STA 250: STATISTICS

Notes 9. Conjugate Analysis of Standard Models

Book chapters: 7.3

1 Conjugate prior family

Once we get a posterior pdf/pmf £(0|x) by combining a model X ~ f(z|f) with a prior
pdf/pmf £(6) on § € ©, a report can be made by summarizing the posterior. It helps to
have the posterior pdf/pmf in a recognizable form so that we can easily compute its mean,
spread, quantiles etc (by hand or by using R functions). This is not guaranteed to happen
in general. For example, the model X ~ Binomial(n,p) and the prior pdf £(p) = e?/(e — 1),
p € [0,1] lead to the posterior £(p|z) = const x p*(1 — p)"~*eP, p € [0, 1], with a constant
term that is fairly difficult to compute, making it difficult to get summaries of this pdf.

However, for certain models, certain prior pdfs do lead to posterior pdfs that are analyt-
ically tractable. We already saw one in the female birth rate analysis, a uniform prior pdf
for the binomial model gives a beta posterior pdf. In fact more is true for this model: any
beta prior pdf leads to a beta posterior pdf! This phenomenon is called conjugacy. A formal
definition is given below.

DEFINITION 1 (Conjugacy). A collection of pdfs (or pmfs) is called a conjugate prior family
for a model X ~ f(x]0),0 € ©, if whenever a prior {(#) is chosen from the collection, it leads
to a posterior £(f|x) that is also a member of the collection, for every observation X = x.

Conjugacy in itself is not a very useful property. For example the collection of all pdfs
on O is surely conjugate to the model. It becomes useful when a small collection of pdfs
exhibit conjugacy to a certain statistical model. By a small collection we usually mean a
collection of pdfs/pmfs G = {g(f|a) : a € A} indexed by a low-dimensional vector a. G
is conjugate to a statistical model X ~ f(z|0) if £(0) = g(f|a) for some a € A means for
every x, {(0|x) = g(f|a) for some a € A. As mentioned before, the collection of beta pdfs
{Beta(a,b) : @ > 0,b > 0} is a (2-dimensional) conjugate family to the binomial model
X ~ Binomial(n,p), p € [0,1]. Table 1 below gives a list of other common models with
known, low-dimensional conjugate families. We will establish conjugacy for three of the
listed models; you're required to do the maths for the some of the remaining ones in HW5.

2 The binomial-beta conjugacy

The pdf of Beta(a,b) distribution, for a > 0,b > 0, equals g(p) = p* (1 — p)*~'/B(a,b),
p € [0,1], where B(a,b) = fol > (1 — q)*'dq is known as the Beta function. If we take



Model Parameter Prior Posterior
X ~ Binomial(n, p) 0<p<l1 Beta(a, b) Beta(a, b)
a>0,b6>0 a=a+z

b=b+n—x

X =(Xy, -, X,) A>0 Gamma(a, b) Gamma(a, b)
X; ~ Poisson()) a>0,b>0 a=a+nx
b=b+n

X =(Xy, -, X,) A>0 Gamma(a, b) Gamma(a, b)
X, ~ Exponential()\) a>0,b>0 a=a+n
b=>b+nx

X=(Xy,,X,) | —00o<pu<oo Normal(a, b?) Normal(a, b*)
X; ~ Normal(y, 0?) —00 < a <00 a= mfjfg—;;a
o? known b>0 b? = ng‘zf:ag

X =(X,,X,) | —co<pu<oo| Nx2(m,k,r,s?) Nx~2(rm, k, 7, §%)
X; ~ Normal(y, 0?) o2 >0 —00 <M < 00 = ke
k>0,r>0,s>0 k=k+n
r=r+mn
~9 rsQJrkk—"(:Efm)QJr(nfl)s?p

r+n

Table 1: Conjugate prior and posterior for some common models.
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multiples of each other, they must be identical (and the constant must be 1). So &(p|x)

Beta(a + z,b+n — x).

3 The normal-normal conjugacy

Next we show that for the model X, ---, X,, ~ Normal(u, 0?), ju € (—00,00), o fixed, the
prior pdf £(p) = Normal(a, b%) gives a posterior pdf &(u|z) = Normal(a,b®) for some @ and
b [which we shall identify]. It suffices to show that &(u|x) is a constant multiple of the

Normal(@, ) density. This is equivalent to showing

log & ()

(n—a)’

= const + =

2b2



by working on the log-scale. Earlier we worked out that ¢,(u) = n(x — u)?/(202). Therefore,

log &(p|x) = const + £, (1) + log &(p)

1[n(z — p)? —a)?
— const | ( 02#) L - )
nb?zZ+o2a\2
1 J—
= const — — a bZI;22+U2 )
nb2+o2

27 2 2 .2
and therefore, &(u|x) = Normal("5itee, o

“completion of squares” identity (give it a try!):

). The last equality above follows from a

n(@—p)? | (p—a)? _ (00 +0 e~ HEG? | n(@ —a)?
o2 o b2o2 nb? + o2

4 A conjugate family for the full normal model

For the full normal model Xi,---, X, ~ Normal(u,0?), (11,0%) € (—00,00) x (0,00), we
need a bivariate prior pdf (i, 0?) on (—00,00) x (0, 00). There are several choices here. For
example we could take &(u,0%) = g(u)h(o?) where g(p) is a pdf on (—oo,00) and h(c?) is
a pdf on (0,00). This is in fact widely used, with g(u) usually taken to be a normal pdf
and h(o?) taken to be an inverse-gamma pdf (i.e., the prior pdf of 1/0? is a gamma pdf).
However, the family of such pdfs are not conjugate to the model. In particular, the posterior
pdf &(u, 0%|z) does not factor into a product g(u|z)h(c?|x).

There is however, a conjugate family of pdfs, known as the normal-inverse-chi-square
pdfs, denoted Nx~2(m, k,r, s*) with parameters m € (—o0,00), k > 0, 7 > 0 and s > 0. The
pdf of this distribution equals

k(w —m)? + rs?

g(w,v) = const. x v exp (— ) , (w,v) € (—o0,00) x (0,00)

2v
where the constant equals f};é—% Suppose for the normal model, we take &(u,0?) =

Nx~2(m, k, r, s?) for some valid choices of m, k,r and s. We will again work in the log-scale:
log &(, 0%) = const + £ (11, 02) + log &(u, o). We have worked out before that
(n—1)s3 +n(z — p)*

202 '

lo(p, 0%) = const — glog o —
Therefore,

log (11, 0°|x) = €y (11, 0°) + log (s, 0°)

3
= const — % log o® —

(n—1)s2 +n(T — p)* + k(g —m)* 4 rs’
202 ’

There is another square-completion identity that we need (try this):

(z —m)?.

km+nx)2 kn
_l’_

N(f—u)2+k(u—m)2=(k+n)(u— T

3



Plugging this in we get

F+3 Elu—m)2 4 732
log &(p, 0%|x) = const — r+ log 0% — (1 727@)2 + 78
o

and hence &(p, 02|x) = Nx~2(mn, k, 7, %), where

° ﬁl:%

o k=n+k

e r=n+4r

o = (rs’ + £ (z —m)® + (n — 1)s2).

5 Computing with normal-inverse-chi-square

The pdf formula of Nx~2(m, k, r, s?) is useful to establish conjugacy, but does not help much

in computing prior or posterior summaries for (i, 0?). Here are some useful results that will
help us with computing:

RESULT 1. A pair of random variables (W, V') has a Nx~2(m, k,r, s*) pdf if and only if
1. = ~ x*(r) = Gamma(r/2,1/2), and
2. [W|V =] ~ Normal(m,v/k).

REsULT 2. If (W, V) ~ Nx~2(m, k,r,s%) then VE(W —m)/s ~ t(r).

Example (NSW). For the NSW study we have Xi, -+, X,, ~ Normal(y,c?) and suppose
we assign (i, 0%) = Nx72(0,4,2,9000%). Results 1 says: under the prior (2 -9000%)/0? ~
Gamma(1,1/2). Hence a 95% prior range for (2 -9000?)/0? is

[qgamma(.025, 1, 1/2),qgamma(0.975, 1, 1/2)] = [0.051,7.378]

and so a 95% prior range for o is:

2-90002 /2 -90002
[\/ ;\/ ] = [4685.85, 56360.19]

7.378 0.051

Also the prior median of o is \/2~90002/qgamma(0.5, 1, 1/2) = \/2~90002/1.386 =

10811.25. Result 2 says: under the prior v/4(x—0)/9000 ~ #(2) and hence a 95% prior range
for o is 0 F 27225(0.05) = [~19361.94, 19361.94].



The recorded data shows n = 185, & = 4253.57 and s, = 8926.985. So

10+ 185 420357 _ 163547, % =189, 7= 187,

"= 4+ 185
#—— L o gp0p 4 21 (4253.57 — 0)* + 184 - 8926.985° & = 8878.862°
187 4+ 185 ' ' B

and hence the posterior pdf of (i, %) is Ny ~2(4163.547, 189, 187, 8878.8622). So to calculate
a 95% posterior range for o, we first get a 95% range for 75%/0? ~ Gamma(187/2,1/2) which
is [151.024,226.761] and then transform it to an interval for o:

\/ 187 - 8878.8622 \/ 187 - 8878.8622
2926.761 151.024

] — [8062.73, 9879.69).
Also, a posterior 95% range for pu is:

8878.862
V189

If we were interested in assessing whether 1 was larger than 2000, we would calculate:

V(i — ) N \/2(20(30 - m))

4163.547 F 2157(0.05) = [2884.452, 5442.642].

S S

e (ﬁ@oqwm))

S

P(p > 2000/X =) = P (

8878.862
=1 — By57(—3.35) = 0.9995

<\/189 - (2000 — 4163.547))
=1— D7
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