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Bayesian Analysis of Constrained Parameter and
Truncated Data Problems Using Gibbs Sampling

ALAN E. GELFAND, ADRIAN F. M. SMITH, and TAI-MING LEE*

Constrained parameter problems arise in a wide variety of applications, including bioassay, actuarial graduation, ordinal categorical
data, response surfaces, reliability development testing, and variance component models. Truncated data problems arise naturally
in survival and failure time studies, ordinal data models, and categorical data studies aimed at uncovering underlying continuous
distributions. In many applications both parameter constraints and data truncation are present. The statistical literature on such
problems is very extensive, reflecting both the problems’ widespread occurrence in applications and the methodological challenges
that they pose. However, it is striking that so little of this applied and theoretical literature involves a parametric Bayesian perspective.
From a technical viewpoint, this perhaps is not difficult to understand. The fundamental tool for Bayesian calculations in typical
realistic models is (multidimensional ) numerical integration, which often is problematic in unconstrained contexts and can be well-
nigh impossible for the kinds of constrained problems we consider. In this article we show that Bayesian calculations can be implemented
routinely for constrained parameter and truncated data problems by means of the Gibbs sampler. Specific models discussed include
constrained multinormal parameters, constrained linear model parameters, ordered parameters in experimental family models, data
and order restricted parameters from exponential distributions, straight line regression with censoring and bivariate grouped data

models. Analysis of data sets illustrating the first two of these settings is provided.

KEY WORDS: Bayesian inference; Constrained parameters; Gibbs sampler; Truncated data.

Constrained parameter problems arise in a wide variety
of applications, including bioassay, actuarial graduation, or-
dinal categorical data, response surfaces, reliability devel-
opment testing, and variance component models. Truncated
data problems—to be understood as encompassing both
censoring and scoring or grouping mechanisms—arise nat-
urally in survival and failure time studies, ordinal data mod-
els, and categorical data studies aimed at uncovering under-
lying continuous distributions. In many applications both
parameter constraints and data truncation occur.

The parametric Bayes perspective is attractive for exam-
ining such models. For example, consider ordered parameter
(slippage ) models, which in a classical setting might employ
isotonic regression of maximum likelihood estimates to ob-
tain point estimates. A more satisfying analysis would de-
velop and compare posterior distributions arising from priors
(possibly vague) that reflect the order restrictions. However,
analytic approaches (exact or approximate) for carrying out
required multi dimensional integrations in this case (and in
fact for all the aforementioned problems) will be well-nigh
impossible.

This article aims to show that Bayesian calculations can
be implemented routinely for constrained parameter and
truncated data problems by means of the Gibbs sampler.
The Gibbs sampler was introduced by Geman and Geman
(1984) in the context of image processing, see also Hastings
(1970) for an early recognition. Later, it was proposed as a
general method for Bayesian calculations by Gelfand and
Smith (1990).

In general we shall assume that the desired outcome of a
Bayesian analysis is the calculation and display of marginal
posterior (predictive) densities of parameters (unobserved
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data) of interest, although summaries (for example, via
modes, moments, quantiles) often will suffice. As we shall
see, the Gibbs sampler will provide the basis for whatever
form of final inference summary we require.

In Section 1, we briefly review the Gibbs sampler and
comment on experience with its use for other classes of sta-
tistical problems. In Section 2, we present a general overview
formulation of the structure of constrained parameter and
truncated data problems and the resulting form of the Gibbs
sampler. In Section 3 we develop detailed analyses for various
examples chosen to give an overview of the power and scope
of the Gibbs sampler in reducing seemingly impossibly com-
plex computational tasks to simple, easily implemented, it-
erative sampling schemes. In Section 4 we provide illustrative
analyses of two artificial data sets generated from models
chosen to present extremely awkward inference problems.
Finally, in Section 5 we provide a summary discussion.

1. THE GIBBS SAMPLER

Our subsequent development uses the following notational
conventions. Densities are developed generically by square
brackets so that joint, conditional, and marginal forms for
random variables U, V, appearas [U, V'], [U| V], and [V].
The usual marginalization by integration is denoted by forms
such as [U] = [ [U|V]-[V]. For a collection of random
variables [U,, U,, . . ., U], the full conditional densities thus
can be denoted by [U,|U,, r # 5], s = 1,2, ..., k, and the
marginal densities can be denoted by [U,],s=1,2,...,k.

Consider the following problem. If we are given the ability
to draw random variate samples of U, from [U| U,, r # s]
for specified valuesof U,, r#s,s=1, 2, ..., k, can we find
an iterative scheme that enables us to make sample-based
estimates, [ U], say of the marginal densities [U,], s = 1, 2,
..., k? We shall make the connection with Bayesian cal-
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culations later; for the moment, we note that the general
question is answered affirmatively by the following proce-
dure.

Gibbs sampling is a Markovian updating scheme that pro-
ceeds as follows. Given an arbitrary starting set of values
U(O) .., U9, we draw U\ )from[U,IUgo),... (0)]
then Uﬁ') from [U2| v u (0) ..., U®1, and so on up to
U,(c” from [U,| U y oo U k'_),] to complete one iteration
of the scheme. After ¢ such iterations we would arrive at joint
a sample (U{", US”). Geman and Geman (1984)

showed that under m11d conditions (U, (') ..U ,((’)) - (U,

, U ~ [Uy, Us, ..., U ast = oo. Hence for ¢ large
enough, U{" for example can be regarded as a sample variate
from [U]. If this process is replicated in parallel m times
iid k-tuples (U, ..., Ug)j=1,2, ..., mresult.

A kernel density estimate for [ U] based on the U§}’ can
be obtained readily (Silverman 1986) and should be adequate
if at the last iteration the number of replications, m, is large
enough. Using a Rao-Blackwell argument (Gelfand and
Smith 1990), however, a density estimate of the form

m

-2 |U£f>,r¢s1/ ()

is better under a wide range of loss functions. This is not
surprising, because (1) takes advantage of the known struc-
ture in the model whereas the kernel density estimate does
not. The form (1) is a discrete mixture distribution, essen-
tially a Monte Carlo integration to accomplish the desired
marginalization. Similarly, the expectation E(A(Uy)) can be
obtained either as a sample estimate based on the U{ or
possibly as a “Rao-Blackwellized” version analogous to (1)
based on E(A(U,)|U,, r # s). Now consider a functlon of
the U,, say W(U,, ..., U). Each k-tuple (Ul, s e
UL), provides an observed w = ww U
with marginal distribution, as t = o, approx1mately (w1,
whence a kernel density esitmator for [W] using these
W}’) can be developed. If, say, U, appears as an argument
of W, then the full conditional density [W | U,, r # s] can
be obtained by univariate transformation from [U|U,, r
# 5]. Thus a “Rao-Blackwellized” density estimate for [ W]
analogous to (1) also can be obtained.

In the Bayesian context the U, are the unknown parameters
(or possibly unobserved data) in the model; W would be
any function of the parameters (or unobserved data) that is
of interest. All distributions are viewed as conditional on the
observed data, whence the marginal densities, [ U], become
the desired marginal posterior distributions of the parameters
(or unobserved data).

So far as ease of drawing samples from the complete con-
ditional distributions is concerned, in many cases the like-
lihood and prior forms specified in the Bayesian model lead
to familiar standard full conditional forms, such as normals
and gammas, and implementation is immediate. In other
cases we simply have, up to proportionality, a mathematical
form for the full conditional and must use tailored versions
of general random variate generating procedures, such as the
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ratio of uniforms and rejection methods (see, e.g., Devroye
1986 or Ripley 1987).

Finally, we note that complete implementation of the
Gibbs sampler requires determination of ¢ and m. These
settings will vary with the application, and some experimen-
tation with different settings likely will be necessary. We do
not view this as a deterrent, because random generation is
generally inexpensive and there may be no feasible com-
putational alternative. In the examples of Section 4, con-
vergence is evaluated in a univariate manner by plotting
marginal posterior density estimates of the form (1) five it-
erations apart to judge stability. Extensive computational
experience with this assessment procedure in a wide variety
of parametric models was reported in Gelfand and Smith
(1990, 1991), Gelfand, Hills, Racine-Poon, and Smith
(1990), and Carlin, Gelfand, and Smith (1992).

Because these cited papers contain discussion of very de-
tailed specification of the Gibbs sampler in various situations,
we avoid unnecessary detail in this article and concentrate
instead on the structural insights that underlie the specifi-
cation of the required full conditionals. Having followed the
general discussion, the reader can supply the missing detail
in any specific example.

2. MODELS: GENERAL STRUCTURE

In this section we provide a discussion of the Gibbs sampler
structures arising from rather general formulations of Bayes-
ian parametric versions of constrained parameter and trun-
cated data problems. The implementation problem reduces
to identification of the appropriate full conditional distri-
butions and methods for drawing samples from them.

2.1 Constrained Parameter Models

Consider a parametric model for data Y involving a k-
dimensional parameter vector 6, constrained to lie in a subset
S% of R*. Often the constraint set S% is determined by order
or other inequality relationships among the components 8;,
i=1,2,...,k,of,in which case S* = S% does not depend
on Y. In other cases constraints occur because the region of
positive support for the distribution of Y depends on 8, so
that Y occurs explicitly in S% ; see, for example, Section 3.5,
inwhichY=(Y,,Y,,...,Y)and 6, <Y, i=12,...,
k. In the former case, it it natural to think of the constraint
as built into the specification of the prior distribution, [6]| ],
where A is some hyperparameter; whereas in the latter case
it is natural to think of the constraint as built into the like-
lihood, [Y |6]. In either case it suffices to note that the con-
strained Bayesian model (likelihood X prior) is given by

[yl6]-[6IA], (y,0)ES
0, (y,0) &S,

where S = {(y, 0): 0 € S¥}. In general [Y |6] and [8])], as
functions of #, have the functional forms they would have
had if constraints had been ignored. It follows immediately
(generalizing slightly a remark in Box and Tiao [1973, p.
67]) that the posterior distribution for 8, given the con-
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straints, is simply the unconstrained posterior appropriately
normalized so that

[Y [6]-[8]\]
Jst [Y10]-[81N]°

Now let S¥(6;, j # i) denote the cross-section of S% de-
fined by the constraints on component §; at a specified set
of values ;, j # i (where for the cross-section we have sup-
pressed possible dependence on Y for notational conve-
nience). In the case of scalar components S¥(6;, j # i) is a
subset of R!, typically an interval or a collection of intervals.
It then follows immediately from (2) that the complete pos-
terior conditional distribution for 6; is defined by

0, € Sk(6,,j # i), (3)

where the right side is regarded as a function of §; for specified
0;, j # i. When for 6; the likelihood and prior combine to
give a conjugate Bayesian form, the unconstrained version
of the full conditional for 6; will be a familiar standard dis-
tribution defined by the conjugate prior-to-posterior updat-
ing. The constrained form (3) then simply will be the stan-
dard distribution restricted to S¥(6;, j # i).

This latter point is critical. Regardless of how complicated
the overall constraint set S% is, to implement the Gibbs
sampler we need only consider S% in univariate cross-sec-
tions. Moreover, to carry out the actual sampling we need
only identify the full conditionals under the unconstrained
model and then make the restriction to the cross-sections.

One way of doing this is simply to generate from the un-
constrained full conditional and retain the variate value only
if it falls in the cross-section constraint region. Alternately,
suppose the form of the distribution function, F;, say of the
full conditional for #; is available and the cross-section is an
interval, say [a, b]. Then if U is a uniform (0, 1) variate, as
was noted by Devroye (1986, p. 38) 6, = F;![Fi(a)
+ U(F;(b) — F;(a))] is a drawing from the constrained full
conditional. Thus we sample “one for one” from the con-
strained full conditional. This easily is extended to the case
where the cross-section is a collection of disjoint intervals,
say U7, [a, b;]. In this case we choose J = j with probability
[2Z]=1 (Fi(b)) — Fi(a;))] ' [Fi(b;)) — Fi(a;)] and, given j, set
0; = F;'[Fi(a) + U(Fi(b)) — Fi(a)))], where U again is a
uniform (0, 1) variate.

In general, sampling from constrained full conditionals
will not be particularly efficient, especially in the case of
nonstandard unnormalized distributions. But this is more
than compensated for by the ease of implementation of the
Gibbs sampler, enabling one to carry out full Bayesian cal-
culations for complex constrained parameter problems that
previously were unanalyzable by standard numerical inte-
gration techniques.

Finally we note a further feature that arises in imple-
menting the Gibbs sampler were we to seek to extend these
calculations to a hierarchical model by adding a prior [A]
for the hyperparameter A, thus far assumed to be known.
The full conditionals for the 6§, are unchanged and are given

[01Y]= 0 S%.

(2)
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by (3), but the full conditional for A does not depend on Y
and takes the form

(MY, 6] oc [0]N][A]c(N), (4)

where ¢(X) = ([4 [Y|0][6]A])~". If 8 is not constrained by
Y, ¢(N) simplifies to ( f o« [0]A]) !, but regardless c(\) typi-
cally will not be available explicitly (see, for example, Section
3.1), making sampling from (4) almost impossible.

2.2 Censored Data Models

To develop a general framework for censored data models,
consider random 7 vectors Y, V, W with joint density defined
by

[Y,V,W|6,9] =[Y|V,W,0]-[V, W|n]

in terms of parameters 6 and n and define componentwise
a further random # vector Z by

Zi=V, if Y,<V
=Y, if Vi<Y,<W, j=12,...,n.
=W, if Y;=W, (5)

We shall consider Z to be observed data arising as a censored
form of Y through the censoring process [V, W], with V
and W also observed. In this very general formulation V and
W are random, but the process could of course be degenerate
for either or both. In particular, right or left censoring only
(corresponding to W; = —co0, V; = +o0, respectively) are
included as special cases.

To complete the Bayesian model let us assume that prior
distributions are specified in the form [8|A][#][A], so that
the full model becomes

[Z|V, W, 0]-[V, W[n]-[6]N]- [n]-[A], (6)

where the form of [Z |V, W, 0] is defined by [Y |V, W, 0]
and (5). Other forms of prior specification could of course
be considered, but the form given here, involving a hyper-
parameter A in the construction of the prior for 8, will suffice
for our later illustrative examples. We assume that interest
focuses on the marginal posterior distributions for the com-
ponentsof 0, [0;|Z,V, W], i=1,2,...,k,as well as perhaps
[nZ,V, W].

At first sight it appears natural to try to implement the
Gibbs sampler using the full conditional distributions for 6,
0,, ..., 0 0, nand A. We note, however, that

[0i|Z’ Va W, 0jaj¢ i’ n, x] oC [Z|V’ W, 0].[0|x]a

with the right side considered a function of 6; for specified
6;,j # i. This leads to difficulties, because the density [Z |V,
W, 6] generally will be awkward to deal with. Suppose, for
example, that [Y |V, W, 0] = [Y|0] = ]1%, f(Y;]6). Then
[Z;|V, W, 0] =f(Z;|0)if V;< Z; < W}, but has point masses
(v, 0 = [Y%, f(Z|0)dZ at Z; = V; and 5;(W;, 0)
= [%,/(Z10)dZ at Z; = W;. Generally, §;, and §; will not
be available in explicit form, which means that this also will
be the case for [Z |V, W, 8] whenever any Z; equals either
V; or W; (i.e., whenever censoring occurs).
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To avoid this difficulty, suppose instead that we treat Y
as an unobservable and include it in the Gibbs sampler. The
model (6) now becomes, in its most general form,

[Z]Y,V, WI[Y |V, W, 01[V, Wq][0|N][z][N]. (7)

Here {Z|Y, V, W] is of course a degenerate distribution,
and in typical applications we shall have {Y |V, W, 6]
= {y|0). Note that now

0:1Z, Y, V, W, 0;,j#i,n,N] oc [Y|V-W-0][6|\]. (8)

The right side of (8) is now an explicit function of 6;, and
sampling no longer presents a problem. As noted in Section
2.1, under conjugacy sampling from 6; will simply involve
sampling from a standard distribution. Without conjugacy,
however, we will need to sample from a nonstandardized
density using, for example, ratio of uniforms or rejection
techniques. The remaining full conditionals required for the
Gibbs sampler are given by [9|Z, Y, V, W, 0, A\] « [V,
W|n][n], and [ANZ,Y,V, W, 0, n] oc [0|X][A], for which
similar remarks apply, and finally [Y|Z, V, W, 6, n, A]
oc [Z]Y, V, W}-[Y|V, W, 0]. Again for illustration
consider the typical case where [Y |V, W, 0] = [Y|6]
= [1}-, fi(Y;|0). Here the Y; are conditionally independent
and the full conditional distribution for Y; is degenerate at
Z;if V; < Z; < W, and has the distribution f( - |8) restricted
to(—oo, V;]if Z; = V; and the distribution f;( - |0) restricted
to [W}, o0) if Z; = W;. Sampling the Y; is therefore routine,
the latter two cases being handled perhaps by the “one for
one”’ method described in Section 2.1.

2.3 Grouped Data Models

To illustrate scored or grouped ordinal data models, sup-
pose that instead of observing the actual coordinates of a
random # vector Y we only observe a score, R; = b, if a,—;
<Y=<a,j=1,2,...,n,andt =1, 2,..., T, where q,,
b, are known fixed constants (often with a, = —o0, ar
= +o00). Assuming Y as having a parametric distribution
[Y 6] and 6 as having a prior defined by [6]|A], [A], the
Bayesian model is given by

[RIOI[OIAI[A],

where [R|6] is induced by [Y |6].
As in the previous section, the natural Gibbs sampler de-
fined directly in terms of the full conditionals [X|R, 8] and

[0:IR, 6;,j # i, N] oc [R]6][0]A]

runs into trouble due to the presence of [R|6], which gen-
erally is not an explicit expression in terms of 6, 65, ...,
0. A solution again is to include the unknown Y as part of
the Gibbs sampler. The Bayesian model then becomes

[RIYILY [61[0]N][A]
and the full conditionals are given by
[AMR,Y, 6] oc [0]A][A]
[0;IR,Y,0;,j# i, \] c [Y|0][0]|\]

Journal of the American Statistical Association, June 1992

together with the conditionals for Y, given Y, i # j, derived
from

[YIR,0,)] oc [RIY][Y]6].

Sampling is now straightforward. In particular if [Y |6]
= [1~, f(Y;]0) and R, = b,, then the full conditional for Y;
is simply f;(- |0) restricted to [a,_;, a,].

3. MODELS: SPECIFIC EXAMPLES

In this section we make explicit the forms of the Gibbs
sampler arising from various examples of the general struc-
tures discussed in Section 2. Our development is designed
to illuminate the astonishing simplicity with which the ap-
propriately defined Gibbs sampler solves the problem of
Bayesian computation in constrained parameter and trun-
cated data contexts.

As noted earlier, there is remarkably little literature on
Bayesian approaches to such problems and that which does
exist typically does not solve the problem of calculating mar-
ginal densities but rather attempts only limited inference
summaries in the form of modes or means. Ordered restricted
inference was discussed at length from a frequentist per-
spective in Barlow et al. (1972) and Robertson, Wright, and
Dykstra (1988). The former presented some discussion of
Bayesian inference for ordered exponential family parame-
ters, but this was largely limited to a discussion of the joint
posterior mode as an isotonic regression. The latter provided
a convenient review of the brief Bayesian literature on or-
dered parameters. We know of no systematic discussion of
truncated data problems from a Bayesian perspective.

3.1 Ordered Exponential Family Parameters

Motivated by graduation problems in actuarial science,
Brofhit (1984) considered ordered parameters from a family
of models of the form

f(Y10) = a(Y)§*Me=0), (9)

(This family includes models such as Gamma with known
shape parameter, normal with known mean, and Poisson.)

Suppose then that conditionally independent observations
Y;,i=1,2,...,k,andj=1,2,..., n are available from
S+ 16;), where it is assumed that 6 € S, = {0 = (0,, ...,
0k): 0 <6, <6, < -+ <06} Broffitt (1984) suggested a
convenient and flexible prior family for 8 over S; of the form

8> 0.

k 04’?.'—1 e~ bili

= v T(6)

where dj is the normalizing constant and §;, v; are chosen
to reflect prior beliefs. Note that if the 6; were unconstrained
(10) becomes a product of independent Gamma priors. In
the case where the §; are integers Broffitt obtained d as a
finite multidimensional sum. The joint posterior [#|Y ] has
the same form as (10), but with §; replaced by 67 = §;
+ Z iy b(Y;) and v, replaced by

n; -1
¥ = (i+ 5 c(YU)) .

i j=1

dk(als""ak;'yla"'syk) (10)
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The posterior mean for §; under the unrestricted problem is
6F = 6FyF . Using isotonic regression Broffitt obtained the,
order-restricted Bayes estimate for 6; under squared error
loss as a function of #F and two d,’s.

To implement the Gibbs sampler we require only the full
conditional distribution [0;|Y, 0, j #i],i=1,2,..., k.
Under (10) this is merely a Gamma (87, v ) restricted to
[6;—1, 0;1], where 8, =0, 6;,; = co. Thus sampling reduces
to interval-restricted sampling from a standard distribution,
as discussed in Section 2.1. We need not concern ourselves
with calculation of the normalizing constant dj.

Extension from one-parameter exponential family models
to conditionally independent observations with increasing
parameters and a constrained form of conjugate prior follows
in an obvious and straightforward way.

3.2 Ordered Multinomial Parameters

Sedransk, Monahan, and Chiu (1985) discussed the prob-
lem of Bayes estimation of finite population parameters when
a random variable X assumes one of a finite set of values
{bi, ..., b} with probabilities p,, p, . . . , px. A particular
application is the case of household income, where b; might
denote a central value for the jth income category.

Assuming that the categories are arranged in increasing
order, we would expect that the p; would increase up to some
category, ¢, say (1 <t < k), and then decrease thereafter.
Typically, ¢t would be unknown. The quantity of primary
interest in such a situation might be the finite population
mean, 2 ,’~‘=1 b;p;, although other functions of p also could
be of interest. A possible Bayesian model for such problems
is given by defining Y; = # of observations in category j,
with 2%, Y; = n, so that [Y |p] = Mult(n; p;, s, - - - » Di)-
Following Sedransk et al. (1985), given ¢ we specify a prior
[p]t] of the form

k
s ﬁk; t) 2 p}Sj_l

c(By, ... (11)

j=1
over S*={(p1,....0):PI<Pr<:+ <SP =P =+
P, 0<p<1,3%, p=1}, where ¢(Bi, ..., B; t) is the

normalizing constant. Note that if the p; were unconstrained,
(11) becomes a Dirichlet prior over the k dimensional sim-
plex.

Sedransk et al. (1985) assumed that ¢ is known and com-
puted only desired posterior expectations through Monte
Carlo integration, using importance sampling to avoid cal-
culation of ¢. To implement the Gibbs sampler requires the
full conditional distribution for p;, i = 1, ..., k — 1 (with
Dk as a function of these p;), [p| Y. p,j=1,...,k—1,j
# I, t]. This is clearly a Beta distribution scaled to [0, 1
-2 f;} p;] and then suitably restricted according to the

consfrzints determined by ¢. Thus if ¢ is known, then the
Gibbs sampler also avoids calculation of ¢. Moreover, em-
pirical work (Gelfand and Smith 1990) suggests that iterative
Monte Carlo integration using the Gibbs sampler will be
more efficient than noniterative Monte Carlo integration
such as that used by Sedransk et al. (1985).
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Suppose ¢ is unknown and assigned a discrete prior Pr(¢
=j)=1;,j=1,2,..., k. We note that [¢| Y, p] is a degen-
erate distribution. Thus the Gibbs sampler cannot be em-
ployed directly, because a condition for its convergence is
that transitions from one ¢ to any other are possible. This
hierarchical situation differs from that in expression (4),
where A is a hyperparameter having nothing to do with the
order restrictions. Here ¢ determines the restrictions.

Fortunately the marginal posterior for ¢ can be calculated
directly, taking the form

Pr(t=j|Y)
- c(ﬁl:v-"’ﬁk;j)Tj/c(‘Bl+Yls*",ﬁk+Yk;j)
2B, B DT/e(Bi+ Yy, Bt Yist)
(12)

Evaluation of the 2k constants in (12) can be done straight-
forwardly using Monte Carlo integration with importance
sampling, as in Sedransk et al. (1985). Thus we can estimate
the marginal posteriors for the p; by using the relationship

k
(p:IY] =2 [p]Y, ][] Y].

t=1

For each given ¢ we can use the Gibbs sampler in the cus-
tomary manner to obtain samples approximately from [p;|Y,
t]. We then can resample from these samples according to
[¢]Y] to obtain observations approximately from [p;|Y].
Full details of the required sampling in the context of an
illustrative example are given in Section 4.1.

Note that in a different context the sequence p; might for
instance be assumed to have a bimodal form; for example,
for grouped data arising from samples of exam scores or
from samples of heights or of weights. It is clear that our
formulation of the present example can be extended to han-
dle such cases. Also note that this example is a nonparametric
version of the grouped ordinal data problem. We are con-
cerned only with the probabilities for the income categories,
not with an underlying parametric model for the incomes
themselves.

Finally, extension to models involving collections of in-
dependent multinomials with order restrictions perhaps both
across and within populations is straightforward.

4.3 Ordered Linear Model Parameters

We demonstrate the potential of the Gibbs sampler for
the Bayesian analysis of constrained parameters in general
normal linear models by considering an illustrative analysis
of a simple two-way layout. Application to normal means
without linear structure appeared in Gelfand et al. (1991);
application to ordered slopes in a change-point regression
model was given in Carlin et al. (1992). Extensions to other
problems will be obvious from the following development.

Consider then a model of the form

Yj=o;+ 8+ ¢

i=1,2,...,1; j=1L2...,J, (13)
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where the ¢; are independent N(0, o2) and prior knowledge
about the linear parameters constrains the o, to be decreasing
in i and the g to be increasing up to some unknown level ¢
and then decreasing. Such a model generalizes the “‘response
surface” priors discussed in Smith (1973) and finds appli-
cation in many contexts where factor levels correspond to
increasing (decreasing) levels of a treatment, fertilizer, and
so forth. Other applications occur in consumer preference
studies (Green 1974; Green and Srinivasan 1978): here Y;
might be a scoring or rating of a product, such as a candy
bar, with factor «; corresponding to price level and B; to
sugar content.

The discussion in the previous sections indicates the ob-
vious way to proceed. We place a multivariate normal prior
on the set of «;, B;, independent of the ¢, ignoring the order
restrictions. To complete the Bayesian specification we place,
say, an inverse Gamma prior on ¢ and a discrete distribution
on ¢. Simple conjugate analysis (using, for example, the al-
gebraic forms given in Lindley and Smith [1972]) straight-
forwardly reveals the full conditionals for the «; and 8, to be
univariate normals suitably constrained (the constraints for
B; being dependent on ¢). The full conditional for o2 is the
conjugately updated inverse Gamma, whereas the full con-
ditional for ¢ is obtained using the technique described in
the previous section. Full details on the required sampling
in the context of an illustrative example are given in Sec-
tion 4.2.

3.4 Ordered and Data Constrained Parameters

To illustrate a situation in which the constraint set S%
discussed in Section 2.1 depends on Y, consider the following
model, which has applications to reliability development
studies and survival analysis. We suppose that Y, i = 1, 2,
...,k,andj=1,2,..., n; are conditionally independent
observations from location and scale exponential models, so
that Y;; has density

1
f(Y;l6:, 00) = - exp{—(Y; — 0,)/0;},

)/,']'20[>0, 0',‘>0.

In the absence of order restriction among the parameters,
there has been recent decision-theoretic discussion of si-
multaneous point estimation of the location parameters in
such models assuming known scale parameters and esti-
mation of scale parameters assuming known location pa-
rameters. See, for example, Ebrahimi and Hosmane (1988)
and Das Gupta, Dey, and Gelfand (1988).

Here we shall complete a Bayesian model specification by
assuming for purposes of illustration that 0 < 8, <6, < -« - -
< 6, are the k order statistics from the exponential density
N lexp{—0/\}, with N\ known, and that the o; are iid
from IG(a, b), the inverse Gamma density [b%/T(a)]
X [exp{—b|a;}/a?""], with a, b known. We are interested
in obtaining the marginal posterior densities for the §; and
a; (or functions thereof), a problem that is extremely difficult
using standard Monte Carlo integration due to the awkward
nature of S%, defined by Y;; > 6,>0and 0§, <, < - - -
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< 6,. Approached via the Gibbs sampler, however, the anal-
ysis is very straightforward. In particular, consider the full
conditional distributions for the 6; and o;. The o; are con-
ditionally independent with

[0:1Y, 0] = IG(a + nys, b+ ni(Y; — 6,)),
where ¥; = nj! %, Y;. For 6; we have
[BilY, g, 0j,j # l] oC e—ﬂi(l/)\—l/a,)

restricted to the interval §;_; < 0; < min(min;Y};, 6,.,), where
6o =0, 0+, = co. Thus these full conditional distributions
are easily sampled, and the Bayesian analysis can be imple-
mented straightforwardly.

3.5 Straight-line Regression With Censoring

As a first illustration of a truncated data problem, consider
the special case of the structure introduced in Section 2.2
where [Y |0] corresponds to conditionally independent
straight-line observations generated from Y;; = a + 8X; + ¢,
where ¢; ~ N(0,0%),i=1,2,...,k,j=1,2,...,n;,and
Z is defined by

if Y;<d;
if Y;>d,.

Thus at each setting X; of the regression variable there is a
cutoff d; above which the value of Y; cannot be observed.
An application of this model was given by Schmee and Hahn
(1979), and a Bayesian analysis using adaptive Gauss-Her-
mite quadrature was given by Naylor and Smith (1982),
who noted various subtleties required in performing the nu-
merical integration.

In contrast implementing the Gibbs sampler using the ap-
proach set out in Section 2.2 is straightforward. We include
the unobserved Yj; (i.e., those where Y;; > d;) as further un-
knowns in the model. Then, given conjugate normal priors
for «, B8 and an inverse Gamma prior for ¢2, it is clear that
the full conditionals for «, 8 and o2 are the updated conjugate
forms obtained by standard Bayesian analysis assuming all
the Y ; to be observed. The full conditional for any unobserved
Y, is simply N(a + BX;, ¢?), restricted to the range Y;> d,.
The required sampling from all full conditionals is therefore
immediate.

3.6 Bivariate Grouped Data

Suppose that data from an underlying continuous bivariate
distribution have been grouped into an I X J table, and we
wish to make inferences about the parameters of an assumed
bivariate parametric form for the unobserved continuous
data. In what follows we shall assume, for illustration, an
underlying bivariate normal population of the form

)= %))

For convenience of nomenclature, we shall refer to the two
component variables as “height” and “weight,” with height
groups [a;-1,a;],i=1,...,1, and weight groups [b,_,, b;],

(14)
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Table 1. Multinomial Population and Generated Data

P,
.03 .07 .10 .25 .30 .12 .08 .05
Y; 1 4 1 12 13 4 4 1
j=1,...,J,where ay = by = 0 (which technically should
be —0), a; = by = . The data consist of counts n;, i = 1,
...,1,j=1,..., J, where n; denotes the observed number

of individuals in height group [a;_,, a;] and in weight group
[bj-1, bj]. If Z; Z; n; = n the ny; are distributed as Mult(n;
Diis Pi2s - - - » Piy), where p; = p;i(6, 2) = Pr(a;-) < X < a;,
bi-y < Y < b;) under (14). Let  and 2 denote the mean and
covariance in (14). For illustration we adopt a normal-in-
verse Wishart prior structure for § and 2; that is, [0] = N(u,
V)and [27'] = W((pR)", p). We seek the marginal pos-
terior distributions [0, |n], [6,|n], and [ Z|n], where n = (n;,
Rigy ooy nu).

The Gibbs sampler is implemented most easily if we in-
clude the T, = (’§§), s =1, ..., nin the model as unobserv-
ables. We then require the full conditional distributions for
0., 0,,Zand T = (T, ..., T,). But [0|T, n, Z] is an
updated bivariate normal that readily yields the full condi-
tional distributions for 8, and 6,; similarly, [Z|T, n, 8] is an
updated inverse Wishart. Finally, we need to generate T, s
=1,...,ngivenn, 8 and =. But this merely requires that
for each pair i, j, we generate n; independent observations
from (14) restricted to [a;—;, a;] X [bj-1, b;]. Each such
generation can be implemented by drawing X from N(6,,
o2) restricted to [a;_,, a;] and then Y given X = x from N(0,
+ 0.(x — 0y)/ 02, 62 — 02,/ 0%) restricted to [y, b;].

We note the obvious extension to higher dimensional ta-
bles arising from an underlying multivariate normal model.
Another interesting extension arises if we have a collection
of independent two-way tables arising from a third classifi-
cation variable; that is, product multinomial sampling
(Bishop, Fienberg, and Holland 1975). To be concrete, sup-
pose this third variable is age and that the bivariate groups
actually correspond to height and weight. That is, grouped
height and weight data is supplied (using the same groups)
for a sample of say five-year-old children, a sample of six-
year-old children, and so forth. Under (14) it seems reason-
able that both 6, and 6, should increase with age. Thus we
have both grouped data and ordered parameters within one
model. We leave details of this extension to the reader, who
by now will be surprised to find that the Gibbs sampler is
very straightforward despite the seeming awkwardness of the
model and parameter constraints.
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4. ILLUSTRATIVE ANALYSIS

In this section we analyze two artificial data sets derived
from models based on those discussed in Sections 3.2 and
3.3. Real applications of these and the other models discussed
exist in abundance. Our purpose in analyzing artificial data
sets generated from known models is to provide insight into
and calibration of the performance of the methodology we
have presented.

4.1 Multinomial With Ordered Parameters

As an example of the problem discussed in Section 4.2,
Table 1 shows a k = 8 cell multinomial model and the results
of 40 random draws from this model. We assume that the
p;increase i = 1, 2, ..., t and then decrease thereafter but
otherwise p; and ¢ are unknown. We take the generalized
uniform Dirichlet, a; = 1,i =1, 2, ..., 8, and calculate the
constantsc(1,...,1;8),c(Y +1,..., Yg+ 1;1),fort =1,
2, ..., 8 as described in Sedransk et al. (1985). Using (13)
we obtain the marginal posterior, [¢|Y ], which is shown in
Table 2. Note that despite only 40 draws from an eight-cell
table and a flat prior, [¢]|Y ] places nearly all its mass on ¢
=4 and 5.

As remarked in Section 3.2, to obtain the marginal pos-
teriors, [p;| Y ], we implement the Gibbs sampler in a slightly

different way. We use general k and « = (e, . . . , o) in the
ensuing details. Because
k
(Pl Y]=2 [plY, ][] Y] (15)

I=1

and because [¢|Y ] already has been obtained, we propose
to sample from [p;| Y ] by randomly selecting ¢ according to
[¢]Y] and then sampling p; from [p;|Y, ¢]. The densities
[p;|Y, t] can be obtained using the Gibbs sampler in the
customary fashion, as indicated in Section 3.3. More pre-
cisely, we require only the full conditional distributions for
pii=1,..., k—1, because p, = | — 2! p;. But [p;] Y,
t,pj,j= 1,2,...,k_ 1,j#i]=Beta(ai+ Yi,ak+ Yk)
scaled to the interval [0, a;], where a; = 1 — 24! p;, j # i,
and then restricted to an interval determined by the other
p;’s and ¢; that is, with p, =0

ifi <t, max(pi_i, a; — Pk-1) < p;i < Min(Pi+1, &);
if i > ¢, max(pis1, & — Pk-1) < pi < min(p;-y, 4);
if i = ¢, max(p.i, Pi+1, G — Dk—1) <D < 4.

The output from m replications of the Gibbs sampler will
be vectors pi = (p, ..., Py)and j = 1,2, ..., m, such
that the p/ are approximately distributed as [p|Y, 7]; thus
the p4, j = 1, ..., m, are approximately distributed as
[pi [y’ t ] .

Table 2. Marginal Posterior Distribution of t

t

1 2 3

4

5 6 7

pitlyY) .0000 .0001 .0013

.3527

.6350 .0104 .0005 .0000
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Figure 1. Multinomial Model With Ordered Parameters (Section 4.1). Marginal posterior distributions for selected cell probabilities.

Suppose we run the Gibbs sampler in this manner for
eacht,t=1,..., k. Thenin theory we could obtain a kernel
density estimate for each [p;|Y, ], =1, ..., k and thus
via (15) a density estimate that is a finite mixture of these.
In practice we would merely randomly select ¢ according to
[¢] Y] and then make an equally likely choice from the set
of pi;, j =1, ..., m. This resampling procedure results in
an observation approximately distributed as [p;|Y]. Re-
peating this process many times (1,000 times to create the
plots in Table 2), we can compute a kernel density estimate
for [p;| Y].

Returning to the analysis at the beginning of this section,
in Figure 1 we plot such kernel density estimates for the
illustrative set p,, ps, ps, p7. We note that these posteriors
reflect the order restrictions and have modes close to the
respective true values. The complete set of posterior modes
is given in Table 3.

4.2 Two-Way Layout With Ordered Parameters

Consider the problem discussed in Section 3.3. Table 4
presents a set of data, Y, generated from (13) with o, = 2,
a2=19a3=0,a4=_2>51 —1962=0>63=2’54=_13
Bs = —2,and ¢* = 3. Thus for each column cell expectations
decrease, whereas for each row expectations increase to the
middle column and then decrease. The data is rather noisy
and often at odds with these expectations. Ordinary least
squares (OLS) analysis ignoring known order restrictions is
terribly misleading: &, = 1.064, a, = —1.163, a3 = .536,
&y =—5.203, 8, = —1.737, 6, = .758, f, = 283, B, = —3.344,

Table 3. Marginal Posterior Modes of the [p;|Y]

Mode of

[p:ilY] .019 .061

.082 246 289 .096 .063 .019

Bs = —1.917, and 52 = 3.590. This analysis yields estimates
for the o; and g, that fail to meet the restrictions and often
are far from the true values. Some sort of constrained least
squares solution (an isotonic regression) would be a better
frequentist approach.

Bayesian analysis using the Gibbs sampler is implemented
easily in this case, yielding marginal posterior distributions
for the o, the B;, and ¢2. In the process, using say posterior
modes, the isotonic regression problem is solved.

Specific details are as follows. Suppose for simplicity we
assume conjugate normal and inverse Gamma forms for the
a;, B; and for ¢ That is, ignoring restrictions, let «; be iid
N(0, ¢2) and B; be iid N(0, o2). (For convenience we have
centered these priors at 0 and have chosen the above «;, 8;
to be approximately centered at 0 as well.) Let 62 ~ I1G(aq,
b) independent of the «; and 8;. We make these priors rather
vague by setting 62 = 5, 3 =5,a =0, and b = 1. The full
conditional distributions using general ¢2, 02, a, b and in-
corporating the order restrictions are

[ailY’ Q, I # i> ﬁj> 62]

5¢%(Y;. — 8- o2o?
= N (2: f’), ; 5, i=1,234
Se,+t o Se,+ o
restricted to (a;_;, a;4+,), where ag = —o0, as = +00, Y;
= 215=1 YU'/S’ and 8- = Zf=1 ﬁj/5§
Table 4. Generated Two-Way Layout Data
i/j
1 2 3 4 5
1 .982 1.902 3.797 -1.531 .570
2 -1.417 1.356 1.287 —3.629 -3.413
3 —1.601 4.713 .814 .834 -2.082
4 -4.912 —4.541 —4.768 —9.051 —2.744
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Figure 2. Two-Way Layout With Ordered Parameters (Section 4.2). Marginal posterior distributions for the first factor effects.

[6j|Y, BJ’ s 7&], a;, 62]
=N(4a§(f’.j—a-) o530

), j=1,2’3,435

403+ 0> 4o} + o?
restricted to (Bi-1, Bir1) J = 1, 2, (Bjs15 Bi=1), J = 4, 5,
[max(B,, B4), ), and j = 3, where Bp = —o0, Bs = + 00,

Y.;=2t Yija,and a-= 21 (0/4);

(2|Y, @i i=1,...,48,j=1,...,5]

=IG(a+ 10,b+ 2 Z(Y,]—a,—ﬂ])z/Z).
i J

Figure 2 shows the marginal posterior distribution for the
«; as output from running the Gibbs sampler, revealing that
they respond to the order restrictions. Similar figures may
be developed for the §; and for o%. The marginal posterior
modes af = 1.480, a3 = .197, a3 = —.507, ai = —3.684,
BT = —1.039, B3 = .635, B3 = 1.261, 8% = —1.149, B¥
= —1.790, and ¢ = 3.975 are in accordance with the re-
strictions and generally much closer to the true values than
are the OLS estimates. Although some version of a con-
strained least squares algorithm might produce comparably
good point estimates, because the Gibbs sampler enables
marginal posterior distributions for the «;, 8; as well as for
a; + B;, &, — a;, B, — By, and so forth, we also can easily
obtain Bayesian interval estimates for any functions of the
model parameters that may be of interest.

In these calculations we have assumed that 83 was known
to be the largest 3. If we did not know which subscript de-
noted the largest 8, we could use an approach analogous to
that described in the previous example. If we felt that the
data contained some outliers, we might robustify the Bayes-
ian analysis by assuming that the distribution of the errors

“in (14) is [e5]A;] = N(0, A\;'0?), where vA; ~ Gamma(v/
2,1/2), so that marginally the ¢;; ~ £,(0, ¢?). To implement
the Gibbs sampler we would include the A; as unobserved
variables. Obtaining all full conditional distributions would
be straightforward; we omit details.

5. SUMMARY

Our intent has been to describe how Bayesian analysis of
a broad range of ordered parameter and truncated data
problems can be implemented straightforwardly using the
Gibbs sampler. This approach avoids well-nigh impossible
numerical integrations over high dimensional sets defined
by complex restrictions. Rather, it requires only sampling
from univariate full conditional distributions, restricted to
easily described subsets of R!. With conjugacy, the needed
full conditional distributions are standard probability dis-
tributions; without conjugacy, tailored versions of general
random variate generation procedures are needed. Although
sampling may be inefficient, this is more than compensated
for by the ability to carry out full Bayesian calculations for
many problems that were previously inaccessible. Two il-
lustrative examples show how much stronger inference can
be when restrictions are taken into account in the modeling
process.

[Received March 1990. Revised December 1990, May 1991.]
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