
Copyright ©c 2004 by

All rights reserved



USING EXPERT KNOWLEDGE WHEN THE DATA

MODEL IS UNKNOWN

WITH AN APPLICATION IN MODELING THE MIXED

LAYER OF THE ATLANTIC OCEAN

by

Ana Grohovac Rappold

Institute of Statistics and Decision Sciences
Duke University

Date:
Approved:

Prof. Michael Lavine, Supervisor

Prof. Susan Lozier

Assistant Prof. Feng Liang

J.B. Duke Prof. Alan Gelfand

Dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy
in the Institute of Statistics and Decision Sciences

in the Graduate School of
Duke University

2004



ABSTRACT

(Statistics)

USING EXPERT KNOWLEDGE WHEN THE DATA

MODEL IS UNKNOWN

WITH AN APPLICATION IN MODELING THE MIXED

LAYER OF THE ATLANTIC OCEAN

by

Ana Grohovac Rappold

Institute of Statistics and Decision Sciences
Duke University

Date:
Approved:

Prof. Michael Lavine, Supervisor

Prof. Susan Lozier

Assistant Prof. Feng Liang

J.B. Duke Prof. Alan Gelfand

An abstract of a dissertation submitted in partial
fulfillment of the requirements for the degree

of Doctor of Philosophy in the
Institute of Statistics and Decision Sciences in the Graduate School of

Duke University

2004



Abstract

Oceanographers are interested in studying decadal variability of the ocean’s heat

content through the depth of the Mixed Layer M . This is the top layer of the

ocean where the waters come together through turbulent mixing and convection,

which creates a nearly uniform temperature layer in the ocean. It evolves with the

season’s annual cycle of surface temperatures and is smoothly varying in spaces.

Understanding the sampling distribution of the data is difficult because of the spatio-

temporal dependencies, because M does not uniquely determine the distribution of

ˆtemperatures, and because the estimator M is not known. However, before and after

observing the temperature profile, an expert has a prior and posterior belief. The

novel idea of this thesis is how to translate the expert’s uncertainty into a likelihood

function.

We elicit the expert’s posterior belief on a partition in the parameter space such

that her prior probabilities may be considered constant across all elements of the

partition. For any single profile, the expert’s posterior belief is expressed by the

function h(M |data). To model spatio-temporal dependencies, we suggest substituting

the likelihood by h(M). The function h is not a product of a known density function,

but it may be viewed as a distribution of the pivotal variables and is independent

of the data rather than M , as usually defined. The pivotal variables have a strong

scientific interpretation, and they serve as a transformation between the observed

space and the transformed space. The posterior inference is given directly from

the distribution of the transformed variables. The resulting posterior distribution is

closely associated with direct probabilities of Dempster and fiducial distributions of

Fisher. In general, there need not exist a marginal distribution for M which yields

the posterior inference identical to the one arising from the pivotal quantities, but
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there always exists a likelihood function which, by the fiducial argument, gives the

same posterior inference.

We also provide the inference using traditional methods when the sampling model

is unknown. Although modeling known features in the data may provide valuable

results, the posterior distribution of M for any single profile may not agree with the

expert opinion. We provide a discussion as to why this is true. In the final chapter,

we propose a flexible spatio-temporal model to help us understand the nature of the

long-term changes in the depth of the Mixed Layer.
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Chapter 1 

Introduction 

1.1 Introduction 

The primary focus of environmental research in recent decades has been the detection

of anthropogenic impacts on the global climate. In oceanographic research, detection

of an anthropogenic signal has been focused on monitoring the heat content and

salinity of the ocean waters. The ocean is a critical sink of atmospheric heat. As

such, any observed long term trend in the heat content of the ocean, although weak,

has an important role in explaining discrepancies between observed and predicted

atmospheric temperatures over this past century of increased greenhouse gasses and

global warming. Furthermore, changes in the ocean’s heat content can alter dynamic

ocean processes through complex thermodynamic feedback. In this thesis, we will

study the ocean’s heat by analyzing the characteristics of the Mixed Layer, which is

defined as the top, nearly constant temperature layer of the surface waters formed

through wind driven turbulent mixing and convection. Figure 1.1, taken from Mellor

(1996), illustrates the evolution of the Mixed Layer depth (M); temperatures are

plotted on the horizontal axis, and the Roman numerals mark months of the year,

placing the season of warming in the left panel and the season of cooling in the right
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panel. The Mixed Layer fepth M is a quantity that varies cyclically within a year

due to seasonal temperature changes, in space due to the latitudinal and longitudinal

temperature variation, and annually due to climate variability. Our interest is to

study the decadal impact of increasing heat stress at the surface on the depth of the

Mixed Layer.

Figure 1.1: Hypothetical annual evolution of a thermal profile.

Available measurements of temperature, salinity, pressure, and oxygen, dated

since the 1900s, are stored in archives at the National Oceanographic Data Cen-

ter(NODC). Data is collected by vessels, research and commercial, leading to obvious

restrictions on the spatial and temporal resolution of sampling procedures. Although

spatio-temporal analysis of M is necessary, understanding the data generating pro-

cess is difficult due to the lack of directly comparable data in both time and space.

The time scales for ocean processes prohibit treating data collected within a period of

several days as independent. On the other hand, samples taken at the same location

but in different years cannot be directly compared due to the inter-annual variability

of temperatures. These issues, together with the fact that there is no known esti-
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mator for M , make it difficult to determine what parametric family is best suited to

model the long-term trend in the annual cycle.

The novel idea of this thesis is the elicitation of a likelihood function that uses an

expert opinion when the data model is not known. We create partition for the param-

eter of interest and elicit the joint distribution of observables and unobservables in

the form of a small number of pivotal variables with strong scientific interpretations.

These pivotal variables, as usual, are functions of the data and the parameters but

their distribution is regardes as independent of the data rather than of the param-

eter. Conditioning on the data, pivotal quantities give us the posterior conditional

distribution on M . Because the pivotal variables are elicited from the expert’s opin-

ion, we believe they yield the correct posterior uncertainty in M . Another name

for the elicited posteriors is the fiducial distribution: a likelihood function seen as

a posterior density with a constant measure on θ over all partitions. Therefore, we

set the likelihood as a function of M to be the functional form that approximates

the posterior, i.e. the distribution of the pivotal quantities. We say this likelihood

is approximate because it need not be proportional to the product of any probabil-

ity density function, as usually defined. We discuss a parallel between the elicited

likelihood and direct probabilities introduced by Dempster (1963). Because the pos-

terior conditional distribution of M is interpreted as a distribution obtained from the

pivotal quantities (such as Dempster, 1963), we give a general recipe for obtaining a

substitute likelihood function when the data model is not known.

We compare the performance of the algorithmic likelihood to a proper probability

model in which we model a monotonically decreasing function of temperatures with

depth via transformation as a Dirichlet Process. To “match” the oceanographer’s

posterior belief with the posterior of the full probability model, it is necessary to elicit

a prior precision parameter of the Dirichilet Process. The point is made that when
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adopting full probability models without knowing the true sampling distribution, it

becomes unclear where the expert opinion belongs: in the prior or in the likelihood.

We also show that the algorithimic likelihood is robust and point out weaknesses in

the full probability model.

Spatial and temporal dependence among the profiles is modeled at the second

stage of hierarchy, and long term trends are additive to the inter-annual spatial

Gaussian process, which accounts for a smoothly varying seasonal cycle. The model

we propose allows for easy exploration of the long term rates of change; rates by

years, by decades, by specific regions, etc.. As cruises typically last no more than

a few weeks, it is reasonable to assume that observations taken on the same expe-

dition reflect similar variations from the overall spatio-temporal mean and are not

regarded as independent. Therefore, we include a “cruise effect” random variable

that accounts for small scale systematic deviations. The spatio-inter-annual process

M is modeled as a convolution (Higdon, 1998) of a two dimensional white noise pro-

cess with a separable Gaussian kernel, which results in a latitude-dependent annual

cycle. In the temporal domain, the kernel is chosen to have support on a unit circle

which ensures periodicity. Construction of a spatio-temporal process via convolution

adds computationally attractive features because the dimension of the model is the

dimension of the white noise process and not that of the observations. The size of

the data set imposes serious restrictions on elaborating the model.

As a result of challenges in analyzing oceanographic data, many of the analyses

rely on data from deterministic mathematical models. Well-tuned models may pro-

vide us with important information. For example, we can study changes in output

fields as a function of input values such as heat and wind fluxes. In essence, mod-

els can serve as controlled experiments which are validated by observations. It is

crucial to establish methods to analyze the observational data for its own value and
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for checking the performance of the physical models. Because M is not an observ-

able quantity and its sampling distribution is not known, all the previous analyses

have been based on ad-hoc methods which yield arbitrary bias and variability. Our

approach is computationally feasible and yields proper probabilistic estimates of un-

certainty.

In the final section, we will show the results of our analysis. We are looking at

an interesting finding that, overall, in both the subtropical and subpolar gyre of the

North Atlantic Ocean, the Mixed Layer has been shoaling. This finding is contra-

dictory to the previous belief that, in the subpolar gyre, warming in the atmosphere

would produce cooling of the surface waters, and, consequently, deepening of the

Mixed Layer. Our results are supported by further illustration of temperature be-

havior at different depths. In both regions, we notice significant warming trends of

the deeper waters, indicating that the ocean is storing heat deeper than previously

believed. Temperature trends at deeper levels, in particular 250 m in the subtropical

gyre and 500 m in the subpolar gyre, seem to be better indicators of the trend in M

than surface temperature.
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Chapter 2 

Data 

2.1 Description of the data 

In this thesis, we will use temperature data from the hydrographic stations stored

at the National Oceanographic Data Center (NODC) in Maryland. NODC compiles,

stores, and distributes satellite, in situ physical, and chemical data furnished by both

US research teams and multinational programs such as the World Ocean Circulation

Experiment (WOCE 1992 - present ). The hydrographic data used here is collected

by research and commercial vessels; physical locations of all observed data is depicted

in figure 2.1, while specific cruises that have been repeated over the years through the

WOCE program (WHP) are plotted in figure 2.1. Two rectangles define the bound-

aries of the observations used in the analysis and are data subsets of the subtropical

and subpolar gyre.

We are interested in modeling a particular aspect of the thermal profile, namely,

the bottom of the Mixed Layer and its long term trend. The Mixed Layer is a

concept and is not observable. Temperature profiles are characterized by a constant

temperature in the top layer of the ocean and an exponential decay below M . From

a statistical point of view, we define two issues:
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Figure 2.1: Physical location of the observed data in the Atlantic Ocean.

1. There is no known estimator for M

2. The Mixed Layer depth evolves seasonally and is spatially dependent.

2.1.1 Distribution of the Mixed Layer at a given location 

Data from ships consists of water temperatures measured every δ meters of depth in

the ocean. While the choice of δ is part of an experimental design and varies among

different expeditions, it is typically about 5 to 10 meters. Currently, the estimator of

ˆthe Mixed Layer depth, M , is commonly recognized as the minimum depth at which

the change of temperature from the surface exceeds 0.2 oC. While the 0.2 oC rule

is completely heuristic, temperatures are linearly interpolated between the observed

depths, which creates further systematic bias. The Mixed Layer depth may also be

7



Figure 2.2: WHP repeated cruises.

ˆstudied in terms of density rather than temperature, in which case M is defined as

the minimum depth where a change of 0.125 σ units from the surface is observed.

Although also heuristic, this rule seems to perform more robustly than the one based

on temperature. The uncertainty about M is studied through the variability of

M̂ using a sequence of rules such as 0.2 ± 0.01 ∗ j for j = 1, ..., 10. However, such

variability does not represent the uncertainty in M ; rather, it describes the sensitivity

towards the choice of the threshold rule.

For a valid representation of the uncertainty, we need a full probability model

based on the joint distribution of observable and unobservable variables. In general,

we don’t have repeated samples in spatial and temporal dimensions with oceano-

graphic data. A good start in understanding the data model is to explore the the-

oretical knowledge about the transport of heat through the ocean water. The rela-

tionship between temperature at depth d and surface forcing is fairly complex and
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[ ]

depends on a series of estimated constants such as velocity, kinetic heat flux, etc. Let

x(d), u, v, t denote temperature as a function of depth, two horizontal coordinates,

and time, respectively. Then under the assumption of horizontal homogeneity and

temporal stationarity,

∂x(d)/∂u = ∂x(d)/∂v = ∂x(d)/∂t = 0,

oceanographers believe that the temperature profile may be represented through the

following form:

w
x(d) = A + B exp − d

k

where k denotes the eddy diffusivity coefficient measured in m2/s and w stands for

the velocity measured in m/s. Since none of the coefficients are known exactly and

may vary over space and time, oceanographers use approximations.

Constants A and B are further determined for two layers of the ocean separately.

Let Q0 denote kinematic heat flux, then for the upper layer we have:

Q0 − w d
x(d) = x(0) − 1 − e k1 for d < M

w

Q0≈ x(0) − d since w = 0 for d < M
k1

≈ x(0)

Below the mixed layer we have:

x(d) = x(0)

[
1 − Q0 M

k1 t(s)

]
exp

{−w(d − M)

k2

}
for d ≥ M (2.1)

≈ x(0) exp

{−w(d − M)

k2

}
(2.2)

Notice that at d = M continuity must hold, and that t(d) → 0 as d → ∞. Ocean

temperatures actually asymptote around 2.1oC, but this does not present a problem

since all temperatures may be rescaled relative to the ocean floor temperatures.
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In figure 2.3 we plotted an observed profile where M is clearly identified between

the 5th and 6th observed depth, or 51m to 61m, and overlayed a plot of theoretical

approximations for the range of realistic values of k2/w (Mellor, 1996, Ch. 2 and 5).

Note the discrepancies between the theoretical and observed profiles in figure 2.3; the

Theoretical vs Observed Thermal Profile 
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0 500 1000 1500 2000 

Depth 

Figure 2.3: Illustration of the relationship between theoretical and observed tem-
perature profiles for various values of k/w

most striking one is the lack of fit for the exponential model. Although one could

perform statistical analyses of the observed profiles to learn constants a, b, w, and k,

it is our opinion that there is too much variability in the data to identify their values

consistently.

It is not always possible to identify M as clearly as in figure 2.3. As an example,

figure 2.4 illustrates the ambiguity about M in some observed profiles. Teal, pink,
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green, and blue profiles all have more than one modal value for M . Without study-

ing other profiles nearby, the oceanographer cannot clearly distinguish between the

ˆmodes. It may be that the shallower M is due to daily warming and that the real

ˆ ˆM is closer to the deeper M . Another possibility is that the shallower M is the true

ˆM while the deeper M is a remnant from the previous season. The first scenario is

far more likely to hold for the green profile than for the blue profile. It is more likely

ˆthat the temperature difference between the two M ’s is better explained by the daily

warming in the green profile than in the blue profile. It could also be that the current

M truly is the shallower of the two, and that the second mode is where M used to

be earlier in the year, but waters have not had a chance to mix completely yet. The

red profile, on the other hand, exhibits a different kind of ambiguity. In this case,

cooling of the surface temperature is apparent, creating an unstable situation where

cooler waters are sitting on top of warmer waters.

It is important to note that increasing the sampling resolution in any of these

profiles would not necessarily resolve the ambiguity. The features of these profiles,

i.e. the departure from the overall large scale M process, are characterized by ther-

modynamic processes in the ocean caused by daily warming, nightly cooling, etc, and

not by the lack of temperature data. Whether the goal is interpolating or extrapo-

lating, a valuable model describing the data generating process must include these

factors. Mathematical modelers are working hard with little success on reproducing

temperature profiles and M . From a statistical point of view, such modeling is not

feasible and is the reason that ordinary parametric models will not yield the desired

uncertainty. In the following chapter, we will introduce a mechanism for measuring

evidence provided by the data using the expert’s opinion.
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Figure 2.4: Some examples of irregular temperature profiles.

2.1.2 Temporal and Spatial dependence 

Since the formation of the Mixed Layer is influenced by energy forces at the surface,

it is natural to expect that M should vary seasonally. In fact, the annual cycle of the

Mixed Layer depth is opposite to the annual cycle of the surface temperature. The

Mixed Layer is deepest in the winter and shallowest in the summer. Figure 1.1 is a

good illustration of the smooth evolution of a profile at any location as a function of

surface temperature.

The annual cycle of the Mixed Layer can also be expected to vary with latitude.

Near the equator, the annual cycle should be barely noticeable due to the almost

constant inter-annual heat flux while the transition periods of warming and cooling

should be expected to last several months. On the other hand, at higher latitudes the

annual cycle should be well pronounced; M should be deeper, the transition periods

should occur more rapidly, and the warm periods should be shorter. The seasonal

variability and its dependence on latitude is visible from the observed data. In figure

12



2.6, we plotted the observed profiles at mid latitudes in the subtropical gyre, and, in

figure 2.7, we plotted the observed profiles at higher latitudes. We see longer periods

of deep mixing and a quicker transition to shallow mixing at higher latitudes.

The ambiguity mentioned in reference to figure 2.4 may be resolved by other

profiles taken at the same or nearby location within a short period of time. For

example, let us look at the profiles in figure 2.5. Based on the first observed profile

marked by blue lines, the oceanographer believes M = 0, but she also gives some

probability to the interval (70, 80) and explains the slope on (0, 70) as daily warming.

We observe the green profile approximately 20 km north of the blue profile. For this

thermocline, the oceanographer concludes M ∈ (50, 60). Combining the information

provided by both profiles updates the oceanographer’s assessment about the first

profile. She now believes M is at the surface in the blue profile, since it is unlikely

that the waters further south(blue) would mix deeper (70, 80) than the waters of

the green profile. Similarly, if we were to observe the pink profile first, we could

not easily distinguish between the intervals M ∈ (10, 20) or M ∈ (50, 60). However,

after observing the green profile, we may believe M ∈ (50, 60) is closer to the truth.

While the formation of the Mixed Layer in the warming months is greatly influenced

by heating at the surface, the stratification of temperature profiles in the months

of cooling is driven by different processes, but it is primarily by convection of the

waters. In the left panel of figure 2.5, we plotted two profiles taken approximately

50km apart in the month of November. During the stratification, the mixed layer is

well pronounced even while the entire profiles are cooling.

In the following chapters, we will be concerned with providing a good method

for weighing evidence about M provided in the data. This will enable us to model

systematic dependencies in M , such as spatial proximity and the inter-annual cycle,

in order to assess the evidence of long term variability.
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Figure 2.5: Examples of daily variability of MLD.
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Figure 2.6: Observed thermal profiles in the subtropical gyre; profiles are grouped
by months of the year: by rows and top-down.

15



0 5 10 15 20

1
0

0
0

6
0

0
2

0
0

0

January

0 5 10 15 20

1
0

0
0

6
0

0
2

0
0

0

Fabruary

0 5 10 15 20

1
0

0
0

6
0

0
2

0
0

0

March

0 5 10 15 20

1
0
0
0

6
0
0

2
0
0

0

April

0 5 10 15 20

1
0
0
0

6
0
0

2
0
0

0

May

0 5 10 15 20

1
0
0
0

6
0
0

2
0
0

0

June

0 5 10 15 20

1
0
0
0

6
0
0

2
0
0

0

July

0 5 10 15 20

1
0
0
0

6
0
0

2
0
0

0

August

0 5 10 15 20

1
0
0
0

6
0
0

2
0
0

0

September

0 5 10 15 20

1
0
0
0

6
0
0

2
0
0

0

October

0 5 10 15 20

1
0
0
0

6
0
0

2
0
0

0

November

0 5 10 15 20

1
0
0
0

6
0
0

2
0
0

0

December

D
e

p
th

Temperature

Figure 2.7: Observed thermal profiles in the subpolar gyre; profiles are grouped by
months of the year: by rows and top-down.

16



Chapter 3

Algorithmic Likelihood

3.1 In the following order: Prior, Posterior, Like-

lihood

Suppose that there exist two random quantities X and θ with some joint distribution,

P (X, θ), and that we are interested in the inference about the unobservable quan-

tity, θ, given the observed realizations X1, X2, X3, · · · . The data generating mecha-

nism, i.e. the sampling distribution, is not known and is assumed to be non-trivial;

X1, X2, X3, · · · may have an arbitrary dimension, they need not be independent, θ

may be indexed by the same variable as X, and, moreover, we are quite certain that

θ does not uniquely determine all unknown features of X. Before and after seeing

any realization X = x, the expert can evaluate her prior and posterior belief about

θ. However, it is infeasible for the expert to draw inference on θ simultaneously for

all X1, X2, X3, · · · without a probability model. She would like to assign a posteriori

conditional distributions θ|X1, X2, X3, · · · , but she doesn’t have a likelihood function.

In this chapter, we propose a scheme for obtaining a likelihood-like function based

on the expert’s posterior distribution. The expert’s posterior conditional distribu-

tions have similar interpretations to those obtained by the fiducial argument with
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subtle, but important, differences. In fact, the conditional distributions adhere to

the relevancy principle of Dempster (1963), and should, perhaps, be called direct

probabilities.

The scheme is as follows: In consideration of the desired inference, create a set of

partitions in θ. Considering the goals of inference and the experimental design, these

partitions may depend on the observed data or some aspects of it. Present the data

to the expert. Ask her to express her posterior belief about θ on a given partition

based only on the data in front of her. She should not be given the kind of knowledge

that distinguishes P (X|θi) from P (X|θj) for i 
= j. Find a functional form, h(X, θ),

bounded in θ, that yields a posterior uncertainty approximately equal to that of the

expert. Define a transformation of variables, (X, θ) → U , whose joint distribution is

given by h(X, θ). The transformed variables are called pivotal random variables, and

they imply the joint distribution P (X, θ). If the distribution of the pivotal quantities

is regarded as independent of the data X, then the posterior conditional distribution,

P (θ|X), is called a direct probability distribution. If the distribution of the pivotal

variables is regarded as independent of θ, P (θ|X) is called a fiducial distribution

h(X, θ) ∝ − ∂

∂θ
F (X, θ)dθ. (3.1)

The two distributions are equal, but the latter is not a probability distribution.

A third conditional distribution, Bayes’ posterior, arises if the pivotal quantities

are regarded as independent of θ, and the marginal distribution π(θ) is specified.

The three are equal if, and only if, f(x|θ) belongs to the exponential family,

and θ is a location parameter with the un-normed Lebesgue measure as a marginal

distribution (Lindley, 1958).

The posterior distribution of the expert arises as the distribution of the pivotal

variables after observing the data. This is no other than the fiducial distribution, or
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the likelihood as a function of θ. Therefore, when the data model is not known, we

propose to use the expert’s posterior in place of the likelihood. Furthermore, with

the substitute likelihood, we can model the apriori knowledge or other dependencies

in X1, · · · , Xn through the hierarchical specification.

The function h(X, θ) is not equal to the product of conditional densities of X,

and it may not have properties such as a sufficient statistic, a normalizing constant,

etc.

Because of the application-based nature of h(X, θ), in the following sections we

introduce a particular h(X, θ) within a motivating example, and then we follow with

a discussion as to why the algorithmic likelihood may be of much broader use than

first imagined. In a later chapter, we will introduce a reasonable modeling approach

to the problem and then follow up with a discussion comparing the results.

3.2 A Motivating Example

We observe a discrete realization X = x = (x(d1), x(d2), · · · , x(dn)) of a temperature

profile x(d) at equal distance depths d1, · · · , dn, and we are interested in the inference

about the depth of the Mixed Layer M . Depths of the measured temperatures are

known and considered a part of the experimental design. The uncertainty about M

is not associated with n. It is assumed that measurements are taken accurately, so all

the ambiguity about M at a particular location is due to thermodynamic processes

in the ocean. In the final chapter, we will model profiles taken at different locations

as exchangeable, given the spatio and temporal marginal distribution of M(s, t). In

this section, we are concerned with establishing P (x(d)|M) at a particular location

in time and space.

A priori, without knowing day, year, latitude, or longitude, the oceanographer

thinks M can be anywhere between 0 and B, the surface and some depth, respectively.
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Shown the data, again without day, year, latitude, or longitude, the oceanographer

updates her belief about M . We ask her such questions as:

a) Which observed interval(s) (di, di+1) is M most likely to be in?

b) How much more likely is it that M is in the interval [di, di+1), as opposed to

the interval [dj, dj+1) for j 
= i ∈ {1, · · ·, n − 1}?

Answers to these questions give us the expert’s posterior probability, P (M |X).

While explaining her posterior belief, the oceanographer says her opinion is based on

two pieces of information: let i = max{k; dk < M, k = 1 · · ·n}, then

I. �1(M) = x(d1) − x(di),

the difference in temperature between d and the surface, and

II. �2(M) = x(di)−x(di+1)
di+1−di

,

the rate of cooling around d ∈ [di, di+1).

Our approach is to fit a function, h(M, X) = h( �1(M), �2(M) ), to the oceanog-

rapher’s assessments, and set it equal to the posterior distribution c P ( M | x(d) ).

After trying several functional forms, we settled on:

h(M) ∝ exp{−δ1}α × [1 − exp{− δ2 β}] , (3.2)

where

δ1 = max{ 0,�1(M) },

δ2 = max{ 0,�2(M) },

and α and β are fixed scale parameters. The oceanographer does a good job in

distinguishing among the likely events so h is a good approximation on these intervals.

However, she cannot consistently distinguish among the intervals that she believes to
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be unlikely. Instead, she assigns a total probability to all such intervals. We choose

the posterior distribution to be

P (M |x(d)) = max(h(M), cp)

, where the constant cp ∈ (0, 1) is chosen such that all intervals with h(M) ≤ p are

assigned equal mass cp.

cp = max
i=1,··· ,n−1

{ h(M) : P ( M ∈ (di, di+1] | x(d)) ≤ p}.

In other words, we don’t differ between the intervals of the smallest probabilities. We

performed a simulation study for some good choices of p, typically ≤ 5%.

The first term of the posterior (3.2) penalizes large deviations from the surface

temperature while the second term penalizes small drops in temperature immediately

below M . This rationale of the posterior is illustrated in figure 3.1. The most likely

interval to which M belongs is characterized by the left end temperature t(di) being

close to the surface temperature and a large gradient between x(di) and t(di+1).

Parameters α and β cannot be ’learned’ by the data; instead, we must fit their values

using training samples. We propose to treat h(d) as a likelihood function. When we

show the profiles to the oceanographer, we do not tell her the location or date of the

profile. Under such conditions, it is reasonable to assume that she used π(M) ∝ 1

as the prior. Additionally, since the temperatures were measured at equal depth

intervals, posteriors must be proportional to the likelihood function of the parameter

M .

Another way to interpret h(M) as a likelihood function begins with the usual

formulation of the prior π(M) and an unknown sampling distribution

P (x(d1), s(d2), · · · , x(dn)|M).

Though P is unknown, there is, in principle, a joint distribution

P (x(d1), x(d2), · · · , x(dn), M).
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Figure 3.1: An illustration of �1(d),�2(d).

We choose the n + 1 dimensional transformation of variables

(M, t) → (�1(M),�2(M), s(M), M)

, such that the joint distribution of s(M) is approximately independent of the distri-

bution of M .

Consider a theoretical relationship, described in equations 2.1 and 2.2, to be the

underlying process and x(d) a discrete realization of such a process observed at equal
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distance depths d1, · · · , dn. Define i(M) = max{k; dk < M, k = 1 · · ·n} and let

s(M)j = x(dj)/x(di(M)+1) j < i(M),

s(M)j =
x(dj+1)

x(dj+2)
j ≥ i(M) j = i(M), · · · , n − 2,

�1(M) = x(d1) − x(di(M)) s.t. M ∈ [di(M), di(M)+1), and

�2(M) =
x(di(M)) − x(di(M)+1)

di(M)+1 − di(M)

s.t M ∈ [di(M), di(M)+1).

Since within the mixed layer x(d) ≈ x(0), and therefore x(d) ≈ x(M), it follows that

for j < i(M)

s(M)j ≈ exp{−w(M − M)/k1}
exp{−w(di+1 − M)/k2} .

Hence, in the upper layer of the ocean, the transformation s(M)j depends on the

distance from M and not on the value of M , per se. For j ≥ i(M), the transformation

s(M)j is also independent of the distribution of M ,

s(M)j =
exp{−w(dj+2 − M)/k2}
exp{−w(di+1 − M)/k2} = exp{−w(dj+2 − di+1)/k2},

and if d′
is are observed at equal distance intervals, s(M)j are identical for all j.

The joint distribution of �1(M) and �2(M) is independent of x(d) and is ex-

pressed by h(�1(M),�2(M)). The transformation s(M) depends on M but not on

its distribution.

Since the joint distribution of P (x(d1), x(d2), · · · , x(dn), M) on X ×M exists, so

does the joint distribution π(�1(M),�2(M), s(M), M) on U ×S ×M. The two are
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proportional up to a Jacobian constant of transformation and may be factored as

π(�1(M),�2(M), s(M), M) = π(�1(M),�2(M)|M)

×π(s(M) |�1(M),�2(M), M )π(M).

However, since �1(M) and �2(M) contain little information about s, we say:

π(�1(M),�2(M), s, M) = π(�1(M),�2(M)|M) π(s|M)π(M).

After observing the data x(d1), x(d2), · · · , x(dn), the conditional distribution of M is

inferred from the transformed variables �1(M) and �2(M) rather than the original

observed values in X ×M:

P (M | x(d1), x(d2), · · · , x(dn)) ∝ π(�1(M),�2(M)|M)π(s|M)π(M)

= h(�1(M),�2(M)|M) π(M)

Regardless of whether such a prior π(M) is known (or exists), h(�1(M),�2(M))

represents the conditional probability of the data.

The transformation (M, x(d)) → (g(M, x(d)), s) is designed to describe the oceanog-

rapher’s belief that s contains little information about M . Because the observed tem-

peratures do not exactly decay at an exponential rate below the Mixed Layer, the ob-

served values of sj , where j ≥ i(M) and i(M) = max{ k ; dk < M, k = 1 · · ·n }, may

not be identical. Therefore, one can argue that s contains some information about M

and cannot be regarded as independent from �1(M) and �2(M). A transformation

on the theoretical profile from Chapter 2 is given in figure 3.2, and transformations

on the three observed profiles are given in figure 3.3. To reassure the reader that this

loss of information is minimal, we simulated several scenarios:
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Figure 3.2: An illustration of transformation s of a theoretical profile in the case
where discretization comes in equal length intervals.

1. Let observed depths d = (0, 10, 20, 30, 40, 50), i = 3, α = 1.0, β = 1/0.3,

�1(M) = 0.01, and �2(M) = .15. This translates to a 0.01 oC change be-

tween the surface and the bottom of the Mixed Layer, and 1.5 oC decay be-

tween [20m, 30m). We then simulated 100 samples of s from an arbitrarily

chosen U(1, 3) such that s1 = s2 = s3 = s4, as is assumed by the theoretical

relationship. The resulting profiles and their likelihood functions are plotted in

the top row of figure 3.4. The profiles are normalized to fit a temperature range

between 0 and 1 since s ∈ (1, 3) accounts for a very large range of temperatures.

2. Let observed depths d = (0, 10, 20, 30, 40, 50), i = 3, α = 1.0, β = 1/0.3,�1(M) =

0.01, and �2(M) = .15. We simulate s2, s3, s4 from U(1, 3) as three distinct

iid random variables, and set s1 ≡ s2. This scenario corresponds to the ob-

served transformations. The resulting profiles and their likelihood functions are

plotted in the bottom row of figure 3.4.

3. Let d, α, β, and s be as in the first scenario, but change �1(M) and �2(M) to
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Figure 3.3: An illustration of transformation s on observed profiles in the case where
discretization comes in equal length intervals.

0.2 and 0.05, respectively. Values of s, relative to those of �1(M) and �2(M),

are such that the transformation back to temperatures will give profiles with

very ambiguous evidence about M . The resulting profiles and their likelihood

functions are plotted in the top row of figure 3.5.

4. Let d, α, β, and s be as in the second scenario, but let �1(M) = 0.2 and

�2(M) = 0.05. Just like in scenario 3, the values of s will give profiles con-

taining weak evidence about M . The resulting profiles and their likelihood

functions are plotted in the bottom row of figure 3.5.

5. Finally, take n = 6, i = 3, fix s conditionally on M , and sample �1(M)

and�2(M). The resulting rescaled profiles, respective likelihood functions, and

the joint distribution of �1(M) and �2(M) are plotted in figure 3.6.

We created profiles in the first two scenarios with realistic values for �1(M) and

�2(M), and the depth of the Mixed Layer is well pronounced. There is very little
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Figure 3.4: Simulated profiles for fixed values of �1(M) = 0.01 and �2(M) = .15
and their respective likelihood functions. Top row: transformation s as in the theo-
retical relationship, bottom row: s as typically observed.

difference between the theoretical relationship (top row) and the observed transforma-

tion (bottom row), indicating little loss of information by assuming s1 = s2 = s3 = s4.

In scenarios 3 and 4, the values of �1(M) = 0.2 and �2(M) = 0.05 indicate a less

pronounced Mixed Layer, and there is more variability in the likelihood function

than in scenarios 1 and 2. More specifically, values of s are simulated from such a

wide range, relative to �1(M) and �2(M), that the resulting profiles will appear

to have a Mixed Layer in the intervals other than [20m, 30m). Although there is

more variability in scenario 4 (observed), relative to that of scenario 3 (theoretical),

the likelihood function in the top row remains robust. The increase of variability
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Figure 3.5: Simulated profiles for fixed values of �1(M) = 0.2 and �2(M) = 0.05
and their respective likelihood functions. Top row: transformation s as in the theo-
retical relationship, bottom row: s as typically observed

among likelihoods in 3.5, relative to those in 3.4, points out that the likelihood is

more sensitive to the choice of �1(M) and �2(M) rather than the transformation

s. Finally, in the last scenario, we fix the value of s = s1 = s2 = s3 = s4 and i,

and simulate �1(M) and �2(M) according to h(M). The likelihood functions in 3.6

should, now, be compared with those in the top rows of 3.4 and 3.5. We see that,

under the assumption s = s1 = s2 = s3 = s4, the likelihood function reflects the

uncertainty due to the choice of �1(M) and �2(M).

There can be yet another way to interpret our likelihood: let M be the parameter

of interest, and let θM be the parameters that fully specify the distribution (x|θM , M)
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Figure 3.6: Simulated profiles for fixed values of s, their respective likelihood func-
tion and sampling distribution of �1(M) and �2(M)

for any M . Then

P (x1, · · · , xn|M) = h(�1(M),�2(M))

= π(M) ×
∫

(x1, · · · , xn|θM , M)P (θM |M)dθM .

The likelihood function may, in this case, be interpreted as a marginal probability

of the data given the model M , and the elicited probabilities are closely related to

Bayes factors.
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3.3 Some related ideas

The idea of equating likelihood and the posterior density appeared in the works of

Lindley (1958), Dempster (1963), Williams (1963), and others. These discussions are

generally motivated by finding the correspondence, or lack thereof, between Fisher’s

fiducial distribution and the Bayesian posterior. In a single dimension case, Fisher

defines the fiducial distribution (Fisher, 1956, pg. 70) as

φ(θ) = −∂F

∂θ
dθ.

Associated with X1, · · · , Xn and θ, there exist n pivotal variables whose distribution

is known and independent of θ. That is because there exists a transformation of

pivotal variables such that only one of the transformed sets P (T, θ) involves θ, and

the others do not (Barnard, 1963). Transformation T is said to be sufficient for θ.

Then, if (Fisher, 1956; Brillinger, 1962)

a. F (T, θ) is a distribution function of a sufficient statistic T ,

b. θ and T vary continuously over the same range,

c. F is a strictly monotonic function of θ for any fixed value of T , and

d. F is a strictly monotonic function of T for any fixed value of θ,

the probability space on θ arises from the distribution of T after observing x1, · · · , xn.

The distribution of T remains independent of θ even after the data is observed

Fiducial inference was introduced as a concept and was not supported with rig-

orous theory. It is intended for the post-data interpretation of evidence and clearly

provides a probabilistic interpretation for θ. Apparently, Fisher himself had proba-

bilistic interpretations in mind:
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... The concept of probability involved [in the fiducial argument] is entirely

identical with the classical probability of the earlier writers, such as Bayes.

Fisher(1956) pg. 51.

However, without accepting a probability model for the involved parameters, it is

difficult to justify any probabilistic statements, but the fiducial argument clearly had

an attractive interpretation (post data), so for some time statisticians were concerned

with the conditions under which a fiducial argument was true. Grundy (1956) gave

examples of one-parameter distributions for which a fiducial distribution does not

equal the posterior for any choice of prior. Grundy’s argument is based on the

sampling distribution of x:

1√
(2π)

exp(−1

2
(θ − x)2)f(x)/g(θ),

where f(x) ≥ 0 is a polynomial of order greater than 0, and g(θ) is an un-normed

Lebesgue measure. Other inconsistencies were found, such as non-uniqueness due

to the choice of a pivotal variable, two dimensional problems, etc. In fact, Lindley

(1958) gives a necessary and sufficient condition for the fiducial distribution to be

equal to the posterior distribution. The condition requires that there is a transfor-

mation of data from x to u and of parameter θ to τ , where τ is a location parameter

for u. Furthermore, if a single sufficient statistic exists for θ, it must satisfy that

condition. As a result, only five single parameter exponential family distributions

satisfy this condition; normal mean, single parameter gamma, negative binomial,

Poisson, and binomial (Kendall et al.(1991, sec 31.39)). These are also the families

where a transformation invariant measure on θ exists, the so called objective priors.

Fiducial inference lost its popularity, but many statisticians continue to appreciate

the concept. Barnard (1963) explains the fiducial distribution using group theory

arguments, and a part of the Bayesian community (those interested in the invariant
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priors) still makes reference to the work. Dempster (1963) gives a different view in

his argument for Direct Probabilities. His idea is that the probability space on θ

arises naturally through the distribution of pivotal quantities if their distribution is

not regarded as independent of θ as assumed in a fiducial argument but independent

of X instead.

Although Dempster did not have in mind substituting the likelihood with a pos-

terior distribution, as in our case, he did have in mind inferring the posterior directly

from the distribution of the pivotal quantities. He gave a theorem explaining why this

is possible. Therefore, we think it is worth describing Dempster’s relevancy principle

here.

The argument starts with accepting a joint probability model for the observed and

unobserved random variables through an associated set of pivotal variables and their

known distributions. After observing X, the unobserved variables are assigned an a

posteriori distribution according to the relevancy principle from the distribution of the

pivotal variables. These probabilities are called Direct Probabilities. The relevancy

principle asserts the use of inverse probabilities, but it does not require that the a

priori distribution to be a function of only the unknown parameters. Therefore, it

inherently differs from the Bayesian posterior distribution. It also differs from the

frequentist interpretation, such as E.S. Pearson and J. Neyman, because it adopts

a global probability model. In fact, Direct Probabilities are most closely associated

with Fisher’s fiducial distributions and may be viewed as a generalization of Bayesian

posteriors. An explanation comes from the concept of sampling.

Dempster (1963):

Consider a family Fθ of continuous cumulative distribution functions de-

noted F (x, θ).

Definition. Random variables X1, X2, · · · , Xn will be called a random
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sample from one of the family Fθ, or, briefly, a sample from Fθ, provided

that:

i. X1, X2, · · · , Xn, θ and, hence, any functions thereof are jointly dis-

tributed random variables, and

ii. the random variables U1 = F (X1, θ), · · · , Un = F (Xn, θ) are marginally

distributed like n independent U(0, 1) random variables.

For families Fθ where θ takes values in a real continuum, the following

theorem will clarify the general method of construction of a random sam-

ple.

Theorem 3.1. Suppose X1, X2, · · · , Xn constitute a sample from Fθ. Sup-

pose further that the conditional distribution of θ given U1, U2, · · · , Un is

continuous. Then there exists a function g(X1, X2, · · · , Xn, θ) which (a) is

continuously distributed independent of U1, U2, · · · , Un and which (b), to-

gether with U1, U2, · · · , Un, determines X1, X2, · · · , Xn and θ completely.

Conversely, given any function g(X1, X2, · · · , Xn, θ) with property (b), a

random sample X1, X2, · · · , Xn may be chosen by choosing g according

to an arbitrary distribution and independently choosing U1, U2, · · · , Un to

be independent U(0, 1).

The posterior inference may depend on the value of g(X1, X2, · · · , Xn, θ) but not

its distribution. Moreover, as the sample size n grows to infinity, the dependence

becomes increasingly less relevant, just like the importance of the prior in Bayesian

inference and the lack thereof in frequentist inference.

Dempster gives two examples and is not interested in further demonstration or

exploring the reasons to use the relevancy principle. Although the second example

is more relevant to the work in this thesis and will be examined more closely later,
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the first example illustrates these subtle points clearly. Suppose we wish to make

inference on θ, where X is drawn from one of the family of populations with cdf

F (x|θ) = 1 − e−θx. The associated pivotal variable U ,

U = F (x|θ),

as well as 1 − U = e−θx, is distributed as iid U(0, 1). The joint distribution of

U, X, and θ is completed by requiring the distribution of U to be independent of the

distribution of X. Now, let g(X1, X2, · · · , Xn, θ) = X1 be drawn from some random

process and U1 from U(0, 1). Together, X1 and U1 uniquely specify θ, and the rest

of the sample X2, · · · , Xn may be obtained conditionally on θ by drawing U2, · · · , Un

independently from U(0, 1). Then, to make inference on θ from the observed space

(X ×θ), we begin with the joint density of U1, U2, · · · , Un and g(X1, X2, · · · , Xn, θ) =

X1:

P (U1, U2, · · · , Un, g) ∝ P (g(X1)),

then

π(X1, X2, · · · , Xn, θ) = P (g)×
∣∣∣∣ ∂(U1, U2, · · · , Un, g)

∂(X1, X2, · · · , Xn, θ)

∣∣∣∣ .
In particular, for the above example:

π(X1, X2, · · · , Xn, θ) = P (g(X1)) ×

∣∣∣∣∣∣∣∣∣

−θ exp{−θ x1} 0 · · · 1
0 −θ exp{−θ x2} · · · 0
...

...
. . . 0

−x1 exp{−θ x1} −x2 exp{−θ x2} · · · 0

∣∣∣∣∣∣∣∣∣
= P (g)x1 exp{−θx1}θn−1 exp{−θ

n∑
i=2

xi}

which, if g(X1) is independent of θ, yields Γ(n,
∑n

i=1 xi) as a conditional posterior

on θ. Hence, the conditional posterior may depend on the value of g but not on its

distribution since g was chosen to be independent of θ.
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I. Consider a choice of P (g(X1)) ∝ 1, n = 1 and a joint model π(X, θ) =

X exp{−θX}, as before. The posterior distribution, given by the relevancy

principle, is Γ(1, x1). Integrating X out of the joint model yields the marginal

distribution for θ:

m(θ) ∝ Γ(2)/θ2.

It is possible to find a model for the data and its density function such that,

together with m(θ), we yield the same posterior:

f(x|θ) =
π(θ, x)

m(θ)
× P (g(x1)) = x1 exp{−θ x1},

an exponential density.

II. Consider a different choice of P (g(X1)) ∝ λ exp{−λ X}, n = 1, and a joint

model π(X, θ) = P (g(X1)) X exp{−θX}, as before. By the relevancy principle,

a posterior conditional distribution of θ is the same as in I. Integrating over X

yields a different marginal distribution for θ than in I.:

m(θ) ∝ λ

(λ + θ)2
Γ(2).

Consequently, a different model for the data

f(x|θ) = x exp{−(λ + θ)x},

together with the new m(θ), will yield the same conditional posterior inference

as in I.

It is now clear how the joint model on pair (X, θ), arising from the distribution of

the pivotal quantities, need not imply the use of a specific prior. In fact, there need

not exist a known prior distribution and data model that will produce corresponding

direct probabilities (next section). Incidentally, it also brings to light that a Bayesian
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specification of the model need not be unique. Dempster makes a point that it is not

necessary to assume that the distribution of the pivotal variable remains independent

of θ even after observing X, as in the fiducial argument. Additionally, there is no

reason to assume g is only a function of θ, as in Bayesian inference. Direct probabilities

may depend on the choice of g, but they are not dependent on it’s distribution if

g is not a function of θ. The exception is a location family where the choice of

g is irrelevant. In later papers, Dempster (1963), Dempster (1966), and Dempster

(1968), the author furthers his ideas and establishes an original thesis on probabilistic

reasoning in statistics which he calls Generalized Bayesian inference. The Generalized

Bayesian inference, as a special case, includes Bayesian and fiducial arguments and is

an effort to bring the two arguments under the same umbrella. Without choosing a

likelihood and a prior, the relevancy principle makes the posterior inference P (θ|X)

possible directly from the distribution of the pivotal variables in a transformed space

(U , g).

The second example of Dempster closely resembles our situation and warrants

further discussion in the following section.

3.4 Relationship between h(M) and Dempster’s Di-

rect Probabilities

The following paragraph is paraphrased from Dempster (1963): Suppose we are in-

terested in sampling from a family Fθ of all continuous distribution functions F (x, θ)

with θ in the role of an indexing parameter. Let X1, · · · , Xn constitute a sample from

such a family of distributions, and let U1, · · · , Un be a marginally independent set of

pivotal variables. Then, if

Ui = F (Xi, θ) for i = 1, · · · , n,
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by the monotonicity of F for a non-decreasing ordered sample X(1), · · · , X(n),

U(i) = F (X(i), θ) for i = 1, · · · , n (3.3)

holds. Even after conditioning on the entire sample, g = X1, · · · , Xn, the joint density

of U(1), · · · , U(n), n!fU (u(1)) · · · fU(u(n)) remains independent of X1, · · · , Xn. More-

over, U(1), · · · , U(n), together with g, does not uniquely determine the distribution

of θ (condition (b) of Theorem 3.1). Instead, they determine a distribution across

the sub-families in Fθ, which satisfies 3.3. Therefore, the relevancy principle may be

applied across the sub-families of Fθ.

Similarly, we may define the depth of the Mixed Layer M to be in a deterministic

relationship with the interval [dM , dM+1), where dM = max{ i ; di < M, j = 1 · · ·n }.
Then the transformation s, defined as before, is a function of M , but it is independent

of the distribution of M , and, therefore, independent of the distribution of x(dM).

We define two pivotal variables, jointly distributed according to h(M), as

�1(M) = x(d1) − x(dM)

�2(M) =
x(dM ) − x(dM+1)

dM+1 − dM

Transformation s(M) plays the role of g(X, θ), and together with �1(M) and �2(M),

it does not uniquely determine xM (condition (b) of Theorem 3.1). But it does

specify the probability distribution across the sub-families of curves from which

x(d1), · · · , x(dn) was drawn. The sub-families are defined by M ∈ {d1, · · · , dn−1}
and within the n − 1 member sub-family of curves satisfying a particular choice of

�1(M),�2(M) and s(M), all curves are assigned equal probabilities. Direct proba-

bilities are given across the sub-families according to the distribution of �1(M) and
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�2(M). Therefore,

P (dj ≤ M < dj+1| x(d) ) = P{�1(M) = x(d1) − x(dj)}

× P{�2(M) =
x(dj) − x(dj+1)

dj+1 − dj

} × P{s}

= h(�1(dj),�2(dj)) j = 1, · · · , n − 1

We define M to be a continuous variable; in which case, the sub-families are

defined by the intervals rather than the rational points d1, · · · , dn−1. The argument

remains the same because all intervals have equal measure.

3.4.1 Can we use direct probabilities as an approximate like-

lihood?

Consider, again, Dempster’s second example. We cannot assign probabilities within

the subfamily of Fθ satisfying equation 3.3 since we cannot even determine the car-

dinality of the set. However, we can assign direct probabilities to some important

functionals such as quantiles (Dempster, 1963): let xp(θ) denote the pth quantile of

interest

P (X(i1) < xp(θ) < X(i2)) = P{F (X(i1), θ) < p < F (X(i2), θ)}

= P (U(i1) < p < U(i2))

= Ip(i1, n − i1 + 1) − Ip(i2, n − i2 + 1)

= P (Y < i2) − P (Y < i1) where Y ∼ Bin(p = 1/2, n)

= P (Y = i1) (3.4)

where

Ip(a, b) =
Γ(a + b)

Γ(a)Γ(b)

∫ p

0

ta−1(1 − t)b−1dt.

38



These probabilities correspond exactly to those obtained by the fiducial argument,

but so far, it is not known if any Bayesian model would produce the same distribution

(Hill, 1968). Therefore, if a statistician, favoring the Bayes principle, wishes to make

inference on the median given the sample drawn from an unknown distribution, he

is at odds.

Jeffreys (1961, sec. 4.4) proposed using the approximate likelihood:

lik(xp(θ); data) =

(
n

n Fn(xp(θ))

)
1

2

n

(3.5)

where Fn denotes the empirical distribution of the sample and xp(θ) the median. The

extension to other quantiles is straightforward.

Jeffreys’ approximate likelihood is not integrable in θ and is not proportional to

the product of any densities, but Lavine (1995) demonstrates that such a likelihood

will yield a conservative inference. He conceptualizes the conservative inference as

inference based on an approximate likelihood; this distinguishes evidence provided

by the data about the parameters of interest in a “conservative sense”. His proof

relies on the proper probabilistic construction of an approximate likelihood, namely,

the binomial distribution. The proof is based on the asymptotic property that as

n → ∞, regardless of the form for F (x), we can expect 1
n

∑∞
i=1 1xi>xp(θ) → 1

2
.

It turns out that this likelihood is equivalent to treating Dempster’s direct prob-

abilities as a function of θ (Abramowitz and Stegun, 1964, sec 6.7).

Now consider a more hands-on statistician faced with the same problem. He

asks an expert, “How do you judge the median based on this sample?”. The expert

replies, “For any value xp(θ), I consider how many observations are smaller than xp(θ)

and how many are larger.” If xp(θ) is the median, the probability of observing any

single observation greater than xp(θ) should be 1/2. Therefore, the statistician con-

cludes, using the natural partition x(1), · · · , x(n) of xp(θ), that the expert’s probability
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P (X(i1) < xp(θ) < X(i2)) is the probability P (Y = i1) where Y ∼ Bin(p = 1/2, n).

Hence, the pivotal variable the statistician is looking for is Y with a density function

lik(xp(θ); data) =

(
n
i

)
1

2

n

where i =
∑n

i=1 1(−∞,xp(θ)](xi). His posterior distribution is identical to that of

Dempster, and the corresponding approximate likelihood yields conservative infer-

ence.

3.5 Discussion

As a concept, approximating the expert’s posterior belief by a non-parametric func-

tion should not differ from being willing to accept a particular choice of a prior

distribution or a likelihood function. In fact, I would go as far as to say that, apart

from the analytic convenience, it may be more difficult to rationalize a specific choice

of prior than the expert’s posterior. Prior distributions are often chosen out of con-

venience, but also because of their frequentist properties, or other properties such as

group invariance. However, it is not clear how to translate the prior knowledge and

its associated uncertainty into a probability statement when no data is at hand. In

practice, we are not very concerned with this because, if the data and the model are in

agreement even for a moderate sample size, the choice of a prior will have a negligible

effect on the posterior distribution. Agreeably, it is impossible for an ordinary person

to assign consistent probabilities across all partitions of the sample space, regardless

of whether we are talking about priors, sampling density, or posteriors. So, when

parametric models seem to provide a reasonable fit to the data, we can make almost

uncompromising choices. A most elegant form of likelihood are those functions that

can be written as log linear in the parameters, namely, the exponential family. Along

with the exponential family come their useful tools such as sufficient statistics, unbi-
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ased estimators, minimum variance estimators, conjugate priors, etc. This is a large

enough family to cover a good portion of statistical problems. Monahan and Boos

(1992) go as far as claiming that the likelihood (for Bayesian inference) must be a

density of a statistic. These statements inherently assume a good degree of symmetry

between the data and θ.

When the data and the model are not in agreement, the posterior may very well

be sensitive to the choice of a prior, or some parameters may not be well identified. In

that case, the posterior distribution is useless because it reflects no real uncertainty.

Our personal feeling is that in modern day applications, where increasingly complex

issues are modeled using statistical tools, such situations occur more often than we

are willing to admit. Along the line of this thinking, examples in Dempster (1963)

and the discussion in Bayarri et al. (1988) highlight the doubt about what, in fact,

should be considered as a model for the data.

Fisher (1930) coined the term “likelihood”, and he defined it to be proportional to

the joint density of the observed quantities. He called it a “Mathematical Likelihood”

and defined it as a measure of rational belief in the problems of parameter estimation:

... In the problem of estimation we start with a knowledge of the values

of one or more parameters which enter into this form which values would

be required for the complete specification of the population; or in other

words, for the complete specification of the probabilities of the observable

occurrences which constitute our data. The probability of occurrence of

our entire sample is therefore expressible as a function of these unknown

parameters, and the likelihood is defined merely as a function of these

parameters proportional to this probability. The likelihood is thus an

observable property of any hypothesis which specifies the value of the

parameters of the population sampled. Fisher(1935)
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Fisher suggests, indirectly, that to express a rational belief about the population

distribution, we must be able to parameterize the problem in such a way that the

parameter of inference, θ, completely determines the distribution of the observables.

Namely, the likelihood of θ must be proportional to P (x|θ) when viewed as a function

of θ. Nevertheless, Fisher provides no solution to problems where the parameters of

interest do not completely specify the population distribution, which is the framework

in which our example resides. The problem of estimating M is still a valid experi-

ment, and, hence, it is a valid statistical question; we are trying to learn about an

unobservable random variable M , which is best identified by the temperature profile

in the opinion of the expert.

Jeffreys (1961, p.28) speaks of likelihood in more general terms: the likelihood is

the probability P (p|qr, H) where p is the new information, qr is the hypothesis under

consideration, and H is the information already available. The knowledge about

the current hypothesis (M = d) is updated via the Bayes rule by the information

contained in the new data p. However, he says nothing about how to obtain P (p|qr, H)

or what it should be. Of course, the posterior distribution about the hypothesis will

be dependent on the knowledge of P .

On the other hand, a discussion by Bayarri et al. (1988) illustrates that the issue

of which parameters completely identify the probability of the data is not an easy

one. Conditioning on different parameters produces different likelihoods. In fact,

they argue that there is no unique way for distinguishing which variables should be

considered as observable and which ones as parameters in the likelihood, a point

that Dempster’s first example clearly brings home. They also discuss that if the full

Bayesian model is specified, i.e. the joint distribution of all random quantities in

the model, it really does not matter which parameters are part of the likelihood and

which ones are part of the prior. However, Dempster’s second example is the example

42



where the joint distribution of all random quantities is specified, but there does not

exist an equivalent Bayesian model. Bayesian specification requires the knowledge of

π(θ), and as such, it is only a single example for joint specification.

Bayarri et al. (1988) considered an interpretation of the likelihood provided by

Berger and Wolpert (1988):

... θ will be understood to contain all unknown features of the probability

distribution.

They point out that the statement implies that the data should be a deterministic

function of θ. Therefore, the only choice for θ would be a value Y ′ such that Y = Y ′

with probability 1, and 0 otherwise, and, consequently, the ultimate likelihood would

be:

P (Y |θ) ∝ (y|y′) =

{
1 if y = y′

0 otherwise

However, such a likelihood is of little satisfaction. Fisher’s and Berger and

Wolpert’s interpretation of the likelihood both allude to the fact that θ should com-

pletely specify the sampling distribution of the data. Neither of the two definitions

is general enough to incorporate the vast number of fairly complex modern day ap-

plications. I enjoyed this extreme example because it demonstrates that if you knew

how to specify θ so well, you would no longer have a statistical problem.

All that being said, we may not know what the likelihood should be, but we all

must agree that conditioning on the n values of a n+1 dimensional joint distribution

clearly determines a valid conditional distribution for the (n+1)th variable. The only

question one may have is whether h(M) is a proper joint distribution, and the answer

to that is yes, but it is a distribution on a space of (�1(M),�2(M), M, s(M)), which

is a map of the observed space ( x(d1), · · · , x(dn) , M).
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3.6 Results

Let us look at some specific examples showing how the algorithmic likelihood per-

forms. In the top row of figure 3.7, we plotted the observed profile and the cor-

responding likelihood function. As a reminder, we observe a discrete realization of

x(d), but the oceanographer’s posteriors are elicited based on the observed intervals

(di, di+1], i = 1, · · · , n − 1. The interval [d7, d8) is the most likely value for M , and

it is approximately two to three times more likely than the two neighboring intervals,

[d6, d7) and [d8, d9), approximating the oceanographer’s assessment of the probability

distribution. In the following two rows of figure 3.7, we alter the original profile by

changing the value of temperature at depth d8. We take two extreme cases; in the

middle, we change x(d8) to be equal to that of x(d7), which changes the likelihood

function to give minimal weight to the previously most likely interval [d7, d8), and it

increases the likelihood of interval [d8, d9) to be 4.3 times more likely than [d6, d7).

In the bottom row, we decreased the temperature x(d8) to be equal to x(d9). Now

the interval [d8, d9) becomes far less likely, relative to the other intervals, than it was

in the top row.

In figure 3.8, we plotted some of the more ambiguous profiles and their respective

likelihood functions for M . These are examples of profiles where there is more than

one likely value for M . The total probability assigned to the mode values of M in

panels (a), (b), and (d) of figure 3.8 is relative to the surface temperature. Empirical

studies show that waters usually mix within 0.2oC. Therefore, if a change point

appears to occur at 1.5oC lower than the surface temperature, it becomes unlikely

for that mode to be M , see figure 3.8(b). The profile in figure 3.8(c) is unusual in

the sense that temperatures are recorded at uneven but very dense intervals. The

likelihood function remains robust, and it could possibly be smoothed if �2(d) is

defined as the average drop in temperature over z meters below M . We will come
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Figure 3.7: An illustration of the algorithmic likelihood

back to the same set of profiles in the next chapter. Finally, we want to give one

more example that illustrates how the probability assigned to two different modal

values for M is not a function of the distance between the modes, but rather of

their temperatures. We took the profile from figure 3.8(c) and deleted temperatures

between the depths of 90m and 290m, then plotted their likelihood function in figure

3.9. Notice that the relative probability of M from approximately 30m to 360 m

stayed the same.
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Figure 3.8: An illustration of the algorithmic likelihood

3.7 Conclusion

The goal of this section was to establish P (data|M). We illustrated difficulties associ-

ated with the task. As a trade-off between simplicity and interpretability in modeling

the exact (difficult and unknown) distribution, we provide an approximate likelihood

elicited through the expert opinion. We invoked some uncommon ideas: equating the

likelihood with the posterior distribution under the non-informative marginal density

for M , and obtaining the posterior distribution from the pivotal variables. We hope

that our short discussion on the literature addressing the definition of likelihood will

make the reader more at ease with our novel idea.
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Figure 3.9: Illustration of the algorithmic likelihood on a rescaled profile
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Chapter 4

Probability model for Mixed Layer Depth

4.1 Change point model for Mixed Layer depth

In this section, we will contrast the elicited likelihood with a full probability model

for M at a single location in space and time. The observed thermal profile will be

considered a discrete realization from a random function, t : �+ → �
+, with added

white noise. The shape of t is restricted to be a constant, ts, on an interval (0, M ]

and monotonically decreasing on (M, B), where M is a random variable and B is

a previously defined depth, deeper than the Mixed layer. Function t, conditionally

on (ts, tB, M) and rescaled by transformation, is modeled as a random distribution

function via a Dirichlet Process (Lavine and Mockus, 1995). We will be concerned

with one single profile at a time, and, therefore, the prior distributions for (ts, tB)

and M are chosen as bivariate normal and uniform, respectively.
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4.2 Probability model

Let x(d1), x(d2), ..., x(dn) be a discrete realization of temperatures at depths d1, d2, ..., dn,

and let ε(d) be a white noise process representing measurement error.

x(d) = ts + ε(d) for d ≤ M

x(d) = t(d) + ε(d) for M ≤ d ≤ B

One approach in modeling the random function t(d) is through a simple transfor-

mation g : t(d) → [0, 1] such that the transformation g(t(d)) has the properties of

a cdf, and g−1 is readily available. One common Bayesian method for modeling a

random cdf is a Dirichlet Process, DP . Conditionally on ts and tB, consider the

transformation

g(t(d)) =
ts − t(d)

ts − tB
for d ≥ M

= 0 otherwise,

and let

g(t(d)) ∼ DP (α).

The Dirichilet Process (DP), as characterized by Ferguson (1973), is a probabil-

ity measure on an infinite dimensional space P of distribution functions. Consider

a measurable space, (Θ,B), and a finite measure, α, then let a random probabil-

ity measure, P, be a stochastic process indexed by the σ-field of subsets of Θ. If,

for any finite measurable partition B1, · · ·, Bn of Θ, and the distribution of the

random vector (P (B1), · · ·, P (Bn)) has a finite dimensional Dirichilet distribution

Dirn(α(B1), · · · , α(Bn)), then P is said to follow a Dirichlet process, DP (α).

The Dirichilet Process is conjugate, and some of its properties are well known.

The conditional distribution of P, given the data X = x, is, again, DP (α′) where α′
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is the measure defined by α′(B) = α(B) + I{x∈B} for each B ∈ Θ. Additionally, the

prior and posterior marginal distribution, P (X ∈ B), are the probabilities α(B)/α(Θ)

and α′(B)/α′(Θ), respectively.

The location parameter α(Bi)
α(Θ)

is the prior expectation for the shape of g(t(d)),

while α(Θ) has the interpretation of a precision parameter. A large α(Θ) reflects

a strong prior belief in the shape of α(Bi)
α(Θ)

, while a small α(Θ) reflects a weak prior

belief. Sometimes α(Θ) is thought of as a prior sample size.

Lastly, another well known result proved by Ferguson (1973), Blackwell (1973),

and Sethuraman (1994)( in an alternative theorem) is that the Dirichilet Process

assigns probability 1 to discrete distributions. Although, in concept, t(d) is a contin-

uous function, x(d) is observed at finite depths d1, d2, · · · , dn. It is our feeling that

modeling t(d) as a DP will be adequate, in light of flexibility and ease of computation.

4.3 Distribution of the parameters

1. Distribution of errors, ε

The measurement error process, ε(d), is considered to be Gaussian white noise

with scale parameter τε. When the roset is submerged in water, temperatures

are read electronically at small intervals on a scale of just a few cm. How-

ever, because of the memory space available, only the temperatures at larger

intervals, typically around 10m, are stored. Sometimes, only the average tem-

perature of the interval is stored, which accounts for some rounding effect.

Today, the instrument which measures temperature is considered precise, but

measurement error occurs if the instrument is not properly maintained and cal-

ibrated. However, such errors are usually noticeable and taken care of during

the data quality check at the National Oceanographic Data Center (NODC),
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where data quality is performed. Data taken before the 1970s, when the elec-

tronic system was introduced, was collected by nisken bottles and temperatures

were measured by hand.

With that being said, the errors are practically negligible in that their distri-

bution is chosen for convenience, leading us to the likelihood representation:

P (x|ts, tB, · · · ) =

n∏
i=1

[
P (di ≤ M)N(ts, 1/τε) + P (di ≥ M)N(t(di), 1/τε)

]

=
∏

i ; di≤M

N(ts, 1/τε)
∏

i ; di≥M

N(t(di), 1/τε)

2. Distribution of surface and bottom temperatures, ts and tB

The parameters ts and tB are the temperatures of the Mixed Layer and depth

B, respectively, and we will assume independent Gaussian distributions as their

priors:

π(ts) ∼ N(μ0, 1/τ0)

π(tB) ∼ N(μB, 1/τB)

Parameters μ0, μB, τ0 and τB are elicited from the oceanographer based on the

location of the profile in time and space.

3. Distribution of the Mixed Layer depth, M

The depth of the Mixed Layer, M , in this section will be assigned a uniform

distribution:

π(M) ∼ U(0, B)
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4. Distribution of the temperature profile, t(d)

Conditionally on ts, tB and M , the transformed mean temperature function,

g(t(d)) for d ≥ M , is a random function distributed according to a Dirich-

let Process with a location- scale parameter α/||α|| or DP (α/||α||). In this

example, we express the oceanographer’s prior belief and knowledge through

these location and scale parameters of the Dirichlet Process. As discussed in

the introductory chapter, it is widely believed that temperatures cool rapidly

immediately below M and asymptote at 2◦C; therefore, we choose measure α

to be:

α((a, b)) ∝
∫ b

a

λ exp( −λ s ) ds.

The hyper-parameter λ corresponds to k/ω in figure 2.3. Notice that none of

the k/w values approximate the observed temperatures well, but because we

want to emphasize the curvature around M , we choose λ to be 0.01.

A prior precision parameter, α((M, B]) or ||α||, must also be elicited. In the

context of the model, a larger ||α|| will reflect a strong a priori belief in the

appropriateness of the theoretical approximation, while a smaller ||α|| will re-

flect weaker a priori belief. Hence, a small ||α|| will be sensitive to the small

observed temperature perturbations in the mixed layer. We took a training

sample and asked the oceanographer to match her posterior probability with

posteriors of M for various values of ||α||. Overall, ||α|| = 100 gave satisfying

answers. A Dirichilet Process apriori centered around the theoretical approx-

imation will provide us with enough flexibility to include some prior beliefs,

and, at the same time, be very adaptable to the data.

5. Distribution of precision parameters τε, γ, τ0, τB
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Figure 4.1: An illustration of prior precision parameter ||α|| = {10, 100, 1000}

The precision parameter τε is given a conjugate Γ(aε, bε) prior. The preci-

sion parameters τ0 and τB are elicited from the oceanographers. It is expected

that the surface temperature, ts, at a given location in space and time, should

have greater variability than those at depth B; the values are set to 1 and 10,

respectively.

4.4 Sampling

Posterior distributions will be explored through a Gibbs sampler. Some condi-

tional distributions cannot be expressed analytically. In which case, we rely on the

Metropolis-Hastings step.

We will denote mean temperatures by ts = t(d1) ≤, · · · ,≤ t(dn) = tB. Let

i = min{ j; dj ≥ M},then αi = α((M, di]) and αj = α((dj−1, dj]), ∀j > i, and 0
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otherwise. Let t−j = (t1, · · · , tj−1, tj+1, · · · , tn).

1. The conditional distribution [ t(d2), · · · , t(dn−1), M |x, ts, tB, τε, τ0, τB ] ∝ [ M | · · · ]×
[ t(d)|M, · · · ]

[ t(d), M | x, ts, tB, τε, τ0, τB ] ∝
i−1∏
j=2

τε√
(2π)

exp{−1

2
τε(xj − ts)

2}
n−1∏
j=i

(tj |tj−1, tj+1, M, ts, tB) ×

τε√
(2π)

exp{−1

2
τε(xj − tn)2} π(M)

From the Dirichilet Process prior, the conditional distribution of a random

vector (g2 − g1, gi+1 − gi, · · · , gn − gn−1) is Dirn+1−i (αi, · · · , αn). Hence,

gj − gj−1

gj+1 − gj−1
|g−j =

tj−1 − tj
tj−1 − tj+1

|t−j ∼ Beta(αj, αj+1)

Therefore, the conditional distribution

P ( tj | M, tj−1, tj+1 ) × τε√
(2π)

exp{−τε

2
(xj − tj)

2}

is a product of rescaled Beta and Gaussian densities.

For a possible, alternative error distribution, the above conditional distribution

could be sampled by exact methods through successive substitutions; otherwise,

a Metropolis step is required. We are interested in the distribution t|... only

to explore the posterior distribution of M . Since M induces support for the

random function t and, consequently, defines the dimension of the parameter

space, the ordinary Metropolis step does not satisfy Markovian requirements of

MCMC schemes. Instead, we will consider joint sampling of M and t using a

version of Reversible Jump MCMC (Green (1995), and Richardson and Green
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(1997)). Suppose we have a countable collection of models {Mk, k ∈ K}, each

with its own set of parameters θ(k) ∈ �
nk . Let y = (θ(k), k), Ck = {k} × �

nk .

Richardson and Green (1997) propose the construction of a Markov transition

kernel, such that the probability of moving from A to B is equal to that from B

to A for all A, B Borel sets in C by 1:1 “dimension matching” in the proposal dis-

tribution. The idea is to conceive a joint proposal distribution, π(dy)q(y, dy′),

and a density with respect to some symmetric measure ξ on ∪Ck × ∪Ck. Then

the acceptance probability α is the largest when we let:

α(y, y′) = min

{
1,

π(dy′) q(y′, dy)

π(dy) q(y, dy′)

}

In particular, “dimension matching” is accomplished by proposing a value for

an auxiliary variable u′ which has a deterministic relationship with θ′ but in-

dependent of current values of θ. Furthermore, a bijection between pairs (u, θ)

and (u′, θ′) must exist. Then the acceptance probability will be largest when

taken to be

α(y, y′) = min

{
1,

π(θ′, k′|x)P (θ′|k′)q(u′)
π(θ, k|x)P (θ|k)q(u)

∣∣∣∣ ∂(θ′)
∂(θ, u)

∣∣∣∣
}

It should be noted that the Jacobian matrix and “dimension matching” in

Green(1995) arises solely from introducing the auxiliary variables u and u′. Fur-

thermore, it is easy to interpret u and u′ in the context of a discrete number of

change points, but it is not clear what the relationship should be between u and

t, as in our example. In the discussion section of Richardson and Green(1997),

Besag gives a different perspective on Reversible Jump. Suppose you have an

index variable, k, along with parameter vector θ(k) that defines the collection of

target distributions π(θ(k), k|x). If the “universal target distribution” (Besag,
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1987) is defined as:

p(k, θ) = p(k)π(θ(k), k|x)
∏
j �=k

fj(π(θ(j)))

where fj is some distribution with respect to the same measure as π(θ(k), k|x),

then the pair (k, θ) lies in the space of the fixed dimension, and there is no

need for introducing auxiliary variables. It is also not necessary to be able to

evaluate fj because we can construct a proposal such that the fj terms cancel

out. Similar ideas have been proposed independently by Godsill (1998) and

Dellaportas et al. (2002).

Let the current model be k(M), and define θ(k) = tM = tMi · · · tMn , θ = tM ∪t−M .

Then, let the proposed model be k(M∗), and define θ(k∗) = t∗M = t∗i∗ · · · t∗n such

that θ∗ = t∗M ∪ t∗−M . Let t−M denote all tM ′(d) such that M ′ 
= M . Then the

acceptance probability α is:

α =
π(M∗, t∗M |y)π(t∗−M |t∗M∗ , M∗) × q(M, t|M∗, t∗)
π(M, tM |y) π(t−M |tM , M) × q(M∗, t∗|M, t)

=
π(M∗, t∗M∗|y)π(t∗−M |t∗M∗ , M∗, y) × q1(M) q2(tM |M, t∗M) q3(t−M |tM , M)

π(M, tM |y)π(t−M |tM , M, y) × q1(M∗) q2(t∗M |M∗, t) q3(t∗−M |t∗M∗ , M∗)

=
π(M∗, t∗M |y) × q1(M) q2(tM |M, t∗M∗)

π(M, tM |y) × q1(M∗) q2(t∗M |M, t)
,

with the second equality holding, if we choose q3(t
∗
−M |t∗M∗ , M∗) = π(t∗M∗|t∗−M∗, M∗, y).

Notice that we only need to make the choice in concept and never actually sam-

ple from this distribution.
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Choose the proposal densities

q1(M) ∝ c 1M ∈ (0,B)

q2( t∗ |M, t∗, y) =
i∗∏

j=n

q2j
(t∗j |tj−1, t

∗
j+1, M, y)

where for each j, q2j
(t∗j |tj−1, t

∗
j+1, M, y) has the density of a normal random

variable N(xj , 1/τε)1t∗j∈(tj−1,t∗j+1).

The acceptance probability can be calculated as:

α = min

{
1,

exp{−1
2
τε

∑i∗−1
j=1 (xj − t∗j )

2 − 1
2
τε

∑n−1
j=i∗(xj − t∗j)

2}
exp{−1

2
τε

∑i−1
j=1(xj − tj)2 − 1

2
τε

∑n−1
j=i (xj − tj)2}

×
∏n−1

j=i∗−1[t
∗
j − t∗j+1]

αj−1

[ts − tB]
Pn−1

j=i∗−1
αj−1

×
[∏n−1

j=i−1[tj − tj+1]
αj−1

[ts − tB]
Pn−1

j=i−1 αj−1

]−1

×Γ(
∑n−1

j=i∗−1 αj)∏n−1
j=i∗−1 Γ(αj)

×
[

Γ(
∑n−1

j=i−1 αj)∏n−1
j=i−1 Γ(αj)

]−1

×
√

(2π)−(n−i+1)τn−i+1
ε exp{−1

2
τε

∑n
j=i(tj − xj)

2}√
(2π)−(n−i∗+1)τn−i∗+1

ε exp{−1
2
τε

∑n
j=i∗(t

∗
j − xj)2}

×
∏n−1

j=i−1[Φ(t∗j−1) − Φ(tj+1)]
−1∏n−1

j=i∗−1[Φ(tj−1) − Φ(t∗j+1)]
−1

}

2. [ ts, tB| · · · ]
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The conditional distribution of ts, tB| · · · is also not available in the closed form:

[ts, tB| · · · ] ∝

exp{−τε

2

i−1∑
j=1

(xj − tj)
2} exp{−τ0

2
(ts − μ0)

2}

exp{−τB

2
(tB − μB)2} exp{−τε

2
(xn − tB)2}

×
[
ti − tn−1

ts − tB

]Pn−1
j=i αj

×
[

ts − ti
ts − tB

]αi−1−1

×
[
tn−1 − tB
ts − tB

]αn−1

In this case, the proposal distribution can be any bivariate distribution. How-

ever, the acceptance rate will depend on how closely the proposal distribution

approximates the target distribution. Notice that the density on the first two

lines of the above equation is easily calculated as a product of two independent

Gaussian distributions:

N

(
τ0μ0 + τ0

∑i−1
j=1 xj

τ0 + (i − 1) × τε
,

1

τ0 + (i − 1) × τε

)
× N

(
τBμB + τεxn

τB + τε
,

1

τB + τε

)

As a proposal distribution we use truncated normals:

t∗s ∼ N( μ1, σ
2
1 ; t∗s > ti)

t∗b ∼ N( μ2, σ
2
2 ; t∗b < tn−1)
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which leads to the acceptance probability:

α = min

{
1,

exp{−τε

2

∑i−1
j=1(xj − t∗s)

2 − τε

2
(xn − t∗B)2}

exp{− τε

2

∑i−1
j=1(xj − ts)2 − τε

2
(xn − tB)2}

×exp{− τ0
2
(t∗s − μ1)

2 − τB

2
(t∗B − μ2)

2}
exp{− τ0

2
(ts − μ1)2 − τB

2
(tB − μ2)2}

×
[
ti − tn−1

t∗s − t∗B

]Pn−1
j=i αj

×
[

t∗s − ti
t∗s − t∗B

]αi−1−1

×
[
tn−1 − t∗B
t∗s − t∗B

]αn−1

×{
[
ti − tn−1

ts − tB

]Pn−1
j=i αj

×
[

ts − ti
ts − tB

]αi−1−1

×
[
tn−1 − tB
ts − tB

]αn−1

}−1

×
exp{− 1

2σ2
1
(t∗s − μ1)

2 − 1
2σ2

2
(t∗B − μ2)

2}
exp{− 1

2σ2
1
(ts − μ1)2 − 1

2σ2
2
(tB − μ2)2}

}

3. The conditional distribution for the precision parameter [ τε| · · · ]

Since the precision parameter has been assigned conjugate priors, its conditional

distribution is analytical and can be sampled within the Gibbs algorithm. The

full conditional distribution for the precision parameter is:

τε| · · · ∼ InvGa

(
a +

n

2
, b +

1

2
[

i−1∑
j=1

(xj − ts)
2 +

n∑
j=i

(xj − tj)
2 ]

)
.

4.5 Results and Discussion

In this section, we will show results for the posterior distribution of M and compare it

to the performance of the algorithmic likelihood introduced in the previous chapter.
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Figure 4.2: a) observed profile, b) algorithmic likelihood, c) MCMC trace-plot for
the probability model d) posterior distribution for M e) posterior density estimate
for the surface temperature f) posterior density estimate for the temperature at 500m

Consider the profile in figure 4.2. Because of the large difference in temperatures

between d6 and d7, the oceanographer concludes, with high certainty, that the waters

are mixing to the depth of d7. She also assigns a 1 in 10 chance that the depth

of the Mixed Layer is in the interval [d5, d6) since x(d6) is cooler than the surface

temperature. This profile identifies M clearly, and the posterior probability is de-facto

split between these two intervals in the ratio of 1 : 10. The posterior probabilities,

according to the algorithmic likelihood, and the change point model are found in

panels (b) and (d) of 4.2. Panel (c) of 4.2 shows the MCMC trace plot of the samples

from the posterior. The chain mixes well, but a great deal of posterior mass is on
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Figure 4.3: a) observed profile, b) algorithmic likelihood, c) MCMC trace-plot for
the probability model d) posterior distribution for M e) posterior density estimate
for the surface temperature f) posterior density estimate for the temperature at 500m

the interval [d5, d6) rather than [d6, d7). The explanation resides in the choice of

prior precision parameter ||α|| which favors the change point at even small drops of

temperatures below M . A different choice of ||α|| may favor different intervals. In

particular, a larger ||α|| would give more probability to interval [d6, d7), but it also

may have an effect on the mixing of the chain. Previously, we commented that the

choice of α had a relationship to a thoretical approximation. However, there is no

particular justification for the value of ||α||.
Next, let us consider the other three profiles previously discussed in Chapter 3,

now plotted in figures 4.3, 4.4 and 4.5. In all three of these profiles, the oceanographer
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the probability model d) posterior distribution for M e) posterior density estimate
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makes an assessment that there are three distinct modes of posterior distribution.

She divides her belief according to the difference in temperatures from the surface

and the rate of cooling immediately below the depth M . In all three examples, the

change point model produces a unimodal posterior, which is due to the choice of the

likelihood and L2 loss function in the estimation of M . We will use a likelihood ratio

statistic in two extreme cases to illustrate the point. Consider the profile in figure

4.4:

Let current M ∈ (d3, d4] and let t = (x1, x1, x1, x36, · · · , x49)

Propose M∗ ∈ (d36, d37] and let t∗ = (x5, · · · , x5, x37, · · · , x49)
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Then the likelihood ratio is

=
e−

1
2σ2

Pn
i=1(t(di)∗−x(di))2

e−
1

2σ2

Pn
i=1(t(di)−x(di))2

,

which is approximately equal to

c e−
1

2σ2

Pn
i=1(t(di)∗−t(di))2 ,

and as n → ∞, the likelihood ratio is roughly

c e−
1

2σ2 ×(d4−d1)∗(x(d1)−x(d5))2 < ∞
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Therefore, the likelihood ratio is directly dependent on the distance from the surface

to the first modal value for M , i.e. the distance (d4 − d1).

Now, consider the same current model and propose

M∗ ∈ (d36, d37] and t∗ = (x1, · · · , x1, x37, · · · , x49)

Then the likelihood ratio is

=
e−

1
2σ2

Pn
i=1(t(di)

∗−x(di))
2

e−
1

2σ2

Pn
i=1(t(di)−x(di))2

,

which is approximately equal to

c e−
1

2σ2

P36
i=4(x(d1)−x(di))

2

.

Once again, as n → ∞, the likelihood ratio is roughly

c e−
1

2σ2 ×(d36−d1)∗(x(d1)−x(d36))2 .

Again, this is directly dependent on the distance between the modes. As two modes

move further apart, it becomes more difficult to capture both of them using this

model. As an illustration, we deleted observations between 100m and 300m (as in

chapter 3) from the profile in figure 4.4. When the oceanographer estimates her pos-

terior belief, she distributes the probability to the modes according to the change in

temperature from the surface and the rate of decay immediately below M . Conse-

quently, her posterior does not change, it only shifts the second mode by 200 deleted

meters (see figure 4.6). The resulting posterior is now bimodal with mass on the

two modes: one narrow in the range of 10 − 25 meters and the other in the range of

90 − 200 meters.

A more practical issue of computational efficiency must also be considered. The

overall acceptance rate in these computations varied between .1% and 10%, so it
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is necessary to run the chain for many iterations. We see that the four chains in

figures 4.2(c), 4.3(c), and 4.4(c) all appear to mix reasonably well. Because it is very

difficult to move the chain out of a saddle point, we may see behavior similar to that

in figure 4.5(c). It may be acceptable if it happens every once in a while, but it would

become infeasible to monitor the chains for each profile separately when the model

is extended to the spatio-temporal domain.
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Chapter 5

Space time model

5.1 Spatio-temporal model

As discussed in the introduction, the season’s annual cycle forces a change in the

temperature profile for each specific location in the ocean in addition to changing the

depth of the Mixed Layer. Temperature profiles are also interdependent due to their

proximity in space. In this section, we will introduce a spatio-temporal model for M .

We will denote the observed temperatures, X(s, t, d) = x(s, t, d), as a function of

yearday, space, and depth. Let s = (s1, s2) denote latitude and longitude, respec-

tively. It is reasonable to assume that the unobserved variable M(s, t), defined by

x(s, t, ·), is a smooth function of space and time. Therefore, apriori, we say M(s, t) is

a noisy realization from a zero mean Gaussian Process and a long term trend whose

posterior distribution will be estimated by the data. The hierarchical specification of

the model is:

lik( M(s, t) ; X(s, t, ·)) ∝ h( �1( M(s, t) ), �2( M(s, t) ) )

M(s, t) | γ(s, t) ∼ N(γ(s, t), σ2
ε I )

where

γ(s, t) = Y α + Zβ + μ(s1, t)
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and

μ(s1, t) ≡
∫

k(s1 − ω, |t− υ| mod C) ξ(ω, υ) d(ω, υ)

In the specification above, h(M) is as before, Y is a matrix of population re-

gressors, and α is the vector of corresponding population parameters. Matrix Z is

a design matrix, linking factors j = 1, · · ·J to the response variables M , and β is

a vector of corresponding factor-specific parameters. The process μ(s1, t) accounts

for a latitude dependent, inter-annual seasonal cycle and is modeled as a Gaussian

process by convolution of a white noise latent process, ξ, and a Gaussian kernel, k.

The latent process ξ has latitude and yearday coordinates ω and υ, respectively. The

kernel function k is a separable, two dimensional Gaussian kernel,

k(s1 − ω, |t− τ | mod C) = ks1(s1 − ω) × kt(|t − υ| mod C),

with C being the circumference of a circle representing the length of a seasonal cycle

(365 days). Such construction yields a periodic, inter-annual seasonal cycle μ(s1, ·)
smoothly varying with the latitude coordinate s1.

On a large scale, at any given time in the ocean, temperatures, as well as M ,

may be regarded as realizations of random processes. As long as we stay away

from the large currents and coastal regions, these quantities are envisioned to have

a similar correlation structure at all spatial locations. On a smaller scale, there are

other sources of variation due to external forcing such as hurricanes, trade winds,

precipitation, etc. We don’t have the data on such activities, but since research

cruises typically last no longer than a few weeks and cover relatively small areas, we

believe short term deviations may be accounted for by an extra variation parameter,

βcruise, one for each cruise.

Thousands of data points have been made available over the years, but still inher-

ent in the sampling design is the difficulty distinguishing between the trend and the
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noise. Expeditions typically take measurements along a direct linear course within

small temporal windows, always making the information available in only one out

of three dimensions. Therefore, in this study, we are concerned with exploring the

relationship between the covariates and response variables rather than estimating

properties such as the smoothness of the random process, variogram parameters,

etc., which are difficult to estimate given the restrictions of the sampling design. By

regarding the design matrix Z as a general design matrix, we can explore decadal

trends, trends by different latitude and longitude bands, nonlinear trends, etc.

5.2 Convolution approach

In general terms, we say that the random process Z(s) is a Gaussian process if, for n ≥
1, any finite dimensional vector, Z(s1, s2, · · · , sn), is distributed as MV Nn(μ(s), Σ).

In practice, we have a single realization of a random process, and Σ is not known.

Therefore, in order to estimate parameters of the mean process μ(s), further restric-

tions are needed. The most common restriction considered is the stationarity of the

stochastic process. We say that a process is strictly stationary if Z(s) satisfies: for

{s1, · · · , sn} ∈ �
d and any h ∈ �

d for d ≥ 1,

P (Z(s1 + h), · · · , Z(sn + h)) = P (Z(s1), · · · , Z(sn))

A less restrictive type of stationarity, referred to as weak stationarity, is defined by

the first two moments of Z(s). The process is said to be weakly stationary if it has a

constant mean, μ(s) = μ, and the covariance function, Cov(Z(s), Z(s′)) = C(s− s′),

depends only on the separation vector and not the direction. Strong stationarity, by

definition, implies weak stationarity. The converse is also true for Gaussian Processes.

For C to be a proper covariance function, it must be a positive definite, i.e. it must
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have the following representation: for any complex or real valued c1, · · · , cn

∑
i,j

ci cjCov(Z(si), Z(sj)) =
∑
i,j

ci cjC(si, sj) ≥ 0.

The most common approach to obtain a positive definite function, C(h), is to take a

Fourier transform:

C(h) =

∫
�d

exp iωThF (dω) (5.1)

of a positive finite measure, F . If F (ω) is absolutely continuous ( i.e. has density f(ω)

with respect to the Lebesgue measure), then f(ω) = F (dω)/dω is called spectral

density. Bochner’s Theorem ( Gihman and Skorohod (1974) pg. 208) states that, in

fact, a spectral representation of a covariance function is a necessary and sufficient

condition for C(si − sj) to be a positive definite. A convolution of any two valid

covariance functions leads to yet another valid covariance function. Let C1 and C2

be two covariance functions with a spectral representation as in 5.1 and with spectral

densities f1(ω) and f2(ω), respectively. Then,

C(h) =

∫
C1(h− t) C2(t)dt

is also a covariance function since it has the following spectral representation:

f(ω) =

∫
exp{−iωTh} C(h) dh (5.2)

=

∫
exp{−iωTh}

∫
C1(h − t) C2(t) dt dh (5.3)

= f1(ω) × f2(ω)

The convolution approach for constructing a Gaussian process is based on noticing

that the kernel convolution of a Gaussian white noise process

Z(h) =

∫
�d

C1(h− t)ξ(t)dt
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yields exactly the covariance function

C(h) =

∫
C1(h− t)C1(t)dt

for the Gaussian process Z(h). Moreover, since the inverse Fourier transform, i.e. the

spectral density of process Z(h), is a square root of known spectral density f1 = f2,

it is possible that for some (the most commonly used) covariance function, C(h), we

compute the kernel function C1 = C2 by:

C1(h) ∝
∫

exp iωh
√

f(ω)dω

For many of the important members of the Matern class of covariance functions,

there is a one to one correspondence with the kernel function. The analytic form is

available for exponential and Gaussian correlogram.

5.3 Model specification

Let μ(s1, t), in latitude × yearday domain, be defined as before:

μ(s1, t) ≡
∫

k(s1 − ω, |t− υ| mod C) ξ(ω, υ) d(ω, υ) (5.4)

with

E(μ(s1, t)) = 0

Corr(μ(s1, t), μ(s
′
1, t

′
)) =

∫
ks1(s1 − ω) ×

kt(|t′ − υ| mod C) d(ω, υ)

After observing the data, parameters of the process ξ(ω, υ) must be estimated so that

the integral in 5.4 is replaced by summation. Let h index a discretized process, ξ, in
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Figure 5.1: An illustration of the covariogram induced by the choice of a precision
parameter in a Gaussian kernel.

latitude-yearday dimension, then

μ(s1, t) ≈
H∑

h=1

ks1(s1 − ωh)k
t(|t − υh| mod C) ξh (5.5)

= K ξ (5.6)

The entries of a kernel weight matrix K must be normalized such that the diagonal

elements of the covariance Corr(μ(s1, t), μ(s
′
1, t

′
)) are unity. Now we can see how the

discretization of ξ leads to computational efficiency because the number of parameters

which need to be estimated depends on H rather than sample size. Similar to any

smoothing procedure, care needs to be taken as to how the process is discretized.

Poor choices may lead to over-smoothing or under-smoothing.
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Figure 5.2: An illustration of the covariogram induced by the choice of a precision
parameter in a Gaussian kernel in the temporal domain.

To complete the model specification, we choose prior distributions:

α ∼ N(0,B0)

β ∼ N(0,B1)

ξh ∼ N(0, σ2
ξ ) h = 1, · · · , H

1/σ2
ε ∼ Γ(aε, bε)

The full conditional distributions are available for all parameters except for M .

Therefore, the efficient method to sample from the posterior distribution is via the

Gibbs sampler with a Metropolis-Hasting step for M Gelfand et al. (1990),Gilks et

al. (1993).
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5.3.1 Sampling

I. Metropolis-Hastings step: Conditionally on current values of the mean process

γ(s, t), we propose a new move

M∗
i ∼ U [min(di), max(di))

and accept the move Mi → M∗
i , with probability α, where

α = min

{
1 ,

h(�1(M
∗
i ),�2(M

∗
i )) exp{− 1

2σ2
ε
(M∗

i − γi)
2

h(�1(Mi),�2(Mi)) exp{− 1
2σ2

ε
(Mi − γi)2

}

for all i = 1, · · · , n.

II. The overall mean parameter α:

[α| · · · ] = N(S−1Y T ε0, S
−1)

where

S = B0
−1 + Y T Y /σ2

ε

and

ε0 = M−
∑

j

Zjβj

III. Parameters β, for each factor j = 1, · · · , J , taking level p = 1, · · · , P :

[βpj| · · · ] = N(S−1
pj

∑
i:P (i,j)=p

Zpjεij/σ
2
ε , S

−1
pj )

with the sum being over all i with factor j at level p, and

Spj = B−1
1 +

∑
i:P (i,j)=p

ZT
ij Zij/σ

2
ε

and

εij = Mi − yT
i α −

∑
g:g �=j

ZjgβP (i,g)

where the sum is over all factors g except j.
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IV. The latent process variables ξh for h = 1, · · · , H :

[ξh| · · · ] ∼ N(S−1KT
h εT

h /σ2
ε , S

−1)

where

S =
1

σ2
ε

KT
h Kh +

1

σ2
ξ

and

εh = M − Y α − Zβ −
∑

KT
−hξ−h

with the sum being over all g = 1, · · · , H except for h.

V. Variance parameter σ2
ε :

[1/σ2
ε | · · · ] ∼ Γ(aε +

n

2
, bε +

1

2

n∑
i=1

(Mi − γi)
2)

VI. Additionally, for identifiability between μ(s1, t) and α, at each iteration the

process μ is normalized such that for all Kh, h > 0:

n∑
i=1

Ki
hξh = 0

.

5.4 Analysis and results

We created three scenarios in the analysis of the ocean’s Mixed Layer.

I. A common intercept and slope for the annual effect among all observations,

and the design matrix Z linking each cruise to the response variable M .

II. A common intercept and Z linking the year to the response variable for four

different latitude bands.
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III. Latitude band or decade specific intercept term.

We applied all three scenarios to the two specified regions in the ocean: a sample from

the subtropical gyre and a sample from the subpolar gyre. Additionally, to make a

comprehensive statement on the influence of increased heat flux at the surface of the

ocean, we applied a similar analysis to the observed temperatures on specific cross-

sections of the ocean. Specifically, we conducted an analysis on temperatures at

0, 50, 100, 250 and 500 m for the subtropical gyre and on the temperatures at 0, 100,

and 500 m for the subpolar gyre.

5.4.1 Subtropical gyre

There were 5,820 thermal profiles used in the analysis of the subtropical gyre. We

used a Gaussian kernel with a standard deviation of 175 km in space, on a grid

discretized every 100 km and a standard deviation of 25 days in time, with the latent

grid discretized by 14 days. Refining the discretization of the latent process is limited

by the available computer power.

Let us begin the analysis with what was started in scenario I: modeling the long

term trend as linear in year and additive to the space-yearday process, which accounts

for latitudinally dependent - seasonal variability. Posterior density for the slope and

intercept are plotted with black lines in figure 5.3, indicating that the depth of the

Mixed Layer, on average, is shoaling .15m per year or 7.5m over the past five decades.

We introduced an additional variable cruise effect which is constrained to a zero mean

within each year to account for the unbalanced sampling design and short temporal

scale variability associated with each cruise. The resulting posterior distribution for

each parameter is found in red in figure 5.3. The mean of the intercept parameter

has increased by 6m to 53.03m, the amount equal to the previously estimated change

over four decades, while the slope parameter has mostly changed in the variance.
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Figure 5.3: Posterior densities for the common mean and annual effect in the sub-
tropical gyre.

The correlation between the Markov chains for slope and intercept is negligible, but

the model with the cruise effect exhibits much more autocorrelation in the MCMC

samples. In figure 5.4, we plotted the posterior means of the cruise effect vs year by

latitude bands, starting with 34−38N in the top left panel, 29−34N in the top right

panel, 24−29N in the lower left panel, and 20−24N in the lower right panel. Notice

that at lower latitudes, more cruises have a negative contribution than positive, which

explains the change in the intercept parameter. Additionally, large values of cruise

effect are found in the months of March and April, when rapid transitions between

cold and warm months take place. However, it is more important to note that by

accounting for cruise effect the slope parameter changes to −.25 m/year, and hence,

M is estimated to have shallowed by 12.5 m over the last five decades.
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Figure 5.4: Posterior means for the cruise effects in the subtropical gyre given the
latitude band. Top down by row: 34-38N, 29-34N, 24-29N, 20-24N.

As mentioned earlier, we performed a similar analysis for the temperatures at

different depths. The model is as follows:

T (s, t, d) | γ(s, t) ∼ N(γ(s, t), σ2
ε I )

where

γ(s, t) = Y α + Zβ + μ(s1, t)

and

μ(s1, t) ≡
∫

k(s1 − ω, |t− υ| mod C) ξ(ω, υ) d(ω, υ)

where T (s, t) represents the observed temperature at depth d. The posterior densities

for the intercept and the slope are plotted in figure 5.5. It is interesting to note that

while the trend in temperature is barely noticeable at the surface, the temperature at
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Figure 5.5: Posterior densities for the common mean and annual effect in the sub-
tropical gyre for temperatures at depths 0, 50, 100, 250 m. The bottom row includes
cruise effects.

depths 50m and 100m are cooling: .01oC and 0.008oC per annum, respectively. On

the other hand, at 250m, we observe a significant warming trend of 0.016oC per an-

num and observe no trend at 500m. These results are peculiar, and may be explained

if the ocean is absorbing the heat to deeper levels than expected, specifically to 250m,

far below the depth of the Mixed Layer. The cooling at depths 50m and 100m may

then be explained by a new thermocline crossing over the old one somewhere between

100 and 250 meters.

In the second scenario, we investigate annual trends by latitude bands. The design

matrix Z now links the depth of the Mixed Layer M to an annual trend for latitude

regions 20− 24N , 24− 29N , 29− 34N , and 34− 38N . The posterior distributions of

the overall mean and the slopes of the annual trends are plotted in figure 5.6. At first
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Figure 5.6: Posterior densities for the overall mean and slopes for the trends of the
Mixed Layer depth by latitude bands in the subtropical gyre.

glance, it appears awkward that two neighboring regions, 29 − 34N and 34 − 38N ,

are so different. This may be due to the influence of a strong North Atlantic current.

We begin to observe the influence around 34N , which is also the reason we chose this

latitude as one of the cut-off points. To better explain changes in the depth of the

Mixed Layer, we again look into temperature trends at different depths. Posterior

distributions for the overall mean and slopes are plotted in figure 5.7. Interestingly,

the most northern region gives the strongest signal of warming at 250m. This is

also the region that is associated with the strongest cooling at the surface and the

strongest shoaling of M . In the southern most region, 20 − 25N , the entire profile

has warmed, most at the surface and least at 250m. It appears that the increased

heat at the surface is transported to deeper waters but at a much slower rate than
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Figure 5.7: Posterior densities for overall mean and slopes for temperature trends
at depths 0, 50, 100, 250 m by latitude bands in the subtropical gyre.

in the north. This may be caused by the larger gradient in temperature between

the surface and 250m. The gradient is smaller in the most northern latitude band

so the waters mix faster under the increased heat forcing at the surface. After the

waters are mixed, the new, shallower Mixed Layer is formed. The shoaling of the

Mixed Layer in the southern region is accompanied by significantly less warming at

the deeper levels, leading us to conclude that the mixing of waters is probably not

complete (see the bottom right panel of figure 5.7).

As a third scenario, we linked M to four different means, corresponding to four

different latitude bands and to different decades. The results are listed in table

5.1. The posterior mean for early years, before 1970, is deeper than for more recent

decades, as previous analysis suggested. It is also interesting that the latitude bands
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Lat. band μ̃

34-38N 59m
29-34N 39m
24-29N 45m
20-24N 55m

Decade μ̃

<70 57.7m
70’s 39.85m
80’s 48.4m
90’s 48.1m

Counts per decades
Lat.band <70 70’s 80’s 90’s

34-38N 564 338 254 92
29-34N 582 943 357 579
24-29N 107 894 495 48
20-24N 180 33 166 175

Table 5.1: Posterior mean summaries by latitude band and decade in the subtropical
gyre.

which showed the strongest shoaling of M appear to have, on average, a deeper Mixed

Layer than the others, suggesting a possible sampling bias. All regions are sampled

in relatively similar proportion within a year, with the exception of 34N − 38N .

This region was sampled heavily in the summer months, resulting, perhaps, in an

artificially low average value for M .

In conclusion, in the subtropical gyre, although at different rates in different sub-

regions, we are observing a shoaling of the Mixed Layer. One common theme is

that larger rates of shoaling of the Mixed Layer are followed with a slight cooling at

the shallower depths and strong warming at a depth of 250m. This indicates that,

although the mixing of the waters is taking place at different rates, the heat is being

absorbed to levels far deeper than M .

5.4.2 Subpolar gyre

There were 2,518 thermal profiles used in the analysis of the subpolar gyre. Inter-

estingly, the Mixed Layer appears to shoal at approximately the same rate as in the

subtropical gyre but with greater uncertainty. Introducing cruise effects in the sub-

polar gyre increases the rate of the long term trend as well as the uncertainty about

the rate, see figure 5.8. The shoaling of M seems counter intuitive to the oceanog-

rapher because scientists have reported the observed cooling of the surface waters

in previous studies. Cooling at the surface should deepen the mixing of the waters.
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However, this is not what we are observing. In fact, as illustrated in figure 5.9, we

see a weak warming trend at the surface and a more significant warming trend below

the surface. Therefore, the long term trend of M , in relation to temperature changes,

is consistent with that of the subtropical gyre.
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Figure 5.8: Posterior densities for the common mean and the annual effect in the
subtropical gyre.

In the subpolar gyre, on average, the posterior means of the cruise effects are

larger at higher latitudes and show different trends in different latitude regions (see

figure 5.10).

In the subpolar gyre, it is much more complicated to explain the changes in M

relative to the changes in temperature. Surface waters in this region move counter-

clockwise, and the four latitude bands may be strongly influenced by different sources.

Latitude band 45−48N is influenced by the strong North Atlantic current, 48−51N
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Figure 5.9: Posterior densities for the common mean and the annual effect in the
subpolar gyre for temperatures at depths 0, 100, 500m.

by the cold Labrador current, and 54−58N by the cold currents from the North Sea.

At the lowest latitude band, 45−48N , where the strongest surface warming is taking

place, we have mixing of the fresh subpolar waters with warmer subtropical waters

due to the North Atlantic current. These waters are the least dense so the warming

of the profile occurs quickly, but because of the high temperature gradient between

the surface and the deep waters, deep mixing takes a long time. Therefore, the new

Mixed Layer is shallower than before. The posterior summaries for temperature and

M indicate that similar changes are occurring at 51− 54N . Waters have warmed at

all depths, and the Mixed Layer has shoaled, leading us to conclude that the waters

have also not finished mixing. In the regions of 48N − 51N and 54− 58N , no signifi-

cant change in the depth of the Mixed Layer is observed. Additionally, in the region
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Figure 5.10: Posterior means for the cruise effects in the subpolar gyre by latitude
bands. Top down by row: 54-58N, 51-54N, 48-51N, 45-48N.

48N − 51N , temperatures are notably cooling at all depths. Here, the cold waters of

the subpolar gyre meet the warmer, less dense waters brought by the North Atlantic

current, which causes the dense waters to sink. Although changes in M , relative to

the changes in temperatures, may be interpreted consistently, it is not clear why the

trend strengths do not vary smoothly with latitude. One possible explanation is that

between 51N and 54N there exists some very cold, deep currents; this creates a large

gradient in temperatures which, in turn, results in slow mixing. By looking at the

distribution of temperatures in the subpolar gyre in figure 5.13, this could very well

be true. Temperatures in the region 51 − 54N have a well pronounced and larger

gradient of temperature decline relative to that of the neighboring region, 54− 58N .
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Figure 5.11: Posterior densities for the overall mean and slopes for the trends of
Mixed Layer depth by latitude bands in the subpolar gyre.

5.4.3 Goodness of fit

An obvious difficulty that results from not knowing the distribution of the data,

f(x(d)|M), is that we cannot assess the goodness of fit using fitted values because

there is no one-to-one map between M and the distribution of x(d). We can make

predictions and cross validations about M , but we don’t have an estimator to compare

it with. So to begin assessing the goodness of fit, we plot the likelihood function for

each observed profile. In figure 5.5(a)-(j), we plotted an image of the likelihood

function for all observed profiles by month and ordered them by year. The likelihood

function for each profile is scaled by it’s own maximum value, so that the darkest

stripe for each profile represents the depths of the maximum likelihood. For better

visibility, we added a purple dot at the lowest depth of these intervals and a yellow
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Figure 5.12: Posterior densities for the overall mean and slopes for temperature
trends at depths 0, 100, 500 m by latitude bands in the subpolar gyre.

dot at the lowest depth of the intervals with the second largest likelihood. The blue,

red, and green dots in figure 5.5 denote the posterior mean, approximate median,

and the approximate mode, respectively. Overall, we see that the posterior mean

has adapted well to the likelihood function. The largest discrepancies are found

in the months of March and April; the months where rapid changes may occur.

In < 2.9% of the observations taken between January and April, the maximum

likelihood estimate of M is larger than 300m, while the posterior mean never dips

below 250m. Although a relatively small number of observations fit this criteria, they

potentially have a large influence on the posterior mean and the estimates of other

parameters. To understand whether or not these observations are outliers, we need

to understand how much information is contained in the maximum likelihood value
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Lat. band μ̃

54-58N 78.7m
51-54N 101m
48-51N 70.7m
45-48N 58.6m

Decade μ̃

<70 88.7m
70’s 92.7m
80’s 55.6m
90’s 55.6m

Counts per decades
Lat.band <70 70’s 80’s 90’s

54-58N 85 11 30 240
51-54N 105 216 207 171
48-51N 40 53 143 148
45-48N 92 144 547 286

Table 5.2: Posterior mean summaries by latitude band and decade in the subpolar
gyre.
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Figure 5.13: Distribution of temperatures with latitude in the subpolar gyre.

estimator, and we need to understand the information of the neighboring profiles in

space. The likelihood function may have one, two, or more depth intervals with a

high likelihood. Moreover, the high likelihood regions may be close to or far from

each other. To address these issues, we evaluated the likelihood function at sampled

values of M , and then we compared it to the distance between the posterior mean

(μ̃) and the minimum depth of the maximum likelihood interval (μ̂) in figure 5.10.

The likelihood values have, again, been normalized by their own maximum so that

the likelihood value is between zero and one for each profile. The size of the points in
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figure 5.10 are proportional to the conditioning variable listed in the legend in each

of the six panels. As a conditioning variable, we used :

1. the distance between μ̂ and the depth of the second largest likelihood value

(μ̂2),

2. the distance between μ̃ and the depth of the second largest likelihood value

(μ̂2),

3. the value of the second largest likelihood (lik(μ̂2)) relative to the maximum

likelihood (lik(μ̂)),

4. the average posterior density of the mean process μ,

5. the distance between the posterior mean (μ̃) and the weighted mean of the

neighboring μ̂’s including the observations from the current expedition, and

6. the distance between the maximum likelihood estimate (μ̂) and the weighted

mean of the neighboring μ̂’s excluding the observations from the current expe-

dition.

The legends in figure 5.10 correspond to the ≤ 50th, 75th, 85th, 95th, and 99th percentile

of the conditioning variable. The points with the largest residual values, i.e. |μ̂−μ̃| ≥
150m and the average likelihood greater than 0.3, have a large distance between

the two likelihood modes, while those with a large residual value and low average

likelihood have a relatively moderate distance between the two modes, see the top

panel of figure 5.10. From the second panel of 5.10, we see that the observations

with large residuals and a high average likelihood value are those where there are

at least two distinct modes in the likelihood, and the posterior mean μ̃ favors the

second, shallower mode. All profiles that have a large residual and favor the second

largest likelihood value are the profiles where there are two distinct M̂ ′s. The distance
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between the depths with the two largest likelihood values need not correspond exactly

to the two largest likelihood modes, but it is a good approximation. The large

residuals with a low likelihood correspond to the observations where the posterior

mean is closer to M̂ . A low value of the likelihood may indicate influence of the

neighbors or over-smoothing. The value of the second largest likelihood, relative to

the maximum likelihood, is reflected as a conditioning variable in the middle panel.

The largest 15% of lik(M̂2) are highlighted in blue.

The first three panels give us insight to the shape of the likelihood function for

observations with large residuals. It is also important to understand the information

given by the neighboring observations. We need to be reassured that there are no

single profiles with an artificially high influence on the mean. For example, the

likelihood function is made to fit the oceanographer’s belief for the depths with a

large probability. In the regions of low probability, where we don’t fully trust the

assessments, we may have a large likelihood ratio between the two unlikely values of

M . As previously noted, the likelihood function was bounded away from zero and

set to a constant to avoid such problems. Nevertheless, we must persuade the reader

that no such observations occur.

First, we note that all of the observations with large residuals have a moderate

to high value of the average posterior density of the mean. In other words, the

observations with large residuals are unlike their neighbors, and hence, the model

favors the mean process rather than the likelihood. In the fourth panel of figure 5.10,

we are conditioning on the average posterior density of the mean process. The largest

15% are highlighted in blue. It is reassuring to know that the highest density of the

mean process is in agreement with the high likelihood values.

To assess whether or not these large residuals correspond to the outliers, we cre-

ated a new variable: the weighted mean of the neighboring maximum likelihood
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within a range of seven days and two degrees of latitude. As weights, we used

a correlation function dnorm(d,0,30)/ dnorm(0,0,30) in time (units of days) and

dnorm(d,0,5)/ dnorm(0,0, 5) in space (in units of degrees latitude). In the fifth

panel, the weighted mean was computed including the observations taken on the

same expedition but not the observation itself, and in the sixth panel, the weighted

mean was computed excluding the observations taken on the same expedition. In

the fifth panel of 5.10, we used the difference between the weighted mean and the

posterior mean as a conditioning variable, and in the bottom panel of 5.10, we used

the difference between the MLE and the weighted mean . The weighted mean is

larger than the posterior mean for all observations with large residuals. However,

the weighted mean for these observations are still much closer to the posterior mean

than to the MLE estimator, indicating possible over-smoothing. In the bottom panel,

we notice that those profiles which have the largest residuals are also very different

than the weighted average of their neighbors, explaining why the model prefers the

neighboring observations. The results for other data sets and models are listed in

Appendix A.

To assure ourselves that there are not many observations that have a high average

likelihood value and a large posterior density of the mean process, but large residuals,

we searched for the observations that fit in the top 20% of all three criteria. These

would be the observations that have a strong influence on the posterior mean. There

were six such observations, all of which had a clearly defined Mixed Layer depth, and

therefore, we have a strong belief about M .

5.5 Conclusion

The goal of this study was to assess the changes in the depth of the Mixed Layer

in Atlantic Ocean. We gave a novel approach to weighing the information provided
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by the profiles to determine the uncertainty about M . This is the first probabilistic

approach to such a task. Additionally, we provided an example of modeling spatio-

temporal dependence among the observed profiles. Our model can accommodate

many ways to explore the long term changes in M . For example, we analyzed linear

trends, trends by latitude regions, mean levels by decades, and mean levels by latitude

regions, but the model is easily extended to other choices. Our analysis points toward

the belief that, in both the subtropical and subpolar gyre of the North Atlantic

Ocean, the Mixed Layer has been shoaling. In both regions, we notice significant

warming trends of the deeper waters, indicating that the ocean is storing heat at deep

levels. Temperature trends at deeper levels are also better than surface temperatures

at indicating trends in M . Shoaling of the Mixed Layer in the subpolar gyre is

contradictory to the previous belief. However, the methods used in those analyses

are quite different from ours. In the near future, it will be possible to compare the

methods on the exact same data sets which will give us the final reassurance about

the long term depth of the Mixed Layer.
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Figure 5.14: Likelihood function and the posterior mean.
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