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Abstract

Markov jump processes and continuous time
Bayesian networks are important classes of con-
tinuous time dynamical systems. In this paper,
we tackle the problem of inferring unobserved
paths in these models by introducing a fast aux-
iliary variable Gibbs sampler. Our approach is
based on the idea of uniformization, and sets
up a Markov chain over paths by sampling a fi-
nite set of virtual jump times and then running a
standard hidden Markov model forward filtering-
backward sampling algorithm over states at the
set of extant and virtual jump times. We demon-
strate significant computational benefits over a
state-of-the-art Gibbs sampler on a number of
continuous time Bayesian networks.

1 Introduction

Many applications require modelling the time evolution of
a dynamical system. A simple and popular approach is to
discretize time and work with the resulting discrete time
model. Such models have been well studied in the time
series modelling literature [Rabiner, 1989, Murphy, 2002].
Often however, the evolution of the system is asynchronous
with a number of different time scales. In this situation,
the dependencies of the resulting time-discretized model
can be sensitive to the chosen time scale. A more natural
approach is to work directly with the continuous time dy-
namical system. One of the simplest continuous time dy-
namical system is the Markov jump process [Çinlar, 1975],
which can be extended to incorporate structure into
its dynamics via continuous time Bayesian networks
[Nodelman et al., 2002]. Such models find applications
in fields ranging from systems biology [Gillespie, 1977]
to genetics [Fearnhead and Sherlock, 2006], network in-
trusion detection [Xu and Shelton, 2010] and human-
computer interaction [Nodelman and Horvitz, 2003].

A challenge towards using these models is the prob-

lem of inference, which typically cannot be performed
exactly. Various variational [Nodelman et al., 2002,
Nodelman et al., 2005, Opper and Sanguinetti, 2007,
Cohn et al., 2010] and sampling-based approximations
[Fearnhead and Sherlock, 2006, Hobolth and Stone, 2009,
El-Hay et al., 2008, Fan and Shelton, 2008] have been
proposed in the literature, but do come with problems:
usually they involve some form of time discretization,
matrix exponentiation, matrix diagonalization, or root
finding, and can be expensive for large problems.

In this work we describe a novel Markov chain Monte
Carlo (MCMC) sampler for Markov jump processes and
continuous time Bayesian networks that avoids the need
for such expensive computations, is computationally very
efficient, converges to the posterior with few iterations, and
does not involve any form of approximations (i.e. our sam-
pler will converge to the true posterior). Our method uses
auxiliary variables which simplify the structure of Markov
jump processes and allow the use of hidden Markov model
forward filtering-backward sampling algorithms to effi-
ciently resample the whole state sequence.

In Section 2 we briefly review Markov jump processes. In
Section 3 we introduce the idea of uniformization and de-
scribe our algorithm for the simple case of homogeneous
Markov jump processes. In Section 4 we briefly review
continuous-time Bayesian networks and extend our algo-
rithm to that setting. In Section 5 we report experiments
comparing our algorithm to a state-of-the-art Gibbs sam-
pler for continuous-time Bayesian networks and to varia-
tional inference for Markov jump processes. We end with
a discussion in Section 6.

2 Markov Jump Processes (MJPs)

A Markov jump process (S(t), t ∈ R+) (see for ex-
ample [Çinlar, 1975]) is a stochastic process with right-
continuous, piecewise-constant paths. The paths them-
selves take values in some countable space S which, as
in typical applications, we assume is finite (say S =
{1, 2, ...n}). We also assume the process is homogenous,



implying (together with the Markov property) that for all
times t′, t ∈ R+ and states i, j ∈ S,

p (S(t′ + t) = j|S(t′) = i,S(u);u < t′) = [Pt]ji (1)

for some stochastic matrix Pt which depends only on t.
The family of transition matrices (Pt, t ≥ 0) is defined by
a matrix A ∈ Rn×n called the rate matrix or generator of
the MJP. A is the time-derivative of Pt at t = 0, with

Pt = exp(At) (2)
p(S(t′ + dt) = j|S(t′) = i) = Ajidt (for i 6= j) (3)

where (2) is a matrix exponential and dt is an infinitesimal
quantity. The off-diagonal elements of A are non-negative,
and represent the rates of transiting from one state to an-
other. Its diagonal entries are Ai ≡ Aii = −

∑
j 6=iAji for

each i so that its columns sum to 0, with −Ai characteris-
ing the total rate of leaving state i.

Consider a time interval [tstart, tend] and let π be an initial
distribution over states at time tstart. Then an MJP can be
described by the following generative process over paths
on this interval:

1. At the initial time t0 = tstart, assign the MJP a state
s0 with p(S(t0) = s0) = πs0 . Let i = 1.

2. Draw z ∼ Exp(AS(ti−1)) and let ti = ti−1 + z.

3. If ti < tend, the MJP jumps to a new state si at time
ti, with p(S(ti) = si|S(ti−) = si−1) ∝ Asisi−1 for
each si 6= si−1. Increment i and go to step 2.

4. Otherwise, set ti = tend and stop.

Let N be the number of jumps in the MJP. Then the se-
quence of times T = {t0, . . . , TN+1} along with the se-
quence of states S = {s0, . . . , sN} completely characterize
the MJP path S(·). Their probability1 under the generative
process above is given by

p(S, T ) = πs0

(
N∏
i=1

|Asi−1 |e
Asi−1 (ti−ti−1)Asisi−1

|Asi−1 |

)
· eAsN

(tN+1−tN ) (4)

= πs0

(
N∏
i=1

Asisi−1

)
exp

(∫ tend

tstart

AS(t)dt

)
(5)

Note that the last term in (4) is the probability that the pro-
cess remains in state sN until at least time tN+1.

In this paper, we are concerned with the problem of sam-
pling MJP paths over the time [tstart, tend] given obser-
vations of the state of the MJP at a discrete set of times.

1Technically this is a density. For simplicity, we do not make
this explicit in this paper.

In the simplest case, we observe the state of the process
at the boundaries tstart and tend. More generally, we are
given the initial distribution over states π as well as a set
of O noisy observations X = {Xto1

, ...XtoO
} with likeli-

hoods p(Xtoi
|S(toi )) and we wish to sample from the pos-

terior p(S|X), or equivalently p(S, T |X).

A simple approach when the states at the boundaries are ob-
served is rejection sampling: sample paths from the prior
given the observed start state and reject those that do not
end in the observed end state [Nielsen, 2002]. This can be
extended to the case of noisy observations by importance
sampling or particle filtering [Fan and Shelton, 2008].
However, a large state-space, a long time interval or an un-
likely end state can result in large numbers of rejections or
small effective sample sizes.

A second approach marginalizes over the infinitely many
paths of the MJP in between observations using matrix ex-
ponentiation (2), and uses forward-backward dynamic pro-
gramming to sum over the states at the finitely many obser-
vation times (see [Hobolth and Stone, 2009] for a review).
Unfortunately, matrix exponentiation is an expensive oper-
ation that scales as O(n3), n being the number of states.
Moreover, the matrix resulting from matrix exponentiation
is dense and any structure, e.g. sparsity, in the rate matrix
A cannot be exploited.

In this paper we describe an MCMC algorithm to sam-
ple from the posterior distribution. Our method scales as
O(n2), does not require matrix exponentiation, and can
easily exploit structure in the rate matrix. Moreover, we
demonstrate that our sampler mixes very rapidly.

3 MCMC inference via uniformization

We first introduce the idea of uniformization [Jensen, 1953,
Çinlar, 1975, Hobolth and Stone, 2009], which forms the
basis of our sampling algorithm. For an MJP with rate-
matrix A, choose some Ω ≥ maxj (−Aj). Let W be an
ordered set of times on the interval [tstart, tend] drawn from
a homogenous Poisson process with intensity Ω. Because
the Poisson rate Ω dominates the leaving-rates of all states
of the MJP, W will, on average, contain more events than
the jump times T of the MJP. We can ‘thin’ the set W by
rejecting a number of events from W . In particular, letting
I be the identity matrix, observe that B = I + 1

ΩA is a
stochastic matrix; run a discrete time Markov chain with
initial distribution π and transition matrix B on the times
in W . This is a Markov chain subordinated to the Pois-
son process. It will assign a set of states V to the times
W . Unlike S, the set V can have virtual jumps where
a state jumps back to itself. Just as (S, T ) characterize a
MJP path, (V,W ) also characterize a sample path of some
piecewise-constant and right-continuous stochastic process
on [tstart, tend]. As the parameter Ω increases, the number
of times in W increases; at the same time the diagonal en-



tries of B increases, so that the number of self-transitions
also increases. The following proposition shows that these
two effects exactly compensate each other, so that the pro-
cess characterized by (V,W ) is precisely the desired MJP:

Proposition 1. For any Ω ≥ maxi (−Ai), (S, T ) and
(V,W ) define the same Markov Jump Process S(t).

Proof. Simply write down and compare the two probabili-
ties, see [Hobolth and Stone, 2009, Çinlar, 1975]

3.1 The MCMC algorithm

We adapt the uniformization scheme described above to
construct an auxiliary variable Gibbs sampler. The only
difference between (S, T ) and (V,W ) is the existence of
an auxiliary set U of virtual jumps in (V,W ). We proceed
by first drawing this set of virtual jumps given (S, T ), as a
result recovering the uniformized characterization (V,W ).
Given V , the distribution of W is simply a Markov chain
so we can now perform simple HMM forward filtering-
backward sampling, incorporating evidence from observa-
tions, to obtain a new state sequence Ṽ . Finally, dropping
the virtual jumps in (Ṽ ,W ) gives a new MJP path (S̃, T̃ ).

Consider sampling U from an inhomogenous Poisson pro-
cess with intensity R(t) = Ω + AS(t). This intensity is
piecewise-constant, taking the value ri = Ω+Asi on the in-
terval [ti, ti+1). Define ui as the number of auxiliary times
over this interval. The probability of U is then

p(U |S, T ) =
N∏
i=0

r
ui
i (ti+1−ti)uie−ri(ti+1−ti)

ui!
· ui!

(ti+1−ti)ui

=

(
N∏
i=0

(Ω +Asi
)ui

)
exp

(
−
∫ tend

tstart

(Ω +AS(t))dt
)

(6)

The ui! in the numerator of the first equation arises because
U is an ordered set.

Proposition 2. For any Ω ≥ maxi (−Ai), the Markov
jump process (S, T ) with auxillary times U is equivalent to
the times V sampled from the subordinating Poisson pro-
cess along with the states W assigned via the subordinated
Markov chain. In other words, p(S, T, U) = p(V,W ).

Proof. Multiplying (5) with (6), we see that p(S, T, U) =

Ω|U |+N

eΩ(tend−tstart)
· πs0

N∏
i=0

(
1 +

Asi

Ω

)ui N∏
i=1

Asisi−1

Ω
(7)

The first term is the probability of an ordered set of times
under a homogenous Poisson process with rate Ω, while
the second is the probability of a sequence of states under a
Markov chain with initial distribution π and transition ma-
trix B = (I + 1

ΩA). These are just W and V .

Now we can incorporate the likelihoods of observations
X into the subordinated Markov chain V . In the interval
[wi, wi+1), the MJP is in state vi, so that the observations
in this interval gives a likelihood term:

Li(vi) =
∏

j:toj∈[wi,wi+1)

p(Xtoj
|S(toj) = vi) (8)

Conditioned on the times W , V is a Markov chain with
likelihoods given above, so we can efficiently resample V
using the standard forward filtering-backward sampling al-
gorithm. This cost of this is O(n2|V |), quadratic in the
number of states and linear in the length of the chain. Fur-
ther any structure in A (e.g. sparsity) is inherited by B and
can be exploited easily.

Let Ṽ be the new state sequence. Then (Ṽ ,W ) will corre-
spond to a new MJP path S̃(t), characterized by (S̃, T̃ ) by
discarding virtual jumps from (Ṽ ,W ).

Proposition 3. The auxillary variable Gibbs sampler de-
scribed above has the posterior distribution p(S(t)|X) as
its stationary distribution. Moreover, if Ω > maxi(−Ai),
the resulting Markov chain is ergodic.

Proof. The first statement follows from the fact that the al-
gorithm simply introduces auxiliary variables U followed
by conditional sampling of V given X and W . To show
ergodicity, note that if Ω > maxi(−Ai), then the inten-
sity of the subordinating Poisson process is strictly posi-
tive. Consequently, there is positive probability (density) of
sampling appropriate auxiliary jump times U and to move
from any MJP path to any other.

Note that it is essential for Ω > maxi(−Ai). For ex-
ample, if all diagonal elements of A are equal to Ω, then
the subordinating Poisson process with have intensity 0,
and consequently the set of jump times T will never be
changed by the sampler above. In fact the only depen-
dence between successive samples of the Gibbs sampler
is through the jump times, since the state sequence Ṽ is
independent of V given W . By increasing Ω, more aux-
iliary virtual jumps are introduced allowing the sampler to
move to different jump times quickly, leading to faster mix-
ing. Of course, the HMM chain is longer, leading to a lin-
ear increase in the computational cost per Gibbs iteration.
Thus the parameter Ω allows a trade-off between mixing
rate and computational cost. In all our experiments, we set
Ω = maxi(−2Ai); we find this works quite well, with the
samplers typically converging after less than 5 iterations.

To end, we point out that the idea of sampling using uni-
formization is not new (see [Hobolth and Stone, 2009]).
Existing methods produce independent samples of the
number of subordinating Poisson events given observa-
tions. Consequently, these are computationally more ex-
pensive, requiring cubic time matrix operations and can-
not take advantage of structure in A. In comparison,



our method is MCMC based, with the number of Poisson
events dependent across samples, but is significantly faster.
More importantly, for complicated likelihood functions,
sampling from this posterior distribution is often hard (see
for example [Fearnhead and Sherlock, 2006]). Our auxil-
iary variable MCMC sampler simplifies this difficult pos-
terior sampling, with the likelihood only entering through
the emission matrix in the forward-backward algorithm. In
the next section, we describe a novel Gibbs sampler for
continuous time Bayesian networks, where the likelihoods
are complicated by the ‘observations’ being over continu-
ous time rather than discrete.

4 Continuous-time Bayesian Networks
(CTBNs)

Continuous-time Bayesian networks (CTBNs), introduced
in [Nodelman et al., 2002], are compact, multi-component
representations of MJPs with structured rate matrices. Just
as the familiar Bayesian network represents a probabil-
ity table whose size is exponential in the number of vari-
ables with a series of smaller conditional probability tables,
a CTBN represents a structured rate matrix with smaller
conditional rate matrices. An m-component CTBN rep-
resents the state of an MJP with the states of m nodes,
S1(t), . . . ,Sm(t) in a directed (and possibly cyclic) graph
G. Each node acts as an MJP with a particular rate ma-
trix which depends on the instantaneous states of its par-
ents but not its children (we discuss the children’s effect
later). Since the parents are themselves MJPs with piece-
wise constant paths, the rate matrix is inhomogeneous and
piecewise constant. The graph G and the set of rate ma-
trices (one for each node and for each configuration of its
parents) characterize the dynamics of the CTBN. Complet-
ing the specification of the CTBN is an initial distribution
π over the nodes, specified via some Bayesian network B.

To sample from a CTBN over an interval [tstart, tend], one
follows a generative process similar to that for MJPs:

1. At the initial time t = tstart, assign the entire CTBN
a configuration S(t) ≡ (s1

0, s
2
0, ...) ∼ π.

2. For each node k, let At be its rate matrix at time t.
Note that we have suppressed the dependence of At

on k and the configuration of its parents. Draw zk ∼
Exp(AtSk(t)).

3. LetK = argmink zk be the first node to jump (unique
with probability 1), and t = t+ zK the jump time.

4. If t < tend, node K jumps to state s at time t, with
p(SK(t) = s|SK(t−) = s′) ∝ Ats,s′ for each s 6= s′.
Other nodes stay in their current states. Go to step 2.

5. Otherwise, we reached time tend and stop.

4.1 Inference in CTBNs

While a CTBN can be interpreted as a simple MJP over an
expanded state space, this state space is exponentially large,
so that sampling algorithms (even our algorithm in Sec-
tion 2) cannot be directly applied. To develop a tractable
MCMC sampler, we consider Gibbs sampling where parts
of the CTBN are kept fixed while others are sampled from
their conditional distribution.

To do so, a careful interpretation of the conditional inde-
pendences in CTBNs is in order. Note in particular that
for any time t and node k, given the configuration of its
Markov blanketMB at time t, its state Sk(t) is not inde-
pendent of the state of some other node k′. This is because
the temporal dynamics of the network cause all nodes in the
graph to become entangled [Nodelman et al., 2002]. That
is, the present state of k′ tells us something about its previ-
ous states, which in turn tells us something about previous
configurations of the Markov blanketMB and of node k,
thus resulting in dependence with the current state of k.

However, given the entire sample paths of all nodes in the
Markov blanket, node k is independent of all other nodes in
the network. This suggests a Gibbs sampling scheme where
the sample path of each node is resampled given those of
its Markov blanket. This was the approach followed by
[El-Hay et al., 2008]. A complication arises, however, be-
cause even over an interval of time where the configura-
tion of the node’s Markov blanket remains constant, the
conditional distribution of the node’s sample path is not a
piecewise homogeneous MJP. This is because of the sample
paths of the node’s children, which effectively act as obser-
vations that are continuously observed. Consequently, the
MJP sampling algorithm of Section 2, which require obser-
vations at a discrete set of times, cannot be applied.

[El-Hay et al., 2008] described a matrix exponentiation
based Gibbs sampler that repeatedly samples the time of
the next transition and assigns the node a new state. In ad-
dition to calculating the matrix exponentials of many differ-
ent matrices, their method has to discretize time: to obtain
the time of the next jump, they perform a binary search on
the time interval up to a specified accuracy. While they ar-
gue that this allows the user to specify a desired ‘precision’,
it would be better to not resort to time discretization. We
next adapt our uniformization-based algorithm to exactly
sample paths from the inhomogeneous MJP given the con-
ditional distribution of a node given its Markov blanket.
Besides being exact, we demonstrate in our experiments
that this can result in significant computational gains.

4.2 Auxiliary Variable Gibbs sampling for CTBNs

In this section, we describe a Gibbs sampling algorithm to
simulate the CTBN posterior over an interval [tstart, tend],
given a set of observations X at times {to1, ...toO}. An it-
eration of the overall algorithm proceeds by performing



Gibbs updates on all nodes in the CTBN. In the follow-
ing we describe the update step for a single node k. To
avoid notational clutter, we suppress all references to the
node index k, as well as dependence of rate matrices on
the configurations of parents. Thus, we are given the com-
plete sample paths of all nodes in node k’s Markov blanket
MB and a starting distribution π over states at time tstart
(π here is a conditional distribution specified by the belief
network B and the initial states of the other nodes). Unlike
the Gibbs sampler of [El-Hay et al., 2008], because our al-
gorithm uses auxiliary variables, our new sample path S̃(t)
is not completely independent of the previous path, which
we denote as S(t). Recall that S(t) can be characterized by
a sequence of jump times T and states S.

Recall that over the time interval, the parents of node k can
change states, consequently the rate matrix governing the
MJP for node k changes in a piecewise constant manner.
Let At be the rate matrix at time t, and choose some piece-
wise constant Ωt > maxs(−Ats). In the experiments we
set Ωt = maxs(−2Ats), allowing our subordinating Pois-
son process to adapt to the dynamics dictated by the current
configuration of node k’s parents. Once again, we sample
an auxiliary set U of virtual jump times, but now from an
inhomogeneous Poisson process with rate Ωt + At. Note
that the Poisson intensity is still piecewise constant, chang-
ing only when either S(t) changes state (the times in T ) or
when one of the parents changes state (we call this set of
times P ). As before, we will thin out the set T,U by con-
structing a subordinated Markov chain on the set of times
T ∪U ∪ P . It is important to realize that the MJP for node
k will, with probability 1, not jump at the times in P , while
the transition probabilities at other times are piecewise ho-
mogeneous. Thus, at times t ∈ T ∪U , the transition matrix
is Bt = I + 1

ΩtA
t, while when t ∈ P it is simply Bt = I .

Order the times in T ∪ U ∪ P as t0 = tstart < t1 < t2 <
· · · . Given (S, T, U), if node k had no children, we pro-
ceed by resampling the states of the subordinated hidden
Markov model using the likelihood function Li(si) in (8).
To account for the presence of children C of node k, we
have to include the probabilities of the children’s sample
paths given the complete path S̃(t) of node k (as well as
those of their other parents). Thus, the likelihood function
at step i of the hidden Markov model is:

L̃i(si) = Li(si)
∏
c∈C

p(Sc(t)|S̃(t) = si,Pc) (9)

where t ranges over the whole interval [ti, ti+1), over
which the sample path of node k is constant and has the
value si, and Pc denotes the paths of the other parents of
c. Given its parents’ paths, the child c’s path over [ti, ti+1)
is distributed according to a MJP with piecewise constant
rate matrices, since the paths in Pc could jump during the
interval. Thus the probability p(Sc(t)|S̃(t) = si,Pc) in (9)

is simply a product of terms, one over each interval of con-
stant rate matrix, and where each term is given by the the
probability (5) of a homogeneous MJP (ignoring the initial
distribution).

With these likelihood terms, we can again use the forward
filtering-backward sampling algorithm to obtain a new state
sequence V of node k given the times W ≡ T ∪ U , giv-
ing our new path S̃(t) for node k. Since S̃(t) is obtained
via introducing auxiliary variables and performing condi-
tional sampling in the extended space, the MCMC sampler
retains the posterior distribution over the sample paths of
all nodes as its stationary distribution. Ergodicity is again
straightforward to see, so that we have the proposition:

Proposition 4. The auxillary variable Gibbs sampler de-
scribed above converges to the posterior distribution over
the CTBN sample paths.

5 Experiments

In the following, we evaluate a C++ implementation of
our algorithm on a number of CTBNs. In all experi-
ments, for a rate-matrix A, the parameter Ω was set to
maxs(−2As). The primary question we address is how
our sampler (called Uniformization in the following) com-
pares to the Gibbs sampler of [El-Hay et al., 2008] for dif-
ferent CTBNs. For this comparison, we used the CTBN-
RLE package of [Shelton et al., 2010] (also implemented
in C++). In all our experiments, we found this implemen-
tation to be significantly slower than our algorithm, espe-
cially for large inference problems. To prevent details of
the two implementations from clouding the picture (their
code also supports parameter and structure learning), we
also measured the amount of time the latter spent simply
calculating matrix exponentials. This constituted between
10% to 70% of the total running time of the algorithm. In
the plots we refer to this as ‘El Hay et al. (Matrix Exp.)’.
We found that our algorithm took less time than even this,
with the speed-up largest for larger problems.

5.1 The Lotka-Volterra process

First, we apply our sampler to the Lotka-Volterra process
investigated by [Opper and Sanguinetti, 2007]. Commonly
referred to as the predator-prey model, this describes the
evolution of two interacting populations of ‘preys’ and
‘predators’. The two species form the two nodes of a cyclic
CTBN, whose states x and y represent the sizes of the prey
and predator populations. The process rates are given by

fprey(x+1|x, y) = αx fprey(x−1|x, y) = βxy
fpredator(y+1|x, y) = δxy fpredator(y−1|x, y) = γy

where the parameters are set as follows: α = 5×10−4, β =
1 × 10−4, γ = 5 × 10−4, δ = 1 × 10−4. This defines
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Figure 1: Posterior (mean and 90% confidence intervals)
over predator paths (observations (circles) only until 1500).
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Figure 2: Posterior (mean and 90% confidence intervals)
over prey paths (observations (circles) only until 1500).

two infinite sets of infinite-dimensional conditional rate
matrices. Like [Opper and Sanguinetti, 2007], we limit
the maximum number of individuals of each species to
200, leaving us with 400 200-dimensional matrices. Note
that these matrices are tridiagonal and very sparse; at
any time the size of each population can change by at
most one. Consequently, the complexity of our algorithm
scales linearly with the number of states. A ‘true’ path
of predator-prey population sizes was sampled from this
process, and its state at time t = 0 was observed noise-
lessly. Additionally 15 noisy observations were generated,
and spaced uniformly at intervals of 100 from t = 100
onwards. The noise process is:

p(X(t)|S(t)) ∝ 1
2|X(t)−S(t)| + 10−6

(10)

Given these observations (as well as the true parameter
values), we approximated the posterior distribution over
paths by two methods: using 1000 samples from our
uniformization-based MCMC sampler (with a burn-in pe-
riod of 100) and using the mean-field (MF) approxima-
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Figure 3: Average relative error vs number of samples for
1000 independent runs; burn-in = 200. Note that in this
scenario Uniformization was about 12 times faster, so that
for the same computational effort it produces significantly
lower errors.

tion of [Opper and Sanguinetti, 2007]2. We could not apply
CTBN-RLE to a state-space and time-interval this large.
Figures 1 and 2 show the true paths (in black), the obser-
vations (as circles) as well as the posterior means and 90%
confidence intervals produced by the two algorithms. As
can be seen, both algorithms do well over the first half of
the interval where data is present. In the second half, the
MF algorithm appears to underestimate the predicted size
of the predator population; on the other hand, the MCMC
posterior reflects the truth better.

5.2 Average relative error vs number samples

In our next experiment, we followed [El-Hay et al., 2008]
in studying how average relative error varies with the num-
ber of samples from the Markov chain. Average relative
error is defined by

∑
j
|θ̂j−θj |
θj

, and measures the total nor-

malized difference between empirical (θ̂j) and true (θj) av-
erages of sufficient statistics of the posterior. The statis-
tics in question are the time spent by each node in different
states as well as the probabilities of transitioning from one
state to another. The exact values were calculated by nu-
merical integration when possible, otherwise from a very
long run of CTBN-RLE.

As in [El-Hay et al., 2008], we consider a CTBN with the
topology of a chain, consisting of 5-nodes, each with 5
states. The states of the nodes was observed at times 0
and 20 and we produced posterior samples of paths over
the time interval [0, 20]. We calculate the average relative
error as a function of the number of samples, with a burn-in
of 200 samples. Figure 3 shows the results from running
1000 independent chains for both samplers. Not surpris-
ingly, the sampler of [El-Hay et al., 2008], which does not
use auxiliary variables, has slightly lower errors. However

2We thank Guido Sanguinetti for providing us with his code
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Figure 4: CPU time vs length of CTBN chain.
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Figure 5: CPU time vs number of states of CTBN nodes.

the difference in relative errors is minor, and seems negli-
gible when considering the dramatic (sometimes up to two
orders of magnitude; see below) speed improvements of
our algorithm. For instance, to produce the 10000 sam-
ples, the [El-Hay et al., 2008] sampler took about 6 min-
utes, while our sampler ran in about 30 seconds.

5.3 Time requirements

In the three experiments below, we compare the times re-
quired by CTBN-RLE and our uniformization-based sam-
pler to produce an effective sample size of a 100 ( calcu-
lated using R-CODA [Plummer et al., 2006]). In no case
was the actual number of samples produced by our sam-
pler more than three times the number required by CTBN-
RLE (suggesting fast mixing). The average relative errors
were always comparable for these two sample sizes. All
our simulations were run on a laptop with a 2.53 GHz In-
tel(R) Core(TM) 2 Duo processor and 2GB of memory.

In the first of this set of experiments, we measured the
times to produce these samples for the chain-shaped CTBN
described above, as the number of nodes in the chain in-
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Figure 6: CPU time vs time interval of CTBN paths.

creases. Figure 4 shows the results. The time requirements
of both algorithms grow linearly with the number of nodes.
However, our uniformization-based sampler always takes
less time, and as its rate of growth is smaller; this can be-
come quite large for large chain lengths.

Our next experiment keeps the length of the chain fixed at
5, instead increasing the number of states per node. Once
again, uniformization is always faster. From the asymptotic
slopes of the two lines, we can verify that its complexity
is O(n2), where n is the number of states, as opposed to
O(n3) for [El-Hay et al., 2008].

Our final experiment measures the time required as the
length of the time interval increases. Again, our algorithm
is the faster of the two. It is worth pointing out here that
algorithm of [El-Hay et al., 2008] has a ‘precision’ param-
eter, and that by reducing the desired temporal precision,
faster performance can be obtained. However, since our
sampler produces exact samples (up to numerical preci-
sion), we feel our comparison is fair. In the experiments,
we left this parameter at its default value.

6 Discussion

We proposed a novel Markov chain Monte Carlo sampling
method for Markov jump processes and continuous-time
Bayesian networks. Our method uses the idea of uni-
formization, which constructs a Markov jump process by
subordinating a Markov chain to a Poisson process. Our
auxiliary variable Gibbs sampler is computationally very
efficient as it does not require time discretization, matrix
exponentiation or diagonalization, and can exploit structure
in the rate matrix. In the experiments, we showed signif-
icant speed-ups compared to a state-of-the-art sampler for
CTBNs, and that our method converges extremely quickly.

Our approach of introducing auxiliary variables to simplify
posterior computations in complex stochastic processes
bears a relationship to recent MCMC samplers for Gaus-



sian processes and Poisson processes [Adams et al., 2009,
Murray and Adams, 2010], though the actual techniques
used are quite different. We believe these algorithms as
well as ours demonstrate how with some thought efficient
MCMC algorithms can be developed for important classes
of stochastic processes. Another interesting relation to our
work is the embedded HMM of [Neal et al., 2004], which
uses a hidden Markov model to sample from a discrete time
continuous valued Markov process, while ours uses one to
sample from a continuous time discrete valued process.

We are currently exploring a number of generalizations of
our technique. Firstly, our technique should be applica-
ble to inhomogeneous Markov jump processes where tech-
niques based on matrix exponentiation cannot be applied.
Secondly, we can explore Markov modulated Poisson pro-
cesses which have richer likelihood models than those we
considered here. Thirdly, we can explore Markov jump
processes with a countably infinite state space, by combin-
ing our technique with slice sampling.
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