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All rights reserved



Abstract

Many modern scientific problems involve outcomes that are complex, infinite dimen-

sional objects like curves and distributions. Often, no satisfactory statistical method-

ology is available for inference in these types of problems. Recent research in Bayesian

nonparametric methods has focused on extending existing models to accommodate si-

multaneous inferences for multiple dependent distributions. This dissertation focuses

on problems of density estimation on collections of distributions using extensions of

the Dirichlet processes, as well as their application to nonparametric regression.

The dissertation can be broadly divided in three semi-autonomous pieces. In the

first part, comprising chapters 2 to 4, we develop models for the joint estimation of

collections of densities in two specific contexts: 1) multicenter studies, where distri-

butions are assumed to form clusters indicating common underlying characteristics

and 2) time series where distributions evolve in discrete-time. We demonstrate the

versatility of the models through applications in epidemiology, public health and

finance.

In the second part, which involves chapter 5 and 6, we frame nonparametric re-

gression as a density estimation problem. First, we show that consistency of the

density estimates automatically induces pointwise consistency of the functional esti-

mates. From there, we develop methods for functional data analysis based on depen-

dent Dirichlet processes. Specifically, we discuss applications to functional clustering

and functional spatial data analysis. Examples of these methods are drawn from

oceanography and public health.

Finally, chapter 7 introduces a novel nonparametric prior on the space of stochas-

tic processes that provides a flexible alternative to the Gaussian process. This class

of models has few precedents in the literature and is different from the models for
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collection of distributions that we developed in the first part of the dissertation. As

an application, we discuss a stochastic volatility model for option pricing.
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Chapter 1

Introduction

Parametric statistical methods are inference procedures where the outcomes in the

model are assumed to follow probability distributions that belong to a family that

is determined except for a finite number of parameters, for example, the normal

distribution with unknown mean and variance. Some of the statistical methods most

widely used by practitioners like multiple linear regression, analysis of variance and

generalized linear models, are parametric in nature.

The beauty of parametric methods is their relative simplicity: with a finite pa-

rameter space and some reasonable assumptions on the parametric families involved,

deriving distributional theory, defining prior distributions and/or obtaining posterior

distributions is relatively straightforward even for complicated and highly structured

models.

In contrast, nonparametric methods try to avoid assumptions about the proba-

bility distributions in order to generate methods that can be used in settings where

regular parametric assumptions do not work. Although applicable in more general

circumstances, nonparametric models can lead to very complex mathematics in all

but the simplest models. Also, there is an implicit tradeoff between the general-

ity of nonparametric tests and the power to detect differences between populations.
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From a frequentist perspective, a parametric t-test has a higher power if the normal-

ity assumption is indeed true, but might badly under perform the sign test if it is

false, given the same type I error. From a Bayesian perspective, posterior distribu-

tions obtained from nonparametric models tend to have larger variances than their

parametric counterparts.

Nonparametric methods have a long history in modern frequentist statistics, start-

ing with Fisher’s exact test (Fisher, 1922). One simple yet enlightening example of

a classical nonparametric method is the sign test. Let xi ∼ F for i = 1, . . . , n, µ

be the median of F , and suppose that we are interested in testing H0 : µ = µ0 vs.

Ha : µ 6= µ0, where µ0 is some fixed number. Defining t as the number of values in

the sample that are greater than µ0, it is clear that t ∼ Bin(n, 1/2), no matter what

the true distribution F is.

In Bayesian statistics, nonparametric models are constructed through priors on

rich families of distributions. Therefore, the term Bayesian nonparametrics is really

a misnomer. Bayesian nonparametric models are not parameter free, but have an

infinite number of parameters. Raiffa and Schlaifer (1961) and Ferguson (1973) in

their seminal work on Bayesian nonparametrics mention some characteristics that

should be kept in mind when constructing priors on spaces of distributions:

1. The class should be analytically tractable. Therefore, the posterior distribution

should be easily computed, either analytically or through simulation.

2. The class should be rich, in the sense of having a large enough support.

3. The hyperparameters defining the prior should be easily interpreted.

Although it is not always possible to completely satisfy all of the requirements

mentioned above, this dissertation will emphasize the importance of these features

when developing our own nonparametric models.
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This chapter makes a quick review of current Bayesian nonparametric models for

distribution functions, making special emphasis on the Dirichlet process. Bayesian

nonparametric methods in the context of regression models will be briefly discussed

in chapters 3 and 5.

1.1 The Dirichlet Process

The Dirichlet Process (DP) (Ferguson, 1973, 1974; Blackwell and MacQueen, 1973;

Sethuraman, 1994) is the base for the most widely used nonparametric models for

random distributions in Bayesian statistics, mainly due to the availability of efficient

computational techniques. Some recent applications of the Dirichlet Process include

finance (Kacperczyk et al., 2003), econometrics (Chib and Hamilton, 2002; Hirano,

2002), epidemiology (Dunson, 2005), genetics (Medvedovic and Sivaganesan, 2002;

Dunson et al., 2007a), medicine (Kottas et al., 2002; Bigelow and Dunson, 2007) and

auditing (Laws and O’Hagan, 2002).

1.1.1 Definition of the Dirichlet Process

Consider the probability spaces (Θ,B, P ) and (P, C, Q) such that P ∈ P. In most

applications, Θ ⊆ Rd , B corresponds to the Borel σ-algebra of subsets of Rd

and P is the space of probability measures over (Θ,B), but most of the results

mentioned in this section extend to any complete and separable metric space Θ.

We will refer to (Θ,B, P ) as the base space and to (P, C, Q) as the distributional

space. Given a finite, nonnegative, nonnull measure ν on (Θ,B), the Dirichlet Pro-

cess with base probability measure H(·) = ν(·)/ν(Θ) and precision α = ν(Θ),

denoted as DP(αH), is a probability measure Q over the space (P, C) such that

(P (B1), . . . , P (Bk)) ∼ Dir(αH(B1), . . . , αH(Bk)) for any finite and measurable par-

tition B1, . . . , Bk of Θ, where Dir(γ1, . . . , γk) denotes the k-dimensional Dirichlet

3



distribution with parameters γ1, . . . , γk (see appendix A).

The Dirichlet process can be alternatively characterized in terms of its predictive

rule (Blackwell and MacQueen, 1973). If (θ1, . . . ,θn−1) is an iid sample from P ∼

DP(αH), we can integrate out the unknown P and obtain the conditional predictive

distribution of a new observation,

θn|θn−1, . . . ,θ1 ∼
α

α + n− 1
H +

n−1∑
l=1

1

α + n− 1
δθl

where δθl
is the Dirac probability measure concentrated at θl. Exchangeability of

the draws ensures that the full conditional distribution of any θl has this same form.

This result, which relates the Dirichlet process to a Pólya urn, is the basis for the

usual computational tools used to fit models based on the Dirichlet process.

The Dirichlet process can also be regarded as a type of stick-breaking prior (Sethu-

raman, 1994; Pitman, 1996; Ishwaran and James, 2001; Ongaro and Cattaneo, 2004).

A stick-breaking prior on the space P has the form

PK(·) =
K∑
k=1

wkδθk
(·) θk ∼ H

wk = zk

k−1∏
l=1

(1− zl) zk ∼

{
beta(ak, bk) if k < K

1 if k = K

where the number of atoms K can be finite (either known or unknown) or infinite.

For example, taking K = ∞, ak = 1 − a and bk = b + ka for 0 ≤ a < 1 and

b > −a yields the two-parameter Poisson-Dirichlet Process, also known as Pitman-

Yor Process (Pitman, 1996), with the choice a = 0 and b = α resulting in the Dirichlet

Process (Sethuraman, 1994).

The stick-breaking representation is probably the most versatile definition of the

Dirichlet Process. It has been exploited to generate efficient alternative MCMC algo-

rithms and as the starting point for the definition of many generalizations that allow
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dependence across a collection of distributions, including the DDP (MacEachern,

2000), the πDDP (Griffin and Steel, 2006b) and the GSDP (Duan et al., 2007).

Finally, the Dirichlet Process can be obtained as the asymptotic limit of certain

finite mixture models (Green and Richardson, 2001; Ishwaran and Zarepour, 2002).

In particular consider the finite-dimensional Dirichlet-Multinomial prior

PK(·) =
K∑
k=1

wkδθk
(·) w ∼ Dir

( α
K
, . . . ,

α

K

)
θk ∼ H

which differs from a truncated stick-breaking representation of the Dirichlet Process in

the way the weights have been defined. Ishwaran and Zarepour (2002) prove that for

each measurable function g which is integrable with respect to H,
∫
g(θ)PK(dθ)

p−→∫
g(θ)P (dθ) where P ∼ DP(αH), i.e., the finite-dimensional Dirichlet-Multinomial

prior converges in distribution to the Dirichlet process. This result not only provides

another useful approximation, but also justifies frequently used finite mixture models

as approximating a DP.

1.1.2 Properties of the Dirichlet process

From the stick-breaking construction we can easily see that draws from a Dirichlet

process are discrete distributions almost surely. It also provides a simple framework

to calculate moments of the process. Note that for any measurable set A ∈ B, P (A)

is a random quantity and

E(P (A)) =
∞∑
l=1

E(wk)E(δθk
(A))

= H(A)
∞∑
l=1

E(wk) = H(A).

Using a similar argument

V(P (A)) =
H(A)(1−H(A))

α + 1
.
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In order to better understand the role of the parameters H and α, we show in

Figure 1.1 approximate simulations of a Dirichlet Process with a standard Gaussian

baseline measure and different values of the precision parameters. These were ob-

tained by truncating the stick-breaking process when the leftover mass was smaller

than ε = 10−6.

Note that in all cases the samples are centered on the baseline measure. However,

for low values of α, the sampled distributions vary widely around the baseline measure

and tend to have very few important atoms that concentrate most of the probability.

As the precision parameter increases, the distributions look smoother and they tend

to be very close to the standard Gaussian. These results justify the interpretation of

H and α as location and precision/roughness parameters respectively.

Conjugacy is another appealing property of the Dirichlet process. If θ1, . . . ,θn ∼

P and P ∼ DP(αH), then

P |θ1, . . . ,θn ∼ DP

(
αH +

n∑
i=1

δθi

)
.

Therefore, the optimal estimator under squared error loss for P is

P̂ (·) =
α

α + n
H(·) +

1

α + n

n∑
i=1

δθi
, (·)

which converges to the empirical distribution as n→∞.

Antoniak (1974) studies the properties of draws from a distribution that follow a

Dirichlet process. In particular, he proves that, if H is nonatomic, the probability of

k distinct values on a sample θ1, . . . ,θn of size n is

P(k) = cn(k)n!αk
Γ(α)

Γ(α + n)
(1.1)

for k = 1, . . . , n, where cn(k) is a constant that can be obtained using recur-

rence formulas for Stirling numbers. The expected number of distinct values can be
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Figure 1.1: Samples of a DP process centered on a standard Gaussian distribution,
for different precision parameters.
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calculated as

E(k|α, n) =
n∑
i=1

α

α + i− 1
≈ α log

(
α + n

α

)

These results will be used later to construct computational algorithms that treat

α as an unknown parameter and to elicit prior distributions for this parameter.

1.1.3 Mixtures of Dirichlet Processes

Antoniak (1974) also generalized the basic Dirichlet process by considering random

baseline measures ν, resulting in the so-called Mixture of Dirichlet Process (MDP)

model. Given an index space (U,A), let ν(·, ·) be such that ν(·, u) is a finite, non-

negative and nonnull measure on (Θ,B) for every u ∈ U and ν(B, ·) be measurable

on (U,A) for every B ∈ B. We say that P is distributed as a mixture of Dirichlet

processes if for any measurable partition (B1, . . . , Bk) of Θ

(P (B1), . . . , P (Bk)) ∼
∫
U

Dir(ν(B1, u), . . . , ν(Bk, u))T (du)

where the mixture distribution T is defined on (U,A). MDP priors, just like regular

DP’s, are almost surely discrete and conjugate. That is, if X ∼ P and P follows a

mixture of Dirichlet processes, then P |X is again an MDP with updated parameters.

1.2 Dirichlet Process Mixtures

Since the DP and MDP models put probability one on the space of discrete measures,

they are typically not good choices for modeling continuous data. Instead, they

are more naturally employed as priors on the random mixing distribution over the

parameters of a continuous distribution K with density k,

z ∼ g(·) g(·) =

∫
k(·|θ)H(dθ) H ∼ DP(αH0), (1.2)
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resulting in a DP mixture (DPM) model (Lo, 1984; Escobar, 1994; Escobar and

West, 1995). The DPM induces a prior on g indirectly through a prior on the mixing

distribution H. A popular choice is the DPM of Gaussian distributions, where θ =

(µ,Σ) and k(·|θ) = φp(·|µ,Σ) is the p-variate normal kernel with mean µ and

covariance matrix Σ.

Given an iid sample zn = (z1, . . . , zn), the posterior of the mixing distribution,

Hn(·|zn), is distributed as a mixture of Dirichlet processes (MDP), i.e,

Hn(·|zn) ∼
∫

DP

(
αH0 +

n∑
l=1

δθl

)
p(dθ1, . . . , dθn|zn)

and the optimal density estimator under squared error loss, gn(z), is the posterior

predictive distribution

gn(z) = E
[∫

k(z|θ)Hn(dθ|zn)

]

=

∫
k(z|θ)E [Hn(dθ|zn)]

=

∫
k(z|η)

αH0(η) +
∑n

l=1 δθl
(η)

α + n
p(dθ1, . . . , dθn|zn).

(1.3)

Density estimates arising from location-and-scale DP mixtures can be interpreted

as Bayesian kernel density estimates with adaptive bandwidth selection. This inter-

pretation is extremely appealing because it provides a direct link with well-known

frequentist techniques and demonstrates the versatility of the model.

Due to the discrete nature of the DP prior, the DPM model divides the obser-

vations into independent groups, each one of them assumed to follow a distribution

implied by the kernel k. Therefore, DPM models can be used for clustering as well as

for density estimation. In this setting, the model automatically allows for an unknown

number of clusters, with equation 1.1 providing the implicit prior distribution.
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1.2.1 Computation for Dirichlet Process Mixtures

Computation for DPM models is typically carried out using one of three different

approaches: Pólya urn schemes that marginalize out the unknown distribution H

(MacEachern, 1994; Escobar and West, 1995; Bush and MacEachern, 1996; MacEach-

ern and Müller, 1998; Neal, 2000), truncation methods that use finite mixture models

to approximate the DP (Ishwaran and James, 2001; Green and Richardson, 2001),

and Reversible Jump algorithms (Green and Richardson, 2001; Jain and Neal, 2000;

Dahl, 2003).

For computational purposes, it is convenient to rewrite model 1.2 using latent

variables θ1, . . . ,θn corresponding to observations z1, . . . , zn. In turn, these latent

variables can be rewritten in terms of a set of k ≤ n unique values θ∗1, . . . ,θ
∗
k and a

set of indicators ζ1, . . . , ζn, such that θi = θ∗ζi .

Pólya urn samplers, also called marginal samplers, are popular in practice because

they are relatively easy to implement and produce exact samples from the posterior

distribution of θ. However, they are more useful when the baseline measure H0 is

conjugate to the kernel k. Escobar and West (1995) original algorithm uses the Pólya

urn directly to simultaneously sample group indicators and group parameters. They

note that

p(θi|θ−i, z) = qi0p(θi|zi, H0) +
n∑

l=1,l 6=i

qilδθl
(θi)

where qi0 = α
∫
k(zi|θ)H0(dθ), qil = k(zi|θl) for l ≥ 1 and p(θi|zi, H0) is the posterior

distribution for θi based on the prior H0 and a single observation zi. MacEachern

(1994) points out that mixing can be slow in this setting, and proposes to add an

additional step to the Gibbs sampler that resamples the group parameters conditional

on the indicators. Taking this idea one step forward, Bush and MacEachern (1996)

note that, in the conjugate case, the group parameters can be easily integrated out,
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yielding a more efficient sampler. Finally, MacEachern and Müller (1998) propose

an algorithm that can be used in the nonconjugate case. Neal (2000) provides an

excellent review of marginal methods.

Blocked samplers are a more recent idea and are based on approximations to the

Dirichlet process by finite mixture models. They are straightforward to code, tend

to have better mixing properties than marginal samplers and, unlike them, directly

produce (approximate) draws from the posterior distribution Hn(dθ|zn). Their main

drawback is that the samples only approximately follow the desired distribution. As

an example, consider the truncation sampler of Ishwaran and James (2001), which

starts with the finite stick breaking prior

PK(·) =
K∑
k=1

wkδθk
(·) θk ∼ H

wk = zk

k−1∏
l=1

(1− zl) zk ∼

{
beta(ak, bk) if k < K

δ1 if k = K

After proving that PK converges in distribution to a Dirichlet process when K →

∞, the authors are able to construct a simple Gibbs sampler that exploits conjugacy

between the generalized Dirichlet distribution and the multinomial distribution. A

related approach is the retrospective sampler (Roberts and Papaspiliopoulos, 2007),

who also use the stick breaking representation of the Dirichlet process to generate

a sampler that avoids truncations but shares some of the advantages of the blocked

sampler.

Finally, different authors (Jain and Neal, 2000; Dahl, 2003) have proposed sam-

plers that use Reversible Jump steps (Green, 1995). These samplers can be very

efficient in avoiding local modes on the posterior distribution, improving the mixing

of the chain under some circumstances. However, they are typically much harder to

implement.

11



This short review of methods is in no way exhaustive. Different authors have

successfully implemented algorithms that cannot be readily categorized in any of the

previous groups. For example, MacEachern et al. (1999) use sequential importance

samplers, while Blei and Jordan (2006) adapt variational methods for the Dirichlet

process. This last approach is particularly useful when large data sets are involved.

1.3 Models for collections of distributions based

on the Dirichlet Process

Although most of the usual applications of Dirichlet Process models focus on problems

with exchangeable samples from one unknown distribution, there is growing interest

in extending the Dirichlet Process to accommodate multiple dependent distributions.

Most approaches in the literature accomplish dependence between the distribu-

tions either by introducing dependence in the elements of the stick-breaking rep-

resentation of the distribution or by forming convex combinations of independent

processes.

The dependent Dirichlet process (DDP) (MacEachern, 1999, 2000) induces depen-

dence in a collection of distributions by replacing the elements of the stick-breaking

representation (Sethuraman, 1994) with stochastic processes. It has been employed

by DeIorio et al. (2004) to create ANOVA-like models for densities, and by Gelfand

et al. (2005) to generate spatial processes that allow for non-normality and non-

stationarity. This last class of models is extended in Duan et al. (2007) to create

generalized spatial Dirichlet processes (GSDP) that allow different surface selection

at different locations, among others.

Along similar lines, the hierarchical Dirichlet process (HDP) (Teh et al., 2006) is

another approach to introduce dependence. In this setting, multiple group-specific

distributions are assumed to be drawn from a common Dirichlet Process whose base-
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line measure is in turn a draw from another Dirichlet process. This allows the different

distributions to share the same set of atoms but have distinct sets of weights. More

recently, Griffin and Steel (2006b) proposed an order-dependent Dirichlet Process

(πDDP), where the correspondence between atoms and weights is allowed to vary

with the covariates. Also, Dunson and Park (2007) propose a kernel stick breaking

that allows covariate dependent weights and fixed atoms.

An alternative approach to the DDP is to introduce dependence through linear

combinations of realizations of independent Dirichlet processes. For example, Müller

et al. (2004), motivated by a similar problem to Teh et al. (2006), define the distri-

bution of each group as the mixture of two independent samples from a DP process:

one component that is shared by all groups and one that is idiosyncratic. Dunson

(2006) extended this idea to a time setting, and Dunson et al. (2007b) propose a

model for density regression using a kernel-weighted mixture of Dirichlet Processes

defined at each value of the covariate.

In what follows, we concentrate on the dependent Dirichlet process due to its

theoretical appeal and computational simplicity.

1.3.1 Dependent Dirichlet processes

Given an index set D, let {θ(t) : t ∈ D} and {z(t) : t ∈ D} be stochastic processes

over D such that z(t) ∼ beta(1, α(t)) ∀ t ∈ D and define

Ht(·) =
∞∑
l=1

w∗l (t)δθ∗l (t)
(·), (1.4)

where {θ∗l (t)}∞l=1 and {z∗l (t)}∞l=1 are mutually independent collections of independent

realizations of the stochastic processes {θ(t) : t ∈ D} and {z(t) : t ∈ D}, and w∗l (t) =

z∗l (t)
∏l−1

s=1(1 − z∗s(t)). The collection of probability measures HD = {Ht : t ∈ D} is
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said to follow a dependent Dirichlet process (DDP) (MacEachern, 2000). Note that,

for any fixed t, Ht follows a Dirichlet process.

DDP models are dense on a large class of distributions. Indeed, under mild

conditions, the DDP assigns positive probability to every ε-ball centered on a finite

collection of distributions that are absolutely continuous to the baseline measures

corresponding to the same locations of the index space D (MacEachern, 2000).

One of the most popular variates of the DDP is the “single-p” model, where the

weights are assumed to be constant over D while the atoms are allowed to vary.

Models of this form can be rewritten as regular DP models with atoms arising from

a stochastic process. Therefore, standard Gibbs sampling algorithms can be used

to perform inferences for the “single-p” DDP models. The main drawback of this

approach is its inability to produce a collection of independent distributions.

The hierarchical Dirichlet process (HDP) (Teh et al., 2006) can also be recast as

a DDP model. The HDP places a prior on a collection of exchangeable distributions

{G1, . . . , GJ}. Conditional on a probability measure G0, the distributions in the

collection are assumed to be iid samples from a regular Dirichlet process centered

around G0. In order to induce dependence, G0 is in turn given another Dirichlet

process prior. In summary,

Gi|G0 ∼ DP(αG0)

G0 ∼ DP(βH)

Since G0 is, by construction, almost surely discrete, the distributions Gi share

the same set of random atoms (corresponding to those of G0), but assign strictly

different (although dependent) weights to each one of them. As is to be expected,

H corresponds to the common expected value for each of the distributions in the

collection, and α and β control the variance around H and the dependence between

distributions. Computation for the HDP is performed using a generalized Pólya urn
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scheme.

Another special case of the DDP is the order-dependent DP (πDP), proposed by

Griffin and Steel (2006b). For the πDP, both atoms and weights are kept constant,

but the assignment of weights to atoms (represented by a permutation on the indices)

is allowed to vary on D. This construction has numerous theoretical advantages.

By carefully constructing the stochastic processes driving the orderings, the πDDP

allows for a set of independent distributions as a limiting case and for the posterior

distribution at a new point x∗ ∈ D to converge towards the baseline measure as

x∗ moves away from the observed points. Both of these features are not possible

with the “single p” DDP. However, constructing the underlying stochastic processes

necessary to define the process can be a complex task. Also, the algorithm used to

fit this model is fairly complicated.

1.4 Other Bayesian nonparametric models

1.4.1 Pólya Trees

Pólya trees (PT) (Lavine, 1992; Mauldin et al., 1992; Lavine, 1994; Paddock et al.,

2003) define random distributions on a space (Θ,B) by first generating a sequence of

binary partitions of the space and then assigning probability masses to each element of

each partition in a hierarchically consistent way. The Dirichlet processes is obtained

as a special case of a Pólya tree. We begin the description of Pólya Trees with a

definition:

Definition 1. A separating binary tree partition is a sequence of partitions Π =

{πt : t = 0, 1, . . .} such that
⋃∞
k=0 πk generates the measurable sets on Θ and every

B ∈ πk+1 is obtained by splitting some B∗ ∈ πk in two pieces.

Let D = {0, 1}, D0 = ∅, Dk be the k-fold product D × D × · · · × D and D∗ =
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⋃∞
k=0Dk. If Θ is a separable, measurable space and Π is a separating binary tree

of partitions of Θ, the random probability measure H on Θ has a Pólya tree with

parameters (Π,A), denoted H ∼ PT(Π,A), if there exist a set of parameter A =

{αε : ε ∈ D∗} and a collection of random parameters Y = {Yε : ε ∈ D∗} such that

1. The random variables in Y are independent.

2. For every ε ∈ D∗, Yε ∼ beta(αε0, αε1).

3. For every k = 1, 2, . . . and every ε1:k we have

H(Bε1:k) =
m∏

j=1;εj=0

Yε1:j−1

m∏
j=1;εj=1

(1− Yε1:j−1
)

Regular Pólya trees use a fixed partition (if Θ = (0, 1], this is typically the

canonical dyadic partition), while randomized Pólya trees assume the partition to be

random and put a prior distribution on it. Unlike the Dirichlet process, Pólya tree

priors can generate continuous distributions if the set A satisfies αε = αε0 +αε1. They

can be centered on a distribution H0, for example, by choosing Π = {{(H0(l2−k, (l+

1)2−k); l = 0, . . . , 2k − 1}; k = 0, 1, . . .}.

Pólya trees are conjugate priors, which can be exploited to design an efficient

algorithm to sample from the posterior distribution. However, since the definition of

Pólya trees involve a countable number of partitions, such computational approaches

require the truncation of the process (typically, around 7 levels are used in practice).

Implementations of Pólya tree priors on multidimensional spaces exist (Paddock,

1999), but it becomes harder to implement for more than two or three dimensions.

1.4.2 Neutral to the right processes

Neutral to the right processes (NTTR) were introduced by Doksum (1974). In

Bayesian nonparametrics, they are used to model distribution functions with support
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on R+ (typically, survival distribution functions). A random distribution H with sup-

port on R+ is said to follow a NTTR process if for every k and 0 < t1 < . . . < tk

there exist independent random variables V1, . . . , Vk such that

(1−H(t1), 1−H(t2), . . . , 1−H(tk))
d
=

(
V1, V1V2, . . . ,

k∏
j=1

Vk

)

In this case, the distribution function H(x) can be written as H(x) = exp{S(x)}

where S(·) is an independent increments process. One particular example of a NTTR

is the beta-Stacey process (Walker and Mulliere, 1997). NTTR are also conjugate

priors on the space of distribution, in the sense that the posterior is another NTTR.

This is true even under right-censored data, which reinforces its appeal for modeling

survival data.

1.4.3 Lévy processes

A stochastic process X = {X(t)} is said to be a Lévy process (LP) on a probability

space (Ω,F , P ) iif

1. X has independent increments.

2. X(0) = 0 almost surely.

3. X is stochastically continuous, i.e., for any s, t ≥ 0, X(t − s) − X(s)
P→ 0 as

t→ 0.

4. X is time homogeneous, i.e., for s, t ≥ 0, the law of X(t− s)−X(s) does not

depend on s.

5. X is right continuous with left limits almost surely.

Brownian motion, compound Poisson processes and gamma process are some exam-

ples of Lévy process.
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There is a well-known relationship between infinitely divisible distributions and

Lévy processes. Indeed, there is a one-to-one relationship between the collection of

all infinitely divisible distributions and the collection of all Lévy processes.

The characteristic function of any infinitely divisible measure has an integral

representation in terms of a positive σ-finite measure ν(·) on R 0, which is called

the Lévy measure. This result is known as the Lévy-Khinchine theorem (Jacod and

Shiryaev, 1987). As a consequence of this theorem, any LP can be represented as the

sum of a Brownian motion with a drift and a pure jump process.

Strictly increasing Lévy processes (called subordinators) have been recently used

in a Bayesian nonparametric context for tasks including time series analysis, nonpara-

metric regression, spatio-temporal models, density estimation and solving integral

equations (Wolpert and Ickstadt, 1998a; Wolpert et al., 2003; Tu, 2006). A strictly

increasing LP can be represented as a countable sum of point masses of the form

X(ds) =
∑
i

viδθi
(ds)

If the Lévy measure ν is finite, then the number of point masses is finite, otherwise

it is countably infinite. In the second case, the measure is typically truncated for

implementation purposes.

Computational tools employing MCMC schemes have been developed to fit mod-

els based on LP priors. In (Wolpert and Ickstadt, 1998b), the authors develop the

Inverse Lévy Measure (ILM) algorithm, which employs data augmentation to ob-

tain a conjugate model. This method generates a sample from the entire process

using a Gibbs sampling scheme. On the other hand, Wolpert et al. (2003) develop

a Reversible Jump MCMC scheme that directly samples the location and weights

of the process. This second algorithm can be used in non-conjugate settings, but is

generally slower than the ILM.
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Lévy processes are an interesting generalization of the Dirichlet process and have

been shown to be a powerful tool. However, LP priors are priors on measures (not

necessarily probability measures), making them less attractive in density estimation

problems. Besides choosing the truncation level is typically a complicated task that

is usually problem specific and might dramatically affect the resulting estimates.

1.4.4 Other alternatives

The previous review just scratches the surface of the literature on Bayesian non-

parametric methods. For example, the Dirichlet process, Pólya tress and NTTR are

all examples of Tail Free processes. Gaussian processes (Rasmussen and Williams,

2006) are another class of nonparametric priors that has also been proposed to model

the log density. Finally, generalized Pólya urn schemes and generalized stick break-

ing processes (Hjort, 2000; Ongaro and Cattaneo, 2004) constitute another set of

alternatives.

In spite of this vast literature on nonparametric process, there is surprisingly little

work on generating models for collections of distributions that does not exploit the

Dirichlet process.

1.5 Posterior consistency

Posterior consistency and rates of convergence for nonparametric processes have been

active areas of research in the last 20 years (Diaconis and Freedman, 1986a,b; Ghosal

et al., 1999; Barron et al., 1999; Walker and Hjort, 2001), with seminal work dating

back over 40 years (Doob, 1949; Schwartz, 1965). This section outlines some well-

known results on consistency that will be relevant later.

In what follows, we focus on the space of densities with respect to the Lebesgue

measure on Rp, which we denote m(Rp). Any element g ∈ m(Rp) has an associated
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absolutely continuous distribution G. There are a number of natural topologies on

m(Rp), each one based on a different metric. For example, the Prokhorov-Lévy

distance, defined as

ρw(g, g0) = inf
{
ε > 0 : |G0(z)−G(z− ε)| ≤ ||ε|| ∀ z ∈ Rp

}
,

induces the weak convergence topology. Weak ε-neighborhood of g0 ∈ m(Rp) are sets

of the form,

Uw
ε (g0) =

{
g ∈ m(Rp) :

∣∣∣∣∫ ψi(z)g(z)dz−
∫
ψi(z)g0(z)dz

∣∣∣∣ < ε, i = 1, . . . , k

}
,

for ψi ∈ Cb(Rp), the space of bounded continuous functions on Rp.

Under this metric, the space m(Rp) is complete and separable and, under mild

conditions on the kernel, the DPM model described in (1.2) is dense (in the L1 sense)

on m(Rp) (Ghosh and Ramamoorthi, 2003). Letting z1, . . . , zn ∼ g and g ∼ µ, with µ

being a prior on m(Rp), the posterior probability of any measurable subset A ⊂ m(Rp)

is given by

µn(A) =

∫
A

∏n
i=1 g(zi)µ(dg)∫

m(Rp)

∏n
i=1 g(zi)µ(dg)

,

and the optimal density estimate under square error loss is gn(z) = E(g(z)|zn), which

reduces to (1.3) for the DPM prior. A prior µ on m(Rp) is said to be weakly consistent

at g0 iff, for almost every sequence z1, z2, . . .,
∫
ψ(g)µn(dg)→

∫
ψ(g)δg0(dg) for every

ψ ∈ Cb(Rp), which happens iff µn(Uw
ε (g0))→ 1, for all ε > 0.

Note that, if a prior µ is weakly consistent at g0, the sequence of density estimates

{gn}∞n=1 based on the sequence of posteriors {µn}∞n=1 converges pointwise to the true

density g0 with probability one.

Sufficient conditions to ensure weak consistency were given by Schwartz (1965).

As noted by Diaconis and Freedman (1986a,b), when the parameter space is infinite-

dimensional (as in nonparametric models) it is not enough to have g0 in the weak
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support of µ, but g0 needs to be in its Kullback-Leibler support, defined as the set

V KL(g0) =
{
g : π

(
UKL
ε (g0)

)
> 0 ∀ ε > 0

}
,

where UKL
ε (g0) = {g :

∫
g0 log(g0/g) < ε}. The following result, which is an applica-

tion of Schwartz’s theorem, will be used later

Theorem 1 (Ghosal et al. (1999)). Let g0 =
∫
φ(z|θ,Σ)P0(dθ, dΣ) be a location

scale mixture of Gaussian distributions where P0 is compactly supported and belongs

to the weak support of a prior µ on m(Rp). Then g0 is in the Kullback-Leibler support

of µ defined by the DPM model in (1.2), and therefore the corresponding posterior

distribution µn is weakly consistent at g0.
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Chapter 2

The Nested Dirichlet Process

In multicenter studies, subjects in different centers may have different outcome dis-

tributions. This chapter is motivated by the problem of nonparametric modeling of

these distributions, borrowing information across centers while also allowing centers

to be clustered. This type of model can be used to generate relevant hypotheses that

can be further explored in subsequent studies.

As a motivating example, consider assessing quality of care across hospitals in

the US. The outcomes of patients in each institution define a hospital-specific distri-

bution, which can be non-normal, presenting skewness, multi-modality and/or heavy

tails. In this setting, it is of interest to cluster centers according to the full distri-

bution of patients outcomes, and to identify outlying centers. On the other hand,

it is also interesting to simultaneously cluster patients within the centers, and to do

so by borrowing information across centers that present clusters with similar char-

acteristics. This task is different from clustering patients within and across centers,

which could be accomplished using the approaches discussed in Teh et al. (2006) and

Müller et al. (2004).

In order to build our model, we start with a stick-breaking representation of

the Dirichlet process (DP) and replace the random atoms with random probability
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measures drawn from a DP. This results in a nested Dirichlet process (nDP) prior,

which can be placed on the collection of distributions for the different centers, with

centers drawn from the same DP component automatically clustered together.

This chapter is organized as follows. We start in section 2 with the motivation,

definition and properties of the nested Dirichlet process (nDP). In section 3 we dis-

cuss truncations of the nDP and their application in deriving efficient computational

schemes is discussed in section 4. Sections 6 and 7 present examples that illustrate the

advantages of our methodology. Finally, we close in section 8 with a brief discussion.

2.1 The Nested Dirichlet Process

2.1.1 Definition and basic properties

Suppose yij, for i = 1, . . . , nj are observations for different subjects within center j,

for j = 1, . . . , J . For example, yj = (y1j, . . . , ynjj)
′ may represent patient outcomes

within the jth hospital or hospital-level outcomes within the jth state. Although

covariates, xij = (xij1, . . . , xijp)
′ are typically available, we initially assume that sub-

jects are exchangeable within centers, with yij
iid∼ Fj, for j = 1, . . . , J .

In analyzing multi-center data, there are a number of customary strategies, with

the most common being (1) pool the data from the different centers; (2) analyze the

data from the different centers separately; and (3) fit a parametric hierarchical model

to borrow information. The first approach is too restrictive, as subjects in different

centers may have different distributions, while the second approach is inefficient. The

third approach parameterizes Fj in terms of the finite-dimensional parameter θj, and

then borrows information by assuming θj
iid∼ F0, with F0 a known distribution (most

commonly normal), possibly having unknown parameters (mean, variance). One can

potentially cluster centers having similar random effects, θj, though clustering may

be sensitive to F0 (Verbeke and Lesaffre, 1996). Assuming that F0 has an arbitrary
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discrete distribution having k mass points provides more flexible clustering, but the

model is still dependent on the choice of k and the specific parametric form for Fj.

Furthermore, clustering based on the random effects has the disadvantage of only

borrowing information about aspects of the distribution captured by the parametric

model. For example, clustering centers by mean patient outcomes ignores differences

in the tails of the distributions. Our motivation is to borrow information and cluster

across distributions {Fj, j = 1, . . . , J} nonparametrically to enhance flexibility, and

we use a Dirichlet type of specification to enable clustering of random distributions.

In what follows, a collection of distributions {F1, . . . , FJ} is said to follow a Nested

Dirichlet Processes Mixture if

Fj(·|φ) =

∫
Θ
p(·|θ,φ)Gj(dθ) (2.1)

Gj(·) ∼
∞∑
k=1

π∗kδG∗k(·) (2.2)

G∗k(·) =
∞∑
l=1

w∗lkδθ∗lk
(·) (2.3)

with θ∗lk ∼ H, H is a probability measure on (Θ,B), w∗lk = u∗lk
∏l−1

s=1(1 − u∗sk),

π∗k = v∗k
∏k−1

s=1(1 − v∗s), v
∗
k ∼ beta(1, α) and u∗lk ∼ beta(1, β). In expression (2.1),

p(·|θ,φ) is a distribution parameterized by the finite dimensional vectors θ and φ,

whose specific choice depends on the application at hand. For example, in the case

of a univariate response, if the collection {F1, · · · , FJ} is assumed exchangeable, an

attractive choice would be θ = (µ, σ) and p(·|θ,φ) = N(·|µ, σ2), which yields a class

that is dense on the space of absolutely continuous distributions (Lo, 1984). On

the other hand, if a vector x of covariates is available, we could opt for a random

effects model where θ = µ, φ = (γ, σ2) and p(·|θ,φ) = N(·|µ + x′γ, σ2), similar

in spirit to Mukhopadhyay and Gelfand (1997) and Kleinman and Ibrahim (1998).

Extensions to multivariate or discrete outcomes are immediate using the standard
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Bayesian machinery.

The collection {G1, . . . , GJ}, used as the mixing distribution, is said to follow a

Nested Dirichlet Process with parameters α, β and H, and is denoted nDP(α, β,H).

In a more concise notation, the model for our clustering problem can be rewritten as

yij ∼ p(yij|θij) θij ∼ Gj {G1, . . . , GJ}∼nDP(α, β,H)

Since apriori P(Gj = Gj′) = 1
1+α

> 0, the model naturally induces clustering in

the space of distributions. Also, for any measurable set A ∈ B

E(Gj(A)) = H(A) and V(Gj(A)) =
H(A)(1−H(A))

β + 1

Since our goal is to create a collection of dependent distributions, it is natural to

also consider the correlation induced by the model between the probabilities assigned

by two members of the collection to a given set A ∈ B, i.e., Cor(Gj(A), Gj′(A)). It

is shown in appendix B that for the nDP,

Cor(Gj(A), Gj′(A)) =
1

1 + α
= P(Gj = Gj′)

Note that this result, which provides a natural interpretation for the additional

parameter in the nDP, is independent of the set A. Therefore, from now on we will

refer to it as the prior correlation between distributions, denoted Cor(Gj, Gj′). The

correlation between draws from the process can also be calculated (see again appendix

B), yielding

Cor(θij,θi′j′) =

{
1

(1+β)
j = j′

1
(1+α)(1+β)

j 6= j′

This shows that the a priori correlation between observations arising from the

same center is larger than the correlation between observations from different centers,

which is an appealing feature. Given a specific form for p(·|θj,φ), the previous
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expression allows us to calculate the prior correlation that the model induces on the

observations.

Note that as α → ∞, each distribution in the collection is assigned to a dis-

tinct atom of the stick-breaking construction. Therefore, the distributions become

a priori independent given the baseline measure H, which agrees with the fact that

limα→∞Cor(Gj, Gj′) = 0. On the other hand, as α → 0 the a priori probability of

assigning all the distributions to the same atom G∗ goes to 1, and thus the correlation

goes to 1. Hence, approaches (1) and (2) for the analysis of multiple centers described

above are limiting cases of the nDP. Moreover, since Fj(·)→ p(·|θ∗j ,φ) as β → 0, the

nDP also encompasses the natural parametric-based clustering (option (3) above) as

a limiting case.

Since every G∗k is almost surely discrete, the model simultaneously enables cluster-

ing of observations within each center along with clustering the distributions them-

selves. For example, we can simultaneously group hospitals having the same distribu-

tion of patient outcomes, while also identifying groups of patients within a hospital

having the same outcome distribution. Indeed, centers j and j′ are clustered together

if Gj = Gj′ = G∗k for some k, while patients i and i′, respectively from hospitals j

and j′, are clustered together if and only if Gj = Gj′ = G∗k and θij = θi′j′ = θ∗lk for

some l.

2.1.2 Alternative characterizations of the nDP

Just as the Dirichlet Process is a distribution on distributions, the nDP can be

characterized as a distribution on the space of distributions on distributions. Recall

the original definition of the Dirichlet Process (Ferguson, 1973, 1974) stated in section

1.1. The choice Θ ⊂ Rn for the base space of the Dirichlet Process is merely a

practical one, and the results mentioned above extend in general to any complete and
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separable metric space Θ. In particular, since the space of probability distributions is

complete and separable under the weak topology metric (see Ghosh and Ramamoorthi

(2003), page 13), we could have started by taking (P, C, Q) (defined before) as our

base space and defining a new distributional space (Q,D, S) such that D is the

smallest σ-algebra generated by all weakly open sets in Q and Q ∈ Q. In this

setting, Q is the space of distributions on probability distributions on (Θ,B).

By requiring S to be such that (Q(C1), . . . , Q(Ck)) ∼ Dir(αν(C1), . . . , αν(Ck))

for any partition (C1, . . . , Ck) of P generated under the weak topology and some α

and suitable ν, we have defined a new Dirichlet Process S ∼ DP(αν), this time on

an abstract space, that satisfies the usual properties. The nested Dirichlet process

is a special case of this formulation in which ν is taken to be a regular DP(βH).

Therefore, the nDP is an example of a DP where the baseline measure is a stochastic

process generating probability distributions. An alternative notation for the nDP

corresponds to Gj
iid∼ Q with Q ∼ DP(αDP(βH)).

The nDP can also be characterized as a dependent Dirichlet process (MacEach-

ern, 2000) where the stochastic process generating the elements of the stick-breaking

representation corresponds to a Pólya urn. Indeed, we can write

Gj =
∞∑
l=1

w′ljδθ′lj

where(
(w′j,θ

′
j)|(w′1,θ′1), . . . , (w′j−1,θ

′
j−1)

)
∼
∑
k<j

1

1 + α
δ

(w′k,θ
′
k)

+
α

1 + α
H∞ × S∞β

where H∞ = H×H×· · · and S∞β is the prior distribution on the (infinite) collection

of weights induced by the stick breaking construction with parameter β.

Finally, the NDP can be viewed as a way to simultaneously define a prior on a

random partition of the collection {G1, . . . , GJ} (in the style of Quintana and Iglesias
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(2003)) and each of the resulting unique distributions.

2.1.3 Comparing the nDP with other nonparametric models

It is important to note that, although both approaches generalize the DP to allow

hierarchical data structures, the dependence induced by the NDP is fundamentally

different from that induced by the HDP. Figure 2.1 illustrates these differences. In

the HDP, one draw from a Dirichlet process is used as the baseline measure G0 of the

process generating the members of the collection. As discussed in Teh et al. (2006),

this implies that {G1, . . . , GJ} share the same atoms (the atoms of G0) but assign

them different weights. Therefore P(Gj = Gj′) = 0 under the HDP and clustering

happens only at the level of the observations.

On the other hand, the baseline measure in the nDP is not a draw from a Dirichlet

Process, but the whole process itself. In particular, we have already shown that such a

construction implies that two given distributions either share both atoms and weights

(making them exactly equal, as G1 and G3 in the right panel of figure 2.1), or do

not share any of the features. This induces clustering on both observations and

distributions.

The nDP is also different from the linear combination models in Müller et al.

(2004), which allow for a limited form of clustering across distributions. In Müller

et al. (2004), an unknown distribution Gi is represented as a linear combination

Gi = εiH0 + (1− εi)Hi

where each Hi is an independent draw from a regular Dirichlet Process. H0 is called

the common component, while the Hi’s are called the idiosyncratic components.

Note that, for two distributions Gi and Gi′ to be equal in this model, they must

correspond to the common component in the mixture, i.e., εi = εi′ = 0 implying that

Gi = Gi′ = H0. Thus, there is at most one cluster having more than one member.
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Figure 2.1: Comparing the nDP and the HDP. For the HDP, the distributions
{G1, . . . , GJ} share the same atoms but assign them different weights. For the nDP
the different distributions either have the same atoms with the same weights, of
completely different atoms and weights.
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2.2 Truncations

In this section, we consider finite-mixture versions of the nDP. Finite mixtures are

usually simpler to understand, and can help provide insights into the more compli-

cated, infinite dimensional models. Additionally, they provide useful approximations

that can be used for computation.

Definition 2. An LK truncation of an nDP(α, β,H) is defined by the finite-mixture

model

GK
j (·) ∼

K∑
k=1

π∗kδGL∗
k (·)

GL∗
k (·) =

L∑
l=1

w∗lkδθ∗lk
(·) π∗k = v∗k

l−1∏
s=1

(1− v∗s) v∗K = 1

v∗k ∼ beta(1, α) k = 1, . . . , K − 1

θ∗lk ∼ H w∗lk = u∗lk

l−1∏
s=1

(1− u∗sk) u∗Lk = 1

u∗lk ∼ beta(1, β) l = 1, . . . , L− 1

We refer to this model as a bottom-level truncation or nDPL∞(α, β,H) if K =∞

and L <∞, whereas if K <∞ and L =∞ we refer to it as a top-level truncation or

nDP∞K(α, β,H). Finally, if both L and K are finite we have a two-level truncation

or nDPLK(α, β,H).

The total variation distance between an nDP and its truncation approximations

can be shown to have decreasing bounds as L,K → ∞. For simplicity, we consider

the case when nj = n ∀ j.

Theorem 2. Assume that samples of n observations have been collected for each of
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J distributions and are contained in vector y = (y′1, . . . ,y
′
J). Also, let

P∞∞(θ) =

∫ ∫
P (θ|Gj)P

∞(dGj|Q)P∞(dQ)

PLK(θ) =

∫ ∫
P (θ|Gj)P

L(dGj|Q)PK(dQ)

be, respectively, the prior distribution of the model parameters under the nDP model

and its corresponding LK truncation after integrating out the random distributions,

and P∞∞(y) and PLK(y) be the prior predictive distribution of the observations de-

rived from these priors. Then∫ ∣∣PLK(y)− P∞∞(y)
∣∣ dy ≤ ∫ ∣∣PLK(dθ)− P∞∞(dθ)

∣∣ ≤ εLK(α, β)

where

εLK(α, β) =



4

(
1−

[
1−

(
α

1+α

)K−1
]J)

if L =∞, K <∞

4

(
1−

[
1−

(
β
β+1

)L−1
]nJ)

if L <∞, K =∞

4

(
1−

[
1−

(
α

1+α

)K−1
]J [

1−
(

β
β+1

)L−1
]nJ)

if L <∞, K <∞

The proof of this theorem is presented in appendix C. Note that the bounds

approach zero in the limit, so the truncation approximations and its predictive dis-

tribution converge in total variation (and therefore in distribution) to the nDP. Even

more, the bounds are strictly decreasing in both L and K. As a consequence of this

observation we have the following corollary.

Corollary 1. The posterior distribution under a LK truncation and the correspond-

ing nDP converge in distribution as both L,K →∞.

The proof is presented in appendix E. It is straightforward to extend the previous

results and show that limL→∞ nDPLK = nDP∞K and limK→∞ nDPLK = nDPL∞ in

distribution.
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In order to better understand the influence of the truncation levels on the accuracy

of the approximation we show in Figure 2.2 the error bounds for a nDP(3, 3, H) in

various sample size settings. The value α = β = 3 in this simulation, which will

typically lead to a relatively large number of components in the mixtures, was chosen

as a worst case scenario since the bounds are strictly decreasing in both α and β.

The first three examples have a total of 5,000 observations, which have been

split in different ways. Note that, as the number of groups J increases, K needs

to be increased to maintain accuracy. The fourth example has the same number of

observations per group as the first, but double the number of groups. In every case,

increasing K over 35 seems to have little effect on the error bound. These results

suggest that for moderately large sample sizes (n ≤ 500 and J ≤ 50), and typical

values of the concentration parameters α and β, a choice of K = 35 and L = 55

seems to provide an adequate approximation.

2.3 Posterior computation

Broadly speaking, there are three strategies for computation in standard DP models:

(1) Employ the Pólya urn scheme to marginalize out the unknown infinite-dimensional

distribution(s) (MacEachern, 1994; Escobar and West, 1995; MacEachern and Müller,

1998), (2) Employ a truncation approximation to the stick-breaking representation

of the process and then resort to methods for computation in finite mixture models

(Ishwaran and Zarepour, 2002; Ishwaran and James, 2001) and (3) Use reversible-

jump MCMC (RJMCMC) algorithms for finite mixtures with an unknown number

of components (Dahl, 2003; Green and Richardson, 2001; Jain and Neal, 2000). In

this section, we explore the use of these strategies to construct efficient algorithms

for inference in the nDP setting. In the sequel, let ζj = k and ξij = l iff Gj = G∗k and

θij = θ∗lζj .
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Figure 2.2: Approximate error bounds for the LK truncation of a nDP(3, 3, H).
Top left corner corresponds to n = 500 and J = 10, top right to n = 250 and J = 20,
bottom left to n = 100 and J = 50 and bottom right to n = 500 and J = 20.
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Implementations of the nDP based on (1) are, in general, infeasible. Although

sampling ξij given (ζ1, . . . , ζJ) using a Pólya urn scheme is straightforward, sampling

ζj requires the evaluation of the predictive distributions p(yj|H) or p(yj|{ys|ζs = k})

(both of which are finite mixtures with a number of terms that grows exponentially

with nj), or the conditional p(yj|G∗s) (whose evaluation requires an infinite sum since

G∗s ∼ DP(βH)). Details can be seen in appendix D. Algorithms using RJMCMC

in the nDP are likely to run into similar problems, with the added disadvantage of

low acceptance probabilities due to the large number of parameters that need to be

proposed at the same time, without any obvious way to construct efficient proposals.

Hence, we focus on combinations of truncation approximations.

2.3.1 Sampling by double truncation

The obvious starting place is to consider a two-level truncation of the process using

values of K and L elicited from plots like those shown in Figure 2.2. Once adequate

values of K and L have been chosen, computation proceeds through the following

steps:

1. Sample the center indicators ζj for j = 1, . . . , J from a multinomial distribution

with probabilities

P(ζj = k| · · · ) = qjk ∝ w∗k

nj∏
i=1

L∑
l=1

πlkp(yij|θ∗lk)

2. Sample the group indicators ξij for j = 1, . . . , J and i = 1, . . . , nj from another

multinomial distribution with probabilities

P(ξij = l| · · · ) = blij ∝ π∗lζjp(yij|θ
∗
lζj

)
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3. Sample w∗lk by generating

(v∗lk| · · · ) ∼ beta

(
1 +mlk, β +

L∑
s=l+1

mls

)
l = 1, . . . , L− 1, v∗Lk = 1

where mlk is the number of observations assigned to atom l of distribution k,

and constructing w∗lk = v∗lk
∏l−1

s=1(1− v∗sk).

4. Sample π∗k by generating

(u∗k| · · · ) ∼ beta

(
1 +mk, α +

K∑
s=k+1

ms

)
k = 1, . . . , K − 1 u∗K = 1

where mk is the number of distributions assigned to component k, and con-

structing π∗k = u∗k
∏k−1

s=1(1− u∗s).

5. Sample θ∗lk from

p(θ∗lk| · · · ) ∝

 ∏
{i,j|ζj=k,ξij=l}

p(yij|θ∗lk)

 p(θ∗lk)
Note that if no observation is assigned to a specific cluster, then the parameters

are drawn from the prior distribution (baseline measure) p(θ∗lk). Also, if the

prior is conjugate to the likelihood then sampling is greatly simplified. How-

ever, non-conjugate priors can be accommodated using rejection sampling or

Metropolis-Hastings steps.

6. Sample the concentration parameters α and β from

p(α| · · · ) ∝ αK−1 exp

{
α
K−1∑
k=1

log(1− u∗k)

}
p(α)

p(β| · · · ) ∝ βK(L−1) exp

{
β

L−1∑
l=1

K∑
k=1

log(1− v∗lk)

}
p(β)
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If conditionally conjugate priors α ∼ Gam(aα, bα) and β ∼ Gam(aβ, bβ) are

chosen then,

(α| · · · ) ∼ Gam

(
aα + (K − 1), bα −

K−1∑
k=1

log(1− u∗k)

)

(β| · · · ) ∼ Gam

(
aβ +K(L− 1), bβ −

L−1∑
l=1

K∑
k=1

log(1− v∗lk)

)

Note that the accuracy of the truncation depends on the values of α and β.

Thus, the hyperparameters (aα, bα) and (aβ, bβ) should be chosen to give little

prior probability to values of α and β larger than those used to calculate the

truncation level.

Besides the simplicity of its implementations, an additional advantage of this trun-

cation scheme is that implementation in parallel computing environments is straight-

forward, which is useful for large sample sizes. Note that the most computationally

expensive steps are (1), (2) and (5). However, (ζj| · · · ) and (ζj′ | · · · ) are independent,

and so are the pairs (ξij| · · · ) and (ξi′j′| · · · ), and (θ∗lk| · · · ) and (θ∗l′k′ | · · · ). Hence,

steps (1), (2) and (5) can be divided into subprocesses that can be run in parallel.

2.3.2 Sampling by one-level truncation

In order to compute predictive probabilities needed to sample the center indicators,

only the top-level truncation is strictly necessary. If this level is truncated, ζ1, . . . , ζJ

can be sampled using a regular Pólya Urn scheme avoiding the need for the second

truncation. However, even a prior p(θij) conjugate to the likelihood p(yij|θij) does

not imply a conjugate model on the distributional level. Hence, Pólya urn methods

for non-conjugate distributions (MacEachern and Müller, 1998; Neal, 2000) need to be

employed in this setup, greatly reducing the computational advantages of the Pólya

urn over truncations.
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The resulting algorithm, inspired by algorithm 8 in Neal (2000), goes through the

steps described above with the following modifications

(1) Choose m ≥ 1. For each j, let J∗− be the number of distinct ζs for s 6= j,

label these ζs with values in {1, . . . , J∗−}, and let h = J∗− + m. If ζj = ζs for

some s 6= j draw new distributions G∗J∗−+1, · · · , G∗h from their prior by sampling

L atoms from H and L weights from the truncated stick-breaking process for

each of them. If ζj 6= ζs for all j 6= s let ζj = J∗− + 1 and draw distributions

G∗J∗−+2, · · · , G∗h from their prior. Then ζj is drawn from the a multinomial

distribution with

P(ζj = k| · · · ) ∝

{
r−k

J−1+α

∏nj

i=1

∑L
l=1w

∗
lkp(yij|θlk) for k ≤ J∗−

α/m
J−1+α

∏nj

i=1

∑L
l=1w

∗
lkp(yij|θlk) for J∗− < k ≤ h

where r−k is the number of distributions assigned to atom G∗k once observation

j has been removed.

(3) This step is unnecessary.

(6) The concentration parameter α should be sampled from

p(α| · · · ) ∝ αJ
∗ Γ(α)

Γ(α + J)
p(α)

where J∗ is the number of distinct distributions in the current iteration of

the algorithm. Again under a Gam(aα, bα) prior, posterior sampling can be

accomplished through the data augmentation method discussed in Escobar and

West (1995).

Although this algorithm saves memory and computation time (since it is not

necessary to update empty components), mixing could be a concern. On the other

hand, most of the comments we made before on parallel implementation hold for
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Figure 2.3: True distributions used in the simulation study on the nDP.

this sampling algorithm. However, ζj| · · · now depends on the other supergroup

indicators, so parallelization in this step is not straightforward.

2.4 Simulation study

In this section we present a simulation study designed to provide insight into the

discriminating capability of the nDP, as well as its ability to provide more accurate

density estimates by borrowing strength across centers. The set up of the study is as

follows: J samples of size n are obtained from four mixtures of four Gaussians defined

in table 2.1 and plotted in Figure 2.3. These distributions have been chosen to reflect

situations that are conceptually hard: T1 and T2 are asymmetric and composed of

the same two Gaussian components which have been weighted differently, while T3

and T4 share three distributions located symmetrically around the origin, differing

only in an additional bump that T4 presents on the right tail.

The value of J and n was varied across the study in order to assess the influ-
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Table 2.1: Parameters for the true distributions pT (·) =
∑

iwiN(·|µi, σ2
i ) used in

the simulation study on the nDP.

Distrib Comp 1 Comp 2 Comp 3 Comp 4
w µ σ2 w µ σ2 w µ σ2 w µ σ2

T1 0.75 0.0 1.0 0.25 3.0 2.0 - - - - - -
T2 0.55 0.0 1.0 0.45 3.0 2.0 - - - - - -
T3 0.40 0.0 1.0 0.30 −2.0 2.0 0.30 2.0 2.0 - - -
T4 0.39 0.0 1.0 0.29 −2.0 2.0 0.29 2.0 2.0 0.03 10.0 1.0

ence of the sample size on the discriminating capability of the model. The precision

parameters α and β were both fixed to 1 and a Normal Inverse-Gamma distribu-

tion NIG(0, 0.01, 3, 1) was chosen as the baseline measure H, implying that a priori

E(µ|σ2) = 0, V(µ|σ2) = 100σ2, E(σ2) = 1 and V(σ2) = 3. The algorithm described

in section 2.3.1 was used to obtain samples of the posterior distribution under the

nDP. Following the discussion in section 2.2, truncation levels were chosen as K = 35

and L = 55. All results shown below are based on 50,000 samples obtained after a

burn-in period of 5,000 iterations.

Visualization of high dimensional clustering structures is a hard task. A summary

commonly employed looks at the set of J(J − 1)/2 possible pairs of populations and,

for each pair, obtains the probability that the two of them fall in the same cluster.

Estimates of these probabilities are easily obtained from the output of our MCMC

algorithm and can be effectively displayed using heatmaps, like those in Figure 2.4.

To simplify interpretation of the plot, samples from the same mixture distribution

are adjacent. Other possible summaries are discussed in section 2.5.

For small values of n, the nDP is able to roughly separate T1 and T2 from T3

and T4, but not to discriminate between T1 and T2 or T3 and T4. This is not really

surprising: the method is designed to induce clustering. Therefore, when differences

are highly uncertain, it prefers to create less rather than more clusters. However, as n

increases, the model is able to distinguish between distributions and correctly identify
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Figure 2.4: Pairwise probabilities of joint classification for the simulation study on
the nDP
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both the number of groups and the membership of the distributions. It is particularly

interesting that the model finds it easier to discriminate between distributions that

differ just in one atom rather than in weights. On the other hand, as J increases

the model is capable of discovering the underlying groups of distributions, but the

uncertainty on the membership is not reduced without increasing n.

In Figure 2.5 we show density estimates obtained for sample 1 of the example

J = 20, n = 100. The left panel shows the one obtained from the nDP (which borrows

information across all samples), while the right panel was obtained by fitting a regular

DPM model with the same precision parameter β = 1 and baseline measure. We note

that, although the nDP borrows information across samples that actually come from

a slightly different data-generation mechanism, the estimate is more accurate: it not

only captures the small mode to the right more clearly, but it also emphasizes the

importance of the main mode. Indeed the Kullback-Leibler of the density estimate

relative to the true distribution for the estimate of T1 under the nDP is 0.011, while

under the regular DPM it was 0.017.

2.5 An application: Health care quality in United

States

Data on quality of care in hospitals across the United States and associated territo-

ries is made publicly available by the Department of Health and Human Services at

the website http://www.hhs.gov/. Twenty measures are recorded for each hospital,

comprising aspects like proper and timely application of medication, treatment and

discharge instructions. In what follows we focus on one specific measure: the propor-

tion of patients that were given the most appropriate initial antibiotic(s), transformed

through the logit function. Four covariates are available for each center: type of hos-

pital (either acute care or critical access), ownership (nine possible levels, including
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Figure 2.5: True (black) and estimated (red) densities for distribution 1 of the
simulation with J = 20 and n = 100. Panel (a) corresponds to an estimate based on
the nDP, which borrows information across all samples, while panel (b) corresponds
to an estimate based only on sample 1.

government at different levels, proprietary and different types of voluntary non-profit

hospitals), whether the hospital provides emergency services (yes or no) and whether

it has an accreditation (yes or no). Location, in the form of the ZIP code, is also

available. Hospitals with less than 30 patients treated and territories with less than

4 hospitals were judged misrepresentative and removed from the sample, yielding a

final sample size of 3077 hospitals in 51 territories (the 50 states plus the District of

Columbia). Number of hospitals per state varies widely, with 5 in Delaware, 10 in

Alaska, 13 in Idaho, 164 in Florida, 205 in Texas and 254 in California. The number

of patients per hospital varies between 30 and 1175, with quartiles at 76, 130 and 197

patients. Since the value tends to be large, we perform our analysis on the observed

proportion without adjusting for sample sizes.

We wish to study differences in quality of care across states after adjusting for the

effect of the available covariates. Specifically, we are interested in clustering states

according to their quality rather than getting smoothed quality estimates. Indeed,

42



differences in quality of care are probably due to a combination of state policies

and practice standards, and clustering patterns can be used to identify such factors.

Therefore, there is no reason to assume a priori that geographically neighboring states

have similar outcomes.

In order to motivate the use of the nDP, we consider first a simple preliminary

analysis of the data. To adjust for the covariates, an ANOVA model containing

only main effects was fitted to the data. Of these effects, only the presence of an

emergency service and the ownership seem to affect the quality of the hospital (p-

values 0.011 and 1.916 × 10−8). Residual plots for this model show some deviation

from homocedasticity and normality (see Figure 2.6), but given the large sample size

it is unlikely that this has any impact on the results so far.

It is clear from Figure 2.7 that residual distributions vary across states. At this

point, one possible course of action is to assume normality within each state and

cluster states according to the mean and/or variance of its residual distribution.

However, the density estimates in Figure 2.8 (obtained using Gaussian kernels with

a bandwidth chosen with the rule of thumb described in Silverman (1986)) show

that state-specific residual distributions can be highly non-normal and that changes

across states can go beyond location and scale changes to affect the whole shape of

the distribution. Invoking asymptotic arguments at this point is not viable since

sample sizes are small and we are dealing with the shape of the distribution (rather

than the parameters), for which no central limit theorem can be invoked.

Figure 2.8 also shows that states located in very different geographical areas can

have similar error distributions, like California and Minnesota or Florida and North

Carolina.

To improve the analysis, we resort to a Bayesian formulation of the main-effects

ANOVA and use the nDP to model the state-specific error distributions. The model

43



(a)

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

● ●

● ●

●

●
●

●●

●

●

●

●

●

●

●● ●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●●●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●
● ●

●

● ●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

● ●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
● ●

●●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●●

●

●

●

●
●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
● ●

●

●

●

● ●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

● ●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●

●

●

●●

●

●
●

● ●
●

●

● ●

●

●

●

●

●

●

●

●
●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

0.9 1.0 1.1 1.2 1.3 1.4

−
3

−
2

−
1

0
1

2

Fitted values

R
es

id
ua

ls

(b)

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●
●

●●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●●●

●●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●
●●

●

●●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●

●

●

●●

●

●
●

●●
●

●

●●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2

Normal Q−Q Plot

Residuals

Q
ua

nt
ile

s 
of

 n
or

m
al

 d
is

tr
ib

ut
io

n

Figure 2.6: Residual plots for the ANOVA model on the initial antibiotic data: (a)
Residuals vs. fitted values, (b) Quantile-quantile plot
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Figure 2.7: State-specific residual boxplots for the ANOVA model on the initial
antibiotic data.
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Figure 2.8: Density estimates for the residual distribution in selected states. Note
that distributions seem clearly non-normal and that their shape can have important
variations, making any parametric assumption hard to support.
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is similar in spirit to those in West et al. (1998) and Burgess et al. (2000), who use

the non-returns to follow-up care as a measure of quality. Specifically, if we let yij be

the response of hospital i in state j after subtraction of the global mean:

yij = µij + xijγ + εij εij ∼ N(0, σij)

(µij, σ
2
ij) ∼ Gj {G1, . . . , GJ} ∼ nDP(α, β,H)

where xij is the vector of covariates associated with the hospital. Prior elicitation

is simplified by centering the observations. We pick H = NIG(0, 0.01, 3, 3), which

implies E(µ|σ2) = 0, V(µ|σ2) = 100σ2, E(σ2) = 1 and V(σ2) = 3. This choice reflects

the natural scale (logit) of the data, which, on a Gaussian linear model, would be

expected to have mean zero and variance close to unit after adjusting for covariates.

We use a standard reference (flat) prior on γ. Finally, we set α, β ∼ Gam(3, 3) a

priori, implying that E(α) = E(β) = 1 (a common choice in the literature) and

P(α > 3) = P(β > 3) ≈ 0.006. Note that this choice implies that P(Cor(Gj, Gj′) >

0.25) ≈ 0.994.

Posterior computation is a straightforward using the algorithm presented in sec-

tion 2.3.1. As described there, the model is a regular ANOVA with known variance

conditional on θ = (µij, σij), and the full conditional posterior distribution of γ

(which corresponds to φ in our general notation) following a normal distribution.

On the other hand, conditional on γ, we can use the nDP sampler on the pseudo-

observations zij = yij − xijγ. Results below are based on 50,000 iterations obtained

after a burn-in period of 5,000 iterations. As with the simulation study, we choose

K = 35 and L = 55 as the truncation levels. Results seem to be robust to reasonable

changes in prior specification and different initial states for the variables in the sam-

pler. There was no evidence of lack of convergence from visual inspection of trace

plots.

The posterior distribution on the number of distinct states shows strong evidence
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Figure 2.9: Residual plots for the ANOVA model on the initial antibiotic data.

in favor of either 2 or 3 components (posterior probabilities 0.616 and 0.363 respec-

tively), and little support for either 1, 4 or 5 distributions (posterior probabilities

0.00, 0.02 and 0.001 respectively). As with the simulated example, we visualize the

matrix of pairwise probabilities using a heatmap, which is shown in Figure 2.9. In

order to make sense of the plot, we first reorder the states using an algorithm inspired

by those used for hierarchical clustering.

This heatmap provides additional insight into the clustering structure. It shows
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three well defined groups: (1) a large homogenous clusters of 31 members (lower left

corner of the plot); (2) a small homogenous cluster of 6 states (upper right corner);

and (3) an heterogeneous group made of the remaining 15 states, which are not clear

members of any of the two previous clusters and do not seem to form a coherent

cluster among themselves.

A few different approaches can be used to choose one specific partition of the

set of States. One appealing option is to choose p̂ such that it minimizes a given

loss functions. Following Binder (1978, 1981); Lau and Green (2006), we chose the

label-invariant loss function

Ψ(p, p̂) =
∑

{(j,j′):j<j′≤J}

(
a1(ζj=ζj′ ,ζ̂j 6=ζ̂j′ )

+ b1(ζj 6=ζj′ ,ζ̂j=ζ̂j′ )

)
(2.4)

where p denotes the true (unknown) partition of states, 1A is the indicator function

on the set A, ζj and ζ̂j denote the true and estimated clustering indicators induced

by p and p̂, and a and b are pairwise misclassification penalties. Minimizing the

posterior expected loss under Ψ is equivalent to picking a partition p̂ such that the

function ∑
{(j,j′):j<j′≤J}

1(ζ̂j=ζ̂j′ )
(ρjj′ − τ)

is maximized, where ρjj′ is the probability of joint classification for states i and j

(which are the values depicted in Figure 2.9) and τ = b/(a+b) ∈ [0, 1]. For τ = 0, the

optimal partition places all states in a single cluster (since we are only worried about

not putting together states that should be in the same cluster). On the other hand,

if τ = 1, the optimal allocation creates individual clusters for each state (since we are

only worried about erroneously putting together states that should be separated).

Intermediate values of τ correspond to a compromise between both types of errors.

Hence, for τ = 0.3, the optimal partition divides the 51 states in two groups, a small

one comprising 8 states (AZ, IA,IN, MD, MI, NE, OK and WI) and a large one

49



containing all the remaining states. For τ = 0.5, the optimal allocation corresponds

to three clusters: a very small one comprising only OK and SD, an intermediate one

comprising AZ, CO, DE, IA, IN, MD, MI, ND, NE, NH, RI, WI and WY (note the

similarities with τ = 0.3) and a large cluster with the remaining states. Finally, for

τ = 0.75, the optimal clustering agrees with the one depicted in Figure 2.9, with two

tight groups and 14 single-state clusters. The posterior probabilities for each of these

partitions estimated from the MCMC are 4× 10−5, 0 and 0 respectively. In contrast,

the most frequent configuration sampled by the model (posterior probability 7×10−4,

much larger but still rather small), divides the sample in two groups, a small one with

17 states (AZ, CO, IA, ID, IN, MD, MI, ND, NE, NH, NV, OK, OR, RI, SD, WI

and WY), and another with the rest.

We can also study the clustering of hospitals within states, but meaningful inter-

pretations have to be done conditionally on the state-level partition. As an illustra-

tion, consider conditioning in the optimal clustering suggested by taking τ = 0.75.

The small cluster (comprising AZ, IA, IN, MI, NE and WI) is made of one (poste-

rior probability 0.81) or two (posterior probability 0.18) groups of hospitals, while

the large cluster (comprising 31 states including TX and NC) comprises between 2

(probability 0.89) or three different groups of hospitals (probability 0.10). This shows

that low/high quality groups of hospitals can be identified within each group of states

and state-specific distributions are non-normal as expected.

Indeed, Figure 2.10 shows posterior predictive density estimates for four represen-

tative states: North Carolina (cluster 1), Wisconsin (cluster 2), and South Dakota

and Oklahoma, which belong to the third group. North Carolina (and, in general,

the states in group 1) presents a lower mean and a heavier-than-Gaussian left tail,

indicating that each of those states contains some underperforming hospitals and

few or none over performing hospitals. The situation for Wisconsin and cluster 2
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Figure 2.10: Mean predictive density for four representative states: North Carolina
(NC), Wisconsin (WI), South Dakota (SD) and Oklahoma (OK).

is reversed: these seem to be states with a higher average performance, quite a few

hospitals that have an excellent record in the application of antibiotics and few or no

low-quality hospitals. Finally, South Dakota and Oklahoma present a mixed behav-

ior, showing evidence for both under and over performing hospitals. Note that these

density estimates are much smoother than those in Figure 2.8. This is not surprising

for three reasons: 1) as discussed in Escobar and West (1995), location-scale mixtures

act as adaptive-bandwidth kernel estimators, 2) we are borrowing information across

estates; and 3) our estimates average over a large number of alternative models, which

induces smoothness. All of these features tend to produce smoother estimates than

those obtained from standard kernel density estimates.

It is interesting to contrast these results with those obtained from a similar model

that uses the HDP instead of the nDP to induce dependence among residual distri-

butions. Although density estimates (not shown) for the different states look similar

to those in Figure 2.10, the HDP does not provide an equivalent to Figure 2.9, as
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it only clusters hospitals and not states. Indeed, the HDP-based model divides the

3077 hospitals in roughly 3 groups, which we could easily label as average (for the

largest, central group), underperformer and over performers (both containing a rel-

atively small number of observations). The density estimates are then obtained by

weighting these groups differentially for each state.

2.6 Discussion

We have formulated a novel extension of the Dirichlet process for a family of a priori

exchangeable distributions that allows us to simultaneously cluster groups and ob-

servations within groups. Moreover, the groups are clustered by their entire distribu-

tion rather than by particular features of it. After examining some of the theoretical

properties of the model, we describe a computationally efficient implementation and

demonstrate the flexibility of the model through both a simulation study and an

application where the nDP is used to jointly model the random effect and error dis-

tribution of an ANOVA model. We also offer heatmaps to summarize the clustering

structure generated by the model. Attractively, while being nonparametric, the nDP

encompasses a number of typical parametric and nonparametric models as limiting

cases. Therefore the model is flexible while avoiding issues of model specification that

be hard in practical applications

One natural generalization of the nDP is to replace the beta(1, α) and beta(1, β)

stick-breaking densities with more general forms. In the setting of stick-breaking

priors for a single random probability measure, Ishwaran and James (2001) considered

general beta(ak, bk) forms, with the DP corresponding to the special case ak = 1,

bk = α. Similarly, by using beta(ak, bk) and beta(ck, dk) respectively, we can obtain

a rich class of nested stick-breaking priors that encompasses the nDP as a particular

case.
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Another obvious generalization of the nDP is to enrich the stick breaking process.

In principle, the random uk and vlk can be drawn independently from an arbitrary

distribution on [0, 1] (see Hjort (2000)). For example, Ishwaran and Zarepour (2002)

suggest beta(a, b) distributions, while Ishwaran and James (2001) discuss the general

case beta(ak, bk).

Including hyperparameters in the baseline measure H is another straightforward

extension. We note that, conditional on H, the distinct atoms {G∗k}∞k=1 are assumed

to be independent. Therefore, including hyperparameters in H allows us to paramet-

rically borrow information across the distinct distributions.
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Chapter 3

Multilevel clustering in reproductive

function studies

Infertility and early pregnancy loss (EPL) are currently major public health issues in

the US that can be financially and emotionally costly, both for couples and society as a

whole. Studies carried out during the 90’s showed that around 7% of married couples

report difficulties in achieving a pregnancy, while about 6,000,000 women (10% of

the women in the 15-44 age range) reported impaired fecundity or the inability to

establish or maintain a pregnancy (Fidler and Bernstein, 1999). On the other hand,

early pregnancy loss could represent around 30% of all pregnancies (Wilcox et al.,

1998).

Reproductive function studies aim to explore biological and environmental causes

for female infertility and EPL. Detailed reproductive function studies record, along

with demographic characteristics and outcome variables, daily hormonal levels along

multiple menstrual cycles for each woman in the study. Certain characteristics of

these hormonal profiles (like baseline or peak levels) are known to be correlated with

important outcomes like fertility and EPL (see Venners et al. (2004), Baird et al.

(1997) and references therein). Therefore, it is important to develop methods that

allow for response variables in the form of random functions.
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Some popular tools for modeling random functions include Gaussian processes

(Rasmussen and Williams, 2006), kernel methods (Altman, 1992; Chu and Marron,

1991; Fan et al., 1995), wavelet decompositions (Vidakovic, 1999) and splines (Truong

et al., 2005). Splines are smooth, piecewise polynomial functions that provide remark-

able flexibility and can typically be fitted using tools borrowed from multivariate

linear regression. Splines allow us to represent the unknown random function as a

linear combination of simpler basis functions. That way, the problem of finding a

prior on an infinite-dimensional space is reduced to a finite dimensional problem,

which is, putting a prior on the basis coefficients. From this point of view, splines, as

well as wavelet and kernel methods, can be cataloged together as “basis expansion”

procedures.

Splines have been previously used to model hormonal profiles. For example,

Brumback and Rice (1998) develop a model for nested and crossed samples of curves

based on natural cubic splines. In the context of functional clustering, Bigelow and

Dunson (2007) have used Dirichlet process priors as part of the hierarchical speci-

fication of the model coefficients in order to induce clustering across curves. These

methods are designed for problems where only one curve is obtained for each woman

and the goal is to cluster women. However, when multiple curves are obtained for

each individual, the results obtained from these methods can be misleading since

they end up using an average curve to represent the group.

In this chapter, we use the nested Dirichlet process to construct a functional clus-

tering algorithm that uses the distribution of curves to construct groups of women

with similar hormonal profiles. Our motivation comes from the Early Pregnancy

Study (Wilcox et al., 1998), where daily measurements of progesterone levels were

collected over a six month period for 221 women. Our goal is to cluster women,

identifying typical and unusual clusters of women and generate hypotheses about
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the mechanisms underlying the hormonal process by using woman-specific covari-

ates. As a byproduct of the model, we are also able to impute unobserved levels

for some women. Our methods are conceptually related to Ray and Mallick (2006),

who developed a model for one-level clustering of curves using Dirichlet processes

and wavelet basis functions, and to Heard et al. (2006), who present a model that

uses agglomerative clustering and truncated power spline basis. Instead, the models

presented here use splines basis and the nested Dirichlet Processes as priors on the

distributions of the coefficients of the spline bases, leading to models that allow for

two-level clustering of women and curves within women. Extending our methods to

other basis functions is straightforward.

In order to illustrate the differences between mean and distribution-based clus-

tering, consider the hormone profiles depicted in figure 3.1. Frames (a) to (c) depict

the hormone profiles for 3 women in our data set, while frame (d) shows the mean

profile corresponding to each one of them, obtained by simply averaging all available

observations at a given day within the cycle. When looking at the mean profiles in

(d), women 43 and 36 seem to have very similar hormonal responses, which are dif-

ferent from those of woman 3. However, when the individual profiles are considered,

it is clear that most of the cycles of woman 43 look like those of woman 3 and that

the big difference in the means is driven by the single abnormal cycle.

The rest of the chapter is organized as follows. Section 3.1 reviews the basic

theory behind Bayesian spline models. Section 3.2 describes our model, while section

3.3 develops the Markov Chain Monte Carlo algorithm we employ to fit the model.

Section 3.4 shows the results of our method in the (Wilcox et al., 1998). Finally,

section 3.5 presents our closing comments and discusses possible extensions and novel

applications.
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Figure 3.1: Comparison of hormone profiles for three women in the Early Pregnancy
Study. Frames (a) to (c) show multiple profiles for each woman, while frame the (d)
shows the average profile for each woman.
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3.1 Splines and Bayesian nonparametric regres-

sion

Given a set of m + 1 knots τ0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τm, an order q spline f(x) is a

piecewise polynomial function defined on the interval [τ0, τm) such that,

f(x) =


r1(x) τ0 ≤ x < τ1

r2(x) τ1 ≤ x < τ2

...

rm(x) τm−1 ≤ x < τm

where {ri(x)}mi=1 are polynomials of degree q. Typically, continuity and differentiabil-

ity conditions are attached to the spline, introducing constraints in the coefficients of

the different pieces. If the knots are equidistantly distributed in the interval we say

the spline is uniform, i.e., τj+1−τj = h for every j; otherwise we say it is non-uniform.

For any given knot set, the corresponding set of order q B-splines provide a basis

system for order q splines with q − 1 continuous derivatives. Starting with piecewise

constant functions, such basis system can be obtained recursively using De Boors’

formula (De Boor, 1978),

bk,q(x) =
x− τk
τk+q − τk

bk,q−1 +
τk+q+1 − x
τk+q+1 − τk+1

bk+1,q−1 k = 0, . . . ,m− q − 1

bk,0(x) =

{
1 τk ≤ x < τk+1

0 otherwise

For uniform cubic B-splines, the basis functions reduce to

bk,q(x) = b∗q

(
x− τk
h

)
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where h is the distance between knots and

b∗q(x) =


1
6
x3 0 ≤ x < 1

1
6
(−3x3 + 12t2 − 12t+ 4) 1 ≤ x < 2

1
6
(3x3 − 24t2 + 60t− 44) 2 ≤ x < 3

1
6
(4− x)3 3 ≤ x < 4

and the unknown function can be written as

f(x) =

m−q−1∑
k=1

θkbk,q(x)

for some vector of real coefficients θ = (θ1, . . . , θm−q−1).

In practical applications, deciding on the number of knots is a hard problem,

typically requiring complex computational algorithms. A simple approach is to use a

large number of knots, together with a penalty term to prevent overfitting (too many

knots typically lead to “bumpy” functions). For q ≥ 3, one commonly used such term

is proportional to the total bending energy required to fit the function, given by∫ τm

τ0

(
∂2f

∂x2

)2

dx = θ′Ωθ

[Ω]kl =

∫ τm

τ0

bk,q(x)bl,q(x)dx

This penalty term can be interpreted from a Bayesian perspective as a prior on

the spline coefficients. Following Eilers and Marx (1996), we can write the bending

energy as

θ′Ωθ =
1

h2

[
c1θ
′

(
m−q−1∑
j=1

djd
′
j

)
θ + c2θ

′

(
m−q−1∑
j=2

djd
′
j−1

)
θ

]
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where

c1 =

∫ τm

τ0

b2
k,q−2dx

c2 =

∫ τm

τ0

bk,q−2bk−1,q−2dx

d′j = (0, . . . , 0︸ ︷︷ ︸
j−1

, 1,−2, 1, 0, . . . , 0︸ ︷︷ ︸
m−q−j−3

)

For cubic B-splines, this reduces to c1 = 2h2

6
and c2 = h2

6
.

Unit-information priors (Paciorek, 2006) or mixtures of g-priors (Liang et al.,

2005) are also popular alternatives for prior distributions on the spline coefficients.

Finally, other authors, starting with Carter and Kohn (1994), have used independent

zero-inflated priors and other mixture priors to induce sparsity.

3.2 Models for functional clustering

In this section, we develop two hierarchical models for functional clustering based on

spline representations. The first model uses a regular Dirichlet Process and is intended

for clustering women based on their mean profile. It is very similar the model in

Bigelow and Dunson (2007), although they allow for uncertainty in the basis functions

selection. The second model uses the nested Dirichlet Process and allows us to

cluster women according to the distribution of the curves. The models are described

as a function of a pre-specified set of basis functions {bk(·)}m−q−1
k=1 . Although we

concentrate in our applications on piecewise constant splines, extending the methods

to handle other basis systems (even wavelets or kernel basis) is straightforward.

3.2.1 Mean-curve clustering

In the sequel, let yijt be the progesterone level on the t-th day of the j-th menstrual

cycle of woman i, with i = 1, . . . , I, j = 1, . . . , ni and t = 1, . . . , Tij. We model
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the expected evolution of progesterone in time as a linear combination of piecewise

constant B-spline bases. In order to allow for outliers, which are commonly present

in this type of data, we use a Student t distribution with a small number ν of degrees

of freedom to model the error distribution of the observations. Specifically, we let

yijt ∼ N

(
m−q−1∑
k=1

bk(xijk)θijk,
σ2

λijt

)

λijt ∼ Gam(ν/2, ν/2)

where, for computational purposes, we have used the well known representation of

the t distribution as a scale-mixture of normals. In principle, we allow a different set

of basis coefficients for each cycle of each woman. In order to borrow information

across curves within each woman, we use a random effects model and assume that

the coefficients for each cycle arise from woman-specific distribution

θij = (θij1, . . . , θij,m−q−1) ∼ N(θ∗i , σ
2Ω)

By taking Ω → 0 we force a unique set of coefficients θ∗i for all cycles within a

given woman. Larger values of Ω allow for increasingly larger deviations of individual

cycles from this average. In order to borrow information across women, we need a

hyperprior for the woman specific parameters {θi}Ii=1. Instead of the more standard

normal prior, we use a Dirichlet process centered around a normal,

θ∗i ∼ G

G ∼ DP(αH)

H = N(0, σ2Σ)

As a byproduct of the DP prior, we obtain clusters of women with similar “aver-

age” curves, given by the θ∗i parameters. Note that our specification does not require

for all the curves to be observed at exactly the same times. By borrowing information

across cycles and women, our model implicitly imputes any missing values.

61



The model is completed by assigning priors for the hyperparameters. The ob-

servational variance is given a conditionally conjugate inverse gamma prior, σ2 ∼

IGam(aσ, bσ). The degrees of freedom ν are given a fixed value, which we take as 4

in our applications. For the random effect variances we take inverse-Wishart priors.

Ω ∼ IW(γΩ,Ω0)

Σ ∼ IW(γΣ,Σ0)

Finally, the concentration parameter α is given a gamma prior α ∼ Gam(aα, bα).

3.2.2 Multilevel clustering

Our model for multilevel clustering is similar to the one described in section 3.2.1

above. As before the top level of the hierarchy is given by

yijt ∼ N

(
m−q−1∑
k=1

bk(xijk)θijk,
σ2

λijt

)

λijt ∼ Gam(ν/2, ν/2)

θij ∼ Gi

In section 3.2.1 we took the collection {Gi}Ii=1 to be made of (conditionally in-

dependent) normal distributions Gi = N(θ∗i , σ
2Ω). In this section we use a nested

Dirichlet process instead, with

Gi ∼
∞∑
k=1

πkδG∗k

G∗k ∼
∞∑
l=1

wlkδθ∗lk

θ∗kl ∼ H

In words, our model generates groups of women, assigning to each of those groups

a common random effect distribution G∗k. In turn, each one of these distributions is
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a mixture of different curve shapes, given by the atoms {θ∗lk}∞l=1. All curve shapes

are assigned a common prior distribution H.

As with other models based on the nDP construction, interesting special cases can

be obtained by considering the limit of the precision parameters. For example, letting

β → 0 induces a model where all menstrual cycles within a woman are assumed to

have the same profile, and women are clustered according to their mean cycle. Such

a model is equivalent to taking Ω→ 0 in section 3.2.1. On the other hand, by letting

α → ∞, we obtain a model where all women are treated as different and menstrual

cycles are clustered within each women. Therefore, information is borrowed across

the menstrual cycles of each women, but not across women.

As before, we employ an inverse gamma prior for the observational variance,

σ2 ∼ IGam(aσ, bσ). The stick-breaking weights are constructed as,

πk = uk
∏
s<k

(1− us) uk ∼ beta(1, α)

wlk = vlk
∏
s<l

(1− vsk) vlk ∼ beta(1, β)

and the baseline measure H is set as a N(0, σ2Σ) with Σ ∼ IW(γΣ,Σ0). Finally,

gamma priors are used for both concentration parameters,

α ∼ Gam(aα, bα)

β ∼ Gam(aβ, bβ)

3.3 Inference

We only describe a computational implementation for the model in section 3.2.2,

which is based on a finite truncation of the nested Dirichlet process. Similarly to

the mean curve clustering model, we introduce latent variables ζj and ξij such that

ζj = k if Hj = H∗k and ξij = l if θij = θ∗lk. Once adequate starting values for the

parameters have been chosen, computation proceeds through the following steps:
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1. Sample the bottom-level indicators ζi for i = 1, . . . , I from a multinomial dis-

tribution with probabilities

P(ζi = k| · · · ) = qik ∝ w∗k

ni∏
j=1

L∑
l=1

πlk

 Tij∏
s=1

φ(yijs|b(xijs)
′θ∗lk, σ

2/λijs)

 ,
k = 1, . . . , K.

2. Sample the top-level indicators ξij for i = 1, . . . , I and j = 1, . . . , ni from

another multinomial distribution with probabilities

P(ξij = l| · · · ) = blij ∝ π∗l,ζi

Tij∏
s=1

φ(yijs|b(xijs)
′θ∗l,ζi , σ

2/λijs), l = 1, . . . , L.

3. Sample bottom-level probabilities π∗k by generating

(u∗k| · · · ) ∼ beta

(
1 + rk, α +

K∑
s=k+1

rs

)
, k = 1, . . . , K − 1, u∗K = 1,

where rk is the number of distributions assigned to component k, and construct-

ing π∗k = u∗k
∏k−1

s=1(1− u∗s).

4. Sample the top-level probabilities w∗lk by generating

(v∗lk| · · · ) ∼ beta

(
1 + rlk, β +

L∑
s=l+1

rls

)
, l = 1, . . . , L− 1, v∗Lk = 1,

where rlk is the number of observations assigned to atom l of distribution k,

and constructing w∗lk = v∗lk
∏l−1

s=1(1− v∗sk).

5. Sample the atoms (θ∗lk,Σ
∗
lk) from

(θ∗lk| · · · ) ∼ N(θ̂lk, σ
2Γ̂lk),
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where

Γ̂lk =

Σ−1 +
∑

{(i,j,s):ζj=k,ξij=l}

λijsb(xijs)b(xijs)
′

−1

θ̂lk = Γ̂lk

 ∑
{(i,j,s):ζj=k,ξij=l}

λijsyijsb(xijs)


Note that, if no observation is assigned to a specific cluster, then the parameters

are drawn from the conditional prior distribution (baseline measure) N(0,Σ).

6. Sample the variance of the observations from σ2| · · · ∼ IGam(âσ, b̂σ) where

âσ = aσ +

∑
(i,j) Tij

2
+
pKL

2

b̂σ = bσ +

∑
(i,j,s) λijs(yijs − b(xijs)

′θζi,ξij )
2

2
+

∑
(l,k) θ′lkΣ

−1θlk

2

7. Sample the auxiliary variables λijt from

λijt ∼ Gam

(
ν + 1

2
,
ν

2
+

(yijt − b(xijt)
′θζi,ξij )

2

2σ2

)

8. Sample the variance of the baseline measure from (Σ| · · · ) ∼ IW(γ̂Σ, Ŝ) where

γ̂Σ = γΣ +
∑

{l,k:rlk 6=0}

1

γ̂ΣŜ = γΣS +
1

σ2

∑
{l,k:rlk 6=0}

θlkθ
′
lk

and
∑
{l,k:rlk 6=0} 1 is the number of non-empty components.

9. Sample the concentration parameters α and β from

(α| · · · ) ∼ Gam

(
aα + (K − 1), bα −

K−1∑
k=1

log(1− u∗k)

)

(β| · · · ) ∼ Gam

(
aβ +K(L− 1), bβ −

L−1∑
l=1

K∑
k=1

log(1− v∗lk)

)
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3.4 An application to the Early Pregnancy Study

Progesterone plays a crucial role in controlling different aspects of the reproductive

function in women, from fertilization to early development and implantation. There-

fore, understanding the influence of different variables on the hormonal profile along

the menstrual cycle is critical to identify risk factors for infertility and early preg-

nancy loss. The main difficulties are the functional nature of the outcome variable

and the wide variability in hormonal profiles, not only across women, but also among

different menstrual cycles for the same women.

Our data, extracted from the Early Pregnancy Study (Wilcox et al., 1998), con-

sists of daily creatinine-corrected concentrations of pregnanediol-3-glucuronide (PdG)

for 60 women along multiple menstrual cycles, measured in micrograms per milligram

of creatinine (µg/ml Cr). We focus on a 13 days periods extending from 10 days before

ovulation to 2 days after ovulation. We considered only non-conceptive cycles and

women with at least four cycles in record. Therefore, the number of curves per woman

varies between 4 and 9. Available woman-specific variables include age, weight, last

birth-control method, number of previous pregnancies, age of first menses, regular

length of menses, smoking habits and marijuana intake during study.

We use the algorithm described on section 3.3 with K = L = 60 to fit a piecewise

constant spline model. We use m = 13 nodes, corresponding to each of the days

considered in the study. This yields basis functions of the form

bk(x) =

{
1 k − 10 ≤ x < k − 9

0 otherwise
k = 0, . . . , 12

Prior distributions were set as follows. For the observational variance, we used a

vague but proper prior σ2 ∼ Gam(0.001, 0.001). For the concentration parameters,

we used proper priors α ∼ Gam(3, 3) and β ∼ Gam(3, 3), such that P(α > 3) = P(β >

3) ≈ 0.006. Finally the hyper-prior for the variance-covariance matrix of the spline
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coefficients is set such that γΣ = 3 and Σ = 4 · 13 · I13, where Id represents a d × d

identity matrix.

All inferences are based on 80,000 samples obtained after a burn-in period of

10,000 iterations. Results seem robust to reasonable changes in the parameter values.

However, mixing can be an issue, as the algorithm seems sensitive to the starting

point. This is probably due to the small number of cycles available for each woman.

In order to improve mixing, we first run the mean-based clustering model obtained

by letting α → 0 (which is computationally equivalent to fix ξij = ξ∗i for some set

{ξ∗i }Ii=1). The results from this run are then used as to generate random starting

configuration for our algorithm. Although posterior clusters obtained from both

models are different (as we illustrate later), mean-based clustering seems to provide

a reasonable starting point for distribution-based clustering.

Figure 3.2 shows a heatmap of the posterior average incidence matrix generated

by our sample. Entry (i, j) of this matrix corresponds to the marginal posterior

probability of women i and j being assigned to the same cluster. There is evidence of

nine groups (labeled 0 to 8 in the figure) of varying size. Clusters 1, 3 and 4 are the

largest and best separated clusters, comprising 45 out of 60 women. Clusters 0 and

2 are not clearly separated from the other seven groups, and probably correspond to

women with cycles that conform to more than one of the big clusters. Clusters 5 to 8

are small clusters of one or two women, and correspond to patients with consistently

anomalous hormonal profiles. Note that, as was suggested in the introduction, women

3 and 43 are clearly clustered together. In contrast, in our preliminary run (not

shown) using mean-based clustering, woman 43 was tightly clustered with woman

36.

Figure 3.3 shows reconstructed profiles for some representative women on each of

the groups. Since piecewise constant splines were used, there is very little smoothing.
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Figure 3.2: Average incidence matrix, illustrating probabilities of joint pairwise
classification for the 60 women in the EPS. White corresponds to zero probability,
while red corresponds to 1. Numbered labels correspond to clusters of women.
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Most profiles are relatively flat before ovulation, when hormone levels start to in-

crease. Also, profiles tend to be relatively consistent for any single woman. However,

we can see some outliers, typically corresponding to elevated post-ovulation levels

and/or early increases in the hormone levels.

The reconstructed profiles also provide insight into the characteristics of the

groups. Cluster 1 corresponds to women with very low hormonal levels, even af-

ter ovulation. These group presents few outliers, and those present are characterized

by a slightly larger increase after ovulation. Group 3 has a slightly higher base-

line level and also present a larger increase in PdG in the luteal phase, reaching

a concentration 1.35 µg/ml Cr. Outlier cycles in this groups are characterized by

earlier increases in PdG during the follicular phase, sometimes as early as 5 days

before ovulation. Group 4 shows the highest baseline hormonal level and the larger

increase after ovulation, and outliers include both cycles with a higher-than-normal

luteal-phase hormonal levels and follicular-phase increases in hormones. Group 2 is

a transition cluster, with curves that resemble those in both cluster 1 and 3. As we

mentioned above, the other 4 groups comprise women that are characterized by very

high hormonal levels. For example, woman 53 consistently presents a PdG concen-

tration over 2 µg/ml Cr, while patient 29 has final PdG values of up to 5 µg/ml

Cr.

3.5 Discussion

We have developed a method for multilevel clustering of curves. For small sample sizes

like the ones in our hormone example, we think of this model as generating clusters

of women based on the most frequent (modal) profile instead of the mean profile,

leading to more reasonable results than those obtained from standard methods. The

clustering structure generated by the model can be used to generate hypotheses about
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Figure 3.3: Reconstructed profiles for some representative women. Patient 19 was
chosen for cluster 1, patient 12 for cluster 2, patient 8 for cluster 3, patient 59 for
cluster 4, patient 53 for cluster 5 and patient 29 for cluster 6.
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mechanisms underlying hormonal trajectories. The groups generated by the model

can also be used as an explanatory variable for outcomes like EPL or infertility,

providing insight into the mechanisms behind these negative outcomes.

In so far, our results have been based on piecewise constant splines. However,

the degree of smoothness in the functional estimates is likely to play a role in the

clustering structure. Therefore, we need to compare our results against those obtained

with other basis functions, such as natural cubic splines. We also need to consider a

larger sample that includes more fertile women. From a statistical perspective, the

main issue with this larger sample size is that fertile women tend to get pregnant

earlier in the study, therefore providing a smaller number of curves. This translates

into much more uncertainty on the clustering structure.

It would be interesting to generalize the model to include an additive structure

that allows flexible incorporation of predictors. In this setting, the nDP would allow

clustering of women based on how the predictors vary in their effects across cycles.

Another minor extension of the model is to place a prior on the number of degrees

of freedom ν, similarly to Gottardo et al. (2006). Although this is an appealing

direction to explore, some care must be exercised as there might be identifiability

issues. Indeed, lighter tails for the observational errors will typically mean a larger

number of distinct curves for each woman, which in turn will usually imply a larger

number of clusters. Therefore, it might be difficult in practice to separate the effect

of the degrees of freedom ν form the concentration parameters α and β
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Chapter 4

Dynamic nonparametric linear models

4.1 Introduction

One of the main constraints associated with classical time series analysis is the para-

metric assumptions involved in the analysis. Even if the evolution process is modeled

in a flexible or nonparametric way, observational and evolution noise are typically

assumed to follow some parametric distribution. This means that inferences end

up being restricted to the moments of the assumed distributions, and changes not

captured by those moments are overlooked by the model. Besides, in many applica-

tions, the natural measurement object is the distribution itself, which can potentially

present skewness and multimodality as part of its features. For example in molecular

epidemiology studies, one focus is the profile of changes in the distribution of DNA

damage across time. Also, in option pricing, interest lies on the estimation of the

risk-neutral distribution underlying the observed process (Melick and Thomas, 1997;

Panigirtzoglou and Skiadopoulos, 2004).

Nonparametric methods have proven also useful in the valuation of options and

derivatives. Since the seminal papers of Black and Scholes (1973) and Merton (1973),

the option pricing literature has concerned itself with relaxing the key simplifying as-
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sumptions such as constant volatility, zero transactions costs and a flat yield curve,

as well as with using stochastic processes flexible enough to handle returns exhibit-

ing fat-tails and skewness. Those modeling relaxations include working with kernel

methods to price options (Ait-Sahalia, 1996; Ait-Sahalia and Duarte, 2003), as well

as extracting implied probability densities of the S&P 500 (Panigirtzoglou and Ski-

adopoulos, 2004). In the analysis of credit rating scores, Huang et al. (2004) com-

pared credit rating prediction performance between backpropagation neural network

(BNN) and support vector machines (SVM), obtaining around 80% of accuracy for

both methods in the context of corporate credit rating analysis. In the context of

corporate bond credit rating, Chaveesuk et al. (1999) explore three of the most well

known supervised neural network paradigms-backpropagation, radial basis function

and learning vector quantization-for the task of rating US corporate bonds.

In this paper we develop statistical methods appropriate to estimate and predict

densities that evolve in discrete time. We are particularly interested in models where

computationally efficient algorithms can be developed. Our models use countably

infinite mixtures of Gaussian distributions to represent the unknown density at each

time point. These methods can be conceived as an extension of the Dirichlet Process

Mixture model (Antoniak, 1974; Escobar and West, 1995) to collections of distribu-

tions that evolve in discrete time. It has been shown that, under mild conditions,

these infinites mixtures have full support, in the sense of being dense on the space of

absolutely continuous distributions (Lo, 1984). Dependence is built into the mixing

distribution by allowing the atoms to evolve dynamically as linear state-space models.

Indeed, the models we present can also be regarded as an extension of the Gaussian

Dynamic Linear Models (DLMs) of West and Harrison (1997), which are Bayesian

versions of the popular Kalman Filter. The DLMs represent a very flexible class of

models with well-known properties, and have been successfully applied on a number
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of different areas, including econometrics, engineering and climatology (Kim, 1994;

Pesaran et al., 1995; West, 1995; Lamon et al., 1998; West et al., 1999).

Although physical and economic phenomenon typically occur in continuous time,

discrete-time models provide good approximations as long as a fine enough scale

is used. In addition, most real life phenomena are actually observed in discrete

and equispaced intervals, making discrete-time models a natural tool for empirical

analysis. This paper focuses on financial applications, but the class of dynamic

Dependent Dirichlet Processes we present in this paper has multiple applications in

areas like engineering (dynamic spectra estimation), climatology (modeling rainfall

distributions) and biostatistics/epidemiology (genetic epidemiology studies, dynamic

random effect models).

Most of the classical literature on the Dirichlet Process focuses on exchangeable

samples. However, recent work has started to develop methods for dependent dis-

tributions, either by forming convex combinations of independent processes (Müller

et al., 2004; Dunson et al., 2007b; Griffin and Steel, 2006a; Dunson, 2006; Pennell and

Dunson, 2006) or by introducing dependence in the elements of the stick-breaking rep-

resentation of the distribution (MacEachern, 1999, 2000; DeIorio et al., 2004; Gelfand

et al., 2005; Griffin and Steel, 2006b). Particularly relevant for this paper are the

works of Griffin and Steel (2006b), who induce dependence through permutations of

otherwise fixed atoms; Griffin and Steel (2006a), who construct the mixing distribu-

tion at a new time point as a linear combination of the mixing distribution at the

previous time plus an innovation; and Tang and Ghosal (2006), who are concerned

with estimating the conditional distribution of a general autoregressive process. Our

approach, while similar to Griffin and Steel (2006b), allows the atoms to evolve in

time, in the same way as state-space model. This formulation provides a more intu-

itive interpretation in finance applications, simplifies the implementation of the model
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and casts it as a direct extension of widely used models for time series analysis.

This chapter is organized as follows: Section 4.2 describes a model that uses

location-scale mixtures of normals to construct time dependent processes, proposing

a Markov Chain Monte Carlo (MCMC) scheme and some interesting special cases of

the general formulation. Section 4.3 considers an alternative formulation that uses

location mixtures of DLMs with time varying variances. Then, section 4.4 describes

an application of these models to the estimation of risk neutral distributions implied

by option prices. Finally, we close in Section 4.5 with a brief discussion of the models

and some interesting future research points.

4.2 Location-scale mixtures of time dependent pro-

cesses

4.2.1 Definition and properties

Recall from chapter 1 that, given a set D, we can replace the baseline distribu-

tion underlying Sethuraman’s stick-breaking construction with a stochastic process

{η(t) ∀ t ∈ D} and define

Kt(·) =
∞∑
l=1

w∗l (t)δη∗l (t)(·) (4.1)

where η∗l (t) ∼ η(t) and w∗l (t) = z∗l (t)
∏l−1

s=1(1 − z∗s(t)) with z∗(t) ∼ beta(1, α(t))

for all t ∈ D. The resulting stochastic process is called a Dependent Dirichlet Process

(DDP) (MacEachern, 2000) and defines a distribution on the collection of random

distributions on the space D, such that every Kt is marginally a Dirichlet Process. In

the sequel, we consider mixtures of Gaussian distributions by a discrete-time DDP.

Therefore, we take D = N and assume our underlying stochastic process to be a

general random walk. For computational reasons, we focus on “single p” DDP models
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where z∗l (t) = z∗l ∼ beta(1, α), independently of t. More specifically, letting yit be the

i-th observation (i = 1, . . . , nt) obtained at time t = 1, . . . , T , our model reduces to:

yit ∼
∫

N
(
F′itθt, σ

2
)
Kt(dθt, dσ

2) Kt =
∞∑
l=1

w∗l δ(θ∗lt,σ2∗
l )

w∗l = z∗l

l−1∏
s=1

(1− z∗s) z∗l ∼ beta(1, α)

θ∗lt|θ∗l,t−1, φ
∗
l ∼ N(Gtθ

∗
l,t−1, σ

2∗
l Wt) θ∗0l|φ∗l ∼ N(m0, σ

2∗
l C0)

σ2∗
l ∼ Gam(s0, s0S0)

(4.2)

where N(µ, σ2) denotes a Gaussian distribution with mean µ and variance σ2, while

IGam(a, b) denotes an Inverse-Gamma distribution with mean a/b and a degrees of

freedom (see appendix A).

Our model assumes that the distribution for any observation yit can be written

as a mixture of normal components with means Fitθlt and variance σ2
l = 1/φl, for

some known matrix Fit. The parameters defining the means of these distributions

are allowed to move, with the evolution matrix Gt and the innovation variance Wt

controlling the direction and magnitude of these changes. This formulation is rather

general, and by appropriately choosing the structural matrices Ft, Gt and Wt our

model can easily accommodate patterns like trends, periodicities, dynamic regressions

and even autoregressive or moving average models for densities. The variances of the

mixture components are assumed to be constant in time, but allowed to be change

across component; and the weights associated each distribution are also estimated

from the data, and assumed to be constant in time. Therefore, the estimates of the

model can be interpreted as kernel density estimates with adaptive bandwidths and

time varying kernels.

The dynamic DDP can be interpreted as a multiprocess type II model (West and

Harrison, 1997). In this multiprocess interpretation, an infinite number of DLM mod-
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els with the same evolutionary structure but a different set of state parameters are

available at every point in time. These components represent different evolutionary

paths consistent with a common underlying regime described by Gt and Wt, and

where each observation is allocated to one of these components with constant prob-

ability. Therefore, predictions using expected posterior means can be interpreted in

this model as weighted averages of the predictions obtained under an infinite number

of DLMs.

As argued by MacEachern (2000), the model can be reexpressed as a Mixture of

Dirichlet processes

yit ∼
∫

N
(
F′itθt, σ

2
)
K
(
dΘ, dσ2

)
K ∼ DP (αK0)

where Θ = (θ′1, . . . ,θ
′
T )′ and K0 is the joint distribution of (Θ, φ) induced by the

evolution equations described above, which reduces to a multivariate normal-gamma

where

E(θt|φ) =

[
t∏

r=1

Gt−r+1

]
m0

V(θt|φ) = σ2

{[
t∏

r=1

Gt−r+1

]
C0

{
t∏

r=1

Gt−r+1

]′
+

t−1∑
r=1

[
t−r∏
s=1

Gt−s+1

]
Wr

[
t−r∏
s=1

Gt−s+1

]′
+ Wt

}

Cov(θt+k,θt|φ) =

[
k∏
r=1

Gt+k−r+1

]
V(θt|φ)

E(φ) =
s0

s0 − 1
S0

V(φ) =
s2

0

(s0 − 1)2(s0 − 2)
S0

This representation as a DP mixture will be exploited in section 4.2.2 to develop
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efficient and simple computational strategies to fit these models. Although the “single

p” structure in 4.2 suggests a restrictive model where the same number of components

is used to represent every distribution (in principle, at least the largest one needed at

any time point), the model is indeed flexible and dense on the space of distributions

on D, as argued in MacEachern (2000). Note that a good approximation to a lower

number of components can be achieved at any time point by assigning different

components similar values of their parameters. Indeed, if (θit, σi) ≈ (θjt, σj) then

witδ(θit,σi)
+ wjtδ(θjt,σj)

≈ (wit + wjt)δ(θit,σi)
. Therefore, by having components with

similar parameters but that are not allocated to any observation at certain time

points, we can approximate variable weights. Therefore, the price to pay for the

constant-weight assumption is, in general, a slightly larger number of atoms being

used.

Note that our dynamic DDP encompasses a number of other models as limiting

cases. On one side by letting Wt = 0 ∀ t we have θt = θ0 ∀ t and thus Kt = Kr ∀ t, r,

which is the set up of Escobar and West (1995). On the other hand, by letting α→ 0,

we revert to the class of parametric DLMs with replicates as discussed in West and

Harrison (1997). Note, however, that although increasing the value of Wt reduces

the dependence among distributions, letting Wt →∞ ∀ t does not yield independent

density estimates at each time point, but an improper distribution for θt at all times

t ≥ 1. Indeed, it is known that obtaining independent distributions from a single p

DDP is not possible (MacEachern, 2000). Although this is a somewhat unappealing

characteristic of the model, it will not be an issue for most practical applications.

It is straightforward to obtain the a priori covariance structure induced on the

observations by the process (see appendix G),

Cov(yi′,t+k, yi,t) =
F′t+k

[∏k
s=1 Gt+k−s+1

]
V(θt)Ft

1 + α

s0

s0 − 1
S0 ∀ i 6= i′, s0 > 1
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Note the similarities with the replicated, Gaussian DLM model, where the covari-

ance reduces to F′t+k

[∏k
s=1 Gt+s

]
Cov(θt)Fts0S0/(s0 − 1). Therefore, the covariance

between observations at different time points under the discrete time DDP is strictly

smaller than under the parametric alternative, which is due to the added uncertainty

in the model specification. Also, since this is the induced covariance after marginal-

izing over the unknown collection {K1, . . . KT}, the replicates at a given time point

are not independent unless α = 0 (which corresponds to a single DLM model).

4.2.2 Inference

Inferences on the dynamic DDP can be performed using the same computational tech-

niques employed for DP mixtures models (see, for example, Bush and MacEachern

(1996); MacEachern and Müller (1998); Neal (2000); Ishwaran and James (2001)). In

what follows, we describe an application of the algorithm of MacEachern and Müller

(1998). For this purpose, a reparametrization of the model is helpful: let L be the

current number of components that have observations allocated to them, n∗lt be the

number of observations in time t assigned to group l, nl =
∑

t nlt, {Θ
∗
1, . . . ,Θ

∗
L} be

the current estimated values for those paths and ξit = l iif Θit = Θ∗lt. Given values for

the structural parameters Fit, Git and Wit and after initialization of the parameters,

an MCMC sampler alternates through the following steps:

1. Generate Θ∗l , σ
∗2
l |{y|ξit = k, } · · · using the following Forward Filtering / Back-

ward Sampling (FFBS) algorithm (Carter and Kohn, 1994; Fruhwirth-Schnatter,

1994)
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(a) Forward filter using the recursions

mlt =

{
alt + Altelt if nlt > 0

alt if nlt = 0

Clt =

{
Rlt −AltQltA

′
lt if nlt > 0

Rlt if nlt = 0

slt = sl,t−1 + nlt

sltSlt =

{
sl,t−1Sl,t−1 + e′ltQ

−1
lt elt if nlt > 0

sl,t−1Sl,t−1 if nlt = 0

Alt = RltF
∗
ltQ
−1
lt

elt = ylt − flt

flt = F∗ltalt

Qlt = F∗ltRltF
∗′
lt + I

alt = Gltml,t−1

Rlt = GltCl,t−1G
′
lt + Wlt

where ylt is made of all observations assigned to group l at time t, F∗lt is a

matrix whose rows are the corresponding Fit vectors and I is the identity

matrix.

(b) Sample σ2
l |yl, · · · from IGam(slT/2, slTSlT/2).

(c) Sample θlT |σ2
l ,yl, · · · from N(mlT ,ClT ). Then sample θlt|θl,t+1σ

2
l ,yl, · · ·

recursively from N(dlt,Dlt) where

dlt = mlt + Blt (θl,t+1 − al,t+1)

Dlt = Clt −BltRl,t+1B
′
lt

Blt = CltGt+1R
−1
l,t+1
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2. Sample ξit|y, ξ−, · · · from a multinomial distribution with probabilities:

ql = n−l p(yit|y
−, ξ−)

= n−l Ts−lT

(
yit|F′ith−lt , S

−
lT (1 + F′itH

−
ltFit)

)
q0 = αp(yit|S0)

= αTs0 (yit|F′itht0, S0(1 + F′itH0tFit))

where the superscript indicates removal of observation (i, t) from the sample,

ql for l = 1, . . . , L− is the probability of allocation observation (i, t) to cluster l,

q0 is the probability of allocating the observation to a new cluster, hlT = mlT ,

HlT = ClT and

hlt = mlt + Blt (hl,t+1 − al,t+1)

Hlt = Clt −Blt(Hl,t+1 −Rl,t+1)B′lt

Both h0t and H0t can be calculated using the same recursions with nt0 = 0 ∀ t.

The filtering and smoothing relations described above are generalizations of those

found in Carter and Kohn (1994), Fruhwirth-Schnatter (1994) and West and Harrison

(1997), intended to deal with missing data or multiple observations at any point in

time. Note that Step 2 can be computationally expensive since it implies running

Forward-Filtering/Backward-Smoothing (FFBS) steps for each observation in the

sample. A careful implementation requires at least one and at most two such steps

for each observation: one to recalculate the parameters for the group to which the

observation currently belongs and possibly another one to calculate those of the group

were it is to be assigned.

Typically, the matrices Gt and Wt governing the evolution of the system will be

unknown. However, since Gt and Wt define the moments of the baseline measure,

inference on these quantities can be performed as discussed in Escobar and West
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(1998). Therefore, inferences on structural parameters like discount factors, periodic

components or autoregressive coefficients can be accommodated very easily. Details

on some specific examples are discussed in the following sections. The sampler can

also be extended to obtain backward-smoothed and/or k-step-ahead density estimates

by calculating the corresponding predictive distributions. These predictive distribu-

tions, obtained from the Pólya urn scheme, correspond to mixtures of T densities of

the form

p(yt+1|yt, . . . ,y1, · · · ) =

L∑
l=1

nl·
n+ α

Tslt
(yt+1|fl,t+1, Ql,t+1) +

α

α + n
Tslt

(yt+1|f0,t+1, Q0,t+1)

where nl· =
∑T

t−1 nlt and f0,t+1, Q0,t+1 are calculated from mlt, Clt, slt and Slt using

the same recursions as in step (1.a). Finally, if a Gamma prior is used to model the

parameter α governing the precision of the Dirichlet process, the data augmentation

scheme described Escobar and West (1995).

4.2.3 An example: Distribution Autoregressive Models (DAR)

Autoregressive (AR) models are one of the most popular tools in finance and econo-

metrics, both because of their flexibility and interpretability. For example, as noted

by a number of authors (Box and Jenkins, 1974; West, 1997; Aguilar et al., 1999),

high order stationary AR processes can be seen as approximations to Moving Aver-

age (MA) processes. Even more, Wold’s decomposition ensures that high order AR

processes are good approximations to any stationary process.

AR models have been used to model not only the mean structure of the time

series, but also to understand other aspects of the distributions. For example, ARCH

models (Engle, 1982) use an AR process to model the volatility of the process. The

goal of this section is to push the idea of AR processes beyond that of a model for the
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moments of distributions and get an equivalent formulation for the whole distribution.

For simplicity, we start our discussion with the first-order, distribution autoregressive

process (DAR(1)), which takes the form

yit ∼ N(µit, σ
2
it) (µit, σ

2
it) ∼ Kt

Kt =
∞∑
l=1

w∗l δ(µ∗lt,σ
2
l ) µ∗lt ∼ N(ρµ∗l,t−1, σ

2
l U)

The name DAR(1) comes from the fact that the stochastic process defining the

location of the Gaussian distributions used to represent the unknown density follow

an autoregressive process with autocorrelation ρ and variance σ2U . This is a special

case of the general model described in section 4.2 where Ft = 1, Gt = ρ and Wt = U .

Therefore, the correlation a priori induced on the observations is

Cor(yi,t, yi′,t+k) =
ρk

1 + α

This formulation extends the latent AR process models (West and Harrison, 1997)

to infinite mixtures. As in the latent AR process, and unlike the typical Gaussian

AR(1) process, ρ = 0 implies uncorrelated but dependent observations. Indeed, the

case ρ = 0 generates identifiability issues since it is not possible to separate the

evolution noise of the underlying process from the observational noise.

The model is completed by placing priors on ρ, U , µ0 and α. For computational

simplicity a conditionally conjugate distribution for the variance of the autoregressive

process is used, U ∼ IGam(aU , bU). Also, in order to ensure stationarity, we set

ρ ∼ N
(
0, τ 2

)
1(−1,1) µ∗l0 ∼ N

(
0,

σ2U

1− ρ2

)
∀ l

where N(a, b)1Ω denotes the normal distribution with mean a, variance b and

restricted to the set Ω. Finally, the DP precision factor α is given a Gam(aα, bα),

which is conditionally conjugate.

83



Implementation of this models is a straightforward extension of that in section

4.2.2. Conditional on ρ, U and α, the model is a discrete-time DDP. On the other

hand, conditional on the allocation indicators, the sample paths {(µ∗l , σ∗2l )}Ll=1 are iid

samples from the baseline measure. Therefore, samples from ρ and U can be easily

obtained using the following full-conditional distributions.

• The variance of the autoregressive process can be obtained by sampling U from

its full conditional distribution,

U | · · · ∼ IGam

(
aU +

T

2
, bU +

∑
l

[
(1− ρ2)µ∗l0

σ∗2l
+

T∑
t=1

µ∗lt − µ∗l,t−1

σ∗2l

])

• The full conditional distribution for the autocorrelation coefficient takes the

form

p(ρ| · · · ) ∝ (1− ρ2)−L/2 exp

{
−1− ρ2

2U

L∑
l=1

µ∗2l0
σ2
l

}

exp

{
−1

2

[
b

U
+

1

τ 2

] [
ρ− d

(
b

U
+

1

τ 2

)−1
]}

where

b =
T∑
t=1

L∑
l=1

µ∗2l,t−1

σ∗2l
d =

T∑
t=1

L∑
l=1

µ∗l,tµ
∗
l,t−1

σ∗2l

Note that this expression does not correspond to any known distribution. How-

ever, we recognize the third term (which happens to contain most of the in-

formation provided by the observations) as a normal kernel. Therefore an

efficient independent-proposal Metropolis step can be devised to sample from

this full-conditional distribution. Given the current value of the autoregression

parameter ρ(c) in the previous iteration, propose

ρ(p) ∼ N

(
d

(
b

U
+

1

τ 2

)−1

,

(
b

U
+

1

τ 2

)−1
)

1(−1,1).
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Then, accept this proposal with probability

min

1,

(
1− ρ2

(p)

1− ρ2
(c)

)−L/2
exp

{
−
ρ2

(c) − ρ2
(p)

2U

L∑
l=1

µ∗2l0
σ2∗
l

}
Otherwise retain the previous value ρ(c).

Extending the previous ideas to a DAR(p) is straightforward. The model takes

the form

yit ∼ N(µit, σ
2
it) (µit, σ

2
it) ∼ Kt

Kt =
∞∑
l=1

w∗l δ(µ∗lt,σ
2
l ) µ∗lt ∼ N

(
p∑
r=1

ρrµ
∗
l,t−r, σ

2
l U

)

In terms of inference, the DAR(p) requires a slight adaptation of the FFBS al-

gorithm described in section 4.2.2 due to the fact that Wt is a singular matrix.

This modification is described in West and Harrison (1997), Chapter 15.3.2 for the

Gaussian AR(p) model.

4.3 A model with time-dependent variances

Although the class of models in the previous section is very flexible, they impose

some unappealing constrains on the sequence of density estimates. In particular,

by assuming that the variance of each component does not change across time we

are forcing the variance of the mixture to also remain fixed. Although in some

applications this might not be a problem, the fact is that, for finance and econometric

applications, this is a serious constrain.

Since allowing for the variances to change simultaneously in time and for each

component yields models that are computationally intractable, we compromise by

considering in this section models that assume that the variance of each component
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is the same for any given time t, but let the variance evolves in time. The resulting

model can be interpreted as a Bayesian kernel density method where the kernel

bandwidth is adaptive in time instead of in space. Specifically, the model takes the

form

yit ∼
∫

N
(
Fitθt, σ

2
t

)
Kt(dθt) Kt =

∞∑
l=1

w∗l δθlt

w∗l = z∗l

l−1∏
s=1

(1− z∗s) z∗l ∼ beta(1, α)

θlt|θl,t−1, σ
2
t ∼ N(Gtθl,t−1, σ

2
tWt) θ0l|σ2

0 ∼ N(m0, σ
2
0C0)

σ2
t ∼

δσ2
t−1

ζt
ζt ∼ beta(δnt, (1− δ)nt)

σ2
0 ∼ IGam(s0, s0S0)

(4.3)

This model is very similar to the one discussed in section 4.2. Note, however, that

we are not mixing over the variance. Instead, we make it dependent on time and let

it evolve using the stochastic volatility approach of Uhlig (1997).

4.3.1 Inference

The MCMC algorithm for this model is very similar to the one presented in Section

4.2.2. As in the previous case, let L be the current number of components that

have observations allocated to them, n?lt be the number of observations at time t

assigned to group l, nl =
∑

t nlt, Θ = {Θ?
1, ...,Θ

?
L}, and Σ = {σ2

0, ..., σ
2
T} be the

current estimated values for those paths and time-varying variances. Also, ξit = l

iff θit = θ?lt. Given values for the structural parameters Fit, Git and Wit and after

initialization of the parameters, an MCMC sampler alternates through the following

steps:

1. Generate Θ?
l | {y|ξit = l} using the following FFBS algorithm
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(a) Forward filtering using the following recursions

mlt =

{
alt + Altelt if nlt > 0

alt if nlt = 0

σ2
tClt =

{
Rt −AltQltA

′
lt if nlt > 0

Rlt if nlt = 0

Alt = RltFltQ
−1
lt

elt = ylt − flt

flt = F′ltalt

Qlt = F′ltRltFlt + σ2
t I

alt = Gltml,t−1

Rlt = σ2
t−1GltCl,t−1G

′
lt + σ2

tWlt

where ylt is made of all observations assigned to group l at time t and Flt

is matrix whose rows are the corresponding Fit vectors.

(b) Sample θlT |yl from N(mlT , σ
2
TClT ). Then recursively sample θlt|θl,t+1,yl

from N(dlt,Dlt) where

dlt = Blt (θl,t+1 − al,t+1)

Dlt = σ2
tClt −BltRl,t+1B

′
lt

Blt = σ2
tCltGt+1R

−1
l,t+1

2. Generate the sequence of variances σ2
l |y using another FFBS algorithm
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(a) Forward filtering using the following recursions

st = δst−1 + nt + p

St =
δSt−1 +

∑nt

i=1(yit − Fitθ
?
ξit,t

)2 + (θt − θt−1)′W−1
t (θt − θt−1)

δst−1 + nt + p

(b) Backward sample, starting with σ2
T ∼

(
sT

2
, sTST

2

)
and then letting

σ2
t−1|σ2

t =
1

ηt−1 + δ
σ2

t

for all 0 ≤ t < T where

ηt−1 ∼ Gam

(
(1− δ)st−1

2
,
St−1

2

)
3. Sample ξij|y, ξ−(ij),Σ, · · · from a multinomial distribution with probabilities:

ql = n−l p(yti|y
−, ξ−(ij) l = 1, . . . , L−)

= n−l N (yti|hlt,Hlt)

qL+1 = αp(yti|S0)

= αN (yti|ht0,Ht0))

As before, hlT = mlT , HlT = ClT and

hlt = Blt (hl,t+1 − at+1)

Hlt = Clt −Blt(Hl,t+1 −Rl,t+1)B′lt

4.4 Estimating implied risk-neutral distributions

4.4.1 Option implied risk-neutral distribution (RNPD)

It is common knowledge that market prices of options contain information regarding

market expectations. Important information can be extracted from the derivatives
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markets and used for several purposes, such as the probabilities of adverse movements

in the market, as well as monetary authorities assessing market expectations. This is

why cross sections of option prices have been investigated in order to retrieve the im-

plied probability density distribution of the underlying St (stock, inflation, currency,

interest rates), which represents market expectations. Retrieving the RNPD is a typ-

ical example of an Inverse Problem (Tikhonov, 1963), and the Bayesian methodology

is a way to regularize it through the elicitation of a prior distribution, which acts as

a penalization function (Wolpert and Ickstadt, 2004).

In any option pricing model, looking for a suitable and realistic stochastic process

to model the underlying stock price is essential. Nonparametric methods using max-

imum entropy techniques have been successfully used in the case of Lévy processes

(Cont and Tankov, 2003). Such models may exhibit stylized features common in

financial applications, such as skewness, volatility clustering, jumps, fat-tails (Cont

and Tankov, 2003), as well as multimodality of the log-returns dSt

St
, but are typically

awkward to implement. Other approaches (Melick and Thomas, 1997; Rebonato,

2004) have used finite mixtures of parametric distributions to fit the RNPD using

number of mixtures as well, but to the cost of overfitting the observed RNPD, which

usually leads to poor prediction. The novelty or our estimation relies on making no

assumptions other than using the call-put parity equation to generate observations

under the RNPD. The no arbitrage condition from equation (4.4) enables us to imply

the existence (although not the uniqueness) of a RNPD (Delbaen and Schachermayer,

2006), whose posterior distribution is the focus of interest. Besides, our algorithm al-

lows us to not only determine sequentially in time the optimal number of components,

but also the dependence among the RNPD.

In what follows, we focus on European options. The holder of a European call

option has the right, but not the obligation, to buy an underlying security at a
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specified date (expiration date) for a contractually specified amount (strike price),

irrespective of the market value of the security on that date. The underlying securities

of options can be stocks, indices such as the Standard and Poor’s 500, interest rates,

etc. At the expiration date T , the value of the option is (ST −K, 0)+, the maximum

of ST − K and zero. Payoff is at later time T , so under constant discount rate r

present value of the call option at time t will be exp (−r(T − t)) (ST −K)+, where

K is the strike price. In what follows, let (Ω,F ,P, (Ft)t≥0) be a probability space,

equipped with a filtration satisfying the usual hypotheses (see Protter, 1990, p. 3, for

definition). The classical framework of option pricing assumes that a call option Ct

whose payoff (ST −K, 0)+ depends on our underlying ST at the expiration date T ,

can be computed via the following integration:

Ct = exp (−r(T − t))EQ{(ST −K, 0)+ | Ft}

= exp (−r(T − t))
∫
S
(ST −K, 0)+dQ(ST | Ft)

where S is the sample space for the stock price ST at terminal date T , K is the

strike and integration is performed under the risk-neutral measure Q, such that the

discounted stock price exp (−rt)St is a Q-martingale (Delbaen and Schachermayer,

2006), yielding

Ct = exp (−r(T − t))
∫
S

max(ST −K, 0)dQ(ST | Ft)

Similarly, for the put option

Pt = exp (−r(T − t))
∫
S

max(K − ST , 0)dQ(ST | Ft)

From the put-call parity price we obtain (Hull, 2005):

Ct − Pt = St −K exp (−r(T − t))

⇒ St = Ct − Pt +K exp (−r(T − t))
(4.4)

90



Given the call and put prices for each trade (which are typically available as part

of market data), equation (4.4) can be used to obtain observations from the risk

neutral probability distribution of St across different strikes K. These observations

can then be used to estimate the RNPD of the underlying St at time each time

t in a nonparametric fashion, for example through a discrete time DDP. Using a

nonparametric method in this setup is attractive because it assumes the least amount

of assumptions regarding the governing dynamics of the probabilistic structure of St.

4.4.2 RNPD in the S&P500 INDEX

In what follows, we concentrate on options of the S&P500 index with three-month

maturity times traded between January 4th 1993 and March 17th 1994, for a total

of n = 4385 trades spread over T = 293 days, with sample sizes in any specific day

varying between 2 and 26. The data was constructed by Yacine Ait-Sahalia and has

been used in the empirical study of Duffie et al. (2000). A plot of the prices inferred

from the put-call parity (4.4) using the Libor as the interest rate (Panigirtzoglou and

Skiadopoulos, 2004) is presented in Figure 4.1. Note that the distributions on any

specific day may be highly skewed and may have very heavy tails. Means (plotted

in orange) vary wildly, specially during the summer of 1993 when fewer trades occur

and extreme values are highly influential. Even more, the kernel density estimates in

Figure 4.2 show that the risk neutral distributions change dramatically across time

and might actually be multimodal.

We use the DAR(1) model described in section 4.2.3 to model the unknown dis-

tribution of St. In order to justify a zero mean DAR(1) process, the data has been

recentered using the global mean. The goal is to obtain smoothed estimates for the

mean and volatility of the process, as well as for the distribution itself, along with a

predictive model that can be used to infer the distribution at subsequent dates.
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Figure 4.1: S&P500 prices induced by the call-put non-arbitrage condition. Dots
correspond to the raw data, the orange line corresponds to the empirical mean of
the observations at the corresponding time point and the green line to the smoothed
mean under the DAR(1) model.
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Figure 4.2: Kernel density estimates of S&P500 prices on Jan 4, 1993; May 25, 1993;
Oct 15, 1993 and Mar 17, 1994. The number of observations N and the bandwidth
estimated through cross-validation are shown bellow each plot.
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Hyperparameters have been chosen as τ 2 = 1, s0 = 1 S0 = 40 (about one sixth of

the empirical observational variance on the whole sample) and aU = bU = 1. In order

to increase the flexibility of the model, a hyperprior on the concentration parameter

of the Dirichlet Process, α ∼ Gam(1, 1) was used. All results presented here are

based on 25,000 samples of the posterior distribution obtained after a burn-in period

of 5,000 iterations, and they seem to be robust to moderate changes in the prior

distribution.

Table 4.1 shows posterior estimates for the concentration and baseline measure

parameters in the model. As expected, the autocorrelation in the process is rather

high. The evolution variance is also relatively large, being about 12 times larger than

the average observational variance. Roughly speaking, the model uses between 7

and 10 mixture components to model the collection of 293 distributions, but three of

those components capture around 90% of the trades (50%, 25% and 15% respectively),

with the rest of the components with higher observational variance explaining the

very extreme observed values. This observation has a potential explanation in the

field of behavioral finance. It has been argued that individuals tend to over-weight

small probability outcomes related to significant losses, which is therefore consistent

with high-implied volatility on deep out of the money derivatives (Rasiel, 2003).

Indeed, the observational variance of every component of the mixture decreases as the

number of data points allocated to that group increases, which happens in the middle

around the current market price. On the contrary, with extreme observations which

might constitute a group (cluster) of their own, there is a much higher uncertainty

and thus observational variance regarding the distribution. This analysis makes the

implied volatility smile nothing but the consequence of human behavior, which is to

choose a direction of where the underlying might go, and then choose the probability

distribution, explaining the fact that the RNPD is multimodal. This last feature
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Table 4.1: Posterior mean, median and symmetric 95% probability interval for some
parameters in the DAR(1) model fitted to the S&P500 data

Mean Median 90% Prob Int
α 0.92 0.87 (0.36,1.76)
ρ 0.974 0.974 (0.962,0.985)
U 13.12 13.05 (11.23,15.38)

of the RNPD also shows the proportion of different market participants (number of

mixtures) and their bullish or bearish views regarding the future on the S&P 500.

If the implied volatility is calculated using the original Black & Scholes (which

assumes a single lognormal with constant volatility), a volatility smile would follow,

where the implied volatility is an decreasing/increasing function of the strike price.

This is so because the higher probability of tail observations vis-a-vis the lognormal

distribution will imply higher market prices for those deep out-of-the-money calls.

Anything leading to fat tails vis-a-vis the lognormal will deliver the volatility smile,

and mixture distributions are one such thing. However, our methodology gives the

nice interpretation that fat tails are often a consequence of the market being divided

into several broad groups, the bulls and the bears (together with their nuances), who

make their bets accordingly in their private valuation of options. Figure 4.3 shows

smoothed density estimates p(yt|y1, . . . ,yT ) and one-step-ahead predicted densities

p(yt|y1, . . . ,yt−1) for the last 8 days in the series. Note that the model seems to

provide both a good fit to the observed data and sensible predictions of future obser-

vations, even for extreme observations. Both density estimates are effective in cap-

turing the main characteristics of the data, namely high skewness and multimodality.

However, the modes show up more sharply in the smoothed densities because of the

additional noise being convoluted during the prediction.

Another interesting feature of the model is its robustness to small samples with

extreme values, which is clearly hinted by the behavior of the estimated mean during
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Figure 4.3: Smoothed (green) and one-step-ahead predicted densities (red) between
March 8, 1994 (t = 286) and March 17, 1994 (t = 293) obtained from the DAR(1)
model. The dots correspond to the actual observations.
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Figure 4.4: Smoothed density estimate for May 25, 1993 obtained from the DAR(1)
model.

the summer of 1993 (green line in Figure 4.1). For example, consider the market

during May 25, 1993. In this date, only two trades occurred, and the raw density

estimate was presented in the upper right panel of Figure 4.2 is highly skewed towards

relatively high prices. Most parametric analysis would associate this with a large shift

in the location of the distribution. The smoothed density on this date resulting from

the DAR(1) model can be seen in figure 4.4. Since there is a bulk of information

contained in the behavior of the market in adjacent days, the two observed market

valuations are attributed by the model not to the mainstream investors (represented

by the higher weight component), but to their more risk-prone counterparts. This

is an interesting example of the regularization properties inherent to this class of

models.
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The model can also be used to obtain robust smoothed estimates for the mean

and volatility underlying the process. The time varying aspect of the first and second

moments can be of interest for financial institutions interested in determining and

measuring the exposure in their portfolios to financial risk, and more precisely to

market risk. By using the dynamic DDP model, the risk measures can then be com-

puted under distributions not only exhibiting fat tails, volatility clustering, varying

mean returns, multimodality, but estimation uncertainty as well. This last feature

can therefore take into account model risk due to the use of nonparametric methods

(Cont, 2006).

Figure 4.5 shows a plot of the interquartile range (IQR) associated with the

smoothed densities generated by the model. In normal distributions, IQR/1.349 is

a consistent estimator of the standard deviation of the process. For more general

distributions, the IQR provides a robust alternative to the variance that can be used

to compare the volatility at different points in time. From Figure 4.5 we can observe

two high volatility periods: one in late June 1993 and another one by the end of

the recorded series in March 1994. It is interesting to notice that the DDP extends

Bollerslev (1986) to a nonparametric method exhibiting not only mean shifts in the

distribution but also volatility clustering, while working directly in the price level

scale.

4.5 Discussion

In this paper we discuss a class of models for dynamic density estimation in discrete

time that allows us to borrow information across adjacent observations and obtain

robust inferences, not only for the distribution itself, but also for other quantities of

interest like the mean or the quantiles of the process.

The example in this paper focuses on distribution autoregressive models to esti-
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mate implied risk-neutral distributions in options markets, which is in itself a novel

contribution. It allows us to drop cumbersome parametric assumptions that are

clearly not justified by the data but are part of the current state-of-the-art in the

field. In spite of this, our formulation is not constrained to DAR models and is

indeed much more general: trends, periodicities and even covariates can be easily

included into the model. Also, applications extend not only to other areas in finance

(stochastic volatility models, risk management, credit analysis and FX options) but

also to other fields like epidemiology, climatology and engineering, some of which are

the focus of current research. However, despite their generality, it is important to

emphasize that the models described in this paper induce dependence in the distribu-

tions themselves and assumes that observations are exchangeable within every time

point given that distribution. Therefore, our model is not suitable for the analysis of

longitudinal studies where the same experimental unit is followed at different times

points.

One of the key characteristics of these models is the simplicity of their imple-

mentation. By using common weights to define the collection of distributions, com-

putational tools for standard Dirichlet Process can be employed. The samplers we

have described in this chapter use the Pólya urn representations to marginalize over

the collection of unknown distributions and sample the paths of the different compo-

nents in the mixture. However, there is an ample literature on MCMC techniques for

Dirichlet processes that can be exploited to obtain alternative exact or approximate

samplers. Some attractive options that can be readily implemented are truncation

approximations or variational methods, with the latter being specially appealing for

very large sample samples.

Another enormous advantage is its interpretability as a multiprocess type II

model. The constant weight assumption allows us to think in term of alternative
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evolution paths for the process receiving different weights depending of the behavior

of the process. These paths can have natural meaning in the context of a specific

application, as in the option RNPD example. Also, the estimates of the parameters

underlying Gt of Wt (if there are any) can be interpreted as averages over observed

paths

There are two main drawbacks with our model formulation. As discussed by

MacEachern (2000) and Griffin and Steel (2006b), discrete time DDPs do not posses

the intuitive asymptotic behavior expected as Wt → ∞. Indeed, it is impossible to

generate a collection of independent distributions within this framework. However,

this is hardly a limitation (at least in the context of financial application) since in

most cases the existence of dependence is not in question and it is rarely the case

that dependence tests are required.

Identifiability issues also arise with single-observation time series. Indeed, it is

rare in finance and econometric applications to have replicates at any given time.

As noted by Griffin and Steel (2006b), it is hard for constant weight constructions

to differentiate between variability in the baseline measure and multimodality un-

less replicates are available. The intuition in the context of discrete-time DDPs is

straightforward: are observed changes in the process due to a unimodal process with

fairly large evolution variance or to an almost constant multimodal distribution? We

argue that the order in which new components are added as the number of obser-

vations grows contains valuable information, and therefore strong prior distributions

enforcing small values of Wt will essentially solve the identifiability problem. This

type of constrains, which might seem awkward in a spatial context like Gelfand et al.

(2005), can be introduced in discrete time DDPs more naturally. This specific topic

is a work in progress.
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Chapter 5

Nonparametric functional data analysis

through Bayesian density estimation

The last fifteen years have seen a revolution in the amount and quality of data being

collected in empirical research. Current scientific interest goes beyond estimating

and comparing parameters among populations. In many cases, interest lies on the

functional relationships between variables, and how these change under different ex-

perimental conditions. That is, given pairs {(yij,xij)} where j = 1, . . . , J indexes

an experimental condition and i = 1, . . . , nj indexes an observation within the ex-

periment, yij ∈ Rq and xij ∈ Rp, we are interested in 1) jointly estimating functions

f1, . . . , fJ : Rp → Rq that describe the relationship between predictors and outcomes;

2) testing hypotheses about the dependence between the functions; and 3) predicting

the function under new experimental conditions. Depending on the application at

hand, these functions might correspond to the conditional mean responses, quantiles

of the conditional distributions, or even the conditional variances; while the inference

goal might be multiple comparison of curves, functional clustering or spatial predic-

tion of the functional relationship. In this paper, we develop a class of models that

can tackle such joint inference problems from a Bayesian nonparametric perspective.

Popular approaches for nonparametric functional estimation can be broadly di-
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vided in three main groups. One simple yet powerful alternative is kernel regression

methods. These methods represent the unknown function as a linear combination of

the observed values of the outcome variables, using covariate-based weights (Altman,

1992; Chu and Marron, 1991; Fan et al., 1995). Another class of methods assumes

that the functions of interest can be represented as a linear combination of basis

functions. The problem of estimating the function reduces to estimation of the basis

coefficients. Splines, wavelets and reproducing kernel methods fall in this broad cat-

egory (Vidakovic, 1999; Truong et al., 2005). A third alternative is to assume that

the functions in question are realizations of stochastic processes, with the Gaussian

process (GP) being a common choice (Rasmussen and Williams, 2006).

Different approaches have been used to extend these methodologies to collections

of functions. For example, when the function of interest is modeled as a linear com-

bination of basis functions, hierarchical models on the basis coefficients can be used

to accommodate different types of dependence. This approach has been successfully

exploited by authors such as Rice and Silverman (1991); Wang (1998); Guo (2002);

Wu and Zhang (2002) and Morris and Carroll (2006) to construct ANOVA and ran-

dom effect models for curves. Along similar lines, Bigelow and Dunson (2007) and

Ray and Mallick (2006) have used Dirichlet process priors as part of the hierarchical

specification of the model in order to induce clustering across curves. Behseta et al.

(2005) develop a hierarchical Gaussian process (GP) model, which treats individual

curves as realizations of a GP centered on a GP mean function.

These methods are based on specifications for the set of conditional distribu-

tions p1(y|x), . . . , pJ(y|x), where pj(y|x) denotes the distribution of the outcome y

given the predictor x under experimental condition j. In this paper, we consider a

completely different approach. Instead of modeling the conditional distributions di-

rectly, we induce a prior on the space of functions indirectly through a model on the

103



collection of joint distributions p1(y,x), . . . , pJ(y,x) that uses dependent Dirichlet

processes mixtures (MacEachern, 2000; DeIorio et al., 2004; Gelfand et al., 2005).

This method is conceptually related to the double kernel method of Fan et al. (1996)

and Fan and Yim (2004), which induces a frequentist conditional density estimate

through multivariate density estimation. However, we focus on a Bayesian approach,

generalizing the method of Müller et al. (1996) to a setting where multiple dependent

curves are of interest. The model induces a rich error structure for the conditional

distributions, accommodating non-Gaussian and heteroscedasticity errors. Function

estimates reduce to kernel-weighted mixtures of linear models, where the location

and variances of the kernels are automatically chosen. Our method provides domain

adaptive smoothing for each curve while avoiding an arbitrary choice of basis func-

tions or the use of complicated and inefficient MCMC algorithms typically required

for adaptive function estimation.

As we obtain a joint posterior distribution for the full conditional response dis-

tributions, we can conduct inferences on regression functions characterized in terms

of the mean, a quantile or even the variance. In addition, multivariate responses and

predictors can be accommodated without complications, while also allowing inter-

actions in a flexible manner. Under fairly general conditions, the method produces

consistent estimates on a dense subset of the space of integrable functions on compact

subsets of Rp. As an illustration, we focus on functional clustering applications using

the nested Dirichlet process described in chapter 2 as a building block in our model.

Functional clustering has become popular as a hypothesis generating mechanism. For

example, in the analysis of time-course expression experiments (Ramoni et al., 2002;

Luan and Li, 2003; Wakefield et al., 2003; Heard et al., 2006), functional clustering

is used to identify coregulated genes, which are typically assumed to be members of

a common transcription pathway.
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This chapter is organized as follows: Section 5.1 reviews the original model pre-

sented by Müller et al. (1996) for nonparametric regression through Dirichlet process

mixtures. In section 5.2 we introduce our method for multiple curves and discuss its

properties. In section 5.3 we give conditions for posterior consistency of these mod-

els, providing theoretical support for our approach. Finally, section 5.5 illustrates

the approach through application to temperature profile data in the North Atlantic,

while section 5.7 contains a brief discussion.

5.1 Single curve nonparametric regression

Consider the following application of the model for multivariate density estimation

described in (1.2), which we will call the MEW model:

zi = (yi,xi) ∼ Np+q(θi,Σi) i = 1, . . . , n

(θi,Σi) ∼ H H ∼ DP(αH0)

H0 = NIWp+q(θ0, κ0, ν0,Σ0) α ∼ Gam(aα, bα)

θ0 ∼ Np+q(θ00,D00) Σ0 ∼ Wp+q(γ,Σ00)

κ0 ∼ Gam(aκ, bκ),

(5.1)

where NIWp denotes the p-variate Normal-Inverse-Wishart distribution, Gam denotes

the gamma distribution, W denotes the p-variate Wishart distribution (see appendix

A for details on the parameterization of these densities), and the parameters at the

top level are partitioned as

θ = (θy,θx) Σ =
(
Σyy Σxy
Σyx Σxx

)
.

In this model, hyperpriors on the parameters of the baseline measure H0 and the

precision parameter α have been incorporated to make the DPM more flexible and

borrow information parametrically across components. Müller et al. (1996) proposed
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a slight variant of this model in order to indirectly induce a prior on a mean regression

function, f(x) = E(y|x). From the density estimate for the joint distribution gn(z)

described in (1.3), a posterior estimate for the conditional density can be obtained

as

gn(y|x) =

∫
φq(y|θy + ΣyxΣ

−1
xx (x− θx),Σyy −ΣyxΣ

−1
xxΣxy)φp(x|θx,Σxx)∫

φp(x|θx,Σxx)Hn
0 (dθ, dΣ|zn)

Hn
0 (dθ, dΣ|zn).

(5.2)

In turn, a nonparametric estimate fn(x) of the mean regression function of y on

x, f(x), can be obtained from (5.2) by calculating the conditional expectation,

fn(x) = E(y|x, zn) =

∫
(θy + ΣyxΣ

−1
xx (x− θx))φp(x|θx,Σxx)∫

φp(x|θx,Σxx)Hn
0 (dθ, dΣ|zn)

Hn
0 (dθ, dΣ|zn). (5.3)

For any fixed x, the conditional distribution in (5.2) is a locally weighted mixture

of normals, with the conditional expectation in (5.3) reducing to a local mixture

of linear functions. This rich structure allows for heteroscedastic and non-Gaussian

errors, as well as for very flexible mean functions. Indeed, we show in section 5.3

that any integrable function on a compact set can be arbitrarily well approximated

by the functions arising from this model. The location and variance of the kernels

are automatically chosen by the model according to the marginal distribution of the

predictor variables. Therefore, the model provides local adaptive smoothing, while

avoiding awkward choices typical in other methods based on basis expansions or

Gaussian processes.

Note that, as α→ 0, the prior on H becomes a single point mass with probabil-

ity one, and the model in 5.1 reduces to a normal linear regression model. Hence,

since the linear parametric model is nested within our specification, we can test the

parametric model against a nonparametric alternative by examining the posterior
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probability of a single component in the mixture. This avoids the need for specially

tailored MCMC algorithms, such as the method of Basu and Chib (2003).

The model can also be used for quantile or variance regression. In addition, it

can be readily extended to accommodate categorical outcomes and predictors by

incorporating latent variables as in Albert and Chib (1993), resulting in a model that

simultaneously incorporates a nonparametric regression function and a nonparametric

link function.

5.2 Hierarchical nonparametric models for curves

Section 5.1 described a flexible Bayesian model for a single random curve. Simultane-

ous inference on multiple curves can be accommodated using a similar construction;

however, instead of a prior on a single multivariate distribution, we need to construct

a prior on a collection of multivariate distributions. Dependence between distribu-

tions translates into dependence between the random curves. This section starts by

reviewing models for collections of distributions based on the Dirichlet process, and

then shows how these models can be used for multiple nonparametric regression in

different settings.

Consider now the problem of inferring multiple curves f1, . . . , fJ , using the data

zn1
1 , . . . , z

nJ
J , where z

nj

j = (z1j, . . . , zj,nj
) is the set of nj observations obtained under

experimental condition j. The model described in Section 5.1 could be extended to

accommodate these multiple curves by using (conditionally) independent Dirichlet

processes as the random measure on the mixing distributions. In order to borrow

information, one can potentially include common unknown parameters in the baseline

measures. However, such an approach can only borrow information globally under

the parametric baseline model, so is quite inflexible.

Dependence across curves can also be incorporated by inducing dependence among
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the mixing distributions directly instead of through the baseline measure. Depending

on the specific problem at hand, different types of processes can be used to induce

such dependence. For example, if the goal is global functional clustering, the nested

Dirichlet process (nDP) can be used as a prior on the collection of mixing distribu-

tions. On the other hand, if we are interested in local clustering of functions, the

hierarchical Dirichlet process (Teh et al., 2006) (HDP) is a reasonable choice. Finally,

in a spatial data analysis setting, an extension of the spatial Dirichlet process (SDP)

(Gelfand et al., 2005) could be used to enforce stronger dependence among curves ob-

tained at closer geographical locations. Since for any fixed j the mixing distribution

Hj derived from a dependent Dirichlet process follows a regular Dirichlet process,

these models are marginally equivalent to that in section 5.1.

As an illustration, consider a model for functional clustering using mixtures of

nested Dirichlet Processes. Recall from section 1.3.1 that the nDP allows for simul-

taneous nonparametric estimation and clustering over a collection of distributions.

Therefore, by using the nDP as a prior on the mixing distributions {H1, . . . , HJ} used

to estimate the joint probability distributions {p1(y,x), . . . , pJ(y,x)}, we obtain a

flexible model that allows for automatic nonparametric estimation of the regression

functions, while partitioning the set of curves in groups of curves with similar shapes.

Specifically, consider the following extension of the MEW model described in section

5.1, where

zij = (yij,xij) ∼ Np+q(θij,Σij) i = 1, . . . , nj ; j = 1, . . . , J

(θij,Σij) ∼ Hj H = {H1, . . . , HJ} ∼ nDP(α, β,H0)

H0 = NIW(θ0, κ0, ν0,Σ0) κ0 ∼ Gam(aκ, bκ)

θ0 ∼ N(θ00,D00) Σ00 ∼ W(γ,Σ00)

α ∼ Gam(aα, bα) β ∼ Gam(aβ, bβ).

(5.4)
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Let n+ =
∑

j=1 nj and H
n+

j (·|zn1
1 , . . . , z

nJ
J ) be the posterior distribution of the

parameters (θ,Σ) under experimental condition j. Estimates of the mean regression

functions {f1, . . . , fJ} can be obtained from the posterior conditional expectations as

f
n+

j (x) = EH
n+
j

(y|x, zn1
1 , . . . , z

nJ
J )

=

∫
(θy + ΣyxΣ

−1
xx (x− θx))φp(x|θx,Σxx)∫

φp(x|θx,Σxx)H
n+

0j (dθ, dΣ|zn1
1 , . . . , z

nJ
j )

H
n+

0j (dθ, dΣ|zn1
1 , . . . , z

nJ
J ).

(5.5)

where, as before, H
n+

0j (dθ, dΣ|zn1
1 , . . . , z

nJ
J ) is the mean posterior mixing distribution

in group j.

Although an explicit form is not available for the estimated regression function

f
n+

j (x) or the estimated density g
n+

j (y|x), they can be easily approximated for any

x (hence, for any dense grid of x’s) using MCMC methods. Functional clustering in

quantile or variance regression can be similarly approached by focusing on appropriate

summaries of the posterior distribution. In addition to estimates of the underlying

function for each of the experimental conditions, the model also generates a posterior

distribution over all possible groupings of the J curves, which can be used to generate

hypotheses about the scientific phenomena being studied.

From the definition of the nDP, it is clear that the model assumes that the curves

are a priori exchangeable, and that there is a positive probability of multiple curves

sharing the same mixture distribution, and therefore, the same shape. Note that the

first level of nesting is used to estimate the regression functions nonparametrically,

essentially reproducing the MEW model, while the second level induces clustering

across the different functions. Curves j and j′ are clustered together if Hj = Hj′ = H∗k

for some k, and such an event is given prior probability 1/(1+α). As α→ 0, the model

assumes a single cluster of curves (i.e. all the samples arise from the same underlying

function), while α → ∞ implies different curves under each experimental condition.
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On the other hand, observations i and i′, respectively from distributions j and j′,

are assigned to the same Gaussian component if and only if Hj = Hj′ = H∗k and

(θij,Σij) = (θi′j′ ,Σi′j′) = (θ∗lk,Σ
∗
lk) for some l. Therefore, in controlling the number

of distinct (θ∗lk,Σ
∗
lk), the parameter β controls the non-linearity of the estimated

functions by influencing the number of Gaussian distributions used to characterize

the cluster-specific curves.

The hierarchical structure of the model implies that we borrow information across

curves at two different levels. On one hand, curves assigned to the same cluster share

the same set of regression lines and weights. On the other hand, curves assigned to

different clusters borrow information through the parameters of the common baseline

measure H0, which are in turn estimated by pooling information from all curves.

5.3 Posterior consistency

We focus now on the problem of assessing estimates {fn+

j (x)}Jj=1 of the true regres-

sion functions {f 0
j (x)}Jj=1 from estimates {gnj (y,x)}Jj=1 of the true joint distributions

{g0
j (y,x)}Jj=1 generating the data. We focus on the consistency of the sequence of

functional estimates, rather than the more general problem of consistency of the pos-

terior distribution on the space of random functions. In the sequel, we assume that

the true mechanism generating the data for each curve j = 1, . . . , J is as follows: 1)

Covariates x1j,x2j, . . . are drawn at random according to an absolutely continuous

distribution with density g0
j (x) with compact support Dx, and 2) Conditional on each

xij, the outcome yij is sampled from the conditional density g0
j (y|x), which is also

absolutely continuous, with bounded support Dy, and whose expectation is finite for

every x ∈ Dx and given by Eg0(y|x) = f 0
j (x). Under this data generation mechanism,

the joint true density g0
j (y,x) = g0

j (y|x)g0
j (x) is absolutely continuous and defined

on Dx ×Dy.
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First, we consider the relationship between weak consistency of the prior on the

joint distribution and pointwise consistency of the density estimates obtained from

it.

Proposition 1. If the prior µj on m(Rp+q) is weakly consistent at g0
j (y,x), then the

estimates for the joint and marginal densities gnj (y,x) and gnj (x) converge pointwise

to g0
j (y,x) and g0

j (x) respectively, for every (x,y) ∈ Dx ×Dy.

Proof. Given that (x,y) ∈ Dx ×Dy , we note that both gnj (y,x) and gnj (x) can be

written as expectations of bounded functions with respect to the posterior measure

µnj (Antoniak, 1974; Lo, 1984). Since gnj (y,x) and g0
j (y,x) are absolutely continuous,

the result follows from the definition of weak consistency.

This pointwise consistency result can be extended to the density estimates of the

conditional distributions.

Proposition 2. Let g0
j (y,x) be as described above and {gnj (y,x) = gnj (y|x)gnj (x)}∞n=0

be a sequence of absolutely continuous density estimates arising from a prior µj on

m(Rp+q) that is weakly consistent at g0
j (y,x). Then for any fixed x, the estimate of

the conditional density gnj (y|x) converges pointwise to g0
j (y|x)

Proof. From Proposition 1 we know that for any (x,y) ∈ Dx ×Dy it holds that

gn(y,x)→ g0(y,x) and gn(x)→ g0(x)

Therefore, from Bayes’ rule,

lim
n→∞

gn(y|x) = lim
n→∞

gn(y,x)

gn(x)
=
g0(y,x)

g0(x)
= g0(y|x)

for any (x,y) ∈ Dx ×Dy.

Corollary 2. For any fixed x ∈ Dx, the functional estimate fnj (x) = Egn
j (y|x)(y)

converges pointwise to f 0(x).
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Remark 1. This is a result on pointwise convergence. Intuitively, uniform convergence

is not to be expected. All functions in our sequence are continuous, but their limit

might be a step function, as discussed below.

Remark 2. Since the true distribution g0(x) is assumed to be absolutely continuous

over a compact set, Theorem 2 is an in-fill result, in the sense that it assumes that

the function is observed on an finer and finer grid as n increases. This suggests

that, for designed experiments with repeated measurements, the behavior of the

functional estimates can be unstable at points where no observations are made. This

might potentially hold even if the true function is very smooth and the number of

observations at the fixed design points is very large.

In the specific case of the MEW model described in section 5.1, Corollary 2 can

be made more specific.

Corollary 3. Let S be the class of functions that arise as the conditional expectation

of a countable mixture of normals, i.e.,

S =

{
f(x) : f(x) = E(y|x), (y,x) ∼

∫
φp+q(y,x|µ,Σ)P0(µ,Σ)

}

where P0 is compactly supported and almost surely discrete. Then, if f 0 ∈ S, the

sequence of functional estimates from the MEW model is pointwise consistent, i.e.,

fn+(x)→ f 0(x) for every x ∈ Dx.

Proof. This is a consequence of Theorem 1 and Corollary 2.

The following proposition shows that class S is large,

Proposition 3. Under the L1 metric, the closure of S is the space of bounded,

integrable functions on Dx.
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Proof. First, recall that, under the L1 metric, the space of step functions is dense on

the space of integrable functions. That is, for any ε > 0 and f 0(x) that is bounded

and absolutely continuous, there exists (at least) one step function f ε(x) such that∫
|f 0(x)− f ε(x)|dx < ε. The problem reduces now to proving that S is dense on the

space of step functions.

Note that any step function can be obtained as a conditional expectation of a

joint distribution that is constant over hypercubes on Rp+q (i.e., a tiled distribution).

Let gε(y,x) be the tiled distribution corresponding to f ε(x).

Finally, note that any continuous distribution (and therefore, any tiled distribu-

tion) can be approximated arbitrarily well (in the total variation sense) by an infinite

mixture of normals (Ghosh and Ramamoorthi, 2003). That is for any gε(y,x) and any

ε′, ε′′ > 0 there is a g∗(y,x) in the space of compactly supported mixtures of normals

such that
∫
|gε(y,x)− g∗(y,x)|dydx < ε′ and

∫ ∫
|gε(x)− g∗(x)|dx < ε′′.

The results for the MEW model can be extended to the nested Dirichlet Pro-

cess. In chapter 2 we provided simulation results suggesting consistency in multiple

group density estimation for the nDP. The following theorem formally demonstrates

consistency for a fixed number of groups and increasing number of observations per

group.

Theorem 3. Suppose that the true densities generating the data, {g0
j}Jj=1, each belong

to the set {g∗0k }Kk=1, where g∗0k is a compactly supported mixture of Gaussian densities

with K ≤ J and J fixed. Then, the nDP mixture prior is weakly consistent as the

sample sizes n1, . . . , nJ all grow to infinity.

Proof. First, note that the J true densities are clustered into K groups, and the

allocation to groups defines a partition of {1, . . . , J}. The nDP induces a prior

over the set of possible partitions. As this prior has full support, the posterior
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probability of the true partition will converge to one as the sample size in each of the

groups increases. Conditional on the partition, the nDP implies independent Dirichlet

process mixtures of Gaussian priors for the cluster-specific densities. Hence, posterior

consistency follows automatically from the results in Theorem 1.

Corollary 4. Each functional estimate arising from the model in 5.4 is consistent

on a class that is dense on the integrable functions on a compact set Dx.

General consistency results for the class of dependent Dirichlet processes is still

an open problem. We note that, as these results become available, the propositions

in this section can be used to establish consistency of the associated functional esti-

mation model.

5.4 Computational implementation

We implement the nDP model using the two-level truncation algorithm described

in section 2. This algorithm uses a finite mixture to approximate each of the stick-

breaking processes involved in the definition of the nDP. We used truncation levels

set at K = L = 55 atoms. These truncation levels seem to yield reasonable approxi-

mations for the sample sizes involved in our oceanographic example.

We introduce latent variables ζj and ξij such that ζj = k if Hj = H∗k and ξij = l if

(θij,Σij) = (θ∗lk,Σ
∗
lk). Once adequate starting values for the parameters have been

chosen, computation proceeds through the following steps:

1. Sample the bottom-level indicators ζj for j = 1, . . . , J from a multinomial

distribution with probabilities

P(ζj = k| · · · ) = qjk ∝ w∗k

nj∏
i=1

L∑
l=1

πlkφp+q(zij|θ∗lk,Σ∗lk), k = 1, . . . , K.
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2. Sample the top-level indicators ξij for j = 1, . . . , J and i = 1, . . . , nj from

another multinomial distribution with probabilities

P(ξij = l| · · · ) = blij ∝ π∗l,ζjφp+q(zij|θ
∗
l,ζj
,Σ∗l,ζj ), l = 1, . . . , L.

3. Sample bottom-level probabilities π∗k by generating

(u∗k| · · · ) ∼ beta

(
1 +mk, α +

K∑
s=k+1

ms

)
, k = 1, . . . , K − 1, u∗K = 1,

where mk is the number of distributions assigned to component k, and con-

structing π∗k = u∗k
∏k−1

s=1(1− u∗s).

4. Sample the top-level probabilities w∗lk by generating

(v∗lk| · · · ) ∼ beta

(
1 + nlk, β +

L∑
s=l+1

nls

)
, l = 1, . . . , L− 1, v∗Lk = 1,

where nlk is the number of observations assigned to atom l of distribution k,

and constructing w∗lk = v∗lk
∏l−1

s=1(1− v∗sk).

5. Sample the atoms (θ∗lk,Σ
∗
lk) from

(θ∗lk,Σ
∗
lk| · · · ) ∼ NIW(θ̂lk, κ̂lk, ν̂lk, Σ̂lk),

where

θ̂lk =
nlk

κ0 + nlk
z̄lk +

κ0

κ0 + nlk
θ0

κ̂lk = κ0 + nlk

ν̂lk = ν0 + nlk

ν̂lkΣ̂lk = ν0Σ0 + nlkS̄lk +
κ0nlk
κ0 + nlk

(z̄lk − θ0)(z̄lk − θ0)′

z̄lk =
1

nlk

∑
{i,j:ζj=k,ξij=l}

zij

S̄lk =
1

nlk

∑
{i,j:ζj=k,ξij=l}

(zij − z̄lk)(zij − z̄lk)
′
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and nlk is the number of observations assigned to atom (l, k). Note that, if

no observation is assigned to a specific cluster, then the parameters are drawn

from the conditional prior distribution (baseline measure) NIW(θ0, κ0, ν0,Σ0).

6. Sample the baseline mean θ0 from

(θ0| · · · ∼ N)
([

D−1
00 + D̄

]−1 [
D−1

00 θ00 + d̄
]
,
[
D−1

00 + D̄
]−1
)

where

D̄ =
∑

{l,k:nlk 6=0}

Σ∗−1
lk d̄ =

∑
{l,k:nlk 6=0}

Σ∗−1
lk θ∗lk

7. Sample the variance of the baseline measure, Σ0 from

(Σ0| · · · ) ∼ W
(
γ + cν0, γΣ00−1 + ν0D̄

)
where c is the number of non-empty components.

8. Sample the mean precision parameter κ0 from

(κ0| · · · ) ∼ Gam

aκ +
c(p+ q)

2
, bκ +

1

2

∑
{l,k:nlk 6=0}

(θ∗lk − θ0)′Σ∗−1
lk (θ∗lk − θ0)



9. Sample the concentration parameters α and β from

(α| · · · ) ∼ Gam

(
aα + (K − 1), bα −

K−1∑
k=1

log(1− u∗k)

)

(β| · · · ) ∼ Gam

(
aβ +K(L− 1), bβ −

L−1∑
l=1

K∑
k=1

log(1− v∗lk)

)
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5.5 Clustering temperature profiles in the North

Atlantic

Conductivity and Temperature at Depth data (CTD) are regularly used in oceanog-

raphy to study the physical properties of a water column. The CTD profiler is a

torpedo-shaped instrument that is attached to a conducting wire and lowered to

pre-specified depths. At each depth, information on pressure, temperature and con-

ductivity is sent back to the ship through the wire. In some cases, water samples are

also taken. The result from this measurement process is a sample from the functions

relating conductivity and temperature with depths at each location and time.

Latitude plays the most important role in defining the shape of CTD profiles: the

farther away from the equator, the lower the average temperature of the water column

is. Seasonal effects are also very important; a difference of only 3 weeks can produce

huge variations in the profile, particularly near the surface. However, these factors

are not the only determinants of the profile shape. For example, oceanic currents

and salinity gradients due to fresh water discharge can effectively become barriers

preventing mixing. Therefore, CTD profiles can be highly non-linear, particularly in

coastal regions.

Understanding the patterns of spatio-temporal evolution of the profiles can help

scientists assess the magnitude and consequences of global phenomena like El Niño

and the process of global warming. However, CTD profiles are obtained very sparsely

(both in space and time) and do not necessarily change smoothly with latitude or

longitude due to the reasons discussed above, making regular spatio-temporal models

hard to justify in many specific geographic regions. An alternative approach for the

analysis of CTD profiles is to borrow information through probabilistic clustering in

order to improve functional estimation and identify regions of the ocean with similar

characteristics. We expect most of the clusters to agree with spatial locations, with
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inconsistencies signaling boundary regions.

As an illustration, we focus on 87 temperature profiles collected in the North

Atlantic ocean between June 15 and June 22, 1986. The number of observations per

curve varies between 31 and 83. Temperature measurements are usually collected

every 10 m from a starting depth that varies with the location, but in some cases

the separation between observations can be much larger. An exploratory analysis of

the data shows four or five different types of profiles collected at three geographic

regions: off the coast of Nova Scotia in Canada, off the coast of Portugal and 1000

km off from the coast of Africa. We apply the approach described in Section 5.2 to

this data. Our goal is to assess clusters in the data and estimate the true profiles of

temperature vs. depth by borrowing information across locations.

Computation was carried out using the algorithm described in section 5.4. Hy-

perparameters were set according to the empirical distribution of the data, with θ00

equal to the overall sample mean and Σ00 equal to the sample covariance matrix. For

the other parameters associated with the baseline measure, we chose D = Σ/100,

aκ = 1 and bκ = 100, in such a way that E(κ0) = 0.01, ν0 = 3 and γ = 3. For the

precision parameters we pick aα = bα = aβ = bβ = 3.

All inferences are based on 40,000 samples obtained after a burn-in of 10,000

iterations. To obtain a reasonable starting cluster configuration, linear models were

fitted separately to each of the locations in the sample. After hierarchical clustering

was applied to the 87 pairs of parameters, a dendogram was inspected to identify

groups of curves with similar linear fits. When compared with a naive starting point,

this heuristic was successful in speeding up convergence of the algorithm.

Figure 5.1 shows a heatmap of the probabilities of pairwise joint classification. In

this figure, pixel (i, j) represents the posterior probability of locations i and j being

clustered together. From the plot, it is clear that locations cluster in four groups,

a large cluster composed of 75 locations, and three smaller ones with 3, 4 and 5
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Figure 5.1: Heatmap with the probabilities of pairwise joint classification in the
CTD data. Pixel (i, j) represents the posterior probability of locations i and j being
clustered together.
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Figure 5.2: Raw profiles collected in the North Atlantic between June 15 and June
22, 1986. Colors indicate cluster membership.
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observations each. Figures 5.2 and 5.3 show the raw curves and the location where

the data were collected, with colors corresponding to the clusters obtained from the

heatmap. Note that the big cluster corresponds to the site off the coast of Africa,

and the model shows a small probability (around 0.03) of this cluster being broken

into two distinct groups based on the different behaviors observed after 750 m depth.

One of the small clusters corresponds to the locations off Portugal, while the curves

off the coast of Nova Scotia are classified in two groups, seemingly dependent on their

distance to the coast. These two clusters have a straightforward explanation: two

different currents, one flowing south from the Antarctic very close to the coast, and

another running north from the Gulf of Mexico further away from the coast, meet

by the coast of Nova Scotia. These two water masses do not mix, producing very

different profiles in close geographic areas.

Figure 5.4 displays the estimated profiles at each of the 87 locations. These plots

were obtained by estimating the value of the function on a grid of 200 points and

doing linear interpolation. Since there is little uncertainty in the clustering, profiles

overlap. The behavior of the profiles is clearly non linear and some of them are not

even monotone, characteristics that are consistent with scientific knowledge. Indeed,

the probability of a one component mixture is estimated to be zero for each one of the

87 curves, indicating that using linear models to approximate the functions would not

be appropriate. The curves off Nova Scotia show a behavior that is consistent with our

hypothesis about oceanic currents. The cluster closest to the coast is characterized

by profiles with low surface temperature due to the influence of Arctic waters. On the

other hand, the cluster farthest away from the coast is characterized by profiles with

a very high surface temperature (almost as high as African profiles) that declines

very fast. As is to be expected, the temperatures in both clusters seem to converge

at depths over 600 m.

The only unappealing feature of our functional estimates is the bump in the
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Figure 5.3: Geographic locations where the CTD data were collected. Colors indi-
cate cluster membership.
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dark blue curve appearing around 700m. This bump is due to the sparseness in

the data off the Portuguese coast (in these locations, observations below the 300 m

mark where collected only every 100 m). As was discussed in Section 5.3, large gaps

in the predictor space can produce unstable functional estimates within the gaps.

However, we do not expect this instability to affect the clustering results. In line

with this comment, probability bands around the estimated function (not shown)

become much wider in this section of the curve.

5.6 A short study of racial differences in preg-

nancy outcomes

Understanding differences in health care outcomes across different ethnic groups is

important, not only from an equality perspective, but also in terms of public policy

and treatment design. Although race is a social construct, it can be helpful as a

proxy for genetic, social and/or environmental factors that are hard or impossible to

observe.

Of particular interest is how the relationship between gestational age of the fetus

and its weight at delivery varies across ethnic groups, and especially the concept

of small-for-gestational-age (SGA). Traditionally, SGA indicates that the baby is

in the lower 10th percentile for birth weight compared with a national reference

for babies born at the same gestational age, which ignores factors such as race.

However, as an individual with very small parents is more likely to be classified as

SGA, differences in growth rates and body size among ethnic groups can lead to

substantial misclassification. Since SGA babies are subject to a greater risk of infant

mortality and short and long term morbidity, misclassification errors typically lead

to unnecessary procedures and higher costs.

In this section, we develop a nonparametric regression model that allows us to:

123



0 200 400 600 800

0
5

10
15

20
25

30

Depth

C

Figure 5.4: Fitted CTD curves obtained after model averaging. There are actually
87 distinct curves represented in the plot but, due to the tight cluster membership,
most are undistinguishable. Colors indicate cluster membership.
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a) obtain estimates of the joint distribution of gestational age and birth weight; b)

perform mean and quantile regression of birth weight and gestational age, generating

separate curves for each race while borrowing information across them; and c) test

for evidence on the differences between races.

Our data set consists of a small subset from the National Collaborative Perinatal

Project, conducted by NIH’s National Institute of Neurological Diseases and Stroke

between 1959 and 1974. It contains information about 1007 Caucasian births and

1187 African American births (adjudicated based on mother’s race). Multiple births

were excluded, but we were not restricted to first born children. Although the data

set is old, it is very detailed, containing information on gestational age at the daily

level. Birth weight of the infant is reported in kilograms, while gestational age (in

weeks) is measured between the last menstrual period (LMP) and delivery.

We used a hierarchical Dirichlet process to model the collection of joint distribu-

tions of gestational age and birth weight for different races. The Pólya urn MCMC

sampler described in Teh et al. (2006) was used to fit model. Posterior quantiles were

obtained using the truncation method described in Kottas and Gelfand (2002). All

results are based on 40,000 iterations, obtained after a burn-in period of 5,000 ob-

servations. As with our oceanographic example, the baseline probability measure is

taken as NIW(θ0, κ0, ν0,Σ0). We fixed ν0 = 3 and took κ0 ∼ Gam(1, 100) and θ0 and

Σ0 to be the empirical mean and variance of the data. Finally, for the concentration

parameters we took α ∼ Gam(1, 1) and β ∼ Gam(1, 1).

Figures 5.5 and 5.6 show the raw data points together with the mean and 10%

quantile regression curves for Caucasians and African-American populations. While

the mean curve is useful to determine the weight for a normal child, the quantile

curve identifies babies who are especially at risk. As expected, both types of curves

are strictly increasing up to 42 weeks of gestation. However, for very long gestational
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ages, the curves are first decreasing and then increasing again. This inconsistency

might be due to the inaccuracies related to the use of the LMP as the sole indicator for

gestation, especially for women with very irregular menstrual cycles. Since during the

time of the study it was uncommon to induce delivery, this long gestational periods

could also signal problems with the pregnancy.

Confidence bands, depicted as dashed lines, tend to be wider at the extremes

(where less data is available). For early gestation times, African-American babies

tend to be slightly larger than Caucasian babies. However, after 35 weeks (32 for the

quantile curve), the relationship is inverted.

In order to explore the differences in growth rates in more detail, we present in

Figures 5.7 and 5.8 the estimated posterior probabilities of the mean and quantile

regression curves for African- Americans differing by 75 grams or more. These plots

reveal mild evidence of no biologically significant difference between races below 37

weeks (the dip around 33 weeks being due to increased uncertainty about the shape

of the function). On the other hand, they also provide very strong evidence that

African-American children born between 37 and 43 weeks of gestations tend to be

smaller than Caucasian babies. For gestations longer than 43 weeks we observe again

an unexpected change, which might again be related to the use of LMP as an indicator

of conception.

Our model provides another way to look for differences between the conditional

distributions of birth weight given gestation. Since the set of basis functions are com-

mon to all curves, we can calculate the posterior probability that future draws from

the conditional distribution of each race come from the same mixture component,

which is shown in Figure 5.9. The pattern is similar to the one observed in the two

figures above, which was to be expected. However, it is remarkable that the proba-

bility of common component draw is over 0.25 for the whole range of interest even
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Figure 5.5: Estimated mean regression curves relating birth weight and gestational
age in African-American and Caucasian populations. Dashed lines represent point-
wise probability bands.
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Figure 5.6: Ten percent quantile regression curves relating birth weight and gesta-
tional age in African-American and Caucasian populations. Dashed lines represent
pointwise probability bands.
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Figure 5.7: Probability that the birth weight of the average African-American (AA)
child differs from the birth weight of the average Caucasian by more than 75 grams,
as a function of gestational age.
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Figure 5.8: Probability that the birth weight of the 10%-quantile African-American
(AA) child differs from that of the 10%-quantile Caucasian by more than 75 grams,
as a function of gestational age.
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when the probability of a large difference is almost one between 38 and 42 weeks.

This probably due to very heavy tails in the conditional distributions between these

two time points.

5.7 Discussion

We have introduced a novel method to construct hierarchical models for functions.

Central to our approach is the indirect estimation of the conditional distribution of

outcomes given the predictors through the corresponding joint distribution. From

this conditional distribution, the function of interest is obtained as the conditional

expectation, yielding a very flexible function estimate. We also provide theoretical

support for the methodology by establishing conditions for consistency of the function

estimates. Our results link weak consistency in the density estimation problem and

pointwise consistency of conditional expectations.

To demonstrate the advantages of the method, we focus on an application to

functional clustering using the nested Dirichlet process and the hierarchical Dirichlet

process as priors on the collection of mixing distributions that define the joint density

of outcomes and predictors. The nDP model induces clustering on the joint distri-

bution, which is actually a stronger condition than clustering of the mean function.

Although this can potentially produce more clusters than expected (either because

multiple experiments have similar mean functions but different error structures, or

because the sampling patterns for the covariates are different), we show that model

performs well in practice and produces both interpretable clusters and sensible func-

tion estimates.

The HDP model seems to produce interesting, if somewhat disconcerting, results.

In particular, it is unclear whether the differences between races are due to differen-

tial exposure to risk factors across groups or to problems with the measurement of
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Figure 5.9: Probability that the conditional distributions for both races are repre-
sented using the same mixture component, as a function of gestational age.
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gestational time. Since the data was collected between the mid fifties and the mid

seventies (when ultrasound technology was not available), LMP was used as the only

indicator to establish pregnancy and gestational age. This can be highly inaccurate,

especially for women with irregular menstrual cycles, leading to inconsistencies in the

data (note, for example, that pregnancies very rarely extend over 40 weeks because

delivery is induced at or before this point). Also, it would be important to distinguish

between male and female births in order to get a clear picture. Current and future

work includes the analysis of more recent and accurate pediatric data sets using the

methods described in this chapter.
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Chapter 6

Spatial functional data analysis through

spatially varying mixtures of normals

In chapter 5 we discussed approaches that allow us to use models for collections of

dependent distributions to induce models for collections of curves, with a particular

emphasis on problems where the curves are assumed exchangeable a priori. In this

chapter we extend this methodology to account for spatial and/or temporal depen-

dence among curves. The goal is to selectively borrow information, generating a prior

structure that enforces curves closer in space to have a more similar shape.

Most of the literature on spatial functional data analysis is based on representa-

tions of the regression function as a linear combination of basis functions, such as

splines or wavelets. The coefficients of the basis expansion are then modeled in one

of two ways: as some parametric or nonparametric function of space (Fahrmeir and

Lang, 2001; Fahrmeir et al., 2004) or as a realization from a (possible multivariate)

Gaussian process (Assuncao, 2003; Banerjee et al., 2004). The main practical issue

with these approaches is the selection of the basis functions, which can dramatically

affect bias, smoothness and efficiency.

In this chapter, we elaborate on a completely different approach based on density

estimation techniques that use dependent Dirichlet processes (MacEachern, 2000).
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As in chapter 5, we assume that the joint distribution of outcomes and predictors at

any given location can be well represented as a countable mixture of normals. The

value of desired function for any value of the predictor can be recovered from this

joint distribution by computing the corresponding conditional expectation, which

takes the form of a predictor-dependent mixture of linear terms. Then, we induce

space/time dependence in the collection of distributions by building dependence in

the mean and variances of the normal components, while keeping the weights of the

components fixed. The resulting model defines a stochastic process on the space of

curves with an index space D ⊂ Rd that allows us not only to estimate the function

value at unobserved locations, but also to interpolate/predict functional forms at

unknown locations.

Spatially dependent Dirichlet processes were originally proposed by Gelfand et al.

(2005), who use a Gaussian baseline process to generate a global surface-selection

mechanism. Duan et al. (2007) extended these ideas to allow local surface selection,

and Gelfand et al. (2007) consider the relationship between finite and infinite ver-

sions of the process. In practical applications, these models have been restricted to

nonparametric analogs of the Gaussian process, which, for the purpose of our appli-

cation, means that only the locations of the normal components are allowed to vary

in space. This is clearly too restrictive for the purpose of functional data analysis

because it means that the slope of each linear piece in the function is the same. One

important contribution of this paper is to construct a nonparametric process on the

space of positive-definite matrices that allows us to create a model that is rich enough

to capture complicated functional forms.

This chapter is organized as follows: Section 6.1 describes the model and reviews

some of its properties. Section 6.2 develops a MCMC sampler based on a truncated

version of the process. In section 6.3 we demonstrate the advantages of the model
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using a simulation study. Finally, section 6.4 provides a short discussion and some

future directions for our work.

6.1 Model specification

Our approach to nonparametric regression relies on a flexible multivariate stochastic

process

{z(s) = (x(s),y(s)) : s ∈ D ⊂ Rd}

that determines the joint distribution of both regressors x ∈ Rp and outcomes y ∈ Rq

at every possible location s ∈ D. In the sequel, we assume that a collection of

observations {zj(si) = (yj(si),xj(si))}n(si)
j=1 has been collected at each site si, for

i = 1, . . . ,m.

We model the stochastic process z(s) in a hierarchical fashion. At the highest

level of the hierarchy, we assume that the observations at a given location s come

from an (infinite) mixture of normals,

zj(s) ∼
∫
φp+q(zj(s)|µ(s),Σ(s))Gs(µ(s),Σ(s))

Gs(·) =
∞∑
k=1

wkδ(µ∗k(s),Σ∗k(s))(·)

where φp(·|µ,Σ) denotes the density of the p-variate normal distribution with mean

µ and covariance matrix Σ.

In the single-location case, this type of scale-mixture of normals provide a model

that is dense in the space of absolutely continuous distributions (Lo, 1984). Func-

tional estimates recovered from this model are covariate-weighted mixtures of linear

functions, taking the form,

fms (x) = E(y|x, zm)

=

∫
(µy(s) + Σyx(s)Σ−1

xx (s)(x− µx(s)))φp(x|µx(s),Σxx(s))∫
φp(x|µx(s),Σxx(s))Gm

s0(dµ(s), dΣ(s)|zm)
Gm

s0(dµ(s), dΣ(s)|zm)
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where zm = {{zj(si)}n(si)
j=1 }mi=1 is the collection of all observed values, φp(·|µ,Σ) stands

for the density of a p-variate normal distribution with mean µ and variance Σ and

Gm
s0 is the posterior expected mixing distribution at location s. By allowing the

distribution of the parameters of the mixture components to depend on space, we

allow the regression function to adapt.

We assume that the collection of spatially-changing mixing distributions G =

{Gs : s ∈ D} is unknown and assign G a dependent Dependent process, where

wk = vk
∏

l<k(1− vl), vk ∼ beta(1, α) and the atoms are iid samples following

µ∗kl(s) ∼ GP(µ0l, τ
2
l , ρ

µ
l (·, ·|ηµl

l )) l = 1, . . . , p+ q

Σ∗−1
k (s) = UBk(s)B′k(s)U′

[Bk(s)]ij ∼ GP(0, 1, ρbj(·, ·|ηbj)) j = 1, . . . , p+ q, i = 1, . . . , νb

where GP(µ, τ 2, γ) denotes a Gaussian process with mean µ, variance τ 2 and correla-

tion function γ, ρµl and ρbj are correlation functions known up to parameters ηµl and

ηbj. In our applications below, we assume exponential correlation functions with un-

known range parameter, but other choices are straightforward. In order to construct

spatially varying precision matrices, we borrow the idea for spatial Wishart processes

from Gelfand et al. (2004). Since [B(s)]ij ∼ N(0, 1) marginally for j = 1, . . . , p + q

and i = 1, . . . , νb, Σ∗−1
k (s)|U follows a Wishart distribution with parameters νb and

UU′ for each location s ∈ D. Therefore, our model is marginally equivalent to the

single curve in Müller et al. (1996).

Our model is completed by specifying prior distributions for the hyperparameters

in the model. For the location of the baseline processes we choose

µ0 ∼ N(µ00,Ω)

UU′ ∼ W(γ,S00)

where U is a lower diagonal matrix with positive diagonal entries. For the prior vari-

ances of the location parameters we set τ 2
l ∼ IGam(aτ , bτ ). Finally, for the parameters
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governing the spatial dependence in the process,

ηµl ∼ pµl (ηµl )

ηbl ∼ pbl (η
b
l )

for some suitable distributions pwj and pwj . For the examples below , we use Gamma

priors on the range of the correlation functions.

It is interesting to consider the spatial covariance structure induced by our model.

For the single component model, obtained by letting α→ 0, we obtain

[y(s)|x(s) = x0] ∼ N
(
µy(s) + Σyx(s)Σ−1

xx (s)(x0 − µx(s)),Σyy(s)−Σyx(s)Σ−1
xx (s)Σxy(s)

)
The spatial covariance between responses y(s) and y(s′) collected at locations s

and s′ conditionally on predictor values x(s) = x0 and x(s′) = x′0 is

Cov(y(s),y(s′)|x(s) = x0,x(s′) = x′0) =

= E(Cov(y(s),y(s′)|x(s) = x0,x(s′) = x′0,µ(s),µ(s′),Σ(s),Σ(s′)))+

Cov(E(y(s)|x(s) = x0,µ(s),Σ(s)),E(y(s′)|x(s′) = x′0,µ(s′),Σ(s′)))

= Cov(µy(s) + Σyx(s)Σ−1
xx (s)(x0 − µx(s)),µy(s

′) + Σyx(s
′)Σ−1

xx (s′)(x′0 − µx(s
′)))

= Cov(µy(s),µy(s
′)) + Cov(µy(s),Σyx(s

′)Σ−1
xx (s′)(x′0 − µx(s

′)))+

Cov(Σyx(s)Σ−1
xx (s)(x0 − µx(s)),µy(s

′))+

Cov(Σyx(s)Σ−1
xx (s)(x0 − µx(s)),Σyx(s

′)Σ−1
xx (s′)(x′0 − µx(s

′)))

= Cov(µy(s),µy(s
′))− Cov(µy(s),µx(s

′))E(Σ−1
xx (s′)Σxy(s

′))−

E(Σyx(s)Σ−1
xx (s))Cov((µx(s),µy(s

′))+

Cov(Σyx(s)Σ−1
xx (s)(x0 − µx(s)),Σyx(s

′)Σ−1
xx (s′)(x′0 − µx(s

′)))

Although a closed form is not available even in this simple setting, it is clear

that the process is not separable and not stationary (even if the underlying processes

are), either in space or covariates. Also, terms making up the expression have a
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straightforward interpretation. The covariance between the mean values of y(s) and

y(s′) (which corresponds to the first term in the sum) is adjusted by the dependence

between the mean values of y(s) and x(s′) (represented by the second term) and x(s)

and y(s′) (given by the third term), as well as by the actual values of x0 and x′0.

For the infinite mixture model, the expression is even more complicated because it

includes the weights of the components. However, it is again clear that the functional

process is nonstationary and nonseparable.

6.2 Inference

We apply an MCMC algorithm that truncates the stick-breaking process to a pre-

determined level K and uses a finite-mixture sampler. The validity of this type of

scheme as a reasonable approximation to the infinite mixture model has been ar-

gued in Gelfand et al. (2007) and Petrone et al. (2006). Alternatively, the algorithm

presented here can be easily used as the basis for a retrospective sampler Roberts

and Papaspiliopoulos (2007). After choosing starting values for each parameter in

the model, the algorithm proceeds by updating blocks of parameters one at a time

through the following steps:

1. Sample the component probabilities wk by generating the stick-breaking ratios

(vk| · · · ) ∼ beta

(
1 + nk, α +

K∑
r=k+1

nr

)
k = 1, . . . , vK−1

where nk =
∑m

i=1 nk(si) is the total number of observations assigned to compo-

nent k. From these ratios, the weights are reconstructed as wk = vk
∏l−1

r=1(1−vr)

where vK = 1.

2. The group indicators are sampled from a discrete distribution such that

P(ξj(si) = k|z, . . .) ∝ wk φp+q(zj(si)|µ∗k(si),Σ∗k(si)) k = 1, . . . , K
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3. Sample the mean vectors µ∗k = (µ∗k(s1), . . . ,µ∗k(sm))′. The conditional prior

given µ0, {τ 2
l }

p
l=1 and {ρµl }

p
l=1 can be written as µ∗k ∼ N (d,D), where d =

1m ⊗ µ0, 1m is a column vector of length m, A ⊗ B denotes the Kronecker

product of matrices A and B, and D =
∑p+q

l=1 τ
2
l Ql⊗Tl, Ql is a m×m matrix

such that [Ql]rt = ρµl (sr, st|ηµl ), and Tj = eje
′
j, where ej is a vector of length

p+ q such that

[ej]l =

{
1 if j = l

0 otherwise

Through sufficiency, the likelihood reduces to

p(z̄k|µ∗k,Σ∗k) ∝ exp

{
−1

2
(z̄k − µ∗k)

′Σ∗−1
k (z̄k − µ∗k)

}

where z̄k = (z̄k(s1), . . . , z̄k(sm)), z̄k(si) =
∑
{j:ζj(si)=k} zj(si)/nk(si) is the aver-

age of all observations collected at site sk, nk(si) is the number of observations

in site si assigned to component k, and

Σ∗k = Bldiag{Σ(s1)/nk(s1), . . . ,Σ(sm)/nk(sm)}.

Therefore, the posterior reduces to

(µ∗k|z, . . .) ∼ N
(
[D−1 + Σ∗−1

k ]−1[D−1d + Σ∗−1
k z̄k], [D

−1 + Σ∗−1
k ]−1

)
for k = 1, . . . , K.

4. Sample each of the entries [Bk(si)]rt separately for every location using a

random-walk Metropolis Hastings algorithm with proposal distribution

[Bk(si)]
(p)
rt ∼ N

(
[Bk(si)]

(c)
rt , κ

2
)

where [Bk(si)]
(c)
rt and [Bk(si)]

(p)
rt correspond to the current and proposed value

of the (r, t) entry of matrix B(si) and κ2 is a tuning parameter controlling the
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variance of the proposal around the current value. The likelihood term is

p(z|µk,Bk,U) ∝

[
m∏
i=1

|Bk(si)B
′
k(si)|

1/2

]
×

exp

−1

2

∑
{j:ξj(si)=k}

(zj(si)− µ∗k(si))
′UBk(si)B

′
k(si)U

′(zj(si)− µ∗k(si))


while the prior is given by

[Bk(si)]rt | [Bk(s(−i))]rt ∼

N
(
Ψr
i,−i[Ψ

r
−i,−i]

−1[Bk(s(−i))]rt,Ψ
r
i,i −Ψr

i,−i[Ψ
r
−i,−i]

−1)Ψr
−i,i
)

where −i subscript indicated a vector with the i-th component (or location)

removed and Ψr
ut = ρr(su, st|ηµr ) is partitioned in four blocks that separate the

terms corresponding to the i-th location from the others.

5. Sample each entry of U using another random-walk Metropolis step. Due to

the sign constrains implicit in the construction of U, proposals for its diagonal

elements are made from a log-normal distribution, while off-diagonal entries are

proposed from a normal distribution. The posterior distribution is proportional

to

p(U| · · · ) ∝ |U|ν−p−1+
Pm

i=1 n(si) exp

{
−1

2
trS−1

00 UU′
}

exp

−1

2

m∑
i=1

n(si)∑
j

ej(si)
′UBξj(si)(si)Bξ′j(si)(si)U

′ej(si)


where ej(si) = zj(si)− µ∗ξj(si)

(si).

6. Sample the concentration parameter α from

(α| · · · ) ∼ Gam

(
aα + (K − 1), bα −

K−1∑
k=1

log(1− vk)

)
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7. For l = 1, . . . , p+q, sample τ 2
l , the prior variances of the mean parameters from

τ 2
l |z, · · · ∼

IGam

aτ +
(p+ q)K∗

2
, bτ +

1

2

∑
{k:nk>0}

(µ∗kl − µ0l1m)′Q−1
l (µ∗kl − µ0l1m)


where K∗ = #{k : nk > 0} is the number of components with observations

assigned to them, µ∗kl = (µ∗kl(s1), . . . , µ∗kl(sm)) is a subvector of the entries

corresponding to the l-th coordinate on the k-th component and 1m is a vector

of ones of length m.

8. Sample the spatial correlation parameters for the mean, ηµl , using a random

walk metropolis-algorithm. The exact form of the proposals depends on the

specific correlation function and the prior chosen, but the posterior distribution

is given by,

p(ηµl | · · · ) ∝

|Ql|−K
∗/2 exp

− 1

2τ 2
l

∑
{k:nk>0}

(µ∗kl − µ0l1m)′Q−1
l (µ∗kl − µ0l1m)

 pµl (ηµi )

9. Similarly, sample the spatial correlation parameters for the mean, ηbl , using a

random walk metropolis-algorithm.

6.3 A simulation example

We present in this section a simulation example designed to demonstrate the versa-

tility of the model. We randomly picked 20 locations on the unit square, shown in

black and labeled 1 to 20 in Figure 6.1. We sampled values of the function at 50 ran-

dom points for each location. For each location s, the x(s) coordinates were picked
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Figure 6.1: Locations for the functional data analysis simulation exercise.

uniformly at random in the interval [0, 25], while the corresponding y coordinates

where sampled from the conditional distribution y(s)|x(s) ∼ N(ms(x), 0.042), where

ms(x) =


a1(s) 0 ≤ x < c1(s)[

c2(s)−x
c2(s)−c1(s)

]
a1(s) +

[
1− c2(s)−x

c2(s)−c1(s)

] (
a2(s) + a3(s)

1+exp{−b1(s)}

)
c1(s) ≤ x < c2(s)

a2(s) + a3(s)
1+exp{−b1(s)−b2(s)(x−c2(s))} x ≥ c2(s)

The value of the coefficients (a1(s), a2(s), a3(s), b1(s), b2(s), c1(s), c2(s)) were ran-

143



domly sampled from independent spatial processes,

a1(s) ∼ GP(2.00, 0.005, γ(s, s′|0.2))

a2(s) ∼ GP(0.20, 0.005, γ(s, s′|0.2))

a3(s) ∼ GP(1.65, 0.006, γ(s, s′|0.2))

b1(s) ∼ GP(2.0, 0.006, γ(s, s′|0.2))

b2(s) ∼ GP(0.4, 0.006, γ(s, s′|0.2))

c1(s) ∼ GP(5.0, 0.5, γ(s, s′|0.2))

c2(s) ∼ GP(12.0, 0.5, γ(s, s′|0.2))

where γ(s, s′|λ) is a Gaussian correlation matrix with spatial range 3λ. The resulting

true curves can be seen in Figure 6.2. In addition, we also obtained the coefficients at 3

additional randomly chosen locations (labeled 21 to 23 in Figure 6.1), but no samples

where obtained from them. The curves at these additional locations (depicted in red

in Figure 6.2) will serve to investigate the predictive power of the model.

We used the algorithm of section 6.2 to fit the model. As mentioned above, we use

exponential correlation functions with unknown range, which is given an exponential

prior distribution with expectation 1. The location µ00 was set equal to the sample

mean, while Σ00 was set equal to the sample variance. For τ 2 an inverse gamma with

2 degrees of freedom and expectation 1 is employed. As in previous implementations,

α was given a Gam(3, 3) prior.

All results are based on 75,000 iterations, obtained after a burn-in period of 25,000

samples. In order to initialize the sampler, the covariate space was divided in five

sections of equal size, and observations within each block were allocated to the same

component of the mixture. Other parameters were initialized accordingly.

Figure 6.3 shows the curves fitted by our model at 6 of the 20 observed locations,

along with the observed points and the true function. We can see that the model

144



0 5 10 15 20 25

1.
7

1.
8

1.
9

2.
0

2.
1

x

y

1 1

1

1

1

1

1

1
1 1

2 2 2

2

2

2

2

2
2 2

3 3 3

3

3

3

3

3

3 3

4 4 4
4

4 4

4

4
4 4

5 5
5

5

5

5

5

5
5 5

6 6
6

6

6

6

6

6
6 6

7 7

7

7

7

7

7

7
7 7

8 8 8

8

8

8

8

8
8 8

9 9

9

9

9

9

9

9
9 9

10 10

10

10

10

10

10

10
10 10

11 11
11

11

11

11

11

11

11 11

12 12 12
12

12

12

12

12
12 12

13 13

13

13

13

13

13

13
13 13

14 14 14

14

14

14

14

14
14 14

15 15

15

15

15

15

15

15

15 15

16 16
16

16

16

16

16

16
16 16

17 17 17

17

17

17

17

17
17 17

18 18 18

18

18

18

18

18

18 18

19 19

19

19

19

19

19

19
19 19

20 20

20

20

20

20

20

20

20 20

21 21 21

21

21

21

21

21
21 21

22 22 22

22

22 22

22

22

22 22

23 23 23
23

23 23

23

23
23 23

Figure 6.2: True curves used in the functional data analysis simulation exercise.
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does a reasonable job at reconstructing the profiles, even for a relatively small sample

size like ours. We can see some unexpected bumps in the functional estimates, but

these tend to happen in regions that correspond to covariate gaps.

Figure 6.4 shows the predicted curves at the 3 unobserved locations, along with

the true curves and pointwise probability bands. Again, the model seems to do a

remarkable job at predicting these functional forms, specially at location 23. How-

ever, probability bands are relatively wide (specially for location 21). Both of these

results are, at least in part, due to fact that location 23 has two very close neigh-

bors (locations 4 and 12), while location 21 is relative isolated from the rest of the

observations.

6.4 Discussion

This chapter describes a spatial extension of the density estimation approach to

nonparametric regression proposed in chapter 5. We have shown that the idea is

computationally feasible, and that the method is capable of fitting and predicting

complicated functions using little or no prior information about their shape. However,

we note that gaps in the covariate space can yield estimates and predictions that

look bumpy due to the way information is borrowed across components and the use

of spatially fixed weights. Also, probability bands constructed around the function

tend to be wide, compared with those obtained from a parametric fit using the true

functional form.

Currently, we have two applications in mind for this model. In the first one, we

aim at understanding the spatial relationship between real-estate prices and some

covariates of interest such as property size. In the second, we plan to revisit the

CDT data analyzed in chapter 5 and construct a model that allows us to incorporate

spatial location information in flexible ways.
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Figure 6.3: Reconstructed profiles from the simulation example at some chosen
locations. Dashed lines correspond to the true shapes. Numbers correspond to the
actual observations.
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Chapter 7

Latent stick breaking processes

7.1 Introduction

In previous chapters we have discussed models for collections of distributions where

dependence is introduced in the atoms of the stick-breaking construction. For exam-

ple, the nested Dirichlet process in chapter 2 used atoms that were in turn samples

from a Dirichlet process, inducing a partition of the collection of distributions into

clusters. On the other hand, the dynamic nonparametric models in chapter 4 build

dependence in the distributions across time by using vector autoregressive models in

the atoms of the stick-breaking process.

In contrast, this chapter focuses on developing prior distributions on stochastic

processes on an index space D ⊂ Rd with rich common marginal distributions. We

no longer focus on building different distributions for each possible value of the in-

dex space, but instead construct a stochastic process where observations at different

locations are dependent but have a common (albeit unknown) marginal distribution.

We call the resulting construction a latent stick-breaking process (LaSBP). As the

name indicates, we rely on a stick-breaking construction (Ongaro and Cattaneo, 2004;

Ishwaran and James, 2001) to represent the unknown marginal distribution, while
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introducing an underlying (latent) Gaussian process on D to drive the selection of

the atoms at each location s ∈ D. In order to avoid assuming that the observations

have a discrete distribution, we use the LaSBP to model the parameters of a contin-

uous distribution, resulting on a LaSBP mixture (LaSBPM). This construction is, to

the best of our knowledge, unique, and provides an excellent alternative to generate

flexible temporal, spatial or spatio-temporal models for discrete or continuous data.

Due to the discrete nature of the marginal distribution, the LaSBP also induces

a segmentation of the index space D based on flexible covariance structures. This

is especially interesting because segmentation models typically assume a Markovian

structure in order to simplify computation. Since the selection process in the LaSBP

inherits the characteristics of the underlying Gaussian process, our models can easily

accommodate a much richer variety of correlation structures, including stationary

CAR-like processes of varying degrees (through correlation functions with compact

support) and non-stationary processes. Prediction and interpolation is performed

through model averaging over the random partition structures, leading to smooth

predictions.

This chapter is divided as follows: Sections 7.2 and 7.3 defines the latent stick-

breaking process and discusses some of its properties. Section 7.4 describes a MCMC

algorithm for posterior computation. In section 7.5 we discuss a simple application

to a stochastic volatility model. Finally, in section 7.6 we present a short discussion

and future directions.

7.2 Latent stick-breaking process

Our goal is to construct a stochastic process {θ(s) : s ∈ D ⊂ Rd} on (Θ,B) such

that θ(s) ∼ G for all s ∈ D and some unknown G, but Cov(θ(s), θ(s′)) 6= 0. This is
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a nonparametric analog to the Gaussian process. To do this, consider the triplet

{
{z(s) : s ∈ D}, {vl}Ll=1, {θ∗l }Ll=1

}
(7.1)

The latent Gaussian process z(s) is such that z(s) ∼ N(0, 1) for all s ∈ D and

Cor(z(s), z(s′)) = γ(s, s′). The sequences of stick breaking ratios {vl}Ll=1 is such

that vl ∼ beta(al, bl) for l < L and vL = 1. The sequence of atoms {θ∗l }Ll=1 is

constructed by imposing an order constraint on a sample from a baseline measure

H on (Θ,B) using the following mechanism: sample θ∗1 ∼ H and for l > 1 draw

θl ∼ Hl, where Hl is defined as the restriction of H to the set Sl = {θ : θ > θl−1},

i.e., Hl(B) = H(B ∩ Sl)/H(Sl) for any measurable set B ∈ B.

We can use the sequences {vl}Ll=1 and {θ∗l }Ll=1 to define a random distribution

G(·) =
L∑
l=1

wlδθ∗l (·)

where the probability weights are defined as wl = vl
∏

k<l(1−vk) and satisfy
∑

l wl = 1

almost surely. The random distribution G will be the unknown marginal distribution

of the process. Note that, taking L = ∞, al = 1, bl = b and removing the order

constraints on {θ∗l }Ll=1, the randomG follows a Dirichlet process with baseline measure

bH. We introduce the order constraint to link the ordering in the underlying Gaussian

with the ordering of the atoms {θ∗l }Ll=1, which is necessary to ensure identifiability

and obtain sensible interpolations and predictions.

Now, for any finite set of locations s1, . . . sn ∈ D, let

P
(
θ(s1) = θ∗l1 , . . . , θ(sn) = θ∗ln

)
=

P
(

Φ(z(s1)) ∈ [πl1−1, πl1), . . . ,Φ(z(sn)) ∈ [πln−1, πln)
) (7.2)

where Φ(·) denotes the cumulative standard normal distribution function and πl =

1 −
∏

k≤l(1 − vk) is the proportion of the unit stick assigned to the first l atoms,
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with π0 = 0. Clearly, the set of joint distributions in (7.2) satisfies Kolmogorov’s

consistency conditions and therefore the process is valid. We call θ(s) a Latent Stick

Breaking Process (LaSBP) and denote it as θ(s) ∼ LaSBPL({al}Ll=1, {bl}Ll=1, H, γ).

In order to gain some intuition into this construction, we show in Figure 7.1 three

random realizations of the θ(s) surface on D = [0, 1]2 associated with three different

marginal distributions G sharing the same underlying latent process z(s). For this

simulation, we took L = 100 and al = 1, bl = α, for three different values of α. Loca-

tions s1, . . . , sn were chosen on an evenly spaced 60× 60 grid. The resulting surfaces

are tiled, segmenting the space according to the level of the underlying Gaussian

process. The parameter α influences the roughness of the segmentation (essentially,

the number of different levels that the random surface takes), the baseline measure

H controls the actual level of the tiles, and the correlation function γ influences the

relative size of the different tiles.

Figure 7.1 also demonstrates the importance of the order constraint in the defini-

tion of the process. We use it to link the behavior of the atoms of the stick-breaking

construction to the behavior of the latent process. In particular, we want to enforce

the internal consistency condition, z(s) > z(s′)⇒ θ(s) ≥ θ(s′). Note that predictions

on the value θ(s′) for an unobserved location s′ depends on the predictions for a z(s′),

in particular

P(θ(s′) = θ∗l |θ(s1), . . . , θ(sn), {z(si)}ni=1, {θl}Ll=1, {vl}Ll=1)

= P (Φ(z(s′)) ∈ [πl−1, πl)|z(s1), . . . , z(sn))

Without the order constraint forcing adjacent atoms to have similar values this

prediction might yield unreasonable small or large values. This issue can also be

approached as an identifiability problem. For any given set of locations, there are

multiple possible latent surfaces that can fit the process, each one associated with a

different ordering of the atoms. By using the order constrain, we are assigning higher
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Figure 7.1: Realizations from a LaSBP process on [0, 1]2 with a standard Gaussian
baseline measure. We illustrate the effect of different concentrations while keeping
the underlying Gaussian process (shown in the upper left panel) constant to simplify
interpretation.

153



posterior density to smoother underlying surface z(s).

7.3 Properties

In what follows, let ξ(s) = l iff z(s) ∈ [Φ−1(πl−1),Φ−1(πl)) be a latent process in-

dicating the membership of locations to components of the stick-breaking process

and βl(s) = P(ξ(s) = l) represent the marginal probability that a realization of the

process at location s is assigned to component l. Similarly, let βlk(s, s
′) = P(ξ(s) =

l, ξ(s′) = k) be the joint probability of a realization of the process at locations s

and s′ taking values θ∗l and θ∗k respectively. Note that these probabilities are random

apriori since π1, . . . , πL are random. By definition, βl(s) = wl and

βlk(s, s
′) = Φγ(s,s′)(Φ

−1(πl),Φ
−1(πk))−Φγ(s,s′)(Φ

−1(πl−1),Φ−1(πk))−

Φγ(s,s′)(Φ
−1(πl),Φ

−1(πk−1)) + Φγ(s,s′)(Φ
−1(πl−1),Φ−1(πk−1))

where Φr(·, ·) denotes the cumulative distribution of the standard bivariate normal

with correlation r.

First, consider the expectation of the LaSBP process θ(s). If ψ is a measurable

function on (Θ,B), then

E(ψ(θ(s))) =
L∑
l=1

E(wl)E(ψ(θ∗l )) =
L∑
l=1

al
al + bl

[∏
k<l

bk
ak + bk

]
E(ψ(θ∗l )) > EH(ψ(θ∗))

Due to the order constrain, some care must be exercised when interpreting the

baseline measure in our model. Although H still plays a role controlling the average

level of the process, it is not true in general that such level is independent of the choice

of the sequences al and bl, as with typical stick-breaking processes. Also, the average

level of the process will be strictly larger than the mean of the baseline measure H.

The covariance of the LaSBP θ(s) process is given by

Cov(θ(s), θ(s′)) =
L∑
l=1

L∑
k=1

[E(βlk(s, s
′))E(θ∗l θ

∗
k)− E(βl(s)βk(s

′))E(θ∗l )E(θ∗k)] . (7.3)
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Although we do not have a closed form expression for the covariance function, it

is clear from (7.3) that the process on θ(s) is isotropic, stationary or non-stationary

if z(s) also has such a characteristic.

Realizations from the LaSBP θ(s) are discontinuous almost surely. This is clear

from Figure 7.1, and is a consequence of the stick-breaking construction. However,

note that

βlk(s, s
′)→ βl(s)βk(s

′) as γ(s, s′)→ 0

βlk(s, s
′)→

{
βl(s) l = k

0 otherwise
as γ(s, s′)→ 1

In particular, this implies that P(θ(s) = θ(s′)) → 1 as s′ → s almost surely.

Therefore the selection mechanism (which assigns atoms to locations) is continuous

even if the resulting realizations are not. This result also shows that, as the range

of the Gaussian process goes to zero, samples at different locations become iid ob-

servations from G. On the other hand, as the range grows, the LaSBP reduces to a

parametric model with a prior H on the unknown parameter.

It is important to note that θ(s) and θ(s′) are never independent. Indeed, even

if γ(s, s′) = 0, implying that P(θ(s) = θ∗l , θ(s
′) = θ∗l′) = P(θ(s) = θ∗l )P(θ(s′) = θ∗l′),

Cov(θ(s), θ(s′)) 6= 0. Indeed, if γ(s, s′) = 0 then from 7.3

Cov(θ(s), θ(s′)) =
L∑
l=1

L∑
k=1

E(βl(s)βk(s
′))Cov(θ∗l θ

∗
k) > 0

since Cov(θ∗l θ
∗
k) = V(θ∗l ) > 0 if l = k and the order constraint implies Cov(θ∗l θ

∗
k) ≥ 0

for l 6= k .

Finally, it is also interesting to formally consider the effect of the stick-breaking

distribution on the surface. Assume for simplicity that al = a and bl = b for all

l, which we will do in most practical applications. Note that as a
a+b
→ 1 we have
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w1 → 1 and the model degenerates again into a parametric model with a prior H

on the unknown parameter. Therefore, if the true surface is indeed close to flat,

identifiability issues could arise between the spatial range and the parameters of the

stick-breaking distributions.

We also note that, due to the order constraint on the atoms, the typical choice

a = 1 and b = α can induce severe artifacts in the model. It is well known that the

weights for a regular Dirichlet process are stochastically ordered. Although this is

not an issue when the atoms are exchangeable, under the order constrain, this implies

that the components with smaller parameters receive higher weight.

7.4 Computation

For inference purposes, we develop an MCMC algorithm. We assume al = a, bl = b,

L < ∞ and use a blocked sampler (Ishwaran and James, 2001). If N = ∞, a

retrospective sampler (Roberts and Papaspiliopoulos, 2007) can be easily obtained

as an extension. In order to facilitate computation, the latent process, z(s) and ξ(s)

are sampled explicitly. Using the familiar bracket notation, the joint distribution is

given in this case by

n∏
i=1

[y(si)|θ∗, ξ(si)]×
n∏
i=1

[ξ(si)|z(si),v]×[z(s1), . . . , z(sn)|λ]×
∞∏
l=1

[vi|α]×
∞∏
l=1

[θl]×[α]×[λ]

After setting up initial values for all parameters in the model, the algorithm

proceeds by sequentially updating the parameters according to the following steps:

1. Jointly update the latent processes ξ(s) and z(s), one location at a time, by

first sampling ξ(si) from a discrete distribution such that

P(ξ(si) = l) ∝ p(y(si)|θl)×

P(z(si) ∈ [Φ−1(πl−1),Φ−1(πl))|z(s1), . . . , z(si−1), z(si+1), . . . , z(sn))
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where the prior probability of component l can be obtained by a univariate

integration, and then sampling z(si) from the restricted univariate normal dis-

tribution defined by

[z(si)|z(s1), . . . , z(si−1), z(si+1), . . . , z(sn)]1Ωl

where Ωl = {z(si) : z(si) ∈ [Φ−1(πξ(si)−1),Φ−1(πξ(si)))}. Note that, if si = sj for

some j, then the prior probability for observation i being assigned to component

ξ(sj) is one and therefore ξ(si) = ξ(sj) and z(si) = z(sj), as expected.

2. Sample the stick-breaking ratios one at a time from their full conditional

[vl|v(−l)] ∝ va−1
l (1− vl)b−11Al

where Al =
{
vl : qll ≤ vl < qul

}
and

qll = max
{i:ξ(si)≥l}

{
1− 1− Φ(z(si))∏

k≤ξ(si),k 6=l(1− vk)

}

qul = min
{i:ξ(si)≥l+1}

{
1− 1− Φ(z(si))∏

k≤ξ(si)−1,k 6=l(1− vk)

}

Note that vl depends on v(−l) only through the constraint on the support.

Also, vl depends on z(s) only through z(si) : ξ(si) ≥ l. Therefore, for l > l∗ =

maxi{ξ(si)}, vl is conditionally independent from v(−l).

3. Sample the atoms {θl}. The full conditional is given by

p(θl| · · · ) ∝ h(θl)
∏

{i:ξ(si)=l}

p(y(si)|θl)

where h is the density associated with the baseline measure H. If H is conjugate

with the likelihood p, this is straightforward.
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4. The prior parameters on the stick-breaking ratios a and b are jointly sampled

using a random-walk Metropolis algorithm. Since both parameters need to be

positive, new values (a(p), b(p)) are proposed from a log-normal density centered

on the logarithm of the of the current value (a(c), b(c)). Specifically,

(log a(p), log b(p)) ∼ N

((
log a(c)

log b(c)

)
,Σ

)

with Σ being a tuning parameter. The proposed values are accepted with

probability min{1, δ} where

δ =

(
Γ
(
a(p) + b(p)

)
Γ
(
a(c)
)

Γ
(
b(c)
)

Γ (a(c) + b(c)) Γ (a(p)) Γ (b(p))

)L−1

×

(
L−1∏
l=1

vl

)a(p)−a(c) (
L−1∏
l=1

(1− vl)

)b(p)−b(c)
p(a(p), b(p))

p(a(c), b(c))

a(p)b(p)

a(c)b(c)

and p(a, b) is the prior distribution for the parameters. In our example we take

a and b to have a priori independent gamma distributions centered around 1.

5. The parameters of the underlying Gaussian process can be sampled conditional

on the current realization z(s1), . . . , z(sn) using a random-walk Metropolis-

Hastings algorithm, as is customary with other spatial models.

6. Since the conditional moves in step 1 can raise some concerns about mixing

rates, we suggest to additionally sample the whole Gaussian process jointly.

This can be easily done by noting that the joint full conditional is given by

[z(s1), . . . , z(sn)| · · · ] · · · ∼ N (0,Ψ) 1Ω

where [Ψ]ij = γ(si, sj), Ω = ∩ni=1Ωi and Ωi = {z(si) : Φ−1(πξ(si)−1) ≤ z(si) <

Φ−1(πξ(si))} as before. Due to the form of the restrictions, we can sample from

this truncated distribution by iterative conditioning.
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7.4.1 A short note on efficient computational implementa-

tion

A naive implementation of steps 1 and 6 can be computational expensive, requiring

o(n) expensive matrix inversions. However, it is possible to implement both of these

sampling steps using a single additional Cholezky decomposition of Ψ.

First, note that matrix Ψ and its inverse ∆ = Ψ−1 need to be calculated at every

iteration of step 5 in order to evaluate the Metropolis ratio. Now, let ∆i
−− be the

(n − 1) × (n − 1) matrix obtained by removing the i-th row and the i-th column

from ∆. Similarly, let ∆i
++ = [∆]ii be the i-th diagonal entry of ∆, and ∆i

+− be

the i-th row of ∆ with i-th entry removed. It is easy to show using well known re-

sults for partitioned matrices that z(si)|z(s1), . . . , z(si−1), z(si+1), . . . , z(sn) has mean

−∆i
+−zi/∆i

++ and variance ∆i
++, where zi = z(s1), . . . , z(si−1), z(si+1), . . . , z(sn).

Therefore, no additional matrix inversions are required to complete step 1.

For step 6, consider first the very easy problem of generating an unconstrained

sample z from a multivariate normal distribution N(0,UU′), where U is a positive

definite lower triangular matrix. The usual procedure is to use a change of variables,

generating first a vector x of n iid observations xi ∼ N(0, 1) and then letting z =

Ux. This way, the sequence of conditional distributions {p(zi|z1, . . . , zi−1)} is never

explicitly obtained. It is possible to produce a similar scheme that uses a sequence

of (no longer independent) draws x1, . . . xn and a transformation to generate a vector

z of dependent random variables subject to constraints like the ones in our problem.

Our approach is summarized in the following proposition

Proposition 4. Let U be a lower triangular matrix with strictly positive diagonal

entries and Ωi = [ci, di] with ci, di ∈ R for all i = 1, . . . , n. The following set of steps,

1. Sequentially sample xi ∼ N(0, 1) restricted to the set Ti(Ωi) = [Ti(ci), Ti(di)],
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where

Ti(y) =
y −

∑
j<i Ujixj

Uii

2. Let zi = T−1
i (xi)

generates a sample z ∼ N(0,UU′) subject to the restriction z ∈ Ω = ∩ni=1Ωi

Proof. Straightforward using a change of variables.

7.5 Stochastic volatility and option pricing

In this section we consider an application of the LaSBP to the modeling of stock-

market returns. The data set under consideration consists of the weekly returns of

the S&P500 index covering the ten-year period between April 21, 1997 and April 9,

2007, for a total of 520 observations. Figure 7.2 shows the evolution of these returns.

The series does not exhibit any long term trend and different levels of volatility can

be clearly seen. Indeed, it is well known that financial time series typically exhibit

heavy tails and periods of low/high volatility tend to cluster together. Also, two

slightly different regimes are apparent. Before May 2003, periods of high-volatility are

relatively frequent. After May 2003, we can appreciate longer low-volatility periods.

Similarly to other approaches in the literature, we model r(t), the return of the

S&P500 at time t, as following a normal distribution with constant mean but time-

varying variance. The time-varying variance is then assumed to follow a LaSBP with

an inverse-gamma baseline measure, which allows us to simplify computation while

providing a flexible model. To demonstrate the methodology we use an exponential

correlation function for the latent process, but implementations using more general

correlation functions (like Mattern, power exponential or some non-stationary family)
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Figure 7.2: Weekly returns on the S&P500 index between April 21, 1997 and April
9, 2007.
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is just as straightforward. Also, we take al = 1 and bl = α for all l. We noted above

that this choice places stochastically larger probabilities on smaller values of volatility,

and therefore was not the most adequate choice in general. However, a prior with

this structure is adequate in this application because we see low volatility as the

norm and high volatility as sporadic shocks to the system. Specifically, we use the

following model specification:

r(t) ∼ N(µ, σ2(t)) σ2(t) ∼ LaSBPL(1, α,H, γ)

γ(t, t′) = exp

{
−|t− t

′|
λ

}
H = IGam(ν, σ2

0)

µ ∼ N(µ0, τ
2) α ∼ Gam(aα, bα)

λ ∼ Gam(aλ, bλ) σ2
0 ∼ Gam(δ, σ2

00)

This model results in a marginal distribution that is a scale mixture of Gaussian

distributions, yielding a rich model on the class of unimodal distributions that can

accommodate fat tails. Also, the structure of the LaSBP naturally induces volatility

clustering, while potentially allowing for richer dependence structures than Markov-

switching models.

Since the historical annual volatility of the S&P500 is traditionally estimated to

be in the range of 12-15%, we take τ 2 = 0.152/52 and σ2
00 = 0.122/52. The prior

mean for the mean return is taken to be µ0 = 0, and the degree of freedom for the

baseline measure are chosen as ν = 2 and aσ = 1. Following standard practice, we

picked aα = bα = 1 so that the prior for the precision parameter α is centered around

1 and has variance 1. The prior for the spatial correlation is also set as aλ = bλ = 1,

implying that the a-priori range of the correlation process is approximately 3 weeks.

A small sensitivity analysis was conducted by changing the hyperpriors on σ2
0, α and

λ, and results seemed mostly robust to this prior selection. All results are based on

50,000 iterations obtained after a burn-in period of 5,000 samples. We resampled the
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latent process every 10 iterations to improve mixing.

The model identifies between 2 and 11 volatility regimes, with models having be-

tween 3 and 6 components receiving the most weight (estimated posterior probabili-

ties 0.27, 0.33, 0.20 and 0.10 respectively). The mean of the precision α is estimated

to be 0.700 (median 0.650, symmetric 90% credible interval (0.260 ; 1.312)). The

posterior distribution of the correlation parameter λ is has a mean of 110.7186 (90%

credible interval (34.05,241.53)), showing strong evidence for long range dependence

in the sample. The width of the credible interval also suggests that the parameters of

the latent Gaussian process might be hard to estimate as the sample contains little

information about them.

The posterior mean weekly return is estimated to be 0.00194 (credible interval

(0.00050 ; 0.00336)), a reasonable value given historical evidence. Figure 7.3 shows

the volatility path estimated by the LaSBP model, along with the sample standard

deviation and the volatility path obtained from the “standard” stochastic volatility

described in Jacquier et al. (1994). Although both models provide similar volatility

estimates, there are some interesting differences. For example, the low volatility pe-

riod between October 2003 and December 2006 is estimated by us to be a period with

essentially constant volatility, while the regular volatility model tends to fluctuate a

lot. Nonetheless, both models adapt very fast to the raise in volatility in early 2007.

Also the three high volatility peaks in 2000, 2001 and 2002 are more pronounced

under our model.

Predicted volatilities for the 40 weeks following April 9th are shown in figure 7.4.

Since the last weeks of our sample happen to belong to a period with below-average

volatility, predictions start below the standard deviation of the marginal distribution

(which coincides with the historical volatility). However, as time elapses, the volatility

tends to converge towards the sample mean. The slow converge is consistent with
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the large estimates for the temporal dependence parameter λ. The width of the

credible bands reflects considerable uncertainty in the prediction, and are consistent

with those obtained from the regular stochastic volatility model (not shown).

One important application of stochastic volatility models is option pricing. Eu-

ropean call options are contracts that give the buyer the right to acquire a security

at some specific time in the future for a pre-specified price, called the strike price.

Similarly, put options give the right to sell a security at a pre-specified price. The

price a risk-neutral investor is willing to pay for a call option equals the net present
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value of its expected payoff,

C(t) = exp{−q(T − t)}E {S(T )−X}

where C(t) is the price at time t of an American-style call option with expiration date

T and strike price X, q is the (constant) risk-free interest rate and S(T ) is the price

of the security at expiration. The famous Black & Scholes (B&S) formula for option

valuation is obtained by calculating this expectation under the assumption that the

returns follow a constant Gaussian distribution.

In order to estimate the price of options under our model, we use the price on

April 9, 2007 ($1453.85) and simulations of future returns to estimate the future price

of the underlying security. Figure 7.5 shows the theoretical price of in-the-money call

options with a strike price of 1460 expiring between one and forty weeks from April

9, 2007, under our SV LaSBP model, the standard stochastic volatility model, and

the Black & Scholes formula. The risk-free interest rate is assumed to be equal to

the LIBOR (London Inter-Bank Offered Rate) for a one year deposit in U.S. Dollars

during March, as reported by Fannie Mae, yielding q = 5.2009%. B&S calculations

assume that the mean and variance of the returns equals the historical average over

the ten-year period.

For options with early expiration dates the classical SV and the LaSBP SV models

yield very similar prices, which are lower than the prices predicted by the Black &

Scholes formula. However, as expiration dates increase, the prices generated by both

models diverge. While the prices predicted by the standard SV model remain lower

than those predicted by Black & Scholes, prices from the LaSBP SV model increase

fast, so that for expiration over 20 weeks, they are higher than the BS prices. This is

due to the ability of the LaSBP to capture and reproduce heavy tails in the marginal

distribution of the process.
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7.6 Discussion

We have developed and illustrated a novel mechanism to generate stochastic pro-

cesses with random marginal distributions. This is done by representing the common

marginal distribution using a stick-breaking construction and inducing dependence in

the selection mechanism. To the best of our knowledge, this is a completely novel ap-

proach that shows promise in multiple applications requiring simultaneous estimation

of the marginal distribution and the dependence structure.

It is important to emphasize that, in general, it is not appropriate to use a

beta(1, b) distribution as the prior for the stick-breaking ratios. It is well known that

this type of prior gives stochastically greater weights to components with smaller

indexes. Due to order constraint involved in our construction, this means that such

a prior gives larger weights to smaller parameter values. In our stochastic volatil-

ity application, this is exactly the type of behavior that we want to encourage, but

in other applications this characteristic can be a serious limitation. Therefore, we

suggest in general to use the two parameter beta(a, b) prior and let the data decide.

In principle, direct generalizations to multivariate atoms are not possible because

of the order constrain. An alternative is to build the dependence in the selection

mechanisms by using multivariate Gaussian processes as latent processes. This could

be used in the stochastic volatility example to construct a model that allows both

the mean and the variance of the Gaussian distribution to evolve in time. Another

interesting addition to this model would be a nonstationary covariance function for

the underlying process in order to deal with the varying frequency exhibited by the

time series, as well as different alternatives to the Gaussian kernels (for example,

uniform or T kernels).
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Chapter 8

Concluding remarks and future directions

This dissertation presented two years of work on Bayesian nonparametric density

estimation and regression. We feel that this is a balanced combination of theoretical

results and interesting applied problems. However, our major contribution has been

the development of innovative models with a wide range of applications in public

health, earth sciences and finance. Our main theme has been the development of

methods for inference on problems where the outcome variable is an infinite dimen-

sional object.

Bayesian nonparametric methods have taken a second wind in the last five years

and we expect that they will provide ample opportunities for both applied and the-

oretical research in the future. We have already mentioned some of the directions

we plan to explore after turning the different chapters into publishable papers. We

obtained some consistency results in the context of the nested Dirichlet process, but

much work remains to be done. In general consistency of priors on collections of

distributions like the dependent Dirichlet process is an open problem that we intend

to explore. Our dynamic density estimation model provides a setup for improved dy-

namic portfolio design using expected shortfalls and value-at-risk as objective func-

tions instead of the variance. The latent stick-breaking process offers an interesting
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alternative to construct complicated, non-Gaussian spatio-temporal models.

There are also some methodological issues related to summarizing the posterior

distributions on high dimensional spaces that have been tackled only partially in

the literature and deserve more attention. One of them is how to convey uncertainty

about the function estimates provided by nonparametric models. For regression func-

tions, we have provided pointwise probability intervals for our functional estimates.

This is not satisfactory in general. For example, pointwise confidence bands around

a density function are not densities (i.e., they do not integrate to 1). Besides, point-

wise intervals provide local and not global information about the behavior of the

estimates. We believe that a decision theory approach is the right path to follow, but

it not clear how to pick adequate loss functions that allow for easy computation. An-

other interesting issue is how to summarize the results from the posterior distribution

over clusters. Some advances have been recently made in this topic, but additional

research is still needed, particularly on how to choose adequate loss functions and

how to summarize uncertainty.

We would also like to investigate the possibility of integrating some of these non-

parametric models into more complicated hierarchical specifications. For example,

we interested in using functions (including distribution functions) as predictors rather

than outcome variables. When basis expansions are used to represent unknown func-

tions, the coefficients of the expansion can be used as predictors. Similarly, the

moments of distribution are often employed as predictor variables in applications.

However, this is not always a satisfactory solution. For example, the first few mo-

ments of a distribution, although easy to interpret, might not capture the relevant

characteristics that help explain the dependence between outcome and predictor.
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Appendix A

Notation

This appendix establishes the notation and parameterizations we used in the disser-

tation.

A.1 Dirichlet distribution

We say that (θ1, . . . , θk) ∼ Dir(γ1, . . . , γk) if the density satisfies

p(θ1, . . . , θk) ∝
k∏
i=1

θγi−1
i

A.2 Normal-inverse-Wishart distribution

We say that (θ,Σ) ∼ NIWp(θ0, κ0, ν0,Σ0) if the joint density can be written as

p(θ,Σ) ∝ |Σ|−(ν0+p+2)/2 exp

{
−κ0

2
(θ − θ0)′Σ−1(θ − θ0)− 1

2
tr(ν0Σ0Σ

−1)

}

A.3 Gamma distribution

We denote τ ∼ Gam(a, b) if

p(τ) ∝ τa−1 exp {−bτ}
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A.4 Wishart distribution

We write S ∼ Wp(γ,S0) if

p(S) ∝ |S|(γ−p−1)/2 exp

{
−1

2
tr(γS−1

0 S)

}
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Appendix B

Correlation in the nDP

We start by calculating the correlation between distributions. In the first place,

E(Gj(B)Gk(B)) = E(Gj(B)Gk(B)|Gj = Gk)P(Gj = Gk) +

E(Gj(B)Gk(B)|Gj 6= Gk)P(Gj 6= Gk)

= E(G2
j(B))

1

α + 1
+ E(Gj(B))E(Gk(B))

α

α + 1

=
H(B)(1−H(B))

(α + 1)(β + 1)
+H2(B)

Finally

Cov(Gj(B), Gk(B)) =
H(B)(1−H(B))

(α + 1)(β + 1)
+H2(B)−H2(B)

=
H(B)(1−H(B))

(α + 1)(β + 1)

and

Cor(Gj(B), Gk(B)) =
Cov(Gj(B), Gk(B))√

V(Gj(B)V(Gk(B)
=

1

α + 1

For the correlation between samples of the nDP, note that for the nDP and if
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j = j′ then

Cov(θij,θi′j′) = Cov(θij,θi′j|θij = θi′j = θ∗lk)P(θij = θi′j = θ∗lk)+

Cov(θij,θi′j|θij 6= θi′j)P(θij 6= θi′j)

=
1

1 + β
V(θ∗lk)

Since θ∗lk are iid for all l and k, it follows that Cor(θij,θi′j) = 1
1+β

. On the other

hand, if j 6= j′

Cov(θij,θi′j′) = Cov(θij,θi′j|Gj = Gj′ = G∗k,θij = θi′j = θ∗lk)P(Gj = Gj′ = G∗k,θij = θi′j)+

Cov(θij,θi′j|Gj 6= Gj′ or θij 6= θi′j)P(Gj 6= Gj′ or θij 6= θi′j)

=
1

(1 + α)(1 + β)
V(θ∗lk)
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Appendix C

Proof of theorem 2

Let P∞∞(θ) be the joint probability measure induced by the nDP for the vector

θ = (θ1, . . . ,θJ), and let PLK(θ) be the corresponding joint measure under the LK

truncation. Then∫ ∣∣PLK(y)− P∞∞(y)
∣∣ dy ≤

∫ ∫
p(y|θ)

∣∣PLK(dθ)− P∞∞(dθ)
∣∣ dy

=

∫ ∣∣PLK(dθ)− P∞∞(dθ)
∣∣

= 2 sup
A∈Θ

∣∣PLK(A)− P∞∞(A)
∣∣

where the last equality is due to Scheffe’s lemma. This means that the total variation

distance between the true and approximated marginal densities can be bounded by

the total variation distance between the priors. Now,

sup
A∈Θ

∣∣PLK(A)− P∞∞(A)
∣∣ ≤ 2 (1− P [ζj ≤ K − 1 ∀ j, ξij ≤ L− 1 ∀ i, j])

= 2 (1− P [ζj ≤ K − 1 ∀ j] ×

P [ξij ≤ L− 1 ∀ i, j|ζj ≤ K − 1 ∀ j])

Consider first the case L =∞ and K <∞. Then

P [ξij ≤ L− 1 ∀ i, j|ζj ≤ K − 1 ∀ j] = 1
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and

P [ζj ≤ K − 1 ∀ j] = E


[
K−1∑
s=1

π∗s

]J
≥

[
K−1∑
s=1

E(π∗s)

]J

by Jensen’s inequality. Now,

E(π∗s) =
1

1 + α

(
α

1 + α

)s−1

⇒
K−1∑
s=1

E(π∗s) = 1−
(

α

1 + α

)K−1

And therefore

P [ζj ≤ K − 1 ∀ j] ≥

[
1−

(
α

1 + α

)K−1
]J

If L <∞ and K =∞. Then

P [ζj ≤ K − 1 ∀ j] = 1

and

P [ξij ≤ L− 1 ∀ i, j|ζj ≤ K − 1 ∀ j] = P [ξij ≤ L− 1 ∀ i, j]

=
∑

(m1,...,mJ )∈CJ

P [ξij ≤ L− 1 ∀ i, j|(m1, . . . ,mJ)]×

P [(m1, . . . ,mJ)]

where (m1, . . . ,mJ) ∈ CJ is an assignment of J distributions to atoms {G∗j}∞k=1 such

that there are m1 distinct distributions appearing only once, m2 that occur exactly

twice and so on, and CJ is the set of all such possible assignments. From Antoniak

(1974)

P [(m1, . . . ,mJ)] =
J !Γ(J + α)∏J
j=1mj!jmj

α
PJ

j=1mj

Γ(α)
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and since {G∗k}Kk=1 are in turn independent samples from a DP,

P [ξij ≤ L− 1 ∀ i, j|(m1, . . . ,mJ)] =
J∏
j=1

E

(L−1∑
l=1

w∗l1

)jn


mj

≥
J∏
j=1

(L−1∑
l=1

E(w∗l1)

)jn
mj

=

[
1−

(
β

β + 1

)L−1
]nPJ

j=1 jmj

=

[
1−

(
β

β + 1

)L−1
]nJ

since
∑J

j=1 jmj = J for any configuration (m1, . . . ,mJ). Therefore,

P [ξij ≤ L− 1 ∀ i, j|ζj ≤ K − 1 ∀ j] ≥

[
1−

(
β

β + 1

)L−1
]nJ ∑

(m1,...,mJ )∈CJ

P [(m1, . . . ,mJ)]

=

[
1−

(
β

β + 1

)L−1
]nJ

Finally, the case K <∞ and L <∞ combines both results. As before

P [ζj ≤ K − 1 ∀ j] ≥

[
1−

(
α

1 + α

)K−1
]J

Since K is finite, the expressions of Antoniak (1974) cannot be used in this case.

However, we do not need an explicit expression for P [(m1, . . . ,mJ)] since we only

need its sum, which is 1. Therefore

P [ξij ≤ L− 1 ∀ i, j|ζj ≤ K − 1 ∀ j] ≥

[
1−

(
β

β + 1

)L−1
]nJ

as before.
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Appendix D

Pólya urn schemes for the nDP

For the nDP, it is possible to explicitly integrate out the random distributions {G∗k}∞k=1

to obtain Pólya urn schemes on (Θ,B). Conditional on the top level indicators ζ,

all observation within the same cluster are iid samples from a random distribution

following a DP(βH). Therefore, marginalizing the unknown distribution, the full

conditional distribution for one single draw is given by

(θij|ζj = k, ζ−j ,θ
−
ij) ∼

∑
(i′,j′)∈N k

j

1

β + |N k
j |+ nj − 1

δθi′j′
+
∑
i′ 6=i

1

β + |N k
j |+ nj − 1

δθi′j
+

1

β + |N k
j |+ nj − 1

H

(D.1)

where N k
j = {(i′, j′) : ζj′ = k , j′ 6= j}, |N | denotes the number of elements in N and

the − superscript denotes the corresponding vector with the subscripted component

removed. The first term in the expression represents the probability of θij being

equal to some observation belonging to the same cluster but not the same center j,

the second is the probability of it being equal to some other observation in center

j and the third is the probability of it being different from all other observations.

Therefore, this Pòlya urn allows us to sample ξ|ζ.
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In principle, we can use a similar argument to construct a sampler for ζ. It is

easy to see that the joint distribution for (θ1j, . . .mθnj ,j) is given by

(θ1j, . . . ,θnj ,j|ζj = k, ζ−j ,θ
−
j ) ∼

nj∏
i

 ∑
(i′,j′)∈N k

j

1

β + |N k
j |+ i− 1

δθi′j′

+
i∑

i′=1

1

β + |N k
j |+ i− 1

δθi′j
+

β

β + |N k
j |+ i− 1

H

]
(D.2)

Therefore, integrating over the unknown indicators ζ−j we get

(θ1j, . . . ,θnj ,j|θ−j ) ∼
∑
k 6=j

1

α + J − 1

nj∏
i

 ∑
(i′,j′)∈N k

j

1

β + |N k
j |+ i− 1

δθi′j′

+
i∑

i′=1

1

β + |N k
j |+ i− 1

δθi′j
+

β

β + |N k
j |+ i− 1

H

]

+
α

α + J − 1

nj∏
i=1

[
i−1∑
i′=1

1

β + i− 1
δθi′j

+
β

β + i− 1
H

]
(D.3)

In theory, this new Pólya urn allows us to sample ζ and ξ simultaneously. How-

ever, as the sample sizes n1, . . . , nJ grow, the number of terms involved in each of the

sums increases exponentially, making the use of D.3 impractical for real applications.

A slightly different approach is to generate a Pólya urn in (P, C) (remember the

nomenclature from Sections 1.1 and 2.1.2), which is simply

P (Gj|ζ−j ) =
∑
j′ 6=j

1

α + 1
δGj′

+
α

α + 1
DP(βH) (D.4)

Combining (D.1) and (D.4) we can generate an alternative sampler that truncates

the distributional atoms G∗k but not the upper level stick-breaking construction in
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(2.2). Unfortunately, the trick behind the retrospective sampler in Roberts and

Papaspiliopoulos (2007) cannot be used in this case.
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Appendix E

Proof of corollary 1

By Bayes theorem,

lim
K,L→∞

pLK(θ|y) = lim
K,L→∞

p(y|θ)pLK(θ)

pLK(y)

=
p(y|θ) limK,L→∞ p

LK(θ)

limK,L→∞ pLK(y)

= p∞∞(θ|y)
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Appendix F

Reordering pairing probabilities

This algorithm is inspired by the ideas underlying hierarchical clustering and mi-

croarray analysis, and relies on the interpretation of pairing probabilities as inverse

distances. In principle, it can help in interpreting the results from any soft-clustering

algorithm. In what follows, we assume that there are J distributions labeled from 1

to J and that pij is a point estimate of the probability of distributions i and j being

in the same cluster. The algorithm follows the steps:

• Initialize the sets As = {i∗, j∗} (the set of included labels), Ω = {1, 2, . . . , J}

and Acs = Ω/As (the set of non-included labels) where (i∗, j∗) = arg maxi,j{pi,j}.

That is, the first two distributions are those that happen to be closer to each

other in the set.

• For all j ∈ Acs, calculate p∗j,As
, the “inverse distance” of each element of Acs to the

set As, which is given by p∗j,As
= maxj∈As{pij}. That is, the distance between

any non-included element and the set of included elements is the distance to

the closest element.

• Let As+1 = As ∪ {j∗} and Acs+1 = Ω/As+1 where j∗ = arg maxj∈Ac
s
{p∗j,As

}.

Therefore, the next element to be added is the one closest to the current set of
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included elements.

• Repeat (2) until Acs is empty.

Any possible tie is broken randomly, and the permutation of the labels is given

by the order in which they have been chosen to build the sets {AJ}.
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Appendix G

Covariance structure in the discrete-time
DDP

Note that our model implies that yit|θit, σ2
i = Ftθit + εit with errors εit ∼ N(0, σ2

i )

independent for every pair (i, t). Then

Cov(yi,t, yi′,t+k) = Cov(Ftθit,Ft+kθi′,t+k) + Cov(εit,Ft+kθi′,t+k)

+ Cov(Ftθit, εi′,t+k) + Cov(εit, εi′,t+k)

where the last three terms are zero as long as either i 6= i′ or k 6= 0. Therefore

Cov(yi,t, yi′,t+k) = FtCov(θit,θi′,t+k)F
′
t+k

Now,

E(θitθi′,t+k) = E

(
∞∑
l=1

w∗l δ(θ∗lt)

∞∑
l=1

w∗l δ(θ∗l,t+k)

)

= E

(
∞∑
l=1

∞∑
r=1

w∗l w
∗
rδ(θ∗lt)

δ
(θ∗r,t+k)

)

= E

(
∞∑
l=1

w∗2l δ(θ∗lt)
δ

(θ∗l,t+k)

)
+ E

(
∞∑
l=1

∞∑
r=1,r 6=l

w∗l w
∗
rδ(θ∗lt)

δ
(θ∗r,t+k)

)

=
1

1 + α
E(θ∗1tθ

∗
1,t+k) +

α

1 + α
E(θ∗1t)E(θ∗1,t+k)
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Therefore

V(θit,θi′,t+k) = E(θitθi′,t+k)− E(θit)E(θi′,t+k)

=
1

1 + α
E(θ∗1tθ

∗
1,t+k)−

1

1 + α
E(θ∗1t)E(θ∗1,t+k)

=
1

1 + α
Cov(θ∗1t,θ

∗
1,t+k)

=

[
k∏
r=1

Gt+k−r+1

]
V(θ∗t )

Since the pair (θ∗1t,θ
∗
1,t+k) is sampled from the baseline measure K0.
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