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Abstract

A novel method is proposed to compute the Bayes estimate for a logistic

Gaussian process prior for density estimation. The method gains speed

by drawing samples from the posterior of a finite dimensional surrogate

prior, which is obtained by imputation of the underlying Gaussian pro-

cess. We establish that imputation results in quite accurate computation.

Simulation studies show that accuracy and high speed can be combined.

This fact, along with known flexibility of the logistic Gaussian priors for

modeling smoothness and recent results on their large support, makes

these priors and the resulting density estimate very attractive.

Keywords and Phrases: Bayesian nonparametrics, Imputation, Markov

Chain Monte Carlo.

1 Introduction

Logistic Gaussian process priors for density estimation were introduced and

studied by Leonard (1978) and Lenk (1988, 1991). These nonparametric priors

are easy to specify. One simply needs to elicit the mean and the covariance

functions of the underlying Gaussian process. The (logistic transform of the)
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mean reflects the prior guess and the covariance determines the differentiability

and smoothness properties of the sample paths (see Lenk 1988). In this sense, a

logistic Gaussian prior has greater flexibility in modeling smoothness directly - a

property not shared by other popular nonparametric priors such as the Dirichlet

mixture of normals or the Polya tree.

Theoretical properties of logistic Gaussian priors have been recently investi-

gated by Tokdar and Ghosh (2006). They show that in many cases the posterior

is consistent for estimating densities supported on a closed bounded interval in

R
d. For example, standard choices of the covariance with a suitable prior on

its (smoothing) parameters produce a consistent posterior when data arise from

any continuous density.

However, a long standing problem with logistic Gaussian priors has been

the difficulty in computing the posterior. The reason for this appears to be

an intractable integration term that features in the likelihood. The presence

of this term and the high spatial correlation of the sample paths make MCMC

or importance sampling or a combination thereof difficult to implement. Lenk

(1988) suggests a couple of methods to approximate the Bayes estimate, but

these methods have not been well validated.

Lenk (1991) and Verdinelli and Wasserman (1998) use orthogonal series ex-

pansion of the underlying Gaussian process to devise feasible computing al-

gorithms. Such expansions can be easily incorporated into a Gibbs sampling

scheme to generate samples from the posterior. Theoretically, a series expan-

sion can be derived from the Karhunen-Loéve representation of the process.

However, an explicit representation is rarely available - making the applicabil-

ity of this approach substantially restricted.

Our aim is to develop a method of computation that applies to any logistic

Gaussian prior and produces fast and reasonably accurate samples from the
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posterior. In this pursuit, we propose a novel technique based on imputation

of the underlying Gaussian process. The idea is to retain the process only at a

fixed grid of nodes and then impute the rest analytically. This leads to a finite

dimensional surrogate prior for which on line samples can be drawn from the

posterior using a Metropolis-Hastings MCMC algorithm.

Our method of approximation crucially depends on the grid of nodes used

for imputation. Theoretically, one does better by making the grid finer; we

prove this result formally in Theorem 3.1. However, using an arbitrarily fine

grid may be practically infeasible and even unsatisfactory for reasons discussed

in Section 4.1. This motivates us to consider the grid of nodes as a part of the

model parameters and let the data select the best set of grids. We implement

this data driven selection of nodes by introducing a reversible jump step in our

MCMC algorithm.

Logistic Gaussian priors are generally defined for densities supported on a

bounded interval to avoid certain integrability problems (see Tokdar and Ghosh

2005). In the univariate case, Verdinelli and Wasserman (1998) use a simple

parametric transformation to induce a prior on densities defined on the entire

real line. We extend this technique to higher dimensions. Our imputation based

computing scheme easily adapts to such extensions. However, the time taken

for computation increases substantially, from a few seconds in the univariate

case to a few minutes in the bivariate case.

The rest of this paper is organized as follows. Section 2 gives a basic intro-

duction to logistic Gaussian process priors. In Section 3 we propose the idea

of an approximation based on imputation. The resulting computing algorithms

are discussed in Section 4. A detailed example is presented in Section 5 with

discussions on choice of hyperparameters, comparison with exact posterior and

convergence diagnosis of the proposed MCMC sampler. In Section 6 we outline
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how to define a logistic Gaussian prior on an arbitrary interval by using a fam-

ily of transformations. Some interesting examples are worked out toward the

end of this section. The last example of this section highlights an advantage of

using the transformations even when the support is known to be bounded. We

conclude the paper with a discussion in Section 7.

2 Logistic Gaussian Process Priors

We start with the definition of a logistic Gaussian process prior. For ease of

illustration, we would stick to a simple version of the prior, for more general

definitions, see Lenk (1991).

Take I = [0, 1]d and let σ0(·, ·) be a fixed positive definite function on R
d×R

d.

Define a real valued process fW on I as follows,

fW (t) =
eW (t)

∫

I e
W (s)ds

, t ∈ I (1)

where, given γ = (τ, β) ∈ R
+ × (R+)d, W (·) is a separable, zero mean Gaussian

process on I with covariance

σγ(s, t) = τ2σ0(βs, βt), s, t,∈ I (2)

and γ ∼ H, a distribution on R
+ × (R+)d, with density h. In (2), βs denotes

the vector of coordinatewise products of β and s when d > 1.

Clearly fW defines a stochastic process on I whose realizations (sample

paths) satisfy fW ≥ 0 and
∫ 1

0
fW (t)dt = 1 - properties which define a density

function over I. We let Π denote the probability measure governing this stochas-

tic process. Then Π can be thought of as a prior distribution on the space of

densities over I. Such a prior would be called a logistic Gaussian process prior.
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Remark The definition of fW implicitly involves an integrability assumption.

But for many choices of σγ this is not a problem. We would tacitly assume

this to be true in the rest of this paper (see Tokdar and Ghosh (2006) for more

details).

Remark The use of a family of covariance functions {σγ}, instead of a single

covariance function, adds to the flexibility of the prior Π. To justify the choice

of the particular family given in (2), we note that,

W ∼ GPI(0, σγ) ⇐⇒ W (·) L
= τW0(β·) with W0 ∼ GPβI(0, σ0), (3)

where the notation GPK(0, σ) is used for the distribution of a separable, zero

mean Gaussian process defined on a set K with covariance σ. Hence, with {σγ}

as in (2), small β results in smooth sample paths of fW and large β produces

oscillating sample paths. In other words, β acts like a (inverted) smoothing

window in this model. The parameter τ controls the overall variability of fW

from its prior guess; we elaborate more on this in Section 6. The base covariance

kernel σ0 determines the degree of differentiability of the sample paths of W and

can be selected appropriately to reflect prior expectations.

3 An Approximation through Imputation

The integral that appears in the denominator of (1) involves the entire sample

path of W , which is an infinite dimensional object. The presence of this term

makes it infeasible to carry out any likelihood based computation. Therefore,

from the perspective of efficient computing, we seek a good, easy to use, finite

dimensional approximation to the process W . We achieve this by retaining W

only at a finite set of nodes T = {t1, · · · , tm} ⊂ S and imputing the rest by using

conditional expectation. More formally, we approximate W by a new process Z
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defined as,

Z(t) = E(W (t)|Wm, γ), t ∈ I (4)

where Wm = (W (t1), · · · ,W (tm)). This leads to an approximation of fW by

fZ , the logistic transform of Z given by,

fZ(t) =
eZ(t)

∫

I e
Z(s)ds

, t ∈ I. (5)

The process fZ is much easier to deal with than the original process fW .

This is because Z can be written in closed form as a function of the finite

dimensional vector (Wm, γ):

Z(t) = WT
mΣ−1

γ σγ(t) (6)

where,

Σγ =



















σγ(t1, t1) σγ(t1, t2) · · · σγ(t1, tm)

σγ(t2, t1) σγ(t2, t2) · · · σγ(t2, tm)

...
...

. . .
...

σγ(tm, t1) σγ(tm, t2) · · · σγ(tm, tm)



















, σγ(t) =



















σγ(t1, t)

σγ(t2, t)

...

σγ(tm, t)



















.

Therefore Π∗, the distribution of fZ , can be viewed as a surrogate prior that

provides a finite dimensional approximation to Π.

Note that Π∗ can be equivalently expressed as the distribution of the process

fXTAγ
(·) =

eX
T
Aγ(·)

∫

I e
XTAγ(s)ds

(7)

where (X, γ) ∼ Nm(0, Im) ×H and Aγ = Σ−1/2
γ σγ(·). This is because, given

γ, Wm ∼ Nm(0,Σγ) and hence Z has the same distribution as the process

XTAγ . Here Nm(µ,Σ) denotes the m-variate normal distribution with mean
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µ and covariance Σ and Im is the m×m identity matrix.

The representation displayed in (7) gives an explicit and easy to use formu-

lation of the finite dimensional surrogate prior Π∗. This formulation would be

very useful for the computing scheme that we discuss in Section 4. But before

that, we provide a brief discussion on why we selected this particular type of

approximation to the the process fW .

3.1 Motivation behind Imputation: A Result

Our motivation behind this particular type of imputation is the following. Tok-

dar and Ghosh (2006) show that, under some conditions on the family σγ , the

original process W realizes its sample paths in the sup norm closure of the

following set

A = {w =
k

∑

i=1

aiσγ(si, ·) : k ≥ 1, si ∈ I, ai ∈ R, γ ∈ support(H)}. (8)

Because of the identity in (6), the new process Z also realizes its sample paths

in A. Moreover, by definition, at each node ti, Z(ti) = W (ti). Therefore, Z

provides an a priori interpolation-type approximation to W , staying within the

target set A. This gives the assurance that one does not lose much by replacing

W with Z.

While the above a priori approximation property of Z is aesthetically satisfy-

ing, our interest lies in what happens a posteriori. Let, y = (y!, · · · , yn)T denote

a sample of observations from some unknown density f . We can either use an

actual logistic Gaussian process model f = fW or use its imputation based

approximation f = fZ . The imputation method would be really useful if the

posterior distribution of fZ given y continues to well resemble the posterior dis-

tribution of fW given y. A high degree of resemblance between these two distri-

butions is reflected in a small value of the Kullback-Leibler distance K(f̂W , f̂Z)

7



between the predictive densities under these two models: f̂W = E(fW |y) and

f̂Z = E(fZ |y). The next theorem establishes that this distance converges to 0

as more tightly packed nodes are used.

Theorem 3.1 Assume that, ∃c > 0, q > 0 such that for all s, t ∈ R
d and

γ ∈ support(H),
√

Var[W (s) −W (t)|γ] < c‖s− t‖q. (9)

Let δ(T ) = supt∈I mintj∈T ‖t − tj‖ denote the fineness of the nodes. Then,

K(f̂W , f̂Z) → 0 as δ(T ) → 0.

Remark The assumption in (9) ensures continuous sample paths of the process

W given γ. Such a requirement is indispensable given the method of interpola-

tion used for constructing Z from W . However, the above theorem demands this

condition in a strong form; a fixed constant c appears on the right hand side,

instead of a more flexible c(γ). The reason for this is a technical complication

that arises when c varies arbitrarily with γ. For the particular formulation of σγ

given in (2), the condition (9) necessitates that c(γ) := τ maxl βl be uniformly

bounded from above. Under such strong assumptions, the convergence actually

holds uniformly over all samples y of size n. However, during implementation,

we would meet this technical requirement only approximately, by choosing H

with exponentially decaying tails; uniform convergence should not be expected

for this case.

In Section 4.1 we discuss two major problems with using an arbitrarily fine

grid of nodes and recommend using a moderately sized, dynamic, data depen-

dent choice of this grid. In this sense the above theorem does not provide an

irrefutable theoretical validation to the approximation scheme introduced in this

paper. Nevertheless, the above theorem lends considerable motivational support

to the use of this particular approximation and in Section 5.1 we demonstrate
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that in reality this approximation leads to quite accurate computation.

4 Computation of Posterior via MCMC

Let y = (y1, · · · , yn)T be a sample of observations from an unknown density f .

We use the surrogate prior Π∗ and model f as f = fXTAγ
. Then, to obtain the

posterior distribution of f given y, it suffices to know the posterior distribution

of (X, γ) given y. A simple application of the Bayes rule shows that the posterior

density of (X, γ) (with respect to the product of the Lebesgue measures on R
m

and R
+ × (R+)d) given the data y = (y1, · · · , yn) can be written as,

p∗((x, γ) | y) ∝







n
∏

j=1

fxTAγ
(yj)







φm(x)h(γ), (10)

where φm(·) is the pdf of the m-variate standard normal distribution.

Since the posterior density can be written explicitly (up to a constant fac-

tor), it is possible to use a Metropolis-Hastings MCMC sampler to draw samples

from it. The following algorithm gives a possible construction of such a sampler.

Algorithm I:

Initialize: Generate X ∼ Nm(0, Im) and γ ∼ H.

Update: Iteratively update each coordinate of the vector (X, γ). Let x =

(x1, · · · , xm)T be the current value of X and suppose we want to update

the first coordinate. We propose to move X to x′ = (x′1, x2, · · · , xm)T

where x′1 is generated according to a N(x1, σ
2
x1) distribution with some

variance σ2
x1. Following the principles of the Metropolis-Hastings algo-

9



rithm, we accept this move with a probability

α = min

{

1,
φ1(x

′
1)

∏n
j=1 fx′TAγ

(yj)

φ1(x1)
∏n

j=1 fxTAγ
(yj)

}

.

Derivation of α follows directly from (10). similar moves are considered

for the coordinates of γ as well. The move parameters, such as σx1, σx2

etc., are tuned so that about 50% of the moves are accepted. This tuning

can be achieved on a trial and error basis with multiple runs of the chain.

One can also design an automatic and iterative tuning of these parameters

until the burn-in stage.

Store: Store f = fXTAγ
from every k-th sweep of the MCMC sampler after

an initial burn-in period.

The MCMC sample obtained as above can be summarized in different ways

to estimate different features of the posterior. The most important of these is

the predictive density which is estimated simply by taking an average of the

stored f values.

Remark In order to compute
∏n

j=1 fXTAγ
(yj), one needs to evaluate the pro-

cess XTAγ(·) at the points y1, · · · , yn and also needs to calculate
∫

eX
T
Aγ(t)dt.

For the latter term, one can evaluate the process on a plotting grid G ⊂ [0, 1]

and then carry out the integration numerically. This grid would be essentially

the same as the grid on which f is evaluated and stored. For our computation

we would take G = {0.00, 0.01, · · · , 1.00} as the plotting grid. The quality of

the estimate does not improve much by taking a finer grid.

4.1 Choice of Nodes and Difficulties

The choice of nodes plays a crucial role in the above computation. A default

strategy would be to take T equal to an uniform grid over I with a small
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δ(T ). For example, when d = 1, one can take T = {0, 1
m−1 , · · · , m−2

m−1 , 1} with

δ(T ) = 1
2(m−1) . However, a default, uniform grid T, with small δ(T ) may not

always lead to a better computation. We discuss two of the major difficulties

below.

First, the computation time increases substantially. The time Algorithm I

takes to run can be expressed as a + (b + cmp(m))M , where m is the size of

T , p(m) is the computation time for calculating A−1/2 of a square matrix A

of dimension m × m, M is the total number of iterations and a, b and c are

constants which depend on the dimension d and the sample size n. For most

software packages p(m) is a polynomial of degree 2 or 3. Therefore the time

required increases polynomially with the number of nodes used in the algorithm.

Now, a finer choice of the grid would result in an increased value of m and

consequently an increased running time for the algorithm. The situation would

be worse for higher dimensions where a k-fold reduction in δ(T ) would amount

to at least a ≈ k3d fold increase in m.

The second problem relates to the quality of estimation. Note that Algorithm

I requires a numerical computation of Σ−1/2
γ . However, it would be infeasible

to carry out this computation if β is smaller than some number LT which

would depend on T as well as the software used for computing. For example,

MATLAB 6.5.1 may calculate Σ−1/2
γ inaccurately if β is smaller than LT ≈ 1.15

when T = {0, .1, · · · , .9, 1}. Therefore, it would be necessary to use a truncated

version HT of H that ensures Pr(β > LT ) = 1. But, for a default grid T , LT

would be quite large when δ(T ) is small. This would lead to overfitting and

result in a very inaccurate approximation to the exact posterior.

Remark A conservative bound of LT is obtained as the minimum β for which

the conditioning number (ratio of the largest to the smallest eigen value) of

Σ−1/2 is smaller than the inverse of the machine accuracy (i.e., relative rounding
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off error, generally ≈ 10−6). This minimum value can be quickly found by

searching over a grid of β values. For higher dimensions we recommend searching

over vectors of the form β = (b, · · · , b).

4.2 Data driven Selection of Nodes

The above discussion points out that it is impractical to take T simply as a

default grid with a small δ(T ). On the other hand, a default T with a large

δ(T ) is also unappealing, since it may result in a poor approximation. A possible

way out is to use a small, customized grid T which is tight at the right places

but sparse everywhere else. One can think of these right places as the regions

where the true density f undergoes rapid changes. Such a customized grid can

be derived only in a data driven manner, since the right places are unknown

a priori. We achieve this by treating T as an unknown parameter and let the

data select a good set of T s. The exact model is described below.

Fix a default, tight grid of nodes S of size k. For each nonempty subset

T ⊂ S, let Π∗
T denote the distribution of the imputed process fXTAγ

where

(X, γ) ∼ N|T |(0, I|T |) × HT for some distribution HT that ensures Pr(β >

LT ) = 1 and with Aγ constructed by using only the nodes in T . Instead of

working with any single Π∗
T , we combine all of these into the following mixture:

Πm =
∑

T⊂S,T 6=∅

ωT Π∗
T

where ω = (ωT : T ⊂ S, T 6= ∅) form a system of weights: ωT ≥ 0 and
∑

T ωT =

1. One may select ωT according to the (rescaled) binomial probabilities:

ωT ∝ p|T |(1 − p)k−|T |

where p is some fixed number in (0, 1). A practical choice of p can be made
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ensuring that the expected number of nodes, kp, be small.

Under this mixture prior, the model on the unknown density f can be de-

scribed as: f = fXTAγ
where,

(X, γ) | T ∼ N|T |(0, I|T |) ×HT , T ∼ wT .

One should write Aγ as Aγ,T , since its construction is specific to the subset T ,

but we shall drop this extra subscript to keep the notation simple.

One can draw samples of (X, γ) from its posterior by using an MCMC sam-

pler. However, now we need to update the set T in every sweep of the MCMC.

Such an update would alter the dimension of the parameter space whenever the

size of T changes. Below we present an algorithm for an MCMC sampler which

copes with this change in dimension through a reversible jump move.

Algorithm II:

Initialize Begin with some subset T = {t1, · · · , tm}. Generate X ∼ Nm(0, Im)

and γ ∼ HT .

Update Update X and γ, keeping the nodes fixed, as in Algorithm I.

Update nodes Propose a birth or a death or a shuffle according to some prob-

ability vector (bm, dm, sm = 1 − bm − dm). In case of birth, propose to

increase T by attaching one more node to it. One also needs to expand

X suitably. For death, remove a member of T and accordingly change

X. For shuffle, simply replace a member of T with an outside node. The

vector X remains fixed in this case. The proposals for these three moves

are given below:

Birth: Propose T ′ = T ∪ {tm+1} and X′ = (XT, xm+1)
T where tm+1 is

chosen randomly from S \ T and xm+1 ∼ N(0, σ2
B).
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Death: Propose T ′ = T\{ti} and X′ = X−i = (x1, · · · , xi−1, xi+1, · · · , xm)T

where ti is chosen randomly from T .

Shuffle: Propose T ′ = T ∪{tm+1}\{ti} and X′ = X where tm+1 is chosen

randomly from S \ T and ti is chosen randomly from T .

Acceptance: One can easily calculate the acceptance probability for each of

the above moves by following the principle of detailed balance discussed in

Richardson and Green (1997). For example, once a birth move is proposed,

along with T ′ and X′, it is accepted with the probability

α = min

{

1,
dm+1

1
m+1φ(xm+1)p

∏n
j=1 fX′TA′

γ
(yj)hT ′(γ)

bm
1

k−mφ(xm+1

σB
)(1 − p)

∏n
j=1 fXTAγ

(yj)hT (γ)

}

where A′
γ corresponds to T ′ and hT is the density function of HT . When

HT is derived from H by truncating the support of β to {β > LT }, the

ratio hT ′ (γ)
hT (γ) simplifies to I(β > LT ′) cT

cT ′

where cT = Pr(β > LT ) under

the distribution H.

Store: Store f = fXTAγ
as in Algorithm I. As before, the estimate of the

predictive density is obtained by averaging the stored values of f .

The birth, death or shuffle probabilities are user specified. We recommend

the following choices:

sm = cfBeta

(

l(m); (1 − p)−1, p−1
)

bm = (1 − sm)(1 − l(m)a)

dm = (1 − sm)l(m)a

where l(m) = m−1
k−1 and fBeta(x; b1, b2) denotes the Beta density with parameters

b1 and b2, evaluated at x. The constants c and a are chosen so that at m = dkpe,

sm = bm = dm = 1
3 . With these choices, a birth is encouraged when T is small,
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a death is encouraged when T is large and a shuffle is given an equal preference

to a birth or a death around the target size dkpe. A suitable combination of a

death and a birth is actually equivalent to a shuffle. But we feel that a direct

shuffle move for moderately sized |T |s make it more efficient to explore the

important regions where a tight set of nodes is required. If p is too close to 0 or

1, one may replace p by some moderately valued p̃ in the definition of sm. We

use p̃ = 0.3 if p < 0.3 and p̃ = 0.7 if p > 0.7.

5 An Example

We illustrate the proposed computing scheme with a simulation. Following Lenk

(1991), we choose I = [0, 1] and draw 50 independent observations from the true

density

f0(t) ∝
3

4
3e−3t +

1

4

√

32/πe−32(t−0.75)2 . (11)

This density is a mixture of an exponential and a normal truncated to the

interval I. As Lenk points out, this density has a peak at the boundary and

a small bump in the interior. These two features make its estimation quite

challenging.

To specify the prior, we use σ0(s, t) = exp(−(s − t)2) which results in in-

finitely differentiable sample paths of fW . The prior H on γ = (τ, β) is chosen

as follows: Under H,

τ2 ∼ Gamma(r = 5, λ = 4)

β ∼ EV (r = 3, λ =
√

10)

and these are taken to be independent. Here, Gamma(r, λ) denotes the gamma

distribution with shape r and scale λ. The notation EV (r, λ) stands for a type

of extreme value distribution on the positive real line with its density function
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given by,

f(β) ∝ I(β > 0)
1

λr
βr−1e1+

β
λ−eβ/λ

.

A special feature of this type of extreme value distribution is that it has a very

rapidly decaying tail: Pr(β > b) ≤ c1e
−ec2β

for some constants c1, c2.

The exponential tail on τ and the extreme value distribution type tail on

β are motivated by the theoretical study on consistency properties of a logistic

Gaussian process prior. The specific choices made above are recommended by

Ghosal and Roy (2006, see Section 2.4). For a finite sample, the need of such

rapidly decaying tails can be understood from a different perspective. The

exponential tails strongly discourage large values of τ and β and hence act as

strong penalties against undersmoothing and overfitting. It is also important

that the shape parameters for both the gamma prior on τ 2 and the extreme

value prior on β be moderately large. Such a choice makes sure that the logistic

Gaussian process prior does not concentrate too much around its prior guess -

the uniform density. The choices made above work fairly well for many different

applications. However, the resulting estimates are not alarmingly sensitive to

the exact choice.

Figure 1 shows an estimate (solid line) produced by Algorithm II with S =

{0, .1, · · · , 1}, p = 0.5. We executed 20,000 sweeps of the MCMC sampler, from

which every 20th sample is stored after an initial burn-in of 10,000 sweeps. This

took about 72 seconds to run. The histogram of the data is also plotted.

5.1 Comparison with Exact Posterior

It would be interesting to compare our estimate with an estimate obtained

from the exact posterior. But this requires computation of the Bayes estimate

starting with the actual prior. Fortunately, for the σ0 used in our example, it

is feasible to derive this estimate through a large scale importance sampling.
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Algo II: k = 11, p = 0.5
Importance Sampling

KL distance = 1.2607e−004

Figure 1: Bayes estimates obtained with Algorithm II: S = {0, .1, · · · , 1}, p =
0.5 (solid line) and from importance sampling (broken line). The estimates
agree well with each other with a Kullback-Leibler divergence = 0.00012.

We obtain an importance sampling estimate of the actual Bayes estimate

by generating a large sample of W (actually a finite dimensional profile on the

plotting grid G that was used for Algorithm II) from the prior Π and then

taking an weighted average of the resulting fW . The likelihood function is used

as the weight. To simulate W , we make use of a Cholesky decomposition of the

covariance matrix which can be derived in a closed form for the particular choice

of σ0 used in our example. We superimpose the graph of this estimate (broken

line) on Figure 1 which also shows the imputation based estimate obtained

earlier. Evidently, these two estimates agree really well with each other, with a

small Kullback-Leibler divergence of 0.00012. This ensures that one can indeed

obtain good approximations by using the surrogate prior through Algorithm II.
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Figure 2: Computation with Algorithm II: S = {0, .1, · · · , 1}, p = 0.5 (solid
line), with Algorithm I: T = {0.0, 0.5, 1.0} (broken line) and Algorithm I: T = S
(dotted line).

5.2 Comparison with Algorithm I

In Figure 2, we show two estimates obtained from Algorithm I along with the

estimate produced by Algorithm II (solid line). One estimate (dashed line) from

Algorithm I is obtained with T = {0.0, 0.5, 1.0} and the other (dotted line) is

obtained with T = S. Note that the latter estimate slightly overfits the data

compared to the estimate obtained with Algorithm II. This is an artifact of

the severe left truncation (LT ≈ 1.15) on the prior of β that was necessary for

computing this estimate.

5.3 Convergence Diagnosis

In this section we briefly overview a possible diagnosis of the convergence of

our reversible jump MCMC (rj-MCMC) sampler described by Algorithm II.

Convergence diagnosis of rj-MCMC sampler based on parallel chains have been
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Figure 3: Convergence diagnosis of the sampler of Algorithm II. Left: ratio
(PSRF1) of total variance (Vhat) to within chain variance (Wm). Right: ratio
(PSRF2) of within model variance (Wm) to within model within chain (WmWc)
variance. Both ratios stay close to 1 - indicating convergence.

proposed and discussed in Brooks and Giudici (2000) (see also Gelman and

Rubin (1992) for the basic ideas). An improved version appears in Castelloe and

Zimmerman (2002) to handle the unbalanced case where some components of the

parameter space are less visited than the others. We find this to be appealing

for our sampler, especially in higher dimensions, where models corresponding

to large T ⊂ S are less likely to be visited.

To test for convergence of our rj-MCMC sampler (for the dataset used in

the previous example), we obtain 5 chains of MCMC samples obtained from 5

parallel runs of the sampler. Each chain contains 9,500 samples obtained from

200,000 sweeps of the sampler with every 20th sweep stored after a burn in of

10,000 sweeps. Each chain is split into 19 batches that consist of 500 successive

samples. For each sample, we compute deviance = two times the negative log

likelihood. We compute two PSRF (potential scale reduction factor) statistics
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using deviance for each of the 19 batches. The top panel of Figure 3 shows the

plots of these two statistics across the batches. The lower panel shows the plots

of the two pairs of statistics that are used for computing the PSRFs; see Brooks

and Giudici (2000) and Castelloe and Zimmerman (2002) for the definitions of

all these quantities.

It is apparent that the two PSRF graphs remain very close to the target value

1. For each plot on the top panel, two broken, horizontal lines show estimated

2.5% and 97.5% percentiles of the corresponding PSRF statistics under the

assumption of convergence and mixing. These estimates are obtained through

a bootstrap Monte Carlo with 10,000 bootstrap samples drawn from the pool of

all chains combined. These plots give clear indication that the proposed sampler

indeed achieves rapid mixing and converges. Similar results are obtained if one

monitors the parameters β or τ .

6 Densities with Unbounded Support

So far, the logistic Gaussian process fW (or fZ) has been defined only on

bounded intervals. To define such processes on R
d (or some other unbounded

interval), one can make use of a suitable transformation of an fW defined on

I as in (1). A more flexible approach is to use a parametric family of trans-

formations with a suitable prior on the parameters. Verdinelli and Wasserman

(1998) and Lenk (2003) use this approach for the case d = 1 and successfully

compute the posterior using orthogonal series expansion. This can be done with

our imputation based approach as well. An extension to the case d > 1 is also

possible. We briefly discuss the necessary constructions before taking up the

issue of computation.
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6.1 When Support is R

Let gθ(·) be a family of continuous, positive valued density functions on R

with a parameter θ ∈ Θ, some Euclidean space. For example, one can take

gθ = N(µ, ξ2) with θ = (µ, ξ2) ∈ R×R
+. Let Gθ denote the CDF of gθ. Define

a new process fθ
W on R using a transformation Tθ of fW as,

fθ
W (y) = TθfW (y) = fW (Gθ(y))gθ(y), y ∈ R, (12)

where fW is a logistic Gaussian process on [0, 1] and θ ∼ Q independently of

W . The process fθ
W realizes its sample paths in the space of densities over R,

inducing a prior distribution Π̃ on this space.

Remark A little algebraic simplification shows that f θ
W can also be expressed

as,

fθ
W (y) =

eµθ(y)+W̃ (y)

∫

R
eµθ(t)+W̃ (t)dt

where µθ(·) = log gθ(·) and W̃ , given (θ, γ), is a mean zero Gaussian process with

covariance σγ(Gθ(·), Gθ(·)). Therefore, f θ
W itself is a logistic Gaussian process.

The indirect construction simply avoids the technical difficulty in showing that

the integral in the denominator is finite almost surely. Note that this construc-

tion also matches with the models proposed by Wahba (1978) in the context of

penalized likelihood estimation.

Remark The use of a family of transformations Tθ : fW 7→ fθ
W results in a semi-

parametric model, where the nonparametric part builds around the parametric

prior guess {gθ}. To justify the last statement, note that, E(log f θ
W |γ, θ) =

µθ +const., whose logistic transform is nothing but gθ. The variance of the pro-

cess W controls the weight the prior places on neighborhoods of the parametric

guess. An excellent control on this is offered by the parameter γ = (τ, β) that
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appears in the particular specification of σγ outlined in (2).

6.2 When support is R
d

As before, we take gθ to be a family of continuous, positive density functions

on R
d. But, for d > 1, a little more work is needed to get Gθ. Fix a θ and let

Y = (Y1 · · · , Yd) ∼ gθ(·). For any y ∈ R
d, define

Gθ(y) = (G1,θ(y1), G2,θ(y1, y2) · · · , Gd,θ(y1, · · · , yd)) (13)

where,

G1,θ(y1) = P (Y1 ≤ y1)

G2,θ(y1, y2) = P (Y2 ≤ y2|Y1 = y1)

...
...

Gd,θ(y1, · · · , yd) = P (Yd ≤ yd|Y1 = y1, · · · , Yj−1 = yj−1).

Note that the function Gθ maps R
d onto (0, 1)d with its Jacobian determi-

nant given by gθ. As before, we define f θ
W as,

fθ
W = TθfW (y) = fW (Gθ(y))gθ(y), y ∈ R

d, (14)

where fW is a logistic Gaussian process on [0, 1]d and θ ∼ Q independently of

W . The distribution Π̃ of the process f θ
W defines a logistic Gaussian process

prior on the space of densities supported on R
d.

6.3 Choice of gθ

One can show that Gθ defined in (13) admits a differentiable inverse under

strict positivity and continuity conditions on gθ. This renders Tθ invertible on
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the space of densities over R
d which satisfy a tail condition with respect to the

family gθ. It can be shown that all these densities belong to the Kullback-Leibler

support of Π̃ and hence weak posterior consistency would be achieved at these

densities. Strong posterior consistency can also be achieved for this class of

densities under some regularity conditions on the family {gθ}.

The above discussion suggests that a choice of gθ can be obtained from

our prior beliefs about the tails of the unknown density. For example, if one

anticipates the target density to be a location mixture of normals, or a location-

scale mixture of normals with a bounded support on the scale mixing, then it

is safe to choose gθ as the normal density. However, if it is suspected that the

unknown density could have tails heavier than any normal density, then one

needs to take gθ with heavy tails as well. In this case, one could take gθ as the

family of t densities.

The prior Q on θ depends on the family gθ. One could take Q same as

what would have been selected for a parametric analysis with gθ. For example,

the normal-inverse Gamma prior is a convenient choice when gθ is the normal

density. However, the conjugacy property of the parametric analysis has no

positive or negative influence on our computation.

6.4 Computation of Posterior

Suppose a sample y = (y1, · · · , yn) has been obtained from a density f which is

to be modeled semiparametrically as f = f θ
W . Like before, we instead use the

imputation based surrogate model: f = f θ
XTAγ

= TθfXTAγ
where,

(X, γ, θ) | T ∼ N|T |(0, I|T |) ×HT ×Q, T ∼ ω.

We would draw samples of (X, γ, θ) from its posterior distribution given y by

using a rj-MCMC sampler. The exact steps are given by the following algorithm.
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Algorithm III:

Initialize Begin with some subset T = {t1, · · · , tm}. Generate X ∼ Nm(0, Im),

γ ∼ HT and θ ∼ Q.

Update Update X and γ, keeping T and θ fixed. These updates are to be done

exactly as in algorithm I but by treating yθ = (Gθ(y1), · · · , Gθ(yn))T as

the observed data.

Update nodes Update T as in Algorithm II by treating yθ as the observed

data.

Update θ Update θ coordinatewise. For example, suppose we want to update

the first coordinate of θ = (θ1, θ−1). We propose θ′ = (θ′1, θ−1) where

θ′1 ∼ N(θ1, σ
2
θ1) and accept this move with a probability:

α = min

{

1,
q(θ′)

∏n
j=1[fXTAγ

(G′
θ(yj))g

′
θ(yj)]

q(θ)
∏n

j=1[fXTAγ
(Gθ(yj))gθ(yj)]

}

where q denotes the density of Q.

Store: Store fθ
XTAγ

from every k-th sweep after an initial burn in of b sweeps.

6.5 Examples

We illustrate the proposed method of computation with two examples. These

examples cover the cases d = 1 and d = 2 with data arising from a mixture of

univariate normals and a mixture of bivariate normals.

Example 1 (Mixture of univariate normals): Mixture densities are stan-

dard test examples for nonparametric methods. Our first example includes

a sample of 200 independent observations from the normal mixture: f0 =

.4N(−3, 1.52) + .6N(2, 12).

24



200 Obs from normal mixture

x

f

−10 −5 0 5 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

Est
True

Figure 4: Predictive density (solid line) estimated from a sample of 200 obser-
vations from the true density (dotted line) .4N(−3, 1.52)+ .6N(2, 12). Estimate
obtained using Algorithm III with S = {0, .1, · · · , 1} and p = 0.5. The nor-
mal family is used as gθ. The L1 distance between the true and the estimated
density is 0.1015.

The family gθ is taken to be the normal family N(µ, ξ2) with θ = (µ, ξ2).

The distribution Q of θ is given as:

µ|ξ ∼ N(0, ξ2) and ξ−2 ∼ Gamma(r = 5, λ = 4).

Recall that this is a conjugate prior for the normal family in the parametric

setting. Other priors could also be used.

We take fXTAγ
exactly as in the example of Section 5. Figure 4 shows the

plot of the estimated predictive density (solid line) and the plot of the true

density f0 (dotted line). The estimate is obtained using 20,000 sweeps of the

MCMC with every 20th sample stored after a burn-in of 10,000 sweeps. It takes

about 155 seconds.

Example 2 (A skewed, infinite mixture of normals): Many Bayesian

and non-Bayesian kernel based methods are specifically designed to estimate

mixture densities well. These methods, however, may do poorly for small sam-
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Figure 5: A comparison between the estimates obtained from logistic Gaussian
process prior (Algorithm III) and Dirichlet mixture prior (see text for details).
The latter finds it difficult to capture mixture densities that are difficult to
approximate with a finite mixture involving only a few components.

ples when the true density involves an infinite mixture which cannot be well

approximated by a finite mixture with a few components. On the other hand,

we believe that a logistic Gaussian process prior has more shape flexibility to

capture these mixtures even with moderate sample sizes. In this example, we

illustrate this within a simulation setting, where we obtain 100 observations

from the mixture density
∫ 1

0
N(µ, 0.052)(µ2/3)dµ – a location mixture of nor-

mals, mixed according to the Beta(3, 1) distribution. This density (dotted line)

and histogram of the observations are shown in Figure 5. The solid line in this

figure gives the estimated predictive density obtained using our method where

the prior is specified exactly as in the previous example.

The dashed line on Figure 5 shows the predicite density estimated by a

Dirichlet location scale mixture of normal model. We use the model specified in

Escobar and West (1995), namely, the observations yi’s are deemed as indepen-

dent draws from N(µi, σ
2
i ) and a hierercchical prior is placed on (µi, σ

2
i ) as fol-

lows. We consider, a priori, (µi, σ
2
i ) are independent draws from a random mea-
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sure G arising from Dir(αG0) - a Dirichlet process prior with precision constant

α and base probability measure G0 on the space of (µ, σ2). The base measure is

taken as follows: under G0, (σ2)−1 ∼ Gamma(s/2, S/2) and µ|σ2 ∼ N(m, τσ2).

We further take τ−1 ∼ Gamma(w/2,W/2) and m ∼ N(a,A). We fix α = 1

- a conventional choice. We take s = 2 and S = 0.01 so that the distribution

of σ under G0 has the central 95% coverage interval = [0.037, 0.444] with me-

dian = 0.085. The parameter A is fixed at ∞, for which a can be fixed at any

arbitrary value – we choose 0. We take w = 1 and W = 1 so that the central

95% coverage interval of τ is [0.199, 1018.258] with median = 2.198. The last

choice is motivated by consideration of the modality issue discussed in Escobar

and West (1995). In particular, with τ = 2.0 and σ = 0.085, the prior strongly

supports a unimodal predictive density (with 100 observations) - a priori, there

is a 81.2% chance of a single mode and a 99.7% chance of atmost two modes.

Note that, these choices of the hyperparameters are well matched with the true

density which we use to generate the observations.

We learn from our simulations that despite the favorable choice of the hy-

perparameters, the Dirichlet process mixture tends to slightly undersmooth (see

Figure 5). In fact on repeating the above experiment on 50 independently gen-

erated data sets, we find that about 70% of the times the estimate obtained

from the logistic Gaussian process prior has a smaller L1 error compared to

the estimate obtained from the Dirichlet mixture prior. In all these cases, the

former produces a smoother estimate than the latter.

We also note that the kernel based method used by the KernSmooth package

of the software R produces estimates inferior to both the Bayesian procedures

discussed above - more often than not it finds multiple modes. We omit this

estimate from Figure 5 for purpose of clarity.
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Figure 6: Level curves (solid line) of the estimated predictive density from a
sample of 200 observations from a mixture of bivariate normals distribution.
The level curves of the true density is shown in the background as the thin
dotted lines. Estimate obtained with Algorithm III with S = {0, .1, · · · , 1}2

and p = 0.1. The bivariate normal family is used as gθ. The L1 distance
between the true and the estimated density is 0.2265.

Example 2 (Mixture of bivariate normals): Next we consider the situation

d = 2. A sample of 200 independent observations is generated from the mixture

density

f0 = 0.3N
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The family gθ is taken to be the bivariate normal family. We use a slightly

different formulation to suit our computations best. Take θ = (µ1, ξ
2
1 , α0, α1, ξ

2
2)

and let gθ stand for the joint distribution of Y = (Y1, Y2) given by,

Y1 ∼ N(µ1, ξ
2
1), Y2|Y1 = y1 ∼ N(α0 + α1y1, ξ

2
2) (16)
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The distribution Q of θ is taken as follows,

µ1|ξ1 ∼ N(0, ξ21), ξ−2
1 ∼ Gamma(r = 5, λ = 4),

α0, α1|ξ2 ind∼ N(0, ξ22), ξ−2
2 ∼ Gamma(r = 5, λ = 4)

and the two sets are independent.

The covariance function is chosen as, σγ(s, t) = τ2 exp(−β2
1(s1−t1)2−β2

2(s2−

t2)
2) with γ = (τ, β1, β2). The distribution H on γ is specified as the following:

τ2 ∼ Gamma(r = 5, λ = 4), β1 ∼ EV (r = 3, λ =
√

10), β2 ∼ EV (r = 3, λ =
√

10) and these are independent. We use S = {0.0, 0.1, · · · , 1.0}2 and p = 0.1.

Note that k = |S| = 121 in this case and hence a smaller p is needed to ensure

that the average number of nodes used remains low.

Figure 6 shows the level plots (solid lines) of the estimated predictive density

superimposed over the level plots (dotted line) of the true density f0. Both con-

tour plots are obtained by using levels = {0.00, 0.02, · · · , 0.20}. The estimated

predictive density is obtained by running Algorithm III for 20,000 sweeps where

every 20th sweep was saved after a burn-in of 10,000 sweeps. The sampler

took approximately 62 minutes to run. It is evident that the computation time

increases substantially with an increase in the dimensionality.

6.6 Back to Bounded Support

Previously, we used a nonparametric model f = fXTAγ
when it was known

that the support of f is I = [0, 1]. However, it is quite possible to use a

semiparametric model f = f θ
XTAγ

by using a family {gθ} with support I. We

recommend to use a semiparametric model over a nonparametric one even in

the case of a bounded support. The reason for this is a particular advantage in

computation gained by using the family gθ. We elaborate on this below.
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We would make a comparison between the estimates provided by the two

models f = fXTAγ
and f = fθ

XTAγ
. To make a fair comparison, assume that

the specification of fXTAγ
remains the same across the two models. This means,

in particular, that both computations are to be carried out using the same grid

of nodes S.

Now, suppose that the true density f has two sharp modes in an interval

(a, b) ⊂ (0, 1) which does not intersect with S. Although a sample of obser-

vations y = (y1, · · · , yn)T from f would exhibit this bimodality in (a, b), the

nonparametric model would fail to recognize it. The model f = fXTAγ
learns

from the data through the subset of nodes T that is being used. But, no sub-

set T of S can place a node inside (a, b), and hence cannot capture the rapid

changes that take place inside this interval. As a result the MCMC would be

driven to sample fs which would average out the features in that interval. The

resulting estimate would be poor.

Now consider the semiparametric model f = f θ
XTAγ

. Here, one essentially

models the density of the transformed observations yθ = (Gθ(y1), · · · , Gθ(yn))T

by fXTAγ
. The original interval now gets transformed to (Gθ(a), Gθ(b)). If the

family {gθ} is sufficiently flexible, then it is possible that for some values of θ

the interval (Gθ(a), Gθ(b)) would have a substantial overlap with some subsets

T of S. The MCMC would eventually be driven to these pairs of θ and T and

a good estimate should come out.

We illustrate the above heuristic argument with an example. We obtain 50

observations from f = 0.5N(0.62, 0.0052) + 0.5N(0.68, 0.0052) and model it as

f = fXTAγ
and f = fθ

XTAγ
where fXTAγ

is exactly the same as in the example

of Section 5 and gθ = Beta(α1, α2) with θ = (α1, α2). We take θ ∼ Q = ξ × ξ

where ξ admits a density proportional to I(x > 0) x/λ
1+(x/λ)3 , where λ is so chosen

that the median of ξ is 1. Such a choice makes sure that both the nonparametric
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Figure 7: Comparison between the estimates from the nonparametric (dashed)
and the semiparametric (solid) models for the case of bounded support (I =
[0, 1]). Left: True density = 0.5N(0.62, 0.0052) + 0.5N(0.68, 0.0052); Middle:
true density = f0 of example in Section 5; Right: true density = U [0, 1]. His-
togram of the data and the true densities (dotted line) are also shown. Semi-
parametric model does much better when the data are spiked (Left panel);
otherwise, the two estimates are almost identical.

model and the semiparametric model have the same center, namely the uniform

density. Note that the chosen fXTAγ
uses S = {0.0, 0.1, · · · , 1.0} and the true

f has two sharp modes in the interval (0.61, 0.69) which does not intersect with

S.

The left plot of Figure 7 shows the two estimates obtained from these two

models via Algorithm II and Algorithm III respectively. The estimate from

the nonparametric model (broken line) completely misses the two modes of f .

On the other hand the semiparametric estimate (solid line) captures the rapid

changes. The histogram of the data and the true density (dotted line) are also

produced.

What happens if f is such that the nonparametric model already provides a

good estimate? In such cases the semiparametric estimate should be very close

to the nonparametric estimate, since the latter is a particular case of the former.

We illustrate this fact with two more simulations, one with the data set that

was used in Section 5 and the other with a data set obtained from the uniform
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density on [0, 1]. The second and the third plots of Figure 7 show that the

semiparametric (solid line) and the nonparametric (dashed line) estimates are

almost the same. The only differences occur at the tails. This is unavoidable,

since we have seen that the family {gθ} has a strong influence on the tails of

the estimates.

7 Discussion

We have proposed a new method to compute the posterior of a logistic Gaussian

process prior for estimating densities. This method does not require expanding

the underlying process as an orthogonal series and, therefore, can be applied

to a large class of Gaussian processes. Our method of computation employs a

surrogate prior which is an imputation based approximation of the actual prior.

We illustrated through a theoretical result and simulations that the error of this

approximation is not severe.

The speed and accuracy of the proposed algorithm depend on the choice of

the nodes used for imputation. We have discussed a data driven selection of

nodes by implementation of a reversible jump MCMC sampler. This is partic-

ularly helpful when data are multivariate, since any default, tight set of nodes

would be very large in a high dimensional space.

The introduction of the semiparametric model further strengthens our com-

putation by imparting a certain degree of mobility to the nodes. With this

model, the data adjusts itself with respect to the nodes so that maximum in-

formation is learned. This way, one not only let the data select the number of

nodes, but also their (relative) positions.

The computation time required by our method is within a reasonable limit,

and is comparable to other Bayesian, nonparametric methods. Moreover, a nice

feature of the proposed method is that the computation time does not increase
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rapidly with the sample size. For example, in simulation setting detailed in the

Example of Section 5, the average computation time with 50 observations is 71

seconds, with 500 observations it is 84 seconds and with 5000 observations it

is 215 seconds. This amounts to a roughly linear increase by 0.028 seconds per

extra observation. Therefore a logistic Gaussian prior has an advantage over

other nonparametric priors when large data sets are to be used.

Appendix: Proof

Proof of Theorem 3.1 Let X(·) denote the difference W (·)−Z(·) with ‖X‖ =

supt |X(t)| as its sup-norm. A simple calculation produces,

sup
t∈I

f̂W (t)

f̂Z(t)
≤ supγ E(e2(n+1)‖X‖ | γ)

infγ E(e−2n‖X‖ | γ) . (17)

Therefore it suffices to show that the upper bound in the above display tends

to 1 as δ(T ) diminishes.

Note that, for each γ, the process X(·) given γ is a zero mean Gaussian

process. The assumption of this theorem then leads to the conclusion that,

∃λ > 0 such that for all γ ∈ support(H),

Pr(‖X‖ > x|γ) ≤ exp(−λx2/δ(T )).

This sub-Gaussian tail behavior is a common feature of the supremum of a

Gaussian process. The above result can be proved rigorously starting from

Corollary 2.2.8 of van der Vaart and Wellner (1996) using the Orlicz norm with

respect to the function ψ(x) = ex2

/5. For more general theory see Adler (1990).

Using the above property one can find a, b > 0, such that for all γ ∈
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support(H),

E(e2(n+1)‖X‖ | γ) = 1 + 2(n+ 1)

∫ ∞

0

e2(n+1)x Pr(‖X‖ > x|γ)dx

≤ 1 + a
√

δ(T )ebδ(T )

and

E(e−2n‖X‖ | γ) ≥ E(I{‖X‖ < δ(T )1/4e−2n‖X‖ | γ)

≥ e−2nδ(T )1/4

(1 − e−λ/
√

δ(T )).

This completes the proof as both these bounds tend to 1 as δ(T ) → 0.
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