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1 Pitman-Yor Process

If Z1, . . . , Zn
IID∼ P , P ∼ DP(a, π) with π non-atomic, then it can be shown that Kn =

the number of distinct elements among Z1, . . . , Zn satisfies:

lim
n→∞

1

log n
EKn = a,

1

log n
(Kn − a log n) → 0 a.s..

To see the first result, let D1 = 1 and Di = I(Zi ̸∈ {Z1, . . . , Zi−1), i ≥ 1, so that
Kn = D1 + · · ·+Dn. We know that EDi = a/(a+ i− 1) and hence,

EKn =
n∑

i=1

a

a+ i− 1
≍ a

∫ n−1

0

1

a+ x
dx ≍ a log n.

The second result follows from SLLN provided
∑∞

i=1Var(Di)/(log i)
2 <∞, which holds

since Var(Di) = a(i− 1)/(a+ i− 1)2 and
∑

n>1 1/(n log
p n) <∞ for any p > 1.

Such logarithmic growth rates of Kn maybe undesirable in some applications.
Furthermore, the sizes of these Kn clusters show an exponential tail behavior that
might be undesirable as well. Arrange the clusters from largest to smallest with sizes
m1 ≥ m2 ≥ · · · ≥ mKn . For any fixed k ≥ 1, define Vk = limn→∞mk/n. Then
EVk ≍ exp(−k/a). However, in many natural databases in language processing, im-
age segmentation, etc., cluster size distributions exhibit a power-law tail decay, i.e.,
Vk ∼ k−γ for some γ > 0. See Sudderth and Jordan (2009) and Goldwater et al. (2011)
for some illuminating discussions.

A simple extension of DP that offers more flexible clustering rates and cluster
size tail behaviors is the Pitman-Yor process (Ishwaran and James, 2001). The stick-
breaking definition is almost identical to DP’s, i.e.,

P (·) =
∞∑
l=1

wlδλl
(·)

with λl
IID∼ π and wl = βl

∏
j<l(1−βj) but the break proportions βl are not IID; instead

βl
IND∼ Be(1 − b, a + bl) for some b ∈ [0, 1) and a > −b. The extra parameter b is

often called the discount parameter. Denote this process by PY(a, b, π). Notice that
PY(a, 0, π) = DP(a, π).

Clearly, more general definitions are possible by letting βl
IND∼ Gl for well chosen

sequences of distributions Gl on (0, 1). The stick-breaking process is a valid (random)
probability measure on Λ = supp(π) as long as

∑∞
l=1 E log(1−βl) = −∞. However, the

DP and the PY processes have several well known properties leading to computational

1



1 2 5 10 20 501e
−

05
1e

−
03

1e
−

01

1:k

re
l.s

iz
es

DP(5), n = 1e+05

Observed 
Exponential fit

1 5 50 5001e
−

05
1e

−
03

1e
−

01

1:k

re
l.s

iz
es

PY(5, 0.5), n = 1e+05

Observed 
Polynomial fit

Figure 1: Number of clusters and cluster size distributions. Here n = 100, 000. One se-
quence of Z1, Z2, . . . , Zn is generated from each of DP(5,−) and PY(5, 0.5,−). Number
of clusters can be inferred from the x-axis range. Both axes are plotted in logarithmic
scale.

tractability that are hard to replicate with other choices. A key property is the so-
called Polýa urn scheme representation of any Z1, . . . , Zn

IID∼ P , P ∼ PY (a, b, π) given
as follows (Pitman, 1995, Proposition 9): Z1 ∼ π and for i ≥ 1,

Zi+1|(Z1, . . . , Zi) ∼
a+ bKi

a+ i
π +

Ki∑
c=1

N i
c − b

a+ i
δZ∗

c
(1)

where Ki is the number of unique values amongst {Z1, . . . , Zi} with Z∗
c , c = 1, . . . , Ki,

denoting these unique values and N i
c = #{1 ≤ j ≤ i : Zj = Z∗

c }.
From (1), it follows that

EKi+1 = EKi +
a+ bEKi

a+ i

which implies,

EKn =
a

b

{
n∏

j=1

a+ b+ j − 1

a+ j − 1
− 1

}
by induction on n. Stirling’s approximation then implies

EKn ≍ Γ(a+ 1)

bΓ(a+ b)
nb.

See Pitman (2002, §3.3) for more details.
Therefore, the number of clusters under a PY process prior grows much more rapidly

than the log n rate offered by a DP. Moreover, the cluster size distribution also shows
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a power law under PY. As before, define Vk as the limiting relative size of the k-th
largest cluster. Pitman and Yor (1997, Proposition 17) show that

EVk ≍ Da,bk
−1/α

for some constant Da,b (given by a complicated but computable expression involving
gamma functions). Figure 1 shows a comparison of both cluster size and relative cluster
size distributions of a DP(5,−) and a PY(5, 0.5,−) [no need to specify π since partition
structure does not depend on it].

Clearly, model fitting with a PY-mixture model where observations Y1, . . . , Yn are
taken as Yj

IND∼ g(·|λj) with λj
IID∼ P , P ∼ PY(a, b, π), may proceed exactly as in the

case of a DP-mixture model. In every iteration of the MCMC, one first runs one cycle
of updates to regenerate the clustering pattern (either draw a new label or assign to
one of the existing clusters) followed by another cycle of updates of the cluster specific
parameters.

2 Priors on covariate dependent distributions

For mortality rate analysis, we previously focused on the longitudinal nature of the data
and motivated a linear mixed effects model because a linear regression fit of crude rate
on extreme weather variables, time and the interactions of time with hospital density,
median income and population density, threw up residuals that for many counties were
either all positive or all negative. Figure 2 shows a plot of 2012 prediction errors of
mortality rates from the same model fit (recall training data stopped at 2011). Clearly
there is a spatial pattern, indicating that a more accurate model should allow the
random effects distribution to vary spatially.

-898 - -89.8
-89.8 - 39.4
39.4 - 170
170 - 1050

2012 Prediction errors (LM full)

Figure 2: 2012 prediction errors from a linear model analysis of mortality rates.

This brings us to the general modeling context where one is interested in specifying
a prior distribution on a collection of probability measures Px on some space Λ indexed
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by a Euclidean variable x ∈ X . In the mortality analysis, each Px sits on Λ = Rq,
where q is the dimension of the random effect and X is a subset of R2, giving perhaps
the central latitude-longitude information for each county. Below we discuss how DP
and DP type prior specifications could be extended to allow covariate information.
But before we go there, we need to take a look at probability measures on the space
of functions (or curves) ΛX = {λ(·) : X → Λ}.

2.1 Random elements in functions spaces, the Gaussian pro-
cess

We are familiar with stochastic processes being defined as a collection of random vari-
ables indexed over, usually, a nice Euclidean subspace. For BNP modeling, it is more
useful to view stochastic processes as elements in a well behaved function space, such
as a Banach space of a Hilbert space.

For example, by a Gaussian process ξ = (ξ(x) : x ∈ X ) we usually mean a stochastic
process for which there are functions m : X → R and C : X × X → R+, such that
for any k ∈ N and any {x1, . . . , xk} ⊂ X , the random vector (ξ(x1), . . . , ξ(xk)) has
a k dimensional Gaussian distribution with mean (m(x1), . . . ,m(xk)) and covariance
matrix with (i, j)-th element C(xi, xj), 1 ≤ i, j ≤ k. The covariance function C needs
to be non-negative definite for the covariance matrix to be valid, and this imposes
some restrictions on construction of Gaussian processes. Let GP(m,C) denote such a
process.

Without loss of generality assume m ≡ 0, because if ξ ∼ GP(0, C) then for any
function m : X → R, m+ ξ ∼ GP(m,C). When C satisfies

C(s, s) + C(t, t)− 2C(s, t) ≤ K∥t− s∥γ,∀s, t ∈ X , (2)

for some K, γ > 0, there exists a stochastic process ξ ∼ GP(0, C) with continuous
sample paths, i.e., with probability one the map x 7→ ξ(x) is continuous. In such
cases, it is more useful to think of ξ as a random element of the Banach space C(X )
– the linear space of all real continuous functions on X equipped with the supremum
norm [C, Cd, Cb etc. are accepted notation to denote spaces of continuous, d-times
differentiable, continuous with bound b, etc. These are not to be confused with the C
I have used for the covariance function.]

In fact, an alternative way to define a Gaussian process whose sample paths belong
to a separable Banach space1. A random element ξ of a separable Banach space
(B, ∥·∥B) is called Gaussian if the distribution of the scalar variable b∗ξ is Gaussian for
every b∗ ∈ B∗, the dual space of B. We call ξ zero-mean if b∗ξ has mean zero for every
b∗ ∈ B∗. We won’t pursue this definition any further, but keep this in mind to always

1Separable means to have a countable dense subset. C(X ) is separable when X is a compact
Euclidean subset, a result that follows from Weierstrass approximation theorem which asserts any
continuous function is a limit of polynomials with rational coefficients. C(X ) is not separable when
X is unbounded. This forces us to restrict to compact X .

4



0.0 0.2 0.4 0.6 0.8 1.0

−
1.

5
−

0.
5

0.
5

x

ξ

Linear BS transform

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2

x

ξ

Square exponential

Figure 3: Draws of ξ(x) from two different Gaussian processes.

think of a GP as a probability distribution on the space of functions/curves/surfaces
and so on, i.e., view ξ = (ξ : ξ(x), x ∈ X ) as a whole instead of collection of random
variables.

Many specifications of the covariance function C are known that ensure continuous
and differentiable sample paths of ξ. Two specific examples to keep in mind are:

• Linear covariance: C(s, t) = (1, hT (s))S(1, hT (t))T , where h is a given transfor-
mation. This arises for Gaussian processes defined as: ξ(x) = (1, hT (x))γ with
γ ∼ N(0,Σ). It’s useful to define S = ρ2R, with R being a correlation matrix.

• Square-exponential covariance: A more flexible specification of smooth Gaussian
processes could be obtained with C(s, t) = ρ2 exp{−ψ2∥s− t∥2}, which is strictly
positive definite [will see a proof later].

Figure 3 shows draws of ξ from these two different processes, with ρ = 1, R = I, ψ = 2,
X = (0, 1) and h(x) denoting B-spline transforms with 3 degrees of freedom.

2.2 Dependent Dirichlet process priors

The stick-breaking representation of the Dirichlet process makes it conceptually easy
to extend it to a process whose realizations are a collection of probability distributions
{Px : x ∈ X} all defined on a common space Λ. In particular, one may take

Px(·) =
∞∑
l=1

wl(x)δλl(x)(·) (3)

where λl’s are independent Λ-valued stochastic processes on X and wl(x) = βl(x)
∏

j<l(1−
βj(x)) with βl’s being independent (0, 1) valued stochastic processes on X . If the λl
processes are IID and also the βl processes are both IID and satisfy βl(x) ∼ Be(1, a) at
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every x ∈ X , then for every fixed x, the random probability measure Px ∼ DP(a, πx),
where πx is the distribution of λl(x). Such extensions are generally referred to as
“dependent Dirichlet processes” (DDP), originating in MacEachern (1999, 2000).

2.2.1 Constant-weight DDP

Any practicable specification of (3) requires a fair amount of structure on the stochastic
process valued atoms and/or the stochastic process valued weights. The first wave
of DDP models mostly used a “constant weight” approach with βl(x) ≡ βl, and all
variations across X were encoded through the atoms λl(x), e.g., by drawing λls from a
Gaussian process distribution. Two prominent examples are De Iorio et al. (2004) and
Gelfand et al. (2005) who use, respectively, a linear GP and an exponential GP (i.e.,
without the square on ∥s− t∥ above).

The constant weight specification lends valuable computational tractability by pre-
serving the Polýa Urn scheme property of a single DP. Essentially, the collection
{Px : x ∈ X} with Px as in (3) with βl(·) ≡ βl and λl drawn IID from some probability
distribution Π on ΛX can be identified with a single DP

P̃ (·) =
∑
l

wlδλl
(·)

on ΛX with precision a and base measure Π. Any Zi
IND∼ Pxi

, i = 1, . . . , n could be
equivalently represented by the hierarchical representation:

Zi = ζi(xi), i = 1, . . . , n

ζ1, . . . , ζn
IID∼ P̃

P̃ ∼ DP(a,Π).

Figure 4 shows a draw from a DDP-mixture model: f(y|x) =
∫
N(y|µ, σ2)dPx(µ),

x ∈ [0, 1], where the underlying P̃ ∼ DP(a,Π) with Π denoting the zero-mean Gaussian
process distribution with square-exponential covariance kernel with parameters ρ = 1
and ψ = 2. The weights and the curve-valued atoms are shown on the top row. The
resulting Pxs, for x ∈ {0, 1/3, 2/3, 1} are shown in the other panels, along with the
normal mixture f(y|x), with σ = 0.5.

The fact that a single DP random measure P̃ induces a constant-weight DDP {Px :
x ∈ X} means that an urn scheme for (Z1, . . . , Zn) could be devised by augmenting
them with a vector of cluster labels c1, . . . , cn, which must satisfy ci = cj iff ζi = ζj,
but otherwise arbitrary. These cluster labels are NOT transient, i.e., they cannot be
generated on the fly as needed from the information contained in Zis, but must be
maintained and updated throughout within a bigger Markov chain sampler for the
Z1, . . . , Zn. This is because we may not be able to infer the ties in the functions ζis
simply from the ties in Zis. The conditional distribution of (ci, Zi) given (c−i, Z−i)
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Figure 4: Constant-weight DDP.

could be described as

P (ci ̸∈ c−i) =
a

a+ n− 1
; P (ci = c) =

|N−
c |

a+ n− 1
, c ∈ c−i. (4)

Zi|(Z−i, ci ̸∈ c−i) ∼ πxi
(·), Zi|(Z−i, ci = c) ∼ πxi

(·|λ(xj) = Zj, j ∈ N−
c ), c ∈ c−i, (5)

where N−
c = {j ̸= i : cj = c} and πx denotes the marginal distribution of λ(x) under

Π. This leads to possible Gibbs updates of latent parameters in a DDP-mixture model
of the form: yj

IND∼ g(·|θj), θj
IND∼ Pxi

, (Px : x ∈ X ) ∼ DDP.

2.2.2 Probit stick-breaking process

More recent approaches to DDP have tried to relax the constant weight specification
(Dunson and Park, 2008; Chung and Dunson, 2009; Duan et al., 2007). This leads to
a fair bit of complication in computing, essentially because urn schemes like (4)-(5)
are generally not available in such extensions. Arguably, the most computationally
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tractable specification of weight shifting DDP comes in the form of a probit stick
breaking process (PSBP; Rodriguez and Dunson, 2011). Here one takes

βl(x) = Φ(ξl(x))

where Φ denotes the standard normal CDF and ξls are independent Gaussian processes.
If the Gaussian processes are chosen so that Eξl ≡ 0 and Varξl ≡ 1, then at every x,
the resulting random measure Px ∼ DP(1, πx). But for other choices, PSBP may not
have a DP interpretation. Rodriguez and Dunson (2011) provide careful discussion
of the effect of the Gaussian process mean and variance specification on the resulting
clustering behaviors, including choices that resemble PY type discount factors. They
also advocate, for computational ease, to use constant atoms λl(x) ≡ λl ∈ Λ. Figure 5

shows a draw from a constant-atom PSBP, with λl
IID∼ N(0, 1) and ξl ∼ GP(0, C) where

C is the same square exponential kernel that we used for2 Figure 4.
PSBP does not have a convenient urn scheme but can be fitted with a Gibbs sampler

when the number of stick breaks is truncated at some upper bound N . Rodriguez
and Dunson (2011) justify truncation by invoking a general approximation bound on
truncation for covariate-free stick-breaking processes, originally due to Ishwaran and
James (see e.g., Ishwaran and James, 2001, Theorem 2). Here is a cleaner and more
extended take on it.

Let wl(·), l = 1, 2, . . . be a sequence of real valued stochastic processes on X such
that for each x ∈ X , the vector (w1(x), w2(x), . . .) ∈ ∆∞, the infinite dimensional
probability simplex. Also let λ1(·), λ2(·), . . . be a sequence of indepndent, Λ-valued
stochastic processes on X , which are also independent of wl(·)s. Let Π denote the
joint probability distribution of these stochastic processes. Define the collection of
probability measures P = {Px : x ∈ X} on Λ by Px(·) =

∑∞
l=1wl(x)δλl(x)(·). Also,

for any N ∈ N, define PN = {PN
x : x ∈ X} as PN

x (·) =
∑N

l=1w
N
l (x)δλl(x)(·), where

wN
l (x) = wl(x), l < N and wN

N (x) = 1 −
∑

j<N w
N
j (x). Let f(y|x) =

∫
g(y|λ)dPx(λ)

and fN(y|x) =
∫
g(y|λ)dPN

x (λ). For any x = (x1, . . . , xn) ∈ X n, define

m(y|x) =
∫ n∏

i=1

f(yi|xi)dΠ, mN(y|x) =
∫ n∏

i=1

fN(yi|xi)dΠ, y = (y1, . . . , yn) ∈ Yn,

which are the marginal pdf of (Y1, . . . , Yn) under the full and the N -truncated mixture
priors, given covariates x1, . . . , xn.

Theorem 1. ∥mN(·|x)−m(·|x)∥1 ≤ 2
∑n

i=1

∑
l≥N Ewl(xi).

Proof. Clearly,

∥fN(yi|xi)− f(yi|xi)∥1 = ∥{1−
∑
l≤N

wl(xi)}g(yi|λN(xi)) +
∑
l>N

wl(xi)g(yi|λl(xi))∥1

≤ 2
∑
l≥N

wl(xi),

2In fact, the same draws of the GP were used as atoms in Figure 4 and for the weights in Figure 5.
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Figure 5: Constant-atom PSBP.

and hence

∥mN(·|x)−m(·|x)∥1 ≤
∫

∥
∏
i

fN(yi|xi)−
∏
i

f(yi|xi)∥1dΠ

≤
∫ ∑

i

∥fN(yi|xi)− f(yi|xi)∥1dΠ

≤ 2
∑
i

∑
l≥N

Ewl(xi)

because ∥
∏

i pi −
∏

i qi∥1 ≤
∑

i ∥pi − qi∥1.

From Theorem 1, for n and x held fixed, the total variation distance between
the marginal data distributions under the full prior and the truncated prior vanishes
as N → ∞. When wl(x) is generated by stick-breaking with pieces βl(x) ∼ Be(1, a)
[marginally, for each x], the upper bound is approximately equal to n exp{−(N−1)/a},
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and hence one needs N ≈ a log(n) to meet a pre-specified truncation approximation
error bound. Unsurprisingly, this is same as the order of EKn for DP. Approximation
error bounds on the total variation distance between mN and m translate to approx-
imation error bounds of the resulting posterior distributions, see Ishwaran and James
(2002) for more discussion.

Under truncation to N components, the PSBP reduces to a finite mixture model,
and MCMC computation can be carried by introducing two sets of latent variables.
First, as in ordinary finite mixture model, introduce component labels ci, i = 1, . . . , n
and consider the equivalent representation of the model given by,

Yi
IND∼ g(yi|λci(xi)), i = 1, . . . , n

ci ∼ Mult(1, (w1(xi), . . . , wN(xi)), i = 1, . . . , n

wl(x) = Φ(ξl(x))
∏
j<l

{1− Φ(ξj(x))}, l = 1, . . . , N − 1

ξl
IID∼ GP(m,C), l = 1, . . . , N − 1

λl
IID∼ Π.

The critical step in an MCMC implementation of this model is the update of ξls, for
which one can use the standard probit parameter augmentation trick (Albert and Chib,
1993). Note that we only need to track ξls at the observed covariate values. With a
slight abuse of notation I will denote ξl(xi) by ξli. The conditional prior on cis given
ξlis can be induced by identifying

ci = min{1 ≤ l ≤ N : Zil > 0}

where Zil ∼ N(ξli, 1), l = 1, . . . , N − 1 and ZiN ≡ 1. Therefore, a valid update of the
ξlis given the cis, other parameters and data, can be carried out as,

1. Generate (transiently) Zil, l = 1, . . . , ci, i = 1, . . . , n as

Zil ∼

{
N(ξli, 1)|(−∞,0) if ci > l

N(ξli, 1)|(0,∞) if ci = l

2. Update ξl = (ξl1, . . . , ξln), in parallel across l = 1, . . . , N − 1, according to the
conjugate model Zjl ∼ N(ξlj, 1), j ∈ {1 ≤ i ≤ n : ci ≥ l}, ξl ∼ N(m,C).
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