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Abstract

As scientific problems grow in terms of both expanding parameter dimension and

sample sizes, structure and sparsity become central concepts in practical data anal-

ysis and inference. By allowing complex high-dimensional problems to be modeled

through low-dimensional underlying relationships, sparsity helps to simplify esti-

mation, reduce computational burden and facilitate interpretation of large scale

datasets. This dissertation addresses the issue of sparsity modeling primarily in

the context of Gaussian graphical models and sparse factor models.

Chapter 1 contextualizes the dissertation by introducing the way sparsity mod-

els are discussed throughout this work.

Chapter 2 introduces the basic theory of Gaussian graphical models and central

elements of Bayesian analysis in this class of models.

Chapter 3 is concern with problem of model determination in graphical model

space. Existing methods are tested in high-dimensional setups and a novel parallel

stochastic search method is described. Both decomposable and non-decomposable

graphs are considered. Examples of moderate (12-20) to large (150) size are

considered, combining simple synthetic examples with data analysis from gene

expression studies.

Chapter 4 develops a efficient method for direct simulation from the hyper-

inverse Wishart prior/posterior on any defined graphical model. This new sam-

pling method provides completion of the simulation toolbox for Bayesian explo-

ration and analysis of Gaussian graphical models under HIW priors.

Chapter 5 extends conditional independence ideas from Gaussian graphical

models to multivariate dynamic linear models. After presenting the development

iv



of this new class of models the chapter focuses on applications of such models in

large financial time series portfolio allocation problems.

Chapter 6 deals with sparse factor models where model search and fitting

are addressed through stochastic simulation (MCMC) and a novel computational

strategy involving a evolutionary search to address the issue of identifying vari-

ables for inclusion. This forms a first, Bayesian “projection pursuit” method rele-

vant in high-dimensional factor and structure analysis. Examples are drawn from

genomic studies where factor models aim to identify multi-dimensional biological

patterns related to oncogenic pathways.

Finally, Chapter 7 summarizes the dissertation and discusses possible general-

izations and future work.
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Chapter 1

Introduction

Constant technological advances have dramatically increased, in recent years, our

capacity to collect and store enormous amount of data. From high-frequency fi-

nance and very large marketing datasets to high throughput genomic data we

face applied problems of increasing dimension. The necessity to analyze, interpret

and extract relevant information from these large datasets has pushed statistical

sciences into a “revolution” where the design of higher-dimensional models and

associated computational tools is a focal point of research. The impact of applied

Bayesian analysis has been particularly notable as development of stochastic sim-

ulation methods enable the application of more complex and more realistic math-

ematical models. The use of stochastic computational methods for inference in

large parametric spaces and model determination raises a number of challenges of

both statistical and computational efficiency as well as basic feasibility.

The imposition of structure is an essential step in dealing with large problems,

as it helps to simplify estimation, reduce computational burden and facilitate in-

terpretation. In general, this concept is a way of imposing constraints that force

objects of interest to lie in lower-dimensional spaces, in line with the scientific view
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of parsimony. Structure, however, comes with a price as the task of determin-

ing its form might represent a daunting computational effort. With these ideas

in mind, this dissertation addresses methodological and computational aspects

of structured high-dimensional multivariate problems with inferential procedures

and model specification tools being developed. Throughout this work, structure

comes in the form of sparsity in terms of low-dimensional relationships underlying

high-dimensional patterns of association. More specifically, we focus on mod-

els for covariance matrices defined via parametric and conditional independence

constraints with applications ranging from financial econometrics to functional

genomics studies.

The initial chapters of this dissertation concentrate on Gaussian graphical

models (Whittaker, 1990; Lauritzen, 1996) where nodes represent random vari-

ables and the set of edges define the global conditional independence structure

of the distribution. Graphical structures provide computational efficiencies and

visual aids by a decomposition of the sample space into subsets of variables, re-

ducing the problem to a collection of typically small (local) models. Identifying

interesting graphs under the implied posterior distribution presents us with a hard

challenge as the number of possible models grows prohibitively large with dimen-

sion. To address this, Chapters 2 and 3 explore scalability and efficacy of existing

stochastic computational tools for model determination in graphical model space,

along with the development of a novel parallel stochastic search algorithm. Con-

sistency of prior specification as well as sparsity priors over graphs are discussed,

together with the presentation of a central element of Bayesian analysis in graph-

ical models: the hyper inverse-Wishart distribution (HIW). Unlike many recent

efforts in the literature, non-decomposable graphical models are considered in all
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search schemes presented which can be viewed as my main contribution in this

research area. Chapter 4 completes the full simulation-based Bayesian analysis

framework of Gaussian graphical models by developing an efficient method for

direct simulation of the hyper inverse-Wishart distribution on any graph, where

the use of the junction tree of a graph allow us to work sequentially at the prime

component level, avoiding the manipulation of large matrices.

Inspired by results of a portfolio allocation example in Chapter 4, in Chapter

5, I extend conditional independence ideas to dynamic linear models (West and

Harrison, 1997), defining a new class of multivariate DLMs where hyper inverse-

Wishart distributions are used to model the cross-sectional covariance structure

of a set of time series. High-dimensional sequential portfolio allocation examples

display highly encouraging results indicating that proper handling of conditional

independence among assets is fundamental in portfolio theory, raising new ques-

tions in that field and highlighting the utility of sparse modeling.

The second part of the dissertation, Chapter 6, deals with sparse factor models

(West, 2003). Sparsity has a new meaning in this context as zeros in the factor

loadings matrix promote constraints in the covariance matrix rather than its in-

verse, as in graphical models. One key motivating application context for these

models is the identification of complex multi-dimensional genomic patterns related

to deregulation of oncogenic pathways. Here, factor analysis aims to decompose

the variation of large dimensional gene expression datasets as an attempt to im-

prove our understanding of the genomics and genetics of these pathways. Once

again, sparsity plays a fundamental role in helping reduce the parametric space

and providing a formal model for pathway interpretation. This chapter describes

the MCMC methodology for inference in sparse factor models including the adap-
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tation of a novel hierarchical shrinkage prior (Lucas et al., 2006) that act more

aggressively than traditional priors in isolating signal from noise. My contribution

to this research is a key methodological development concerning an evolutionary

model determination process that sequentially expands the dimension of the sam-

ple space, enriching the analysis of existing factors. In our genomics studies, it is

often the case that the exploration of a particular pathway starts from a list of

know genes involved in a biological process and expanding the analysis by includ-

ing genes showing association with the initial set of variables is a natural step.

Critical issues in model specification such as identification constraints and choice

of the number of factors are also a target of the evolutionary search. A com-

prehensive simulated example tests the performance of the evolutionary search

whereas an example involving a very important hormonal oncogenic pathway (ER

pathway) illustrates the methodology as an approach to explore, evaluate and

define molecular phenotypes.

Throughout this dissertation theoretical and methodological aspects of large

multivariate problems are discussed along with the development of innovative

computational tools for model selection and inference. Extensions of the material

presented here include more developments in model selection in graphical model

space, better understating of the implications of conditional independence con-

straints in investment decisions and the further exploration of biological pathways

via sparse factor models. In Chapter 7, I conclude this work with the discussion of

some open questions and follow-up goals that are subject of my current research

agenda.
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Chapter 2

Gaussian Graphical Models

A graphical model is a probability model that characterizes the conditional in-

dependence structure of a set of random variables by a graph (Whittaker, 1990;

Lauritzen, 1996). Graphs provide a way to decompose the sample space into sub-

sets of variables (graph vertices) generating efficient ways to model conditional and

marginal distributions locally so that complex problems can be handled through

the combination of simple elements. In high-dimensional problems, graphs are

a natural way to reduce the parameter space, a fundamental step in modeling

situations where the number of variables exceeds the number of observations.

In the context of a multivariate normal distribution, conditional independence

restrictions are simply expressed through zeros in the off-diagonal elements of

the precision matrix (inverse of the covariance matrix, also known as the concen-

tration matrix), establishing a parsimonious way to model covariance structures.

This approach dates back to Dempster (1972) in the so-called covariance selec-

tion models and, after associations to graphical ideas made by Speed and Kiiveri

(1986), the term Gaussian graphical models becomes standard. The introduction

of the hyper-inverse Wishart (Dawid and Lauritzen, 1993) as a conjugate prior
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for structured covariance matrices aids the development of Bayesian approaches

to covariance matrix estimation and graphical model selection.

This chapter focus on the description of central concepts of Gaussian graphical

models. It starts with a brief presentation of graphs and conditional independence

ideas, followed by elements of Bayesian analysis in this class of models.

2.1 Basic Graph Theory

2.1.1 Notation

A graph is a visual object defined by the pair (V,E) where V is the vertex set of

p elements (variables) and E defines the edge-set. A graph can be represented by

a picture where each vertex is a circle with arrows or lines displaying the edges

in E. Edge (i, j) ∈ E is called an undirected edge if (j, i) is also in E and is

represented by a line connecting vertex i to vertex j. If (i, j) ∈ E but its opposite

(j, i) is not, (i, j) is called a directed edge. If a graph has only undirected edges it

is called undirected graph whereas if all edges are directed the graph is said to be

a directed graph.

Let G = (V,E) be an undirected graph. Vertices a and b are said to be

neighbors (or adjacent) in G if there is an edge (a, b) ∈ E. A graph (or subgraph)

is complete if all of its vertices are connected by edges in E. A clique is a complete

subgraph that is not contained within another complete subgraph. Subgraphs

(A,B,C) form a decomposition of G if V = A ∪ B, C = A ∩ B is complete

and C separates A from B (any path from A to B goes to through C). The

subgraph C is said to be a separator. A sequence of subgraphs that cannot be

further decomposed are the prime components of a graph. A graph is said to be
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decomposable if every prime component is complete.

A graph G can be represented by a perfect ordering of its prime compo-

nents and separators. A ordering of components Pi ∈ P and separators Si ∈ S,

(P1, S2, P2, S3, . . . , Pk), is said to be perfect if for every i = 2, 3, . . . , k there exists

a j < i such that

Si = Pi ∩Hi−1 ⊂ Pj

where

Hi−1 =

i−1
⋃

j=1

Pj.

Any connected graph G can be represented as a tree of its prime components

– the junction tree. A tree with set of vertices equal to the the set of prime com-

ponents of G is said to be a junction tree if for any two prime components Pi

and Pj and any T on the unique path between Pi and Pj, Pi ∩ Pj ⊂ T . A set of

vertices shared by two adjacent nodes of the junction tree is complete and defines

the separator of the two subgraphs induced by the nodes. This representation

plays a critical role in computational aspects of graphs and most of the method-

ology developed and explored in this dissertation depend on it. An example of a

decomposable graph and its junction tree is presented in Figure 2.1 and efficient

algorithms for producing the junction tree for any given graph are presented in

Appendix A and illustrated in a non-decomposable graph in Figure 2.2.

2.1.2 Conditional Independence and Markov Properties

A graph is a simple way to summarize a collection of marginal and conditional

independences in a joint probability distribution over a collection of variables.
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tom frame). Each node of the junction tree represents a clique while ver-
tices shared by adjacent nodes of the tree define the separators. In this
graph, {{1, 2, 5}, {2, 4, 5, 6}, {2, 3, 4}, {4, 6, 7}, {6, 7, 8, 9}} is the set of cliques and
{{2, 5}, {2, 4}, {4, 6}, {6, 7}} is the separators set.
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graphs. This shows a sequence of iterations of the maximum cardinality search
producing the prime components of a graph.

Formally, if X, Y , Z are random variables with joint distribution P , X is condi-

tionally independent of Y given Z if for a measurable set A in the sample space

of X, P (X ∈ A|Y, Z) is a function of Z alone. We can write this statement as
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X ⊥⊥ Y |Z (a detailed presentation of conditional independence appears in Dawid,

1980). To establish the connection between graphs and conditional independence

ideas the following definitions are needed (Dawid and Lauritzen, 1993). Consider

an undirected graph G = (V,E). Associated with each vertex α ∈ V is a random

variable Xα. A distribution P on the vertex set V is said to be Markov with

respect to G if, for any decomposition (A,B) of G,

A ⊥⊥ B|A ∩ B.

Now, let Q and R be the distributions for XA and XB, respectively. For the

existence of a joint distribution over A∪B with margins Q and R, Q and R have

to be consistent. Distributions Q over XA and R over XB are said to be consistent

if they yield the same distribution over A ∩B.

Lemma 2.1. If Q over XA and R over XB are consistent, there exists a unique

distribution P over A∪B such that (i) PA = Q; (ii) PB = R; (iii) A ⊥⊥ B|A∩B.

Proof. See Dawid and Lauritzen (1993)

As a direct implication of Lemma 2.1, if P , Q and R have density functions p,

q and r, respectively, it is possible to write:

p(X) =
q(XA)r(XB)

q(XA∩B)
=
q(XA)r(XB)

r(XA∩B)

=
pA(XA)pB(XB)

pA∩B(XA∩B)
.

To extend the above representation to a general graph, suppose that {P1, P2, . . . , Pk}

form a perfect order of prime components of G and {p(XPi) : P ∈ P} is a set of
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consistent marginals for each Pi of graph G. If the distribution of X is Markov

with respect to G, for every i such that Pi ∈ P,

Pi+1 ⊥⊥ Hi|Si+1 (2.1)

and the joint density factorizes as (Hammersley and Clifford, 1971):

p(X|G) =

∏

P∈P p(XP )
∏

S∈S p(XS)
, (2.2)

where S is the set of separators of G. Equations (2.2) and (2.1) are key elements

in the analysis of graphical models. All computational efficiencies arise from the

decomposition of the sample space of X into subsets of variables based on their

graphical relationships, and the ability to model each subset “locally” is a direct

consequence of the Markov property of the joint distribution.

2.2 Covariance Selection Models

Graphical structuring of multivariate normal distributions is often referred to as

Gaussian graphical modeling or covariance selection modeling (Dempster, 1972).

If G = (V,E) is an undirected graph and X is a random vector associated with

vertices in V , a Gaussian graphical model for X is defined by the assumption

that X is normally distributed respecting the conditional independences implied

by G. In the normal set up, conditional independence restrictions are simply

expressed by zeros in the inverse covariance matrix, or precision matrix. Hence,

the canonical parameter Ω, the precision matrix, belongs to M(G), the set of all

positive-definite symmetric matrices with elements equal to zero for all (i, j) /∈ E.

This fact can be formalized by the following theorem:
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Theorem 2.1. Let a (p× 1) vector X ∼ N(µ,Σ) with Σ non-singular, Ω = Σ−1

be the precision matrix with elements ωαβ (α, β = 1, . . . , p) and vertex-set V . For

any α, β ∈ V

Xα ⊥⊥ Xβ|XV \{α,β} ⇐⇒ ωαβ = 0. (2.3)

Proof. Consider the partition:

Σ =

(

Σαβ ΣR

Σ′
R ΣV \{α,β}

)

,

where Σαβ is a (2 × 2) covariance matrix for variables α and β, ΣR is a (2 ×

p− 2) matrix of covariances between vertices α and β and the remaining vertives.

Finally, ΣV \α,β is a (p−2×p−2) covariance matrix for vertices in the set V \{α, β}.

From standard linear algebra and normal theory results (Harville, 1997) we have

Ωαβ = Σ−1
αβ|V \{α,β} =

(

ωαα ωαβ
ωβα ωββ

)

.

The covariance matrix of the conditional distribution of Xαβ|XV \{α,β} is therefore

equal to

Σαβ|XV \{α,β}
=

1

|Ωαβ|

(

ωββ −ωαβ
−ωβα ωαα

)

which implies the result in Equation (2.3).

Without lost of generality let µ = 0. As in Equation (2.2) the distribution of

X is Markov over G and the joint density has the following representation:

p(X|ΣG) =

∏

P∈P p(XP |ΣP )
∏

S∈S p(XS|ΣS)
, (2.4)

where for all prime components and separators, XP follows a multivariate normal

distribution with covariance matrix ΣP . Given G, the joint distribution is com-

pletely defined by the component-marginal covariance matrices ΣP , subject to the
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consistency condition that requires the elements of ΣSi=Pi+1∩Pi to be common in

ΣPi+1
and ΣPi, for all Pi ∈ P. When this holds, Ω ∈ M(G) can be expressed as

(Lauritzen, 1996)

Ω =
∑

P∈P

[

Σ−1
P

]0 −
∑

S∈S

[

Σ−1
S

]0
(2.5)

where K0 denotes an extension of the matrix K with zeros so as to give it the

appropriate dimensions. Equation (2.5) is another example of the local nature

of graphical models where the canonical parameter Ω of the joint distribution of

X is just a function of parameters of the marginal distributions of cliques and

separators.

2.3 The Hyper-Inverse Wishart Distribution

In working with covariance selection models, Dawid and Lauritzen (1993) defined

a family of Markov probability distributions for covariance matrices on decom-

posable graphs called the hyper-inverse Wishart. If Ω ∈M(G), the hyper-inverse

Wishart for Σ = Ω−1 is denoted by

Σ ∼ HIWG(b,D) (2.6)

with degree-of-freedom parameter b > 0 and location matrix D > 0. This dis-

tribution is the unique hyper-Markov distribution for Σ with consistent clique-

marginals that are inverse Wishart distributed. The joint density decomposes

as

p(Σ|b,D) =

∏

C∈C p(ΣC |b,DC)
∏

S∈S p(ΣS|b,DS)
(2.7)
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where for each C ∈ C, ΣC ∼ IW (b,DC) with density

p(ΣC |b,DC) =
|DC

2
|(
b+|C|−1

2 )

Γ|C|

(

b+|C|−1
2

) |ΣC |−(b+2|C|)/2exp

(

−1

2
tr(Σ−1

C DC)

)

. (2.8)

DC is the positive-definite symmetric diagonal block of D corresponding to ΣC

and Γk(a) is the multivariate gamma function:

Γk(a) = π
k(k−1)

4

i=k−1
∏

i=0

Γ(a− i

2
).

In the case of a decomposable model, the expected value of Ω is available in

closed form. Using the representation in (2.5) and given Σ ∼ HIWG(b,D), the

expected value of Ω takes the form:

E(Ω|b,D) =
∑

C∈C

[E(ΩC |b,DC)]0 −
∑

S∈S

[E(ΩS|b,DS)]
0 (2.9)

=
∑

C∈C

[

(b + |C| − 1)(DC)−1
]0 −

∑

S∈S

[

(b+ |S| − 1)(DS)
−1
]0
.

Decomposable graphs consist entirely of complete prime components which

means that Equations (2.7) and (2.8) are enough to express the density of Σ.

The tractability of these models is explained by the fact that, while the graphical

structure determines which elements of the covariance matrix appear in the den-

sity, the elements that do appear are unconstrained in the sense that there are no

constraints on the clique (local) level. This is not the case for non-decomposable

models where the presence of non-complete prime components impose additional

local constraints. To deal with non-decomposable graphs, a consistent distribution

analogous to (2.8) that incorporates these local constraints is needed. Grone et al.
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(1984) showed that when considering an incomplete covariance matrix (where only

the entries corresponding to edges or on the diagonal are filled in), if the matrix

can be completed to be a positive definite matrix consistent with the graph, this

completion is unique. Taking advantage of this fact, Roverato (2002) is able to gen-

eralize the hyper-inverse Wishart to incorporate the constraints of non-complete

prime components and define a density for ΣP as a function of its positive definite

completion. Let the free elements be determined by the edge set E , so we give the

density argument as ΣE
P . The expression for the density is:

p(ΣE
P |G, b,D) ∝ |ΣP |−( b−2

2 )J(ΩE
P → ΣE

P ) exp

(

−1

2
Σ−1
P DP

)

(2.10)

where Σ is the positive definite completion of ΣE and J(ΩE
P → ΣE

P ) is the Ja-

cobian of the transformation from ΩE
P (which has zeroes for off-diagonal entries

not corresponding to edges in E) to ΣE
P . This density is obtained from a Wishart

prior on ΩP , conditioned on ΩP consistent with G, by a change of variables. This

extension is consistent with the definition of the hyper-inverse Wishart and gen-

eralizes the unique hyper-Markov distribution for any graph G where the joint

density decomposes as in (2.7).

Grone has also shown that if the sub-matrices corresponding to the cliques

in a decomposable graph are positive definite, then a positive definite completion

consistent with the graph always exists. This is reflected in the density for decom-

posable graphs where none of the “non-free” elements appear in either (2.7) or

(2.8), hence not affecting the density at all. Combined with the positive-definite

completion of non-complete prime components, this establish a way to evaluate

the “non-free” elements of Σ as a function of its free elements. This is done via

the completion operation described in Lauritzen (1996) and in a general context
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in Massam and Neher (1998); that is, given the perfect ordering of prime com-

ponents and separators, and defining Ai−1 = Hi−1 \ Si for each i, the “non-free”

elements are directly computed by

ΣRi,Ai−1
= ΣRi,SiΣ

−1
Si

ΣSi,Ai−1
. (2.11)

2.4 Prior and Posterior for Covariance Matrices

From a Bayesian perspective, conditional on a graphG, inference on the covariance

matrix Σ in a Gaussian graphical model are based on the posterior

p(Σ|X,G) ∝ p(X|Σ, G)p(Σ|G)

where the likelihood p(X|Σ, G) is define in (2.4) and the prior p(Σ|G) represents

all the relevant information about Σ respecting the restriction imposed by G.

Giudici (1996) discusses the major approaches to prior specification for Σ,

comparing the “local priors” described in Dawid and Lauritzen (1993), and the

“global priors” based on the conditional approach in Dickey (1971). These priors

have the desirable property that p(Σ|G) is consistent over graphs: the (i, j) el-

ement of Ω has the same prior whenever the graph does not constrain the (i, j)

element to be zero.

The hyper-inverse Wishart turns out to be the conjugate “local prior” for

any graph G; so, if p(Σ|G) = HIWG(b,D), for a random sample of size n and

X = {X (1), . . . , X(n)}, the posterior for Σ is HIWG(b + n,D + SX) where SX is

the cross product matrix XX′. This is a direct result of the decomposition of both

the prior and the likelihood (as in 2.7 and 2.4) together with standard conjugacy
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of normals and inverse-Wisharts giving the following posterior:

p(Σ|X, G) =

∏

P∈P p(XP |ΣP )
∏

S∈S p(XS|ΣS)

∏

P∈P p(ΣP |b,DP )
∏

S∈S p(ΣS|b,DS)

=

∏

P∈P p(XP |ΣP )p(ΣP |b,DP )
∏

S∈S p(XS|ΣS)p(ΣS|b,DS)

where the prior for each prime component (and separator) is an inverse Wishart.

Hence the posterior for every P ∈ P can be written as:

p(ΣP |X, G) = p(XP |ΣP )p(ΣP |b,DP )

∝ |ΣP |−(b+2|P |)/2exp

(

−1

2
tr(Σ−1

P DP )

)

|ΣP |−n/2exp
(

−1

2
tr(Σ−1

P SXP )

)

∝ |ΣP |−(n+b+2|P |/2)exp

(

−1

2
tr
[

Σ−1
P (SXP + DP )

]

)

, (2.12)

that is

(ΣP |X, G) ∼ IW (b+ n,DP + SXP ). (2.13)

Marginal distributions for X (Dawid and Lauritzen, 1993), take the form of

hyper-t distributions. For a clique C the marginal distribution p(XC |G) is a matrix

t distribution denoted by Tb(0,DC , I) with density defined in Appendix C. The

overall marginal distribution is Markov and is defined in the same way as (2.2)

and denoted by HTG(0,D, b).
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Chapter 3

Model Determination in
High-Dimensional Graphical Models

So far, all aspects of Gaussian graphical models presented rely on the knowledge of

the graph G defining the structure of conditional independence in the covariance

matrix. More often than not the graph is not known and estimating covariances

matrices will involve inferences about the graph as well. This is in fact one of the

hardest challenges faced by the Gaussian graphical model literature. Even when

the dimension |V | = p is of moderate size, it is essentially impossible to enumerate

and compare the relevance of all 2
p(p−1)

2 possible graphs.

The development of stochastic computational tools to search the space of

graphs is a fundamental step to enable the analysis of high-dimensional prob-

lems. In the Bayesian framework, MCMC methods are a natural way to access

the posterior distribution of models and, when the number of variables is rela-

tively small, these methods are capable of efficiently identifying graphs with high

posterior mass. However, in high-dimensional problems these approaches are slow

to converge and tend not to provide a comprehensive summary of the model space.
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This opens the door for the development of search algorithms that can rapidly

identify relevant areas of the model space and explore the neighborhood around it.

Sparsity is a central guiding principal here: it is of interest to develop parsimonious

models - models of the lowest dimensional-parameters capable of adequately rep-

resent observed data configurations, especially in higher dimensional distributions

and when in the “large p small n” paradigm.

A number of recent papers have addressed the question of improving compu-

tational methods for Gaussian graphical model determination. Due to computa-

tional efficiencies and accessible distribution theory, the key focus of the literature

has been on decomposable graphs. Giudici and Green (1999) describe a efficient

way to implement a reversible jump MCMC in the space of decomposable graphs

while Wong et al. (2003) show how the same efficient tools can be incorporated in

a much simpler Gibbs sampler. This general line of development has recently been

extended beyond decomposable models in works by Roverato (2002), Dellaportas

et al. (2003) and Atay-Kayis and Massam (2005).

Unlike the recent literature that basically deals with very small examples,

this Chapter tries to understand the performance and scalability of search meth-

ods as dimension grows. First, I describe two MCMC methods for model space

exploration to serve as benchmarks for a novel, parallelizable, stochastic search

algorithm that can quickly traverse high-dimensional model spaces. These meth-

ods are tested in examples that combine simple simulated datasets of moderate

size (p = 12 and p = 15) with larger scale (p = 150) data analysis motivated by

gene expression studies. Another important aspect of this chapter is that both

decomposable and non-decomposable models are considered.
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3.1 Marginal Likelihood for Graphs

From a Bayesian perspective, model selection involves the exploration of the pos-

terior distribution of graphs, given by:

p(G|X) ∝ p(X|G)p(G) (3.1)

where p(X|G) is the marginal likelihood of G and p(G) represents its prior.

In a Gaussian graphical model where |V | = p and X = {X1, . . . , Xn}, the

marginal likelihood for any graph G is given by the following integral

p(X|G) =

∫

Σ−1=Ω∈M(G)

p(X|Σ, G)p(Σ|G)dΣ (3.2)

where, as before, M(G) defines the set of all positive-definite symmetric matrices

respecting the constraints of G.

Using hyper-inverse Wishart priors for Σ, the computation of the marginal

likelihood for a decomposable graph is straightforward. The prior normalizing

constant and a factor of (2π)−np/2 from the likelihood can be pulled through

the integral, and p(X|G) becomes a simple function of the prior and posterior

normalizing constants, h(G, b,D) and h(G, b∗,D∗):

p(X|G) = (2π)−np/2
h(G, b,D)

h(G, b∗,D∗)
(3.3)

where b∗ = b + n and D∗ = D + SX .

The combination of Equations (2.7) and (2.8) shows that the normalizing

constant of a hyper-inverse Wishart is a function of normalizing constants of the
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corresponding inverse Wisharts of cliques and separators, namely:

h(G, b,D) =

∏

C∈C |DC

2
|(
b+|C|−1

2 )Γ|C|

(

b+|C|−1
2

)−1

∏

S∈S |DS

2
|(
b+|S|−1

2 )Γ|S|

(

b+|S|−1
2

)−1 . (3.4)

In the non-decomposable case the marginal likelihood for G can still be ex-

pressed by (3.3) but, now, at least one incomplete prime component is involved in

the computation of h(G, b,D). As seen in (2.10), the density function for a non-

complete prime component is only known up to the normalizing constant; the

integration of a Wishart kernel over a set of constraints positive definite matrices

has no close form solution and numerical approximations are necessary. A Monte

Carlo method to compute marginal likelihoods for non-decomposable graphs is

presented next.

3.1.1 Computing Marginal Likelihoods for Non-Decomp

osable Models

In order to facilitate the discussion, assume that one incomplete prime component

P constitutes the entire graph, i.e. G = P = (V,E), so the marginal likelihood is

simply a function of

h(P, b,D) =

∫

ΩP∈M(P )

|ΣP |−( b−2
2 )J(ΩE

P → ΣE
P ) exp

{

−1

2
Σ−1
P DP

}

dΩP . (3.5)

As mentioned before, no analytical solution is available to solve for the evaluation

of the normalizing constant in (3.5). Atay-Kayis and Massam (2005) exploit two

transformations that generalize properties of the Bartlett decomposition (Bartlett,

1933) to restricted Wishart matrices, defining a way to generate samples from

Ω ∈M(G) that can be used to compute a Monte Carlo estimate of h(P, b,D). An

21



MC estimates

marginal likelihood (posterior)

De
ns

ity

−9800 −9750 −9700 −9650 −9600

0.
00

0
0.

00
5

0.
01

0
0.

01
5

1000
10000
50000
100000
150000

Figure 3.1: Approximations of the marginal likelihood for G (non-decompos-
able). Each histogram represents multiple values of the approximation based on
different number of MC samples.

essential fact in this development is that for any matrix x ∈ M(G) the Cholesky

decomposition φ has “free” elements φij, (i, j) ∈ E (Roverato, 2002), and remain-

ing elements φij, (i, j) /∈ E given by a direct function of the free elements. This

result implies that the free elements of φ are enough to define Ω and the inte-

gration in (3.5) can be written as a explicit function of φ, simplifying the desired

approximation. Being more specific to the problem in hand, let Ω = φ′φ and

ψ = φT−1 where D−1 = T′T where both φ and T are upper triangular matrices.
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After computing the Jacobians J(Ω → φ) and J(φ → ψ) it can be shown that

the free elements ψij, (i, j) ∈ E, are independent normal (i 6= j) and square roots

of χ2 (i = j) random variables; The integral in (3.5) can then be written as a

expectation, given by:

h(P, b,D) = Cb

∫

exp



−1

2

∑

(i,j)/∈E

ψ2
ij



 (3.6)

×
|V |
∏

i=1

Γ (b+ νi)
−1

(

ψ2
ii

2

)

b+νi−2

2

exp

[

−1

2
ψ2
ii

]

∏

(i,j)∈E

1√
2π
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[
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ij
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dψ

= CbE



exp


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2
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ij






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where Cb is a constant

Cb =





|V |
∏

i=1

2
b+νi

2 (2π)
νi
2 Γ

(

b+ νi
2

)

t
b+zi−1

2
ii





with νi being the number of neighbors of vertex i subsequent to it in order of the

vertices, and zi is equal to the total number of neighbors of i plus 1. The form

of (3.6) shows that the expectation is taken with respect to the distribution with

density equal to the product of independent χ2 with b+νi degrees of freedom and

standard normal distributions. Approximating (3.5) via Monte Carlo is simply

done by sampling ψij for all (i, j) ∈ E from normals and χ2 distributions, and

computing:

ĥ(P, b,D) ≈ 1

N

N
∑

l=1

exp



−1

2

∑

(i,j)/∈E

ψ
(l)
ij

2



 (3.8)

where each ψij for (i, j) /∈ E is equal to:
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• if i = 1,

ψij = −
j−1
∑

k=1

ψikt〈kj],

• and for i > 1,

ψij =

j−1
∑

k=i

ψikt〈kj] −
i−1
∑

r=1

(

ψri +
∑i−1

l=r ψrlt〈li]
ψii

)(

ψrj +

j−1
∑

l=r

ψrlt〈kj]

)

.

with t〈ij] = tij/tjj.

Alternatives to Massam’s method include works by Roverato (2002) and Del-

laportas et al. (2003). In Roverato (2002) an importance sampling method to

compute (3.5) is developed. The method uses an approximating decomposable

model, with edge set E∗ containing E to create a tractable importance function

that is used to generate samples of φ. Similarly, Dellaportas et al. (2003) use

a change of variables and write the normalizing constant as an expectation over

the transformed space. The expectation is then estimated through an importance

function based on samples from a multivariate normal random variables.

Due to its simplicity and lack of “extra” approximation steps, the method of

Atay-Kayis and Massam (2005) is used in all examples involving the calculation

of marginal likelihoods for non-decomposable graphs and will also be useful in

Chapter 4 where methods to generate samples directly from a HIWG given a

graph G are discussed.

It is important to point out that scalability is an issue here. In a large non-

decomposable graph with many incomplete prime components, the above approx-

imation has to be carried out many times so introducing variation in the marginal

likelihood estimate. An illustration of this problem is showed in Figure 3.1 where
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for a non-decomposable graph with 150 nodes, empirical distributions of the ap-

proximated marginal likelihood are displayed. This is an indication that many

Monte Carlo samples might be needed before a stable estimator is available. A

detailed discussion of this problem is presented later on this chapter, in the context

of graphical model selection.

3.2 Priors over Graphs

A uniform prior over all graphs assigns most of its mass to graphs with half of the

total number of possible edges. The number of possible edges in a graph with p

nodes is T = p(p−1)/2 and so, for large p, the uniform prior favors models where

the number of edges is quite large. To illustrate this concept, simulations from

the uniform prior on the space of decomposable models are displayed in Figure

3.2. This indicates that the average number of edges explodes very quickly as the

number of nodes increase.

In many situations, including the examples in this dissertation, parsimonious

representations of the conditional independence structure are of interest and spar-

sity encouraging priors are needed. A Bernoulli prior on each edge inclusion prob-

ability with parameter β is used here as an initial “sparsity inducing” model; a

graph with e edges has prior probability proportional to βe(1 − β)(T−e). This

distribution has its peak at T × β edges for an unrestricted p node graph pro-

viding a direct way to control the prior complexity of the model. Figure 3.3

displays histograms for number of edges in graphs sampled from this prior when

β = 2/(T − 1). It is clear that the explosive behavior of the uniform prior is no

longer present in the Bernoulli prior case.

This approach to prior specification penalizes the number of edges, with the
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Figure 3.2: For each different number of vertices listed, the histogram represents
the prior mass on different numbers of edges under a prior that is uniform over
decomposable graphs. The histogram is based on sampling from the prior with a
Metropolis-Hastings algorithm.

view that, if choosing between two edges, preference is given to the edge resulting

in the greatest increase of the graph’s marginal likelihood regardless of the rest of

the graph’s structure. One could, of course, penalize other measures of complexity

such as the maximum or average prime component size, number of cliques, etc.

26



number of edges

Fr
eq

ue
nc

y

10 20 30 40 50 60 70

0
50

0
10

00
15

00

15 vertices

45 vertices

75 vertices

Figure 3.3: For each different number of vertives listed, the histogram represents
the prior mass on different numbers of edges where consideration is restricted to
decomposable graphs. The prior mass of a graph is proportional to βE(1−β)T−E,
where β = 2/(p− 1). The histogram is based on sampling from the prior with a
Metropolis-Hastings algorithm.

Wong et al. (2003) developed an approach that equalizes the prior probability of

graphs with different numbers of edges; for decomposable graphs, this requires

estimating the fraction of the total number of decomposable graphs with each

number of edges which can, in larger problems, be computationally intensive.
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3.3 Local MCMC Updates in Decomposable Mod-

els

In all model search methods considered in this work, moves in graphical model

space are local; that is to say, moves from graph G to graph G′ differ only

by adding or deleting one edge. Once again, decomposable graphs present a

very important computational advantage; computing the marginal likelihood ra-

tio p(X|G)/p(X|G′) is facilitated by the similarity of G and G′ that allow local

updates of the ratio involving at most two cliques and one separator. The following

theorem helps to clarify this notion.

Theorem 3.1. Suppose that G = (V,E) and G′ = (V,E ′) are decomposable graphs

differing by one edge (i, j), E \ E ′ = (i, j). Let {C1, S2, C2, S3 . . . , Ck, Sk} be the

perfect order of cliques and separators of G. Then:

(i) The edge (i, j) is contained in a single clique of G;

(ii) If (i, j) ∈ Cq then either i /∈ Sq or j /∈ Sq;

(iii) If j /∈ Sq and Cq1 = Cq\{j} and Cq2 = Cq\{i} then Sq1 = Sq,Sq2 = Cq\{i, j}

and {C1, S2, . . . , Cq−1, Sq−1, Cq1, Sq, Cq2, Sq2, . . . , Ck, Sk} form a perfect order

of cliques and separators of G′.

Proof. See Theorem 1 of Giudici and Green (1999), and Lemma 2.20 of Lauritzen

(1996)

Combined with the factorization of the marginal likelihood implied by (3.4)

Theorem 3.1 means that computing the likelihood ratio between G and G′ results

in cancellation of all terms except those involving {Cq, Cq1, Cq2, Sq2}. Write the
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“prior” part of the marginal likelihood ratio as

h(G, b,D)
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where the final simplification result from properties of the multivariate Γ-function

(Muirhead, 1982). Similar expressions can be derived for the “posterior” part of

the ratio h(G′, b∗,D∗)/h(G, b∗,D∗) and when combined with (3.9) the desired

marginal likelihood ratio is obtained.

Wong et al. (2003) show that (3.9) can be simplified even further and that

the determinants needed for the likelihood ratio can be computed using only the

Cholesky decomposition of DCq and D∗
Cq . By partitioning DCq as

DCq =

(

DSq2
DSq2Q

DQSq2
DQ

)

where Q = {i, j}, and

DQ =

(

dii dij
dji djj

)

,

Equation (3.9) can then be written as a function of

DQ.Sq2
= DQ − DQSq2

(DSq2Sq2
)−1DQSq2

,

dii.Sq2 = dii − DiSq2
(DSq2

)−1DSq2 i
,

djj.Sq2 = djj − DjSq2
(DSq2

)−1DSq2 j
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and corresponding quantities for D∗. This is true by noting that (Theorem 13.3.8

Harville, 1997)

∣
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∣
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∣ ,
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∣ .

After substituting the appropriate terms, (3.9) takes the form:
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(3.10)

Now, consider the Cholesky decomposition of DCq = L′L, partitioned as

L′ =

(

LSq2 0
LQSq2 LQ

)

where

LQ =

(

lii 0
lji ljj

)

.

It is straightforward to show that

∣

∣DQ.Sq2

∣

∣ = l2iil
2
ll,

dii.Sq2 = (lii)
2,

and

djj.Sq2 = (lji)
2 + (ljj)

2,
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giving all the necessary quantities to compute the marginal likelihood ratio.

In contrast, when non-decomposable graphs are considered, there is no guaran-

tee that significant cancellations in the marginal likelihood ratio between “neigh-

boring” graphs is available. While the likelihoods still factor over prime compo-

nents, a single edge change may radically alter the junction tree. As an example,

imagine starting with a graph where all the nodes are connected in a chain, and

then adding the edge that completes the full cycle. The single edge change takes us

from a decomposable graph, with p−1 prime components, to a non-decomposable

graph with a single prime component; in this case, there are no cancellations in

the computation of the marginal likelihood ratio.

3.4 Markov Chain Monte Carlo Algorithms

MCMC tools are frequently used for exploring the space of graphical structures

(e.g. Dellaportas and Forster, 1999; Giudici and Castelo, 2003; Giudici and Green,

1999; Madigan and York, 1995). These methods simulate Markov chains that the-

oretically converge to the posterior distribution of models, say p(G|X). In graph-

ical models, for problems with even a moderate number of variables, the model

space is so large that the chain will typically not converge in any practical sense,

so MCMC methods can only be realistically used as stochastic search procedures

to identify models with high posterior probability.

This section focus on efficient MCMC methods to explore the space of graphs

that integrate out parameters and work directly with the marginal likelihood

of models. This way there is no need to sample from the full conditional of

parameters and the use of a reversible jump methodology is avoided.

Generally, MCMC model search approaches can be classified as Gibbs sampling
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(Gelfand and Smith, 1990; George and McCulloch, 1993) and Metropolis-Hasting

algorithms. Similarly to the method developed for variable selection (George and

McCulloch, 1993), the fixed scan Gibbs sampler for Gaussian graphical models

updates one edge at a time according to its full conditional distribution. Let the

random variable eij represent the edge set E for the current graph G = (V,E) in

the MCMC, where for all i < j, eij = 1 if (i, j) ∈ E and e−ij = E \ (i, j). Each

edge can then be updated by sampling from

p(eij|e−ij, X) ∝ p(X|G)p(eij|e−ij). (3.11)

Assuming that under the prior p(eij|e−ij) = p(eij), sampling from (3.11) is equiv-

alent to sampling from a Bernoulli random variable with the following posterior

odds ratio

p(eij = 1|e−ij, X)

p(eij = 0|e−ij, X)
=
p(X|G)

p(X|G′)

p(eij = 1)

p(eij = 0)
(3.12)

where G′ = (V,E ′) with E ′ = E \ (i, j).

Given the nature in which Gibbs moves are proposed, extra non-significant

edges tend to be included at each step. See this as follows. Consider that at

some point in the chain the current model has all t “important” edges in and all

remaining (T −t) non-relevant edges are out. If all remaining edges have the same

prior inclusion probability, at each iteration, approximately (T−t)×p(eij = 1) are

included even when this is a move to models away from regions of high probability.

Due to this behavior, Gibbs has a disposition to wonder around areas of low

probability, so reducing its ability to efficiently explore high dimensional model

spaces. This is a generic problem, exhibited here in the special case of graphical

models.

The Metropolis-Hastings algorithm generalize the Gibbs sampler above in the
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sense that it provides a framework where more flexible specification of moves

are allowed. In general, starting from a current graph G = (V,E) a candidate

G′ = (V,E ′) is sampled from a proposal distribution H(G′;G) and accepted with

probability

α = min

{

p(G′|X)

p(G|X)

H(G;G′)

H(G′;G)
, 1

}

.

If an edge eij is chosen at random and e′ij = 1 − eij is proposed, the proposal

distribution is symmetric, i.e. H(G′;G) = H(G;G′) and the acceptance ratio

reduces to

α = min

{

p(X|G′)p(G)

p(X|G)p(G)
, 1

}

. (3.13)

This approach was first proposed in a different model selection context by Madigan

and York (1995) (MC3) and used in variable selection and model averaging by

Raftery et al. (1997) and Clyde et al. (1996). It is interesting to point out that

this particular Metropolis-Hastings is very similar to the component-wise Gibbs

sampler but, as shown by George and McCulloch (1997), the MH is more likely

to move at each step, so enhancing its ability to traverse the model space.

In both methods, moves in model space are decided as a function of the ratio

of marginal likelihoods between graphs that differ by one edge. If the search is

constrained to decomposable models, these ratios can be efficiently computed by

the use of (3.10), as described in the previous section. If an unrestricted search is

performed, computations cannot be facilitated and the evaluation of the marginal

likelihood for a non-decomposable graph has to be approximated by the method

described in Section 3.1.1; this induces a huge computational burden in more than

trivial dimensions. Constraining the search to decomposable models requires, at

each step, the proposed model to be decomposable. In the Gibbs sampler this can
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be done efficiently (Giudici and Green, 1999); however, in the Metropolis-Hastings

this restriction modifies the symmetry property of the proposal distribution, gen-

erating the need for additional computations to determine the number of decom-

posable graphs with one more edge relative to the number of decomposable graphs

with one fewer edge. Ignoring this fact creates an irreversible Markov chain and

convergence can no longer be guaranteed.

The above MCMC algorithms are closely related and in fact have very similar

performance in our experiments. The problem with these methods is that when

p = |V | grows, the chain is unable to move much in model space and high prob-

ability models tend not to be visited. To try to go beyond this problem I now

present a stochastic search method that, due to its parallel nature and design,

promotes a more extensive exploration of the model space.

3.5 Shotgun Stochastic Search Algorithm

If Markov chain Monte Carlo is viewed merely as a tool for visiting high probability

graphs, there are certainly competing algorithms. The Shotgun Stochastic Search

(SSS) for Gaussian graphical models is a MCMC inspired approach that takes

advantage of distributed computing environment to parallelize computations and

expand its ability to search for models. Generally, SSS is a sequential, local move

strategy that, at each step, explores the neighborhood of the current model. The

algorithm can be summarized as:

(i) Start with a graph G.

(ii) Propose, at random, F1 neighbors and evaluate the posterior probability (up

to a normalizing constant) of each model in parallel. Retain the top F2 ≤ F1.
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(iii) Sample a new graph from the F2 top neighbors, with each Gi having prob-

ability proportional to pαi , where pi is the posterior probability of graph i

raised to an annealing parameter α > 0.

(iv) Goto step (iii) and iterate.

Most of the computational burden of the above strategy is in step (ii) which can be

parallelized with the evaluation of each proposed model probability being carried

out independently.

The main idea here is that at every iteration a large number of candidate mod-

els are generated, “shooting out” (proposing) moves in various directions. This

method can be thought as a Metropolis-Hastings that incorporates information

from the likelihood into the proposal resulting in a chain that can move faster to

areas of high probability. A detail discussion of the connections between SSS and

MCMC in the context of regression models appears in Hans (2005).

To keep the discussion consistent, in experimenting with SSS, “neighbors” were

defined as graphs differing by only one edge and at each step all neighbors were

evaluated with F1 = F2 = p(p− 1)/2. If the search is restricted to decomposable

graphs, the only necessary modification is to constraint the proposed neighborhood

to decomposable models which can be efficiently implemented (see Appendix A,

and Giudici and Green, 1999). In this case, the evaluation of posterior probabilities

is facilitated by local updates of marginal likelihoods ratios as described in section

3.3.
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3.6 Examples

In order to understand the performance and scalability of MCMC and SSS meth-

ods two moderate size simulated examples are presented, along with a large scale

150 node example from gene expression studies. In each case, restricted (decom-

posable models only) and unrestricted searches were performed. Given the similar

performance of the two MCMC methods, the results presented here focus on the

Metropolis-Hastings (MH) algorithm. Throughout the examples, hyper-inverse

Wishart priors were used with parameters b set to very small values and D = τI.

This choice is somehow non-informative and consistent with problems in which

variables are measure in the same scale of variation so, for simplicity, all datasets

are standardized.

First, consider two simulated examples where the underlying graph is known.

Figure 3.4 shows a 15 node decomposable graph whereas Figure 3.5 displays a 12

node non-decomposable graph in a single non-complete prime component. Each

data set consists of 250 observations so there are no constraints on the maximum

prime component size. The first simulated dataset was inspired by patterns of

daily currency exchange fluctuations against the US dollar. Consequently, the data

ranges approximately between ±2%. This range is about two standard deviations,

so σ2
ii ≈ 0.0001 hence the choice of b = 3 and τ = 0.0001 so the prior expected

value for the variance σii is approximately equal to the data variance. For the

second dataset, Σ is actually a random draw from the HIWG(3, I) so τ = 1

and b = 3. In both cases the prior over graphs is the sparsity encouraging prior

suggested before with β = 2/(|V | − 1). The annealing parameter α in the SSS

was set at 1.0 and had no real impact in these small examples.
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Figure 3.4: The true underlying decomposable graph on p = 15 nodes – the first
simulated example

For each example, the Metropolis-Hastings was run for 10,000×
(

|V |
2

)

steps

(where
(

|V |
2

)

is the number of possible one edge moves in the unrestricted case).

The shotgun stochastic search algorithm was run 10,000 iterations; at each iter-

ation all possible (unrestricted) one edge moves were considered, so to perform

the same number of graph comparisons as the Metropolis-Hastings algorithm. In

both scenarios the empty graph (no edges) was used as a starting point.

The algorithms clearly use a similar amount of computing resources, as they

evaluate the same number of comparisons between current and proposed graphs.

However, the stochastic search algorithm is parallelizable. The run times for
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both types of algorithm are given in Tables 3.1 and 3.2. The Metropolis-Hastings

was run on a Dell PC with a 1.8 MHz Xeon processor in a Linux environment,

and the shotgun stochastic search on a Beowulf cluster with 26 dual processor,

1.4Mhz nodes. The C++ implementation for all methods used are available at

www.isds.duke.edu under the Software link.

In both examples the MH and SSS identify the same top model in a short

amount of time. The top graph is defined as the graph with highest posterior

probability of all graphs visited. Note that in this small example the MH runs

faster than SSS. This is an artifact of this small example given by the compu-

tational overhead of SSS (initialization of many processors). When the problem

grows in complexity or dimension, SSS becomes much more efficient. This is also

seen in the results of the unrestricted search.

The top decomposable graphs – those identified with highest posterior proba-

bility – are displayed in Figures 3.6 and 3.7; the top graphs from the unrestricted
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Figure 3.5: The true underlying non-decomposable graph on p = 12 nodes – the
second simulated example
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Method Runtime Max log Graphs to first Time to first
(secs) posterior top graph visit top graph visit

MH-d 36 −2591.18 912 1
SSS-d 183 −2591.18 792 2
MH-u 15,220 −2590.94 415 2
SSS-u 2773 −2590.94 13,266 5

Table 3.1: Comparison between algorithms runtime, and quality of best graph
found, for the 12 node example. MH-d(u) refers to the Metropolis-Hastings algo-
rithm on decomposable (unrestricted) models, while SSS-d(u) refers to the shotgun
stochastic search method on decomposable (unrestricted) models.

Method Runtime Max log Graphs to first Time to first
(secs) posterior top graph visit top graph visit

MH-d 93 15633.76 349,484 36
SSS-d 234 15633.76 33,495 9
MH-u 513,077 15633.83 666,425 309,222
SSS-u 5930 15636.38 82,845 112

Table 3.2: Comparison between algorithms runtime, and quality of best graph
found, for the 15 node example. MH-d(u) refers to the Metropolis-Hastings algo-
rithm on decomposable (unrestricted) models, while SSS-d(u) refers to the shotgun
stochastic search method on decomposable (unrestricted) models.
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Figure 3.6: Highest log posterior graph for the 12 node example when the search
is restricted to decomposable models.

search appear in Figures 3.8 and 3.9. Likelihood comparison with true graphs

show that each of these graphs have greater likelihood as well as posterior prob-

ability than the true graph. Also, in both examples, the most probable graph

found was insensitive to the starting point. The same graphs were found starting

at the full graph.

A more challenging problem is the analysis of DNA microarray derived gene

expression data from p = 150 genes in n = 49 samples, associated with the

estrogen receptor pathway, from the study of West et al. (2001). The data was

standardized and the prior specified with b = 3 and τ = 4. Due to the small

number of observations relative to the number of variables, there is the additional

constraint that the maximum prime component size cannot exceed n−1. Finally,

in this context, the sparsity encouraging prior can be interpreted as a belief that

on average, each gene has major interactions with a relatively small number of

other genes. The results from three algorithms are shown in Table 3.3. Times

are now given in hours. The unrestricted search Metropolis-Hastings had a very
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poor performance so their results are omitted here. The best results for the

shotgun search algorithm were obtained with an annealing parameter of 50, which

essentially represents a deterministic hill climbing in the space of graphs (see

Figure 3.10). In this large example the advantage of SSS is enormous as it is able

to get to areas of higher probability in the model space much sooner than any

MCMC method.

In the unrestricted case, increasing the number of Monte Carlo samples in or-

der to get a sharp enough evaluation of the marginal likelihood was not feasible;

settling for a standard deviation of the log likelihood of 1.0 resulted in one cycle
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Figure 3.7: Highest log posterior graph for the 15 node example when the search
is restricted to decomposable models.

41



1

2

8

3

9

4

5

10

12
6

7
11

Figure 3.8: Highest log posterior graph for the 12 node example when the search
is unrestricted

of neighbors evaluations (a single step in our stochastic search procedure) taking

up to 40 computer days (1 day on a 40 node cluster). Using this procedure, start-

ing from the empty graph and running until the estimated log posterior stopped

improving, the best graph found had log posterior −9364.67, worse than the best

decomposable graph found in the restricted search. This graph may represent a

local mode not present in the decomposable framework, or be the result of sub-

optimal moves resulting from the imprecise Monte Carlo approximation of the

marginal likelihood. Table 3.3 shows the best graph found by starting at the best

decomposable graph (the final estimate of the log posterior for this graph was run

with enough Monte Carlo samples to put the MC standard deviation below 0.1).

A total of 10 cycles of evaluating all neighbors were done. As these graphs were

“close” to decomposable graphs, the evaluation time was reduced versus graphs

with similar numbers of edges produced by the search starting at the empty graph.
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3.6.1 Difficulties evaluating Non-Decomposable Models

As seen in Figure 3.1 and also indicated by the example above, estimating the

marginal likelihood for large scale non-decomposable graphs is a very demand-

ing task. High variance of the Monte Carlo based marginal likelihood estimator

promotes “artificial” moves and interferes with the ability to explore the model

space.

To understand the behavior of the normalizing constant estimates, a simula-

tion study on non-complete prime components with different numbers of nodes

is performed. Two examples for each size were selected from those that occurred
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Figure 3.9: Highest log posterior graph for the 15 node example when the search
is unrestricted.
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during the MH model search for the 15 variable data set. Given that the search

strategies depend on likelihood ratios, it is the variance of the log normalizing

constants that are relevant here. Figures 3.11(A) and 3.11(B) show the variances

of the estimated log of the prior and posterior normalizing constants (where the

estimate is based on 100 random draws). The plotted variances are of course esti-

mates themselves, each based on 1000 separate normalizing constant estimations.

The estimate of the log prior normalizing constants have systematically smaller

variances than the corresponding estimates for the posterior; there is also a ten-

dency for variance to increase with component size. This can be partially ex-

plained by examining the form of ψ, the sampled matrix from which the estimate

is computed. The variance of diagonal entries ψii increase as one moves down the

diagonal, so in larger prime components, more uncertainty is associated with ψ.
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Figure 3.10: Exploration of the model space with different annealing parameters.
The figure plots the posterior probability for the top 1000 graphs visited in each
search against the iteration where the graph was visited.
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Method Runtime Max log Graph to first Time to first
(hrs) posterior top graph visit top graph visit

MH-d 18.02 −9417.97 100,466,818 6.51
SSS-d 0.03 −9260.84 1,698,600 0.03
SSS-u 6.29* −9227.68 44,700 3.39

Table 3.3: Comparison between algorithms runtime, and quality of best graph
found, for the gene expression example. *Starting from the best decomposable
graph found. MH-d refers to the Metropolis-Hastings algorithm on decompos-
able models, while SSS-d(u) refers to the shotgun stochastic search method on
decomposable (unrestricted) models.

It also possible to note that the ordering of the variables used when setting up

ψ affects the variance of the log normalizing constants. Each prime component

considered in Figure 3.11(C) is a cycle; in the “optimal” configuration, each

variable, except the first and the last, has exactly one neighbor preceding it in the

rows of ψ. The “worst” configuration has the first |V |/2 variables each with both

neighbors occurring further down in the matrix.

The cause of this phenomenon can be seen by factoring Equation (3.6) into the

constant Cb, and the part estimated by Monte Carlo, E(f(ψ)). Recall that tii are

the entries of the Cholesky decomposition of the HIW parameter ψ (ψ∗ for the

posterior), νi is the number of neighbors of node i subsequent to it in the ordering

of vertices, and zi is the total number of neighbors of node i, plus one. We list

the variables of a prime component in an arbitrary order, but the relative sizes of

Cb and E(f(ψ)) clearly depend on the ordering of the variables (although their

product is constant–the expression is valid for any ordering). In the experiments

the variance of f̄(ψ) was (roughly) unaffected by ordering; however, the interesting

quantity is the variance of log(f̄(ψ)) which did suffer from ordering effects. The

“optimal” ordering for cycles discussed above minimizes Cb for the HIW prior;

the “worst” ordering maximizes it. Although the order of variables in a prime
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component influence the estimation of its normalizing constant, trying to optimize

the ordering at each step is not an attractive alternative due to the computational

cost involved with it.

The highest variance samples in Figure 3.11(B) represent very low likelihood

graphs, which have small E(f(φ))– and high variance log(E(f(φ)))–regardless of

ordering. Figure 3.11(D), a plot of variances of log posterior normalizing constants

for prime components in graphs accepted during the MH search, is more consistent

with the variance trends in the log prior normalizing constants. The variance of

the “worst” case for each component size seems to be a function of the size of

the component considered, |VP |. Based on this, 1.5|VP |3 samples for the posterior

normalizing constants and 0.5|VP |3 for the prior normalizing constants were used.

This scheme solved the problem with the chain mobility discussed at the beginning

of this section. To be safe, at the end of each unrestricted model search, all graphs

with a log posterior within 2.0 of the top log posterior were reexamined with

enough Monte Carlo samples to ensure the graph listed as “best” did indeed have

the highest log posterior.

3.7 Discussion

After experimenting much further with the methodology described in this chap-

ter, it became clear that exploring the model space of decomposable Gaussian

graphical models with a large number of variables, certainly up to a few hun-

dreds, is feasible. As I hope to have illustrated with some of the examples, tradi-

tional MCMC methods are only competitive in relatively small problems whereas

stochastic search methods, such as SSS, are definitely successful in identifying high

probability areas in larger model spaces. Local-move type methods are really ad-
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vantageous for decomposable graphs where not only are computations exact, but

they can also be efficiently implemented given some of the properties of such

models.
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Figure 3.11: Relationship between the variance of the estimated normalizing
constants, based on 100 samples, and the size of the prime component. Four
cases are considered: (A), the prior normalizing constant for components proposed
during the unrestricted model search for the 15 node dataset, (B), the posterior
normalizing constants for these components, (C), prior normalizing constants for
cycles, using different variable orderings, and (D), posterior normalizing constants
for components considered during the unrestricted model search and subsequently
accepted by the Metropolis-Hastings algorithm.

47



When all graphs are considered, life is more complicated. Experience shows

that in small examples, up to 20 variables, model search can be accomplished

but it becomes very challenging quickly thereafter. The necessity to estimate

marginal likelihoods for possibly large prime components create a huge compu-

tational burden that undermine our ability to search for models and other alter-

natives are needed to address this problem. Local search of unrestricted graphs

around “good” decomposable graphs or other candidate graphs generated inter-

esting results in the 150 node example and represents a promising strategy.

The main contribution of this chapter has been to present and thoroughly ex-

periment with a shotgun stochastic search algorithm designed for explore the very

high-dimensional discrete model space to identify regions of high probability and

the corresponding graphs. The approach is parallelizable and this work also serves

to explore and evaluate distributed implementation. More experimentation with

the annealing schedules is needed to find optimal strategies for different situations.

In the 150 node example deterministic hill climbing produced the best results in

terms of rapid identification of high probability graphs. Turning the temperature

“up” and “down” at different times could promote a better exploration of the

model space.

It is apparent that significant near-term progress in model and variable se-

lection in the face of higher-dimensional problems is unlikely if computations are

restricted to single processors. The hope of our experiments is to show that dis-

tributed computation are essential to the development of more efficient search

methods.
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Chapter 4

Simulation of the Hyper-Inverse

Wishart Distribution

A central element in the analysis of Gaussian graphical models is the hyper-inverse

Wishart (HIW) distribution. For computational reasons, sampling from this class

of distributions has been avoided in prior work. For example, in the RJMCMC

analysis of Giudici and Green (1999), where the covariance matrix has to be up-

dated in every step, importance sampling methods are used. Roverato (2000)

suggests an alternative parametrization, based on the Cholesky decomposition of

the precision matrix, that would provide a way to sample from HIW distribution

in decomposable graphs. In large-scale problems his method requires the Cholesky

decomposition of large matrices and so rapidly becomes unattractive. In appli-

cation of Gaussian graphical models we often require inference for complicated

functions of the parameters of a variance matrix and so an approach to direct

simulation of posteriors under HIW models is of serious practical value.

In this chapter I define and exemplify an efficient method for direct simulation

of structured random matrices under an HIW distribution for both decomposable
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and non-decomposable models. The strategy uses the junction tree of a graph

to decompose the HIW distribution and thus allows us to work sequentially at

the prime component level. In decomposable models this decomposition provide

access to standard distributional theory for the inverse Wishart distribution. In

the non-decomposable case, standard distributional results no longer hold and

properties of the inverse of HIW distributions (Atay-Kayis and Massam, 2005)

are used. The ability to sample directly from the hyper-inverse Wishart allows

direct Monte Carlo computations for detailed posterior inference on elements of

covariance matrices and functions of them; I illustrate this in an example drawn

from portfolio analysis in financial time series.

4.1 Simulation Method

The sampling strategy is based on the compositional form of the joint distribution

over the sequence of subgraphs defined by the junction tree.

Let G = (V,E) be a graph on p nodes and assume a Gaussian graphical model

with Ω = Σ−1 ∈ M(G). Suppose that Σ ∼ HIWG(b,D). By generating the

junction tree of G, prime components are perfectly ordered as {P1, S2, P2, . . . , Pk},

and the joint density factorizes as

p(Σ|b,D) = p(ΣP1)

k
∏

i=2

p(ΣPi|ΣSi). (4.1)

Equation (4.1) is a direct consequence of property (2.1) and indicates that, starting

from ΣP1 , there is a clear sequence of conditional distributions to be simulated

in order to obtain a draw from p(Σ|b,D) via composition. We simply need to

identify the sequence of conditional distributions and a method to sample them.
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4.1.1 Decomposable Models

In decomposable models where all prime components are complete, conditioning

results for inverse-Wishart random variables enable sampling from each of the

elements in the composition directly.

For a perfect ordering of cliques and separators {P1 = C1, S2, P2 = C2, . . . ,

Sk, Pk = Ck} we use the traditional notation Ri = Ci \ Si and write ΣCi and DCi

in their conformably partitioned forms

ΣCi =

(

ΣSi ΣSi,Ri

ΣRi,Si ΣRi

)

and DCi =

(

DSi DSi,Ri

DRi,Si DRi

)

where ΣSi,Ri = ΣT
Ri,Si

. Also, let

ΣRi.Si = ΣRi − ΣRi,SiΣ
−1
Si

ΣSi,Ri

DRi.Si = DRi − DRi,SiD
−1
Si

DSi,Ri.

The sampling scheme is defined as:

(i) Sample ΣC1 ∼ IW (b,DC1); this also gives values to the submatrix ΣS2 .

(ii) For i = 2, . . . , k, sample

ΣRi.Si ∼ IW (b+ |Ri|,DRi.Si) and

Ui ∼ N(DRi,SiD
−1
Si
,ΣRi.Si ⊗ D−1

Si
).

Then directly compute the implied values of ΣRi,Si = UiΣSi and ΣRi =

ΣRi.Si + ΣRi,SiΣ
−1
Si

ΣSi,Ri .

This sequence completes the sampling of all elements in the intersecting block

components of Σ on the junction tree. It remains to fill-in the implied values of

the elements of Σ in the positions where ωij = 0, i.e. (i, j) /∈ E. This is done via

the standard completion operation described in (2.11).

51



4.1.2 Non-Decomposable Models

In non-decomposable models the same junction tree representation for compo-

sitional sampling is used, so breaking the problem into a series of conditional

simulations. The steps are precisely as described above for prime components

that are complete. The key difference and computational difficulties arise when

a non-complete prime component is visited; for such a component the standard

conditioning results for the inverse-Wishart (step (ii) above) do not apply. The

challenge is then to identify a way to sample from the appropriate conditional dis-

tribution of the elements of Σ in that component conditional on the set of values

on its preceding separator.

Here I use and extend the general theory of Atay-Kayis and Massam (2005)

that expresses a (global) HIW distribution through the Cholesky decomposition

of Ω. The key points here are: (a) to use this only in each incomplete prime

component within the overall compositional sampler, so allowing for efficient com-

putation and scaling to large graphical models by exploiting local computation;

and (b) to extend the theory to derive samples from the conditional distributions

of HIW matrices given separating parameters. The details are as follows.

For any incomplete prime component P, first consider the Cholesky method

for sampling a defined HIW distribution ΣP ∼ HIWP (b,DP ) on that component

alone. Write D−1
P = TtT for the Cholesky decomposition of the HIW parameter

matrix. Then, for ΩP = Σ−1
P write the Cholesky decomposition as ΩP = ΦtΦ, and

define Ψ = ΦT−1. The structure of the subgraph P implies certain constraints

on the elements of Ψ (Atay-Kayis and Massam, 2005; Jones et al., 2005); the

free elements are the ψii and those ψij such that (i, j) is an edge in P, and can

be simulated directly from independent chi-square and normal random variates.
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Then Ψ will be completed by direct, deterministic evaluation of the remaining

constrained elements. In detail:

(i) Compute the Cholesky decomposition T of D−1
P .

(ii) Define t〈ij] = tij/tjj.

(iii) Create the p × p upper triangular matrix A with aii = 0 and, for i 6= j,

aij = 1 if (i, j) is an edge in P, zero otherwise.

(iv) Compute νi as the number of 1’s in the ith row of A.

(v) Sample the free variables ψij for edges (i, j) in P :

• for i = 1 to p, ψii =
√
ui, where ui ∼ χ2

b+νi
,

• for i 6= j and aij = 1, ψij ∼ N(0, 1).

For edges (i, j) not in P, compute ψij via:

• if i = 1,

ψij = −
j−1
∑

k=1

ψikt〈kj],

• and for i > 1,

ψij =

j−1
∑

k=i

ψikt〈kj] −
i−1
∑

r=1

(

ψri +
∑i−1

l=r ψrlt〈li]
ψii

)(

ψrj +

j−1
∑

l=r

ψrlt〈kj]

)

.

(vi) Finally, set Φ = ΨT and compute ΩP = ΦtΦ, hence delivering ΣP = Ω−1
P .

Now, the modification needed is that we want to sample from p(ΣP |ΣS) where

S represents the nodes in P that lie in the preceding separator in the junction
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tree, so that ΣS is an upper left block of ΣP as in Section 4.1.1. In order to define

the modification the following two Lemmas are useful:

Lemma 4.1. If Ω ∈ M(G) follows a HIWG and given a perfect order of prime

components {P1, S2, . . . , Pk} the matrix Φ defined as Ω = ΦtΦ can be com-

pactly specified as {ΦP1, (ΦR2ΦS2R2), . . . , (ΦRkΦSkRk)} where all elements in the

sequence are mutually independent. This implies that, for all i = 1, . . . k,

ΦPi ⊥⊥ ΦPi+1
|ΦSi+1

.

Proof. See Roverato (2000)

Lemma 4.2. Let D ∈M(G). Given a perfect order {P1, S2, . . . , Pk} we can write

D = LtL =
∑

P∈P

DP −
∑

S∈S

DS

where, for every P ∈ P,

DPj =

(

LSj 0
LRjSj LRj

)(

Lt
Sj

LSjRj

0 Lt
Rj

)

Proof. This is a direct consequence of the collapsibility of graph G with graphs

GHj (Lauritzen, 1996; Roverato, 2000).

Due to Lemmas 4.1 and 4.2 the necessary changes are in fact almost trivial:

from Lemma 4.1 it is possible to note that the remaining elements of Φ in the cur-

rent prime component are independent of every element in H given the elements in

S; Therefore, conditioning is equivalent to fixing the values of the elements in the

initial rows of Φ (and therefore Ψ) corresponding to the separator S, and skipping

the corresponding steps in the sequence of computations above. Lemma 4.2 allow
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1 New Zealand Dollar (NZD)
2 Australian Dollar (AUS)
3 Japanese Yen (JPY)
4 Swedish Krone (SEK)
5 British Pound (GBP)
6 Spanish Peseta (ESP)
7 Belgian Franc (BEF)
8 French Franc (FRF)
9 Swiss Franc (CHF)
10 Dutch Guilder (NLG)
11 German Mark (DEM)

Table 4.1: Eleven international currencies. The dataset consists of 2566 daily
returns for each of these 11 currencies, over the period of about 10 years – 10/9/86
to 8/9/96.

us to maintain local computations, as the elements of Φ corresponding to S can be

obtained from the Cholesky of the Σ elements in the preceding prime component

alone; then the corresponding elements of Ψ can be immediately computed and

plugged-in step (v) above.

After sampling ΣP , we continue moving through the junction tree, working

with both complete (cliques) or incomplete prime components until all the block

components of the full Σ are completed. Then, again as described in Equation

(2.11), the completion operation comes in to play to fill-in the remaining elements

of Σ.

4.1.3 Examples

An example concerns posterior inference on a 11-dimensional covariance matrix

based on the graph G (Figure 4.1) linking international currency exchange rates

relative to the US dollar (Table 1). Data on consecutive daily returns provide

n = 100 observations that, after mean-centering and scaling, provide a sum of
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squares matrix S. The graph is immediately interpretable from an econometric

finance viewpoint, and consistent with prior data. The graph also happens to be
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Figure 4.1: Graph and junction tree in exchange rate/portfolio investment ex-
ample.
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Figure 4.2: Images of the MCMC estimate of posterior mean of Ω (left image)
and the theoretically exact posterior mean of Ω (right image) in the exchange rate
example.

decomposable, so that under a specified HIW prior Σ ∼ HIWG(b0,D0) the implied

posterior is the decomposable HIW form (Σ|n,S) ∼ HIWG(b,D) with b = b0 + n

and D = D0 + S. The prior parameters chosen are relatively non-informative,

with b = 3 and D = 0.0001I. We make comparisons below with a parallel analysis

on the full graph, i.e., under the usual full inverse Wishart distribution with no

conditional independence constraints - so ignoring econometric structuring and

also the parsimony that is embodied in G. The difference in log-marginal likelihood

of G to the full graph is 102.6, so indicating that the current n = 100 observations

very, very strongly supports the structured graph relative to the full graph (even

ignoring numbers of parameters and the issue of parsimony).

The simulation method described was applied to generate 1000 samples from
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Figure 4.3: Boxplot summaries of posterior distributions of optimal portfolio
weights a under G (graph) and the competing full graph (full).

the posterior HIW. Figure 4.2 images the theoretically exact value of E(Ω|n,S)

and compares it to the image of the Monte Carlo estimate - the latter being just

the sample mean of the 1000 simulated precision matrices. The comparison can

be investigated in more detail but the graphs suffice to demonstrate the efficacy

of the simulation.

Of central practical importance in financial times series and portfolio manage-

ment are functions of variance matrices of (residual) returns that define optimal

portfolio reallocations in sequential decision making about investments such as on

exchange rates (Aguilar and West, 2000; Quintana et al., 2003). This serves as

a very nice and practically linked example of inference on functions of variance-
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Figure 4.4: Posterior distribution (in terms of histogram of posterior simulated
values) of the ratio of standard deviations of the optimal portfolios under the full
graph relative to that under the graph G. This indicates that, for a common
target return, the risk of the optimal portfolio strategy using the standard, full
model is likely to be substantially higher than under the graphical model, which
also dominates in terms of fit to the data.

covariance parameters and the use of simulation of structured models of variance

matrices. If y represents the returns at the next time point, and a is a vector of

11 weights representing proportional allocation of funds invested in each of the 11

currencies, then the constrained (1′a = 1) portfolio minimizing standard devia-

tion as a measure of risk is given by the choice a = Ω1/(1′Ω1) (Aguilar and West,

2000). The corresponding risk level is SD(a′y) = 1/
√

(1′Ω1). Hence posterior

samples of Ω produce, by direct computation, posterior samples for the optimal

portfolio weights and related minimized risk.

Figures 4.3 and 4.4 summarize these posterior samples from the HIW posterior

on the structured graph G using, as a benchmark comparison, parallel analysis
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Risk Ratio −− Model Average/Graph G
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Figure 4.5: Posterior distribution of the ratio of standard deviations of the
optimal portfolios under model average relative to that under the graph G.

on the full (unconstrained) graph that would typically be used. Two practically

relevant conclusions are apparent from these figures. First, Figure 4.3 shows that

the values and levels of variation of the optimal portfolio weights across currencies

are smaller than under the full model, implying a more stable investment portfolio

of a kind that is desirable on economic and business grounds (Ledoit and Wolf,

2004). Secondly, Figure 4.4 shows that the optimal risk level is inferred as likely

to be smaller - and, practically significantly smaller - under the graph G. This

forcefully suggests that a structured, parsimonious graphical model can indeed

aid in reducing uncertainty and variation in portfolio weights, and thereby reduce

investment risk.

To take this further we combine variance matrix parameter learning with learn-

ing about the graphical model using results from the MCMC search over graphs
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too. From that search, the 20 most probable graphs identified appear to have pos-

terior probabilities substantially exceeding that of other discovered graphs (over

100 units in the log-likelihood scale), so that uncertainty about the graph struc-

ture may be approximately represented by these 20 graphs; the graph G is the

posterior modal graph. Under a formal model averaging strategy, the uncertainty

about graphs feeds through to the posterior distribution for the portfolio weights

and variance (risk), and these can be compared with the portfolios from both

the graph G and the full graph already described. The computations then use

the HIW simulator for the posteriors conditional on each of the sampled graphs,

and average results with respect to the evaluated posterior probabilities of those

graphs. The results appear in Figures 4.5 and 4.6. Evidently, the projected port-

folio risk under this “Bayesian model averaged” strategy exceeds that under the

strategy that conditions on G, apparently naturally induced by diversity in some

aspects of the underlying graphical model structure that induces more variation

in portfolio weights. As with the modal graph G, the model averaged graph beats

the full graph in the sense of having smaller risk for a fixed target return, as well

as representing inferences based on graphs that very substantially fit the data

better than the full graph. Hence, whether based on posterior modes over graphs

or model averaging over graph structure, the utility of posterior simulation in the

structured HIW framework is evident.

4.2 Discussion

This chapter has presented and illustrated direct simulation methods for hyper-

inverse Wishart distributions on Gaussian graphical models. The methods ap-

ply to both decomposable and non-decomposable models, and takes advantage
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Figure 4.6: Posterior distribution of the ratio of standard deviations of the
optimal portfolios under the full graph relative to that under model average.

of the junction tree representation to efficiently sample a complete but possibly

very highly structured variance matrix via composition. One attractive feature

of the methods is the fact that inversions and decompositions of large matrices

are avoided. The methods require matrix manipulations and Cholesky decompo-

sitions for simulation that involve matrices of no higher dimension than the size

of the largest prime component of the graph. This is a critical advantage and

a key for applications in higher dimensional problems. The examples presented

were of moderate size however the efficiency of the method is maintained in larger

problems. I have experimented with the approach in problems up to 200 nodes

and computations remain very efficient. To illustrate how computations scale up

a simulation study was performed. For different dimensions (10, 30, 50, 100 and

150) two sets of 10 decomposable graphs were simulated from the MH algorithm
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Upper Line
Nodes 10 30 50 100 150
Number of Cliques 7 27 47 89 130
Number of Edges 11 31 51 118 204

Lower Line
Nodes 10 30 50 100 150
Number of Cliques 2 18 30 70 99
Number of Edges 25 89 160 276 572

Table 4.2: Structure of simulated graphs for cpu benchmark studies. The table
gives the median number of cliques and edges in the 100 generated graphs for each
case (number of nodes) under the two different sparsity priors - the upper (red)
and lower (blue) lines examples in Figure 4.7.

presented in Chapter 3. Evidently, computation time increases with the complex-

ity of the graph, in terms of the size of larger cliques in decomposable graphs and

the nature and dimension of larger prime components in non-decomposable cases.

The two sets differ in the sparsity prior used; For the first set β = 2/(149) whereas

in the second β = 4/(149). The idea here is to compare the efficiency of the meth-

ods in graphs the not only differ by size but also by complexity. Table 4.2 displays

some of the median characteristics of the graphs in each set. The data used was

that of the 150 node gene expression example of section 3.6. Figure 4.7 shows

the results of the simulation and indicates that computations increase roughly

linearly with dimension. This is understandable as the number of cliques in large

decomposable graphs with similar degrees of sparsity will increase linearly and so

does the computational burden. The situation is similar with non-decomposable

graphs, though understanding scalability there requires further study, since the

complexity of non-decomposable graphs is impacted by the complexity of the

structure of its prime components as well as just the distribution of component

size.
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Figure 4.7: Compute time as a function of size of graph. The graph shows the
increase in cpu time to simulate the HIW distribution 100 times on a decomposable
graph, and how the time changes as a function of the dimension (number of
vertices). Graphs were generated randomly and the upper (red) and lower (blue)
lines represent differing degrees of sparsity: the upper cases correspond to graphs
in which edges occur with probability 2/p, and the lower those with probability
4/p, where p is the number of vertices. The crosses (relate to the red line) and
circles (relate to the blue line) represent cpu times for specific simulated graphs.
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Chapter 5

Matrix DLMS with Graphical Model

Structuring

In this chapter I introduce a new class of models for multivariate time series

analysis based on the general idea of sparsity in modeling covariance structures.

The models establish a connection between multivariate dynamic linear models

(DLM) and graphical models through the use of the hyper-inverse Wishart (HIW)

distribution as a prior for the cross sectional covariance structure of p time series.

The chapter starts with some background on multivariate DLMs, followed by

the generalization to HIW case. Time-varying covariances and model uncertainty

are then discussed. A comprehensive illustration of the methodology is presented

via two financial time series portfolio selection examples.

5.1 The Multivariate Normal DLM

Bayesian dynamic linear models (DLM) represent a broad class of structural fore-

casting models that have been extensively used in many application areas such as

finance, engineering, ecology and medicine. In general, DLMs are dynamic linear
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regression models (or state-space models) with Markovian evolution structures.

The sequential model specification and flexibility allows for the creation of com-

plex forecasting models where expert information and systematic interventions

can easily be incorporated. A thorough discussion of DLMs can be found in West

and Harrison (1997).

The focus of this chapter is on a specific (and yet general) subclass of DLMs,

the Matrix Normal DLMs as presented in Quintana (1987) and applied in Quin-

tana and West (1987). These models create a general, fully-conjugate, framework

for multivariate time series analysis when the cross sectional covariance matrix is

not known. In order to provide close-form analytical solutions, the model requires

common components defining each individual DLM, thus making these models

suited for the analysis of similar time series such as stock prices, bond prices,

temporal gene expression data, etc.

Specify the model via individual univariate components. Let p univariate time

series Yti following individual DLMs defined by

{

Ft,Gt, Vtσ
2
i ,Wtσ

2
i

}

.

Here, t is the time indicator whereas i indexes each time series (i = 1, . . . , p). All

quantities are assumed known aside from σ2
i , ∀i = 1, . . . , p. Each univariate model

can be written as:

Observation: Yti = Ftθti + νti, νti ∼ N(0, Vtσ
2
i ) (5.1)

Evolution: θti = Gtθt−1,i + ωti, ωti ∼ N(0,Wtσ
2
i ) (5.2)

Some standard conditional independence assumptions are necessary: given all

parameters the random innovations νti and ωti are independent across time and

mutually independent.
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To complete the model, a cross sectional covariance structure (Σ) is defined

through covariances between the observational and evolution errors.

Stack the individual DLMs and establish the following notation (at time t):

• Yt = (Yt1, . . . , Ytp)
′, a p× 1 vector;

• Θt = (θt1, . . . , θtp), a n× p matrix of states;

• Ωt = (ωt1, . . . ,ωtp), a n× p matrix of evolution innovations;

• νt = (νt1, . . . , νtp)
′, a p× 1 vector of observational innovations.

The full model can then be stated as

Y′
t = F′

tΘt + ν
′
t, ν t ∼ N(0, VtΣ) (5.3)

Θt = GtΘt−1 + Ωt Ωt ∼ N(0,Wt,Σ) (5.4)

where the evolution innovation matrix Ωt follows a matrix-variate normal distri-

bution as defined by Dawid (1981) (details in Appendix) with mean 0 (a n×p ma-

trix), left covariance matrix Wt (rows) and right covariance matrix Σ (columns).

The cross-sectional structure across series comes in via the elements σij (i, j =

1, . . . , p) of the (p× p) covariance matrix Σ. The model, as described in (5.3) and

(5.4), implies that (for all i, j = 1, . . . , p)

Cov(νti, νtj) = Vtσij

Cov(ωti,ωtj) = Wtσij.

The correlation structure induced by Σ affects both the observational and evo-

lution errors thus if σij is large and positive, series i and j will show a similar

behavior in both their underlying state evolution and in the observational varia-

tion about their level.
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5.1.1 Updating Recurrences

Based on a normal/inverse-Wishart prior for the state matrix Θ and the covariance

matrix Σ, a conjugate, sequential updating estimation procedure is available.

Suppose that the initial prior for Θ0 and Σ is a normal/inverse Wishart (NIW

hereafter) denoted by

(Θ0,Σ|D0) ∼ NIW (m0,C0, b0,S0) (5.5)

where m0,C0,S0 and b0 are pre-defined quantities and D0 is the information set

at time 0. At each step, the information set is updated so that Dt = {Yt, Dt−1}.

The notation in Equation (5.5) implies that

(Θ0|Σ, D0) ∼ N(m0,C0,Σ) and (Σ|D0) ∼ IW (b0,S0).

For all t > 1 the following theorem apply (as described in West and Harrison

(1997) and proved in detail by Quintana (1987)).

Theorem 5.1. The sequential updating for the matrix normal DLM is given as

follows:

(i) Posterior at t− 1:

(Θt−1,Σ|Dt−1) ∼ NIW (mt−1,Ct−1, bt−1,St−1)

(ii) Prior at t:

(Θt,Σ|Dt−1) ∼ NIW (at,Rt, bt−1,St−1)

where

at = Gtmt−1 and Rt = GtCt−1G
′
t + Wt
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(iii) One-step forecast:

(Yt|Dt−1) ∼ T (ft, QtSt−1, bt−1)

where

f ′t = F′
tat and Qt = F′

tRtFt + Vt

(iv) Posterior at t:

(Θt,Σ|Dt) ∼ NIW (mt,Ct, bt,St)

with

mt = at + Ate
′
t

Ct = Rt − AtA
′Qt

bt = bt−1 + 1

St = St−1 + ete
′
t/Qt

where

At = RtFt/Qt and et = Yt − ft

Proof. See Quintana (1987)

It is important to emphasize that due to the common components Ft,Gt and

Wt, fitting a matrix normal DLM is almost equivalent to fitting p individual

DLMs to each of the series. The difference lies on the ability to estimate the cross

sectional covariance structure Σ, where its marginal posterior distribution is given

by

(Σ|Dt) ∼ IW (bt,St).

This class of models has proved very useful in dynamic portfolio problems (Quin-

tana and West, 1987; Quintana, 1992; Quintana et al., 2003) where sequential
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investment decisions are made based on estimates of returns, volatility and co-

variation between assets. As p increases the estimation of Σ becomes more difficult

with increasing instability of optimal portfolio weights (Ledoit and Wolf, 2004).

Parsimonious methods that allow for a reduction in the parameter space are of

interest and graphical model structure arises as a natural way of address this

problem.

5.2 Sparsity in DLMs: Generalization to HIW

As discussed in Chapters 2 and 3, Gaussian graphical models are a representation

of conditional independence structure in multivariate distributions where decom-

positions of the joint distribution provide computational efficiencies and a reduc-

tion in the space of parameters. Taking advantage of the latter, this section shows

how graphical structuring can be incorporated in matrix normal DLMs providing

a parsimonious model for Σ. For a given decomposable graph, the hyper-inverse

Wishart is used as a conjugate prior for Σ and Theorem 5.1 is generalized, with

the analytical, closed-form, sequential updating procedure being preserved.

Consider the matrix normal DLM as described in Equations (5.3) and (5.4).

Now, the conjugate prior for Θ and Σ is a normal/hyper-inverse Wishart (as

defined in Chapter 2) denoted by

(Θ0,Σ|D0) ∼ NHIWG(m0,C0, b0,S0),

meaning that

(Θ0|Σ, D0) ∼ N(m0,C0,Σ) and (Σ|D0) ∼ HIWG(b0,S0). (5.6)

Updating recurrences are presented in the following theorem.
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Theorem 5.2. The sequential updating for the matrix normal DLM with graphical

structure is given as follows:

(i) Posterior at t− 1:

(Θt−1,Σ|Dt−1) ∼ NHIWG(mt−1,Ct−1, bt−1,St−1)

(ii) Prior at t:

(Θt,Σ|Dt−1) ∼ NHIWG(at,Rt, bt−1,St−1)

where

at = Gtmt−1 and Rt = GtCt−1G
′
t + Wt

(iii) One-step forecast:

(Yt|Dt−1) ∼ HTG(ft, QtSt−1, bt−1)

where

f ′t = F′
tat and Qt = F′

tRtFt + Vt

(iv) Posterior at t:

(Θt,Σ|Dt) ∼ NHIWG(mt,Ct, bt,St)

with

mt = at + Ate
′
t

Ct = Rt − AtA
′Qt

bt = bt−1 + 1

St = St−1 + ete
′
t/Qt

where

At = RtFt/Qt and et = Yt − ft
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Proof. This theorem is a direct extension of Theorem 5.1. The results that require

a different proof are (iii) and the updating related to Σ in (iv).

• Proof of (iii): It is clear that

(Yt|Σ, Dt−1) ∼ N(ft, QtΣ),

with (Σ|Dt−1) ∼ HIWG(bt−1, St−1) so, for each clique C, the marginal dis-

tribution of YC
t is simply a T (ft, QtS

C
t−1, bt−1). The overall marginal distri-

bution of Yt is then a hyper-T distribution given by the Markov combination

(consistent with G) of T-distributions over cliques and separators, as defined

in Dawid and Lauritzen (1993), and denoted here by HTG (see Chapter 2).

• Proof of (iv): The updating for Σ follows directly the conjugacy results for

the HIW described in Chapter 2 (Equations 2.12 and 2.13).

5.3 Retrospective Recurrences

After observing a fixed set Y1:T = {Y1,Y2, . . . ,YT} one might be interested in

looking back in time to more clearly understand what happened. The uncertainty

about the state matrix at time t is now updated in light of all observations up to

time T . Now the interest lies on p(ΘT−k|DT ) for all k ≥ 1, the so-called k-step

filtered distribution for the state matrix.

Using recent data to revise inferences about previous values of the state vector

is simply implemented as a direct byproduct of conditional independences of DLMs

and, given that Σ is a fixed parameter (not a state), the results developed in

West and Harrison (1997) extend to the matrix DLMs with graphical structure.
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In summary, the filtered distribution of the state matrix Θt−k and Σ is defined

as (details in West and Harrison, 1997):

(Θt−k,Σ|Dt) ∼ NHIWG(a(−k)t,R(−k)t, bt,St) (5.7)

where the parameters are calculated through the following recurrences:

Bt−k = Ct−kG
′
t−k+1R

−1
t−k+1

at(−k) = mt−k + Bt−k[at(−k + 1) − at−k+1]

Rt(−k) = Ct−k + Bt−k[Rt(−k + 1) − Rt−k+1]B
′
t−k,

with starting values

at(0) = mt and Rt(0) = Ct.

5.4 Time-Varying Σ

So far, Σ has been held fixed, not varying through time. The possibility of Σ

varying stochastically over time is very attractive, especially in financial applica-

tions where ARCH type models (Bollerslev et al., 1992) of conditional variance

and stochastic volatility models (Jacquier et al., 1994; Kim et al., 1998) are very

popular. Variance discounting ideas (Ameen and Harrison, 1985; West and Harri-

son, 1997; Quintana et al., 2003) can be adapted to matrix normal DLMs creating

an evolution process that decay the information about Σ between time points

while maintaining the nice conjugate results of Theorem 5.2. The degree of infor-

mation loss is determined by the variance discount factor δ with 0 < δ ≤ 1. This

parameter controls how adaptive to new information the model will be. Values of

δ close to 1 imply a model that preserves a lot of information through time and
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current estimates of Σ are heavily dependent on the far past. In the limit, with

δ = 1, the model is static and is back to a fixed covariance structure. The opposite

occurs for small values of δ in which case the model adapts to new information

very fast and estimates will be heavily concentrated on recent information.

First, suppose that G is the full graph and the posterior for Σt−1 at time t− 1

is given by

(Σt−1|Dt−1) ∼ IW (bt−1,St−1).

Note that the time dependency is now explicit so that the covariance structure at

time t − 1 is Σt−1. Evolving to time t we want to maintain the inverse-Wishart

form for the prior of Σt with, possibly the same location, but with an increased

dispersion due to the loss of information from t− 1 to t. This is accomplished by

(Σt|Dt−1) ∼ IW (δbt−1, δSt−1) (5.8)

where the increment in dispersion derives from the fact that δbt−1 < bt−1. This

evolution is a direct analogue to discount ideas in DLMs (West and Harrison,

1997) and formal models underlying this process are described in Uhlig (1994)

and Quintana et al. (1995). The general concept is based on the combination

of Wisharts and a matrix-Beta distribution in a multiplicative model that cre-

ates a “random walk” model for Σ−1
t . In short, write Σ−1

t = U′
t−1BtUt−1 where

Σ−1
t−1 = U′

t−1Ut−1. Given that (Σ−1
t−1|Dt−1) is a Wishart random variable, choos-

ing the appropriate form of matrix-Beta for Bt will deliver the desired prior for

(Σ−1
t |Dt−1). The drawback of the idea above is the lack of flexibility in discounting.

The appropriate choice of hyper-parameters for the distribution of Bt restricts the

discount factor to unusual values, outside of the standard 0.75 ≤ δ < 1 interval.

An alternative, more flexible proposal appears in Liu (2000) and Quintana et al.
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(2003) where the map from Σt−1 to Σt is establish through multiplicative beta

shocks applied to the diagonal of the Bartlett decomposition of Σ−1
t−1. Adapting

the latter evolution to a situation where G is not full, consider, without loss of

generality, the following DLM:

Yt ∼ N(0,Σt) (5.9)

with posterior at time t− 1 given by

(Σt−1|Dt−1) ∼ HIWG(bt−1,St−1).

Following the hyper-inverse Wishart extension of the Bartlett decomposition (Rover-

ato, 2000) set Σt−1 = Φ−1′Φ−1 where:

S−1
t−1 = T′T and Φ = ΨT

with Ψ ∈M t(G), and

(ψii)
2 ∼ χ2

bt−1+νi
and ψij ∼ N(0, 1)

for (i, j) ∈ V.

Here, M t(G) is the set of all upper triangular matrices with positive diagonal

elements such that the entries (i, j) /∈ E are zero, and νi is the number of non-zero

elements in row i of Ψ. Evolving the posterior at time t− 1 to the prior at time

t follows a transformation of the diagonal elements of Ψ where for Ψ∗ ∈M t(G) :

ψ∗
ii = ψii

√
ri

and

ψ∗
ij = ψij for (i, j) ∈ V,
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with

ri ∼ Beta

[

δi
2

(bt−1 + νi),
(1 − δi)

2
(bt−1 + νi)

]

and

δi =
δbt−1 + νi
bt−1 + νi

.

Now,

(ψ∗
ii)

2 ∼ χ2
δbt−1+νi

and

ψ∗
ij ∼ N(0, 1) for (i, j) ∈ V,

so that by setting

T∗ =
√
δT,

Φ∗ = Ψ∗T∗

and

Σt = Φ∗−1′Φ∗−1,

the prior for Σt takes the form

(Σt|Dt−1) ∼ HIWG(δbt−1, δSt−1). (5.10)

By using the above prior, updating is straightforward with the posterior at time

t given by

(Σt|Dt) ∼ HIWG(bt,St)

76



with

bt = δbt−1 + 1 and St = δSt−1 + YtY
′
t. (5.11)

In this model, as t −→ ∞ the posterior mean of Σt becomes an exponentially

weighted moving average estimate of the covariance structure. This follows since

bt −→ (1 − δ)−1 and E(ΣC
t |Dt) = SCt /(bt − 2) so that

E(ΣC
t |Dt) ≈ (1 − δ)

t−1
∑

l=0

δlYC
t−lY

C′
t−l.

This provides a framework where forward estimates of Σt keep adapting to new

data while further discounting past observations. Modifications in the discount

factor also allow for abrupt changes in volatility to be incorporated into the model

giving the forecaster the ability to determine how fast the model should react to

external information.

As discussed in West and Harrison (1997) no complete closed form retrospec-

tive update is available for Σt. However the mean of the filtered distribution of

Σ−1
t (under the full graph) can be recursively calculated by

E(Σ−1
t−k|Dt) = S−1

t (−k)[bt(−k) + p− 1] (5.12)

where,

S−1
t (−k) = (1 − δ)S−1

t−k + δSt(−k + 1)−1 (5.13)

bt(−k) = (1 − δ)bt−k + δbt(−k + 1) (5.14)

with starting values

St(0) = St and bt(0) = bt.
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So, for every clique C ∈ C (and separator S ∈ S), retrospective estimates of

ΩC
t can be computed by (5.12) and if combined with (2.9) provide retrospective

estimates for Ωt.

5.5 Large-Scale Dynamic Portfolio Allocation

The use of Bayesian forecasting through DLMs in asset allocation problems has

been routine for a number of years. The one-step ahead forecast distribution of

future returns is the key component for mean-variance portfolio optimization that

allow for parameter uncertainty to be taken into account in sequential investment

decisions. Aspects of Bayesian portfolio selection are discussed in detail in Polson

and Tew (2000); Quintana (1992), Putnam and Quintana (1994), Quintana and

Putnam (1996) and Quintana et al. (2003) are examples of carefully developed

DLMs that implement portfolio rules in fixed income and currency markets.

The static portfolio example of Chapter 4 is a first illustration of how sparsity

in modeling the covariance of assets can reduce the uncertainty about optimal

portfolio weights and so induce less volatile investment opportunities. DLMs with

sparse covariance matrices, as developed in Theorem 5.2, are a way to revisit and

explore that simple example in a more realistic fashion, i.e. in a dynamic allocation

process. Throughout the applications presented in this section, optimal portfolios

weights (wt) are determined based on the quadratic programming procedures

developed by Markowitz (1959). In this set-up, given the first two moments of

the predictive distribution of returns, say ft and Qt, and a fixed return target m,

the investor decision problem reduces to minimizing the one-step ahead portfolio

variance w′
tQ

−1
t wt subject to constraints w′

tft = m and w′
t1 = 1. The general

solution for the above optimization through Lagrange multipliers creates the so
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called efficient frontier where the mean-variance efficient portfolio is given by

w
(m)
t = Q−1

t (aft + b1) (5.15)

where

a = 1′Q−1
t e and b = −f ′tQ

−1
t e

with

e =
(1m− ft)

d
and d = (1′Q−1

t 1)(f ′tQ
−1
t ft) − (1′Q−1

t ft)
2.

An interesting alternative portfolio that involves only estimates of Qt is the

minimum-variance portfolio where,

wt =
Q−1
t 1

1′Q−1
t 1

. (5.16)

This strategy isolates the effects of Qt on investment decisions and is of interest

when competing models for covariance estimation are considered.

Perold (1988), Polson and Tew (2000) and Ledoit and Wolf (2004) point out

that building high-dimensional portfolios tend to result in extreme and very unsta-

ble weights assigned to each asset. This is due to the large amount of uncertainty

in the estimation of covariance matrices, especially when the the number of histor-

ical observations is relatively small if compared to the number of assets considered.

From (5.15) and (5.16) it is clear that the solution for optimal portfolios is a di-

rect function of the precision matrix Kt = Q−1
t . A nice representation appears in

Stevens (1998), namely

w
(m)
it = λ

fit −
∑

j 6=i (kij/kii)fjt

k−1
ii

(5.17)

with λ being the Lagrange multiplier. If it is assumed that the returns are normally

distributed, expression (5.17) shows that the weight assigned to asset i depends
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on the ratio of the intercept of its regression on all other assets relative to the con-

ditional variance of the regression. In other words, the amount of money invested

in asset i depends on the ratio of the expected return that cannot be explained by

the linear combination of assets over the unhedgeable (or nondiversifiable) risk.

Note that the numerator is a function of the off-diagonal elements of Kt hence it

is not surprising that conditional independence assumptions have a direct influence

over the uncertainty about wt. If, in fact, the unhedgeable risk can be obtained

by a regression involving a smaller number of regressors (i.e. having some of the

kij’s equal to zero) this has to be taken into account; failing to do so implies

that unnecessary parameters are being estimated and nothing but uncertainty is

added to the problem. In the following two applications, I show how imposing

conditional independence constraints help create portfolios that not only are less

risky but also turn out to be more profitable.

First the exchange rate data of Chapter 4 is revisited. This is followed by an

example involving a large set of securities in the S&P 500 stock index. The goal is

to simply compare the performance of dynamic portfolios built from both a “full”

(unconstrained) and a “sparse” (with graphical constraints) DLM. In all examples

a simple DLM with time-varying covariance structure (as in Section 5.4) is used,

namely

Yt = θt + ν t νt ∼ N(0,Σt) (5.18)

θt = θt−1 + ωt ωt ∼ N(0,WtΣt). (5.19)

This is special case of the general DLMs presented in previous sections and up-

dating recurrences are available from Theorem 5.1 and Theorem 5.2 along with

Equations (5.11).
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Figure 5.1: Daily exchange rate returns. The dataset consists of 2566 daily
returns for each of these 11 currencies, over the period of about 10 years – 10/9/86
to 8/9/96
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Figure 5.2: Cumulated returns for mean-target portfolios in the unconstrained
(“full”) and sparse (“graph”) model. Portfolio weights were computed using the
E(Yt|Dt−1) and V ar(Yt|Dt−1).

5.5.1 Dynamic Portfolios for International Exchange Rates

Consider the exchange rate data used in Example 4.1.3 and displayed in Figure 5.1.

The graph for the constrained model is also the same as in Chapter 4 (Figure 4.1).

In all models, non-informative priors (very small b0) with scale matrix equal to the

identity are used and four separate analysis are presented with different discount

factor δ taking the values 0.90, 0.95, 0.97 and 0.99. Most of the discussion is

focused on the model with δ = 0.97. For the purpose of this example δ is not

important and different values are considered just to show that imposing graphical

structures helps in all cases.
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Figure 5.3: Cumulated returns for minimum-variance portfolios in the uncon-
strained (“full”) and sparse (“graph”) model. Portfolio weights are computed
using the V ar(Yt|Dt−1).

For each model at each time point, mean-variance and minimum-variance port-

folios were built. Cumulative returns for both investment strategies under all

models are displayed in Figures 5.2 and 5.3. In line with the results presented

in Chapter 4, in all scenarios considered, the graphical model is more profitable

than the full model reinforcing the idea that sparsity can indeed help in portfolio

allocation process.

Figure 5.4 displays the optimal ex ante risk ratio for the full model relative

to the constraint one (mean-variance portfolio). This shows that the estimated

portfolio variance is likely to be smaller under the model with graphical structure
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Figure 5.4: Ex ante (at time t given Dt−1) ratio of standard deviations of optimal
portfolios in mean-variance portfolios under the full model relative to the sparse
model. Here δ = 0.97.

indicating that the parsimonious model is able to help reduce investment risk.

Combined with the fact that more profitable investment opportunities are avail-

able, the model with covariance estimation based on a graph provides an efficient

frontier that dominates, in risk-return sense, the one from the full model.

As previously discussed, one of the reasons behind the good performance of

the structured models is possibly the smaller variation of portfolio weights. To

explore this notion, a little simulation is performed in the model with δ = 0.97.

At each time t samples from the prior of Σt, in both the full and sparse model,

were used as inputs for computing optimal portfolio weights. Figure 5.5 shows

the evolution of the implied variance of weights through time. Throughout the

entire period of time considered, the optimal amount of money invested in each
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Figure 5.5: Each panel displays the estimated variance of the weights of each
asset in the mean-variance portfolio for both the constrained (blue line) and sparse
(red line) model.
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Figure 5.6: Standard deviation of the cumulative returns for the mean-variance
portfolio in the full (red line) and sparse (blue line) model.

asset varies considerably more under the full model. The conclusion that there

is more uncertainty about the optimal decision in the full model is clear. This

fact is highlighted by the distribution of cumulative returns presented in Figure

5.7 where the sequential interval around the expected cumulative return is much

wider for the full model. Figure 5.6 clarifies this perception by comparing the

estimated standard deviation of cumulative return in the two models.

5.5.2 Portfolio Allocation in the S&P 500

To further explore the performance portfolios built from DLMs with graphical

structure, I now present a large scale example using p = 346 securities forming

part of the S&P500 stock index. These are all the companies that remain part of

the stock index from January 1999 until December 2004 creating a set of t = 1, 508

observations. Again, the goal of the application is to compare the performance of

dynamic portfolios built from models with graphical structure relative to the full
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Figure 5.7: Distribution of cumulative returns for the mean-variance portfolio
with δ = 0.97 in the sparse (left) and full (right) model.

model. This problem illustrates one focal point of research in portfolio allocation

theory where the development of models to efficiently deal with large set of assets

is of great interest.

In order to determine the graphs to be used in the example I performed a

Metropolis search (restricted to decomposable graphs) using the first 1,200 ob-

servations in the dataset. It is important to point out that the only required

modification to the search method described in Chapter 2 is in computing the

marginal likelihood. In the dynamic set up, the marginal likelihood of the data

given G is computed by

p(Y1:T |G) = p(YT |DT−1, G)p(YT−1|DT−2, G) . . . p(Y1|D0, G), (5.20)

where for each element in the product, (Yt|Dt−1, G) ∼ HTG(ft,St−1, bt−1), as

defined in Theorem 5.2. In the search, the prior edge inclusion probability was

set to 0.5 so graphs of multiple dimensions could be explored. The initial 1,200

observations were used to generate the prior distribution representing D0 and the

final 308 observations were sequentially modeled as in (5.18). In all models a

discount factor of 0.98 was used.
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Figure 5.8: S&P 500 portfolios: Cumulative returns for portfolios built from
the top graph, the full graph and the empty graph. Cumulative returns of the
S&P500 provide a benchmark for the portfolios created in the example.

Figure 5.8 displays the cumulative returns for the “top” graph (29,181 edges)

compared to the full graph (59,685 edges) and the empty graph (no edges). As

a benchmark the actual returns for the S&P500 are also presented. Again it is

clear that the imposition of constraints in the covariance matrix generate more

profitable investment opportunities.

The point made earlier about variation in the portfolio weights is highlighted

by Figure 5.9 where for four randomly selected companies, the portfolio weights

under the graphical model show a more stable behavior through time, in line with

the results of the exchange rate example.

One very interesting result of this analysis appears in Figure 5.10 where the
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Figure 5.9: Evolution of portfolio weights for 4 companies in both the full graph
(red line) and top graph (blue line).

cumulative returns for 5 different graphs are presented. These graphs are a subset

of the top 100,000 graphs visited, representing the 25%, 50% and 75% percentile,

along with the top graph and the smallest graph in the top group. The fact that

the cumulative returns are very similar for all 5 graphs indicates that for the

purpose of investment opportunities, a small number of edges are really relevant.

Exploring subgroups of graphs that generate “equivalent” cumulative returns may

generate a lot of insights about portfolio allocation theory in connection with
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Figure 5.10: S&P 500 portfolios: These represent cumulative returns for portfo-
lios built from 5 different graphs in the top 100,000 graphs visited. The top graph
has 29,181 edges while the smallest graph in the top 100,000 has 5,458 edges. The
graph with 20,072 edges represents the 25% percentile, the one with 25,020 edges
is the median and the one with 30,840 edges is the 75% percentile.

covariance selection models. The development of financial theory is outside the

scope of this dissertation but this is definitely an important research road that I

intent to explore in the near future.

5.6 Model Uncertainty

In all examples presented, model uncertainty evaluation was performed in a static

fashion, i.e, graphs were selected based on a fixed set of observations with Ex-

pression (5.20) being the only modification necessary before any model selection
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strategy described in Chapter 3 is performed.

Each DLM is specified for a given graph G but in general, it is important to

recognize that any single DLM (or graph) is inadequate and considering multiple

alternatives is fundamental in generating forecasting models that incorporate all

sources of uncertainty.

One possible alternative is to work with combinations of DLMs is what is called

multi-process models as defined in West and Harrison (1997). Any single DLM

represents a single process with the combination of several DLMs defining a multi-

process model. These combinations are implemented using discrete probability

mixtures of DLMs, and so multi-process models can simply be viewed as mixture

models. This set up is also very similar to what is called mixture-of-experts in the

machine learning literature (Carvalho and Tanner, 2005) where each individual

forecasting model is one “expert”.

West and Harrison (1997) describes in detail the theory of multi-process and

established two distinct alternatives: multi-process class I and class II.

Let G denote a set of graphs so that for each G ∈ G, Mt(G) represents the

DLM specified by G at time t. If for some G0 ∈ G, Mt(G0) holds for all t, a single

DLM is viewed as appropriate for all time but the uncertainty about what is the

“true” graph G remains. This framework is defined as class I and given a set

G, each corresponding DLM is analyzed as usual, producing a sequence of prior,

posteriors and forecast distributions that when weighted by p(G|Dt), the posterior

probability of graph G ∈ G at time t, generate the desired mixture model. Our

ability to sequentially calculate p(G|Dt), in closed form, makes this alternative

a very attractive one as multiple DLM can efficiently be implemented in paral-

lel, preserving the sequential, on-line nature of these models. The probabilities
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p(G|Dt) will change over time as different graphs may best describe the data series

at different time intervals.

Multi-process Class II models are defined in a way that for each time t, the

graph G takes a value in the set Gt, with Gt varying over time. This represents a

much more realistic modeling view but its implementation is very challenging due

to the dimensionality of the space of graphs. Selecting a different set of graphs at

each time point can be computationally intractable.

The development of sequential model selection procedures that address uncer-

tainty about graphs while allowing for efficient on-line updates is an open research

area and one of key importance in further applications of DLMs in real forecasting

problems.

5.7 Discussion

By combining dynamic linear models with decomposable graphical models this

chapter defines a new class of DLMs that incorporates conditional independence

structure in the cross-sectional precision matrix of a set of time series. The use of

the hyper-inverse Wishart provides a conjugate framework that allow for sequen-

tial updating and on-line predictions.

Models with time varying covariance structure were also described where the

extensions of results related to the Bartlett decomposition of HIW matrices in

conjunction with discount ideas provides a formal justification for the sequential

update of Σt.

As shown in the portfolios examples, sparsity in modeling covariance struc-

ture of asset returns has a huge impact in reducing investment uncertainty. The

applications described are simple but able to touch on fundamental problems in
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high-dimensional asset allocation that hopefully will help the development of both

theoretical and empirical results relating conditional independence structure and

optimal portfolios.
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Chapter 6

High-Dimensional Sparse Factor Models

and Evolutionary Model Search

Latent factor analysis consists of models that attempt to explain the variation

of a large set of random variables in terms of a small number of unobservable

factors. These models explain patterns of association among variables by iden-

tifying sources of variation that are common to groups of variables and separate

these from idiosyncratic, variable-specific noise. As a model for covariance ma-

trices in multivariate normal problems, factor models represent an alternative to

Gaussian graphical models where lower dimensional structure comes directly in

the covariance matrix and not its inverse. Factor models are not only another

parsimonious option to modeling covariance matrices, but also a way to interpret

and understand complex relationships between large number of variables through

the analysis of a smaller set of common variational components.

Initial work on factor analysis dates back to the beginning of last century

with the study of human abilities by Spearman (1904) followed by a push in the

30’s and 40’s within the field of psychology. In statistics, Lawley and Maxwell
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(1971) and Bartholomew (1984) are two fundamental references with important

developments in estimation and testing procedures. Press (1982) is another basic

reference with important discussions about identifiability of factor models. Martin

and McDonald (1975) and Press and Shigemasu (1989) are early examples of

Bayesian inference in factor models, but it is not until MCMC simulation methods

become available that more developments are made in works by Geweke and Zhou

(1996), Arminger and Múthen (1998), Aguilar and West (2000) and Lopes and

West (2004).

Motivated by high-dimensional gene expression problems, West (2003) intro-

duce sparse latent factor models where the dependencies among very many vari-

ables are explained by factors that typically relate to a small number of variables,

represented by a factor loadings matrix with many zeros.

In this chapter, I describe latent factor models for multivariate analysis in

very high dimensions where the use of sparsity inducing priors establishes parsi-

monious relationships between high-dimensional variables and underlying lower-

dimensional latent factors. A key methodological development involves a novel

evolutionary stochastic search that addresses important issues of model specifica-

tion; the approach defines and fits models for high-dimensional problems through

an evolutionary process that gradually expands the dimension of the sample space

and the dimension of the latent components. It is often the case that we are inter-

ested in defining models on subsets of scientific interest and than enriching that

analysis by including variables that appear to be related. This is the case in the

genomics studies motivating this work where the methodology helps define, enrich

and characterize relevant pathways of biological activity by the decomposition of

relationships in measured mRNA levels on a genome-wide scale.
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6.1 Sparse Factor Models

Let x be a p-dimensional zero-mean, normal distributed random vector with co-

variance matrix given by Σ. In a basic k-dimensional latent factor model, the ith

observation of x is modeled as

xi = Bfi + νi (6.1)

with the following components:

• B is a p×k matrix of unknown factor loadings, the factor loadings matrix,

with elements βg,j for g = 1, . . . , p and j = 1, . . . , k. Write β′
g and bj as the

vectors representing each row and column of B respectively.

• fi is k-vector of latent factor scores with standard normal prior fi ∼

N(0, I).

• νi is a p-dimensional vector of independent, idiosyncratic noise, with ν i ∼

N(0,Ψ) where Ψ = diag(ψ1, . . . , ψp).

Further, it is assumed that the set of latent factors and noise terms are independent

and mutually independent, i.e., fi ⊥⊥ ν l, fi ⊥⊥ νi, fi ⊥⊥ ν l and νi ⊥⊥ ν l for all

i, l, (i 6= l). So, for each g the element xg,i of xi is given by xg,i = β′
gfi + νg,i,

where νg,i ∼ N(0, ψg). From these assumptions the covariance structure of x is

constrained by the factor decomposition and takes the form

Σ = BB′ + Ψ, (6.2)

explicitly separating the commonalities (BB′) from specificities (Ψ) in the varia-

tion of x.
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6.1.1 Identification

In order to be mathematically identifiable, the k-factor model must be further

constrained so that the decomposition in (6.2) has an unique solution. A detailed

discussion of identification issues appears in Aguilar (1998) and can be summarized

as:

(i) If B is not full rank the model is not identifiable. If rank(B) = t < k it is

possible to write Σ = B∗B∗′ + Ψ where B∗ = B + MQ′, where M and Q

are any two matrices of size p× (k − t) and k × (k − t) such that BQ = 0,

Q′Q = I, and MM′ is diagonal.

(ii) Orthogonal rotation of factors is another problem. For any orthogonal matrix

T, the model can be re-written as a function of B∗ = BT′ and f∗i = Tfi.

(iii) To guarantee a unique solution for the system of equations generated by

(6.2), the number of parameters in the model cannot exceed the total number

of parameters in Σ. This leads to the constraint that p(p − 1)/2 ≥ kp + p

which establishes a natural upper bound for k.

There are many ways one can impose constraints on B to address the problems

above. Traditional solutions include forcing B to be orthogonal and constraining

B′ΨB to be diagonal. Throughout this chapter, however, the solution developed

by Geweke and Zhou (1996) is preferred, where the loadings matrix takes the
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form,

B =



























β1,1 0 0 · · · 0 0
β2,1 β2,2 0 · · · 0 0
β3,1 β3,2 β3,3 · · · 0 0
...

...
...

. . .
...

...
βk−1,1 βk−1,2 βk−1,3 · · · βk−1,k−1 0
βk,1 βk,2 βk,3 · · · βk,k−1 βk,k
...

...
...

. . .
...

...
βp,1 βp,2 βp,3 · · · βp,k−1 βp,k



























(6.3)

where βi,i > 0 for i = 1, . . . , k. This way, B is full rank and is the unique matrix

such that BB′ is positive definite (Theorem A9.8 Muirhead, 1982). This solution

gives weight to the k lead variables in determining the factors, making the order

of the first k variables a key modeling decision with direct impact in fit and

interpretation of the model. We refer to the first k variables, in the order listed,

as the founders of the factors and its choice is one of the problems addressed later

on by evolutionary model search (Section 6.4).

6.2 Sparsity Priors

In models for many variables, sparsity modeling aims to induce many zeros in

variable-factor relationships - i.e., B is sparse. The pattern of non-zero values

is unknown and to be estimated. A priori, each βg,j may be zero or take some

non-zero value, so that relevant priors should mix point masses at zero with distri-

butions over non-zero values as in standard Bayesian “variable selection” analysis

in regression and other areas (Clyde and George, 2004; George and McCulloch,

1993; Raftery et al., 1997). The usual sparsity prior has the form

βg,j ∼ (1 − πj)δ0(βg,j) + πjN(0, τj), (6.4)
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independent over g, with δ(·) being a Dirac delta function at zero. In this set-up

there is a common chance πj of non-zero loadings on factor j for all variables;

this base-rate of inclusion on each factor is estimated under a prior that favors

small values. A modification is required for the diagonal elements of B since the

identifiability constraint requires that each βg,g > 0; thus the normal component of

(6.4) is adapted to N(0, τj)I(βg,g > 0), for g = 1, . . . , k, where I(·) is an indicator

function. West (2003) initiated this idea in factor models. However, the use of

these standard priors suffers from a critical practical problem that is exacerbated

as the number of variables p increases; this is a generic issue impacting on the use

of these point-mass/mixture priors in model selection and all other areas. The

problem is that with very large p the posterior probabilities for βg,j 6= 0 tend

to be quite spread out over the unit interval leading to an unintuitive high level

of uncertainty concerning whether or not βg,j = 0, for a non-trivial fraction of

variables. A solution for this problem arises with the adaptation of the ideas

developed by Lucas et al. (2006), where a hierarchical prior for βg,j reflects the

viewpoint that for many variables the probability of association with any one

factor is zero (or very small) and for a small set of variables it will be high. The

prior takes the form

βg,j ∼ (1 − πg,j)δ0(βg,j) + πg,jN(0, τj) (6.5)

πg,j ∼ (1 − ρj)δ0(πg,j) + ρjBe(ajmj, aj(1 −mj)). (6.6)

where Be(am, a(1−m)) is a beta distribution with mean m and precision param-

eter a > 0. Each ρj has a prior that quite heavily favors very small values, such

as Be(sr, s(1 − r)) where s > 0 is large and r is a very small prior probability of

non-zero values. Note that, on integrating out the variable-specific probabilities

πg,j from the prior for βg,j in Equation (6.5), we obtain a similar distribution

99



to (6.4), with πg,j simply replaced by E(πg,j|ρj) = ρjmj; this is precisely the

traditional variable selection prior discussed above, with the common base-rate

of non-zero factor loadings set at ρjmj. The insertion of the additional layer of

uncertainty between the base-rate and the new πg,j reflects the view that many

(as represented by small values of ρj) of the loadings will be zero for sure, and

permits the separation of significant factor loadings from the rest. Now the model

has the ability to much more effectively detect non-zero loadings, and to induce

very substantial shrinkage towards zero for many, many elements of B – effectively

extracting signal and resolving the implicit multiple comparison problem through

an appropriately structured hierarchical model.

6.3 Model Completion and MCMC Implemen-

tation

To complete the model, specification of priors for the idiosyncratic variance com-

ponents in Ψ and for all τj (j = 1, . . . , k) are required. The elements of Ψ are

assumed to be independent with a rather diffuse (proper) common inverse gamma

prior, ψ−1
g ∼ Ga(

aψ
2
,
bψ
2

), for g = 1, . . . , p. Similarly, we assume conditional inde-

pendent priors for the variances of the Normal component of the prior for βg,j,

where τ−1
j ∼ Ga(aτ

2
, bτ

2
) for all j = 1, . . . , k.

For a specified k and a given order of the initial k variables, estimation of the

model is done by posterior simulation via MCMC, which can be effectively imple-

mented in a Gibbs sampler format. To establish notation, for any quantity Λ - a

subset of the full set of parameters, latent factors and variables - let p(Λ|−) rep-

resent the complete conditional posterior distribution of Λ given X = (x1, . . . ,xn)

and all other parameters. The set of full conditional posteriors is now described.

100



Sampling p(f |−)

Let F = (f1, . . . , fn). Conditional on B and Ψ and based on the conditional

independence assumptions of the model, the posterior distribution of F takes the

form

p(F|X,B,Ψ) ∝ p(X|F,B,Ψ)p(F|Ψ,B)

=

n
∏

i=1

p(xi|fi,B,Ψ)

n
∏

j=1

p(fj)

=
n
∏

i=1

p(xi|fi,B,Ψ)p(fi) (6.7)

which shows that the update of each fi can be carried out independently. Given

fi ∼ N(0, I) and that marginally xi ∼ N(0,BB′ + Ψ) the joint distribution of fi

and xi is a multivariate normal

(

xi
fi

)

∼ N

[(

0
0

)

,

(

BB′ + Ψ B
B′ I

)]

. (6.8)

Using standard results of multivariate normals, the posterior conditional distribu-

tion of fi is simply given by

(fi|xi) ∼ N(B′[BB′ + Ψ]−1xi, I − B′[BB′ + Ψ]−1B). (6.9)

Sampling p(β,π|−)

In order to improve mixing, the update of elements βg,j of B and their sparsity-

governing probabilities πg,j is performed in blocks. We sample the bivariate full

conditional distribution for each pair {βg,j, πg,j} by composition, starting from

the conditional marginal p(βg,j|−) followed by p(πg,j|βg,j,−). The conditional
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independence of xg,i given fi, for all g = 1, . . . , p, allows us to sample, for a fixed

factor j, each of the pairs {βg,j, πg,j} independently. For factor j, let x∗g,i = xg,i −
∑k

l=1,l 6=j βg,lfl,i, so that x∗g,i ∼ N(βg,jfj,i, ψg) and, consider only the unconstrained

elements of B where g 6= j. We obtain the conditional marginal for βg,j integrating

out πg,j from the prior, i.e.,

p(βg,j) = (1 − ρjmj)δ0(βg,j) + ρjmjN(0, τj). (6.10)

This gives the following posterior update:

p(βg,j|−) ∝
n
∏

i=1

p(x∗g,i|βg,jfj,i, ψg)p(βg,j)

=

n
∏

i=1

N(x∗g,i|βg,jfj,i, ψg) [(1 − ρjmj)δ0(βg,j) + ρjmjN(0, τj)]

= (1 − π̂g,j)δ0(βg,j) + π̂g,jN(µg,j, Cg,j) (6.11)

(6.12)

where Cg,j =
(Pn

i=1 f
2
j,i

ψg
+ τ−1

j

)−1

, µg,j = Cg,j
(
∑n

i=1 fj,ix
∗
g,i

)

ψ−1
g and βg,j 6= 0 with

odds
(

π̂g,j
1 − π̂g,j

)

=
N(0|0, τj)

N(0|µg,j, Cg,j)
ρjmj

1 − ρjmj
. (6.13)

Second, for the constrained diagonal elements of B, the conditional posterior is

simply given by

(βj,j|−) ∼ N(µj,j, Cj,j)I(βj,j > 0) (6.14)

with similar formulas for µj,j and Cj,j.

After sampling βg,j marginally, we need to simulate πg,j from the posterior

conditional p(πg,j|βg,j,−). First, let βg,j = 0 so we can write the full conditional
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posterior of πg,j as

p(πg,j|βg,j = 0,−) ∝ (1 − πg,j)δ0(βg,j) [(1 − ρj)δ0(πg,j)+

ρjBe(πg,j|ajmj, aj(1 −mj)) ]

= (1 − ρj)δ0(πg,j) + ρj(1 −mj)Be(πg,j|ajmj, aj(1 −mj) + 1)

= (1 − ρ̂j)δ0(πg,j) + ρ̂jBe(πg,j|ajmj, aj(1 −mj) + 1)

(6.15)

where
(

ρ̂j
1 − ρ̂j

)

=
(1 −mj)ρj

1 − ρj
. (6.16)

The distribution in (6.15) states that when βg,j = 0, πg,j is sampled from

Be(πg,j|ajmj, aj(1 −mj) + 1) with probability ρ̂j and πg,j = 0 otherwise.

Now, if βg,j 6= 0,

p(πg,j|βg,j 6= 0,−) ∝ πg,jN(βg,j|0, τj) [(1 − ρj)δ0(πg,j)+

ρjBe(πg,j|ajmj, aj(1 −mj))]

= πg,jN(βg,j|0, τj)ρjBe(πg,j|ajmj, aj(1 −mj))

= πg,jBe(πg,j|ajmj, aj(1 −mj))

(6.17)

which implies that

(πg,j|βg,j 6= 0,−) ∼ Be(ajmj + 1, aj(1 −mj)). (6.18)
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Sampling p(τ |−)

The full conditional posterior distribution for each τ−1
j can be expressed as

p(τ−1
j |−) ∝

p
∏

g=1

p(βg,j|πg,j, τj)p(τ−1
j )

=

p
∏

g=1

N(βg,j|0, τ−1
j )Ga

(

τ−1
j

∣

∣

∣

∣

aτ
2
,
bτ
2

)

(6.19)

and therefore

(τ−1
j |−) ∼ Ga

(

aτ + wj
2

,
bτ +

∑p
g=1 β

2
g,j

2

)

, (6.20)

where wj =
∑p

g=1 1{βg,j 6=0} and independently over j.

Sampling p(Ψ|−)

Recall that the prior for each diagonal element ψg of Ψ is an independent

inverse-gamma, IG(
aψ
2
,
bψ
2

). So, for all g = 1, . . . , p the full conditional posterior

is given by

p(ψ−1
g |−) ∝

n
∏

i=1

p(xg,i|β′
gfi, ψ

−1
g )p(ψ−1

g )

=
n
∏

i=1

N(xg,i|β′
gfi, ψg)Ga

(

ψ−1
g

∣

∣

∣

∣

aψ
2
,
bψ
2

)

(6.21)

yielding

(ψ−1
g |−) ∼ Ga

(

aψ + n

2
,
bψ +

∑n
i=1 (xg,i − β′

gfi)
2

2

)

, (6.22)

independently over g.
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Sampling p(ρ|−)

Finally, we can sample each ρj independently with full conditional posterior

given by

p(ρj|−) ∝
p
∏

g=1

p(πg,j|ρj)p(ρj)

= (1 − ρj)
p−j−Sjρ

Sj
j Be(ρj|sr, s(1 − r))

p(ρj|−) = Be(sr + Sj, s(1 − r) + p− j − Sj) (6.23)

where Sj =
∑p

g=j I(πg,j 6= 0).

6.4 Evolutionary Model Determination

First some motivating context and discussion. Suppose that genome-wide ex-

pression profiles are available in a set of breast cancer tumors and our goal is to

understand and explore connections with a particular hormonal pathway – the es-

trogen receptor (ER) pathway, for example. Thinking of pathways as underlying

dimensions of biological activity, sparse factor models arise as a direct way to de-

compose the associations among genes into components of variation, i.e. factors,

representing these pathways. Estimates of the loadings B and inclusion proba-

bilities πg,j help assess the roles played by each of the pathways in the variation

of the genes, facilitating interpretation and understanding of biological ties. The

problem, however, lies with the fact that fitting a factor model for thousands of

variables (in this case up to 30,000) not only requires complex modeling decisions

but is also computationally challenging. With the scientific interest being on a

specific pathway related to a certain number of genes we don’t care at all about
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many of the variables thus, fitting models for all genes is not an efficient way

to aim at this problem. Given a “nucleating” set of genes with known involve-

ment in the target pathway, our goal is to enrich the analysis by identifying other

genes that share activity with the underlying components currently defining the

instances of biological variation.

With the pathway exploration idea in mind, the approach developed in this

section tries to address critical questions of model specification and fit in higher-

dimensions by allowing an evolutionary increase in the number of variables en-

tertained by the model generating a more focused analysis of the latent factor

structure. Starting from a set of variables with known involvement in one or more

pathways of interest, the evolutionary search will sequentially expand the sample

space with variables related to the current components of variation while allowing

the model to increase its complexity by the inclusion of new factors. The method

also serves as a exploratory tool that will, for a given set of variables, help deter-

mined the number of factors and the order of the first k variables. All decisions

made in each of the steps are based upon MCMC estimates of the sparsity pat-

tern in B which gives some theoretical justification to the procedure, as it can be

viewed as a conditional search within a over-arching proper MCMC.

Next, I describe each of the steps involved in the search.

Ordering the Variables

Given the lower triangular structure of B the order of the initial variables is

key in the estimation of the factors. Ideally, the top variable should be the one

heavily associated with the most dominant component of variation while being

conditionally independent of the other factors. Variable number two should be
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very representative of factor two while conditional independent of the subsequent

factors, and so on. For a p-dimensional vector x the following steps aim to create

a reasonable order for a k-dimensional factor model:

1. For T = 1 to k:

(i) Fit a model with T factors, without the constraint βT,T > 0;

(ii) Compute the posterior mean of B, B̂;

(iii) Rank the variables by |b̂T |. Choose the “top” variable to be the T th

variable in the list (hereafter, the founder of factor T );

(iv) Set the constraint βT,T > 0;

2. Re-fit model with the final order of the initial k variables, subject to (iv).

The sequential inclusion of factors attempt to capture, in order of importance,

each of the components of variation and identify the variable that is most related

to that factor. This variable should also be the one with the smallest estimated

idiosyncratic variation, given the factors included so far, and therefore the ordering

will be consistent with the assumptions implied by the upper triangular shape of

B. At each step, the positivity constraint of the top variable is removed in order

prevent the estimation to be biased towards the variable currently on top which, at

that point, is not necessarily a founder. Once the founder is chosen the constraint

is put back in, before the model is re-estimated.

Including Variables

Suppose we are dealing with a dataset of size p and that currently a set of

pin < p variables is being modeled by a k factor model. The idea is to expand
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around the current latent components and we are therefore interested in bringing

to the model variables that show association with the current factors. To do so, an

auxiliary MCMC is implemented and variables are brought into the model based

on the posterior estimates of inclusion probabilities and loadings weights. The

following describes the procedure:

1. Estimate the model for the pin variables and k factors. Compute F̂.

2. Run an auxiliary MCMC for a k factor model on the pout = p − pin vari-

ables not in the model, fixing the values of F = (f1, . . . , fn) at the posterior

estimates F̂ from the k factor model based on the pin current variables;

3. Compute posterior estimates of the inclusion probabilities πg,j for all g =

1, . . . , pout and j = 1, . . . , k.

4. For g = 1 to pout, rank the variables by the maximum estimated inclusion

probability πg,j .

5. Include the top z variables in the model;

6. Re-estimate a k factor model for the p′in = pin + z variables.

Running the auxiliary MCMC with fixed values of F is equivalent of running

a Gibbs sampler for variable selection that includes each of the variables outside

of the model, and in which the possible regressors are the current estimates of the

factor scores. The levels of association with each of the current factors, estimated

in B̂out, will tell us where to expand the analysis. Again, the sparsity inducing

priors play a central role, providing a direct and formal way to identify the group

of candidate variables to be included. The choice of z controls how aggressively

the search will expand around the existing, current set of included variables.
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Including a Factor

Suppose the current model has p variables and k factors. When the inclusion

of a new factor is proposed, an auxiliary MCMC is implemented with k+1 factors

without the constraint that βk+1,k+1 > 0. The decision to keep the newly proposed

factor is based on the estimates of πg,k+1 for all g = 1, . . . , p. If enough variables

are identified with high probability of loading on factor k+1, the factor is included.

When a factor is included, before refitting the model, the (k+1)th founder has to

be selected. Again, the variable with highest |b̂k+1| will be selected as the (k+1)th

founder.

There are two control parameters in this step: (i) the probability cut-off that

will determined which variables are loaded in the new factor and (ii) the minimum

number of variables loaded in a factor to justify its inclusion. The choice of these

parameters are specific to each analysis and will depend on modeling goals.

6.4.1 Evolutionary Search

The combination of the steps described above establishes what we call the evolu-

tionary model determination. Given a set of p-variables as a starting point and

starting with k = k0, the search proceeds as follows:

1. Choose the k0 founders;

2. Fit a model with p variables and k = k0 factors;

3. Try to include up to z variables; Re-fit model;

4. Try to include a new factor; Re-fit model;

5. If no more variables or more factors can be included stop; Else goto step 3.
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After choosing the initial founders, we start trying to include variables. Newly

included variables may introduce new sources of variation and so we follow with

the proposal of a new factor. When a new factor is included a different aspect of

covariation is introduced and explored; this may enrich the model by the inclusion

of new variables associated with it. We keep iterating between steps 3 and 4 until

no more variables or factors are included. This happens when no variables outside

of the model meet a pre-determined inclusion probability threshold, or when to

few variables are significantly loaded on a newly proposed factor.

Two intermediate steps enhance the performance of the search: (i) Re-selection

the founders; (ii) excluding variables. Step (i) is key as the inclusion of new

variables could provide better founders for the current factors. As for step (ii), if

after fitting the model, some variables are not loaded in any of the existing factors

(as estimated in B̂), they are dropped out of the model. This is relevant in helping

getting rid of possible “bad” variables that were part of the initial set. As the

search goes on, it is generally the case that only variables that are really related

to the factors being explored are drawn into the model, and step (ii) will tend to

be unnecessary. In more aggressive searches, however, when many variables are

included at each step, it is important to keep checking whether all variables in the

model are really participating in the activity estimated by the factors. Allowing

variables to drop out of the model adds flexibility to the procedure, helping in the

exploration and enrichment of the sample space.

The development of the evolutionary search is inspired by the idea that we

are able to explore the latent structure of a large vector x by sequentially under-

standing the structure of subsets of x. It is possible to think of the evolutionary

search as a way to estimate the k factor model for the entire vector x by running a
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conditional MCMC where, for the variables and factors out of the current model,

the elements of B are fixed at zero. Expression (6.24) is a illustration of this

where, assuming that the true k = 6, at that point 6 variables are in the model

with 3 latent factors. As the search evolves, variables and factors are included

and fewer values of B are forced to zero, as is (6.25).
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6.5 Examples

In this section, three examples illustrate the use of sparse factor models and the

evolutionary search. I start with a simulated example where the performance of

the evolutionary search is tested. A second small example illustrates how the

evolutionary search can also be used as a exploratory way to determine k. The
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Figure 6.1: Simulated example: The top panel shows the true loadings matrix
B while the true covariance matrix Σ appears in the bottom panel.
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Runs Variables Out
1 80, 128, 138, 163
2 138, 146, 163
3 107, 128, 138
4 80, 128, 146, 163
5 138, 146, 163
6 80, 128, 138, 163
7 80, 138, 163
8 107, 138, 146, 163

Table 6.1: Simulated factor analysis example: “Bad” (8 of 100) runs and relevant
variables left out of the model.

section ends with a high-dimensional genomic example where the ER pathway is

explored using gene expression data from human breast cancers.

6.5.1 Simulation Study

In order to test the performance of the evolutionary search, a dataset of 200

variables and 100 samples was generated from a 7-factor model where B is very

sparse, with only 93 variables loaded on at least one of the factors. To make

the example more realistic, noise was added to the zero elements of B. Figure

6.1 shows images of the true B and Σ. B was constructed trying to represent

some of the problems that motivate this work. Factor 1 represents the main

factor, playing a role in the variation of many variables. Factors 2 through 4

try to represent sub-factors highly connected to factor 1 while factors 5 through

7 represent factors with only subtle connections to the main factor of interest.

The search was performed 100 times, always starting from a set of 10 variables of

which at least 7 were part of the 93 that are actually loaded on the factors; this is

consistent with the idea that the goal is to explore around particular “pathways”

of interest represented by an initial set of “nucleating” variables. In each run,
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Figure 6.2: Simulated factor analysis example: Snapshots of estimates (B∗) and
true values of B after 40, 60, 80 and 100 variables are included in the model.
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Figure 6.3: Images of estimates (Σ̂) and true values of Σ for the variables in the
model, in the simulated factor analysis example.. In these images the variables are
re-ordered so that all the variables loaded in factor 1 are placed on top, followed
by all variables loaded in factor 2 and so on. Again, these snapshots are taken
after 40, 60, 80 and 100 variables are included in the model.
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Figure 6.4: Simulated factor analysis example: Images of true loadings B of
variables out of the model after 40, 60, 80 and 100 variables are included in the
model. In the end, only zeros (or very small values) are left out of the model

the search started with one factor and the following parameters/conditions where

used:

• Variables were included in the model only if the estimated inclusion proba-

bility πg,j > 0.95 for at least one factor (j = 1, . . . , k);

• Proposed factor l was included in the model if at least 5 variables showed

probability of inclusion πg,l > 0.95;

• At each step, at most 10 variables were included;

• After 60 variables were in the model, the founders were selected again;

• The search was set to stop after 100 variables were in the model.
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Figure 6.5: Simulated factor analysis example: Images of the true Σ for variables
out of the model after 40, 60, 80 and 100 variables are included in the model.
The evolutionary search sequentially captures structure in the covariance matrix
leaving out of the model only variables the are not related to any of the factors.

In all but 8 of the 100 runs, all 93 “relevant” variables were included and in all

runs the final number of factors was 7. Further analysis of the 8 runs that failed

to include all relevant variables show that the variables “out” were part of the

same small group (Table 6.5.1). Not surprisingly this group represents variables

with the lowest percentage of variation explained by the factors (Table 6.5.1) and

were left out due to weak association with the seven components of variation.

Figures 6.2, 6.3, 6.4 and 6.5 illustrate the evolution of one run where snapshots

of the search were taken with 40, 60, 80 and 100 variables in the model. Figure

6.3 displays estimates of Σ at each step next to the true covariance matrix for the

variables in the model. It is clear that the method is able to sequentially capture

the structure in Σ. This is reinforced in Figure 6.5 where we can see that only
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Variable % of Variation
x80 11.08%
x107 13.37%
x128 12.37%
x138 10.95%
x146 12.29%
x163 10.82%

Table 6.2: Simulated factor analysis example: Percentage of variation explained
by all factors for the relevant variables left out of the model in at least one of the
“bad” runs.

uncorrelated variables are left out of the model. Figure 6.2 shows how well the

estimation of B is carried out. In the end, the search is able to determine the

correct number of factors and identify the correct variables loaded on each of the

factors. Note that, in this particular run, factor 7 was the fifth factor included

while factor 5 was included last. Also, there a sign change in factors 1 and 6 which

relates to the choice of the founders and identification constraint imposed for the

top variable. As it can be seen in the estimates of Σ these differences have no

impact in estimation or interpretation of the model.

6.5.2 Selecting k

Generally, in factor analysis, the number of factors k is a modeling choice and in

most applied work k is used as a control parameter to test sensitivity of predic-

tions and change in interpretation. One of few fully Bayesian attempts to formally

make inferences about k appears in Lopes and West (2004) where a reversible jump

MCMC is proposed to move around the space of models, avoiding the problem of

estimating marginal likelihoods. Their method, however, requires parallel Gibbs

samplers for all models considered in order to generate suitable empirical propos-

als that are used in the RJMCMC. In problems of very high-dimensions where
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Currency Factor 1 Factor 2 Factor 3 Noise
DEM 95.48 0.00 0.00 4.51
AUD 0.99 56.18 0.00 42.81
SEK 58.55 0.00 6.27 35.17
ESP 64.49 0.00 6.28 29.22
GBP 58.34 2.30 3.80 35.54
JPY 41.09 0.00 0.00 58.90
BEF 85.78 0.00 2.06 12.15
FRF 86.85 0.00 2.14 10.99
NZD 3.05 39.20 0.00 57.73
NLG 95.65 0.00 0.00 4.34
CHF 86.10 0.00 0.00 13.89

Table 6.3: Percentage of variation explained by each factor and idiosyncratic
noise component in the exchange rate financial example.

the number of factors is really uncertain, this approach becomes computationally

very unattractive and infeasible. Again, the evolutionary search provides an ex-

ploratory way to determine k which can at least serve as a way to narrow down

the number of possibilities for a formal RJMCMC. Given a fixed set of variables

of size p the evolutionary search is a forward selection procedure that sequentially

expands the dimension of the model based on the sparsity pattern of B. This is

very similar to projection pursuit methods (Friedman and Tukey, 1974; Tukey and

Tukey, 1981) that iteratively search and remove structure from high-dimensional

multivariate datasets by projecting the data into lower-dimensional spaces.

Building on a example that appears in Lopes and West (2004) I apply the evo-

lutionary search to set of returns on international currencies trying to determine

k. The data is that presented in Chapters 4 and 5 (Figure 5.1). Starting with

k = 1, factors were sequentially proposed and accepted when at least 2 variables

presented estimated inclusion probability πg,jnew > 0.95. The search stopped with

k = 3 which is consistent with the information criteria displayed in Table 6.5.2
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k = 1 k = 2 k = 3 k = 4
AIC -4,642 -6,154 -6,255 -6,187
BIC -4,636 -6,142 -6,237 -6,152

Table 6.4: AIC and BIC for models with different number of factors (k) in the
exchange rate financial example. Both criteria agree with the end point of the
evolutionary search.

and similar to the results in Lopes and West (2004). Interpretation of the model

with k = 3 (Table 6.5.2) is straightforward and also consistent with the graphical

model example of Chapter 4. Basically, the first factor (Deutsch Mark as founder)

represents the main activity in the EU area, and explains most of the variation in

European currencies. Factor 2 identifies the Oceania component (Australian dol-

lar is the founder), the main source of variation for AUS and NZD. The third factor

separates out a more subtle effect in some European currencies, heavily influenced

by countries outside of the monetary union (GBP and SEK). The Japanese Yen

has some of its variation explained by the EU factor but most of it remains in

the idiosyncratic noise which is an indication that the model is missing an Asian

component- no other Asian country is considered in the model. The same type of

conclusion can be drawn from the top graph in Figure 4.1 where the pattern of

conditional independencies is consistent with the factors estimated here. In fact,

if we construct a graph by truncating small values in Σ̂−1 (Figure 6.6) we can

identify features similar to those in Figure 4.1.

6.5.3 Exploring the ER Pathway in Breast Cancer Ge-

nomics

I now present an analysis of gene expression profiles from DNA microarrays assays

of mRNA from breast tumors. The data consists of 171 samples from tumors
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Figure 6.6: Conditional independence graph implied by k = 3 factor model in
the exchange rate financial example.

where expression profiles of about 12,000 genes were taken in Affymetrix Human

U95Av2 GeneChips and processed using the current standard RMA (Irizarry et al.,

2003b,a) to generate summary estimates of expression levels of each gene in each

sample. The data is then transformed to log2 expression values and (an illustration

of data is shown in Figure 6.7) after screening the dataset for genes showing limited

variation over samples, 5,000 genes were considered. This data comes from the

Sun-Yat Sen Cancer Center in Taipei and it has been thoroughly analyzed in

studies by West et al. (2001), Huang et al. (2003) and Pittman et al. (2004) where

the central goal was the identification of aggregate patterns of gene expression

capable to predict lymph node metastasis and cancer recurrence. The goal of

the analysis is to explore hormonal and growth pathways and their interactions,

with special attention to the estrogen receptor (ER) pathway. ER is a target of

current hormonal therapies in breast cancer and improved understanding of the

activation of such pathways may be of great use in the development of alternative

gene expression-based tumor characterization and treatment.
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Figure 6.7: Histograms and scatter plots of 5 genes in the initial set of variables
for the ER breast cancer example. This data represents log2 expression estimates
processed by RMA.

The evolutionary search started with 10 genes, some directly related to ER

(such as hGATA3 and CA12) and others involved in cell cycle activity and growth

(Table 6.5.3). Thresholds for inclusion of variables and factors were set at 0.95,
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with 5 as the minimum number of variables required for the inclusion of a factor.

Standard diffuse priors were used for all parameters in the model. To facilitate

interpretation, the search was set to stop after 200 variables were included. Figure
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Figure 6.8: Breast cancer gene expression example: Estimate for the loadings
matrix in each of the pathways(factors). For g = 1, . . . , 200 and j = 1, . . . , 7, βg,j
was set to zero if πg,j < 0.95. The factors are labeled by biological characteristics
of its top genes.

6.8 displays the estimated sparsity patterns of B providing a visual impression of

gene-factor associations across factors as well as cross-talk between factors in terms

of genes loaded in more than one factor.

By listing the genes loaded on each factor (6.5.3), taking into account the ab-

solute value of the estimated βg,j, it is possible to examine each subset of genes
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hGATA3 Co-expressed with ER (West et al., 2001).
CA12 Over-expressed in malignant breast epithelium (Wykoff et al., 2001).
LIV-1 Estrogen induced (West et al., 2001).

HNF3-α Synergistic with ER (West et al., 2001).
GRB7 Synergistic with ER (Kristensen et al., 2005).
c-MYB Estrogen induced (West et al., 2001).
c-MYC Over-expressed during breast cancer progression (Zelinski et al., 2002).

CyclinD1 Cell cycle regulation and growth(Shoker et al., 2001).
HER2 Over-expressed in aggressive tumors (Yamashita et al., 2004).
ERBB2 Over-expressed in aggressive tumors (Yamashita et al., 2004).

Table 6.5: Starting set of genes and respective functions in the ER breast cancer
example.

for common biological functions, allowing us to name the factors and start ex-

ploring the biology driving the activity of each pathway. The analysis ends up

exploring two large pathways (evident in Figure 6.9), one replete with known ER

related genes – the ER pathway – and a second full of genes with immunoreg-

ulatory functions related to tumor suppression activity. Genes such as CA12,

hGATA3, LIV-1, HNF3-α and c-MYB are highly connected to ER (West et al.,

2001) and other oncogenic pathways and play a major role in the estimation of

the largest and most dominant factor in the analysis – hence the ER factor. The

main immuno-response factor is loaded with genes in the IGL region (Lefranc,

2001), responsible for the production of immunoglobulin which recognizes foreign

antigens and initiate immune responses such as phagocytosis. Also in this factor

are genes such as Ab63 that has been shown to regulate the proliferation of steam

cells and function as a tumor-repressor agent (Cabioglu et al., 2005). RANTES

and EBI-1 are other examples of genes involved in tumor-repression loaded in

what we call the immuno-response pathway (Moran et al., 2002). The remaining

factors clearly reflect other pathways of breast cancer biology (HER2, MUCIN1),
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Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7
CA12 IGL ERBB2 V4-31 PRAD1 MUCIN 1 RANTES

hGATA3 Ab63 HER2 IGL BCL1 PEM RANTES
LIV-1 Ab63 HER2 V4-31 CyclinD1 PEM ISGF-3

HNF3-α IGL HNF3-α Ab63 MUCIN MIR-7
HAG-2/R RANTES MB-1 MUCIN MB-1

AC133 EBI-1 MB-1 C4B TCF-1
c-MYB RANTES PIM-2 CD37
P450 CD45(IGL)

PDZK1 CD27(IGL)
EST1866 IGL

Table 6.6: Breast cancer gene expression example: Symbols for the top genes
(probes) loaded in each factor.

cell cycle activity (CyclinD1), and secondary branches of immuno-response activ-

ity (IMN2 and IMN3) (Yamashita et al., 2004; Brockhausen et al., 1995; Shoker

et al., 2001).

To validate that the factor 1 is in fact an ER factor, I try to predict ER

status measured via IHC (immunohistochemistry) proteins assays, reported as

ER positive or negative, in each of the tumors using factor 1 as a predictor.

IHC assays provide a very imprecise and noisy assessment of ER status but it is,

however, the standard way to classify breast tumors. In fact, part of the interest in

the pathway exploration analysis is defining a ER factor capable to help improve

potential ER assays. Figure 6.10 shows the fitted response probabilities for the

logistic regression of ER status on the posterior mean of factor 1 (f̂1), color coded

by the actual ER status. The association of factor 1 and ER is clear.

A final point relates to interpretation of sparse factor models. Figure 6.11

plots the expression levels for the probe CyclinD1 across samples. On the same

vertical scale are plotted the fitted values of the two factors for which πg,j > 0.95
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Figure 6.9: ER breast cancer example: Estimate of the correlation matrix (left)
and data correlation matrix (right). The two diagonal blocks highlight the activity
in the two main pathways explored.

for CyclinD1 and the estimated residuals. The plot illustrates that expression of

CyclinD1 can be represented by the activity in two factors across tumors. This

provides opportunity for biological interpretation of the participation or the role

played by each pathway in the expression of a gene. In this particular example,

CyclinD1 is a critical gene in cell cycle regulation, acting to phosphorylate the

Rb protein helping cell development and proliferation. Thus some of its variation

reflects cell cycle activity, unrelated to ER, represented here by the CyclinD1 fac-

tor. However, CyclinD1 is also a direct regulator of c-MYB hence its involvement

with the ER pathway. This sort of decomposition generates clear biological ra-

tionale for the activity being captured by the factors in this example of a gene

of well-known function. It then suggests the ability of such analyses to provide

insights and hypotheses about function of other, less well-known genes and aiding

in the exploration of important biological pathways.
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Figure 6.10: Fitted response probabilities for the logistic regression of ER status
on the estimated ER factor. The blue points indicate ER positive tumors and the
red points indicate ER negative tumors.

6.6 Computational Shortcut

The evolutionary search provides a feasible computational strategy to fit factor

models for very many variables. However, when p is very large the variable inclu-

sion step can be very costly as an auxiliary MCMC has to be implemented to rank

the many variables outside of the model. In trying to reduce the computational

cost of this step we implement an analytical approximation that replaces the aux-

iliary MCMC and provide a much faster way to perform the inclusion step. Given

that we are interested in bringing into the model variables highly associated with

the current factors, the simplest approximation would be to rank each variable xg

outside of the model by the R2 of the regression on F̂. This, however, doesn’t take
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Figure 6.11: Plot across breast tumors samples of CyclinD1, the ER factor
and the CyclinD1 factor. All plots are in the same vertical scale, indicating the
breakdown of the expression variation of CyclinD1 in two components.

into account the sparsity inducing priors and creates a decision rule that is not

based on the inclusion probability πg,j . Our approximation instead estimates the

inclusion probability πg,j for each factor j (j = 1, . . . , k) in a univariate regression.

The variables are then ranked by their highest inclusion probability on any of the

current k factors.

Let xg be one of the variables out of the model and F̂j be the estimated scores

for factor j. The posterior probability of βg,j 6= 0 can be approximated as

π̂g,j ≈
ρ̂jmj

ρ̂jmj + (1 − ρ̂jmj)N(0|µ̂g,j, Ĉg,j)/N(0|0, τ̂j)
(6.26)
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where

Ĉg,j =

(

1

τ̂j
+

F̂′
jF̂j

ψ̂g

)−1

, (6.27)

µ̂g,j = ψ̂−1
g Ĉg,jF̂

′
jxg, (6.28)

and

ψ̂g =

∑n
i=1 (xg,i − β̂g,jf̂j,i)

2 + bψ
n+ aψ − 1

(6.29)

with β̂g,j being the least squares estimate of βg,j. For a given τ̂j (from the previous

MCMC) and a ρ̂j (discussed below) this approximation is obtained by a normal

approximation to p(xg|βg,j 6= 0), the marginal likelihood of xg, after integrating

out ψg.

Note that using ρj from the previous MCMC can lead to overestimation of the

inclusion probability of many variables as at this point ρj has been estimated with

the number of variables currently in the model. If most of the variables in the

model are loaded in factor j, estimates of ρj will take large values which, if used

in the approximation, will then artificially increase the propensity of variables to

load on factor j. We correct this by adjusting the current estimate of ρj by the

prior proportion of inclusion for all pout variables out of the model, leading to

ρ̂j =
rs+ pload + poutrs

s+ pin − j + pout
(6.30)

where pin is the number of variables currently in the model, pload are the number

of variables estimated to be loaded on factor j with r and s being the hyperpa-

rameters of the prior for ρj.

Experimenting with this approximation in the simulated dataset presented in

Section 6.5.1 generated very similar results with the running time being signifi-
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cantly reduced. In all but 12 runs (out of 100) every relevant variable was included

and in every run 7 was the final number of factors. Again, the variables left out

were part of the same group displayed in Table 6.5.1.

6.7 Discussion

The main contribution of this chapter is the development of an evolutionary search

concept and the implied method of sequentially exploring specific components of

variation in high-dimensional datasets. Sparsity of the loadings matrix B is the

fundamental idea that guides the search by providing a formal way to identify

variables related to the latent structure and help check the need for new factors.

As described here, this work was motivated by the exploration of oncogenetic

pathways but its applicability is broad as highlighted in the financial example

presented. This procedure has also proved to be very useful in variable selection

for latent factor regression as developed in Carvalho et al. (2005) where multiple

response variables are jointly modeled with a high-dimensional set of predictive

variables.

A general software tool implementing the models and methods presented here

is currently being developed and will be available on-line very soon. BFRM

(Bayesian Factor Regression Model) is configured to run MCMC analysis of sparse

factor models and factor regression models including the evolutionary search.

BFRM is available in a 32 and 64-bit version compatible with both Linux and

Windows operational systems. A multi-threaded version of the software is cur-

rently under development. This project is a collaboration with Quanli Wang and

Mike West, part of the Duke Integrated Cancer Biology Program (ICBP). Details

of BFRM are presented in Appendix B.
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Chapter 7

Final Comments and Extensions

7.1 Summary

This dissertation addressed a range of important issues in sparse models for large-

scale multivariate problems. The discussion focused on models for covariance and

precision matrices with Gaussian graphical models and sparse factor models as

parsimonious structures for representing complex, high-dimensional relationships

in terms of simpler, lower-dimensional structures.

The research reported develops theoretical and methodological aspects of high-

dimensional multivariate problems, and innovative computational tools for model

selection and inference. In Gaussian graphical models I presented a novel shotgun

stochastic search for model selection, developed an efficient sampling scheme for

the HIW, and extended conditional independence ideas to time series analysis

by defining a new class of multivariate dynamic linear models. In sparse factor

models, a key contribution is the development of an evolutionary search that

addresses important questions of model specification, variable identification and

hard practical issues of mapping substructure in very high-dimensional problems.
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Some of the work in this dissertation was motivated by large-scale genomics

studies. As demonstrated in the financial examples, however, the concept of

sparsity is vast in its applicability and of potentially key relevance in its practical

import.

As scientific problems continue to grow in dimension, extensions of the ideas

and methods discussed here are a pressing need. With increasing access to larger

clusters for distributed computing, statistics research has an opportunity to sub-

stantially advance our ability to explore complex, high-dimensional model spaces

by integrating technological advances into theoretical and methodological research

goals.

I now conclude this dissertation by listing some extensions to the work pre-

sented.

7.2 Extensions in Gaussian Graphical Models

From the results in Chapter 3 it is obvious that much has to be done in or-

der for non-decomposable graphs to be routinely considered in high-dimensional

situations. The development of theoretical insights and methods are necessary

to improve the capacity to estimate the normalizing constants associated with

non-complete prime components. One potential direction for research is to un-

derstand the changes in the junction tree of non-decomposable graphs when one-

edge moves are considered. Flores et al. (2003) addressed this problem in the

context of direct graphs and adapting their results to prime component changes

in undirected graphs could lead to simplifications in line with what is described

in Section 3.3 of chapter 3 and Appendix A. In the same direction, creating a

map from non-decomposable to the space of decomposable graphs might generate
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a good, approximate way to explore the entire space of graphs by working around

decomposable graphs.

Recently, a rather different view of graphical model search has been outlined in

Dobra et al. (2004). These are constructive methods where the full joint distribu-

tion is derived using a triangular set of regressions representing the relationships

between variables. This is related to both the dependency network framework

of Heckerman et al. (2000) and approaches that model structure in the Cholesky

decomposition of variance matrices; it is innovative in the creation of an approach

that scales with dimension, encourages graph sparsity, and utilizes priors con-

sistent across graphs. These methods can handle large sets of variables due to

the pre-screening procedure that limits which variables are considered possible

predictors of others. This type of constructive method generates graphs that are

potentially widely different at each step, especially if compared to the one-edge

move strategy described in Chapter 2. Understanding the connections and theo-

retical differences between this approach and the undirected Gaussian graphical

models is necessary as these methods are able to analyze problems of thousands

of variables.

In this dissertation I have only considered model selection in Gaussian graphi-

cal models. Graphs, however, are very useful tools for other models – contingency

tables for example (Lauritzen, 1996) – and extensions of SSS to other contexts is

another important direction for future research.

7.3 Portfolio Problems

In Chapter 5, a very general multivariate dynamic linear model with structured

covariance matrix was developed. In applying this model to large-scale port-
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folio problems we found that conditional independence constraints help reduce

investment uncertainty and potentially generate more profitable opportunities.

An intuitive interpretation of this result is given through Equation 5.17 where

we see that the variance of optimal portfolio weights increases if zero constraints

in the precision matrix are ignored. High-dimensional portfolios are regarded as

one of the most challenging problems in financial theory (Polson and Tew, 2000)

and theoretical developments for a precise understanding of the connections be-

tween conditional independence assumptions and optimal investment strategies is

of key importance for further advances in that area. Still in this context, I hope

to explore the performance of DLMs with graphical constraints in more realistic

applications of portfolio problems (e.g. Quintana, 1992; Quintana et al., 1995)

where transaction costs and other economic variables are considered.

The fact that sparsity modeling of the precision matrix of assets has shown

to be very relevant in portfolio problems should not be unique to dynamic linear

models. Therefore, another important research direction in this area is to explore

the impact of graphical constraints in different types of dynamic covariance models

– such as multivariate stochastic volatility models (Aguilar, 1998; Chib et al., 2004)

and dynamic conditional correlations models (Engle, 2002).

A final question in this area is the development of efficient sequential model

selection procedures for graph identification. Multi-process models (class I), as

described in Section 5.6, provide a nice and easily parallelizable strategy to account

for model uncertainty but its performance is limited to how representative is the

set of graphs in the mixture within the entire space of models. Treating the graph

as a state and including its update in the sequential estimation might be one

possible alternative for this problem. This could be implemented via a particle
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filter strategy where at each step the set of “particles” (graphs) are updated

according to some evolution. The nice feature of this proposal is the fact that, for

a given set of particles, computations could be efficiently implemented in parallel.

7.4 Future Work in Sparse Factor Models

As a continuation of the effort to identify and understand pathways of biological

activity, we will continue to explore genome-wide expression datasets with sparse

factor models. Part of the work currently being developed at the Duke ICBP fo-

cuses on predictive models for phenotypes based on pathways identified by factors

(Carvalho et al., 2005). The evolutionary search, in this case, works as a variable

selection procedure that refines the exploration of the predictive pathways while

identifying genes that have a direct impact on the responses. The development of

software for the implementation of Bayesian factor regression models is also part

of ICBP’s effort and a brief description of BFRM appears in Appendix B.

As I have shown, the usefulness of exploratory methods such as the evolu-

tionary search is clear. Constant testing of its performance in simulated and real

problems has been very satisfactory. However, it is also clear that further theoreti-

cal developments to expand our understanding of search methods in factor models

space are needed. Trying to embed the evolutionary search in a formal model se-

lection paradigm – exhibiting its role and relationship to MCMC “search” over a

global model involving all variables – is part of my near-term research agenda.

7.4.1 Matric-Variate Factor Models

One possibly interesting research area is the extension of factor models to matri-

ces. As an example, consider multiple economic indicators being observed in a
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collection of different countries across time. This is the case in many longitudinal

studies and one might be interested in understanding the underlying structure

among countries, indicators and across them. This type of data could be modeled

through what we call Matrix Factor Models where for the ith observation

Yi = AΛiB + Ei (7.1)

with the following assumptions:

• Y is a (p× q) random matrix;

• Λi in a (k × h) matrix of factor scores with prior Λi ∼ N(0, Ik, Ih);

• Ap×k and Bh×q are factor loadings matrices;

• Ei is the matrix of idiosyncratic noise following a N(0, Ip, Iq).

This model implies that

vec(Y) ∼ N(0, (AA′ + Ip) ⊗ (BB′ + Iq))

which is equivalent to the composition of two separate factor models, one for

the rows and another for the columns of Y. Fitting the model in (7.1) should

be just an extension of the MCMC described in Chapter 6. Questions of model

specification are again the complicated part and central for the development of

methods necessary for the implementation of such models.

7.4.2 Sparse Factor-Graphical Models: A synthesis?

One further, very interesting set of questions – an an open research direction that

may yield a very promising agenda – concerns the relationships between sparse
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factor models and (also sparse) graphical models. At a more general level this

question has to do with the complementarities of approaches to modeling sparse

structures through the conditional independence approach (graphical models) and

the association or dependence approach (factor models). Little seems to have been

done to understand and reconcile what might appear to be conflicting approaches

but should in fact be complementary and consistent.

In the Gaussian case as discussed in this thesis, one focusing question concerns

the relationships between the structure and sparsity of a factor loadings matrix B

and the implied structure of the graph, equivalently the precision matrix Ω = Σ−1.

Sparse factor models induce many zeros in B, and so impose constraints on Σ

directly; inverting to the precision matrix will generally reduce the sparsity – that

is, a very sparse Σ (factor model, association or dependence graph implied) will

generally invert to Ω that – at least in terms of just the simple proportion of zero

elements – is much less sparse. Inversely, beginning with a very sparse graph, hence

a very sparse Ω, inversion can lead to a much less sparse Σ. This raises questions

about moving between the two approaches and of reconciling sparsity modeling in

the two views. Understanding the connections between the two approaches might

generate new ideas and expand our ability to model high-dimensional covariance

structure. One aspect of this general set of questions and an attempt to establish

this connection appears in Jones and West (2005); there new theory is defined to

represent the covariance between two variables in terms of a decomposition over

a graph - a covariance is decomposed into a sum of “path weights” for all paths

connecting the two variables in an undirected graph, and these path weights relate

intimately to the elements of the precision matrix. Conditions on the precision

matrix that “zero out” any given covariance would then aid in reconciling the two
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representations.

In trying to better understand the connections between Σ and Ω in a sparse

factor model context, we note the following intriguing identity and possible lead in

a new research direction. Assume that x is modeled via a factor model as defined

in Equation (6.1) with fi ∼ N(0,Q) and ν i ∼ N(0, I). This implies that

Σ = BQB′ + I. (7.2)

Now, we can show that if Q is given by

Q = g−1(B′B)−1

for some constant g > 0, then the precision matrix Ω is given by

Ω = Σ−1 = Ω = I − (1 + g)−1B(B′B)−1B′. (7.3)

This result utilizes the fact that B(B′B)−1B′ is an idempotent matrix.

One consequence is that the sparsity pattern – in terms of the positions of off-

diagonal zeros – in the covariance matrix and the precision is precisely the same.

Hence we can generate models in which there is a fundamental sparsity pattern –

hence one graph – shared by the correlation/association and the precision matrix

simultaneously. From the above, we can show that the specific “idempotent” graph

structure is a direct consequence of the sparse factor model in which the prior for

the latent factors is modified to a prior precision matrix Q−1 = g(B′B). This

is essentially the use of a standard Bayesian g−prior (Zellner, 1986; West, 2003)

for fi, generating a posterior for the latent factors that have the same covariance

structure as observed (given B) in the likelihood. (The above is developed relative

to a model in which the idiosyncratic variances matrix Ψ = I; in the more general

138



case, the extension is simply Q−1 = g(B′Ψ−1B) and the result about the common

sparsity pattern in covariance and precision graphs is maintained).

So, the knowledge of the covariance structure of the latent factors allow the

creation of a new class of models that establishes a link between factors and

Gaussian graphical models: if we view graphs as fundamental, this class of models

is a general class in which graphical models (defined by zeros in precision) and

association graphs (zeros in covariance matrices) coincide and so are reconciled.

The further pursuit of these ideas is yet another subject of my expected near-term

research.
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Appendix A

Graphs: Results and Algorithms

A.1 Maximum Cardinality Search and Decom-

posable Graphs

In this section we will consider how to obtain a junction tree representation of

a connected decomposable graph. To obtain a junction forest of a disconnected

graph, the algorithm can be used on each connected component. Obtaining this

representation for non-decomposable graphs builds on this algorithm and is con-

sidered in Section A.1.1. The junction forest is created by first establishing a

perfect ordering of the nodes of the graph, using the following maximum cardi-

nality search algorithm:

1. Pick a vertex v, and label it 1. While some unlabeled vertices remain, iterate

the following procedure:

2. Suppose k unlabeled vertices remain. From among the vertices with the

most labeled neighbors, pick a vertex and label it p− k + 1.
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One can use this algorithm to check for decomposability of a graph by checking at

each iteration of step (2) that all the labeled neighbors of the vertex to be added

form a complete subgraph.

For decomposable graphs, the ordering of vertices established defines an or-

dering of cliques, where the cliques are ordered by the highest numbered node

contained in each. This sequence has the running intersection property: for all

j > 1, let Sj be the set of nodes shared with lower numbered cliques. There is an

i < j such that Sj ⊂ Ci, and the Sj’s are all complete. Thus Sj is a separator

between C1, . . . , Cj−1 and Cj . . . Ck. This property shows us that the cliques can

be arranged in a junction tree, where cliques are nodes, and cliques that share

vertices are connected by an edge. Clique Cj may contain the separators of and

therefore be connected to many higher numbered cliques, but it is connected to at

most one lowered number clique. This prevents loops in the connections among

cliques, telling us the structure is a tree. The highest numbered clique is a leaf,

connected to only one other clique. While there may be many perfect orderings

(for examples, leaves of the tree may be listed in any order among themselves)

the junction tree is a unique representation.

A.1.1 Non-decomposable Graphs

Non decomposable graphs also have a junction forest representation, but in terms

of the prime components P1 . . . Pk rather than cliques. To get at this represen-

tation, we first triangulate the graph (add edges so that it is decomposable). A

perfect ordering is then built as in Section A.1. The set of edges added during

triangulation are called the fill-in edges. Now we will remove the fill-in edges and

consolidate the prime components that were decomposed after the addition of
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these edges, while maintaining the running intersection property in our ordering

of prime components. Any of the fill in edges not in S2, . . . , Sk can simply be re-

moved. To deal with the other edges, we start with the highest numbered separator

Sj containing fill-in edges. We consolidate Cj and the lower numbered component

containing Sj, Ci. The sequence of cliques then reads C1, . . . Cj−1, Cj+1, . . . Ck.

This maintains the running intersection property–any separators contained in Cj

are now contained in the lower numbered clique Ci. We repeat this process in

sequence for each separator containing fill-in edges.

A.2 One edge changes that maintain decompos-

ability

It has long been known that an edge deletion maintains decomposability if that

edge is contained in exactly one clique (see, for example, Frydenberg and Lauritzen

1989). Giudici and Green (1999) give an efficient condition for checking whether

an edge addition maintains decomposability. Decomposability is maintained if the

vertices to be joined (a and b) are in different connected components or if there

exist R, T ⊂ V such that a∪R and b∪T are cliques, and S = R∩T is a separator on

the path between a∪R and b∪T in the junction forest representation of the graph

G. In our program, the junction forest representation of the graph is maintained,

listing the cliques and separators of each component. When considering adding an

edge between a and b in the same component, each possible combination of values

of R and T are considered (these are defined by the clique memberships of a and

b). For each of these combinations, it is determined whether R∩T is a separator.

As demonstrated in Giudici and Green (1999), checking these conditions results in

substantial time savings over checking the decomposability of the new graph with
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maximum cardinality search each time. Other conditions for checking whether

edge addition maintains decomposability are given in Deshpande et al. (2001);

however we found them more difficult to implement in practice.
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Appendix B

BFRM: Bayesian Factor Regression

Model

BFRM is software developed for the implementation of sparse Bayesian factor

regression models in line with what was presented in Chapter 6. BFRM will soon

be made available at www.isds.duke.edu under the software link.

BFRM fits the following general model (described in details in Carvalho et al.,

2005):

(

yi
xi

)

=

(

A B C
D E F

)





Hi

µi
λi



+

(

εi
νi

)

(B.1)

where

• yi is the response q-vector (continuous, binary, categorical or possibly cen-

sored survival data); xi is the p-vector of candidate predictive variables

(continuous variables);

• µi is the latent response factor q-vector; λi is the latent factor k-vector; Hi

is a h-vector of regressors (and control) variables;
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• Aq×h and Dp×h are regression coefficient matrices relating both yi and xi

to Hi;

• Bq×q is the matrix of response factor loadings linking the response variables

to response factors;

• Ep×q is the matrix of factor loadings relating the response factors to xi

whereas Fp×k is the factor loadings matrix;

• Cq×k is the factor loadings matrix relating the responses to the latent factors

λi;

• εi and ν i are the idiosyncratic noise term.

All factor loading matrices and matrix of regression coefficients are expected to

be sparse thus modeled through the sparsity priors described in Chapter 6.

This model represents the view that relationships between the response vector

and x can be direct or implicit through the latent factor structure.

BFRM is also able to run an evolutionary search to expand the sample space

of x sequentially including variables to enrich the estimation of latent factors λ

and improve the predictive ability of the model.

Another important feature of BFRM is its ability to handle missing observa-

tions in the response vector y which are imputed in the MCMC.

An example of the parameter file used as input for BFRM follows:

#Version 1.5 (January 18th 2006)

#data section

NObservations = 1000 # number of observations

NVariables = 200 # number of X variables

145



NBinaryResponses = 0 # number of binary responses

NCategoricalResponses = 0 # number of categorical responses

NSurvivalResponses = 0 # number of survival responses

NContinuousResponses = 0 # number of continuous responses

NDesignVariables = 1 # number of regressor (size of H)

NLatentFactors = 2 # number of latant factor k (starting point)

DataFile = dataset.txt # X Data file (All X’s)

HFile = H.txt # H Data file (Regressors)

ResponseMaskFile = YMask.txt # Indicator of missing observations in Y

#prior section

#prior Psi

PriorPsia = 10

PriorPsib = 2

PriorSurvivalPsia = 2

PriorSurvivalPsib = 0.5

#prior Rho

PriorRhoMean = 0.001

PriorRhoN = 200

#prior Pi

PriorPiMean = 0.9

PriorPiN = 10

#prior Tau (Possibly different for each response factor)

PriorTauDesigna = 5

PriorTauDesignb = 1

PriorTauResponseBinarya = 5

PriorTauResponseBinaryb = 1

PriorTauResponseCategoricala = 5

PriorTauResponseCategoricalb = 1

PriorTauResponseSurvivala = 5

PriorTauResponseSurvivalb = 1

PriorTauResponseContinuousa = 5
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PriorTauResponseContinuousb = 1

PriorTauLatenta = 5

PriorTauLatentb = 1

#evolutionary mode section

Evol = 1 # Option for evolutionary search 0/1 (no/yes)

EvolVarIn = 20 # number of variables in the initial model

EvolVarInFile = varin.txt # file indicating what variables are in

# Probability threshold for variable inclusion

EvolIncludeVariableThreshold = 0.95

# Probability threshold for factor inclusion

EvolIncludeFactorThreshold = 0.8

# minimun number of variables needed for factor inclusion

EvolMiniumVariablesInFactor = 3

EvolMaximumFactors = 50 # Maximum number of factors

EvolMaximumVariables = 100 # Maximum number of variables

# Maximum number of variables included per iteration

EvolMaximumVariablesPerIteration = 10

#mcmc section

Burnin = 2000

Burnin_Select = 1000 # Burnin for auxiliary MCMC

nMCSamples = 2000

nMCSamples_Select = 2000 # Monte Carlo samples for auxiliary MCMC

#monitoring section

PrintIteration = 100

DEBUG = 0

CheckPoint = 0

# Use of approximation in variable inclusion step 0/1 (no/yes)

InclusionMethod = 1
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Appendix C

Multivariate and Matrix Distributions

C.1 The Matrix Normal Distribution

A random matrix Xq×p is said to follow a Matrix Normal Distribution (Dawid,

1981) denoted by N(M,C,Σ), with mean Mq×p, left covariance matrix Cq×q and

right covariance matrix Σp×p if its density is given by

p(X) = (2π)−qp/2|C|p/2|Σ|q/2exp
{

−1

2
tr
[

(X − M)′C−1XΣ−1
]

}

. (C.1)

Some important properties of the Matrix Normal Distribution are given below:

(i) vec(X) ∼ N(vec(M),C⊗Σ) where vec(X) is the usual column-vectorization

of the matrix X;

(ii) X′ ∼ N(M′,Σ,C);

(iii) For any matrix Hq×q, Kp×p and Lq×p

HXK + L ∼ N(HMK + L,HCH′,K′ΣK); (C.2)

148



(iv) Marginal and conditional distribution for any elements of X are normal dis-

tributed. Without loss of genererality, consider marginalization and condi-

tioning by rows, where

X =

[

X1

X2

]

so that

X1 ∼ N(M1,C11,Σ) and X2|1 ∼ N(M2|1,C2|1,Σ) (C.3)

with

M2|1 = M2 + C21C
−1
11 (X1 − M1)

C2|1 = C22 − C21C
−1
11 C12

C.2 The Matrix T Distribution

The Matrix T Distribution is a analogue of the multivariate T defined in Dawid

(1981). Let the columns of Xq×p follow a multivariate T distribution with n

degrees of freedom and write X = (X1, . . . , Xp) and m = (m1, . . . , mp) so that

Xi ∼ Tn(mi,CSi) i = 1 : p

with mi and CSi as the location and scale parameter respectvely. As with the

matrix normal distribution notation, X follows a matrix T distribution denoted

by:

X ∼ Tn(m,C,S), (C.4)

with density given by

p(X) = k|C|−p/2|S|−q/2|Iq + n−1[C−1(X − m)][(X − m)S−1]′|−(n+q+p−1)/2 (C.5)
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with normalizing constant k defined as

k = (nπ2)−(pq)/2 Γp+q
(

n+p+q−1
2

)

Γp
(

n+p−1
2

)

Γq
(

n+q−1
2

)

with Γ denoting the multivariate gamma function.
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