestimate the contribution to prediction variability; it is
for exactly this reason that we see a high estimate for ∆SA in Figure
5. The ∆ST parameter is affected by a similar problem, as it has a
posterior correlation of .72 with ∆∆ST .

5.4 Example: Protein folding kinetics of λ-repressor
The λ-repressor protein is critical in the lifecycle of Enterobacteria
phage λ, a virus that infects E. Coli. It has been studied extensively
by one of us (TGO) as a model system for the protein folding kine-
tics. The native conformation of λ-repressor contains five α-helices,
and previous work (Burton et al., 1998) has shown that the helicity
of these peptides in the unfolded state has a significant impact on the
overall folding rate of the protein. As such, it is of particular interest
to be able to accurately predict the (relatively low) helicity of these
peptides and their variants in solution.

Although studying variants of the λ-repressor helices themsel-
ves may be expected to provide the most information, it requires
synthesizing each of the five α-helical peptides and mutations the-
reof. An alternative is to consider a single host peptide, and perform
host-guest studies which will provide the most improvement in the
model’s predictive accuracy on all five λ-repressor helical peptides
simultaneously.

We generated a random sample of 2225 single, double, and tri-
ple point mutants of the five λ-repressor helix sequences to use as
our prediction set. The sample was generated as follows: For each
sample, select one of the five helical regions of λ-repressor uni-
formly at random. Then select with equal probability a definition
of that helix as defined in either Burton et al. (1998) or Marqusee
and Sauer (1994) (these differ on the endpoints of three of the five
helicies). We then choose to use single, double, or triple point muta-
tions with probabilities 60%, 25%, and 15% respectively. Finally,
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Fig. 6. A heatmap showing expected gain for predicting helicity of pep-
tides along the x-axis from studying the top five peptides in each group
(y-axis). There are notable blocks due to the nature of the construction of the
prediction set (point mutations of fixed domains of the λ-repressor protein).

we choose the appropriate number of positions and make substitu-
tions at random from among the 20 amino acids. After generating
3000 such polypeptides and removing duplicates, we are left with
2225 mutants of the α-helicies in the λ-repressor protein, which
we define to be our prediction set. This approximates our goal of
choosing the experiments which will maximally improve prediction
performance on variants of the λ-repressor peptides.

As our design set, we consider all 8000 host/guest peptides from
the host sequence ’AEAAAxyAAzAAAKA’. We then apply the
Bayesian design approach of Section 4 to select the sequences in this
design set to study experimentally in order to maximally improve
the model accuracy on the prediction set. For comparison, the design
calculations were also done using the 2225 λ-repressor mutants
(prediction set) as the design set.

The results of the design calculation are shown in Figure 6 and
Table 3. The top five selected peptides (Table 3) are all single
point mutations of λ-repressor helix number 1. A heatmap sho-
wing expected gain for each pair under study is shown in Figure 6.
Not surprisingly, there are notable blocks of high expected gain
corresponding to point mutations within specific helix regions.

A comparison of expected gain from each of the study groups
is shown in Figure 7. The largest expected gain comes from stu-
dying point mutations in the first helix region, with slightly better
results from studying the longer stretch of amino acids as defined in
Burton et al. (1998); note that helix 1 is also the most helical. As
can be seen from Figure 6, the large gains from studying this region
derive mostly from improved predictive accuracy of the region itself.
Changes in the relative importance of each of the regions, as well
as differences in cost would affect the choice to study a host/guest
sequence versus point mutations of the λ-repressor helicies. Expe-
rimental design provides a quantitative framework for making this
decision.

Polypeptide Expected gain
Helix 1 (w.t.) QEQLEDARRLKAIYEKKKNELG .0341

QEILEDARRLKAIYEKKKNELG .0352
QEQLEDARRLKAIYEKKKKELG .0345

Helix 1 QEQLEDARRLKAIYEKKKNELA .0348
QEQLEDARRLKAIYEKKKNELL .0350
QEQLEDARRLKAIYMKKKAELG .0351
AEAAAADLAAIAAAAKA .0312
AEAAAAELAAIAAAAKA .0311

Host/Guest AEAAAANLAAIAAAAKA .0309
AEAAAAQLAAIAAAAKA .0307
AEAAAAYLAAIAAAAKA .0304

Table 3. The top five polypeptides from the Helix 1 and the Host/Guest
groups. For the helix 1 polypeptides, point mutations are highlighted in red.
For the host/guest peptides, the guest positions are highlighted in red. All of
the top five host/guest peptides contain the L-I i, i + 3 interaction. The first
helix in the λ-repressor protein also contains this interaction. w.t.=wildtype
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Fig. 7. The expected gain by group for each of the helix regions and for the
host/guest peptide.

There is an overall increase in expected gain from studying the
polypeptides at 310 kelvin (body temperature) versus 298 kelvin
(room temperature), with the strongest effect seen in the host/guest
peptide group. All peptides in the prediction and design sets were
studied between pH 6.0 and pH 8.0, and there is no clear effect, for
this experiment, of pH on the calculated expected gain.

There is a striking consistency in the top host/guest style poly-
peptides: all include the L − I i, i + 3 interaction. Indeed, 14 of
the top 20 contain this interaction. Five of the remaining six con-
tain E − R in i, i + 4 configuration, and the last contains E − R
in i, i + 3 configuration. Note that both helicies 1 and 4, the two
most helical, contain L − I in i, i + 3 position and that helix 1 con-
tains E − R in i, i + 4 position. Thus the formal design criteria is
choosing guest peptides which best contribute to improving predic-
tive accuracy simultaneously on the entire prediction set. In fact we

8



Bayesian Experimental Design

find that if we create a host/guest style peptide which contains both
interactions: ‘AEAAARALAAIAAAAKA’ we get an expected gain
of .0323, a significant improvement over any of the 8000 peptides
in the original host/guest experiment.

6 CONCLUSION
The Bayesian approach to experimental design provides a natural
framework for quantifying the uncertainty and relevant costs and
benefits from an experimental study. Although Bayesian design has
not seen significant use in bioinformatics and computational bio-
logy to date, the potential is clear. We have outlined the general
framework here, and developed a concrete example in the context
of helical peptide studies. As demonstrated, this approach has the
ability to optimally direct investment of experimental resources to
improve predictive or other aspects of computational models, as
well as to provide insight into uncertainty in current models, and
limitations in currently available experimental data. The potential
scope of such applications in bioinformatics is very large, and we
hope that the Bayesian design framework may come to see much
broader usage.
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