STA 250: Statistics

Notes 17. Category Counts Data

Book chapters: 10.3

1 Category counts data

A great deal of social and biological science studies involve category count data. We have seen the simplest example of this in our opinion poll study, where a researcher looks at number of supporters and number of opposers of a federal law among n college students. More generally, one might be interested in counts of k categories where k could be larger than 2. For example, in the opinion poll study, we could consider three categories of response: "support", "oppose" and "do not care".

For *n* units of observations (e.g., college students) grouped into *k* categories (e.g., response types), we shall denote the count data as $X = (X_1, \dots, X_k)$, where $X_l \ge 0$ is the count in the *l*-th category (e.g., number of supporters), and $X_1 + \dots + X_k = n$. As usual, observed data will be denoted $x = (x_1, \dots, x_k)$, with $x_l \ge 0$ and $x_1 + \dots + x_k = n$. The set of all such vectors *x* is our samples space *S*.

2 The multinomial model

To describe a model for X, we look at the probability vector $p = (p_1, \dots, p_k)$, with p_l denoting the probability that an observation unit is of type l. For p to be a probability vector, we must have $p_l \ge 0$ and $p_1 + \dots + p_k = 1$. The set of all k-vectors p with these properties will be denoted Δ_k and called the k-dimensional simplex.

We make the assumption that the category types of the units are independent of each other (same as assuming independent Bernoulli trials in defining a binomial count). Then X can be described by the pmf

$$f(x|p) = \binom{n}{x_1 \cdots x_k} p_1^{x_1} \cdots p_k^{x_k}, \ x \in S$$

and f(x|p) = 0 for any other x. This pmf is called the multinomial pmf and is denoted Multinomial(n, p). In above the multinomial coefficient

$$\binom{n}{x_1 \cdots x_k} = \frac{n!}{x_1! \cdots x_k!}$$

is an extension of the binomial coefficient and gives the number of ways n units can be split into k distinct groups. It is easy to see that if $X \sim \text{Multinomial}(n, p)$ then for every $l = 1, \dots, k, X_l \sim \text{Binomial}(n, p_l)$. To see this, simply label being in category l as 'success' and being in any other category as 'failure', which makes X_l the total number of successes in n independent trials each with success probability p_l . Similarly for any two categories $l \neq j$, $X_l + X_j \sim \text{Binomial}(n, p_l + p_j)$ and so on.

3 Maximum likelihood

Consider the multinomial model $X \sim \mathsf{Multinomial}(n, p), p \in \Delta_k$. For onservation X = x, the likelihood function in $p \in \Delta_k$ is given by

$$L_x(p) = \binom{n}{x_1 \cdots x_k} p_1^{x_1} \cdots p_k^{x_k} = \text{const} \times \prod_{l=1}^k p_l^{x_l}$$

and the log-likelihood function is given by

$$\ell_x(p) = \operatorname{const} + \sum_{l=1}^k x_l \log p_l.$$

To maximize this over $p \in \Delta_k$, we cannot directly use the standard trick of setting the partial derivatives to zero, because Δ_k imposes the restriction $\sum_{l=1}^{k} p_l = 1$. Instead we use Lagrange multiplies trick and set to zero the partial derivatives of the function

$$g(p,\lambda) = \ell_x(p) + \lambda(\sum_{l=1}^k p_l - 1)$$

jointly over (p, λ) . That is we solve for (p, λ) in

$$\frac{\partial}{\partial p_l}g(p,\lambda) = \frac{x_l}{p_l} + \lambda = 0, \quad l = 1, 2, \cdots, k$$
$$\frac{\partial}{\partial \lambda}g(p,\lambda) = \sum_{l=1}^k p_l - 1 = 0.$$

The first k equations ensure that the solution $(\hat{p}, \hat{\lambda})$ satisfies $\hat{p}_l = -x_l/\hat{\lambda}, l = 1, \dots, k$, which, when plugged into the last equation, gives $\hat{\lambda} = -n$. Therefore $\hat{p}_l = x_l/n, l = 1, \dots, k$. That is, the maximum likelihood estimate of p based on data X = x is given by

$$\hat{p}_{\text{MLE}}(x) = \left(\frac{x_1}{n}, \cdots, \frac{x_k}{n}\right).$$

4 Hypothesis testing

Categorical data provide a very useful platform for testing various scientific hypotheses. Below are some examples. **Example** (Mendel's peas). Mendel, the founder of modern genetics, studied how physical characteristics are inherited in plants. His studies led him to propose the laws of segregation and independent assortment. We'll test this in a simple context. Under Mendel's laws, when pure round-yellow and pure green-wrinkled pea plants are cross-bred, the next generation of plant seeds should exhibit a 9:3:3:1 ratio of round-yellow, round-green, wrinkled-yellow and wrinkled-green combinations of shape and color. In a sample of 556 plants from the next generation the observed counts for these combinations are (315, 108, 101, 32). Does the data support Mendel's laws?

In this case, we have $X = (X_1, X_2, X_3, X_4)$ giving the category counts of the four types of plants with $X \sim \mathsf{Multinomial}(n = 556, p), p \in \Delta_4$. We want to test the point null hypothesis $H_0: p = (\frac{9}{16}, \frac{3}{16}, \frac{1}{16})$ against $H_1: p \neq (\frac{9}{16}, \frac{3}{16}, \frac{3}{16}, \frac{1}{16})$.

Example (Hardy-Weinberg equilibrium). The spotting on the wings of Scarlet tiger moths are controlled by a gene that comes in two varieties (alleles) whose combinations (moths have pairs of chromosomes) produce three varieties of spotting pattern: "white spotted", "little spotted" and "intermediate". If the moth population is in Hardy-Weinberg equilibrium (no current selection drift), then these varieties should be in the ratio $a^2 : (1-a)^2 : 2a(1-a)$, where $a \in (0, 1)$ denotes the abundance of the dominant white spotting allele. In a sample of 1612 moths, the three varieties were counted to be 1469, 5 and 138. Is the moth population in HW equilibrium?

Letting $X = (X_1, X_2, X_3)$ denote the category counts of the three spotting patterns, with model $X \sim \mathsf{Multinomial}(n = 1612, p), p \in \Delta_3$, we want to test whether $H_0 : p \in \Delta_3^{HW}$ against $H_1 : p \neq \Delta_3^{HW}$ where Δ_3^{HW} is a subset of Δ_3 containing all p of the form $(a^2, (1-a)^2, 2a(1-a))$ for some $a \in (0, 1)$.

A third and widely used type of hypotheses, relating to independence of two or more attributes with categorical outcomes, will be discussed in the next lecture.

5 ML tests

We'll start with the point null hypothesis. We have $X \sim \mathsf{Multinomial}(n, p)$ and we want to test $H_0: p = p_0$ against $p \neq p_0$ for some fixed $p_0 = (p_{01}, p_{02}, \dots, p_{0k}) \in \Delta_k$ of interest. Any ML test is given by

"reject
$$H_0$$
 if $LR(x) = \frac{L_x(\hat{p}_{\text{MLE}}(x))}{L_x(p_0)} > c'$ "

for some $c' \geq 1$. By using the form of the likelihood function and that of the MLE, we get

$$LR(x) = \prod_{l=1}^{k} \left(\frac{x_l}{np_{0l}}\right)^{x_l} = \prod_{l=1}^{k} \left(\frac{x_l}{e_l}\right)^{x_l}$$

where $e_l = np_{0l}$ is the expected count for category l if H_0 were true. [Under H_0 , $X_l \sim \text{Binomial}(n, p_{0l})$ so $\text{E}X_l = np_{0l}$].

It can be shown that if n is fairly large and if none of the coordinates p_{0l} of p_0 is too close to zero, then

$$LR(x) \approx e^{Q(x)}$$

where $Q(x) = \sum_{l=1}^{k} \frac{(x_l - e_l)^2}{e_l}$. Therefore, an ML test is approximately the same as

reject H_0 if Q(x) > c

for some positive constant c.

To calculate the size of this test, we need to know the distribution of Q(X) when $X \sim$ Multinomial (p_0) . Karl Pearson showed that $Q \sim \chi^2(k-1)$ approximately. Let F_{k-1} denote the cdf of the $\chi^2(k-1)$ distribution. Then, an approximately size α ML test is given by

reject
$$H_0$$
 if $Q(x) > F_{k-1}^{-1}(1-\alpha)$.

Clearly, the p-value based on X = x for such tests is $1 - F_{k-1}(Q(x))$.

6 Pearson's chi-square tests

The above test is known as the Pearson's chi-square test. It applies beyond the point null case. In general, suppose we're testing $H_0 : p \in \Delta_k^0$ against $H_1 : p \neq \Delta_k^0$ where Δ_k^0 is determined by r many "free parameters". [In the point null case, Δ_k^0 is a single point, and has r = 0 free parameters. In the Hardy-Weinberg equilibrium example above, Δ_k , with k = 3 contains all $p = (a^2, (1-a)^2, 2a(1-a))$ with r = 1 free parameter $a \in (0, 1)$.]. Given observation X = x, the Pearson's chi-square test can be performed by taking the following steps:

- 1. Find the restricted MLE $\hat{p}_0(x) = \operatorname{argmax}_{p \in \Delta_L^0} L_x(p)$ under the null hypothesis.
- 2. Calculate "expected" category counts under the estimated null: $\hat{e}_l = n\hat{p}_{0l}, l = 1, \cdots, k$.
- 3. Calculate Pearson's test statistic

$$Q(x) = \sum \frac{(observed - expected)^2}{expected} = \sum_{l=1}^k \frac{(x_l - \hat{e}_l)^2}{\hat{e}_l}$$

- 4. Given a level $\alpha \in (0,1)$, reject H_0 at level α if $Q(x) > F_{k-1-r}^{-1}(1-\alpha)$.
- 5. Alternatively, report the p-value = $1 F_{k-1-r}(Q(x))$.

Example (Mendel's peas (contd)). Here H_0 is a point null consisting of the single point $p_0 = (\frac{9}{16}, \frac{3}{16}, \frac{3}{16}, \frac{1}{16})$. Therefore the restricted MLE is same as $\hat{p}_0 = p_0$ and so

$$e_1 = 312.75, e_2 = 104.25, e_3 = 104.25, e_4 = 34.75.$$

So fro observed data x = (315, 108, 101, 32) we get Q(x) = 0.47. The p-value is $1 - F_3(0.47) = 1 - pgamma(0.47, 3/2, 1/2) = 0.92$, because $\chi^2(m) = Gamma(m/2, 1/2)$.

Example (HW equilibrium). Here H_0 is not a point null, but has a free parameter $a \in (0, 1)$. Writing the likelihood function in terms of a we see,

$$L_{x,H_0}(a) = \text{const} \times \{a^2\}^{x_1} \times \{(1-a)^2\}^{x_2} \times \{2a(1-a)\}^{x_3} = \text{const} \times a^{2x_1+x_3}(1-a)^{2x_2+x_3}$$

and so this is maximized at $\hat{a} = \frac{2x_1+x_3}{2x_1+x_3+2x_2+x_3} = \frac{x_1+x_3/2}{n}$. So for our data, $\hat{a} = \frac{1469+138/2}{1612} = 0.954$. Which leads to Q(x) = 0.83 and with p-value $1 - F_1(0.83) = 0.36$.