
STA 250: Statistics

Notes 2. Statistical Models and Inference Formulation

Book chapters: 7.1

1 Describing Data & Statistical Models

A physicist has a theory that makes a precise prediction of what’s to be observed in data. If
the data doesn’t match the prediction, then the theory is “falsified”. A statistician only has
an imprecise description. This could be either because the theory is imprecise, or because
random errors are introduced in collecting the data, or a combination of the two.

Therefore a statistician’s data, from the perspective of her theory + data collection
method, is an “uncertain” quantity X. Any uncertain quantity can be best described by a
set of values S the quantity may assume, with a pdf/pmf f(x) on S. The pdf/pmf is to
be interpreted as follows: f(x1)/f(x2) = r means that X = x1 is r-times as plausible as
X = x2.

If the data can be described by a single pmf/pdf then there is no need of statistical
analysis. Statistics is needed when a multitude of competing theories lead to a multitude of
pmfs/pdfs. When all these pmfs/pdfs are collected together, we have a statistical model
for our analysis. If θ denotes the quantity by which the constituent pmfs/pdfs of the model
differ from each other, then we can write each pmf/pdf as f(x|θ). The quantity θ is a
“parameter” of this model. The set Θ of all possible values of θ is called the parameter space
of the model.

Example (Opinion Poll). Take for example a study where one wants to know what per-
centage of students in a certain university are in favor of a recent government policy. For a
large university, soliciting every student’s opinion is impossible. The researcher may want to
draw a random list of n = 500 students and quiz them on their opinion regarding the policy.
A random list gives the best chance of guarding against systematic biases in obtaining a
representative sample of students.

The data here is the number X of students in the sample who are in favor. If the
researcher thinks that a fraction p of the students, among a total of N university students
are in favor of the policy, then X can be described as hyper-geometric pmf f(x|p) given by

f(x|p) =

{
(mx)(

N−m
n−x )

(Nn)
for x = 0, 1, 2, · · · ,min(n,m)

0 otherwise

where m = Np is the total number of students in the university who are in favor of the
policy. The fraction p represents the researcher’s theory about the popularity of the policy
among college students. If she considers all possibilities 0 ≤ p ≤ 1, then here statistical
model for X is {f(x|p) : p ∈ [0, 1]} with f(x|p) given as above.
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Figure 1: X = number of students favoring the policy in a sample of 500 students. Descrip-
tion of X under hypergeometric (left) and binomial distributions (right) for three possible
values of p = 0.25, 0.5, 0.75.

When N is very large compared to n, we can also represent X by the binomial pmf

f(x|p) =

{ (
n
x

)
px(1− p)n−x for x = 0, 1, 2, · · · , n

0 otherwise

Now the researcher’s model is {f(x|p) : p ∈ [0, 1]} with f(x|p) given by the binomial pmf
above. Figure 1 below shows what the researcher expects to see as data X under the
hypergeometric or the binomial distribution for three possible values of p, namely, p = 1/4
(solid line), p = 1/2 (broken line) and p = 3/4 (dotted line).

Example (Trend of TC counts). A climate researcher wants to study whether hurricane
activity is intensifying with time. One way to do it is to study the annual counts of tropical
cyclones (TC) in an ocean basin, say the north Atlantic basin, for the past 100 years. The
data is then of the form X = (X1, X2, · · · , X100), with Xt giving the TC count in year t.
To describe this data, we can first focus on describing one Xt. Since Xt is a count, we can
describe it by a Poisson pmf:

ft(xt|µt) =

{
e−µtµ

xt
t

xt!
for xt = 0, 1, 2, · · ·

0 otherwise

where µt represents the expected count for year t. Now to describe, X = (X1, X2, · · · , X100)
we can treat the component Xt’s as independent and write

f(x|{µt}) = f1(x1|µ1)× f2(x2|µ2)× · · · × f100(x100|µ100)

which gives the joint pmf of X at x = (x1, x2, · · · , x100).
Although the above gives a description of X, it is not clear how to study the climate

researcher’s question within this framework. To achieve this, we now need to say something
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Figure 2: X = annual TC counts for 100 consecutive years. Description of X under Poisson
distributions with mean µt in year t. Three possible specifications µt = αβt−1 are considered;
(α, β) = (7, 1.005), (12, 1) and (20, 0.995).

about how the different µt compare to each other, and in particular, how they evolve over
time. One possible description is the following:

µt = αβt−1, t = 1, 2, · · · , 100

which says that the expected annual counts are evolving over time as µt = βµt−1, with a
growth factor β.

The research question of whether TC activity is increasing can now be represented by
various values of (α, β). In particular, β > 1 means that TC counts have an upward trend,
with larger β indicating faster growth. On the other hand, any β ≤ 1 indicates no or
downward trend. Therefore a statistical model for X is given by {f(x|µ0, β) : α ∈ (0,∞), β ∈
(0,∞)} where

f(x|α, β) = f1(x1|α)× f2(x2|αβ)× · · · × f100(x100|αβ99).

Figure 2 shows the description of X under three choices of (α, β): (7, 1.005), (12, 1) and
(20, 0.995).

Note that unlike the previous example, the the choice of model for this example was a
lot less obvious. Indeed, one could use many distributions, instead of a Poisson pmf, to
describe each Xt. Furthermore, the evolution of µt over time t, could also be described in
many different ways. What we have built here is “a” description of the data, whether there
is a better description can always be debated.

2 Formulating Statistical Inference Problems

Once data has been adequately described by a statistical model, the next task is to formu-
late the research question in terms of the model. There are a couple of ways this can be done.

Hypothesis testing: First, we could present the research question as trying to decide between
two competing “hypotheses” or statements about the model parameter θ: H0 : θ ∈ Θ0 and
H1 : θ ∈ Θ1 where Θ0 and Θ1 form a partition of the parameter space, i.e., Θ0 and Θ1 are
disjoint and Θ = Θ0 ∪Θ1.
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For the TC count example, one could set up the research question about trend in terms
of the hypotheses H0 : β = 1 (no trend) against H1 : β ̸= 1 (some trend). Note that here
Θ0 = {(α, β) : α > 0, β = 1} and Θ1 = {(α, β) : α > 0, β > 0, β ̸= 1}. For the opinion
poll example, the question of whether the policy has majority support can be presented
as H0 : p ≤ 0.5 (no majority support) against H1 : p > 0.5 (majority support). Here
Θ0 = [0, 0.5] and Θ1 = (0.5, 1].

Once the research question has been represented by two competing hypotheses about
the model parameter, the inference task is to decide which statement should be accepted in
light of the data that we observe. Such hypotheses testing forms the mainstay of classical
statistics and has played an immense role in both development of statistics as a subject as
well as its acceptance by the wider scientific community.

Predicting future data: For the TC trend data, it might be more interesting to assess whether
we are going to get a higher number of tropical cyclones in the future, and if so then by
what extent? For example, we could think of the count X∗ in the 10th year from now, and
continuing with our model for TC counts, describe X∗ by Poisson(αβ109) pmf. The inference
question can be formulated in terms of statements relating to X∗, such as “are we going to
see X∗ > 30?” or “what is an interval of likely values of X∗?”. We try to answer these
questions about X∗ given all the information we gather on (α, β) from data on X1, · · · , Xn.

Example (Drug Efficacy). A standard application of statistics is in clinical trials for de-
termining effectiveness of a new drug. A pool of subjects are recruited in the trial and
each subject is randomly assigned to get either the new drug (treatment) or a placebo (con-
trol). Effectiveness measurements X1, · · · , Xn and Y1, · · · , Ym are recorded from the two

groups. A standard model for such data is: Xi
IID∼ Normal(µ1, σ

2), Yj
IID∼ Normal(µ2, σ

2),
−∞ < µ1, µ2 < ∞, σ > 0. Usually interest focus on testing H0 : µ1 = µ2 against
H1 : µ1 ̸= µ2. However, one could also think of two future subjects one assigned to treat-
ment and the other to control and speculate about how their effectiveness measurements
X∗ ∼ Normal(µ1, σ

2) and Y ∗ ∼ Normal(µ2, σ
2) will compare against each other. We could be

interested in quantifying the chances of X∗ > Y ∗ or simply reporting an interval for X∗−Y ∗.

Reporting an Interval for a Parameter: In the drug efficacy study, if we thought of a large
number of future subjects assigned to treatment and another large number assigned to control
and looked at the difference between their average effectiveness measures, then this quantity
will be approximately µ1−µ2 under our model. And so an interval of likely values for µ1−µ2

can be interpreted as an interval of likely values for the average treatment effect. In cases like
this, reporting an interval for µ1−µ2 becomes of direct research interest. We will informally
refer to such a task as parameter estimation.

3 Classical & Bayesian Paradigms of Inference

Going forward we will see two major paradigms of carrying out statistical inference. We will
see how the paradigm of classical statistics is driven by performance guarantees associated
with hypotheses testing. The framework also extends to parameter estimation. We will
also see how prediction and parameter estimation fit in more naturally within the Bayesian
paradigm which focuses more on quantifying uncertainties about quantities at hand.
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