
STA 250: Statistics

Notes 7. Bayesian Approach to Statistics

Book chapters: 7.2

1 From calibrating a procedure to quantifying uncertainty

We saw that the central idea of classical testing is to provide a rigorous calibration of how a
testing rule “reject H0 if T (x) > c” will perform under different scenarios. Once a rule with
good performance (small size, large power at alternatives) has been chosen, it is applied to
the data in question to make a accept/reject decision on H0. No quantification is provided
as to how certain we are about H0 being correct.

The p-value may seem to provide one such calibration, but it is wrong to interpret
the p-value as the probability of H0 being true. For observed data x, the p-value may be
interpreted as the maximum probability of {T (X) > T (x)} under the null. If the p-value
= 0.02, then we are right to say “either H0 is false or something rare (only 2% chance) has
happened”. Don’t be fooled in thinking that this statement means H0 has 2% chance of
being true. In fact, the statement says nothing as to what odds we are willing to assign to
its “either” and “or” parts.

A similarly structured statement can be made in the following situation. Suppose you flip
a coin 3000 times and count 1498 heads. Then it is correct to state “either the coin is biased or
something rare (only 1.5% chance) has happened” (because, when X ∼ Binomial(3000, 0.5),
P (X = 1498) = 0.015.). But in this case it is quite insane to suspect that the coin maybe
biased (certainly not with a 985-to-15 odds).

At the other end of the spectrum of statistical practice is the Bayesian approach where
one cares more about quantifying uncertainties about statements made regarding the data
and problem at hand. Below is a simple example you might be familiar with.

Example (Clinical diagnosis). A clinical test for a relatively rare disease (only 1% of pop-
ulation affected) is tested to have a 99% accuracy rate on patients who have the disease,
and a 2% failure rate on patients who do not have it. A patient takes the test and gets a
positive. What are the chances that he has the disease?

Let D denote the event that this patient has the disease. Then P (D) = 0.01. Let T+

denote the event that the test results in a positive. Then P (T+|D) = 0.99 and P (T+|Dc) =
0.02 where Dc is the complement of D, i..e., the event that the patient does not have this
disease. We want to evaluate P (D|T+).

This is an instance of “inverse probability” calculation that we learn as the Bayes theorem
in our probability course:

P (D|T+) =
P (D)P (T+|D)

P (D)P (T+|D) + P (Dc)P (T+|Dc)
=

1

3
.
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So the patient has a one in three chance of having the disease. In other words, his odds of
not having the disease is two to one.

2 Inference via inverse probability reasoning

The formal components of the above analysis are

1. Plausibility sores attached to the two possible states of the unknown disease status
(P (D) = 0.01, and consequently, P (Dc) = 0.99).

2. Plausibility scores attached to test outcomes for each state of disease status (P (T+|D) =
0.99 = 1 − P (T−|D), where T− is the event that the test gives a negative; similarly,
P (T+|Dc) = 0.02 = 1− P (T−|Dc)).

3. Combining the above two via the Bayes theorem to update the plausibility scores of
D and Dc once an outcome of the test has been observed.

Component 2 above is like a probability model X ∼ f(x|θ), with θ ∈ Θ an unobservable
quantity of interest (disease status of the patient with Θ = {D,Dc}), while X ∈ S is data
to be observed (outcome of the clinical test, S = {T+, T−}). One learns f(x|θ) through
experience and laboratory experimentation.

Component 1 is the novel feature of the Bayesian approach, where one needs to attach
plausibility scores to the possible states of the unobservable quantity of interest before any
observation is made. This plausibility scores represent one’s prior belief – the belief that
precedes the observation process.

Component 3 is pure mathematics, and results straight out of the Bayes theorem once
components 2 and 3 have been specified and an observation has been made for the observable
quantity.

Prior belief is not a singular quantity and cannot be learned. Prior belief combines current
understanding of the unknown quantity of interest with what one is willing to assume about
it. It may vary from one person to another. It may require more than a single set of
plausibility scores to represent one’s prior belief.

Example (Clinical diagnosis (contd.)). For our clinical diagnosis example, the fact that the
patient has been recommended to take the test may persuade us to put P (D) between 1%
to 3%. In this case, P (D|T+) ranges between 33% to 61%.

3 Bayesian analysis: from prior to posterior

In the general setting, a Bayesian analysis of dataX combines a statistical modelX ∼ f(x|θ),
x ∈ S, θ ∈ Θ, with a prior pdf/pmf ξ(θ) on Θ. This pdf/pmf represents “pre-observation”
(or a priori) plausibility scores of the parameter values. The function h(x, θ) = f(x|θ)ξ(θ) is
simply a pd/mf on S ×Θ giving a “pre-observation” joint description of X and θ. So, once
X = x is observed, the “post-observation” description of θ conditional on the observed data
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on X is simply the conditional pdf/pmf which can be written in the form of Bayes rule as:

ξ(θ|x) =


f(x|θ)ξ(θ)∫

A f(x|θ′)ξ(θ′)dθ′ θ ∈ A, if f(x|θ)ξ(θ) > 0 on some interval A

f(x|θ)ξ(θ)∑
θ∈B f(x|θ′)ξ(θ′) if f(x|θ)ξ(θ) > 0 on some discrete set B.

We shall call this pdf/pmf ξ(θ|x) the posterior pdf/pmf of θ (on Θ) based on the model
X ∼ f(x|θ), the prior ξ(θ) and the observation X = x.

4 Likelihood function and posterior pdf/pmf

Note that post the observation X = x, the relative plausibility of θ = θ1 against θ = θ2 is
given by

ξ(θ1|x)
ξ(θ2|x)

=
f(x|θ1)ξ(θ1)
f(x|θ2)ξ(θ2)

=
Lx(θ1)

Lx(θ2)
× ξ(θ1)

ξ(θ2)
.

Therefore the scores given by the posterior combine the scores given by the prior (pre-
observation beliefs) with scores given by the likelihood function (evidence/support from
observation).

ξ(θ|x) = Lx(θ)ξ(θ)∫
Θ
Lx(θ′)ξ(θ′)dθ′

=
a(θ)ξ(θ)∫

Θ
a(θ′)ξ(θ′)dθ′

when ξ(θ) is a pdf, and the same holds when ξ(θ) is a pmf.

5 An example: female birth rate in 18th century Paris

The great scholar Pierre-Simon, marquis de Laplace (1749-1827) was interested in learning
the rate p ∈ [0, 1] of female birth in Paris in the 18th century. He had access to a large body
of birth records in Paris between 1745 to 1770 with n entries. From these he could extract
the total number of entires X which recorded a female birth. A reasonable model for X is
X ∼ Binomial(n, p), p ∈ [0, 1].

For a prior pdf on p, Laplace decided that he had no reason to believe that for any two
p1, p2 ∈ [0, 1], the case p = p1 was more plausible than the case p = p2. In other words,
Laplace believed all possible values of p ∈ [0, 1] to be equally plausible. A pdf that ensures
this is the Uniform(0, 1) pdf with ξ(p) = 1; p ∈ [0, 1].

For an observations X = x, where x ∈ {0, 1, · · · , n}, the likelihood function is Lx(p) =
const.× px(1− p)n−x. Therefore, the posterior pdf ξ(p|x) takes the form:

ξ(p|x) = px(1− p)n−x∫ 1

0
qx(1− q)n−xdq

=
px(1− p)n−x

B(x+ 1, n− x+ 1)
, p ∈ [0, 1].

where B(a, b) denotes the beta function, defined for any a > 0, b > 0 as

B(a, b) =

∫ 1

0

qa−1(1− q)b−1dq =
Γ(a)Γ(b)

Γ(a+ b)
,

where Γ(a) =
∫∞
0

xa−1 exp(−x)dx is the gamma function defined for every a > 0.
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Figure 1: Posterior pdfs ξ(p|x) for the model X|θ ∼ Binomial(n, p) and p ∼ Uniform(0, 1).
Here n = 20 and the posterior ξ(p|x) is shown for each of x = 0, 1, · · · , 20.

The pdf g(y) = ya−1(1 − y)b−1/B(a, b), y ∈ [0, 1] is called the beta pdf with parameters
a, b (both must be positive), and is denoted Beta(a, b). Therefore, ξ(p|x) equals Beta(x +
1, n−x+1). In R , you can use dbeta(), pbeta(), qbeta() and rbeta() to get, respectively,
the density function, the cumulative distribution function, the quantile function and random
observations from a beta distribution. Figure 1 shows ξ(p|x) against p for a toy setting with
n = 20. Each curve on the Figure corresponds to one x in the range 0, 1, 2, · · · , n. As x
increases from 0 to n, the peak of the ξ(p|x) curve shifts from left to right.

The data Laplace had contained n = 493472 records with x = 241945 female births. This
leads to a ξ(p|x) = Beta(241946, 251528) posterior distribution for θ. Figure 2 shows this
posterior pdf. Below are some of several possible summaries of the posterior.

• Laplace was concerned whether the female birth rate was smaller than the commonly
held figure of 50%. The plausibility of this event, based on Laplace’s model and
observed data, is simply P (p ≤ 0.5|X = x) =

∫ 0.5

0
ξ(p|x)dp, which in R can be computed

as

> pbeta(0.5, 241946, 251528) = 1. Keep in mind that this number is close to 1,
but not exactly 1. In fact, it is more useful to look at converse: P (p > 0.5|X = x) =

1− P (p ≤ 0.5|x) =
∫ 1

0.5
ξ(p|x)dp, which equals

> pbeta(0.5, 241946, 251528) = 1.146e-42.

Laplace concluded that he was ‘morally certain’ that Θ is smaller than 0.5.

• If we are interested in a single number summary of p, we could try to extract a single
number summary of the pdf ξ(p|x). An attractive choice is the mean (expectation)
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Figure 2: Posterior pdf ξ(p|x) for female birth analysis by Laplace. The 50% rate (θ = 0.5)
is highlighted with a dotted vertical line in the middle. The posterior concentrates at a
value lower than this mark. The right panel shows the same, but zooms into the range
p ∈ [0.48, 0.5].

under this pdf: p̄(x) = E[p|X = x] =
∫ 1

0
pξ(p|x)dp. The mean of a Beta(a, b) pdf equals

a/(a+ b), therefore the posterior mean of the female birth rate p is

> 241946 / (241946 + 251528) = 0.490

• If we are interested in reporting a range of values of p, we can look for an interval
such that the pdf ξ(p|x) assigns a small probability outside this interval. This is best
represented by the quantiles pu(x) of ξ(p|x), defined for any u ∈ (0, 1), as the point a
such that P (θ ≤ a|X = x) =

∫ a

0
ξ(p|x)dp = u. In particular, for any α ∈ (0, 1), the

interval A(x) = [pα/2(x), p1−α/2(x)] satisfies:

P (p ̸∈ A(x)|X = x) = P (p < pα/2(x)|X = x) + P (p > p1−α/2(x)|X = x)

= α/2 + α/2

= α.

For α = 5%, the end-points of the interval [pα/2(x), p1−α/2(x)] equal

> lower.end <- qbeta(.05 / 2, 241946, 251528) = 0.489

> upper.end <- qbeta(1 - .05 / 2, 241946, 251528) = 0.491

and, indeed, we can say the (posterior) probability of {0.489 ≤ θ ≤ 0.491} equals 95%.
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