STA 941: BAYESIAN NONPARAMETRICS HW 4

1. The polynomial spline kernel of smoothness $\nu \in \mathbb{N}$ is given by

$$k(s,t) = \sum_{i=0}^{\nu-1} \frac{s^{i}t^{i}}{(i!)^{2}} + \int_{0}^{1} \frac{(s-u)_{+}^{\nu-1}(t-u)_{+}^{\nu-1}}{\{(\nu-1)!\}^{2}} du, \quad s,t,\in[0,1],$$

where $x_+ = \max(x, 0)$.

- (a) Show that k indeed is a kernel.
- (b) Show that k is the reproducing kernel for the Hilbert space \mathcal{H} containing all functions on [0, 1] with $(\nu - 1)$ continuous derivatives and an ν -th derivative with a finite L_2 norm, with inner product $(f, g)_{\mathcal{H}} = \sum_{i=0}^{\nu-1} f^{(i)}(0)g^{(i)}(0) + \int_0^1 f^{(\nu)}(u)g^{(\nu)}(u)du$.

[Hint: Taylor's theorem in the integral form says for any f in \mathcal{H} , and any $t \in [0, 1]$,

$$f(t) = \sum_{i=0}^{\nu-1} \frac{f^{(i)}(0)}{i!} t^i + \int_0^1 \frac{(t-u)_+^{\nu-1} f^{(\nu)}(u)}{(\nu-1)!} du$$

Use this, and the fact that $g(x) = x_+^p/p!$ is (p-1)-times continuously differentiable with $g^{(i)} = x_+^{p-i}/(p-i)!$]

- (c) Use the kernel representation theorem to show that for observations $\{(x_j, y_j) \in [0, 1], \mathbb{R} : i = j, \ldots, n\}$, the minimizer \hat{f} of $PSS(f) = \sum_{j=1}^{n} \{y_j f(x_j)\}^2 + \lambda \|f\|_{\mathcal{H}}^2$ is a polynomial spline of order $m = 2\nu 1$ with knots at the observed x_j 's, and, $\hat{f}^{(i)}(t) = 0$ for $t > \max(x_1, \ldots, x_n)$, for all $j = \nu, \ldots, 2\nu 1$. [NOTE: This is not the natural smoothing spline solution! The penalty used above is $\|f\|_{\mathcal{H}}^2 = \sum_{i=0}^{\nu-1} \{f^{(i)}(0)\}^2 + \int_0^1 \{f^{(\nu)}(u)\}^2 du$ whereas in natural smoothing spline the penalty is only $\int_0^1 \{f^{(\nu)}(u)\}^2 du$. Also, the natural smoothing spline solution \hat{f} has $\hat{f}^{(i)}(t) = 0$ for $i \ge \nu$ on both $t > \max(x_1, \ldots, x_n)$ and $t < \min(x_1, \ldots, x_n)$. This could be established by carrying out the Taylor's expansion around $\xi_1 = \min(x_1, \ldots, x_n)$ instead of 0 as was done above.]
- 2. Let Z_n , Z'_n , n = 1, 2, ..., be two independent sequences of independent N(0, 1) random variables. For each $N \in \mathbb{N}$ define the random function

$$Y^{N}(t) = \pi^{-1/2} \sum_{n=1}^{N} \frac{1}{n} \{ Z_{n} \cos(2^{n}t) + Z'_{n} \sin(2^{n}t) \}, \ t \in [-\pi, \pi].$$

- (a) Show that there exists a centered, Gaussian element $Y \in L_2([-\pi,\pi])$ such that $\lim_{N\to\infty} ||Y^N Y||_{L_2} = 0$ with probability one. [Hint: show that with probability one, $(Y^N : N \ge 1)$ form a Cauchy sequence in $L_2([-\pi,\pi])$. Why is Y Gaussian?].
- (b) Calculate $\rho(s,t) = [\mathbb{E}\{Y(s) Y(t)\}^2]^{1/2}$ and argue that Y(t) is stationary.

3. A (separable) stationary Gaussian process Y(t) on $t \in [0, 1]$ has sample paths that are almost surely discontinuous if and only if the sample paths are almost surely unbounded ("if" is trivial, "only if" is Belyaev's theorem (Belyaev, 1961)). A use of Szidon's Lemma¹ shows that the Y(t) in #2 above is unbounded with probability one – hence Y(t) does not have continuous sample paths. Let us probe what happens to the sufficient condition we have seen for continuity of sample paths.

(a) Show that for
$$u = \pi 2^{-M}/3$$
, $M \in \mathbb{N}$, $r(u) := \rho(0, u) \ge \sqrt{3/\pi} \{ \log_2(\pi/(3u) + 1) \}^{-1/2}$.

- (b) Assuming $r(u) \ge c \{\log(1/u)\}^{-1/2}$ holds generally for all small $u \in (0,1)$ and for some constant c > 0, show that $\int_0^1 \{\log N(r, [-\pi, \pi], \rho)\}^{1/2} dr = \infty$.
- 4. Consider the regression model

$$y_i = f(x_i) + \epsilon_i, \quad \epsilon_i \sim N(0, \sigma^2),$$

$$f \sim \text{GP}(0, C_{\tau, \ell}^{\text{SE}})$$

where $C_{\tau,\ell}^{\text{se}}(s,t) = \tau^2 \exp\{-(s-t)^2/(2\ell^2)\}$ is the squared-exponential kernel with variance τ^2 and characteristic length-scale ℓ . Assume all $x_i \in [0, 1]$.

- (a) Simulate and plot² one realization f_0 of f from the prior with $\tau = 1, \ell = 0.08$.
- (b) Fix n = 20 and generate data $\{(x_i, y_i) : i = 1, ..., n\}$ by drawing x_i 's uniformly from [0,1] and then drawing $y_i \sim N(f_0(x_i), \sigma^2)$ with $\sigma = 0.1$. Here f_0 is the function you simulated in part (a). Note that the x_i 's may not be on the grid of x-values you used for simulation. How do you extend your simulation of f_0 to these new points?
- (c) Now onto estimation of f based on the data you generated in part (b). Assume $\tau = 1$ and $\sigma = 0.1$ are given, whereas ℓ and f are unknown. Suppose further we restrict ℓ to the set of values $\mathcal{L} = \{0.16/r : r \in \{0.1, 0.5, 1, 2, 3, 4, 5\}\}$. For each such value of ℓ , evaluate the log marginal likelihood log $p(y \mid x, \ell)$ and tabulate these. How informative is the data about ℓ ? Also, for each choice of ℓ make plots of the posterior mean and 95% credible band of f(x) for x over the uniform grid used in part (a). Overlay the data points and the true f_0 on your plot. Comment on the qualitative differences between these plots, keeping in mind the concepts of smoothing and local learning.
- (d) Under a (discrete) uniform prior on ℓ over the finite set \mathcal{L} above, visually summarize the posterior mean and 95% credible bands for f.

References

Belyaev, Y. K. (1961). Continuity and hölder?s conditions for sample functions of stationary gaussian processes. In Proc. 4th Berkeley Symp. Math. Statist. and Prob, Volume 2, pp. 22–33.

 $[\]frac{1}{1} \frac{1}{1} \sum_{n} (b_n^2 + c_n^2) < \infty, \sum_{n} (|b_n| + |c_n|) = \infty \text{ and } \theta_{n+1}/\theta_n > \lambda > 1 \text{ for all } n \text{ then the } L_2[-\pi, pi] \text{ function } f(t) := \sum_{n} \{b_n \cos(\theta_n t) + c_n \sin(\theta_n t)\}, t \in [-\pi, \pi] \text{ is unbounded.}$ ²Of course you will have to do this over some discrete grid of x values. You may use the uniform grid

 $^{\{0, 0.01, \}ldots, 1.00\}$ of mesh size 0.01 for both simulation and graphing.