
STA 250: Statistics

Notes 15. Comparing two normal populations

Book chapters: 9.6

1 Background

A large number of statistical applications boil down to comparing two populations through
their means. For example, suppose you have to decide which of the two sites, site A and site
B, is to be excavated in a copper mine. Your decision is to be based on copper specimens
X1, · · · , Xn from site A and Y1, · · · , Ym from site B. A reasonable data model is given by
Xi

IID∼ Normal(µ1, σ
2
1) and Yj

IID∼ Normal(µ2, σ
2
2) with Xi’s and Yj’s independent of each other.

Your decision on which site to excavate should depend on your assessment of the quantity
η = µ1 − µ2.

Similar tasks arise in clinical trials when comparing efficacy of a treatment against control,
in comparing income or achievement between two groups (split by gender or race or training
received, etc.), and so on. Note that, what we are interested in here is the difference between
the group specific expected values (means) of the outcome variable. Another interesting
variable to look at would be D = Ym+1 −Xn+1, the difference in the outcome value between
future (hypothetical) samples drawn from each group. However, we won’t address this today.

2 Classical analysis of the two means problem with equal variance

In some applications it is reasonable to assume that the two groups have identical variability
around their respective means, i.e., the model simplifies to X1, · · · , Xn

IID∼ Normal(µ1, σ
2),

Y1, · · · , Ym
IID∼ Normal(µ2, σ

2), Xi’s and Yj’s are independent, with model parameters µ1 ∈
(−∞,∞), µ2 ∈ (−∞,∞), σ2 ∈ (0,∞). We shall denoteX = (X1, · · · , Xn), Y = (Y1, · · · , Yn),
so, our data is (X, Y ).

A typical (classical) inference task for this model is to test

H0 : µ1 = µ2 against H1 : µ1 ̸= µ2.

Because X̄ is expected to be close µ1 and Ȳ is expected to be close to µ2, the statistic |X̄−Ȳ |
gives a reasonable measure of evidence against H0, i.e., we will be inclined to think H0 is
false if |X̄ − Ȳ | was observed to be large. Note that under the model,

X̄ − Ȳ ∼ Normal

(
µ1 − µ2, σ

2

{
1

n
+

1

m

})
. (1)

1



So if we knew the value of σ, we could use the test statistic:

T (X,Y ) =
|X̄ − Ȳ |

σ
√

1
n
+ 1

m

and reject H0 for large values of T (X, Y ). But σ too is unknown and we need to use an
estimate σ̂(X, Y ) of σ to construct our test statistic:

T (X, Y ) =
|X̄ − Ȳ |

σ̂(X,Y )
√

1
n
+ 1

m

and reject H0 for large values of T (X, Y ). A typical estimate we use is:

σ̂2(x, y) =
n+m

n+m− 2
σ̂2

MLE =
(n− 1)s2x + (m− 1)s2y

n+m− 2
.

3 ML Theory

It turns out that any ML interval for η = µ1 − µ2 equals

X̄ − Ȳ ∓ c · σ̂(X,Y )

√
1

n
+

1

m
(2)

with σ̂ as above, for some c > 0. To calculate coverage of this interval, we can state the
following analog of (1)

X̄ − Ȳ − (µ1 − µ2)

σ̂(X,Y )
√

1
n
+ 1

m

∼ t(n+m− 2) (3)

and therefore choosing c = zn+m−2(α) guarantees a coverage of 1−α at any parameter value.
Two consequences of this result are:

Result 1. A 100(1− α)% ML confidence interval for η = µ1 − µ2 is

x̄− ȳ ∓ zn+m−2(α) · σ̂(x, y)
√

1

n
+

1

m

with

σ̂(x, y) =

√
(n− 1)s2x + (m− 1)s2y

n+m− 2

and a size-α ML test for H0 : µ1 = µ2 rejects H0 if 0 ̸∈ x̄− ȳ ∓ zn+m−2(α) · σ
√

1
n
+ 1

m
.

Recall that we love ML tests and confidence intervals because they are optimal a large class
of reasonable testing and interval rules.
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4 Default Bayesian Analysis

For a Bayesian analysis of the model and inference on η = µ1 − µ2, a common default prior
choice on (µ1, µ2, σ

2) is the reference prior:

ξ(µ1, µ2, σ
2) =

1

σ2
, −∞ < µ1, µ2 < ∞, σ > 0

which leads to an extended normal-inverse-chi-square posterior pdf on (µ1, µ2, σ
2) that we

can describe as:

1. σ2|(X = x, Y = y) has an inverse-χ2 distribution: (n+m−2)σ̂2(x,y)
σ2 ∼ χ2(n+m− 2)

2. µ1 and µ2 are conditionally independent given σ2 and (X = x, Y = y) with: µ1|σ2 ∼
Normal(x̄, σ2/n) and µ2|σ2 ∼ Normal(ȳ, σ2/m).

A big consequence is that the posterior pdf of η = µ2 − µ2 can be described as:

η − (x̄− ȳ)

σ̂(x, y)
√

1
n
+ 1

m

∼ t(n+m− 2)

and consequently, a 95% posterior range for η = µ1 − µ2 given data is

x̄− ȳ ∓ zn+m−2(α) · σ̂(x, y)
√

1

n
+

1

m

which is numerically the same as the 95% ML confidence interval for η.

5 Unequal variances: Classical

In the more general setting, we should allow the two groups to have different variabilities
around their respective means, i.e., we cannot assume σ2

1 = σ2
2. So now our model is

X1, · · · , Xn
IID∼ Normal(µ1, σ

2
1), Y1, · · · , Ym

IID∼ Normal(µ2, σ
2
2), Xi’s and Yj’s are independent.

The model parameters are −∞ < µ1, µ2 < ∞, σ2
1, σ

2
2 > 0.

Rather surprisingly exact 100(1−α)% confidence intervals for η = µ1−µ2 are not known
for this problem. Instead, the following approximately 100(1 − α)% confidence interval
(known as Welch’s method) is widely popular:

(x̄− ȳ)∓ zr(x,y)(α)

√
s2x
n

+
s2y
m

where the degrees of freedom r(x, y) depends on data as

r(x, y) =

(
s2x
n
+

s2y
m

)2

s4x
n2(n−1)

+
s4y

m2(m−1)

.

The associated Welch’s t-test for H0 : µ1 = µ2 rejects H0 if 0 ̸∈ (x̄− ȳ)∓ zr(x,y)(α)

√
s2x
n
+

s2y
m
.
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6 Unequal variance: Default Bayes

There is no standard default prior for the full model with σ1 ̸= σ2. It is possible to do default
Bayes analysis of the two samples separately:

Xi
IID∼ Normal(µ1, σ

2
1), ξ1(µ1, σ

2
1) =

1

σ2
1

=⇒ ξ1(µ1, σ
2
1|x) = Nχ−2(x̄, n, n− 1, s2x)

Yj
IID∼ Normal(µ2, σ

2
2), ξ2(µ2, σ

2
2) =

1

σ2
2

=⇒ ξ2(µ2, σ
2
2|y) = Nχ−2(ȳ, m,m− 1, s2y)

and combine them together to draw inference on η = µ1−µ2. In particular if took the “prod-
uct prior” ξ(µ1, σ

2
1, µ2, σ

2
2) = ξ1(µ1, σ

2
1) × ξ2(µ2, σ

2
2) then the posterior pdf of (µ1, σ

2
1, µ2, σ

2
2)

also retains the product structure:

ξ(µ1, σ
2
1, µ2, σ

2
2|x, y) = ξ1(µ1, σ

2
1|x)ξ2(µ2, σ

2
2|y).

Unfortunately, it is still not possible to write the posterior pdf of η = µ1−µ2 in a recognizable
form. But we can use Monte Carlo! Here is how we could construct a 95% posterior range
for η with a large Monte Carlo sample size M (say M = 10, 000):

1. SampleM values of µ1 from its marginal posterior givenX = x. From our single normal
Bayesian theory, this posterior pdf is given by:

√
n(µ1 − x̄)/sx ∼ t(n − 1). That is

samples µ
(1)
1 , · · · , µ(M)

1 of µ1 can be drawn by first drawing w(1), · · · , w(M) IID∼ t(n − 1)

and setting µ
(k)
1 = x̄+ sxw

(k)/
√
n, k = 1, · · · ,M .

2. Sample M values of µ2 from its marginal posterior give Y = y. Now we draw v(k)
IID∼

t(m− 1) and set µ
(k)
2 = ȳ + syv

(k)/
√
m, k = 1, · · · ,M .

3. Combine the two samples to get M samples of η: η(k) = µ
(k)
1 − µ

(k)
2 , k = 1, · · · ,M and

report its 95% range by finding their 2.5-th and 97.5-th sample percentiles.

Example (Soporific drug). In a sleep study, 10 patients (group 1) received a soporific drug
while 10 other patients (group 2) received a placebo. For every patient, their increase in
nightly sleep hours was recorded. Let Xi denote the measurements from group 1 and Yj’s

those from group 2. Model Xi
IID∼ Normal(µ1, σ

2
1), Yj

IID∼ Normal(µ2, σ
2
2), Xi’s and Yj’s are

independent. We are interested in confidence intervals for η = µ1−µ2 based on observations
(1.9, 0.8, 1.1, 0.1, -0.1, 4.4, 5.5, 1.6, 4.6, 3.4) from group 1 and (0.7, -1.6, -0.2, -1.2, -0.1,
3.4, 3.7, 0.8, 0.0, 2.0) from group 2. For these observations n = m = 10, x̄ = 2.33, sx = 2,
ȳ = 0.75 and sy = 1.79.

If we assume σ2
1 = σ2

2, then a 95%-confidence interval for η is

1.58∓ z18(.05)× 0.85 = 1.58∓ 2.1× 0.85 = [−0.205, 3.365]

which is also the 95% posterior range under the default Bayes analysis.
On the other hand, if we didn’t assume equality and the variance, then we first calculate

r(x, y) = 17.78 (fairly close to n+m− 2 = 18). Therefore a 95% (approximate) confidence
interval is

1.58∓ z17.78(0.05)× 0.85 = [−0.205, 3.365].

Under the product prior default Bayes analysis a 95% posterior range for η equals: [−0.33, 3.48].
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