
STA 250: Statistics

Notes 11. Laplace Approximation to the Posterior

Book chapters: –

1 Non-conjugate prior and difficulty with posterior computation

While conjugate priors make computation easy, they may not be always appropriate and
sometimes they simply do not exist (in a useful way) for the statistical model we want to
analyze.

Example (Tennis serves). Consider data X = (X1, · · · , Xn) on the first serve success rates

of a tennis player from n tournament matches. Consider the model Xi
IID∼ g(xi|θ) = θ(θ +

1)xθ−1
i (1 − xi), xi ∈ (0, 1) with parameter θ > 0. No useful conjugate prior family exists

for this model. But it is reasonable to assign θ a Gamma(a, b) prior. The posterior pdf in θ
looks like:

ξ(θ|x) = const× Lx(θ)× ξ(θ)

= const×

{
θn(θ + 1)n

n∏
i=1

xθ
i

}
× θa−1e−bθ, θ > 0

= const× θn+a−1(θ + 1)ne−{b+
∑n

i=1 log(1/xi)}θ, θ > 0

which is not a standard pdf.
When ξ(θ|x) is not of a standard form, it is difficult to summarize its quantiles, or to

make a plot (evaluating the normalizing constant is difficult), or even to sample draws from
it in order to make prediction.

2 Laplace’s technique: normal approximation to posterior for regular models

For any pdf that is smooth and well peaked around its point of maxima, Laplace proposed
to approximate it by a normal pdf. It’s a simple 2-term Taylor expansion trick on the log
pdf. If θ̂ denotes the point of maxima of a pdf h(θ), then it is also the point of maxima of
the log-pdf q(θ) = log h(θ) and we can write:

q(θ) ≈ q(θ̂) + (θ − θ̂)q̇(θ̂) +
1

2
(θ − θ̂)2q̈(θ̂)

= q(θ̂) + 0 +
1

2
(θ − θ̂)2q̈(θ̂) [because q̇(θ̂) = 0]

= const− 1

2
(θ − θ̂)2q̈(θ̂)

= const− (θ − ã)2

2b̃2
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with ã = θ̂ and b̃2 = {−q̈(θ̂)}−1 (notice q̈(θ̂) < 0 because θ̂ is a maxima). But the right
hand side of the last display matches the log-pdf of Normal(ã, b̃2). Hence the pdf h(θ) is
approximately the Normal(ã, b̃2) pdf with ã = θ̂ and b̃2 = {−q̈(θ̂)}−1.

Laplace’s approximation is simple and elegant, all one needs is that the log-pdf is smooth
at the maximum and peaks well at it so that the quadratic approximation is good. Also, to
make it operational, we only need to know the point of maximum θ̂ and the curvature −q̈(θ)
at this point.

The same technique could be applied to a posterior pdf ξ(θ|x) = const×Lx(θ)ξ(θ). The
log-pdf in this case is q(θ) = const + ℓx(θ) + log ξ(θ). Typically we will not know the value
of the constant term in the front. But it does not affect computing the point of maximum
θ̂ and the curvature −q̈(θ) at θ = θ̂. See the example below.

Example (Tennis serves (contd.)). For our model,

ℓx(θ) = const + n log θ + n log(θ + 1) + θ

n∑
i=1

log xi,

and
log ξ(θ) = const + (a− 1) log θ − bθ,

and so

q(θ) = log ξ(θ|x) = const + (n+ a− 1) log θ + n log(θ + 1)− θ

{
b−

n∑
i=1

log xi

}
with

q̇(θ) =
n+ a− 1

θ
+

n

θ + 1
−

{
b−

n∑
i=1

log xi

}
and

q̈(θ) = −n+ a− 1

θ2
− n

(θ + 1)2
.

Suppose recorded data shows n = 20,
∑

i=1 logXi = −4.59. Also suppose we work with

a = 1, b = 1. So we can find the maxima θ̂ by solving q̇(θ) = 0, i.e, 20/θ+20/(θ+1)−5.59 = 0,
which is solved at θ̂ = 6.69. The curvature at the maximum equals −q̈(6.69) = 0.785. Hence
ξ(θ|x) ≈ Normal(6.69, 1/0.785) = Normal(6.69, 1.1292).

3 Finding θ̂

In the above example I solved 20/θ + 20/(θ + 1)− 5.59 = 0 by first re-writing the equation
as the quadratic: 20(θ+1)+20θ− 5.59θ(θ+1) = 0 (by multiplying each side with θ(θ+1)).
Such simplifications may not be available in all cases. In general one can use “Newton’s
method” to find θ̂. In Newton’s method, you start with an initial guess θ = θ0 and keep
iterating:

θt+1 = θt −
q̇(θt)

q̈(θt)
, t = 1, 2, · · ·

The sequence θ0, θ1, θ2, · · · eventually converges to the solution θ̂.
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4 Quality of the normal approximation to the posterior

Laplace’s technique just gives a way to get a bell curve to approximate the posterior pdf. It
does not say anything about the quality of the approximation. However, there are general
guarantees that such an approximation is actually very good, when the model is a “regular”
one, the prior pdf is smooth and the sample size n is large. We state the following result
(without technical details) that is an analogue of the asymptotic normality result for MLE
(Notes 6).

Result 1. (Bernstein-von Mises Theorem) Consider the model X1, · · · , Xn
IID∼ g(xi|θ),

θ ∈ Θ. Under some regularity conditions on the pdfs/pmfs g(·|θ), including that all of them
have the same support, and that for each xi, θ 7→ log g(xi|θ) is twice continuously differen-
tiable, we have that for any prior ξ(θ) which is positive, bounded and twice differentiable
over Θ,

sup
z

∣∣∣P (θ ≤ z|X = x)− Φ
(
{−q̈(θ̂)}1/2(z − θ̂)

)∣∣∣ ≈ 0

for all large n.

Under the same regularity condition it turns out that θ̂ ≈ θ̂MLE(x) and that −q̈(θ̂) ≈ IOBS(x).

5 Normal approximation to conjugate posterior

Bernstein-von Mises clearly applies to most of the standard models for which a conjugate
prior family exists (among the ones we have seen, binomial, poisson, exponential are regular
families, but uniform is not). Therefore for large n, the conjugate posterior too should look
like a bell curve. This could also be verified case by case, and in fact one could get easier
normal approximation without having to use the Laplace’s technique. For example, for the
binomial model X ∼ Binomial(n, p) and a Beta(a, b) prior on p ∈ (0, 1), the posterior is
Beta(x + a, n − x + b) which should look like a bell curve when n is large. To identify the
approximating bell curve Normal(m, s2) we could simply match the mean and the variance:
m = (x+ a)/(a+ b+ n) and s2 = m(1−m)/(a+ b+ n+ 1).
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