On optimal quantization rules in some sequential decision problems

XuanLong Nguyen, Martin J. Wainwright & Michael I. Jordan

Department of EECS and Department of Statistics
U.C. Berkeley
Sequential detection in a distributed system

sensors data X_n

Quantized messages $U_n = \phi_n(X_n)$

Fusion center

sensors have no memory and no feedback
Problem statement

- **setting:** given sequence of (multivariate) sensor data \(X_1, X_2, \ldots\), all of which are generated by either \(P_0\) or \(P_1\) (i.e., \(H = 0\) or 1)

- prior \(\pi^0\) and \(\pi^1\)

- cost \(c\) for each time delay (or each test sample)

- decision rules consists of
 - local quantization rules \(Z_n = \phi_n(X_n)\)
 - stopping time \(N\) wrt sigma field \(\sigma(Z_1, \ldots, Z_N)\)
 - global decision rule \(\hat{Y} = \gamma(Z_1, \ldots, Z_N)\)

- **problem:** find decision rules \((\phi, N, \gamma)\) that minimize (Bayesian cost):
 \[
 J(\phi, N, \gamma) := \mathbb{E}\{cN + \mathbb{I}[\gamma(Z_1, \ldots, Z_N) \neq H]\},
 \]
Related work

- Sequential hypothesis testing
 (Wald, Wald & Wolfowitz, Arrow, Blackwell & Girshick, etc)

- Decentralized detection

- Decentralized sequential detection
Characterization of optimal quantizers

- ϕ^* denotes the optimal quantizer
- Tsitsiklis (1986) showed that $\phi^* \in \Phi_{llr}$
- Veeravalli et al (1993) conjectured that $\phi^* \in \Phi_{sta}$
Main results

• resolve Veeravalli’s stationarity conjecture by providing counterexamples in both exact and asymptotic cases such that $\phi^* \notin \Phi_{sta}$

• show that when restricting quantizers to stationary class Φ_{sta}

$$\phi^* \in \Phi_{llr}$$

• simple characterization of optimal stationary quantizer provides an useful objective function for quantizer design algorithms
Sequential probability ratio test (SPRT) (background)

- **setting:** given sequence of (multivariate) sensor data X_1, X_2, \ldots, all of which are generated by either P_0 or P_1

- the optimal stopping rule is a sequential probability ratio test:

 \[
 N = \inf \left\{ n \geq 1 \mid L_n := \sum_{i=1}^{n} \log \frac{f^1(X_i)}{f^0(X_i)} \notin (a, b) \right\},
 \]

 for some real numbers $a < b$.

- given this stopping rule, the optimal decision function has the form

 \[
 \gamma(L_N) = \begin{cases}
 1 & \text{if } L_N \geq b, \\
 0 & \text{if } L_N \leq a.
 \end{cases}
 \]
Wald’s approximation

- cost of a sequential test by ignoring the overshoot:

\[G(\alpha, \beta) := c\pi^0 \frac{D(\alpha, 1 - \beta)}{\mu^0} + c\pi^1 \frac{D(1 - \beta, \alpha)}{\mu^1} + \pi^0 \alpha + \pi^1 \beta, \]

- optimal sequential cost

\[\inf_{a,b} J(a, b) \approx \inf_{\alpha,\beta} G(\alpha, \beta) \]
Distributions induced by quantizer rules ϕ

- quantizer ϕ_n yields a sequence of compressed data $U_n = \phi_n(X_n) \in U$

- choice of ϕ induces distributions of compressed data (wrt P_0 and P_1):
 \[f_{\phi_n}^i(u) := P_i(\phi_n(X_n) = u), \quad \text{for} \quad i = 0, 1 \]

- induced KL divergences: $\mu_\phi^1 := D(f_{\phi}^1\|f_{\phi}^0)$ and $\mu_\phi^0 := D(f_{\phi}^0\|f_{\phi}^1)$.
A characterization lemma

- **key assumption:**

\[
\sup_{\phi \in \Phi} \sup_{u \in U} \log\left(\frac{f^1_\phi(u)}{f^0_\phi(u)}\right) \leq M
\]

for some constant \(M\) over a class \(\Phi\) of quantizers \(\phi : \mathcal{X} \to \mathcal{U}\).

- **approximation error by ignoring the overshoot**

\[
|J_\phi(a, b) - G_\phi(\alpha, \beta)| \leq c\ M\left(\frac{\pi^0}{\mu^0_\phi} + \frac{\pi^1}{\mu^1_\phi}\right).
\]

- **optimal cost:** defined as \(J^*_\phi = \inf_{a,b} J_\phi(a, b)\). Then as \(c \to 0\), we have

\[
J^*_\phi = \left(\frac{\pi^0}{\mu^0_\phi} + \frac{\pi^1}{\mu^1_\phi}\right) c \log \frac{1}{c} + O(c).
\]
Suboptimality of stationary quantizer design

Setting: prior prob are $\pi^1 = \frac{8}{100}$ and $\pi^0 = \frac{92}{100}$, and sample cost $c = \frac{1}{100}$

Binary quantizers: there are only three possible stationary designs:

1. Design A: $\phi_A(X_n) = 0 \iff X_n = 1$.
2. Design B: $\phi_B(X_n) = 0 \iff X_n \in \{1, 2\}$.
3. Design C: $\phi_C(X_n) = 0 \iff X_n \in \{1, 3\}$.

- \begin{align*}
 \mathbb{P}_0 & \quad .8 \quad .1999 \quad 10^{-4} \\
 \mathbb{P}_1 & \quad 1/3 \quad 1/3 \quad 1/3
\end{align*}
Numerical example

• numerically computed costs for the three stationary designs J_A, J_B and J_C, and for the mixed design J_*

• J_* is obtained by applying A on the first sample, and B on the rest

• table shows $J_* < \min(J_A, J_B, J_C)$!

<table>
<thead>
<tr>
<th>Method</th>
<th>$J_A(0.08)$</th>
<th>$J_B(0.08)$</th>
<th>$J_C(0.08)$</th>
<th>$J_*(0.08)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>0.0567</td>
<td>0.0532</td>
<td>0.0800</td>
<td>0.0528</td>
</tr>
</tbody>
</table>
Asymptotic suboptimality of stationary design

• recall the characterization lemma

\[J^*_\phi = \left(\frac{\pi^0}{\mu^0_\phi} + \frac{\pi^1}{\mu^1_\phi} \right) c \log \frac{1}{c} + O(c). \]

⇒ Optimal stationary quantizer \(\phi \) minimizes

\[\frac{\pi^0}{\mu^0_\phi} + \frac{\pi^1}{\mu^1_\phi} \]

• if we interchange design \(A \) and \(B \), the induced KL divergences are

\[\mu^0_{\phi AB} = \frac{1}{2} (\mu^0_{\phi A} + \mu^0_{\phi B}) \]

\[\mu^1_{\phi AB} = \frac{1}{2} (\mu^1_{\phi A} + \mu^1_{\phi B}) \]
Proposition: Asymptotic suboptimality of stationary design

(based on asymmetry of KL divergences)

given

- \(J_{\phi_i}^* \), the optimal cost of the stationary design based on \(\phi_i \)
- \(J_{\phi_A,\phi_B}^* \), the optimal cost of a sequential test that alternates between using \(\phi_A \) and \(\phi_B \) on odd and even samples respectively

- assume that

\[
\mu_{\phi_A}^0 < \mu_{\phi_B}^0 \quad \text{and} \quad \mu_{\phi_A}^1 > \mu_{\phi_B}^1
\]

then there exists a non-empty interval for \(\pi^0 \) such that as \(c \to 0 \),

\[
J_{\phi_A,\phi_B}^* < \min\{ J_{\phi_A}^*, J_{\phi_B}^* \} - \Theta(c \log c^{-1})
\]
Characterization of optimal quantizers

- ϕ^* denotes the optimal quantizer
- Tsitsiklis (1986) showed that $\phi^* \in \Phi_{llr}$
- we just showed that $\phi^* \notin \Phi_{sta}$
- what is ϕ^* when restricting to Φ_{sta}?

Likelihood ratio-based quantizers
Stationary quantizers

Φ

Φ_{llr}

Φ_{sta}
Quantizers based on thresholding likelihood ratio

- **Definition:** Quantizer $\phi : \mathcal{X} \rightarrow \mathcal{U}$ is said to be a *likelihood ratio threshold rule* if there are thresholds $d_0 = -\infty < d_1 < \ldots < d_K = +\infty$, and a permutation (u_1, \ldots, u_K) of $(0, 1, \ldots, K - 1)$ such that for $l = 1, \ldots, K$, with \mathbb{P}_0-probability 1, we have:

 $$\phi(X) = u_l \text{ if } d_{l-1} \leq f_1(X)/f_0(X) \leq d_l,$$

- **Theorem:** Restricting to the class of *stationary* and *deterministic* decision rules, then there exists an asymptotically optimal quantizer ϕ that is a likelihood ratio based threshold rule (LLR).

- **Proof ideas:** based on interplay between two KL divergences
Properties of KL divergences (1)

• given vectors $a = (a_0, a_1)$ and $b = (b_0, b_1)$, define functions \tilde{D}^0 and \tilde{D}^1

$$\tilde{D}^0(a, b) := a_0 \log \frac{a_0}{a_1} + b_0 \log \frac{b_0}{b_1}$$

$$\tilde{D}^1(a, b) := a_1 \log \frac{a_1}{a_0} + b_1 \log \frac{b_1}{b_0}.$$

- for any positive scalars $a_1, b_1, c_1, a_0, b_0, c_0$ such that $\frac{a_1}{a_0} < \frac{b_1}{b_0} < \frac{c_1}{c_0}$, at least one of the two following conditions must hold:

$$\tilde{D}^0(a, b + c) > \tilde{D}^0(b, c + a) \quad \text{and} \quad \tilde{D}^1(a, b + c) > \tilde{D}^0(b, c + a), \quad \text{or}$$

$$\tilde{D}^0(c, a + b) > \tilde{D}^0(b, c + a) \quad \text{and} \quad \tilde{D}^1(c, a + b) > \tilde{D}^0(b, c + a).$$
Corollary

\[\text{argmax}_x \phi(x) = u_2 \]
\[\text{argmin}_x \phi(x) = u_2 \]

- if \(\phi \) is an asymptotically optimal quantizer, then for any pairs of \((u_1, u_2) \in \mathcal{U}, u_1 \neq u_2\), there holds:

\[
\frac{f^1(u_1)}{f^0(u_1)} \not\in \left(\inf_{x: \phi(x) = u_2} \frac{f^1(x)}{f^0(x)}, \sup_{x: \phi(x) = u_2} \frac{f^1(x)}{f^0(x)} \right)
\]

- i.e., \(\phi \) behaves \textit{almost} like a LLR based rule, but not quite the same.

- hence, need more work
Properties of KL divergences (2): Quasi-concavity

• KL divergence \(D(a_0, a_1) := a_0 \log \frac{a_0}{a_1} + (1 - a_0) \log \frac{1-a_0}{1-a_1} \)

• Let \(F : [0, 1]^2 \to \mathbb{R} \) be given by

\[
F(a_0, a_1) = \frac{c_0}{D(a_0, a_1) + d_0} + \frac{c_1}{D(a_1, a_0) + d_1}.
\]

• For any non-negative constants \(c_0, c_1, d_0, d_1 \), function \(F \) is quasi-concave.

\[\implies\]

Optimal cost function \(J^*_\phi \) is quasi-concave w.r.t. binary quantizer \(\phi \)

conjectured to be true for general quantizers
Useful properties of quasi-concavity

- for any δ, $F > \delta$ is a convex set
- minima of F is achieved at the extreme point of its (compact) domain
- extreme points of quantizer class Φ are generally LLR-based rules

\implies Restricted to deterministic and stationary class, there exists an optimal quantizer that is LLR-based.
Discussions

• resolved stationarity conjecture regarding the optimal quantizer designs

• proved the likelihood-ratio characterization of optimal quantizers when restricted to stationary classes

• simple, practical characterization of optimal stationary quantizer via asymptotic identity:

\[J^*_\phi = \left(\frac{\pi^0}{\mu^0_\phi} + \frac{\pi^1}{\mu^1_\phi} \right) c \log \frac{1}{c} + O(c). \]

• future work: nonparametric quantizer design for sequential detection