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Abstract

Large quantities of medical images are acquired daily at nearly every medical center
in the United States, but statistical models and associated softwares that would
facilitate the automated analyses of these images are lacking. The goal of this research
is to develop methodology that will make such automated image analysis possible.

The methodology proposed is based on an atlas-based deformation model which
finds a one-on-one mapping from the atlas image to a target image in the same
image class. The deformation is carried out by generalized landmarks called “facets”.
Knowledge about the atlas image is thus transferred to the target image through
facets.

A large number of facets are placed in the volume of the atlas (often on a lattice).
Each of them is then located in the target image. The model for the new location has
two components: a Markov random field prior with pair-wise difference on a nearest
neighborhood system, and a likelihood component based on the agreement of features
in the atlas and target image. A new measure of feature difference was introduced

that is robust under a variety of conditions.

The iterative conditional modes (ICM) algorithm is used to obtain the maximum
a posterior estimate of facet locations.

The model was used to automatically segment magnetic resonance mouse brain
images. It was also applied to inter-subject registration of human brain images. Both

qualitative and quantitative evaluation of the results are presented.
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Chapter 1

Introduction

1.1 Overview

The past decades have seen a boom in medical imaging technologies. Large quanti-
ties of images are acquired daily at nearly every medical center in the United States.
Mean-while, non-medical related imaging, such as satellite imaging, radar signal pro-
cessing, remote sensing, has produced valuable image data as well.

Consequently, much research effort has been devoted to facilitating the automated
analyses of these images. FElectrical engineers, computer scientists, physicists and
statisticians are among the many who make major contributions to the advance of
technologies in image processing and analyses.

Common problems of image analyses include: image restoration, segmentation,
and registration, just to name a few. Haralick and Shapiro (1991) gave the definition
of these terms:

Restoration is “a process by which a degraded image is restored, as clearly or as
best as possible, to its ideal condition”. From a Bayesian statistical point of view,
restoration is the process of making inference on the unobserved ideal image given

observed image data based on assumptions about the nature of degradation.



Registration is the process of bringing two similar images ( images of like geome-
tries) into spatial alignment, such that “corresponding points of the imaged scene
appear in the same position on the registered images”.

Segmentation is the process of segmenting an image into meaningful regions. Each
region may represent an anatomical part of the subject.

Most of the literature in imaging cited in this thesis deals with the above problems.

1.2 Image Registration in General

Image registration is the primary problem this thesis aims to solve. In this section we
review a sample of registration methods. There is a rich literature on image registra-
tion methods. These methods can be classified differently from several perspectives.
Maintz and Viergever gave a comprehensive review in 1998.

We explain the following registration methods in the context of medical imaging,
especially brain imaging, for it is where these methods have the most application in
real practice. However, readers should realize that the methods may not be limited
to brain and medical applications.

We also give the definition of “resolution cell”, “pixel” and “voxel” in a digital
image (Haralick and Shapiro, 1991) to facilitate understanding of the registration

methods.

e resolution cell: the smallest most elementary areal constituent having an asso-

ciated image intensity in a digital image;

e pixel, or picture element: a resolution cellin two dimensional images or a spatial
position along with the image intensity or vector of image values associated with

the spatial position;

e voxel, or volume element: same as pizel but in three dimensions.
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With regard to the modality from which the images are acquired, registration
methods can be classified into mono-modality registration and cross-modality regis-

tration.

Images of various modalities are acquired using different apparati with different
objectives. One category of modalities is targeted toward studying the anatomy of
the object. These include X-ray, CT (computed tomography) and MRI (magnetic
resonance imaging). Specifically, we briefly introduce the mechanism of MRI facility.
A MRI scanner applies a strong magnetic field to the object, causing the atomic
nuclei in the matter to spin along axes parallel to the direction of the magnetic field.
Then a radiofrequency (RF) pulse is broadcast in a direction perpendicular to the
magnetization direction. RF pulses are applied through coils. Different coils can be
used to image different body parts, such as head, neck, knee. Those nuclei precessing
(spinning) about their axes at the same frequency as the imposed radiofrequency are
affected (this is called “resonance”). Their precession axes will first deviate from the
magnetization direction and then come back within a specific length of time called the
“relaxation time.” In medical applications the radiofrequency is set to the precession
frequency of hydrogen nuclei. Hydrogen nuclei from different tissue types will have
different “relaxation times”, thus giving out different radio pulses. The MRI scanner
captures these pulses and records them in an image, and we are able to distinguish

between tissue types according to the image intensity.

Another general category of modalities targets the functioning of organs. These
modalities include fMRI(functional magnetic resonance imaging), PET (positron
emission tomography) and SPECT (single photon emission computed tomography).
During fMRI, patients are injected with a contrast-enhancing agent so that MR scan-
ners can capture the amount of oxygen in blood vessels in a very short time. PET

and SPECT start by injecting the subject with radioactive substance. In PET, the



radioactive substance gives off positrons which immediately collide with electrons in
the tissue then emit double gamma rays. In SPECT, the radioactive substance gives
off single photons. In brain functional imaging, areas of brain activity gain a distinct
level of intensity in the resulting image due to increased blood flow, which enables
us to study how brains function. SPECT images are less expensive to obtain than

PET, but also sacrifice some resolution and sensitivity.

Mono-modality registration refers to the registration of images acquired from the
same modality. Cross-modality registration refers to the registration of images from
different modalities and is usually used to integrate information from different images
of the same object. One of the most common applications is matching functional brain
images to a corresponding anatomic image. This allows us to better interpret the
functional results and to gain insights not apparent when examining the modalities
independently. Compared to mono-modality registration there are more difficulties
to overcome in cross-modality registration. The assumption many mono-modality
registration methods make, that the same tissues have similar intensities, is violated,
thus rejecting the use of related methods. In some cases distortion may also be
present in one of the modalities.

Registration methods can be extrinsic or intrinsic. Extrinsic methods are based
on accurately detectable foreign objects introduced into the image space, whereas
intrinsic methods are based on the image generated by the subject alone. Many in-
trinsic methods require identification of landmarks, which is a strenuous and complex
procedure. Thus extrinsic methods are comparatively easy, fast. However, provisions
must be made in pre-acquisition phase, and marker objects are usually invasive in
nature, making them clinically impractical.

Registration methods can also be classified as intra-subject and inter-subject.

Intra-subject registration is often used to correct for motion-induced misalignment



when several scans (not necessarily taken in the same modality) of the same subject
are taken at different times. In brain imaging, intra-subject registration requires
only rigid-body transformation. Inter-subject registration non-rigidly transforms the
images such that their corresponding anatomical parts have the same shape, position
and orientation.

Since this thesis places more emphasis on the mathematical transformation used
in registration, we adopt the classification by the type of spatial transformation. Since
particular types of transformation are used for particular purposes, this classification
is by no means orthogonal to the previous classifications. The next section presents

a sample of the pre-existing methods, organized by the type of transformation used.

1.3 Rigid-body Transformation

Transformations consisting only of rotations and translations are called rigid-body
transformations. They are often applied when registering images of the same subject,
even if the images are not acquired in the same modality. For example in intra-

subject registration of MRI to MRI, PET to PET, or PET to MRI, usually rigid-body
transformation is sufficient.

Rigid-body transformations in three-dimension can be fully described with a six-
parameter model as follows: any point with coordinates (x1,y,2;) in the original

space will occupy new coordinates (xs, 72, 22) after transformation.

) Ha)
Y2 = R Y1 +T (1.1)
22 Z1

Rotation is performed first, denoted by rotation matrix R. R can be decomposed

into rotations around the three axes, R = R,R,R,, where left multiplication of R,



rotates the image around z-axis by angle 6, and so on :

1 0 0
R,=1| 0 cosf, —sinf, |, (1.2)
0 sin#, cosb,

costl, 0 —sind,
R, = 0 0 , (1.3)

sin 6, cos 0,

e

cosf), —sinf, 0
R, = sinf, cosf, 0 |, (1.4)
0 0 1

Translation T = (¢,,t,,t.)" is performed after rotation, where ¢,,t,,t, are trans-

lation in the x,y, z directions, respectively.

1.3.1 Mono-modality Registration

Many mono-modality algorithms adopted image motion estimation techniques from
the computer vision literature. These algorithms are based on the “intensity conser-
vation assumption”, the belief that the same point on an object should display the
same intensity when imaged at different times (or under different conditions). Equiv-
alently, with respect to digital images, it is assumed that any pair of “corresponding”
voxels in two image volumes have equal intensity.

Ashburner and Friston (1993) used a straightforward approach based on this
assumption: they found the parameter values in (1.1) that minimize the sum of
squares for intensities of corresponding voxels. The authors also offered a more richly
parameterized transformation, which will be discussed in the section of deformable
models.

An approach suggested by Nestares and Heeger (2000) uses a gradient-based
displacement estimation. Under the intensity conservation assumption, the inten-
sity at coordinate (z,y,z) in image 1 is shifted by d = (d,,d,,d,) to coordinate

6



(x +dy,y +dy, z+d,) in image 2, i.e.:
file,y,2) = folw + dy,y + dy, 2 + dy) (1.5)

fi(.) and f5(.) are intensity functions of image 1 and image 2, respectively. The
model further assumes that intensity functions can be well approximated by a first-

order Taylor expansion, which leads to

fl(x,y,z) - fg(.’L’,Q,Z) = fZ(I —|—dx,y—|—dy,2’ +d2> - fQ(Ivyvz) (16)

o of,
~ d, * B (z,y,2) +d, * 9 (x,y,2) +

dfs

—= 1.

After re-parameterizing (1.1), the displacement d can be written as a function of

initial position x as follows,

dz) = wxz+t (1.9)
28
t
100 0 =z —y ty

= 010 —=2 0 =« wz (1.10)
001 vy —x 0 ¢
Wy
W

For each voxel, substitute the above for d in (1.8). Then for two images with N
voxels each, we have an N-dimension linear system with six parameters (¢,,t,,t., Wy, Wy, W)
to be determined. A robust regression is subsequently applied to obtain a robust es-

timate.

The authors also suggested that in preprocessing, the images be corrected for the

uneven intensity effect resulting from the use of different coils. Then the two images

7



should undergo adaptive histogram equalization to meet the intensity conservation

assumption.

A popular algorithm by Woods (1992) relaxed the above assumption, assuming
intensities of corresponding voxels are the same up to a constant multiplicative factor.
Based on this assumption he estimated the parameters by minimizing the overall
variance of the intensity ratio in the image volume. The minimization is carried out
by the Newton-Ralphson method. The algorithm proved to be robust for both small
and large displacements and is fast enough for online positioning. This algorithm is

implemented in the publicly available package AIR (automated image registration).

1.3.2 Cross-modality Registration: Maximizing Mutual In-

formation

In cross-modality matching, the intensity of the same tissue type usually differs from
modality to modality. Thus the intensity conservation assumption no longer holds.
Woods (1993) came up with a new model for registration between PET and MR data.
In this model, a much weaker assumption is made. It assumes that “all voxels with
a particular MR intensity value represent the same tissue type,” so “the intensities
of all corresponding PET voxels should also be similar.” In application, pixels in
an MR image are grouped into 256 (grey-level 0 to 255) bins. At each iteration, a
weighted average of the normalized standard deviations within each bin is calculated.
The iteration ends when the weighted average converges to a minimum. The major
inconvenience of this algorithm in brain registration is the necessity of editing out the
scalp region in preprocessing. Both intra-modality and cross-modality algorithms by

Woods are implemented in the publicly available package AIR.

The previous approach shares essentially the same idea as in Viola’s PhD thesis

(1995): Maximize Normalized Mutual Information . We present the idea by first



giving a basic introduction of entropy and mutual information.

The entropy of a random variable X with probability distribution function p(.) is
defined as follows:

H(X) = E[ln(p(X))] (1.11)

where 01n(0) = 0.

Then by Jensen’s inequality, the expectation of any concave function f(X) is less

than the function of the expectation:
E[f(X)] < f(E[X]) (1.12)
Conditional entropy of random variable X given random variable Y is
H(X[Y) = Ey[Ex[In(p(X]Y))]] (1.13)

We can also prove that for any random variables X and Y

E
s
vV

0 (1.14)

HY) > H(Y|X) (1.15)
Mutual information between random variables X and Y is given by:
I(X,)Y)=H(X)—- H(X|Y) (1.16)

When the distribution of X is known, a Y that minimizes H(X|Y") will maximize
mutual information. Since conditional entropy is a measure of the randomness of X
given Y, a Y that explains well the variability of X will result in a small H(XY),
the extreme case being that X is a deterministic function of V.

Put image registration into the above framework. The variables X and Y can
be viewed as random functions defined on the image volume. Let X be intensity
function for image 1 acquired under condition 1. Let Y be the intensity function

9



for image 2: the same object imaged under condition 2. Then given an arbitrary
alignment of image 1 and 2, p(X|Y" = yp) is the distribution of the intensity of those
voxels in image 1 that fall in the same positions as all voxels in image 2 with intensity
Yo. Mutual information of X and Y can then be calculated using (1.13), which is
maximized when X is solely determined by Y, or say, all voxels with intensity o in
image 2 have the same intensity in image 1 after proper alignment.

The maximization procedure is similar to that of AIR (Woods et al., 1992) de-
scribed in the last subsection. Due to the weak constraint placed on similarity of the
conditions under which images were acquired, it is robust in matching images from
any two modalities or images taken under different lighting conditions. This approach
is implemented in ANALYZE, a commercial image processing software package.

Most of the above mentioned algorithms provide the option of estimating affine

transformations. In an affine transformation the matrix R in (1.1) is arbitrary.

1.4 Deformable Template Methods

Deformable template methods, generally speaking, are registration methods that re-
quire non-linear warping. Such methods are most important for inter-subject regis-

tration.

1.4.1 Curved Transformation Models

One type of deformable template methods utilize curved transformations. A popu-
lar example is nonlinear spatial normalization using basis functions (Ashburner and
Friston, 1999). This technique is implemented in the software package SPM.

The basic idea is that after intensity transformation f(.), the reference image

I5(.) is essentially the target image I;(.) after spatial transformation T'(-), plus some

10



error e(.):
f(L(x)) = [(T(x)) + e(x) (1.17)
Our interest focuses only on the spatial transformation 7°(.). The transformation
is composed of a linear combination of a discrete sine transform (DST) and a discrete
cosine transform (DCT).
DCT is a widely used image compression technique. The DCT of a function is

generated by left-multiplication with matrix B, where the elements are defined by:

1
bt = —— m=1.M 1.18
1 =7 (1.18)
2 m(2m—1)(j — 1) .
.= — =1..Mj;=2.J(11
b, j 7 €08 < i m yJ J (1.19)

It transforms an image into the frequency domain. Values of b with small m are
basis functions representing components in low frequency, namely large scale features,
while values of b with large m’s represent high frequency components, namely noise

and details.

In this application, it is used to decompose spatial deformations.
Yy, =x; — B(z) xT; (1.20)

Here, rows in matrix B with small m’s represent global deformation and rows
with large m’s represent local deformation. The value T; represents the correspond-
ing coefficients to be estimated. When implemented in SPM, the number of basis
functions can be pre-selected, depending on how local a deformation is desired. Then

the algorithm iteratively estimates the coefficients in T;.

1.4.2 Physics Models

Using results from Broit’s doctoral dissertation, Bajcsy further developed brain mod-
els based on the physics of elastic objects. He posed partial differential equations

11



based on the equilibrium state between the external forces causing the deformation
and the internal force resisting the deformation. Constants representing elastic prop-
erties of the object are crucial in the deformation behavior. These constants are
pre-selected. Then the forces that determine the deformation field are derived by
minimizing the cost function, cost = cost(deformation) - cost(similarity). Similar-
ity is measured by normalized cross-correlation (Ferreira, 1981; Bajcsy and Kovacic,
1989; Bajcsy et al., 1983; Gee et al., 1993)

Christensen (1996) modeled the deformation field as a highly viscous fluid with
changeable volume to accommodate large distance deformations. Wang (1998) mod-
ified his model to elastic solids, and added a pre-alignment step using a surface
method.

The above is a small sample of the work on modeling non-rigid deformations.
As many of the authors themselves pointed out, most of these highly deformable
template models are very sensitive to the starting position. Thus, it is important to

use a rigid-body method to find a good initial alignment.

1.5 Theory of Patterns and Shapes

Mathematicians and statisticians have also contributed to the theoretical background
of image analyses.

Before working directly on grey level images, Grenander began by developing
a theoretical framework for patterns Grenander (1994). He modeled abstract shape
with a space of generators (building blocks), a connector graph describing how genera-
tors are associated with one another, and bonding relations (or regularity conditions).

Kendall (1984) also defined a space for shapes. An ensemble of points is repre-
sented by a configuration matrix X, each row of which is the spatial coordinate of

one point. The “shape” of this ensemble of points is defined as “all the geometric in-

12



formation about the configuration matrix X that is invariant under all translations,
rotations and scalings.” A metric of the shape space is also defined: the distance
between any two shapes X, X5 is the minimum of the sum of Euclidean distance
between corresponding vertices in the two configurations under all translation, rota-
tion and scaling. Let G be the group formed by all such transforms (called similarity
transforms),

dshape(XlaXQ) = ;ggdZSt(Xlag(XQ» (121)

This distance is called Procrustes’ distance. The process of calculating Procruste’s
distance between the landmarks of two similar images is the process of finding a match
between the images with respect to landmarks. This process is called a full Procrustes

fit. The solution can be obtained by standard least squares.

When there are two configurations for the same k landmarks, deformation is
defined as a mapping from one configuration to the other. The desired properties
of a deformation include: continuity, smoothness, bijectivity, no gross distortions,
equivariance and being an interpolant.

In two dimensions, thin-plate splines proposed by Bookstein are such a deforma-
tion. A pair of thin-plate splines maps one image space onto another in a way that
minimizes bending energy (Dryden and Mardia, 1998). The total bending energy of

a 2D spatial transform ®(x,y) = (®1(z,y), P2(x,y)) is given by:

2
0?d; 0?d; 0?d;

J(®) = 1) 42 )2 2)?dad 1.22

(®) ;//Rgaxnﬂaxayﬂaynm (1.22)

Thin-plate splines are the solution of the minimization of (1.22) over all possible

interpolating functions mapping from one configuration to the other, and thus are a

natural interpolant in two dimensions.
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1.6 Classic Bayesian Image Restoration Models

Analogous to Markov chain in one dimension, Besag (1974) modeled image data in
two and higher dimensions. A neighborhood system on a number of sites is specified
so that the conditional density of site ¢'s value depends only on the value of its

neighbors. That is, let J¢ be the neighbors of 7, then
p(zi|rs\i) = pi(@i|wa;) (1.23)

This system is called a Markov field. However, having specified a set of condi-
tional probability distributions p;(.), a joint distribution P(x) on all sites does not
necessarily exist. The Hammersley-Clifford Theorem gave the necessary and sufficient

condition for the existence of a joint distribution P(.):
Q(x) = In{P(x)/P(0)} (1.24)
Here, Q(.) is the energy function of the system (up to a constant). There exists a
unique expansion of Q(.) in the following form:

Qz) = > Vi(l“z')+Zzlgi§j§nvm(ﬂfm%)

1<i<n

+ ZZ Zlﬁgjgkgnvi’j’k(x“ Tj, Tg) + .o (1.25)

.....

-----

is then called the potential function of the clique {i, j,...s}. By plugging (1.25) into

(1.24) and rearranging, we get the Gibbs form of P(x):
P(x) = Eexp(—ZVC(x)) (1.26)

where C denotes the set of cliques in the system.

14



Besag (1986) demonstrated various applications of Markov random fields in image
restoration. Since it is natural to assume that the intensity of a pixel is similar to
the intensity of its neighbors, Besag used a nearest neighborhood system on a lattice
to model pixel values. In this neighborhood system, there exists only two types of
cliques. The first type is singleton clique, the second type is pairs of two adjacent
pixels.

Then by the Hammersley and Clifford theorem, the joint probability of the system

can be written in the following form:

P(x) = P(0)exp(Q(x)) (1.27)

= P0)exp(d Vi(z) + Y Vijlwi,z))) (1.28)
i <>
where < i,j > denotes i and j are neighbors. P(z) is called a pairwise interaction
Markov random field (M.r.f.).

Under the Bayesian framework for image restoration, a M.r.f. can be used as a
prior for the underlying un-degraded image, or, the “true scene.” Posterior inference

can be made about the true scene x after observing the degraded image data y
m(@|y) o< w(z)p(yle) (1.29)

Geman and Geman (1993) observed that the above posterior is Gibbsian with
approximately the same neighborhood system as the prior. They then proved the
Relazation Theorem that if each site is updated by making a draw from its full
conditional distribution infinitely often, then the sample always converges to the
equilibrium distribution 7(.), regardless of the starting state X(0). This theorem
provided theoretical foundation for the widely used Gibbs sampler.

To obtain a sample from the high dimensional posterior in (1.29), we begin with
any configuration, then proceed by drawing a sample at each site s from its conditional
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distribution

1
7'rs(xs|x8s> = 76_[]5(&:) (130)

S

where the energy function Uj is the sum of potentials in all cliques that contain site
5 (@) = e Vela).

With Gibbs sampling, we can calculate the stochastic expectation of the posterior.
Nevertheless, it is often desirable to also find the m.a.p. estimate (maximum a
posteriori), which gives the “most probable scene.” Geman & Geman adopted the
idea of simulated annealing in a physical system. Let the probability distribution be

written

1

Pr(r) = 7 exp(Q(z)/T) (1.31)

The parameter T > 0 corresponds to the “temperature” of the system. When
T — oo, Pr(.) approaches uniform distribution. When 7" = 1, Pr(.) becomes (1.28).
When T — 0, Pr(.) approaches a point mass concentrated on the m.a.p. estimate.
Simulated annealing is the scheme of finding the m.a.p. estimate by gradually low-
ering the temperature according to a prescribed schedule.

However, there are some drawbacks in applying simulated annealing to image
restoration. First, the cooling schedule is usually so slow that it imposes a formidable
computation load for even small images. Second, due to its undesirable large scale
properties, this scheme often yields a single colored image upon convergence.

Besag (1986) proposed Iterative Conditional Modes to eliminate these undesirable
features of the m.a.p. estimate, yielding a more computationally feasible algorithm.
ICM iterates through all sites, finds 2; that maximizes the full conditional p;(z;|xs;),
and is guaranteed to converge. This basic scheme was successfully applied to binary

images, discrete color images, continuous intensity images, etc.

Bayesian modeling has become increasingly acknowledged as an important tool in
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image analysis. A variety of knowledge can be incorporated into the prior under the
Bayesian framework, such as belief about image features, prior information on the
object shape, and knowledge obtained from training image sets, etc. In this thesis,
we incorporate prior beliefs about the spatial behavior of landmarks in the Bayesian

framework.
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Chapter 2

Model

In this chapter, a registration method will be presented. No explicit knowledge is
required of the imaged object. Furthermore, the method is not designed for one
particular type of image, but can be applied generally to images acquired from a

variety of apparati.

The model deforms one image to match another image in the same image class.
An image class can be roughly defined as a set of images of objects with the same
geometric/anatomical structure. The conditions under which the images are acquired
can be very different. Throughout this thesis the image to be transformed is called
the “atlas image,” and the image according to which the atlas image is transformed
is called “target image.” “Atlas images” are also called “reference images” or “tem-
plates” by other authors. “Target images” are sometimes called “object images” or

“study images.” Here, the choice of which image to be the atlas is arbitrary.

In our model, the transformation is carried out by a set of imaginary labeled points
called “facets,” which are in facet a type of landmark(McCulloch, 1999). Thus the

model is sometimes referred to as the “facet model” in this thesis.
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2.1 Facets

The “facets” in our model are in fact a type of landmark.

Dryden and Mardia (1998) summarized three types of landmarks

e anatomical landmark: a point assigned by an expert that corresponds between
organisms in some biologically meaningful way, for example the corner of an

eye,

e mathematical landmark: a point located on an object according to some math-
ematical or geometrical property of the image, for example a point of maximum

intensity on the cheek;

e pseudo-landmarks: also called “generalized landmarks,” are constructed points
located either around the outline or in between anatomical or mathematical

landmarks.

“Facets” belong to the category “pseudo-landmarks” by the above classification.
A generalization from biological landmarks or mathematical landmarks, a facet placed
on an image doesn’t usually have a specific interpretation. In the applications pre-
sented in this thesis, the underlying “true scene” is not within our concern. Thus the
facets represent the pixel values of the acquired image “as is” (Laading, 2000).

Below we will describe the model in two dimensions. The description can be
easily generalized into three dimensions. For example, in applying the model to
digital images, we will mostly use the term “pixel” instead of “voxel,” although the
statements would still hold true if we replace “pixel” with “voxel”.

Let €2 be the domain on which an image is defined. Normally, for a 2D image
Q=1[0,N,—1)x[0, N, —1) C R?. For gray level images, intensity, or brightness, is a
non-negative function defined on Q: ¢(.) : @ — RT. Please note that, in contrast to
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digital images, in our model definition, the image domain is continuous, rather than
discrete, and image intensity is a piecewise differentiable function defined on €.

In addition to intensity, the properties of an image at a certain location may be
characterized by functions of intensity at or around that location. These properties

should be intrinsic to the image. They are called “features” in this thesis. Some com-

monly used features include gradient Vg = (%, g—z), gradient magnitude (edgeness)
. . 2 8%g d9%g . .
IVgll2 and Laplacian (medialness) Vg = 38 + 5.4. For more differential geometry

features, see Wilson thesis 1995. A few examples of features are shown in Figure 2.3.

Let F be the space of features. It can be the product space of a chosen number of
features: F = Fi@F@...@F,. A feature evaluated at any location on an image is a
point in the feature space, i.e. f = (f1, fo, ..., fs) € F, fi € Fi,i =1,2,...,s. Animage
A defines a mapping from image space 2 to the feature space F: Qa(.) : Q@ — F.
Or say, given an image A, the corresponding feature f is a definitive function of the

location. Then the feature of facet 0 at location xg is
fo=Qa(r) € F (2.1)

A large number of facets are placed in the volume of the atlas image A on a
lattice. Each facet is then located in the target image 7" through the application of
the model we describe in detail in the next section. For an illustration see Figure
2.4. In theory, if we are able to place a facet at any location in A and locate it in T’
following the model mechanism, then the model will define a mapping from A to T'.
Since both images are defined on €2, this mapping is also called a “warp.” However,
in reality, our model is not a parametric spatial transform, and we can only place a

finite number of facets in A, so our model only yields an approximation to the warp.

According to Dryden and Mardia, a warp should have the following properties:

1. continuous and smooth
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Figure 2.1: a) Atlas image; b) target image; c) atlas with facets; d) facets located
on the target.

2. bijective (1-1 and onto)
3. not prone to distortions (e.g. not folding)

4. equivariant under relative location, scale and rotation of the objects.

We will explain how we try to incorporate these properties in the model prior.
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2.2 Prior

Facets labeled 1,2, ..., M are placed on atlas image A at locations g = (p1, f12, -+ firr)-
The atlas features are denoted by ¢ = (¢1, P2, ..., Oar) = (Qa(t1), Qa(pt1), - Qalfinr))-
In the deformation process, facets move from atlas locations p to new locations & =
(w1, 29, ..., xp) in target image T and thus take on new features f = (f, fa, ..., fu) =
(Qr(x1), Qr(22), ..., Qr(T M)

Inference shall be drawn on target locations .

Assume that M facets are laid down in a lattice on the atlas image, such that
the distance between adjacent facets is small compared to the scale of the image.
In the facet model context, the continuity and smoothness property (of a desirable
deformation described by Dryden and Mardia) can be translated as: if facet i has
deformed from its atlas location p; by dx, then the deformations of i’s adjacent
facets from their respective atlas locations should not be much different from dzx.
This heuristic gives rise to a pair-wise difference Markov random field as the prior

for x.

A first degree neighborhood system on a rectangular lattice is used (see Figure
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2.2). Only two types of cliques exist for this system: