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Summary: In studies involving functional data, it is commonly of interest to model the impact

of predictors on the distribution of the curves, allowing flexible effects on not only the mean curve

but also the distribution about the mean. Characterizing the curve for each subject as a linear

combination of a high-dimensional set of potential basis functions, we place a sparse latent factor

regression model on the basis coefficients. We induce basis selection by choosing a shrinkage prior

that allows many of the loadings to be close to zero. The number of latent factors is treated as

unknown through a highly-efficient, adaptive-blocked Gibbs sampler. Predictors are included on

the latent variables level, while allowing different predictors to impact different latent factors. This

model induces a framework for functional response regression in which the distribution of the curves

is allowed to change flexibly with predictors. The performance is assessed through simulation studies

and the methods are applied to data on blood pressure trajectories during pregnancy.
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1. Introduction

Functional data analysis (FDA) models variables that can be viewed as curves, surfaces

or more general functions (Ramsey and Silverman, 2005). Examples include biomarker

trajectories, images, videos, genetic codes and hurricane tracks. Although the whole curve

itself is not typically observed, a sufficiently high number of measurements per individual is

available. Often, these measurements are recorded at identical, equally spaced, locations or

time points for all subjects. Functional data observed at irregular time points per subject

are usually referred to as longitudinal data. Longitudinal data are often sparse with few

measurements per subject. A detailed analysis of the perspectives of FDA and longitudinal

data analysis (LDA), as well as a comparison of their methods, can be found in Rice (2004).

Because functional data are infinite dimensional, their statistical analysis necessitates

obtaining a low dimensional representation of the individual curves. This becomes abso-

lutely crucial for building a hierarchical model where the curves are to be related to other

covariates recorded on the same subjects. A rich framework has been developed in the form

of functional principal component analysis (FPCA) (Besse and Ramsay, 1986; Rice and

Silverman, 1991; Cardot, 2006), which extends the principal component analysis to deal with

infinite dimensional smooth curves, and its extensions to longitudinal data (James, Hastie

and Sugar, 2000; Rice and Wu, 2001; Yao, Müller and Wang, 2005). In FPCA, the individual

curves are represented by a vector of coefficients with respect to a common functional basis

determined from the observed data. By truncating the basis representation at a finite depth,

a low dimensional vector of scores is obtained for each subject. Once the common basis is

identified and a truncation depth is chosen, all variations between the subject specific curves

are reflected through the variations in the score vectors.

The existing literature on FPCA, however, offers little when it comes to incorporating

covariates. Some contributions are made in Chiou, Müller and Wang (2003) and Cardot
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(2006). However, these approaches are not applicable to sparse longitudinal data, since they

rely on the assumption that either the entire curve is observed or that a high number of

measurements per subject is available. This has been partially resolved by Jian and Wang

(2010), who apply FPCA to curves viewed as functions over their original observation domain

augmented with the covariate space. Although extremely flexible, the Jian-Wang approach

requires an additional smoothing over the covariate space and can face serious practical

difficulties when the covariate dimension is not minuscule. Additional difficulties arise when

a direct inference on the relative importance of the covariates is desired. Moreover, the non-

parametric, smoothing-based incorporation of the covariates may pose a challenge to robust

prediction for future subjects with covariate values near the boundary of the observed data.

Covariate information can be incorporated through some non-FPCA approaches such as

latent trajectory models and functional mixed effects models (Nagin, 1999; Lin et. al, 2001;

Jones, Nagin and Roeder, 2001; James and Sugar, 2003). Functional mixed effect models

extend linear mixed effects models to functional data, and can identify the group-mean

trajectories while allowing flexible subject-specific deviations for the mean curve. However,

parametric functions may not be flexible enough to capture both the group-mean trajectory

and the subject-specific deviations, and nonparametric functions could be needed in such

cases. Moreover, it is often desirable to adopt the same functional form for both the group-

mean curve and the subject-specific deviations so that they share the same smoothness

properties. In addition, these functional models are demanding computationally and difficult

to extend to large data sets. On the other hand, latent class trajectory models can be

sensitive to the parametric assumptions made about the trajectory cluster-specific response

distributions in applications relating time-varying predictors to responses, with violation of

the assumptions leading to an increase in the number of clusters and incorrect inferences

about cluster-specific response densities. A further limitation of these models is that they
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generally assume that a subject assigned to a specific functional cluster is also assigned to

the corresponding response cluster.

Recently, Crainiceanu and Goldsmith (2010) proposed methods and software to implement

Bayesian analyses using WinBUGS for a variety of functional models represented as mixed

effect models. Their methods can be applied to unbalanced and unequally spaced data but

particular attention must be paid to the estimation of the covariance operator. In particular,

to gain good performance in predicting the underlying curves, the covariance function is

estimated using method of moments for any observed pair (t, s) using all available data and

then smoothed using penalized spline smoothing (see Staniswalis and Lee, 1998). However,

a drawback of performing FPCA using the eigenfunctions obtained from a smooth estimator

of the covariance matrix consists in potentially attributing the variability in the estimates to

the variability among the underlying curves. In addition, FPCA does not let one to infer the

number of eigenfunctions to retain for computation; this has to be chosen using a restricted

likelihood ratio test for step-wise testing for zero-variance components, by cross-validation

or via Akaike’s Information Criterion. And finally, the estimation of the covariance operator

is performed without taking into account available covariate information.

The goal of this paper is to provide a new Bayesian latent factor model for functional data.

The curve for each subject is characterized as a linear combination of a high-dimensional

set of basis functions and a sparse latent factor regression model is placed on the basis

coefficients. Several methods have been proposed in the literature to infer the number of

latent factors: Lopes and West (2004) propose a reversible jump Markov Chain Monte Carlo

algorithm (RJMCMC) whereas Carvalho et al. (2008) allow uncertainty in the locations

of the zeros of the factor loading matrix and in the number of factors using Bayesian

variable selection methods. We follow an alternative approach due to Bhattacharya and

Dunson (2011), who place a shrinkage prior on the loading coefficients that induces basis
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selection. The number of latent factors is allowed to be unknown and is estimated using

an adaptive blocked Gibbs sampler (Bhattacharya and Dunson, 2011). In contrast to Jian

and Wang (2010), our model preserves the modeling goal of FPCA, that is identifying a

common basis and assigning low-dimensional scores to individuals with respect to this basis.

Variations among individual trajectories are then reflected in the variations between their

scores. Furthermore, within our framework, it becomes possible to study the dependence of

the curve shapes on covariates.

Our research was motivated by the Healthy Pregnancy, Healthy Baby (HPHB) study, an

ongoing prospective cohort study examining the effects of environmental, social, and host

factors on racial disparities in pregnancy outcomes. The study is part of the US EPA-funded

Southern Center on Environmentally Driven Disparities in Birth Outcomes and enrolls preg-

nant women from the Duke Obstetrics Clinic and the Durham County Health Department

Prenatal Clinic. Demographic, health behavior, and medical history data were obtained

by direct patient interview and through electronic medical record review at the time of

enrollment. Information on events of the pregnancy, labor, delivery, and health of the neonate

were ascertained from maternal and neonatal electronic medical records. Measurements of

mean arterial blood pressure (MAP = 2/3 diastolic pressure + 1/3 systolic pressure) during

pregnancy were available for 1,027 women for a total of 10,290 measurements. It is of interest

to examine the differences in blood pressure trajectories among women and analyze the effect

of covariates, e.g., pre-gestational diabetes, parity, maternal age, on average MAP curves for

specific groups.

The rest of the paper is organized as follows: Section 2 outlines the functional latent

factor regression model (LFRM). Section 3 extends the LFRM to allow joint modeling of

a functional response and additional outcomes. Section 4 describes simulation studies for
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realistic settings. Section 5 describes the application of our methodology to the blood pressure

data. Conclusions are presented in Section 6.

2. Functional latent factor regression model

Suppose that yij (i = 1, . . . , n; j = 1, . . . , ni) is the response of the ith subject at point tij

(where t is an index such as time or distance). For example, blood pressure measurements

during pregnancy may be recorded for patient i at different visits, j’s, to a clinic. One may

model these data as follows:

yij = fi(tij) + εij, εij ∼ N(0, ϕ2) (1)

fi(tij) =

p∑
l=1

θilbl(tij) (2)

where yij is the blood pressure measurement for patient i at visit j, fi is the smooth curve

for subject i, εij is a residual error in the measurement at time tij, bl(tij) corresponds to

the lth basis function evaluated at time j, θil is the subject-specific basis function coefficient

and ϕ2 is the measurement error variance. Characterizing the individual curves by a vector

of coefficients with respect to a common functional basis representation with appropriately

chosen truncation p, a low dimensional vector of scores is obtained for each subject, and

variations between the subject specific curves are reflected through the variations in the score

vectors. The choice of the basis functions, which are held fixed in the model, is particularly

challenging since the appropriate basis to use is not known in advance. In general, the choice

depends on the particular application at hand and, conceptually, any basis function can be

chosen. In the blood pressure application, where smooth curves are expected, one would like

local basis functions chosen to be sufficiently many and with sufficiently narrow kernels to

capture a very high variety of smooth curves without allowing overly-spiky curves. Therefore,

after standardizing the time to the [0, 1] interval, tij ∈ [0, 1], the basis functions are defined
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as

b1(tij) = 1, (3)

bl+1(tij) = exp(−ν||tij − ψj||2), (4)

thus bl, l = 1, . . . , p−1, are set to be fixed Gaussian kernels with ψ1, . . . , ψp−1 equally spaced

kernel locations and ν denotes the bandwidth of the kernel. We choose an over-complete set

of candidate basis functions, with the expectation being that many of these functions are not

needed but that a very rich variety of curves can be characterized as a sparse and adaptive

linear combination of a rich pre-specified set of potential basis functions.

Denoting as yi a ni-dimensional continuous response, we characterize the individual func-

tions by a linear combinations of a fixed number p of Gaussian kernels:

yi = f i + εi, εi ∼ N(0, ψ2Ini
), and (5)

fi(tij) =

p∑
l=1

θilbl(tij) = Bi(tij)θi (6)

with Bi(tij) denoting the jth row of the design matrix Bi for subject i with basis functions

defined in (4). In addition, a sparse latent factor model is specified for the basis coefficients.

In particular, consider the subject-specific vector of coefficient θi related to the continuous

latent variables ηi for subject i,

θi = Ληi + ζi, ζi ∼ Np(0,Σ), (7)

where Λ is a p × k factor loading matrix and εi is a residual vector that is uncorrelated

with other variables in the model and is normally distributed with mean zero and diagonal

covariance matrix Σ = diag(σ2
1, . . . , σ

2
p). Modeling the high-dimensional set of basis coeffi-

cients for subject i, θi, as a sparse linear combination of latent factors induces dimensionality

reduction. This structure allows subjects to have basis coefficients near zero for many of the

basis functions, inducing subject-specific basis selection, while also allowing certain basis

functions to effectively drop out for all subjects. Covariate information is included in the
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model via the continuous latent variables ηi’s by the relation

ηi = β′xi + δi, δi ∼ Nk(0, I), (8)

where xi is a r × 1 vector of predictors for subject i (e.g., diabetes, maternal age, parity,

etc.), β is a r× k matrix of coefficients and δi is a normally distributed residual vector with

identity covariance matrix. This model induces a framework for functional response regression

in which the distribution of the curves is allowed to change flexibly with predictors.

Note the similarity with the “random global basis / random subject-specific coefficients”

construction of FPCA:

fi(tij) =
k∑

m=1

ηimφm(tij) + ri(tij) (9)

with φm(tij) being in our case

φm(tij) =

p∑
l=1

λlmbl(tij). (10)

While this corresponds to the FPCA construction (with the eigenfunctions in the linear

span of the fixed basis bl(tij), and where orthogonality is not imposed), we develop a

computationally attractive platform by modeling the residual function ri(tij) as

ri(tij) =

p∑
l=1

ζilbl(tij) (11)

which leads to the latent factor model structure given by equations (2) - (7). Therefore, as

in FPCA, we obtain a low dimensional representation of the individual curves (with respect

to a basis learned from the data), but we utilize the attractive framework of latent factor

models for the computation.

We induce dependence among the yi by marginalizing over the distribution of the factors

and the basis coefficients. Under this model, the ni-dimensional continuous response yi is

marginally distributed as

yi|Bi,Λ,Σ,β
′,xi, ψ

2 ∼ N(BiΛβ
′xi,BiΩB′i + ψ2Ini

) (12)

with Ω = ΛΛ′ + Σ. Therefore, the smooth function f i for subject i is given a Gaussian
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process with mean BiΛβ
′xi and covariance function BiΩB′i

f i ∼ GP(BiΛβ
′xi,BiΩB′i) (13)

Our structure is preferred to hierarchical Gaussian process models for curves (i.e., Behseta et

al., 2005) because we are effectively learning the covariance kernel and a sparse representation

for the mean function, as opposed to Crainiceanu and Goldsmith (2010) who, by performing

FPCA using the eigenfunctions obtained from a smooth estimator of the covariance matrix,

could mistakenly attribute the variability in the estimates to the variability among functions

f i.

2.1 Bayesian formulation, prior elicitation and posterior computation

A Bayesian formulation of our sparse latent factor model is completed with priors for

the parameters in (5)-(8). Given the dimensionality, it is practically important to choose

conditionally conjugate priors that lead to efficient posterior computation via blocked Gibbs

sampling. Typical priors for factor analysis constrain Λ to be lower triangular with positive

diagonal entries using normal and truncated normal priors for the free elements of Λ and

gamma priors for the residual precisions (Arminger, 1998; Geweke and Zhou, 1996; Aguilar

and West, 2000; Lopes and West, 2004). However, following Bhattacharya and Dunson (2011)

we note that such constraints are unnecessary and unappealing in leading to order depen-

dence and computational inefficiencies. Hence, we follow their lead in using a multiplicative

gamma process shrinkage (MGPS) prior for the loadings as follows:

λjh|φjh, τh ∼ N(0, φ−1jh τ
−1
h ), φjh ∼ Gamma(υ/2, υ/2), πh =

h∏
l=1

δl (14)

δ1 ∼ Gamma(a1, 1), δl ∼ Gamma(a2, 1), l > 2 (15)

j = 1, . . . , p, h = 1, . . . , k, δl, l > 1, are independent, πh is a global shrinkage parameter for

the hth column and φjh’s are local shrinkage parameters for the elements in the hth column.

Under a choice a2 > 1, the πh’s are stochastically increasing favoring more shrinkage as
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the column index increases. The choice of this shrinkage prior allows many of the loadings

to be close to zero, thus inducing effective basis selection. The number of latent factors,

k, is also treated as unknown through a highly-efficient adaptive blocked Gibbs sampler

described in Bhattacharya and Dunson (2011). Therefore, an additional attractive feature

of our formulation with respect to FPCA is that we can infer the representation size k. The

prior structure under our model is completed by

σ−2j ∼ Gamma(aσ, bσ), j = 1, . . . , p, (16)

ψ−2 ∼ Gamma(aψ, bψ), (17)

and the update of the matrix of coefficients β is performed as follows. Consider
ηij

...

ηnj

 =


x′1

...

x′n

× βj + δ (18)

η′·j ∼ N(X̃′βj, In) (19)

where η′·j denotes the jth column of the n×k transpose of the matrix of latent factors η, βj

denotes the jth column of the r × k matrix of coefficients β and X̃′ denotes the transpose

of the matrix of predictors X̃. Each row i, i = 1, . . . , n, of X̃′ corresponds to the vector

of predictors for subject i, x′i = (xi1, . . . , xir). A Cauchy prior is induced on the matrix of

coefficients β as follows

βj ∼ N(0,Diag(ω−1lj )), j = 1, . . . , k, l = 1, . . . , r (20)

ωlj ∼ Gamma(1/2, 1/2). (21)

Alternatively, one could choose a Gaussian prior distribution for the β coefficients but this

leads to poorer performance if a subsample of patients has very sparse measurements. This

occurrence is common when dealing with longitudinal data, which often consist of few and

sparse measurements per subject, and it is verified in the blood pressure data where a group



10 Biometrics, XXXXX 20XX

of women has few observations, usually located in the second half of the pregnancy. For this

group of women, the prior becomes more influential and the intercept is pulled closer to

zero than for women with more observations, resulting in an undesired low MAP trajectory

estimate at early pregnancy.

The posterior computation is similar to the Markov Chain Monte Carlo (MCMC) algorithm

for the sparse Bayesian infinite factor model in Bhattacharya and Dunson (2011). Details of

the algorithm are provided in the Appendix.

3. Joint model

It is of interest to extend the model in Section 2 to allow joint modeling of a functional

response, i.e. the blood pressure trajectories, and one or more additional outcomes. For ex-

ample, in the study of blood pressure (BP) trajectories during pregnancy, there is substantial

interest in relating these trajectories to subsequent pregnancy outcomes, such as gestational

age (GA) at delivery and birth weight (BW). By jointly modeling the trajectory in blood

pressure and the pregnancy outcomes, one can obtain conditional distributions of interest,

such as the conditional density of birth weight adjusted for gestational age at delivery and

the trajectory in blood pressure across pregnancy. In addition, covariates can be used to

predict blood pressure and/or the pregnancy outcomes.

We start with a simple extension of our model where we include a binary indicator for

preterm delivery and allow the probability of premature delivery to depend on the latent

factors, ηi’s. A bivariate probit model for preeclampsia and low birth weight is outlined in

Section 3.2, and a joint model for BW, GA and MAP is considered in Section 3.3.

3.1 Probit model for risk of preterm birth

Preterm birth refers to the birth of a baby of less than 37 weeks gestational age. Let yi = 1

if preterm birth and yi = 0 if full-term birth. We let P(yi = 1|α,γ,ηi) = Φ(α + γ ′ηi),
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where Φ(·) denotes the standard normal distribution function. α is an intercept, with prior

distribution N(Φ−1(0.123), 0.25), where the hyperprior mean was chosen to correspond to the

national average of 12.3% in 2008 (Hamilton et al., 2010); ηi are the latent factors for subject

i; and γ is a k × 1 vector of unknown regression coefficients with normal prior distribution,

γ ∼ Nk(µγ,Σγ). Therefore, the same set of latent factors impacts on the functional predictor

via the basis coefficients θi and on the response variables via the probability of preterm birth.

The full conditional posterior distributions needed for Gibbs sampling are not automat-

ically available, but we can rely on the data augmentation algorithm of Albert and Chib

(1993) to facilitate the computation:

yi = 1(Wi > 0)

Wi ∼ N(α + γ ′ηi, 1),

and P(yi = 1|α,γ,ηi) = Φ(α + γ ′ηi) by marginalizing out Wi.

The MCMC algorithm for the latent factor regression model (LFRM) described in the

Appendix is augmented with additional steps to sample from the full conditional posterior

distributions of α,γ, and Wi, i = 1, . . . , n ((multivariate) normal and truncated normal

distributions, respectively), and the update of the latent factors ηi described in Step 5

of the Appendix is modified accordingly.

3.2 Bivariate probit model for preeclampsia and low birth weight

We developed a bivariate probit model to study the relationship between preeclampsia

(hypertension and elevated urine proteins at time of delivery), low birth weight (LBW -

weight under 2500 grams) and maternal MAP measured at prenatal clinical visits. The

sample proportion of LBW was 12%, thus slightly higher than the corresponding national

rate of 8.2% in 2008 (Hamilton et al., 2010), whereas the sample proportion of preeclamptic

women was 16%, far above the incidence of preeclampsia which typically affects 5-8% of all

pregnancies (Cunningham et al., 2001).
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Let us denote the outcome variables for preeclampsia and LBW as zip and zilbw, respectively.

In particular

zip =


1 if subject i develops preeclampsia

0 otherwise

and

zilbw =


1 if birth weight is under 2500 grams

0 otherwise

As in Section 3.1, we adopt a data augmentation approach and introduce two underlying

normal variables, W i
p and W i

lbw, such that

zip = 1(W i
p > 0) and zilbw = 1(W i

lbw > 0)

We assume that W i
p and W i

lbw follow a bivariate normal distribution W i
p

W i
lbw

 ∼ N2


α1 + γ1ηi

α2 + γ2ηi

 ,

1 ρ

ρ 1




with ρ controlling the dependence between zip and zilbw.

The joint probability of preeclampsia and LBW is obtained by double integration of the

bivariate normal distribution of the latent variables W i
p and W i

lbw

Pr(zip = 1, zilbw = 1) =

∫ ∞
0

∫ ∞
0

N2(W
i
p,W

i
lbw;µ, Σ̃)dW i

p, dW
i
lbw

with µ = (α1+γ1ηi, α2+γ2ηi)
′ and Σ̃ =

(
1 ρ
ρ 1

)
. Analogously, we can compute the marginal

probability of observing preeclampsia and the marginal probability of LBW.

We complete the Bayesian specification of the bivariate probit model by choosing normal

and multivariate normal priors for the parameters, that is α1 ∼ N(Φ−1(0.12), 0.25), α2 ∼

N(Φ−1(0.082), 0.25), γ1 ∼ Nk(µγ,1,Σγ,1) and γ2 ∼ Nk(µγ,2,Σγ,2). The hyperprior mean for

α1 was set to be moderately high provided that the proportion of preeclamptic women in

the sample is over twice the typical incidence range of 5-8%, and that of α2 was chosen to
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correspond to the national average.

The MCMC algorithm for the LFRM described in the Appendix now incorporates ad-

ditional steps to update α1, α2,γ1 and γ2 sampling from their (multivariate) normal full

conditional distributions, whereas W i
j , j = {p, lbw}, is sampled from its full conditional

normal distribution truncated below (above) by zero for zij = 1(zij = 0). The sampler also

includes a random-walk Metropolis-Hastings step for the update of the correlation coefficient

ρ, with proposal density restricted to (-1, 1).

Heterogeneity across subjects and dependence between the smooth function, f i, and the

outcomes, zip and zilbw, is accommodated through the latent factors, ηi, which impact on the

MAP measurements via the basis coefficients θi and on the probabilities of preeclampsia and

LBW via the latent normal variables W i
p and W i

lbw.

Our goal is to compare sequential predictions of the probability of preeclampsia and LBW

for a test sample of women at different times during gestation, say 20th week, 25th week,

30th, etc. Predictions are expected to improve over time, and we aim to assess whether

we can make a detection with some certainty sufficiently early during gestation or if it is

necessary to wait until close to delivery to make an accurate prediction.

3.3 Joint model of birth weight, gestational age at delivery and blood pressure

Let zi denote the outcome for subject i, zi = (zib, zig), with zib denoting the birth weight and

zig the gestational age at delivery for subject i. To flexibly joint model gestational age at

delivery and birthweight, we consider a two-component mixture-model of bivariate normal

distributions as described by McLachlan and Peel (2000) and Marin, Mengersen and Casella

(2005)

(zig, zib) ∼
2∑

h=1

πihN(µh,Σh) (22)
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This model can be equivalently specified as

(zig, zib) ∼ N(µTi ,ΣTi) (23)

Ti = 1(Wi > 0) (24)

where Ti ∈ {1, 2} is a latent variable indicating which class (zig, zib) belong to, and P(Ti =

h) = πih. We now let the Wi’s be independent distributed from t distributions using a scale

mixture of normals construction:

Wi ∼ N
(
α + γ ′ηi, σ̃

2φ̃−1i

)
(25)

φ̃i ∼ Gamma(ν̃/2, ν̃/2) (26)

where γ a k × 1 vector of unknown regression coefficients with normal prior distribution,

γ ∼ Nk(µγ,Σγ), ηi are the latent factors for subject i and α ∼ N(Φ−1(0.1), 0.25). Note that

construction (22) - (25) constitutes a t approximation to a logit link function on the mixing

weights πih, and to ensure a good approximation to the univariate logistic distribution we

set σ̃2 ≡ π2(ν̃ − 2)/3ν̃, ν̃ ≡ 7.3 (Albert and Chib, 1993; O’Brien and Dunson, 2004). In

addition, this approximation ensures conjugacy of the full conditional distributions, thus

allowing efficient posterior update. To complete our Bayesian specification, we choose an

inverse-Wishart (I-W) distribution for the covariance matrix Σh, Σh ∼ I-W2(νh,Vh) and a

bivariate normal distribution for the mean µh, µh ∼ N2(µ
h
0 ,Σ

h
µ0). Studies on birth weight

and gestational age usually identify LBW and short gestational age as birth weight < 2.5 Kg

and gestational length < 37 weeks (premature), respectively. We applied an EM algorithm

MLE using a two-component mixture of bivariate normals to the data without including

covariate information to determine the hyperparameters µh0 and Σh
µ0. The prior mean values

resulted in

µ1
0 =

µ1
0g

µ1
0b

 =

 36

2.57

 and µ2
0 =

µ2
0g

µ2
0b

 =

 39

3.30


with covariance matrices
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Σ1
µ0 =

7.66 1.37

1.37 0.35

 and Σ2
µ0 =

1.34 0.19

0.19 0.22


The data consist of n pairs (yi, zi)

n
i=1 and the joint likelihood, conditional on the latent

factors η, can be factored as the product of

L(y, z|θ,η,Σ,Λ,β,µh,Σh) ∝ ϕ−N exp

{
−ϕ

−2

2

n∑
i=1

(yi −Biθi)
′(yi −Biθi)

}

×
n∏
i=1

{
2∑

h=1

πih × |2πΣh|−
1
2 exp

(
−1

2
(zi − µh)′Σ−1h (zi − µh)

)}
with N =

∑n
i=1 ni.

Heterogeneity among subjects and dependence between the smooth function, f i, and the

outcomes, zi = (zig, zib), is accommodated through the common set of latent factors, ηi,

which impacts on the functional predictors via the basis coefficients, θi, and on the class

membership probability of the pregnancy outcomes, πi1(ηi) = P(Ti = 1) = Φ

(
α+γ′ηi√
σ̃2φ̃−1

i

)
.

In addition, given the structure for the latent factors described in Equation (8), different

predictors impact on different latent factors letting the distribution of the curves, as well as

the response class, change flexibly with predictors.

The MCMC algorithm for the LFRM can be straightforwardly modified to include steps for

the update of the additional model parameters which are sampled from their full conditional

distributions, and the update of the latent factors ηi is modified accordingly.

4. Simulation example

To evaluate the performance of our model and to compare it with related methods, we

considered a simulation example. We assumed n = 200 and simulated data under the

functional LFRM described in Section 2, with the true parameters set equal to the posterior

means from the real data analysis (see Section 5 below). We generated samples of gestational

age (in weeks) and birth weight (in Kg) from a two-component mixture of bivariate normal
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distributions with true means set equal to µ1 = (34.54, 2.27)′ and µ2 = (38.17, 3.50)′ and

covariance matrices

Σ1 =

1.516 0.261

0.261 1.235

 and Σ2 =

1.212 0.185

0.185 1.221


We standardized time to the [0, 1] interval, tij ∈ [0, 1], and set b1(tij) = 1 and bl+1(tij) =

exp{−4||tij − ψj||2}, l = 1, . . . , 9, with ψj’s equally spaced kernel locations in [0, 1] and

p = 10. The choice of p resulted in a reasonable default value to ensure smooth curves,

with sufficiently many equally-spaced kernels to capture a high variety of smooth trajectory

shapes.

To implement our Bayesian analysis, we chose a Ga(0.5, 0.25) prior distribution with mean

2 for the diagonal elements of Σ−1, and we placed a Ga(0.5, 0.2) with mean 2.5 on ψ−2.

The gamma hyperparameter for φjh was set to be υ = 5, a1 = a2 = 1.5 in (14) and a

Cauchy prior was induced on the matrix of coefficients β ((19) - (20)). We chose k = 9

as the starting number of factors, and we adapted k according to the procedure described

in Bhattacharya and Dunson (2011). The MCMC algorithm was run for 25,000 iterations

including a 5,000 iterations burn-in, and collected every 5th sample to thin the chain and

reduce the autocorrelation in the posterior samples. Based on the examination of traceplots of

function values at a variety of time locations and for different subjects, the sampler appeared

to converge rapidly and to mix efficiently.

The average of the estimated number of factors was 11.18 corresponding to ktrue = 11, and

with empirical 95% credible interval given by [9, 13]. The estimated posterior mean of µ1 was

(34.39, 2.35) and the estimated posterior mean for µ2 was (37.90, 3.42) respectively, with

corresponding 95% credible intervals containing the true values of µ1 and µ2. The estimates

of the covariance matrices Σ1 and Σ2 were

Σ̂1 =

1.436 0.424

0.424 1.103

 and Σ̂2 =

1.093 0.263

0.263 1.1523
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with 95% credible intervals containing the true values of Σ1 and Σ2.

The left panels of Figure 1 show the data, true curves and estimates for the LFRM. In

general, estimates are very close to the true curves even when data are sparse, as for subject

122, and the true curves are always enclosed in the credible bounds.

[Figure 1 about here.]

We then obtained a smooth estimator of the covariance operator and its corresponding

eigenfunctions as described by Crainiceanu and Goldsmith (2010). In contrast to the LFRM,

FPCA does not allow to learn about the representation size k, thus we need to estimate the

dimension of the functional space. As a fast alternative to cross-validation, we decided to

retain a number of eigenfunctions such that the cumulative percentage of explained variance

was greater than 90% and the explained variance by any single subsequent component was

less than 5%. Therefore, we retained the first k = 4 eigenfunctions and obtained Λ as the

least squares estimate of

Ψ = B∗ ×Λ (27)

with Ψ denoting here the matrix of eigenfunctions and Oi×B∗ = Bi, Bi denoting the design

matrix for subject i and Oi representing an (ni×T ) matrix with column j equal to a column

of 1’s if subject i was measured at time j, j = 1, . . . , T (T corresponds to the number of

unique time locations). We then repeated the analysis fitting the LFRM with Λ and the

number of factors k = 4 fixed. We will denote this procedure as the modified Crainiceanu-

Goldsmith (mCG) approach. Estimates are shown in the right panels of Figure 1. We can

notice some deviations of the estimated curves from the true curves along the course of the

entire pregnancy, with very wide confidence intervals at early pregnancy when typically no

or few measurements are observed and when data are more sparse, as for subject 122. Notice

also that for subject 8 the true curve is no longer enclosed within the credible bounds at

delivery. The analysis was repeated retaining ktrue = 11 eigenfunctions, but this did not lead
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to any significant improvement in the performance.

The estimated posterior mean of µ1 was (34.26, 2.31) and the estimated posterior mean

for µ2 was (37.81, 3.39) respectively, with corresponding 95% credible intervals containing

the true values of µ1 and µ2. The estimates of the covariance matrices Σ1 and Σ2 were

Σ̂1 =

1.249 0.383

0.383 1.087

 and Σ̂2 =

1.227 0.305

0.305 1.165


To assess the predictive performance, we repeated the analysis holding out and predicting

the MAP measurements collected after the 30th week of gestation for 100 randomly selected

women having at least 1 observation in the first 30 weeks and 1 observation after the

30th week. The mean square predictive errors for the LFRM and the mCG approach were

respectively 79.06 and 106.56, the predictive average absolute biases were 7.13 and 8.23,

and the predictive maximum absolute biases 25.04 and 28.95. These high values are not

surprising given the presence of many outliers in the MAP measurements that are hard to

predict. The correlation coefficient between true and predicted values was 0.76 under the

LFRM and 0.73 under the mCG approach, respectively. Therefore, the LFRM lead to an

overall better predictive performance than the mCG approach.

Figure 2 shows the estimated joint distribution of gestational age (in weeks) and birth

weight (in Kg) for subjects 8 and 46 in the simulation example under the LFRM, along with

corresponding contour plots. The true values of gestational age at delivery and birth weight

corresponded to (38.82, 3.47) and (33.51, 1.41) for subject 8 and subject 46, respectively.

The joint distribution is bimodal, with the two components of the Gaussian mixture clearly

distinct, and with the joint model assigning higher mass to the true component each subject

belongs to, that is, the second component for subject 8 and the first component for subject 46.

The posterior probability of being in component 1 was 0.3057 for subject 8, and increased to

0.6025 for subject 46. Analogous results are obtained with the mCG approach, with posterior
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probabilities of being in component 1 being equal to 0.2938 and 0.5592 for subjects 8 and

46, respectively.

[Figure 2 about here.]

The analysis was repeated under different choices of the hyperparameter values and initial

number of factors for the LFRM. The results were robust, with no noticeable differences in

the conclusions.

5. Application to the Healthy Pregnancy, Healthy Baby Study

In this section, we return to the HPHB study that was briefly described in Section 1. Women

with high blood pressure are more likely to have certain complications during pregnancy

than normotensive women. In particular, hypertension during pregnancy is associated with

low birth weight and early delivery, and in the most serious cases the mother develops

preeclampsia which can threaten the lives of both the mother and the fetus. Typically, blood

pressure declines steadily until mid-gestation and then rises until delivery in normotensive

women, whereas women who develop preeclampsia tend to have higher blood pressure levels

at early pregnancy, usually remaining constant until mid-gestation, then the levels rise until

delivery. Preeclampsia rarely develops before the 20th week, and typically shows up after 37

weeks of gestation and more generally at any time in the second half of the pregnancy,

including labor and even after delivery, usually within 48 hours. Monitoring the blood

pressure trajectory during pregnancy can help identify women at risk of adverse birth

outcomes, and point to appropriate treatments.

Data were available for 1,027 English-literate women at least 18 years old, for a total of

10,290 measurements. Women with twin gestation or with known congenital anomalies were

not included in our analysis. Women with pre-gestational chronic hypertension were also

excluded from the analysis since their blood pressure was artificially lowered by medical
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treatment. Moreover, our analysis only included non-Hispanic black and non-Hispanic white

women due to the limited number of Hispanics and other ethnic groups in the study.

It is of interest to examine the differences in blood pressure trajectories and analyze

the effect of covariates on average MAP curves for specific groups. Let yij denote the jth

measurement of MAP for woman i occurring tij days after the estimated day of ovulation; we

assume yij ∼ N(fi(tij), ψ
2), where fi is a smooth trajectory in MAP for woman i and ψ2 is

the measurement error variance. The data contain between ni = 1 and ni = 25 observations

per woman, with an average of n̄ = 10.

The sampler described in the Appendix was run for 25,000 iterations, with the first 5,000

samples discarded as a burn-in and collecting every fifth sample to thin the chain. The

update took 71 seconds per hundred iterations for the LFRM versus 64 seconds for the mCG

approach in Matlab on an Intel(R) Core(TM)2 Duo machine. Traceplots of the subject-

specific basis coefficients, the factor loadings and the latent factors showed slow mixing in

the MCMC implementation, with high autocorrelation. However, because traceplots of the

functions estimates fi(tij) at a variety of time locations j and for a variety of subjects i

were well behaved, the mixing problem above did not appear to impact our inferences. The

estimated number of factors was 11, with a 95% credible interval of [9, 13].

Figure 3 shows the results for 6 randomly selected women, and we can see that the MAP

estimates followed the typical U-shaped trajectory.

[Figure 3 about here.]

[Figure 4 about here.]

Repeating the analysis for the mCG approach (Figure 4), we observed accurate estimates at

locations close to data points (although less smoothed than those induced by the LFRM),

but the estimates were inferior when no or few measurements were recorded, with much wider

95% credible intervals and unrealistic estimates up to the 5th week of gestation for subjects
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in the last 5 panels. Because it keeps the factor loadings matrix Λ fixed, the mCG approach

does not inherit the shrinkage property induced on the basis coefficients by the multiplicative

gamma shrinkage prior adopted for Λ in the LFRM. Therefore, no basis selection is induced,

and the adoption of a pre-specified over-complete set of basis functions may lead to overly-

spiky curves.

To assess the predictive performance, we repeated the analysis holding out the MAP

measurements collected after the 30th week for 300 randomly selected women who had

at least one measurement in the first 30 weeks. In general, the mCG approach lead to worse

predictive accuracy than the LFRM. For example, the mean square predictive error was

90.04 under the LFRM and 100.21 under the mCG approach.

It is also of interest to study the impact of predictors on the distribution of the curves.

In particular, we considered 12 predictors: pre-gestational diabetes, renal disease, insurance

status, sex of the infant, maternal race, maternal education, serum cotinine in ng/mL, serum

cadmium in ng/mL, serum lead in ug/dL, parity, pre-gestational body mass index (BMI)

and weight gain. Figure 5 shows how average MAP trajectories change across six different

covariate groups. Our findings are confirmed by the literature results on blood pressure

during pregnancy, with older and primiparous women having higher blood pressure, although

discrepancies are small. Neither the maternal race nor the sex of the infant seem to affect the

gestational blood pressure, as shown in panels (2,1) and (2,2). No differences are found in the

gestational blood pressure of women with high lead levels with respect to their counterpart

(panel (3,2)). Finally, women with diabetes have higher gestational blood pressure than

healthy women, with non-overlapping 95% credible intervals after mid-gestation until the

35th week. Women with diabetes include women on treatment (either oral or insulin) or

on diet. Our findings on the impact of predictors on the distribution of the curves were

confirmed by the results obtained with the mCG approach.
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[Figure 5 about here.]

The estimated posterior means of the two Gaussian components in the joint model of Section

3.3 were (36.297, 2.888) and (39.375, 3.192), respectively for the first and second bivariate

component, with 95% credible intervals equal to ([35.660, 36.875], [2.693, 3.060]) for the first

component and ([39.268, 39.480], [3.152, 3.234]) for the second component, respectively.

[Table 1 about here.]

Table 1 reports the posterior mean estimates of the marginal probabilities of preeclampsia

and LBW (with Monte Carlo standard errors) computed at the 20th, 25th, 30th and 35th

week of gestation for four women in the test set. The standard errors were set to be the

ratio between the standard deviation of the marginal probabilities across MCMC draws

and the square root of the number of MCMC samples used to compute the average marginal

probabilities. zip and zilbw are indicator variables equal to 1 if woman i developed preeclampsia

and delivered a LBW infant, respectively. All women in the test set had at least one MAP

measurement collected before the 20th week, and at least one measurement collected after

the 35th week. Woman 1 was preeclamptic and delivered a LBW infant; woman 2 was

preeclamptic but did not deliver a LBW infant; woman 3 was not preeclamptic but delivered

a LBW infant; woman 4 was neither preeclamptic nor delivered a LBW baby. Even as early

as 20 weeks of gestation the LFRM detects the risk of preeclampsia and LBW for woman

1 and the risk of LBW for woman 3, with estimated probabilities over three times higher

than the 8.2% national rate for LBW and the typical 5-8% incidence range of preeclampsia

over all pregnancies. As for subject 2, the probability of LBW remains very low throughout

the entire course of the pregnancy. However, the probability of preeclampsia increases from

the 25th week to the 30th week of gestation, but then decreases to 11.41% at the 35th week.

One potential explanation can be seen in Figure 6, which shows the MAP trajectories for

the 4 women at the 35th week. In particular, the trajectory and the MAP measurements
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for woman 2 are similar to those of normotensive woman 4. Consequently, it is possible that

woman 2 had normal blood pressure during the prenatal visits, but is still preeclamptic

because she had very high blood pressure (and urine proteins) at time of delivery.

[Figure 6 about here.]

Therefore, even as early as 20 weeks of gestation, when typically very few MAP measurements

have been collected per woman, the LFRM is able to identify women at high risk for adverse

birth outcomes likely to happen later in pregnancy. Predictions get more accurate around

the 30th to 35th week of gestation, although in some cases the information on the maternal

blood pressure carried by latent factors may not be enough to detect the risk of adverse

outcomes, as for woman 2, and additional information on the health of the woman should

be incorporated.

6. Discussion

The article has proposed a Bayesian latent factor regression model for functional data. The

basic formulation generalizes the sparse Bayesian infinite factor model of Bhattacharya and

Dunson (2011), which was developed for estimation of high-dimensional covariance matrices

for vector data, to the functional data case. This allows one to include a high-dimensional

set of pre-specified basis functions, while allowing automatic shrinkage and effective removal

of basis coefficients that are not needed to characterize any of the curves under study. In

addition, we consider several additional generalizations allowing predictors to impact the

latent factor scores and accommodating joint modeling of functional predictors with scalar

responses that are modeled parametrically or via mixture models. Along the same lines,

we can consider joint modeling of multiple related functions easily within the proposed

framework, but our emphasis was on developing methods motivated by the application to

the study of blood pressure and pregnancy outcomes.



24 Biometrics, XXXXX 20XX

The proposed framework has the advantage of straightforward computation via a simple

Gibbs sampler and easy modifications for joint modeling of disparate data of many different

types. In particular, the θi vector of basis coefficients in the functional data model can

instead be replaced with concatenated coefficients within component models for different

types of objects, including not only time trajectories but also images, movies, text, vectors,

etc. This leads to a general shared latent factor framework for modeling high-dimensional

mixed domain data that should have broad utility to be explored in future research. An

interesting modification would be a semiparametric case that allows the latent variables

densities to be unknown via nonparametric Bayes priors.
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Appendix

MCMC algorithm for the latent factor regression model

This section contains a description of the MCMC algorithm used to update from the posterior

distributions of the parameters based on the priors given in Section 2. The sampler cycles

through the following steps:

• Step 1 Update of Λ: sample λjh, δ1, δh, φjh from the following posteriors:
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(1) Denote the jth row of Λk∗ (the loading matrix Λ truncated to k∗ << p) by λj; then the

λj’s have independent conditionally conjugate posteriors given by

π(λj|−) ∼ Nk∗((D
−1
j + σ−2j η

′η)−1η′σ−2j θ
(j), (D−1j + σ−2j η

′η)−1)

with D−1j = diag(φj1τ1, . . . , φjkτk∗), η
′ = [η1, . . . ,ηk∗ ] and θ(j) = (θj1, . . . , θjn), for

j = 1, . . . , p.

(2) Sample φjh from

π(φjh|−) ∼ Gamma

(
ν + 1

2
,
ν

2
+
τhλ

2
jh

2

)
(3) Sample δ1 from

π(δ1|−) ∼ Gamma

(
a1 +

pk∗

2
, 1 +

1

2

k∗∑
l=h

τ
(1)
l

p∑
j=1

φjlλ
2
jl

)
(4) Sample δh from

π(δh|−) ∼ Gamma

(
a2 +

p∗

2
(k − h+ 1), 1 +

1

2

k∗∑
l=1

τ
(h)
l

p∑
j=1

φjlλ
2
jl

)
for h > 2, where τ

(h)
l =

∏l
t=1,t 6=h δt for h = 1, . . . , p.

The sampling begins with a very conservative choice of k∗ which is then automatically

selected within the adaptive Gibbs sampler as described in Bhattacharya and Dunson

(2011).

• Step 2 Update of σ2
j , j = 1, . . . , p: denoting as σ−2j the diagonal elements of Σ−1, sample

σ−2j from conditionally independent posteriors

π(σ−2j |−) ∼ Gamma

(
n

2
+ aσ, bσ +

∑n
i=1(θi −Ληi)

2

2

)
• Step 3 Update of ψ−2: sample ψ−2 from

π(ψ−2|−) ∼ Gamma

(
N

2
+ aψ, bψ +

∑N
j=1(yj −Θj)

2

2

)
where N denotes the total number of observations, y is a column vector which stacks the

measurements for all women, y = (y1,t1,1 , . . . , yn,tn,nn
)′, and Θ is a N × 1 column vector

which stacks the scores for all subjects, Θ = {Biθi, . . . ,Bnθn}′, where each Biθi has

dimension ni × 1 with ni the number of measurements for subject i.
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• Step 4: Update of β and ω elements:

4-a) Given the prior ωlj ∼ Gamma(1/2, 1/2), l = 1, . . . , r and j = 1, . . . , k, sample ωlj from

the full conditional posterior

π(ωlj|−) ∼ Gamma

(
1,

1

2

(
1 + β2

lj

))
4-b) Sample the jth column of the matrix of coefficients β from the full conditional posterior

π(βj|−) ∼ N

((
X̃X̃′ + E−1

)−1
X̃η′·j,

(
X̃X̃′ + E−1

)−1)
with matrix E corresponding to E = Diag(ω−1lj ), l = 1, . . . , r and j = 1, . . . , k.

• Step 5 Update of ηi: marginalizing out θi, the model can be rewritten as

yi = BiΛηi + Biεi + ε∗i , ε∗i ∼ N(0, ψ2Ini
), εi ∼ Np(0,Σ)

= BiΛηi +α∗i , α∗i ∼ N(0, ψ2Ini
+ BiΣB′i)

Thus, sample ηi from the full conditional posterior

π(ηi|−) ∼ N(A−1 ×C,A−1)

A = Λ′B
′
i(ψ

2Ini
+ BiΣB′i)

−1BiΛ + Ik

B = β′xi + Λ′B
′
i(ψ

2Ini
+ BiΣB′i)

−1yi

• Step 6 Update of θi: sample θi from conditionally independent posteriors

π(θi|−) ∼ Np((ψ
−2B′iBi + Σ−1)−1(ψ−2B′iyi + Σ−1Ληi),

(ψ−2B′iBi + Σ−1)−1)
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1 Data and function estimates for 3 subjects in the simulation example under

the LFRM (left panels) and the modified Crainiceanu-Goldsmith method (right

panels). The true functions are represented with black lines, the posterior means

with red lines, and the dotted lines are 95% pointwise credible intervals.

2 LFRM-estimated joint distribution of gestational age (weeks) and birth weight

(Kg) and contour plot for subjects 8 and 46 in the simulation example.

3 MAP function estimates for selected women in the Healthy Pregnancy, Healthy

Baby Study. The posterior means are solid lines and dotted lines are 95% pointwise

credible intervals. The x-axis scale is time in weeks starting at the estimated day

of ovulation.

4 MAP function estimates for selected women under the modified Crainiceanu-

Goldsmith approach. The posterior means are solid lines and dotted lines are

95% pointwise credible intervals. The x-axis scale is time in weeks starting at the

estimated day of ovulation.

5 MAP function estimates for 6 representative covariate groups.

6 MAP function estimates at the 35th week for subjects 1-4 in the test set.
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Figure 1: Data and function estimates for 3 subjects in the simulation example under the LFRM (left panels) and
the modified Crainiceanu-Goldsmith method (right panels). The true functions are represented with black lines, the
posterior means with red lines, and the dotted lines are 95% pointwise credible intervals.
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Figure 2: LFRM-estimated joint distribution of gestational age (weeks) and birth weight (Kg) and contour plot for
subjects 8 and 46 in the simulation example.
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Figure 3: MAP function estimates for selected women in the Healthy Pregnancy, Healthy Baby Study. The posterior
means are solid lines and dotted lines are 95% pointwise credible intervals. The x-axis scale is time in weeks starting
at the estimated day of ovulation.
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Figure 4: MAP function estimates for selected women under the modified Crainiceanu-Goldsmith approach. The
posterior means are solid lines and dotted lines are 95% pointwise credible intervals. The x-axis scale is time in weeks
starting at the estimated day of ovulation.
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Figure 5: MAP function estimates for 6 representative covariate groups. The posterior means are solid lines and
dotted lines represent 95% pointwise credible intervals.
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Figure 6: MAP function estimates at the 35th week for subjects 1-4 in the test set.
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Table 1

Posterior mean estimates of the probabilities of preeclampsia and LBW (with Monte Carlo standard errors)

Subjects
Pr(zip = 1) 1 2 3 4

20th week 0.2545 (0.0037) 0.2085 (0.0034) 0.0711 (0.0019) 0.1179 (0.0025)

25th week 0.2819 (0.0047) 0.1314 (0.0031) 0.1148 (0.0038) 0.1046 (0.0027)

30th week 0.3640 (0.0044) 0.1960 (0.0035) 0.0855 (0.0023) 0.0985 (0.0023)

35th week 0.4185 (0.0042) 0.1141 (0.0023) 0.1128 (0.0024) 0.0983 (0.0021)

Pr(zilbw = 1) 1 2 3 4

20th week 0.2582 (0.0054) 0.0858 (0.0032) 0.2544 (0.0053) 0.1144 (0.0037)

25th week 0.2391 (0.0056) 0.0644 (0.0030) 0.3166 (0.0062) 0.0981 (0.0038)

30th week 0.3193 (0.0058) 0.0986 (0.0035) 0.2865 (0.0057) 0.1056 (0.0036)

35th week 0.3462 (0.0058) 0.0608 (0.0027) 0.3462 (0.0058) 0.0997 (0.0034)


