
STA 941: Bayesian Nonparametrics
HW 4

1. The polynomial spline kernel of smoothness ν ∈ N is given by

k(s, t) =
ν−1∑
i=0

siti

(i!)2
+

∫ 1

0

(s− u)ν−1+ (t− u)ν−1+

{(ν − 1)!}2
du, s, t,∈ [0, 1],

where x+ = max(x, 0).

(a) Show that k indeed is a kernel.

(b) Show that k is the reproducing kernel for the Hilbert space H containing all functions
on [0, 1] with (ν−1) continuous derivatives and an ν-th derivative with a finite L2 norm,
with inner product (f, g)H =

∑ν−1
i=0 f

(i)(0)g(i)(0) +
∫ 1
0 f

(ν)(u)g(ν)(u)du.

[Hint: Taylor’s theorem in the integral form says for any f in H, and any t ∈ [0, 1],

f(t) =

ν−1∑
i=0

f (i)(0)

i!
ti +

∫ 1

0

(t− u)ν−1+ f (ν)(u)

(ν − 1)!
du.

Use this, and the fact that g(x) = xp+/p! is (p−1)-times continuously differentiable with

g(i) = xp−i+ /(p− i)! ]

(c) Use the kernel representation theorem to show that for observations {(xj , yj) ∈ [0, 1],R :

i = j, . . . , n}, the minimizer f̂ of PSS(f) =
∑n

j=1{yj − f(xj)}2 + λ‖f‖2H is a polynomial

spline of order m = 2ν − 1 with knots at the observed xj ’s, and, f̂ (i)(t) = 0 for t >
max(x1, . . . , xn), for all j = ν, . . . , 2ν − 1.

[NOTE: This is not the natural smoothing spline solution! The penalty used above
is ‖f‖2H =

∑ν−1
i=0 {f (i)(0)}2 +

∫ 1
0 {f

(ν)(u)}2du whereas in natural smoothing spline the

penalty is only
∫ 1
0 {f

(ν)(u)}2du. Also, the natural smoothing spline solution f̂ has

f̂ (i)(t) = 0 for i ≥ ν on both t > max(x1, . . . , xn) and t < min(x1, . . . , xn). This could be
established by carrying out the Taylor’s expansion around ξ1 = min(x1, . . . , xn) instead
of 0 as was done above.]

2. Let Zn, Z ′n, n = 1, 2, . . ., be two independent sequences of independent N(0, 1) random
variables. For each N ∈ N define the random function

Y N (t) = π−1/2
N∑
n=1

1

n
{Zn cos(2nt) + Z ′n sin(2nt)}, t ∈ [−π, π].

(a) Show that there exists a centered, Gaussian element Y ∈ L2([−π, π]) such that limN→∞ ‖Y N−
Y ‖L2 = 0 with probability one. [Hint: show that with probability one, (Y N : N ≥ 1)
form a Cauchy sequence in L2([−π, π]). Why is Y Gaussian?].

(b) Calculate ρ(s, t) = [E{Y (s)− Y (t)}2]1/2 and argue that Y (t) is stationary.
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3. A (separable) stationary Gaussian process Y (t) on t ∈ [0, 1] has sample paths that are almost
surely discontinuous if and only if the sample paths are almost surely unbounded (“if” is
trivial, “only if” is Belyaev’s theorem (Belyaev, 1961)). A use of Szidon’s Lemma1 shows
that the Y (t) in #2 above is unbounded with probability one – hence Y (t) does not have
continuous sample paths. Let us probe what happens to the sufficient condition we have seen
for continuity of sample paths.

(a) Show that for u = π2−M/3, M ∈ N, r(u) := ρ(0, u) ≥
√

3/π{log2(π/(3u) + 1}−1/2.

(b) Assuming r(u) ≥ c{log(1/u)}−1/2 holds generally for all small u ∈ (0, 1) and for some
constant c > 0, show that

∫ 1
0 {logN(r, [−π, π], ρ)}1/2dr =∞.

4. Consider the regression model

yi = f(xi) + εi, εi ∼ N(0, σ2),

f ∼ GP(0, Cse
τ,`)

where Cse
τ,`(s, t) = τ2 exp{−(s− t)2/(2`2)} is the squared-exponential kernel with variance τ2

and characteristic length-scale `. Assume all xi ∈ [0, 1].

(a) Simulate and plot2 one realization f0 of f from the prior with τ = 1, ` = 0.08.

(b) Fix n = 20 and generate data {(xi, yi) : i = 1, . . . , n} by drawing xi’s uniformly from
[0, 1] and then drawing yi ∼ N(f0(xi), σ

2) with σ = 0.1. Here f0 is the function you
simulated in part (a). Note that the xi’s may not be on the grid of x-values you used
for simulation. How do you extend your simulation of f0 to these new points?

(c) Now onto estimation of f based on the data you generated in part (b). Assume τ = 1
and σ = 0.1 are given, whereas ` and f are unknown. Suppose further we restrict `
to the set of values L = {0.16/r : r ∈ {0.1, 0.5, 1, 2, 3, 4, 5}}. For each such value of `,
evaluate the log marginal likelihood log p(y | x, `) and tabulate these. How informative
is the data about `? Also, for each choice of ` make plots of the posterior mean and
95% credible band of f(x) for x over the uniform grid used in part (a). Overlay the data
points and the true f0 on your plot. Comment on the qualitative differences between
these plots, keeping in mind the concepts of smoothing and local learning.

(d) Under a (discrete) uniform prior on ` over the finite set L above, visually summarize the
posterior mean and 95% credible bands for f .
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1if
∑

n(b
2
n + c2n) < ∞,

∑
(|bn| + |cn|) = ∞ and θn+1/θn > λ > 1 for all n then the L2[−π, pi] function f(t) :=∑

n{bn cos(θnt) + cn sin(θnt)}, t ∈ [−π, π] is unbounded.
2Of course you will have to do this over some discrete grid of x values. You may use the uniform grid

{0, 0.01, . . . , 1.00} of mesh size 0.01 for both simulation and graphing.
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