
STA 250: Statistics

Notes 3. Hypotheses testing

Book chapters: 9.1, 9.5

1 Hypotheses about model parameters

A new soporific drug is tried on n = 10 patients with sleep disorder, and the average
increase in sleep hours is found to be 2.33 hours (with standard deviation 2 hours). Is the
drug effective in increasing sleep hours?

Suppose we model the increase in sleep hours for the 10 patients as Xi
IID∼ Normal(µ, σ2).

Given the evidence in our observed data, we must decide whether to declare “µ > 0” or to
declare “µ ≤ 0”.

Such inferential tasks are referred to as hypotheses testing. This is statistical inference
where one has to decide between two competing statements or hypotheses about a model
parameter (µ in our example) representing the quantity of interest (drug efficacy).

More formally, hypotheses testing about a statistical model X ∼ f(x|θ), θ ∈ Θ is about
deciding whether to declare θ ∈ Θ0 or declare θ ∈ Θ1, where Θ0 and Θ1 form a partition
of the parameter space Θ. This means, Θ = Θ0 ∪ Θ1 and that Θ0 and Θ1 are disjoint.
The two subsets Θ0 and Θ1 represent two contrasting scientific hypotheses about the model
parameter (drug is effective or not effective). Consider three more examples.

Example (Opinion poll). Out of n = 500 randomly chosen students from a university,
X = 200 said they were in favor of a recent senate bill. With the model X ∼ Binomial(n, p)
where p ∈ [0, 1] denotes the university wide support percentage, we would like to decide
between “p ≤ 0.5” and “p > 0.5”.

Example (NSW study). National Supported Work (NSW) was a US federally and privately
funded program in the 1970s that aimed to provide work experience to individuals who faced
economic and social hardship. DataX1, · · · , Xn are available from n = 185 individuals on the
difference between their annual earning before enrolling in the program and after completion
of the program. With the model Xi

IID∼ Normal(µ, σ2), (µ, σ2) ∈ (−∞,∞)× (0,∞) we would
like to test “µ = 0” and “µ ̸= 0”.

Example (TC counts). Annual North Atlantic TC counts X1, · · · , Xn from last n = 100

years are modeled as Xt
IND∼ Poisson(αβt−1), α ∈ (0,∞), β ∈ (0,∞). To judge whether

overall TC activity has been trending over time, we would like to test “β = 1” and “β ̸= 1”.

2 Null and alternative hypotheses

For now we will be content to look only at the classical approach to hypotheses testing. A
foundational point of this approach is that it treats the two hypotheses asymmetrically. One
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of the hypotheses is taken to represent the status-quo, the no-change scenario (a drug is
not effective, a bill has less than majority support, a federal program has no effect, annual
hurricane counts are steady over time, etc.) and is labelled the null hypothesis (denoted H0,
and the corresponding parameters subset is labelled Θ0). The other hypothesis is called the
alternative hypothesis (denote H1 and corresponds to Θ1), one that provides an alternative to
the status-quo (a drug is effective, a bill has more than majority support, a federal program
affects earning, hurricane count is trending with time, etc.).

The classical approach takes the stand that without any data we would accept the null
hypothesis and one has to find data with substantial evidence against this hypothesis to
reject it and go for the alternative (i..e, the null is innocent until proven guilty).

This stand simplifies the task at hand. One simply needs to check whether there is any
support in the data toward any θ ∈ Θ0. If yes, then the null hypothesis stands undefeated.
Otherwise, we reject it.

3 Test statistic & testing rule

A fundamental concept in classical testing is the construction of a test statistics T (X), a
scalar summary of data X to represent evidence against H0. Given the status-quo nature of
of the null hypothesis, one will decide against H0 only when the test statistic is very large.
Operationally, we will need to fix an a priori cut-off c > 0 and our testing rule is:

for data X = x reject H0 if T (x) > c, otherwise fail to reject H0.

The test statistic can be constructed by considering any summary of data X that exhibits
one type of behavior when H0 is true and a different behavior when H1 is true.

Example (Drug effectiveness). With X = (X1, · · · , Xn) denoting the increase in sleep hours

for the n patients, our model is Xi
IID∼ Normal(µ, σ2), µ ∈ (−∞,∞), σ ∈ (0,∞). Consider

the summary X̄ = (X1 + · · · +Xn)/n. Large positive values of X̄ are unlikely when µ ≤ 0.
So we could take T (X) = X̄ and use a rule of the type “reject H0 : µ ≤ 0 iff x̄ > c”.
However, if σ was large, then large positive values of X̄ could still be possible under a µ ≤ 0.
Indeed, when Xi

IID∼ Normal(µ, σ2), the distribution of X̄ ∼ Normal(µ, σ2/n). So we could
instead take T (X) = X̄/{σ̂(X)/

√
n} where σ̂(X) is another summary of X that represents

the magnitude of σ (i.e., given as estimate of σ). One such possible summary is the sample
standard deviation sX , defined by

s2X =
1

n− 1

n∑
i=1

(Xi − x̄)2 =
1

n− 1

{
1

n

n∑
i=1

X2
i − X̄2

}
.

So now our test statistic is T (x) = x̄
sx/

√
n
=

√
nx̄/sx and testing rule is to reject H0 : µ ≤ 0

iff
√
nx̄/sx > c for some pre-specified c > 0.

For our study suppose we consider c = 1.83. For our data, n = 10, x̄ = 2.33 and sx = 2
and hence T (x) =

√
10 × 2.33/2 = 3.684 > 1.83. And hence for this test statistic and this

cut-off we will reject H0 : µ ≤ 0. We will later justify our choices of both T (x) and c.

Example (Comparative drug effectiveness). Suppose we knew that an existing drug already
provides an extra hour of sleep on an average. In that case we would want to test H0 : µ ≤ 1
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against H1 : µ > 1. In this case we could modify our test statistic to T (x) =
√
n(x̄− 1)/sx.

For observed data T (x) =
√
10 × 1.33/2 = 2.103. So with c = 1.83 we still reject H0 and

accept the drug as having more effect than the existing one. We will later justify why we
chose to work with the same cut-off as in the previous example.

Example (NSW study). In the NSW study X = (X1, · · · , Xn) denotes the earning dif-
ferences of n recipients of the training program. We have the same model as in the drug
effectiveness study: Xi

IID∼ Normal(µ, σ2), µ ∈ (−∞,∞), σ ∈ (0,∞). But since we are testing
forH0 : µ = 0 against H1 : µ ̸= 0, a more reasonable test statistic should be T (x) =

√
n|x̄|/sx

because a large value of |x̄| of either sign is unlikely under H0. We will take our cut-off to be
c = 1.97 and our testing rule is to reject H0 if

√
n|x̄|/sx > 0.145. Recorded data has n = 185,

x̄ = 4253.57, sx = 8926.985 and so T (x) =
√
185 × 4253.57/8926.985 = 6.481 > 1.97. And

so we reject H0 and conclude that the program had some effects on earning. Again, we will
later see the justification of choosing c = 1.97.

Example (Opinion poll). With X = #{in favor} modeled as X ∼ Binomial(n, p), p ∈ [0, 1],
we will expect X/n to be close to 1/2 if p were 1/2. Indeed, when p = 1/2, the pmf of X/n
is approximately Normal(1/2, 1/(4n)). So a large value of

T (X) =
X/n− 1/2√

1/(4n)
= 2

√
n(X/n− 1/2)

is unlikely if p were 1/2. If p were smaller than 1/2, then X/n is expected to be even
smaller. So we could take the above T (X) as our test statistic and for a pre-defined cut-
off take our testing rule to be “reject H0 : p ≤ 1/2 if T (x) > c”. We will work with
c = 1.64 (justified later). If we observed X = 200 among n = 500, our test statistic will be
T (x) = 2

√
500× (0.4− 0.5) = −4.472 ≤ 1.64 and hence we will fail to reject H0 : p ≤ 1/2.

If instead we were testing H0 : p = 1/2 against H1 : p ̸= 1/2, then a reasonable choice
is to take T (x) = 2

√
n|X/n − 1/2|, as it is unlikely for X/n to be much away from 1/2

on either side if H0 were true. If we used a cut-off c = 1.96, then our test rule will give
T (x) = 4.472 > 1.96 and hence we will reject H0 : p = 1/2.

Example (Annual TC counts). Unlike the above examples, it is not so obvious to think of
a test statistic T (X) that quantifies evidence against H0 : β = 1. One possibility is to count
in S(X) the number of years in which the count was greater than the count in the previous
year, i.e.,

S(X) =
n−1∑
t=1

I(Xt+1 > Xt)

where I(A) denotes the indicator function: I(A) = 1 if A happens and I(A) = 0 otherwise.
If β were 1, we will expect S(X) to be close to (n − 1)/2. It’s tempting to approximate
the distribution of S(X) under β = 1 by Binomial(n − 1, 1/2) and that of S(X)/(n − 1)
by Normal(1

2
, 1
4(n−1)

). Notice the similarity with the opinion poll example. Analogous to our

treatment in the opinion poll, we could take our test statistic as T (X) = 2
√
n− 1|S(X)/(n−

1)− 1/2| and reject H0 : β = 1 if T (x) > c for a pre-defined c. We will work with c = 1.96.
For the observed data n = 100 and S(x) = 45 and so T (x) = 0.905 < 1.96. So we fail to
reject H0 : β = 1.
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The above test based on S(X) is “wrong”; we will later see why and discuss a “correct”
test rule based on it. We will also see a “better” test statistic and testing rule for this
problem. You should also be warned that our model is unrealistic as it ignores the fact that
not all TCs were counted 100 year back. We won’t do a full analysis here, rather use the
data for illustration only. Do not take to heart the conclusions drawn by these analyses.

4 Choosing T (X) and c, prelude to classical theory

From the examples above, two important questions remain unanswered: how do we decide
what test statistic T (X) to use and how do we decide on a cut-off c? In some cases, there is a
natural choice of test statistic, such as the sample average for the normal data or the sample
proportion for the binomial data. But the exact details need more justification. In other
cases, as in the TC count study, the choice of T (X) appears an open question. Even when a
test statistic T (X) has been chosen, the choice of the cut-off c appears quite arbitrary at the
moment, though you may have noticed that the values were not very different (1.83, 1.97,
1.64 and 1.96).

We will resolve these questions to an extent by studying the properties of the associated
testing rule “reject H0 if T (x) > c”. Properties will be studied by taking the rule to our Stat
Lab where we can run a bunch of random experiments to study the performance of the rule.

Take for example, for the drug effectiveness study, where we want to see how the rule
“reject H0 : µ ≤ 0 if T (x) =

√
nx̄/sx > 1.83” performs across different scenarios. To create a

“scenario” we will first have to fix values for µ and σ. Say we first pick µ = 0 and σ = 3. We
then generate n = 10 random numbers xL = (xL

1 , · · · , xL
n) from Normal(0, 32) (superscript L

indicates data generated in the lab) and calculate T (xL) and note down whether we have
T (xL) > 1.83. We then repeat this many many times (all with µ = 0 and σ = 3) and note
down in what proportion of repeats did we end up having T (xL) > 1.83. Since our choice
of µ = 0 matches with H0, the proportion of times we had T (xL) > 1.83 is roughly the
probability of incorrectly rejecting H0. We would hope this number to be small.

We could then replicate the above experiment with other choices of µ and σ. Let’s say
we took µ = 1 and σ = 3. So now in each repeat of the experiment we will generate random
numbers xL = (xL

1 , · · · , xL
n) from Normal(1, 32) distribution. In this case, the proportion of

times we end up having T (xL) > 1.83 is actually the probability of correctly rejecting H0.
So we would hope this number to be large.

You can probably see that if we used a much large cut-off, say c = 200 instead of c = 1.83,
then we will end up with a small fraction in either of the above two experiments. Which
would not be a good news because we want a large fraction in the second case. On the other
hand, if we had used a very small cut-off, say c = 0.01, then we will end up with a large
fraction in either experiment, again a bad news for the first scenario.

Classical statistics thrives on identifying a good pair of (T (X), c) for which we will get a
small fraction in the first experiment but a large fraction in the second. In fact we want a
small fraction in any experiment that we run with a µ matching H0 (i.e., a non-positive value
for µ) and any σ. And we want a large fraction in any experiment with µ matching H1 (i.e.,
a positive number) and any σ. Toward this, we will first see how to calculate analytically
what this fraction should be for any experiment. And then we will see how a special class
of procedures, known as maximum likelihood procedures, will give us a good (T (X), c) pair.
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