
STA 941: Bayesian Nonparametrics
HW Set 3

Download the file www.stat.duke.edu/~st118/sta941/Datasets/us-mortality.csv which
contains US mortality records by county between 1999 and 2012. The variables measured are:

• Year: measurement year

• FIPS_Code: unique FIPS code of the county

• County: name of the county

• State: state

• Deaths: actual number of deaths

• Population: total population size

• Mortality: crude mortality rate in 100,000

• Tmax90: #days in the year with max daily temp over 90◦F

• Tmax32: #days in the year with max daily temp below 32◦F

• Tmin32: #days in the year with min daily temp below 32◦F

• Tmin0: #days in the year with min daily temp below 0◦F

• Precip1: #days in the year with 0.01 inch rainfall or more

• Precip10: #days in the year with 0.1 inch rainfall or more

• Snow: #days in the year with 0.1 inch snowfall or more

• Density: population density

• Income: median household income

• Hospital: #number of hospitals (averaged across years)

The weather records vary across years and are not available for year 1999. The records on income
and population density are static. So is hospital count, which is calculated by averaging sporadic
information available for each county during the observation time period.

Consider a mixed effects linear model regression of crude mortality rate as follows. Below, c
indexes counties and t denotes Year - 1999.

Mortalityct ∼ β0(c) + t · β1(c) + βw1 Tmax90ct + βw2 Snowct + βw3 Precip10ct + errct,

β0(c) = δ0(c) + γ01 ·Hospitalc + γ02 ·Densityc + γ03 · Incomec

β1(c) = δ1(c) + γ11 ·Hospitalc + γ12 ·Densityc + γ13 · Incomec

which can be re-expressed in the more conventional “fixed effects + random effects + error” form
as

Mortalityct = xTctβ + zTctθc + errct
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where

xct =


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, β =
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, zct =

(
1
t

)
, and, θc =

(
δ0(c)
δ1(c)

)

Analyze the model under the following assumptions:

• errct ∼ N(0, σ2), independently across c and t [For now, ignore the fact that this is a bad
assumption! One should at least have errct ∼ N(0, σ2/Pc) where Pc is the county population
count.]

• θc ∼ P , independently across c, where P is an unknown bivariate distribution to be estimated
from data.

Assume the reference prior on (β, σ2) ∝ 1/σ2. For specifying a prior on P , consider three possibil-
ities1:

Gaussian: P = N(µ,Σ), µ ∼ N(m,S), Σ ∼ IW2(ν, T )

DP: P ∼ DP(a,N(µ,Σ)), µ ∼ N(m,S), Σ ∼ IW2(ν, T ), a ∼ Ga(1, 1)

DPM: P =
∫
N(η,Ω)Q(dη), Q ∼ DP(a,N(µ,Σ)), µ ∼ N(m,S), Σ ∼ IW2(ν, T ), a ∼ Ga(1, 1),

Ω ∼ IW (κ,W )

where the hyper-parametersm,S, ν, T, κ andW are fixed as follows. First run an ordinary regression
of mortality on the fixed effects regressors (i.e., xct) to get an estimate β̂ of β and corresponding
residuals rct = Mortalityct − xTctβ̂. Then for each county c, run a separate regression of rct on zct,
t = 1, . . . , T , to obtain an initial estimate θ̂c of θc. Let m0 and V0 be the mean and variance of the
estimated θ̂c, c = 1, . . . , C. Set: m = m0, S = 4V0, ν = 4, T = V0, κ = 4, W = V0.

Each model can be fitted with a Gibbs sampler. Here are some clues as to how to design such
samplers.

• For the Gaussian model, a Gibbs sampler cycles through making draws of (β, σ2), θ1:C , µ
and Σ from their respective conditional posterior distributions given everything else. The
conditional posterior of (β, σ2) is easily derived from the reduced model Yct = xTctβ + errct,

errct
IID∼ N(0, σ2), with [β, σ2] ∝ 1/σ2, where, Yct = Mortalityct − zTctθc. Similarly, the condi-

tional posterior of θ1:C comes from the reduced model, Yct = zTctθc + errct, errct ∼ N(0, σ2),

with, θc
IID∼ N(µ,Σ) where, now, Yct = Mortalityct−xTctβ. Notice that the conditional posterior

of θ1:C factors into a product over the individual θc, i.e., draws can be made in parallel sepa-
rately for each county. Finally, updating µ and Σ depends only on the piece: θc

IID∼ N(µ,Σ),
µ ∼ N(m,S) and Σ ∼ IW (ν, T ).

1Here the d-dimensional inverse Wishart distribution IWd(r, S) is parametrized such that V ∼ IWd(r, S) implies
EV = S/(r − d− 1)
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• For DPM, you can do a Neal Algorithm 2 like extension of the above by introducing latent
parameters ηc, c = 1, . . . , C and rewriting the model as θc

IND∼ N(ηc,Ω) and ηc
IID∼ Q. To

implement Algorithm 2, you will have to keep track of the clustering labels [call them `c] and
unique values of ηc.

• For the DP implementation, you can implement Neal Algorithm 2 into a Gibbs sampler. You
can also try a version of the DPM model with a very large value of κ so that Ω is effectively
a zero matrix.

Implement MCMC model fitting for each prior specification and compare results. To make the
computing time more manageable, you may want to restrict your analysis to a single state at a time
(e.g., NC which has 100 counties). Hold out 2012 data to compare the three specifications on their
accuracy in mortality forecasting. To measure accuracy, you may want to use the average absolute
errors from the counties, weighted by county population sizes. Also, report a short comparative
analysis of the estimates/credible bands of the fixed effects and random effects.
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