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Abstract

This dissertation studies two models in Bayesian time series analysis: the Stochastic
Volatility Model in the time domain and the Harmonic Model in the frequency domain

of time series.

Volatility plays a central role in modern finance especially in the pricing of
derivative securities. Research on changing volatility can be categorized into two
groups: the time-varying volatility models represented by ARCH type models and
the Stochastic Volatility Models. Research on ARCH type models offers straight-
forward implementation and has been empirically successful but they generally lack
economic intuition. Stochastic Volatility models are statistically elegant and have
strong connection to continuous-time finance models. Yet estimation of Stochastic
Volatility models has been very difficult which makes further development of the
model and comparison of empirical results with ARCH/GARCH type models diffi-
cult.

We propose an efficient Bayesian Markov Chain Monte Carlo estimation proce-
dure for a Log-AR(1) Stochastic Volatility Model. We develop new simulation-based
model diagnostics methods for in-sample model adequacy check and compare with
the popular EGARCH model. Our in-sample diagnostic check shows better kurtosis
properties and different Smile effect generated by the Stochastic Volatility Model
than the EGARCH model. We also discuss issues of the comparison of historical
volatility and implied volatility and propose a new model which combines the his-
torical volatility and implied volatility under one model framework. This new model
can be used for both forecasting and testing of the hypothesis of the existence of

stochastic volatility.

Two common methods exist for frequency estimation in cyclical time series: prob-

v



ability theory and Fourier transform. Recent work of Jaynes and Bretthorst has
shown the connection of the two methods and the theoretical advantage of the prob-
ability method. We develop a unified approach for accurate frequency estimation
under the Bayesian MCMC framework for the single-frequency and multi-frequency
harmonic model which can be generalized to more complex models for the frequency.
We apply the method to real cyclical data. Motivated by the study of Oxygen isotope
data in geology study, we discuss timing issues in harmonic analysis, particularly the
impact of uncertain timing to the estimation of frequencies. We develop a harmonic
model with uncertain timing to investigate the impact of uncertain timing in fre-
quency estimation and to illustrate the use of Bayesian MCMC simulation methods
as a general method for complex models in Bayesian spectral analysis. We illustrate
our idea using real Oxygen data in geology study and provide evidence of the impact

of uncertain timing to frequency estimation.
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Chapter 1

Introduction

Volatility plays a central role in modern finance especially in the pricing of derivative
securities. The Black-Scholes model for the pricing of an European option is by far
the most widely used option pricing formula. Yet it is well known that the assumption
of constant volatility of the Black-Scholes model is violated in the market. Research
on changing volatility using time series models has been active in the last twenty
years. There are two major types of volatility models: the determinstic time-varying
volatility models represented by ARCH type models and the stochastic time-varying

volatility models represented by Stochastic Volatility models.

ARCH/GARCH type models were pioneered by Engle (1982) and grew rapidly
into a rich family of empirical models for volatility forecasting during the 1980’s.
They model the volatility as a linear function of the square of past observations and
are therefore also called observation-driven models (Shephard, N. 1996). Such rep-
resentation provides explicit one-step-ahead forecasting distribution for the volatil-
ity and offers straightforward implementation and interpretation. Empirical re-
sults indicated ARCH/GARCH type models have been very successful in forecasting
volatilities and are popular among practitioners. They also parallel directly with
the successful autoregressive and moving average models. The major criticism on
ARCH/GARCH type models were their lack of economic intuition. Surveys of work
on ARCH/GARCH type models are given in the papers by Bollerslev, T. Chou, R.
and Kroner, K. (1992), Bollerslev, Engle and Nelson (1994) and Engle (1995).

Stochastic Volatility Models have long attracted researchers in finance and econo-

metricians since the 1970’s for various theorectical reasons. One use of the Stochastic



Volatility Models is to explain the random behavior of financial markets and theories
on option pricing. Early work on using Stochastic Volatility Models to explain the
random behavior of the market includes Clark (1973) and Tauchen and Pitts (1983)
and Gallant,Hsieh and Tauchen (1991). Clark used stochastic volatility to represent
the random and uneven flow of new information to the financial market. Tauchen and
Pitts (1983) and Gallant, Hsieh and Tauchen(1991) refined this work and proposed
a mixture of distributions of asset returns with temporal dependence in information
arrivals. Another popular area of research on Stochastic Volatility Models is option
pricing theory using Stochastic Volatility models. These include Hull and White
(1987) who suggested a diffusion process for asset prices with volatility following a
positive diffusion process, Melino and Turnbull (1991) who used a log-autoregressive
stochastic process for the volatility, and Johnson and Shanno (1987), Scott (1987),

Stein and Stein (1991), among others.

There are two reasons for the concentration of theoretical research on Stochas-
tic Volatility models: modern derivative pricing theory is based on continuous-time
stochastic processes with which Stochastic Volatility Models has a close resemblance,
and estimation of stochastic volatility models has been a very difficult task. Unlike
ARCH type models which model volatility as a function of past volatility, they in-
troduce a seperate stochastic process for the volatility and are therefore also called
parameter-driven models. Their statistical properties are easier to understand and
generalize. Unfortunately, estimating the model is very difficult because of the non-
linear structure of the model. The lack of efficient estimation procedures and there-

fore empirical results seriously hampered theoretical research on Stochastic Volatility

Models.

Recent developments in estimating non-linear latent variable models has made

efficient estimation of Stochastic Volatility Models a reality. This makes extensive



research on studying the empirical aspect of Stochastic Volatility Models feasible. In
this part of the dissertation, we modify the pioneer work of Jacquier, Polson and
Rossi (1994) and develop a more efficient Bayesian Markov Chain Monte Carlo esti-
mation procedure for a Log-AR(1) Stochastic Volatility Model. We also develop new
simulation based model diagnostics methods. We then compare some aspects of the
Stochastic Volatility Model with the popular EGARCH model in the ARCH/GARCH
model family using real exchange rate data. Finally, we discuss issues of the com-
parison of historical volatility and implied volatility and propose a new model which
combines both the historical volatility and implied volatility under one model frame-
work. The techniques developed on parameter estimation, residual diagnostic and

model comparison can be generalized to other non-linear time series models.

This part of the dissertation is organized as follows: Chapter 2 develops a com-
plete Bayesian analysis on the Log-AR(1) Stochastic Volatility Model. This includes
an efficient MCMC estimation procedure whose performance is compared with the
MCMC estimation procedure of Jacquier, Polson and Rossi (1994), new model dig-
nostic procedures for the Log-AR(1) Stochastic Volatility Model, and illustrations
of the methods on real exchange rate data. Chapter 3 develops three extensions to
the basic Log-AR(1) Stochastic Volatility Model developed in Chapter 2. These in-
clude the Log-AR(p) Stochastic Volatility Model, the correlated Log-AR(1) Stochas-
tic Volatility Model and the model which combines both historical volatility and
implied volatility. Chapter 4 discusses the issue of model comparison under the con-
text of financial forecasting models. In particular, an option trading strategy was
developed for the comparison of the Log-AR(1) Stochastic Volatility Model and the
EGARCH model. Chapter 5 discusses future directions on the study of Stochastic

Volatility Models.



Chapter 2

Log-AR(1) Stochastic Volatility Model

Motivated by the work of Jacquier, Polson and Rossi (1994), we propose an effi-
cient Bayesian Markov Chain Monte Carlo (MCMC) simulation method in this chap-
ter to estimate a Log-AR(1) Stochastic Volatility Model. We first discuss the model
and traditional estimation techniques for the model. We then propose two different
MCMC techniques (a Single-Move and a Multi-Move Gibbs Sampler) to estimate the
model and compare their performance. We apply the model to real exchange rate
data and study the convergence behavior of both samplers. We then develop model

diagnostic tools to check model adequacy on real exchange rate data.

2.1 The Model

A good forecasting model should capture all the forecastable patterns in the data
and generate similar random behavior as observed in the market. To compare two
forecasting models statistically, we need to compare both their in-sample performance
and out-of-sample performance. Models with both good in-sample and out-of-sample
performance will engender confidence in application to real market.

Before we proceed, we list some intuitive reasons for the use of Stochastic Volatility
Model to forecast volatility. Among other empirical findings, the following stylized
facts about volatilities are commonly observed in financial data: volatility clustering;
fat tails distribution of asset returns; and the leverage effect (asymmetrical effects of

price change on volatility). A good volatility forecasting model should capture all

4



these patterns.

There are many versions of Stochastic Volatility Models in the literature, varying
through the choices of stochastic processes used to characterize the change of volatil-
ity. In virtually all current published continuous-time models, the stochastic process
representing the underlying volatility is represented by a Wiener process. We adopt
a discretized Log-AR(1) Stochastic Volatility Model proposed by Melino-Turnbull

(1987) to model foreign exchange rates.

Yi = eht/26t; (2.1)

ht+1 = o+ ﬂht + Oh [t- (22)

Here g; is the return of the asset and h; is the log-volatility at time t. The
log-volatility process respects the non-negativity of volatility and follows an AR(1)
process. Both ¢; and y; are independent standard normal errors.

This model explains the stylized facts of volatility in a very elegant way. The Log-
AR(1) process for the volatility captures volatility clustering, high values of b (close
to 1) indicates high degree of volatility clustering; the additional random variance in
the volatility process generates excess kurtosis in the marginal distribution of returns
which leads to the fat tail distribution of the data; if we allow the two random
noise ¢; and p; be correlated, this model neatly generates the asymmetrical effects
of price change to volatility. In this chapter, however, we will assume ¢, and p; be

independent.

2.2 Parameter Estimation

Although intuitively sound and statistically elegant, practical uses of Stochastic

Volatility Models have been limited because of difficulties in model fitting. The

5



derivation of the likelihood function of model parameters w = {a, b, 05} involves an
N dimensional integration problem where the latent volatility process is being inte-
grated out (N as the number of observations). Such computation becomes prohibitive

with large N. This is a common problem for all nonlinear latent variable models.

2.2.1 Classical Estimation Methods

Recent development in statistical technology has made the estimation of nonlinear la-
tent variable models possible with the increasing computing power. Among them, the
Generalized Method of Moments (GMM) and Quasi-Maximum-Likelihood Estima-
tion (QML) are two popular methods currently being applied. Other computationally-
extensive procedures include simulated maximum likelihood( Daniellson 1994), effi-
cient method of moments ( Gallant, Hsieh and Tauchen 1995).

Method of Moments is a popular tool in econometrics. Applications of this method
to the stochastic volatility model includes Chesney and Scott (1989), Melino and
Turnbull (1990) and Anderson and Sorensen (1995). The main idea of the Method
of Moments is to exploit the stationary and ergodic properties of the process which
yield the convergence of sample moments to their unconditional expectations. It is
useful in cases when distributional assumptions of the parameters are difficult if not
impossible to make. For a fully specified parameter model like the stochastic volatility
model, the Generalized Method of Moments method is expected to be inefficient.

Furthermore, there are a number of reasons that make the GMM approach an
unattractive approach for the stochastic volatility model:

e GMM can only be used if the log-volatility process is stationary. When the
mean reversion [ is close to 1, which is common for most financial data series, GMM

is expected to work poorly.

e  Parameter estimates of GMM are not invariant. This is important if other



parameterizations are more interesting.

e GMM does not deliver an estimate of the volatility process hy, either filtered or
smoothed. Since the main use of the model is to forecast volatility, another estimation
procedure has to be developed for that task.

Jacquier, Polson and Rossi provided the accuracy of the GMM estimates in their
1994 work and demonstrated its a less efficient estimation procedure for the stochastic
volatility model.

Harvey, Ruiz and Shephard (1994) applied a Quasi-Maximum-Likelihood (QML)
procedure to estimate the SV model. The basic model can be transformed into a

linear state-space model by taking the logarithm of the squares of the observations.

logy,? = hy + loge,?, (2.3)

ht+1 = o+ ﬂht + opU- (24)

By using a normal approximation to the logx?(1) distribution, Harvey, Ruiz and
Shephard approximated the model to a Gaussian state-space model and employed
the standard Kalman Filtering technique to estimate the latent volatility process.

The attraction of QML is that it is very easy to implement and extends easily to
more general models. And it provides filtered and smoothed estimates of the latent
volatility process. But it is expected to have poor small sample properties since the
logx?(1) distribution is poorly approximated by the normal distribution as shown in
Figure 2.1. Jacquier, Polson and Rossi (1994) provided some empirical evidence on
the performance of QML and concluded that as o; decreases, the QML procedure
gave poor sampling properties.

We propose MCMC simulation techniques to conduct finite sample inference on

the exact distribution of parameters of the Stochastic Volatility Model. Comparing
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Figure 2.1: The logx?(1) distribution and its normal approzimation

to the GMM and QML estimation procedures which rely on asymptotic approxima-
tions, Bayesian Markov Chain Monte Carlo (MCMC) estimation procedure offers a
unified simulation approach which works on the actual likelihood distribution rather
than asymptotic approximations for parameter estimation and smoothing. Jacquier,
Polson and Rossi (1994) was among the first one who applied the MCMC technique
to the Stochastic Volatility Model. They conducted extensive empirical studies on
various data series and provided compelling evidence that the sampling performance
of the MCMC sampler is much superior than that of the GMM and QML estimation

procedure.

In this chapter, we will modify the MCMC sampler proposed by Jacquier, Pol-
son and Rossi (1994) and propose a much faster MCMC sampler which uses recent

sampling techniques developed for State-Space Models.



2.2.2 A Single-move Gibbs Sampler

In the Bayesian context, the Stochastic Volatility Model is treated as a hierarchical
model. The latent volatility process is treated as a sequence of parameters in the
model. This idea is termed data augmentation and was pioneered by Tanner and
Wong (1987). Let w = {a, b, 04} denote the space of model parameters, let h denote
the vector of the volatility process, upon augmenting the volatility process {h} to the
parameter space {w, h}, the joint posterior distribution of w, h can be written as the
product of three conditional distributions. Namely, p(w, h|Y) < p(Y|h)p(h|lw)p(w).
Upon assigning a prior distribution to w, we can design a Gibbs Sampler which
iteratively re-simulate the two conditional distributions:

o p(hlY,w),

o pwlhY),

and converges to the joint distribution of p(w, h|Y’). The marginal distribution
p(w]Y) can then be used to make inferences about model parameters. The marginal
distribution p(h|Y") provides the solution to the “smoothing” problem of inferring the
latent volatility process as a natural by-product.

Now we study ways to sample from each conditional distribution.

Sampling from the second conditional distribution, p(w|h,Y), is easy from stan-
dard Bayesian inference on linear models. Given the volatility process, the second
equation in the model is a linear AR(1) regression model with unknown slope and
intercept. We specify a conjugate prior for {3, v} where 3 = {a,b} and v = ¢2. Upon
assigning a reference prior p(f,v) o< 1/v, the posterior p(/3, v|h) can be easily derived

from Bayesian linear models theory. In detail,

p(B,vIh) = N(BI3, (X'X) " v)Ga(1 /o] (n — 2)/2, ns*/2)
where 7 is the number of observations, X(,_1)s2 is an (n — 1) dimensional matrix

9



(1, h¢)n_1, t = 1,..n — 1, and ns? is the standard residual sum of square. Clearly,
under the same framework, extension to higher order AR models and adding other
regressors including seasonal dummy variables to either the volatility or the return

process is straightforward using Bayesian linear model theory.

Sampling from the first conditional distribution, p(h|Y, w), however, is not an easy
work because of the log-normal structure. One way to sample the joint distribution
as suggested in Jacquier, Polson and Rossi (1994) is to break the joint distribution
p(h|Y,w) into a set of univariate conditional distributions p(h;|h_¢, Y, w), where h_,
denotes the rest of the h vector other than h;. Iterating through draws from each uni-
variate conditional p(h;|h_4,Y,w) distributions will converge to the joint distribution
p(h|Y,w). This is called a Single-Move Gibbs Sampler since sampling of the joint dis-
tribution is achieved by iterating through each univariate conditionals p(hs|h_, Y, w)

Sampling of each marginal conditional distribution p(h;|h_;, Y, w) is not easy be-
cause of the log-normal structure. A Metropolis algorithm is suggested by Jacquier,
Polson and Rossi (1994). Because the Metropolis algorithm is going to be used
T times for each univariate conditional distribution for each iteration of the Gibbs
Sampler, and the Sampler will be iterating another N times, a highly effective pro-
posal distribution for the Metropolis algorithm is needed. Notice that the univariate

conditional distribution is a product of normal and log-normal distributions,

p(ht‘htfla Pisas Y W) ~ p(yt‘ht)p(ht‘htfl)p(hﬂrl‘ht)'

This density can be very well approximated and dominated by a product of two
inverse Gamma densities. Since the product of two inverse Gamma is still an inverse
Gamma, an inverse Gamma distribution is chosen to be the Candidate Generating
Distribution for the Metropolis algorithm. Experiments show a acceptance rate of

70% — 80% for the Metropolis algorithm which indicates the inverse Gamma density
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is a good approximation to the conditional density.

Another possible way to sample p(hs|h_;, Y, w) is to use accept/reject sampling al-
gorithm as suggested by Geweke (1994). This can be achieved because that p(hs|h_;, Y, w)
is globally concave, consequently the general approach to acceptance sampling from
distributions with log-concave distribution suggested by Wild and Gilks (1993) is
applicable. This procedure is considerably faster than the Metropolis algorithm.

In summary, the Single-Move Gibbs Sampler iterates through the following steps:

1. Initialize h and w.

2. Sample each h; from p(hilh_4, Y, w).

3. Sample from p(w|h).

4. Go back to 2.

It is easy to prove that the Single-Move Gibbs Sampler is ergodic and converges to
the stationary distribution. But the actual rate of convergence has to be accessed by
experimentation. We simulate data from the stochastic volatility model with known
parameters and estimate the convergence rate of the sampler. After extensive exper-
iments, we find that the sampler converges considerably fast when the autoregressive
parameter b is small or the variance of the volatility process o is large. But when the
mean reversion parameter b is high, or ¢ is small, the sampler converges very slow.

To illustrate this, we simulate 1000 data from the model with a low b value
and relatively large o and study the convergence behavior of the sampler. We then
simulate 1000 data with the same starting value but with a high b value and relatively
small o0 and compare the convergence of the sampler.

Figure 2.2 shows the simulation trajectory for b, the autocorrelation plot of the
samples and the histogram of b for both series. It can be seen that the Sampler
converges relatively faster for the series with b = 0.5 and o = 0.3. The autocorrelation

of the samples dies out after lag 400, and the chain converges to the stationary stage
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Figure 2.2: Left: Trajectory plots, acf and histogram of b for a Single-move Gibbs
Sampler with b = 0.95, 0 = 0.1. Right: comparison with b = 0.5, o0 = 0.3.

after iterations 2000. For the series with b = 0.95 and o = 0.1, the autocorrelation
of the samples remains significant until lag 1500, and the chain converges to the
stationary stage after iterations 5000.

This is because when b is high, or g}, is very small, adjacent volatilities are highly
correlated. This makes the mixing of the Gibbs Sampler in the parameter space
very slow. When b is bigger than 0.9, significant autocorrelations in the samples
of Gibbs Sampler remains even after lag 400. This unfortunate characteristic of the
single-move Gibbs Sampler is common to all parameter-driven models, see Carter and

Kohn (1994). If a component, such as h;, changes slowly and persistently, the single-
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move Gibbs Sampler will converge slowly. In the limit, when h; = h;_;, the sampler
will not converge at all. Given that volatility in financial series tend to be highly
correlated, this suggests that the Single-move Gibbs Sampler may be unreliable for

real financial data.

2.2.3 A Multi-move Gibbs Sampler

A common solution to the slow mixing problem caused by highly correlated elements
is to block the highly correlated elements and sample them together ( see Smith and
Roberts, 1993, and Liu, Wong and Kong, 1994 ). In the context of time series models,
works on designing methods to sample blocks includes Carter and Kohn (1994) and
Fruhwirth (1994). Instead of breaking the joint distribution p(h|y,w) into several
univariate conditionals p(h;|h,,y,w) and sample from each univariate conditionals,
we sample the joint distribution p(hly,w) directly.

To do this, the model

Yy = exp(hy/2)e, (2.5)

ht+1 =+ ﬂht + OpUt, (26)

is transformed into a linear state-space model.

log(y2) = hy + log(€?), (2.7)

h’t+1 = o+ ﬂh't =+ OpUt. (28)

Here, log(e?) follows a logx?(1) distribution. After this transformation, Model
(2.1) becomes a non-Gaussian dynamic linear model with h; as the state vector. It is

non-Gaussian because the error distribution for the observation process is a logx?(1)
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Table 2.1: Mean and Variance of the Mixture of Normals and the mixing probability
Mean | Variance Mix P
-10.12999 5.79596 | 0.00730
-3.97281 2.61369 | 0.10556
-8.5668 5.17950 | 0.00002
2.77786 0.16735 | 0.04395
0.61942 0.64009 | 0.34001
1.79518 0.34023 | 0.24566
-1.08819 1.26261 | 0.25750

instead of a normal distribution. Yet, the logx?(1) distribution can be extremely well
approximated by a seven component normal mixture following the idea of Carter and
Kohn (1994). The degree of accuracy can be improved arbitrarily by increasing the
number of mixtures. Following the work of Titterington, Smith and Makov (1985),
we matched the first four moments of the seven component normal mixture density
to that of the logx*(1) and require that the approximating densities lie within a small
distance of the true density. The resulting mixing normals have means, variances and
mixing probabilities displayed in Table 2.1.

Note that the mixture of normals are chosen independent of data. So this needs
to be done only once.

After transforming the non-Gaussian state space model into a mixture of Gaussian
State-Space model. The model becomes a standard GGaussian State-Space model at
each time ¢. It is then possible to sample the entire joint distribution p(hly, ) at
once using the standard State-Space simulation technique via Kalman filter. Now,
in addition to the model parameter vector 8 = {«, (3, 0,} and volatility process {h},
we need to sample the mixing indicator series K =, ...y}, where each k;, = 1,2..7.

The basic steps involves iterating through

1. Initialize 6, K.

2. Sample p(K|Y, h,0).

14



3. Sample p(h|Y, K, 0).

4. Sample p(0|h).

5. Go back to 2.

Sampling of p(A|h) is the same as the Single-move Gibbs Sampler following stan-
dard Bayesian linear model theory.

To sample the indicator variables K (t), we write down the joint likelihood of K
given Y, h, 0.

N—
p(K|Y,h) = p(kx|Y™,h H (K |Y"', hy, Kif).

Here Y consists of all y; for i < ¢. Thus to generate K from p(K|Y,h), we first
generate ky from p(kx|Y™,h) and then for t = N — 1,...1, we generate k; from
p(Ky|Y hy, K;11). Because p(kn|YN,h) and p(K;|Y?, hy, Ky 1) are discrete valued,
we can generate from them easily, once we have calculated them.

To sample the state vector h all at once, we derive the joint likelihood function
for h. For notational convenience, we omit the dependence on the indicator process

K in the derivation of the following conditionals.

N—

p(h|Y,8) oc p(hy|Y™) H (he|Y", hiyr)

Thus to generate {h} from p(h|Y, 6), we first generate hy from p(hx|Y?) and then
for t = N —1,...1, we generate h; from p(hs|Y", hyy1). Note that p(hy|Y") and each
p(hs|Y", hyy1) are normal distributions, in order to generate the {h} process, we only
need to calculate E(hy|Y™) and var (hy|Y"N), and E(h|Y?, hyy1) and var (he| Y, hyyy)
fort=N—1,..1.

E(hy|YY) and var(hy|Y™) can be obtained using Kalman Filter. To get E(h;|Y?, hyy 1)
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and var(h|Y" hyy1), we treat the equation hyyy = a + bhy + py 1 as an additional
observation on the state vector h; and apply the Kalman Filter again. In other words,
the sampling of the joint likelihood involves two stages. The first is forward filtering
to calculate E(hy|YY) and var(hy|Y?) and the second is backward smoothing to
calculate E(h|Y", hyy1) and var(hy|Y?, hyy1). For details of derivation, see Carter
and Kohn (1994).

One remaining issue is the specification of a prior for the initial state vector h;.
We choose a diffuse prior h; o< N (0, Sy) with a large Sp.

The convergence of the Multi-Move Gibbs Sampler is much faster even with high
values of b and small values of 0,,. To compare with the Single-move Gibbs Sampler,
we apply the Multi-Move Gibbs Sampler to the same data series generated in the
previous section for b = 0.95 and ¢ = 0.1. Figure 2.3 shows the corresponding
results. The sampler converges after 500 iterations. The autocorrelations in the
samples of the Multi-Move Gibbs Sampler die out much faster than those in the
Single-Move Gibbs Sampler. And the simulation time is also much shorter. The
simulation time for 10, 000 iterations of the Multi-Move Gibbs Sampler is less than
10 minutes on an Alpha 3000 whereas that for the Single-move sampler is about 30
minutes. For b = 0.95 and o = 0.1, the autocorrelations in the samples die out after

lag 350 comparing to 1,500 in the Single-move sampler.

2.3 Application to Exchange Rate Data

Volatility clustering, which is one of the most important motivations for the devel-
opment of GARCH type models and Stochastic Volatility Models, is most obvious in
stock/stock index return data and exchange rate data. We apply the model to ana-
lyze daily returns on the Deutschemark (DM)/US Dollar exchange rate from 1/3/81

to 5/31/96 and compare with existing research results on the same data set with
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Figure 2.3: Trajectory plot, acf and histogram of b for a Multi-move Gibbs Sampler
with b =10.95, 0 = 0.1

EGARCH model at J.P. Morgan. The DEM /USD data for a similar time period from

a different data source was also studied by Jacquier, Polson and Rossi (JPR)(1994).

We choose exchange rate data because exchange rate typically exhibits high degree
of volatility clustering. Another reason for using currency data over stock price series
is that for major currencies, the leverage effect which the current model does not
capture is less pronounced.

We use daily returns of the exchange rate because daily returns exhibits stronger
degree of short-term volatility clustering than intra-day data and is less noisy. And
the weekend effect is less important for currency data than for stock return data.
Therefore, the need for using weekly data to avoid such minor problems is less im-

portant.

Both the Single-Move Gibbs Sampler and the Multi-Move Gibbs Sampler were
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Table 2.2: Data: Parameter Estimates for Single-move and Multi-move Gibbs Sam-
pler

Single-move Multi-move
Mean | Variance | Mean | Variance
BlY | 0.963 0.02 | 0.9627 0.02
oY | 0.168 0.04 | 0.168 0.04
anlY | -0.315 0.02 | -0.317 0.02
Time 115 minutes 28 minutes

applied to the data. We experimented with different starting values for h and w.
The results show that the effect of initial values disappear quickly after the first few
thousand runs of the Gibbs Sampler. We run the Single-Move Gibbs Sampler for
110,000 iterations and discard the first 10,000 iterations. We then take a sample
from every 200 samples to form a sample size of 500. This ensures that they are
close to 2id samples from the posterior distribution. These samples are then used
to conduct inference on the parameters. For the Multi-move Gibbs Sampler, we run
the chain for 80,000 iterations and discard the first 10,000 iterations. We then take
a sample from every 100 samples to form a sample size of 800. Figure 2.4 shows the
histogram of the posterior distribution of the parameters, the simulation trajectory
and autocorrelation in the samples for both the Single-move and the Multi-move
Gibbs Sampler. Table 2.2 shows the results of parameter estimates and simulation
time. As can be seen, the autocorrelation in samples from the multi-move Gibbs
Sampler is much smaller than that from the Single-move Gibbs Sampler and therefore
requires much less iterations. The total simulation time for the Single-move sampler
is about 2 hours for 1000 data sets whereas that for the Multi-move sampler is 30

minutes on a Sparc 20.

The results show the high values of the mean reversion parameter posterior mean
of b is 0.96 and small variance for the volatility process, o> = 0.04. These are consis-

tent with JPR(1994)’s findings on the DM/Dollar data. JPR(1994) also provides an
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Figure 2.4: Comparison of trajectory plot, acf and histogram of b for the DM/Dollar
data using both the Single-move and Multi-move Gibbs Sampler

extensive comparison on the accuracy of MCMC estimates and GMM and QML esti-
mates. It is impossible to directly compare the parameter estimates of the Stochastic
Volatility Model and EGARCH model since they have different parameterizations.

But both models suggest high degree of volatility clustering in the DM /Dollar data.

2.4 Model Diagnostics

To evaluate the in-sample performance, we develop some diagnostic tools to check

model adequacy for the Stochastic Volatility Model. Standard model diagnostic
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procedures include residual analysis. The difficulty of residual analysis with every
volatility forecasting model is that volatility is unobserved. This can be remedied
by studying the properties of the squared returns. An additional difficulty with the
residual analysis of Stochastic Volatility Models is the lack of analytic forms of the

likelihood function. So simulation based diagnostic methods need to be developed.

Traditional residual analysis includes the check of model assumptions. In the
Stochastic Volatility Model, model assumptions include normality of the return and
volatility process and autocorrelation in the return residuals defined as €; = y;/exp(h:/2).
In the Bayesian context, residual analysis are conducted under the distributional
form. From the MCMC simulation of model estimation, we have the joint posterior
distributions of the volatility process p(hg, ...hr|Y"), therefore, the joint posterior dis-
tributions of the residuals p(ey, ...ep|Y) where €, = y,/exp(h;/2) are available. These
can be used to calculate the distribution of autocorrelations of any lag, kurtosis,

skewness, Box-Ljung and other statistics for normality and autocorrelation.

If the model captures the behavior of the data well, the residuals sequence ¢,
t =1,...T for each j should be independent. This can be checked by computing the
autocorrelation of any lag for each residuals sequence e, ; ¢ = 1,...T" and then plotting
the distribution of autocorrelation of all lags. The mean of the distribution of the
autocorrelation of any lag can be calculated. A useful test statistics for checking the
autocorrelations of a time series is the Box-Ljung test statistics. We also report this
test statistics.

From the distribution of p(eg, ...e;|Y), we can also calculate the distribution of
the skewness, kurtosis among other test statistics to check the normality assumption.

Figure 2.6 shows the distribution of autocorrelation of lags 1 to 9 for the DEM/USD
data. There is no significant autocorrelation in any lag. Figure 2.5 shows the the

distribution of skewness and kurtosis statistics. The mean of the kurtosis statistics
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is 3.38, a 95% confidence interval for the kurtosis statistics is (2.54,5.23). A 95%
confidence interval for the skewness statistics is (—0.81,0.85). They indicate there
is no excessive skewness or fat-tail behavior in the residuals. The QQ-plot in Figure

2.7 indicates the normality assumption is basically satisfied although there are some
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Figure 2.5: Histogram of the skewness and kurtosis statistics for the DEM/USD
Data

A more ambitious in-sample diagnostic for a time series forecasting model is to
evaluate the model’s ability to capture the forecasting distribution of market vari-
ables. This is related to the Value at Risk (VaR) concept in risk management. The
heart of market risk management is the forecast of the distribution of the relevant
market variables. If an institution is estimating the Value at Risk in its trading
and/or investment portfolio on a daily basis, it is implicitly forecasting the entire
joint distribution of the market variables it is exposed to. Similarly, a forecast of
a distribution is the central input into any asset allocation and/or hedging model.
In this spirit, model diagnostics for any time series forecasting model should reveal

the ability of the model to capture the distributional form of the variables forecast.
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Figure 2.6: Histogram of acf of the residuals of lag 1 to 9 for the DM/Dollar Data

This can be checked by computing the percentiles of each new observation under
the corresponding forecasting distribution. If the forecasting distribution captures
the distribution of the market variable accurately, the percentiles should be inde-
pendently and uniformly distributed. Independence measures how well the forecast
model identifies the rapidly changing structure of the market; uniformity measures
how well the forecasting model captures the shape of the distribution of the market
variable over time. For a further discussion on this, see Crnkovic and Drachman
(1996) from J.P. Morgan.

In the context of Stochastic Volatility Model, this requires the calculation of
the predictive distribution p(y,11|Y;) where Y; = {y1,..4:}. This can be done using

posterior samples of {h, 8} from the Gibbs Sampler. Note that

p(yt+1|Yt) = /p(ytﬂ\yt,ht+1,g)p(ht+1|Yt,ht,g)p(ht\Yt)p(myt)dhtﬂdhtdg

So, p(ys41]Y;) can be sampled by the method of composition as follows. For each
hl, j=1,..M from p(h|Y;) and each # from p(f|Y;), we sample h{+1 from
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hi1 ~ N(o+ fhi, on)

Based on the M draws on h,ii, we can estimate the probability that y;,, will

exceed the observed yﬁl by

M
Pr(thH < yﬁl) = 1/MZP7"(th+1 < yrﬁl‘thrl)
=1

for each t =1, .n.

This approach can be extended to an arbitrary step ahead forecasting. Comparing
to the traditional filtering framework where p(hyy1|Y;,w) are calculated using an
estimated w, the Bayesian predictive distribution approach eliminates the parameter

estimation error.

Once the simulated predictive distribution p(y;11|Y;) is available, we can compute
the sequence of percentiles for the observed yff‘l This sequence should be approx-
imately 7id uniformly distributed. These variables can then be transformed into a
normal distribution using the inverse of the normal distribution function. This se-

quence of standard izd normal variables can then be used to carry out Box-Ljung,
normality and heteroscedasticity tests, among others.

The predictive density procedure was applied to the DEM/USD data set. Table
2.3 shows the results from the diagnostic checks on the model. These results are
consistant with the Bayesian residual analysis and suggest no obvious failures in
the way the model has been fitted. In particular, there is no excess kurtosis in
the residuals which means the Stochastic Volatility Model is capable of generating
excessive kurtosis the data exhibits. In comparison, the kurtosis generated by the
EGARCH on the same data is not enough. (From personal communication with

researchers at J.P. Morgan)
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Figure 2.7: QQ-plot of the sequence of normal variables from the predictive residual
diagnostic of the DM/Dollar Data

Table 2.3: Statistics from the predictive residual diagnostic
Skewness | Kurtosis | BL(30) | Normality
0.65 3.13 27.56 2.13

2.5 Conclusion

In this chapter, we proposed a Log-AR(1) Stochastic Volatility Model as a volatility
forecasting model for financial data series. We developed two Bayesian Markov Chain
Monte Carlo (MCMC) estimation procedures for the model and applied the model
to some exchange rate data series. We developed both classical and Bayesian model
diagnostic tools to check in-sample model adequacy for the real data. This represents
a complete study for the development of a financial forecasting model. Our study
indicates that the Log-AR(1) Stochastic Volatility Model is a promising volatility
forecasting model comparing with existing volatility forecasting models. Comparing
to the EGARCH model, the Log-AR(1) Stochastic Volatility Model is capable of

generating excessive kurtosis exhibit in the financial data. In the following chapters,
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we will discuss extensions to the model and procedures for out-of-sample forecasting

using the model and the problem of option pricing using the model.
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Chapter 3

Model Extension

In this chapter, we propose three extensions to the simple Log-AR(1) Stochastic
Volatility Model. In the first section, we implement a Log-AR(p) Stochastic Volatility
Model and apply it to some real exchange rate data. In the second section, we discuss
the leverage effect of volatility and the work of Jacquier, Polson and Rossi (1995) on
the correlated Stochastic Volatility Model and Breidt (1996) on a threshhold Stochastic
Volatility Model. In the third section, we propose a new model which combines option
pricing model and stochastic volatility model under one model framework. Unlike the
previous model specifications which solely model the behavior of historical volatility,
this model combines historical and implied volatility and provides a unified approach
to forecast volatility. This new model can be used for both forecasting and testing of

the hypothesis of the existence of stochastic volatility.

3.1 A Log-AR(p) Stochastic Volatility Model

Volatility clustering is one motivation of applying Autoregressive Stochastic Volatility
Models to forecast volatility. Therefore, exploring autocorrelations in the volatility
process is the central role in model building. Although no autocorrelation was found
in the residual of Log-AR(1) Stochastic Volatility Model in DM /Dollar data, it is still
worthwhile to explore a Log-AR(p) Stochastic Volatility Model as an alternative way
to study further autocorrelation structure in the data. The significance of the higher

order AR(p) parameters will suggest the existence of higher order autocorrelations in
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the volatility process. As stated in the last chapter, it is conceptually easy to extend
the model fitting procedure to higher order AR(p) process for the volatility. It is
worth while implementing the procedure and examine the fit of a higher order Log-
AR(p) Stochastic Volatility Model to the data. We start with a Log-AR(2) Stochastic

Volatility Model:

re = exp(hy/2)e, (3.1)

hipr = o+ Bihy + Bohyy + op . (3.2)

In this model, the log-volatility process is an AR(2) process. The significance of
the AR(2) parameters will suggest the existence/nonexistence of the second order
autocorrelation in the volatility.

Both the Single-Move Gibbs Sampler and the Multi-Move Gibbs Sampler can be
extended easily to the Log-AR(2) Stochastic Volatility Model. We will discuss the
details of applying the Multi-Move Gibbs Sampler here.

After transforming the model into a non-Gaussian State-Space model, we use a
mixture of normal distributions to approximate the logx?(1) distribution as before

and transform the model into a Gaussian State-Space model at each time t.

Re-write the model as a standard State-Space Model:

Yt = th + Ut, (33)

0t—|—1 = th + Wi, (34)
B By 1

where y; = log(r?), 0, = (hy, hy—1,1), Fi.3 = (1,0,0), G3.3 = 1 0 0 |,un~
0O 0 1

N(u;,02) at each time ¢ with a pre-specified (u;, 0?), w; = (wy,0,0)" has a trivariate
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normal distribution with zero mean and variance-covariance matrix
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o O O
o O O

The two error sequences v; and w; are mutually independent.

Before we apply the multivariate version of the Multi-move Gibbs Sampler, we
study the asymptotic distribution for p(«, £, 52]Y). To do so, we transform the

non-linear Log-AR(2) model to a linear State-Space model,

log(y?) =hi+€ (3.5)

hiv1  =a+ Bihy+ Box hy—o + 14 (3.6)

Here ¢; o< logx?(1), the variance v, of the logx?(1) is 4.6 and the variance j; o
N(0,v3). In most financial data series, vy is less than 0.3. So the variance of the first

equation is at least 15 times bigger than the variance of y; in the second equation.

Plugging h(t) into the first equation, we get

Yr =+ Brhe1 + Pohy—o 4+ pr + €

This is not exactly true since y; should also depend on p; . But the focus here is
to study the variance scale of the marginal posterior distribution for p(a, 31, £2]Y).

Since the variance of p; is much smaller than that of €, v2 is negligible.

Consider this as a regression function in matrix form and assuming the {h} se-

quence is known,

then p(as, By, Bo]) o N((X'X) XY, (X'X) 'o1)
1 hy hioy )
where X = | | . . is the (N — 2) % 3 matrix of {h}.
To estimate the scale of the variance-covariance matrix, we need to know the scale
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n—2 pia p3
of (X'X) " (X'X)=1| pi2 v2 po
P13 P23 U3

where pio = Y70 hY pis = XS b1, va = Y025 b, pas = S7=5 iy and
U3 = Ztn;11 hi s
We simulated 1000 data using a = —0.6, b = 0.8, v2 = 0.04, the variance-

0.55  0.0238  0.0231
covariance matrix for the data is: 0.0231 0.0233 —0.0213 |. Increasing the
0.0231 —-0.0213 0.0233

number of observations decreases the variance. For ¢ = 10000, the variance-covariance

matrix for the data is:

0.0399  0.00167  0.00166
0.00167 0.00241 —0.00227
0.00167 —0.00227  0.00242

Experiments with different parameter values and different number of observations
show the scale of the variance-covariance matrix stays in that range. The smallest
standard deviation for the marginal distribution of oo, #; and 5 is at the scale of
0.1. This is assuming known {h}. With unknown {h}, the standard deviations for
the marginal distribution of «,; and [, will be much bigger. This indicates the
variances of the marginal distribution for a,3; and [y are very big.

These studies suggest that the joint posterior distribution p(a,b|Y’) has large
variances comparing to the AR(1) model. This is because the second autoregression
coefficient introduces much more uncertainty in the parameter estimates.

We now apply the Multi-move Gibbs Sampler to some simulated data from the
model. We simulate 1000 data from the model with 3, = 0.8, #5 = 0.1 and o, = 0.2.
We choose a uniform distribution over a constrained region 3; + 33 < 1, s — 31 < 1,
and —1 < 35 < 1 to ensure stationarity.

Figure 3.1 shows the simulation trajectory and histogram of parameters. The
autocorrelation in the samples is big until lag 2000 for the Multi-move Gibbs Sampler.
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Figure 3.1: Simulation trajactory, histogram and acf of by and by for the Log-AR(2)
model with by = 0.65, by = 0.2

This is much bigger than that in the Log-AR(1) model. The 95% confidence interval
for 4y is (0.185,1.43) the 95% confidence interval for 35 is (—0.5,0.64). The mean for
(1 is 0.64, the mean for (3, is 0.22. It can be seen that the uncertainty in the (; and
(5 is very big.

We then apply the Log-AR(2) model to the DM/Dollar data. The results are in
Figure 3.2. The autocorrelation in the samples is similar to that using simulated data.
The 95% confidence interval for 3; is (0.08,0.97), the 95% confidence interval for /3,
is (—0.01,0.86). The mean for (3, is 0.28, the mean for [, is 0.66. It is not intuitive

that the lag 1 autocorrelation parameter is bigger than the lag 2 autocorrelation
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Figure 3.2: Simulation trajectory, histogram and acf of by and by for DM/Dollar

data with the log-AR(2) model

parameter.

3.2  Correlated Log-AR(1) Stochastic Volatility

Model

A more important extension to the simple Log-AR(1) Stochastic Volatility Model is

to allow the correlation between the two innovations. This will create the so-called

“leverage effect” which allows the sign and the value of the return to affect the value

of the volatility. The intuition behind is that market is more volatile in a bear market
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than in a bull market. The second extension to the model is to allow the correlation
between the two error processes in the return and volatility process. This allows the
asymmetric effect of return on volatility. Since the leverage effect is one of the three
most important stylized effects of volatility found in financial data series, we discuss
the work of Jacquier, Polson and Rossi (1995) on the correlated Stochastic Volatility
Model and Breidt (1996) on a threshold Stochastic Volatility Model.

3.2.1 A Correlated Stochastic Volatility Model

Empirical study has shown the “leverage effect” is common in stock returns and in
currency returns of emerging markets. In EGARCH model, the “leverage effect” is
modeled by adding the return term into the equation for volatility. The significance
of the parameter of the return will indicate the effect of the return on the value of
the volatility. The Correlated Stochastic Volatility Model treats the “leverage effect”
in a more elegant way by allowing the error distribution of the two processes to be

correlated.

The model is:

yr = exp(hy/2)e, (3.7)

ht+1 =+ ﬁh‘t + Opbt. (38)

Now ¢; and p; have a bivariate normal distribution with variance-covariance ma-

. 1 .
trix (p’l’) where p denotes the covariance.

Estimation of this model now requires simulation from the joint posterior distri-
bution p(h,w, p|Y). Two difficulties arise. First, one needs to specify an appropriate
joint prior distribution for the correlation p and volatility of volatility o,. Second,

the simulation algorithm needs to be modified to accommodate the covariance p.
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Jacquier, Polson and Rossi (1995) discussed ways to assign a joint prior for p and
o, and developed a Single-Move Gibbs Sampler to estimate the correlated model.
The main difficulty in specifying a joint prior is that the top left element in the
variance-covariance matrix is equal to one. The standard conjugate inverse Wishart
family prior can not be used because it is impossible to model beliefs where some
elements of the matrix are known whereas others are not. To solve this problem, the

1 poy

5 |. Here, p denotes
POh O

model is re-parameterized as {«, 3,X}, where ¥ = (

the correlation. The joint distribution of the data and the volatilities are

N
p(Y,hla, B, %) = T[] b *p(hy P yi, loghs by o, v, B, %)
t=1

Further rewrite the joint distribution in terms of residuals (ry, ;)" where r; =
h;l/Qyt and py; = loghy — o — Bloghy 1, for t = 1,.., N. The joint distribution of the

data and the volatilities is now

N
p(Yoh|A, ) = [ he 25| 2 eap(—1/2tr(S 1 A))

t=1
where A =3, ryry is the residual matrix.

Further rewrite the variance-covariance matrix with an hierarchical structure to
the probability distribution. Let 1) = poj, and Q = 0(1 — p?) with inverse transfor-
mation o7 = Q + ¢? and p = w/\/ﬁ + 2. The joint prior can then be specified in a
conditional fashion as p(X) = p(¢|2)p(€2). This reparameterization can be viewed as
reformulating the covariance matrix of r; and pu,; in terms of the linear regression of
u; on 1, The new parameters ¢ and €2 are the slope coefficient and variance of the
error distribution. A natural joint prior distribution for the regression coefficients is

a normal-gamma distribution as used in previous chapters.

33



A Single-Move Gibbs Sampler can be constructed to sample the joint posterior
distribution p(h, a, 3, X|Y) by iterating through the following three conditionals:

o p(h|Y, ¥, 0, p)

o p(¥,Qh Y, B)

o pla,fhY.4,Q)

For details of sampling p(v, Q|h, Y, a, 3) and p(a, 5|h, Y, 1, Q), see Jacquier, Pol-
son and Rossi (1995).

Unfortunately, the Multi-Move Gibbs Sampler can not be applied to estimate the
correlated Stochastic Volatility Model because the log transformation of the return

equation destroys the variance-covariance structure.

3.2.2 A Threshold Stochastic Volatility Model

An alternative specification for the leverage effect is the Threshold Log-AR(1) Stochas-
tic Volatility Model dicussed by Breidt (1996). The Threshold Log-AR(1) Stochastic
Volatility Model allows the log volatility process switches between two AR(1) pro-

cesses according to the sign of the previous return. The model is:

vy = exp(hy/2)e, (3.9)
ap + Bl +opy o oy <0,

0 = 3.10

o { g + Bobhy + oop0r .y > 0. (3.10)

The volatility process is modeled as a threshold process with threshold variable y;,.
p1; and pigy are iid normally distributed errors. €, and ] (j = 1,2) are independent.

One attraction of the Threshold Stochastic Volatility Model is the ease of spec-
ification of a prior distribution for the parameters. In addition, it allows additional
dynamics of the volatility process by assigning different mean-reversion and drift
parameters for positive and negative returns.

34



The main difficulty in the estimation of the correlated Stochastic Volatility Model
is the specification of a prior distribution for the correlation parameter p. The Thresh-
old Stochastic Volatility Model avoids this problem. The parameters a;, as, 31, (o
and o, and o9 can be considered as independent. A multivariate normal distribution
with specified mean vector and diagonal variance-covariance matrix can be used as
the joint prior distribution for ay, ap and 3y, 3. The prior distribution for 02 and o3

are independent inverse gamma distributions with pre-specified positive parameters.

Breidt (1996) proposed a Single-Move Gibbs Sampler for the Threshold Stochastic

Volatility Model. Let 0 = {ay, 51, s, B2}, 0 = {01, 09}, the sampler iterates through

e p(dlY.h. o)
e p(olY,h,0)
e p(h|Y,0,0)

To sample the h vector, the joint posterior p(h|Y, 6, o) is broken into N univariate

conditional posterior p(hy|hy 1, hii1,Y, 0, 0). Following Breidt (1996),

p(h't|h‘tfla h‘t+1a K 91 U) X p(h't+1|hta Yt 97 O—)p(yt‘h’t)p(h‘t‘h’tfla Yy, 9’ U)

XX ktp*(h‘t>a

where k; contains all factors not depending on h;, so that

logp*(hy) = —hy/2 — (hy — Mt)Q/(27—t2) - ?erfht/Q,
—he/2 = (he — )/ (277) — yie " /2{1 — (hy — )},

= —(he = )/ 277) + (1 — 1)/ 277) — kep(ho)yie™ [2(1 + pue),

IN
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with 72 = (072 + B2,0,.4) 7", e = [ou + Behy1 /07 + (huyr — qugr) oy Joi )T}

and pj =y + 77 /2(yre " —1).

This suggests a rejection algorithm to draw from each p(hy|hy 1, hii1,Y, 0, 0).

Breidt (1996) applied the Threshold Stochastic Volatility Model to the Center
for Research in Security Prices (CRSP) data used by Nelson (1991) in his original
EGARCH paper. He found that there is some evidence in the CRSP data that
volatility following a positive return differs from volatility following a negative return,
not only in level but also in dynamic behavior. There is some evidence that a; > a»
and 6, > (5. This suggests that the mean reversion and drift parameters for the
volatility process could be different for positive and negative returns. This difference

is not captured by the constant parameter Correlated Stochastic Volatility Model.

3.3 Combining Historical and Implied Volatility

in one Model

Up to this point, we are modeling historical volatility. We believe future volatility
can be predicted using patterns from historical volatility. In the market, historical
volatility is not the only source of estimate of volatility. The “implied volatility”,
computed from current option prices in the market, is another important source for
volatility estimation. In we consider constant interest rate, volatility is the only
unknown parameter in the option pricing formula. Therefore, after observing market
option prices, a volatility estimate can be computed using the option pricing formula.

The implied volatility has two distinct features from historical volatility. First,
it contains information of expectation towards the future since option price is the
expectation of future price movements and volatility of the underlying asset. This
makes the information from implied volatility very different from that of historical

volatility. There is some empirical evidence that future expectation causes a different
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behavior of “implied volatility” from historical volatility. For example, in 1995, a
few months before the Canadian election, implied volatility from the Canadian dollar
option increased significantly following the news of possible independence of Quebec

whereas the historical volatility of the currency itself did not change much.

Second, the calculation of “implied volatility” is model dependent. Usually, the
term “implied volatility” means “Black-Sholes implied volatility” which indicates the
volatility is calculated from the Black-Sholes option pricing formula. But it is well
known that the assumptions of the benchmark Black-Sholes option pricing formula
is violated in the market. In fact, Black-Sholes assumes the volatility is constant.
Option prices observed from the market could be derived from different option pricing
formulas which is unknown to the public. Therefore, studies of the implied volatility

using one option pricing formula are model dependent.

The debate over which volatility is a better estimate of the market expectation
of the variance has existed long and has received mixed support from empirical evi-
dence. The time series study of Lamoureux and Lastrapes (1993) considers options on
non-dividend paying stocks and compared the forecasting performance of GARCH,
implied volatility and historical volatility estimates and found that implied volatil-
ity forecasts, though biased, outperform the others. In sharp contrast, Canina and
Figlewski (1993) studied S&P500 index call options for which there is an extremely
active market. They found that implied volatilities were virtually useless in fore-
casting future realized volatilities of the S&P500 index. In a different setting using
weekly sampling intervals for S& P100 option contracts and a different sample, Day
and Lewis (1992) not only found that implied volatilities had a predictive content
but also were unbiased. Studies examine options on foreign currencies, such as Jorion
(1995) also found that implied volatilities outperformed historical volatilities to pre-

dict future realizations. As to my best knowledge, no one has yet, combined historical
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and implied volatility in a unified approach to forecast volatility and price options.

In this section, we propose a method which, for the first time, combines historical
volatility and implied volatility under one model framework. We test the hypothesis
of the existance of stochastic volatility and we investigate the possibility of a more
accurate prediction of the future volatility and therefore a more accurate forecast
of option price using the combined information from both the historical return and
current option price.

We start with a simple stochastic volatility model developed by Hull and White
(1987) to illustrate our idea and discuss extensions to more complicated dynamics of

other stochastic volatility models.

3.3.1 The Model

We follow the stochastic diffusion model developed by Hull and White (1987) in this
section to illustrate our idea and discuss ways to extend this idea to the Log-AR(1)
Stochastic Volatility Model and other more complicated models in the following sec-
tions.

Hull and White (1987) proposed an option pricing model with stochastic volatility
which assumes that the volatility itself is a state variable following a diffusion process.
The model represents the class of stochastic volatility option pricing models, including
those of Scott (1987), Wiggins (1987) and Johnson and Shanno (1987), that assumes
volatility risk doesn’t affect the option price. The continuous time process for the

underlying asset is:

dS = ¢Sdt+ V'V Sdw, (3.11)

dV = pVdt+ Vs, (3.12)
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where S is the asset price, V is the volatility of the return of the asset. Here ¢ is
a parameter that may depend on S,o and ¢, ;4 and £ may depend on V and t, but
not on S, and dw and dz are two Brownian motions which have an instantaneous
correlation p. Under the assumption that volatility risk is not priced, p = 0.

Under this setting for the return and volatility, Hull and White (1987) derived a
formula for a call option as

O, = [ BS(V)h(V,|V;)dV;, = E[BS(V;|V})]

where V, = ﬁ ftT Vidi.

The term h(V;|V;) in (3) is the density of V; conditional on the current volatility
Vi, T is the expiration date of the option, V/ is the volatility at time t and BS(.) is the
Black-Sholes pricing formula. Thus, the Hull-White price of the option is the mean
Black-Sholes prices, evaluated over the conditional distribution of average variance
V;. Under this framework, the “Black-Sholes implied volatility” can be interpreted
as the average implied volatility.

Notice that the Hull-White option pricing formula is a function of the current
volatility v;, not the average volatility V;. Given v;, the option price is completely
determined.

Under this framework, we propose a volatility forecasting model which combines
historical volatility and implied volatility in an unified way. We then discuss how
to apply Markov Chain Monte Carlo simulation to the model and produce volatility
estimates conditioning on both historical volatility and implied volatility.

A discrete approximation to the above continuous model is:

l’n,(St+1/St) = a— 1/2‘/;5 + Wﬂta

Vi1 = B—02/2+1nV, + 0.
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Adding the option price formula into the model, we have a series of three processes

regarding the return, option price and volatility:

ln(St+1/St) = o — 1/2‘/,5 + Wﬂt, (313)
InViyr = B—02/2+1InV, + o, (3.14)
O = [f(Si,Vi) + owwr, (3.15)
where
f(SuVe) = [ BSWV)R(VIVi)Vi = EIBS(V; Vi) (3.16)

Here, uy, €, w; are independent normally distributed, w; can be interpreted as
market friction, bid-ask spread and other noises in the option prices, and O} indicates
one option price at time t. We can add different options on the same underlying

variable with different time to maturity to the model.

Notice that V; appears in both the return process and option pricing formula, so
that V; is the combination of both historical volatility and implied volatility. Both
the observed return and option prices contribute to the estimation of V; and forecast

of future option prices.

As stated earlier, one limitation of using implied volatility for volatility estimation
is that implied volatility is model dependent. Empirical evidence shows that this is
especially true for the commonly used “Black-Sholes Implied Volatility” derived from
the Black-Sholes pricing formula. The commonly observed “smile effect” of volatility
suggests the “Black-Sholes Implied Volatility” usually over-estimates volatility. How-
ever, the problem of model dependence is less severe in our model since the option

prices are derived using the process for the return and volatility specified within the
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model. If the underlying process for the return and volatility is a good approximation
to what’s observed in the market, forecasts of future option prices using this model
will be more accurate than forecasts using historical or implied volatility alone.
Next, we develop a sampling scheme for the model using the Markov Chain Monte
Carlo simulation framework. As will be seen later, MCMC sampling allows the
estimation of volatility conditioning on both return and option prices in a unified

approach.

3.3.2 MCMC for the Model

Again, estimation is the major difficulty of the study of this model. We now develop
a MCMC sampling algorithm for the model using a combination of Gibbs Sampler
and Metropolis algorithm. Consider model (3.14) and let Y = (y1,ys, ...y,) where
Yy = In(Sip1 — Sp), V = (v1, 02, ....vn), O = (01,04, ..,0,), and 0 = {«, 3,0, 0,}.

In the Bayesian context, the model setup leads to a hierarchical structure of

conditional distributions. They are,

Here, Y and O are observed. The parameters to be estimated are § = {«, 3, 0., 0,}.
Following earlier approaches, we augment the volatility process to the parameter
space. The joint posterior distribution of p(6, V'|Y, O) is proportional to the product

of the four conditional distributions:

p(V,0Y,0) o< p(O[Y, V,0)p(YV,0)p(V]0)p(0).

From this joint posterior, the marginal p(|Y, O) can be used to make inferences
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about model parameters, and marginal distribution p(V|Y, O) provides the solution
to the smoothing problem of inferring about the unobserved volatilities.
As can be seen, both return and option prices are used to make inference on
V. The marginal distribution of p(V'|Y, O) combines both the historical and implied
volatility.
Direct sampling of p(6,V|Y,O) is not possible. Instead, we sample the joint
posterior p(w, V]Y, O) indirectly by iterating through
e p(0|V,Y,0)
e p(V1]Y,0,0)

The first conditional distribution p(w|v, Y, O) can be written as

N
p(9|va Y, O) (&8 H p(0t|yt; Ut Ua)p(aa)
t=1
N N

L1 p(velve, )pla) TT pvile, o )p(a)p(o).

t=1 t=1

Assuming the standard reference prior on linear models, p(8|V, Y, O) is easy to
sample from when the three innovations are independent. A technical difficulty is
the sampling of p(o;|vy, 54, 0,), a Normal distribution with mean equal to f(S;,V;) =
E[BS(V;|V;])]. There is no analytical solution to this integration since the conditional
distribution p(v;|v;) is unknown. Monte Carlo simulation of this integral within each
draw of the Gibbs sampling will be very time consuming. This problem will occur in
the sampling of p(V|Y, O, 0) as well, so we will discuss the solution of it later.

The second conditional distribution is more difficult to sample from. It is not
possible to apply the Multi-move Gibbs Sampler and sample the entire vector of V
at once because of the non-linear and highly complex structure of f(S;, V;). Instead,
we decompose the joint distribution into a set of conditionals p(v|v_y, o4, , yt, #) where
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v_; denotes the rest of the v vector other than v;.

From model(5), each v; depends on only the adjacent v, ; and v;;;. Thus,

p(vi|v_t, 01, , ys, 0) can be written as

Pvev_g,00,,91,0) o< p(Ve|Vi_1, Veg1, 015, Yt ) (3.17)

o< p(odve, Yus 00)p(Ye | v)p(Ve|vr1, 0, 0 )P(Vi4 Vg, vy 0 )(3.18)

Equation (3.18) has an unusual form, and it requires the evaluation of the integral
f(V]Sy, Vi) in p(os|vs, 8¢, 0,). Since the integral is evaluated within each iteration of
the Gibbs sampling n+1 times, Monte Carlo methods of numerical integration to
evaluate the integral within each sample of the Gibbs Sampler is computationally
prohibitive.

One way to avoid the integration is to approximate the integral is using Taylor
expansion. Although an analytical expression for the conditional distribution of v
is not available, all the moments of V' can be derived. Therefore, a Taylor series
expansion of f(V]S;,V;) about its expected value E(V) can be applied. Hull-White
(1987) showed that for sufficiently small values of k = (T — t), the series converges
very quickly.

Therefore, when =0, (3.17) can be approximated by

f(S, Vi) = E[BS(VIV})]

]./2St\/T — tNl(dl)(dldQ - ].) 20’4(€k —k — ].)

— 4
= BS(V,) + g > — "}
N SVT —tN'(dy)[(dydy — 3)(dydy — 1) — (d? + d2)]
80
s€F — (9 + 18k)e* + (8 + 24k + 18k* + 6k3)
* O + o

3k3

where k = o?(T —t).
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The choice of # = 0 is justified on the grounds that, for any nonzero 3, options of
different maturities would exhibit markedly different implied volatilities. Since this
is never observed empirically, we must conclude that ( is at least close to zero.

This approximation allows us to evaluate the integral at a low cost. Hull and
White (1987) compared Monte Carlo simulation results and Taylor Series approxi-
mation results for the integral for a 3-month option with 3 =0, =1 and ¢? = 0.1.
It can be seen that for short-term at-the-money and out-of-the-money options, this
approximation is reasonably well.

In (3.18), the conditional posterior p(v;|lv_y, 04, , Y, w) is a product of four com-
ponents: p(og|ys, v¢), p(ye|ve), P(vesa|ve) and p(vi|v,_1). The last two terms are log-
normal distributions and can be approximated and dominated by an inverse Gamma,
distribution similar to what is used for the Single-Move Gibbs Sampler for the Log-
AR(1) model. The inverse Gamma distribution is a good proposal distribution for
the Metropolis because it has a fatter tail to the right and therefore can dominate the
log-normal distribution. The first two terms in (9) are not of any known distribution
form. But p(y;|vs) can be evaluated easily and p(os|y;, v;) can be approximated by
the the above series. When the posterior can be written as the product of two dis-
tributions, 7(t) o ¥ (t)h(t), where (t) can be easily sampled from and h(t) can be
easily evaluated, then () is a natural envelop for 7 (¢) since h(t) is always less than
1. We can use 1(t) as the proposal distribution to generate samples since 1 (t) will

dominate 7(¢). Then the acceptance ratio for the Metropolis distribution is simply

p(y)}

a(z,y) = min{l, —=}.

p(z)
See Chib and Greenberg (1993) for a discription of this method.
In summary, the Gibbs Sampler is constructed as follows:
e Sample p(w|V,Y,O) by
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p(w|V,Y,0) HP(0t|Ut;St;Uw)p(0w)

o< [T p(yelve, a)p(@) [T p(vile, o )p(a)p(oe)

e Sample the joint posterior p(V]Y, O,w) by iterating through each individual

chain, i.e.,

p(vt|vft;0twytaw) (&8 p(vt‘vtflavt—klaot;Jytaw)a

X p(Ot\Ut;yt;0w)P(?Jt|Ut)P(Ut|Ut71;a;Ue)p(UHl\Ut;a;Ue)-

3.3.3 Model Testing

One important use of Stochastic Volatility models is to infer the unobserved condi-
tional volatility processes both within the sample (smoothing) and out of the sample
(forecasting). Inference on the volatility can then be used to price and forecast op-
tions. In our model, this goal can be achieved in a natural way under the MCMC
framework. Past return and option prices contribute to the forecast of volatility and
in turn to the forecast of future option prices.

If the option price does follow the stochastic volatility specified, both past behav-
ior and future expectation of price movement will help contribute to the estimation
and forecasting of volatility. For in-sample smoothing, this will result in a more
concentrated posterior distribution of the volatility than the posterior distribution
of volatility from a model for historical or implied volatility only. This can be used
to test the hypothesis of the existance of the stochastic volatility. For out-of-sample
prediction, this will result in a more accurate forecasting of option prices and hence

a higher sharp ratio for the forecasting model.
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We have shown how to conduct Bayesian analysis on option pricing theory under
MCMC sampling technique when the underlying volatility follows the Hull and White
(1987) stochastic diffusion process. This unified approach has obvious theoretical
advantage over existing model testing procedures ( e.g. option pricing with GARCH
type models rely on asymptotic approximations to the continuous time diffusion
process; classical analysis on option pricing with stochastic volatility requires an
approximate non-linear filter to volatility smoothing.) Bayesian analysis combines
option pricing and historical volatility under one model framework and conduct finite

sample inference on volatility in a coherent way using MCMC sampling technique.

3.3.4 Extension to the Log-AR(1) Model

In the above section, we illustrated how to combine historical and implied volatil-
ities under one model framework and testing option pricing theory with stochastic
volatility using the MCMC simulation technique. We followed the Hull-White (1987)
diffusion model for the return and volatility in the analysis. We have illustrated the
theoretical advantage of our approach to test option pricing theory with stochastic
volatility. The Hull-White model, however, does not incorporate the autoregressive
effect commonly observed in financial series. Therefore, forecasting performance of
option prices using this model may be limited.

As developed in earlier chapters, we have seen the Log-AR(1) model has the
potential to be a successful empirical model for the forecast of historical volatility.
It is therefore natural to consider the Log-AR(1) model as the candidate model for
historical volatility. Unfortunately, no option pricing formula has been developed
when the underlying volatility process follows a Log-AR(1) process.

To understand the difficulty of option pricing with Log-AR(1) stochastic volatility

model, we briefly discuss the problem of option pricing with stochastic volatility
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Table 3.1: Examples of Continuous-Time Stochastic Volatility Processes

Hull and White do} = o} (adt + bdz;)
Scott do; = a(b — o,)dt + cdz

Wiggins | dlogoy = a(b — logoy)dt + cdz,

Johnson and Shanno do, = aodt + bojdz,
Melino and Turnbull | dlogo? = a(b — logo?)dt + cdz,
Heston do? = a(b— o} )dt + coydz

in general. Two major difficulties exist in option pricing problem with stochastic
volatility. The first is the estimation of unknown parameters in the model. We have
developed a reasonably efficient simulation approach to tackle this problem in the
previous chapters. The second difficulty in option pricing problem is, like option
pricing with stochastic interest rate, option pricing with stochastic volatility does
not admit closed-form solutions. A large literature exists on deriving option pricing
formula under stochastic volatility. Currently, almost all published continuous-time
stochastic volatility models assume a geometric Brownian motion process for the
return process. But different models have been suggested for the volatility process.
Table 3.1 lists some examples of continuous-time processes for the volatility. As can

been, Melino-Turnbull applies a Log-AR(1) model for currency options.

Various approaches have been proposed to price options under the above models.
Hull-White derived option price as the average of extended Black-Shole Prices and
derived a power series approximation to the expectation. Wiggins (1987) proposed
finite differences “hopscotch” numerical methods with logarithmically transformed
state variables to solve the partial differential equation. Stein and Stein (1993) and
Heston (1993) developed analytic approaches based on Fourier inversion methods.
Of these approaches, the numerical solution of the PDE is the most general but,
unfortunately, it is also the most computer intensive. The Hull-White and Stein
and Stein approaches depend on the distribution of the average stochastic volatility

and require instantaneous correlation between increments in state variables to be
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zero. Heston applies the Fourier method more generally for nonzero correlation of
state variables. Among these methods, the Hull-White power series approximation
remains the most tractable one but it is only valid for their diffusion process. Melino-
Turnbull used Monte Carlo simulation to price options under the Log-AR(1) model.

It can be seen that analytical approximation to the option pricing formula is
only available for limited processes of the volatility. Numerical approximation of
option price with our model framework, however, will be computationally prohibitive
since the integral is going to be evaluated n times within each iteration of the Gibbs
Sampler where n is the number of observations. An efficient option pricing formula is
needed to conduct efficient Bayesian analysis on option pricing when the underlying

volatility follows a Log-AR(1) process.
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Chapter 4

Model Comparison

In Chapter 2, the in-sample model diagnostic results indicate the Log-AR (1) Stochas-
tic Volatility Model fits real exchange rate data well. According to research results from
J.P. Morgan, the degree of kurtosis generated by the EGARCH model is smaller than
that from the Stochastic Volatility Model which is closer to what is observed in the
market.

In this chapter, we develop a model comparison method to compare the Stochastic
Volatility model with EGARCH model using option prices. We first study the Smile
effect of wvolatility generated by the market using the Log-AR(1) Model. We then
discuss model comparison for financial forecasting models and develop a method to
compare the Stochastic Volatility model and EGARCH model. Finally, we discuss
option pricing problem with stochastic volatility which is an unsolved problem for the

Log-AR(1) Stochastic Volatility Model.

4.1 The Smile Effect

Before we compare the forecasting performance of the Stochastic Volatility Model
and EGARCH model, we explore some interesting features of the Stochastic Volatility
Model.

First, the posterior distribution of volatility has a log-normal shape with right
skewed tails. The skewness statistics for the DEM/USD data is 0.86, the kurtosis

statistics is 4.43.
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Figure 4.1: Histogram of the posterior distribution of the last day’s volatility

This is not surprising since the model assumes the volatility follows a log-normal
process. This implies if the model is correct, then the traditional inference on volatil-
ity using asymptotic normal approximations can be very misleading since it loses the
asymmetric information in the distribution of the volatility.

Second, we study the Smile effect generated by the Stochastic Volatility Model.
The Smile effect is a very important real-world measure of the deviation of market
option prices from Black-Sholes option pricing theory. It is calculated by inverting the
volatility parameter from the Black-Sholes option pricing formula after a market price
of an option is observed. As stated in the previous chapter, this implied volatility
is called a Black-Sholes implied volatility. There are two components of the Black-
Sholes implied volatility: one is the volatility smile and the other is the term structure
of the volatility.

Volatility smile is the way in which implied volatility varies with strike price for
options of a fixed time to expiration. It is usually plotted as the graph of strike price
versus implied volatility.

Term structure for volatility describes the way at-the-money implied volatility
varies with time until expiration. Thus, to look at the term structure of volatility,

we graph time until expiration versus implied volatility for all of the at-the-money
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options on the underlying asset.

The volatility smile effect refers to the phenomena that the graph of strike price
versus implied volatility has a U-shape. The implied volatility is relatively higher for
out-of-the-money options and relatively lower for in-the-money options. This effect
is more obvious as time to expiration increases and the degree in which the option is
in or out of the money increases. For some options, this smile is also skewed. This
effect violates the constant volatility assumption of the Black-Sholes option pricing
formula. If we assume Black-Sholes formula price at-the-money option correctly,
the Smile effect indicates Black-Sholes formula over-prices out-of-the-money options
and under-prices in-the-money options. Since the market crash of October 1987, the
Smile effect for most world equity markets has become more pronounced. This has
immediate impact on the way options are priced and therefore attracts the attention
of researches on this topic. However, as of today, no sound theoretical explanation is
accepted for the Smile effect. Of all the competing theories, the stochastic volatility
theory is the most popular one. Simulation studies by Hull and White (1986) have
shown that stochastic volatility model can generate the volatility Smile effect. Yet as
to my knowledge, no one has applied a stochastic volatility model on real market data
and study the volatility Smile effect generated from the real data under the model.
From our forecasts of volatility using the Log-AR(1) model, we plotted the implied
volatility versus different strike prices. The Smile effect is very obvious, which is
close to what is observed in the market. This is much bigger than the Smile effect
generated from EGARCH model by research results from J.P. Morgan (from personal
communication with Dr. Jordan Drachman). The Smile effect generated from our
model is consistent with simulation results from Hull and White (1986). This confirms
the Smile effect can be effectively explained by the Stochastic Volatility Model for real

market data. And this can be considered an alternative way to check the in-sample
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adequacy of the Log-AR(1) model.

4.2 Comparing Financial Forecasting Models

We are encouraged by these findings to investigate the forecasting power of the

Stochastic Volatility Model and compare with that of the EGARCH model.

Model comparison in general is a very difficult and controversial task. Traditional
likelihoods ratio tests of model comparison enable comparison between models only
in the nested case where there is an unambiguous null hypothesis. Selection is based
on an asymptotic y* approximation (deviance difference) which is inapplicable to
models whose number of parameters increases to infinity as the number of observation
increases. Most distressingly, classical theory offers little for comparison of non-nested
models. See Neyman and Scott (1948) for an overview of classical approaches.

The Bayesian perspective offers a formal decision-based approach for model selec-
tion. The Bayesian approach utilizes the marginal distribution of the data f(Y") to
assess model performance. Regardless of a model, f(Y) is a density over the space of
observables which can be compared with what was actually observed. If Y,;, denotes
the actual observations and f(Y|M;) denotes the marginal density under model M;,

1 = 1,2 the Bayes Factor

.f(i/;bs‘Ml)

Bl = 3, V)

provides the relative weight of evidence for model M; compared to model M,.
The Bayes factor arises formally as the ratio of the posterior odds for M; versus M,
to the prior odds for M; versus My, see Jeffreys (1961). A table elaborating a rough

calibration of the Bayes factor has been proposed by Raftery (1995). A problem with
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the Bayes factor is that for many models, at least some part of the prior specifications

is vague so that f(f) is improper. This makes it difficult to calibrate the Bayes factor.

In the context of financial forecasting models, the 0 — 1 loss function adopted by
the Bayes factor is not appropriate. Instead, we have a very clear utility function,
the Profit and Loss (P/L) generated by the model over a period of time. The model
which generates a higher profit over a long period of time will be considered a better
forecasting model. In this section, we are going to use the profit and loss generated
by the model as the model selection criteria for the comparison of the Stochastic

Volatility Model and EGARCH model.

There are many ways in applying a volatility forecasting model in trading and
evaluating its P/L. Therefore, the P/L generated by the model will depend on the
specific trading strategy applied. Different trading strategies may result in differ-
ent back-testing results for the P/L. This can be considered as a limitation of our
approach. But to build a quantitative trading system and apply it in real trading,
we need a consistant and systematic trading strategy to evaluate the performance of
a quantitative model. So this approach is considered adequate for our purpose. In
the mean time, the need to carefully study the in-sample performance of a forecast-
ing model becomes important since properties from the in-sample model adequacy
checking may reveal some important features in the data which may lead to the de-
velopment of a corresponding trading strategy. For example, if we conclude that the
Stochastic Volatiliy model captures volatility smile effect relatively better, we may
trade in strips and compare the P/L from trading strips of the two models.

Now we design a trading strategy to compare the Stochastic Volatility Model and
EGARCH model. Since volatility is unobserved and not traded, we can’t compare
the P/L generated by forecasting volatility. But since volatility is the only unknown

parameter in the pricing of options, we can use volatility forecasts from both models
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Table 4.1: Payoff of a straddle
Range of Stock Price | Payoff from call | Payoff from put | Total payoff
Sr< X 0 X —-Sp X - Sp
Sr>X Sr—X 0 Sr— X

to price options and compare the P/L from trading options.

Payoff of a straddle

10

Profit

0 10 20 30 40 50
Stock price

Figure 4.2: Payoff of a straddle

There are many option trading strategies. For example, writing naked positions,
covered positions, spreads, straddles, strips, etc. For proprietary trading purpose,
if we believe that we have a good forecasting model on volatility, we should select
a trading strategy that bets on volatility. Trading straddles is such a strategy. A
straddle is a combination of buying a call and put option with the same strike price
and expiration data. The profit pattern is shown in Figure 4.2. The strike price is
denoted by X. If the stock price is close to this strike price at expiration time of
the option, the straddle leads to a loss. However, if there is a large move in either
direction of the stock price, a significant profit will result. The payoff from a straddle
is calculated in Table 4.1.

The straddle in Figure 4.2 is also called a bottom straddle or straddle purchase.
A top straddle or straddle write is the reverse position. It is created by selling a
call and a put with the same exercise price and expiration data. It is a highly risky
strategy. If the stock price on the expiration date is close to the strike price, it leads
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to a significant profit. However, the loss arising from a large move in either direction
is unlimited. One example of the misuse of the selling of straddles is the collapse of

Barings Bank, see the report by Martin (1996).

So in practice we need to delta hedge the position when buying or selling a
straddle. A delta of a derivative, A, is defined as the rate of change of its price
with respect to the price of the underlying asset. See, Figure 4.3. It is the slope
of the curve that relates to the derivative’s price to the underlying asset price. An

approximation to the slope is defined by

_AC

A==
AS

where AS is a small change in the price of the underlying asset and AC' is the
corresponding change in the option price. It is the number of units of the stock needed
to be held for each option shorted to create a riskless hedge. The construction of
such a riskless hedge is sometimes referred to as delta hedging. When the delta of the
position in the underlying asset offsets the delta of the option position, the delta is
equal to zero and the position is called delta neutral. By delta hedging the position,

the downside risk of selling an option is eliminated.

After a trading strategy is selected, a criteria for entering and leaving a position
needs to be constructed. The basic principle of trading is to buy if the market price
is undervalued and sell if the market price is overvalued. This means we should
enter a position (buy an option) if the market price is below the forecasted price and
leave a position (sell an option) if the market price is above the forecasted price. A
quantitative approach to determine the entering or leaving of a position is to use
a confidence interval from the posterior distribution of the forecasted option prices.
If the market observed value falls out of the confidence interval of the posterior

distribution, we enter or leave a position. Because of the time value of money, we

25



Calculation of delta
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Figure 4.3: Calculation of delta

want to be more confident when entering a hedged position than leaving a hedged
position. Therefore, a 95% confidence interval for the option price is used for entering
a hedged position (buy an option) and a 50% confidence interval is used for leaving
a hedged position (sell an option).

Another issue is the volumn of each trade. One way is to assume equal volumn of
each trades. A better approach would be to relate the volumn of the trade with the
percentile of the observed option price on the posterior distribution of the forecasting
option prices. This will involve the concept of Expected Sharp Ratio. The expected
Sharp Ratio is defined as the ratio of the expected return devided by the variance of

the expected return. For each unit of trade, the Expected Sharp Ratio is defined as

E(r)

R=_—/J
Var(r)

Similarly, for n units of trades, the Expected Sharp Ratio is defined as R =

nk(r) _ E(r)
n2\/Var(r) n\/Var(r)

. So, the Expected Sharp Ratio for n trades is a function of the
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trading volumn n. This ratio measures the risk adjusted return and is a commonly
used measure for the performance of a forecasting model. A ratio bigger than zero
for a forecasting model indicates the model is making a profit. Similarly, an expected
ratio bigger than zero for a trade means an expected postive cash flow. Unlike the
return-based criteria which uses the confidence interval of the forecasting distribution
of option prices to determine for entering or leaving a position, the Expected Sharp
Ratio distinguishes the volumn of each trade.

In summary, the specific trading strategy we select is to trade delta hedged strad-
dles using the forecasting distribution of option prices. The criteria for enterting or
leaving a position is the Expected Sharp Ratio being bigger than zero. We compare
the P/L performance of the two models in trading delta hedged straddles over a
certain historical period. The model with higher profit will be considered a better

forecasting model.

4.3 Bayesian Option Pricing with Stochastic Volatil-
ity

Another issue in the back-testing procedure is an option pricing formula with stochas-
tic volatility. This is the major obstacle in the implementation of the comparison of
out-of-sample forecasting performance of the Log-AR(1) Stochastic Volatility Model
and EGARCH model. As stated in the previous chapter, no analytical approxima-
tion of options prices under the Log-AR(1) Stochastic Volatility Model has been
developed.

Option pricing with stochastic volatility in general is a very difficult task and is
beyond the scope of this dissertation. We will discuss the major developments in this
area and discuss numerical approximation approaches to the option prices. We also

discuss Bayesian analysis of option prices.
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A vast literature exists on the development of an option pricing formula with
stochastic volatility. Hull and White (1986) derived an option pricing formula when
the underlying volatility follows a diffusion process with constant drift. Heston (1990)
developed a closed-form solution to allow a more general stochastic process for the

volatility. The volatility process in Heston’s model is

do? = a(b — o})dt + codz,

Yet no analytical work on the pricing formula for options when the underlying
volatility follows the Log-autoregressive process has been done. The closest formula
avaliable for the Log-AR(1) process is the general conclusion of Hull and White (1986)
on representing option price as the average of the extended Black-Sholes price which

is true when the underlying volatility follows a Log-autoregressive process, e.g.,

0, = / BS(Vy)h(Vi|V})dV; = E[BS(Vi|V})],

where V, = ﬁ ftT Vida.

Therefore, one approach to price options using the Log-AR(1) model is to do
simulation over the Hull and White option price integral. Comparing with simulation
over the original definition of option prices, simulate using the average of the extended
Black-Sholes price formula only requires the simulation of the volatility process. This
cuts the simulation time in half comparing to simulation of both the volatility process
and return process using the original definition of option prices.

Another issue we discuss is the estimation of option prices. Most (and to my
best knowledge, all) current literature uses point estimates for option prices. A
confidence interval is constructed assuming asymptotic normal distributions for the

option price for error estimate. In the context of Bayesian analysis, a posterior
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distribution can be constructed using the distribution of v;. From either the Black-
Sholes model with constant volatility assumption or Hull-White model with stochastic
volatility, the option price is a funtion of the current volatility, O = f(v;). From the
Gibbs Sampler, a posterior distribution of v; is avaliable. Therefore, simulation-based
option prices can be obtained using each sample from the posterior distribution.
And an empirical posterior distribution of the option price can be obtained from the
posterior distribuion of v;. This posterior distribution will contain more information
than a point estimate of the option price using asymptotic normal assumption. It
is well known that returns of stock price, exchange rates have fat tail and skewed
distributions from extensive empirical studies. Yet the distributional property of
the option prices are rarely studied. The key issue is computational difficulty which
involves double-simulation of the option pricing integral and the posterior distribution
of the option prices. Yet studies on the distributional property of option prices will
have important applications in option trading and risk management of derivative

products.
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Chapter 5

Conclusions and Future directions

The goal of this part of the dissertation is to develop simulation methods to esti-
mate the highly difficult Stochastic Volatility Model and evaluate the performance
of Stochastic Volatility Models as a forecasting model and compare with the exist-
ing popular EGARCH model. Motivated by the work of Jacquier, Polson and Rossi
(1994), we develop two efficient MCMC sampling procedures to fit a Log-AR(1)
Stochastic Volatility Model. We then develop model diagnostic procedures to check
in-sample model adequacy. We apply the model to real exchange rate data series.
We found that both MCMC simulation procedure developed in the dissertation works
well on real financial data where the correlation of volatility is high. In particular, the
convergence of the multi-move Gibbs Sampler is much faster than the Single-move
Gibbs Sampler. Our model diagnostic results indicate that the Log-AR(1) Stochastic
Volatility Model captures the fat tail property of the data better than the EGARCH
model. Also, the Smile effect generated by the Log-AR(1) Stochastic Volatility Model
is bigger than that from EGARCH model and is closer to the Smile effect observed in
the market. This suggests the forecasting behavior of the stochastic volatility model

might be different from that of the EGARCH model.

There are many immediate extensions to the current study. A first immediate
follow up would be the comparison of the out-of-sample forecasting performance of
the Stochastic Volatility Model and the EGARCH model. As stated in Chapter 4,
the most commonly used criteria for selecting financial forecasting models is out-of-

sample forecasting performance from backtesting results.

There are many unsolved issues in the back-testing procedure. The first issue
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is the derivation of an option pricing formula. Since the loss function used in the
comparison of the two volatility forecasting models is the profit and loss generated
by the trading of options using the model, an option pricing formula under the
Log-AR(1) Stochastic Volatility model needs to be developed. Option pricing under
stochastic volatility will involve simulation. Since simulation of option prices will be
performed daily for a long period of time, approximations or innovative simulation
techniques need to be developed to reduce simulation time and make large scale

back-testing feasible.

The second issue involved in the back-testing process is the development of a
Bayesian trading strategy. The common practice in the estimation of option prices
in both academic research and in practice is to conduct point estimates of option
prices. However, it is clear from both the Black-Shole’s model and the Hull and
White option pricing formula with stochastic volatility that option price is a function
of the volatility. Since the volatility has a distribution which is usually skewed, use of
a point estimation of option price as a summary of such distribution will definitely lose
information. A trading strategy using the distribution of the option price will reduce
the risk of selling not heavily over-priced options and buying not heavily under-priced
options. Since such distribution of option prices will be simulation-based, an efficient
option pricing formula and innovative simulation techniques need to be developed so
that practical use of the Bayesian idea is feasible.

The third immediate extension to the current study is the extension to the corre-
lated stochastic volatility model. Such a model will account for the skewness effect
commonly observed in the stock market and the exchange rates from the emerging
markets. As discussed in Chapter 3, the introduction of the correlation destroys
the variance-covariance structure. As a result, the Multi-move Gibbs Sampler can

no longer be applied. Therefore, we again face the problem of slow convergence of
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the Single-move Gibbs Sampler. Innovations in either model modification or MCMC

sampler need to be developed to speed up convergence.

The fourth extension to the current study is the development of Multivariate
Stochastic Volatility Model. This is of use in portfolio management and cross-
sectional analysis. Multivariate analysis of volatility in general is difficult and rather
new. Computational difficulties are the major obstacles. Developments in multivari-
ate GARCH type models have experienced difficult identification problems. Earlier
work includes Kraft and Engle (1982), Bollerslev, Engle and Wooldridge (1988),
Bollerslev (1990). These models are either extremely unparsimonious or quite tightly
constrained. Another important extension in the GARCH literature is the factor
type GARCH models, following the work of Engle, Ng and Rothschild (1990) and
Diebold and Nerlove (1989) which is refined by King, Sentana and Wadhwani (1994).
Such models have the potential to improve the parsimony problem.

The corresponding multivariate extensions to the Stochastic Volatility Models are
easier than the multivariate GARCH models. A representative work is by Harvey,
Ruiz and Shephard (1994) who used Quasi-likelihood Kalman filtering technique to

fit a model of the form

hit/2
yie = €ne’?,

where h; = (hyy,...hyr)" follows a multivariate random walk and ¢, = (e, ...en7)’ ~
NID(0,%,). Other work on this model includes Mahieu and Schotman (1994) and
Jacquier, Polson and Rossi (1995) who applied a MCMC sampler to the model.
Another promising direction in the multivariate extensions to the Stochastic Volatility
Models is the factor type Stochastic Volatility Models which can capture the long

memory property in the volatility process.

The fifth extension to the current study is to implement the model developed in
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Chapter 3 which combines implied volatility and historical volatility under one model
framework. As discussed in Chapter 3, if the Log-AR(1) Stochastic Volatility Model
does capture the behavior of the historical volatility, then a model which utilize both
historical information from past return data and future expectation incorporated in
option prices based on correct characterization of the historical movement of return
will have great potential to provide better forecasting of future volatility and option
prices than any single model which models only the historical volatility or the implied
volatility. On the other hand, such a model can provide useful empirical evidence for
the hypothesis of the existence of stochastic volatility. For example, if the volatility
does follow the Log-AR(1) structure specified in the model, the addition of option
prices information will result in a more concentrated posterior distribution for the
volatility than the posterior distribution obtained from a model for historical or
implied volatility only. The main issue in the implementation of such a model is again
an efficient option pricing formula and efficient simulation technique for simulating
the option prices. This is especially crucial since the simulation of option prices needs
to be done n times within each iteration of the Gibbs Sampler.

Other extensions in the Stochastic Volatility Models include the heavy tail Stochas-
tic Volatility Models, the Volatility-in-mean Stochastic Volatility Model which incor-
porates volatility in the mean part of the return process, etc.

Research on stochastic volatility is growing rapidly. With the ever increasing
computer power and development of innovative estimation methods, we are ready
to explore many interesting topics in theoretical finance. For example, how to make
inference on continuous-time models in theoretical finance using discrete-time data
especially high frequency intra-day data; the relationship between stochastic volatility
and trading volume (Gallant, Hsieh and Tauchen,1991, Anderson,1995); understand-

ing the cause of stochastic volatility using time deformation (Ghysels, Gourieroux
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and Jasiak,1996), etc. On the other hand, Stochastic Volatility Models provide a
good testing ground for the development of new nonlinear and non-Gaussian time
series techniques for model estimation, model diagnostic and model comparison.

In addition, Bayesian MCMC methods provides excellent framework for the esti-
mation of other sophisticated hierarchical models in finance where a latent process
has sound economic intuition. For example, the jump-diffusion models used in option
pricing theory and the Regime-Switching models used in interest rate forecasting, etc.

These are going to be my continuing research topics at Prudential Securities.
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Chapter 6

Introduction

The problem of spectral inference in time sampled data is very old. The first signif-
icant advance in frequency estimation occured in the early 20th century when two
separate methods of analyzing the problem came into being: the use of probability
theory and the use of Fourier transform. Two prominent limitations of the Fourier
transform approach exist: Fourier transform can not distinguish multiple signals ef-
fectively, and implicit windowing of the data occurs when the Fast Fourier transform
is performed. The “leakage”from the main lobe of a spectral response causes the
distorting and obscuring of other spectral responses. On the other hand, use of prob-
ability theory under a statistical model permits one to incorporate one’s knowledge
about the process from which the data samples are taken ( e.g. the number of fre-
quencies in the signal). By adding reasonable assumptions to the model, one can
describe the nature of the process outside the measurement interval more precisely.
Another advantage of using statistical models is the elimination of the windowing
effect when processed with the Fast Fourier Transform.

In over 100 years since the introductory of spectral analysis and probability the-
ory, no particular connection between the two has been noted. That the two meth-
ods could be very related was first introduced when Jaynes (1983) derived the pe-
riodogram directly from probability theory and demonstrated it to be a sufficient
statistic for the inference of a single stationary frequency in a time series with a
normally distributed noise. Direct Bayesian inference of the frequency was first
developed by Bretthorst (1987) under an harmonic model framework. Bretthorst

provided comparison between Bayesian posterior analysis of the frequency and the
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traditional Fourier transformation. However, the approximations used by Bretthorst
for estimation of frequency are not accurate when multiple close frequencies exist, the
case when Fouriour transform fails to work. Furthermore, these approximations can
not be generalized to more complex models for the frequency. Therefore, although
theoretical framework for Bayesian analysis of frequency is avaliable, development
of methods for accurate estimation of the frequency is still an essentially untouched

area of research.

In this part of the dissertation, we develop a unified approach for frequency es-
timation using the Gibbs Sampler under the single-frequency and multi-frequency
harmonic model framework. The focus of the analysis is on the computation of the
posterior distribution of the frequency. I develop efficient procedures to tackle the
challenging problem of sampling highly multi-modal posterior distribution for the fre-
quency. The method is then applied to study some EEG and Oxygen isotope data.
Motivated by the study in Oxygen data and other geophysical time series, I study
the impact of uncertain timing in the estimation of frequency and develop methods

for the estimation of frequency and time given observed time series data.

This part of the dissertation is organized as follows. Chapter 7 develops a
Metropolis algorithm to sample the posterior distribution of frequency under the
single-frequency harmonic model. Chapter 8 extends the methods to a multi-frequency
harmonic model and improves the methods for the high dimensional cases. Chapter 9
discusses the impact of uncertain timing in frequency estimation and develops a uni-
fied Gibbs Sampler approach for frequency estimation under uncertain timing. This
general framework can be generalized to more sophisticated models for frequency
domain time series analysis. Chapter 10 discusses future directions on the study of
spectral analysis. Illustration of the methods by analyzing the EEG data and Oxygen

data are presented at the end of each chapter.
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Chapter 7

A Single-frequency Harmonic Model

Bretthorst (1987) first adopted Bayesian posterior distribution analysis for fre-
quency estimation. However, Bretthorst was only able to conduct approximate esti-
mation to the Bayesian posterior distribution of the frequency. Such approximations
work well only when the assumptions of Fourier transformation hold. Therefore, as
discussed in the previous chapter, although Bayesian posterior analysis of the fre-
quency is established under more general conditions than Fourier transformation,

accurate posterior estimation procedures are needed.

In this chapter, we follow the basic harmonic model developed by Bretthorst (1987).
We develop a general approach for frequency estimation using the Metropolis algo-
rithm to sample from posterior distribution of the frequency and a Gibbs sampler to
conduct inference on other model parameters. The Gibbs sampler is used to conduct
exact finite-sample inference for the model parameters especially for the frequency and
can be generalized to more complex dynamics for the frequency. I first discuss the
harmonic model and the connection between Bayesian posterior distribution for the
frequency and traditional Fouriour transformation. Then I propose an efficient simu-
lation procedure to conduct exact finite sample estimation on the frequency. Finally,

I apply the model to analyze some FEG data series.
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7.1 The Model

Suppose we have a time series y(t) over time t observed at times {#1,...t,} to give
data y(t) = y(t;), {i = 1...n}.

The simplest harmonic regression model is

Yy =rcos(wt+ @)+ € € ~ N(0,0) (7.1)

Here w is the frequency of the signal, r > 0 represents the amplitude ¢ € (0, 27) is

the phase, and ¢, is a zero mean error process. In this case, €, ~ N (0, v) independently.

Rewrite (2.1) as

Y = acos(wt) + bsin(wt) + ¢, € ~ N(0,v), (7.2)

where a = rcos(¢), b=rsin(¢) and r = a? + b2

In the case of equally sampled data, e.g. t; = 1,15 = 2,..., w is between (0, 27).
For 0 < w < m, we get the same model with the sign of b changing to —b, at frequency
2m — w, so the range of w can be further restricted to 0 < w < w. This implies that
w/2m < 0.5, or A > 2. So at least two equally spaced observations are needed to be
sampled per cycle.

With arbitrary equally spaced data, e.g. t; = 20 for some 6 > 0, the range for w
is 0 < w < 7/d, correspondingly, and the wavelength A has to be bigger than 2§.

When the time scale is changed, e.g. u = (¢t — z)/s, (7.1) changes to y, =
reos((sw)u + (¢ + xw)) + e;, with the same amplitude.

Model (7.1) assumes the underlying process as a single cosine wave with fixed

frequency, amplitude and phase, plus some white noise with constant variance.
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7.2 Posterior Distribution for the Frequency

We are mostly interested in the estimation of the frequency in a harmonic analysis.
Maximum likelihood estimates and Least Square estimates of the frequency have
been used for many years. See Kay and Marple (1981) for an extensive review. In
the Bayesian paradigm, the marginal posterior distribution of the frequency can be
obtained by integrating out other parameters, e.g, the amplitude, the phase and the

variance of the noise. Details can be found in Bretthorst (1988), as follows.

Assuming fixed w, rewrite (7.2) as
Y =X0+¢€ ¢~ N(0,v)

where X0 = (cos(wt), sin(wt)) 5= (a,b)

Given the reference prior p(3,0?) < 1/c?

p(VIX) = p(VIw) = [ [ (Y[, 5, 0%)p(8, 0*)dBdo*

So,

p(Ylw) ~ XXV (B X'XB)/(Y'Y)E R (7.3)

where = (X’X)"'X'Y is the Least Square estimator of (3.

The calculation of (7.3) is easy to implement. Nevertheless, when n is reasonably
large, w is not too small, and the data are equally spaced, a useful approximation

arises. Using the facts that
S cos?(wt;) ~n/2,
" sin?(wt;) ~n/2,
* (cos(wt;)sin(wt;)) ~ 0,
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and (2'z)™' ~2/nl,

Let

&= (Y'Y)/n,

R(w) = 1, yucos(uts),

I(w) = 371y yisin(wty),

and C(w) = (R(w)* + I(w)?)/n.

Then p(Y |w) simplifies to

Y w) o (1-20(w)/(nd”)>"".

Under a uniform prior p(w) ~ ¢, the posterior for the frequency is

p(w]Y) o (1 = 20(w)/(nd?) @72 (7.4)

Here C(w) is called the periodogram, introduced by Schuster 200 years ago.
Traditionally, the view is that large C'(w) implies important frequencies because
C(w) o< @ + b> which estimates the theoretical squared amplitude r2 = a® + b>.
The posterior for w in this one-cycle model is a monotone function of C'(w) under
the above approximation. Now under the pioneer work of Jaynes, the two separate
methods of estimating frequencies, probability theory and Fourier transform, were
beautifully linked together under the Bayesian paradigm. Furthermore, the poste-
rior distribution greatly improves the resolution of the frequency and eliminates the

windowing effect of the Fourier transform.

Remember that, the above approximation is true only when the following assump-
tions are held, e.g.,

e the number of data n is large;
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e there is no very small frequency;

e there is only one frequency in the data;

e the amplitude and phase are constant;

e the data are equally sampled.

When these assumptions are not held, discrete Fourier transformation and the
periodogram are no longer well defined, e.g, Fourier transform always interprete the
data as a single frequency harmonic model. Yet, the posterior distribution of w is still
perfectly well-defined and gives the correct scale of the estimation of the frequency
without windowing the data. Furthermore, assessment of the estimates is avaliable
from the posterior distribution of the frequency which neither least squares, maximum

likelihood, nor the Fourier transform can give directly.

7.3 Metropolis Sampling of the Posterior Distri-

bution

Inference from the posterior distribution is a challenging problem. The posterior
distribution p(w|Y) does not have a standard form. As a result, analytical approxi-

mation and simulation methods need to be developed to achieve inference in w.

Bretthorst (1988) adopted an analytical approximation approach to the problem
in which he applied a t-distribution approximation to the approximated posterior
distribution (7.4). Such appoximation is obviously crude with today’s sampling tech-
niques. In addition, it is rather limited since the approximation equation (7.6) holds
only when the assumptions of Fourier transforms are held. As discussed in the previ-
ous section, when assumptions of Fourier transforms are violated, the approximation
of (7.5) using (7.6) is already not true, not to mention the t-distribution approxima-
tion to it. So although Bayesian posterior probability approach has shown theoretical
advantage under more general assumptions, direct inference from the posterior dis-
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tribution was still not avaliable under general conditions.

Sampling the posterior distribution of the frequency is a very challenging problem.
A plot of p(w|Y') reveals that p(w|Y') is typically highly multi-modal. The probabil-
ity mass is highly concentrated at one or several major peaks which indicates the
“important frequencies” in the data. When the signal is strong, the intervals where
these main frequencies lie are extremely small comparing to the standard (0, 7) in-
terval for the frequency. Meanwhile, numerous local modes exisit in other areas of
the distribution because of the property of trigometry. This makes it hard to apply
standard accept/reject sampling methods since the search of an “envelope” for the
posterior distribution is very difficult without knowledge of the location of the impor-
tant frequencies. A random walk Metroplis sampling with a small variance will tend
to be misled by local modes and one with a large variance will result in large rejection
rates. We consider an independence chain Metropolis algorithm with a good proposal
distribution as the most efficient approach to sample the posterior distribution.

The advantage of an efficient algorithm for the sampling of the frequency pa-
rameter is not obvious in the single-frequency harmonic model since the sampling
of the frequency is independent of other parameters. But in the following chapters
the need for an efficient sampler for the frequency is obvious when we introduce
multi-frequency model, time-varying amplitudes and timing uncertainties into the
basic harmonic model. Therefore, we spend some effort on developing an efficient
Metropolis algorithm for the sampling of frequency.

In an independence chain Metropolis algorithm, a good proposal distribution is
crucial for efficiencient sampling. It is expected to mimic the targeting distribution
reasonably well, and the tails of the starting distribution should dominate those of
the targeting distribution to insure convergence of the Markov chain. Also, it should

be fast to compute. Three choices of starting distributions are presented here.
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7.3.1 Mode-Based Proposal Distribution

One choice of proposal distribution is a mixture of t-distributions centered at the
modes of the targeting distribution. It was proposed by Gelman and Rubin(1992).
Such mixture distribution should mimic the shape of the targeting distribution rea-
sonably well, and a t-distribution with small degree of freedom will gurantee domi-
nance at the tail. Although mode-based distributions don’t work for every problem,
it is a good choice for this univariate exponential like distribution.

As stated earlier, p(w]Y’) is highly multi-modal and highly concerntrated around
the major peaks. Therefore, mode-finding for p(w|Y’) isn’t an easy task. Since the
first derivative of p(w|Y’) is analytically avaliable and with similar structure of p(w|Y’),
Newton’s method is known to be the fastest mode searching method. However, New-
ton’s method requires fairly accurate starting values to guarantee correct convergence.
Because of the numerous local modes presented in p(w|Y), it’s very likely for Newton’s
method to converge to local modes. On the other side, since the posterior is highly
concerntrated around the peak, large number of starting points are needed to insure a
starting point close to the peak was selected. For equally sampled data, the problem
is easier since the frequency is known to be between (0,7), and in most practical
problems, prior knowledge allows us to further constrain the interval. This allows
us to sample thousands of points in the interval (0,7) to guarantee a close starting
point to be used. The procedure to construct the mixture starting distribution is as

follows:

1. Randomly sample a large number of starting points from (0, 7).
2. Perform Newton’s method using each starting point.

3. Evaluate p(w|Y’) at each local mode. Select K most important ones.
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4. Compute the second derivative at each local mode as an estimate of the variance

at the mode.

5. Construct a mixture of t-distributions centered at the modes with a small degree

of freedom as a starting distribution.

Here, much attempt has been made on obtaining an accurate starting distribution.
Since the searching for starting value of Newton’s method is needed to be done only
once in the single-frequency model, it’'s worth spending the computing time here to

guarantee fast convergence of the Metropolis algorithm.

7.3.2 Kernel Density Proposal Distribution

An alternative way to find a good proposal distribution is to use kernel density
estimate as an approximation of the posterior distribution, see West (1992). The

idea is as follows, in exploring a univariate posterior density, p(z), in general,

e Draw a sample of size n (usually several thousands points) zj....z, from a

uniform distribution which covers the interval in which the frequency lies.
e Evaluate the weights w;, {j = 1.n} determined by w; = p(z;)/ >7_, p(7;)

e construct a mixture function

p(z) = iwjd(xj, vh?)

=1

The function d(z;, vh?) can be either a Normal distribution or a T-distribution.

The quantity v is the Monte Carlo estimate of posterior variance

n
v="> wj(r; —2)°
7=1
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where T =377, wjz;.
The scaling parameter h is usually chosen as a decreasing function of the sample
size n, so that the kernel components are more concerntrated at the locations z; for

larger sample sizes. A traditional specification with normal kernels is

h = ¢/nt/(1+4)

with ¢ = {4/(1 + 2p)}'/0+%) although much smaller ¢ can be found for specific
models.

This approach is similar to the first one in computing time and accuracy, but
is more general and is suitable for problems where an interval within which the
parameter lies is unknown.

Once the starting distribution ¢(y) is determined, Metropolis algorithm proceeds
as follows:

Repeat for j =1,2,...N

e Generate y from ¢(y), and generate u from U(0, 1),

o Let zUt) =y if U < a(27,y); otherwise let zU+) = g7,

Return the values {z™*!' g+2 2Nl Here ng is the “burn-in” period needed
to ensure the chain has passed the transient stage and converged to the targeting
density. Since the starting distribution found by the above three ways are fairly

accurate, the convergence of the Metropolis algorithm should be fast.

7.4 Estimation of Other Model Parameters

Besides the frequency, other parameters to be estimated in model (7.2) are the am-
plitudes, and the variance of the noise. The amplitudes are useful in determining the

importance of the frequency and the power carried by the signal. The variance of the
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noise is a good indication of the signal-to-noise level and can help determine whether
one should try a new model for the data.

Bretthorst (1988) estimated the amplitude and the variance assuming the fre-
quency is known since direct analytical forms of the marginal distribution of the am-
plitude and the variance are unobtainable. To get direct inference from the marginal
distribution for the amplitude and the variance, a Gibbs sampler is used.

To generate samples from the marginal distributions for the amplitude and the
variance,

Rewrite (2.2) as a linear model

Y =Xp+e¢

where the design matrix X,,.o = (cos(wt), sin(wt)), § = (a,b)’, and € isa nxn

diagnoal matrix with v as the variance of each ;.

The joint posterior is
p(a,b,v,w|Y) o p(w]Y)p(vly,w)p(a, bly,w, v)

Under the assumption that (a, b, v) are it a priori independent of w, using standard
Bayesian linear model theory, we sample p(a,b,v|Y,w) by composition. Using a
uniform prior for w, and a reference prior p(3,0) oc 1/0?, p(v|y,w) is an inverse
Gamma distribution with shape parameter (n — 2)/2 and scaled parameter ns?/2.
The conditional distribution p(a, b|y,w,v) is a bivariate normal distribution.

After breaking the joint posterior into several conditional distributions, the full
posterior can be sampled by sequentially simulating as follows:

e Sample w from

plw|Y) oc [ X'X[7V2(1 = (FX'XB)/(Y'Y))em/2,
e Sample v from p(1/v]Y, w) ~ Ga((n — 2)/2,ns*/2)
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e Sample (a,b) from
pla, Y, w,v) ~ N(B,(X'X) W), §=(X'X)'X"Y
In this sampling scheme, sampling of w is independent from the sampling of
other model parameters. Therefore, the mode-finding procedure in the Metropolis

algorithm needs to be done only once.

7.5 Application

One motivating problem of harmonic analysis arises from the collaboration with Duke
psychiatrists studying issues of clinical design and efficacy of brain seizure treatments.
Electroconvulsive therapy (ECT) is a major tool in brain seizure treatment. EEG
monitoring is the primary method of observation on brain activity during ECT. Very
long EEG time series, of the order of several tens of thousands of recordings, are
available from individuals under varying treatments. Such series usually exhibits
quasi-cyclicity among other features. Figure 7.1 shows a plot of a single series of 300
EEG data over time. There are obvious periodicities in the data and the amplitudes
vary as well. We assume the data are equally spaced and apply the single frequency
harmonic model to the data.

Figure 7.1 also shows a smoothed periodogram estimate of the spectral density
function using the default spec.pgram in S-plus, the Schuster’s periodogram C(w),
the Bayesian posterior distribution calculated from the single frequency model as
well as the log-posterior distribution. These plots are consistent with each other and
indicates a single high frequency at w = .2975 ( wavelength A = 21.13 ) and some
minor frequencies.

We estimate the parameters in the model using the sampling procedure described
in section 4 of the chapter. First, 5000 samples of the frequency given the data are

drawn. Then, samples of the variance given the frequency and the data are drawn
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Figure 7.1: Time series plot of the EEG data. The acf, periodogram , Schuster’s
periodogram, posterior distribution and log-posterior distribution of the frequency.

and finally samples of the amplitudes given the frequency and the variance are drawn.

An independence chain Metropolis algorithm is used to sample from the posterior
distribution for the frequency. The mode-finding procedure defined in 7.1 was used
to construct the mixture of t-distribution as the candidate generating distribution.
For this data set, there is only one significant mode in the posterior distribution, so
the candidate generating distribution is a t-distribution centered at the mode. The
degree of freedom of the t-distribution was chosen to be 3 to insure it’s over-dispersed.
A uniform prior in the range (0,7) was used for the frequency w. This is the entire

range for the frequency assuming the data were equally sampled. Simulation result
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of 5000 samples is displayed in Figure 7.2. The posterior distribution is plotted on
top of the histogram. As can be seen, the variance of the posterior distribution is
very small, e.g. around 0.004.

Samples of the variance v and the amplitudes a, b are drawn from the correspond-
ing conditional distributions described in Section 7.4. The marginal distribution of
a,b are plotted on top of the histogram. Notice that the variance estimate is very

big (around 7000), indicating the model does not fit the data very well.
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Figure 7.2: Histogram of parameter estimates for a,b,v and A. With p(A|Y') on top
of the histogram.
The residual plot as well as the original data are displayed in Figure 7.3. An

obvious cyclical structure of the residual plot indicates the need for further search of
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frequencies or further development of the model.
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Figure 7.3: Top: EEG series and fitted values. Bottom: residuals

A more careful study of the residual plot shows that the cyclical structure is more
obvious in the first 100 or so part of the data than in the remaining segment of the
300 data, this indicates the existence of time varying frequency in the data. Plots of
p(w|Y) in Figure 7.4 for the first 100, last 200, and all 300 of the data shows that
the frequencies are indeed varying through time. In particular, the relatively smaller

power in the last 200 data suggests a less prominent cyclical structure in the last 200

data.

To find all important frequencies in the data, the same procedure is repeated to
analyze the residuals. The posterior distribution of the frequency for the residuals
clearly indicates a high power at A = 17.65, although the power scale (10'°) is much

smaller than that of the main frequency (10%°). The amplitude for this frequency are
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Figure 7.4: p(w|Y) from different segment of the data indicates time-varying fre-
quencies

about half of that of the main frequency, e.g., around a = 35 and b = —36.9 and
variance estimate for the model reduces to 5600.

An analysis of the residuals for the new model reveals further cyclical structures
in the residuals. A new frequency near A = 19.5 is singled out, it has almost the
same power as the previous frequency (10'®) and the amplitude estimates a = 37.7
and b = —33.2 are similar to those of the second frequency as well. The variance
estimate of the model reduces to about 4500.

This procedure was repeated 8 times until no significant reduction in the variance
estimate of the model is found. After the 8 frequencies are removed from the data, the
acf of the residuals indicates slight lag 1 autocorrelation. See Figure 7.5. The variance
estimate of the model after 8 frequencies were removed from the data reduced to about

2500, which is just a third of the original variance estimate. Table 7.1 summarize the
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posteriors of the 8 wavelengths.
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Figure 7.5: Top: Residual plot of the EEG data after taking out 8 frequencies.
Bottom: acf plot of the residuals

Before any inference can be drawn for the parameters, we check the convergence
of the sampler. Since the sampling of the frequency depends only on the data, not on
the other parameters a, b, v, each draw of {a,b, v,w} is independent of the previous
one. So the sampling of {a,b,v,w} is not a Markov Chain. Therefore, there is
no need to check the convergence of the entire sampling procedure. However, the
sampling of the frequency is based on an Independence Chain Metropolis Sampling,
so a convergence check for the sampling of w is performed.

We apply various convergence check methods to analyze the results using CODA.
Since the proposal distribution for the Metropolis Algorithm is very close to the
posterior distribution, we expect quick convergence of the sample chain.

A single chain with 10,000 samples was drawn from the the posterior distribution
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Table 7.1: Statistics from the predictive residual diagnostic
Wavelength a b \Y

23.38 | -21.35| 14.44 | 3200
21.137 | -65.452 | -62.72 | 7000
19.458 | 37.845 | -28.55 | 4500
17.647 | 39.467 | -38.94 | 5600

16.18 9.856 | -29.56 | 3900
12.923 23.83 | -11.66 | 2500
11.178 | -26.74 0.56 | 3500

9.657 23.94 | -0.15| 2800

0.65 3.13 | 27.56 | 2.13

of w using the Independence Chain Metropolis Algorithm. The starting value was
drawn from the over-dispersed t-distribution. The summary statistics shows an em-
pirical mean of 21.1 and a standard error at about 0.02. The lag 1 autocorrelation
between the batch for every 25 samples is close to zero (-0.0296). This indicates ap-
proximate independence between batches is achieved. The autocorrelation between
each adjacent sample is only -0.0114, the autocorrelation between every 50 draws can
be considered very close to zero (-0.00136). These results support our expectation
that the convergence should be very quick for our Metropolis algorithm.

The Geweke convergence diagnostic calculates the mean for the first 10 percent
and the last 50 percent of the sample in the chain, then compute the Z diagnostic
which is the difference of these 2 means divided by the asymptotic standard error
of the difference. A Z = .0019 for this chain means that the sampling distribution
of 7 is very close to a standard Normal distribution. Therefore the chain converged
surely. A plot of the Geweke convergence diagnostic shows that almost all Z-scores
fall into the 95% confidence interval.

The Raftery and Lewis Convergence diagnostic proposed by Raftery and Lewis
(1992) gives the total number of iterations N needed for this chain based on the

binomial variance is 3680. The number of initial runs to be discarded as the “burn-
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Figure 7.6: Graphical summary of the output produced by CODA plots

in” is 2 and the minimum number of iterations needed to estimate the specified
quantile to the desired precision if the samples in the chain were independent Nmin
is 3746. Here N < Nmin, this indicates negative correlation between consecutive
iterates which is consistent with the negative correlation founded in the summary
statistics. So, 5000 samples used in the previous simulation study can be considered

enough.

Finally, another convergence diagnostic, the coupled samples paths proposed by
Johnson (1995) is performed. The coupled sampling approach used coupled chains
from the same sampler, obtained by using the same sequence of random deviates for
each run. The distribution of the iteration at which all sample paths couple gives the
appropriate burn-in period needed. Here, 100 starting points were generated from
the over-dispersed t-distribution. For the interval between (0, ), 100 starting points
is believed to be considerably large. The histogram of the number of iterations at
which all sample paths couple shows that most chains coupled at iteration 2 which is

consistent with the Raftery and Lewis Convergence diagnostic. The 95% quantile of
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Figure 7.7: Geweke Convergence Diagnostic

the number of iterations needed to couple gives 27. There are a few extremely large
numbers in the histogram which are over 40, this indicates that the 100 starting
values is considerably large.

All these convergence diagnostic shows that the samples drawn from a indepen-
dence chain Metropolis Algorithm with a very accurate yet over-dispersed candidate
generating distribution converge very fast to the stationary distribution. Far Less
than 100 draws are needed as the burn-in period.

After the burn-in period, draws from the sampler are considered from the station-
ary distribution. The summary statistic from CODA shows that the autocorrelation
between each adjacent sample is only -0.0114. To be very conservative, we can use
samples from every 50th iteration, which has a autocorrelation very close to zero
(-0.00136). These draws can be considered independent draws from the posterior

distribution and inference of the frequency can be drawn from these samples.
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Chapter 8

A Multi-frequency Harmonic Model

In the previous chapter, we discussed the advantage of using Bayesian posterior
distribution over traditional Fourier analysis for the estimation of frequencies. We
proposed a Gibbs Sampling procedure for the estimation of frequency under the single
harmonic model. In this chapter, we extend our analysis to the Multi-frequency Har-
monic Model. We develop three sampling procedures to estimate a Multi-frequency

model. We then apply the model to the EEG data and Ozygen data.

8.1 The Model

The motivation for the development of multi-frequency harmonic model is obvious.
The main advantage of statistical modeling over Fourier analysis is frequency reso-
lution, i.e., the ability to distinguish the spectral response of two or more signals.
Traditional Fourier analysis assumes only one frequency in the data, when multiple
frequencies especially multiple close frequencies are presented in the data, Fourier
analysis may give misleading results. A multi-frequency harmonic model, when prop-
erly specified, will identify the multiple signals presented in the data.

A harmonic model with multiple frequencies is

J

ye = > _(ajcos(wjt) + bjsin(w;t)) + € (8.1)
7=1

where ¢, ~ N(0,v). The number of frequencies to be included in the model can
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be determined a priori from external information or by preliminary checking of data.

The frequencies can be well separated or they can be close.

8.2 Parameter Estimation

We illustrate our idea with a two-frequency model, although the methods apply
for models with higher number of frequencies.

The parameters to be estimated in model (8.1) are the frequencies {w,ws}, the
amplitudes and phases {ay, by, as, by, v}.

Again, rewrite (8.1) as a linear model

Y =Xp+e¢

Where X4 = (cos(wit), sin(wit), cos(wat), sin(wst)), B = (aq,br,as,by)" and €
is the diagonal variance-covariance matrix with variance v as each element on the
diagonal.

Given reference prior p(8,0%) ~ 1/0?, the posterior distribution for the frequen-

cies under a uniform prior for the frequencies is

plwr,wlY) oc [X'X[TVA(1 - (FX'XB)/ (YY) (8-2)

The structure of (8.2) is similar to (7.4) in the single-frequency model. It is
highly concentrated at major frequencies and has numerous local peaks. No side
lobes are presented in the posterior distribution around the frequencies because the
data was not windowed. When there are two frequencies in the data, the contour of
joint posterior distribution has two symmetric “eyes” at the two frequencies for both

well-separated or close frequencies.
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A t-distribution approximation was again used by Bretthorst (1988) to perform
analytical inference of the frequencies. The approximation works well when the two
frequencies are well separated, but no solution was given for short data set with
two close frequencies, the case when traditional Fourier transforms fail to work. To
achieve accurate estimation of the frequencies, sampling-based inference has to be
developed.

Sampling from a multi-modal high dimensional joint posterior distribution is not
an easy task. The grid method to search for modes developed in the previous chap-
ter is not appropriate for high dimensional distributions. We propose three Gibbs
samplers to sample the joint posterior distribution. Let 8 = {ay, by, as, by, v}, these
methods are:

Gibbs Sampler 1: Sample joint distribution of the frequencies conditioning only
on the data

e sample p(wy,ws|Y)

e Sample p(0]Y, wy, wy)

Gibbs Sampler 2: Sample the conditional distribution of the frequency condi-
tioning only on the data

o plwi|wy,Y)

o plwslwr,Y)

e Sample p(A|Y, w1, ws)

Gibbs Sampler 3: Sample the frequencies conditional on the data and model
parameters

o p(wi|wy, ag, by, Y)

o p(ws|wr,aq, by,Y)

e Sample p(0|Y,wy,ws)

We discuss each of these in the following sections.
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8.2.1 Sampling of the Joint Posterior

When there are only two frequencies in the model, we can sample the joint dis-

tribution directly. The marginal posterior {w, wo} is then

plwnwelY) ~ XXV - (FXXG)/(Y'Y))N (8-3)

The shape of the joint distribution has high conical peaks at the frequencies and
has numerous local conical peaks elsewhere. It might have two symmetric peaks
at the two most important peaks if there are only two frequencies or it might have
more peaks if the data has multiple frequencies. We need a sampling algorithm to

efficiently traverse the whole probability surface and sample all the modes.

As stated earlier, (8.3) is often highly concentrated within a very small or several
very small intervals, and has numerous small local modes everywhere. Such character
makes it easy for the standard random walk Metropolis algorithm to stay at a local
mode. Therefore, standard random walk Metropolis algorithm will not be efficient
since a candidate generating distribution with large variance will result in high re-
jection rate at local modes, and one with small variance will not be able to traverse
the whole surface efficiently. Instead, the Independence Chain Metropolis algorithm
is again used.

Because of the exponential shape of (8.3) at each mode, a mixture of t-distribution
centered at the modes of (8.3) is selected as the candidate generating distribution
will can best mimic (8.3). For a joint distribution with higher dimension, direct
mode-finding of the joint distribution isn’t an easy task though.

The gridding method was used in the last chapter to search for modes. It is
reasonably fast in the one dimensional case especially when it has to be performed
only once. In higher dimensional case, the grid size increase exponentially and the
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computation becomes impractical. The drawback of this method is that it spends an
even amount of effort on the huge unimportant areas and the very small important

areas where the frequencies lie.

To search for modes efficiently in the entire probability surface, we need a method
which traverse the whole surface yet can move quickly to the modes. We propose
a random walk Metropolis-like algorithm which serves this purpose. We borrow the
idea of the Metropolis algorithm as a method to traverse the probability surface.
Yet we make three modifications to the algorithm to speed up the movement of the

algorithm for the purpose of mode-finding rather than sampling the distribution.

The grid method evenly divides the probability surface and search for modes.
When evaluation of the distribution is expensive, this slows down the process con-
siderably. In contrast, the random walk Metropolis algorithm moves towards the
modes of the distribution by assigning higher acceptance probability to samples. The
dilemma with the random walk Metropolis algorithm is the coverage of the probabil-
ity surface versus rejection rates. Namely, a random walk Metropolis algorithm with
a large variance for the proposal distribution will ensure coverage of the probability
surface, yet the rejection rates will be high when a sample near the modes is found.

Since the purpose here is to search for modes rather than sampling the distri-
bution, the dilemma with the random walk Metropolis is solved. We modify the
algorithm to only accept samples with higher density values. This ensures the sam-
pler moves only towards the direction where a mode lies.

Another problem with the random walk Metropolis algorithm is that it is easy for
the random walk Metropolis algorithm to stay at local modes when the distribution
is multi-modal. Again, for the purpose of mode searching, this can be avoided by
finding modes sequentially rather than simultaneously. This means that after a local

mode is found, the corresponding frequency can be removed from the data. The same
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procedure can then be applied to the posterior distribution of the frequency of the

new data.

A detailed description of the method is as follows:

e Generate one sample y,,,, from a proposal distribution centered at the current

draw y, with a reasonably large variance.

e Evaluate the value of the posterior distribution at both the current draw y,
and the new sample y, 1, calculate the ratio: p(yn+1)/p(yn), accept y,,q if the

ratio is bigger than 1.

e [f the ratio is significantly big, it means a sample near a mode is found. The
sample can be used as a starting value for the Newton’s method to find the

exact mode of the distribution.

e Save the mode found, then remove the corresponding frequency from the data.

And the above procedure can be performed again to find other modes.

This method of searching for modes is useful especially for high dimensional pos-
terior distributions when the computation for the grid size method increases expo-
nentially.

Since the joint posterior distribution of wq,ws depends only on the data, the
joint distribution (8.2) doesn’t change in each iteration in the Gibbs Sampler, the
above routine for finding modes needs to be performed only once before the Gibbs
Sampler starts. The mixture of t-distribution resulted from the method will mimic
the target distribution very well. Therefore, the convergence of the independence

Chain Metropolis sampler will be very fast.
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8.2.2 Sample {wy,ws} iteratively

An alternative approach to sample the joint distribution that can be generalized
to higher dimensions is to sample p(wy,ws, |Y) indirectly by iterating through the
conditional posterior distributions

o plwi|wy,Y)

o plwslwy,Y)

Without loss of generality, assume w; > wy. Given an uniform prior, the condi-

tional posterior distribution can be found from the joint distribution:

plnlwn ¥) ~ XX (BXXB YN 0>

= 0, w1 < Wsy.

And similarly,

plwslon, ¥) ~ XX - (BXXB) YN w0y >,

= 0, Wy < Wi.

Here p(wi|ws,Y) and p(wz|wq,Y) have the same structure as the marginal pos-
terior p(w|Y’), with an additional constraint of the order of the two frequencies.
Therefore, the same sampling methods can be used to sample from p(w;|wy, Y) and
p(wa|wr, Y).

In Chapter 7, sampling of the posterior distribution of the frequency given the
data is based on the Independence Chain Metropolis Algorithm using a mixture
of t-distributions as the candidate generating distribution. Various methods were
proposed to find the modes of the candidate generating distribution. Since the con-

ditional posterior distribution of each frequency depends only on the data and the
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other frequency, the mode finding procedure needs to be done only once with slight

modification according to the newly sampled frequency.

8.2.3 Sample {wi,ws} conditioning on other parameters

A slight modification to Gibbs Sampler 2 is to allow the the frequencies conditioning
on the data as well as on the amplitudes and phases. The setup of the Gibbs Sampler

3 is as follows:

e D w1|w27a27b27y)

o p(1/v]Y,wi,ws) ~ Ga((n —4)/2,ns%/2)

(

o pwalwr,ar,by,Y)
(

o play, by, az, bo|Y,wy,wy,v) ~ N(B, (X'X)"v)

Given {ws, ag, by}, the corresponding cosine wave ascos(wot) + basin(wst) can be

removed from the data. The reminding part ¢ should follow the single frequency

model

g1 = ajcos(wit) + bysin(wit) + N(0,v)

if the model is correct.
So the conditional posterior distribution of w; given {wy, as, bo} is the conditional
posterior distribution of w; given 7. Again, this is a one-frequency model and the

conditional posterior distribution of w; given ¢ is the same as (7.3), i.e.,

plnlws, as, b, Y) ~ XXV - (BX'XB)/(VV)E2 (8.4)

Therefore, the same sampling methods from Chapter 7 can be used to sample
(8.4). Since each iteration of the Gibbs Sampler uses different data, the Griddy

method needs to be repeated for each iteration of the Gibbs Sampler.
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In comparison with Gibbs Sampler 2, removing the given cosine wave from the
data and sample from the new posterior distribution from the new data is more
intuitive as we “filter” out cosine waves sequentially. On the other hand, sampling
the frequencies given only the data theoretically converge faster to the joint posterior
distribution since the other parameters have been integrated out. But since the
functional form of both distributions and the methods used to sample them are the

same, the convergence rate is similar. Simulation experience supports this argument.

8.3 Application

We now apply the multi-frequency harmonic model to analyze some cyclical data.
We first analyze the EEG data used in the previous chapter. Then we apply the

model to some Oxygen data in geological studies.

8.3.1 EEG Data

In the previous chapter, we applied the single-frequency harmonic model to the EEG
data repeatedly to find 8 frequencies. We also found evidence of time-varying wave-
lengths. This suggests the existence of multiple frequencies in the EEG data. Of
the eight frequencies, three or four frequencies are probably important. This prelimi-
nary analysis can be used to help determine the starting point of the frequencies and
amplitudes in the multiple frequencies sampling procedure and to help identify the
number of frequencies in the data.

We now apply the multi-frequency harmonic model to the EEG data. As an
illustration, we start with a two-frequency model. As outlined in section 2, there
are multiple ways to sample the joint posterior distribution. We adopted the second
approach, which samples the two conditionals p(w;|ws,Y) and P(wy|wy,Y). This

approach doesn’t require starting values for a, by, as, bs.
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Since the posterior distribution is symmetric about w; and wy. We assume w; < ws
and consider only one side of the joint posterior distribution.

The independence chain Metropolis sampling algorithm was used to sample the
conditional posterior distribution p(w;|ws,Y’). The mode finding procedure was con-
structed with the range constrained by w,. And the same procedure was performed
for p(wa|wy,Y).

5000 samples of Ay, Ay were drawn. Figure 8.1 shows the histograms of the model
parameters. The two most important wavelength A\ = 21.137 and A = 19.354 are
found. The corresponding amplitudes of the frequencies are around a; = 35, by = —30
for A =19.354. And ay, = —62.5, by = —55 for A\ = 21.137. The variance estimate of

the model is centered at v = 6000. About 1000 less than that of the single-frequency
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Figure 8.1: Histogram of model parameters for two-frequency model on EEG data
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Next, we apply a four-frequency model to the data. We apply a Gibbs Sampler
to sample p(wy,ws, w3, wy|Y) by iterating through
P

|w2: W3, Wy, Y

(w )
P(ws|wy, w3, wy,Y)
P(ws|wy, we, wy,Y)

( Y)

P w4|w1,w2,w3,

conditional on w; < wy < wy < wy.

o
Q
o o
o Ln
N N
o
9 o
8 “ “ :
—
o
o o
o .||I|||||||‘ “|||"II|||. 2 . .|||||||| |||||I..._
17.4 17.6 17.8 18.0 19.1 19.2 19.3 19.4 195 19.6
lam1l lam2
o
o
N g
= 15}
™ o
3 &
iy o
- II‘“ “ml ) II‘““ “\II
o - _|IIII IIIII_- _ o _ lIlIII IIIIII_ -
21.0 211 212 213 23.0 232 234 236
lam3 lam4

Figure 8.2: Histogram of the four wavelengths of the EEG data

5000 samples of {A, Ay, A3, Ay} were drawn. These results were then used to
sample the variance and the amplitudes. The histogram of the four wavelengths and
the amplitudes are in Figure 8.2 and 8.3. The four most important frequencies are
near Ay = 21.137, \y = 19.354, A3 = 17.774 and A\, = 23.4. The corresponding

amplitudes of the frequencies are around a; = 8.6, by = —57.2 for A\ = 17.774,
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ag = 42.5, by = —25 for A = 19.354, a3 = —62.5 by = —55 for A = 21.137 and
a, = —30,b4 = 15. The variance of the model is centered at v = 4000. Far less
than the 7000 from the single-frequency model. The rejection rates recorded for the
Metropolis algorithm for each \;, j = 1..4 were 30%, 19%, 24%, 33%.
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Figure 8.3: Histogram of the amplitudes for the four-frequency model
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8.3.2 Oxygen Data

Next, we apply the multi-frequency model to some Oxygen data studied by West
(1996). Geological time variations in oxygen and other isotope measurements from
deep ocean cores relate to patterns of variation in global ice volume and ocean tem-
perature (See Shackleton and Hall 1989, Park and Maasch 1993). Periodic and quasi-
periodic behaviors are usually observed in such series. We study a time series of single

deep ocean core oxygen isotope which is representative of several oxygen isotope se-
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ries from cores of various geographical locations. See Figure 8.4 for a time series
plot of the data with the mean subtracted. This data series is derived from original
6'80 site 677 measurements presented in Shackleton and Hall (1989) and was pro-
vided by Park of Yale University. The values estimate relative abundance of 60O
and are timed on an equally spaced 3k year scale. The time scale is based on that of
Ruddiman, McIntyre and Raymo (1989), and is discussed in Park (1992). Park and
Maasch (1993) discusses the process of interpolation of original, unequally spaced
measurements to this equally spaced scale. This series dates back to roughly 2.5
million years, and is plotted in reverse of sign, by convention, so that the apparent
increase in level in model times reflects generally warmer average global tempera-
tures and smaller average ice masses. There are surely errors in the timing of the
observations, due to the process of estimating true calendar times of the geochemical
data as well as calibration times to the nearest unit. (3000 years here). West (1996)
applied a state-space autoregressive model which allows time-varying amplitudes and
multiple periodicities to study the data. Here, we assume the imputed equally spaced
times are accurate and study the series using a multi-frequency harmonic model in
the frequency domain. In the next chapter, we study the impact of timing error in
the estimation of frequencies. Since time-varying amplitudes are obvious, we divide
the data into two parts, and study the first 433 data.

Plots of the log-posterior distribution for the wavelength for the first 433 Oxygen
data in Figure 8.5 shows two dominant wavelengths near A = 95 and A = 41. With the
one near A = 95 being more important. This period around 100 kyears (also called
the “100,000-year ice-age cycle”) is of major interest and has been the subject of
intensive investigation in recent years. Identifying the nature and structure of quasi-
periodic components of period around 100 kyears is of importance in contributing to

debates over the genesis of the ice-age cycles, roughly a million ago, and to questions
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Time Series plot of the Oxygen data
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Figure 8.4: Time series plot of the Ozxygen data

of whether or not the onset was gradual and inherent or the result of a significant
structual climatic change. (See Ruddiman et al 1989 and Park 1992 for discussion
on this).

The log-posterior distribution indicates other small wavelengths at around A =

120 and A\ = 23.

we first apply a two-frequency harmonic model to the data since two prominent
frequencies appear in p(w|Y). A Gibbs Sampler which iterates through p(w;|ws,Y)
and p(wa|wy,Y) was run for 3000 iterations after discarding the first 500 iterations
as the “burn-in” period. Figure 8.6 shows the posterior distribution of the two
wavelengths centered at Ay = 41.2 and Ay = 95.5. The corresponding amplitudes
are a; = 0.05, by = —0.22 for A\; and a; = 0.19, by = 0.15 for Ay. The variance
is around v = 0.14. The autocorrelation for every 10 draws is very small (-0.025
for A\; and -0.004 for \y). The Z scores for Geweke’s convergence check were very
close to zero, indicated that 3000 draws were enough for the simulation. The Raftery

and Lewis convergence diagnostic gave the burn-in period 5 and 9 for A\; and \,.
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Log-posterior for all 866 oxygen data
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Figure 8.5: Posterior p(A|Y') for all 866 Oxygen data and for the first and second
half of the Ozxygen data

The rejection rates for the Metropolis algorithm are 38% and 28% for A; and A,
respectively.

Next, we apply a four-frequency harmonic model to the data. 2000 draws from
the Gibbs Sampler were used after discarding the initial 500 samples. Figure 8.7
shows the histogram of the posterior distribution for the four wavelengths. They are
centered at A\; = 23.6, Ay = 41.2, A3 = 95.7 and )\, = 121.5. The variance for each
posterior distributions are v; = 0.058, v, = 0.012, v3 = 0.376 and v, = 0.59. A 95%
confidence interval for each wavelength is (23.49,23.77), (40.89, 41.35), (94.56, 96.96)
and (120.01,123.07) respectively.

These results are consistent with the results of West (1996) in the time domain
analysis. The shorter periodicies correspond to the precession (19-23k years) and

obliquity (40-42k years) of the earth’s orbit impact on insolation received by the earth
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Figure 8.6: Histogram of model parameters for the two-frequency model of the first
half of the Ozygen data

which induce substantial variations in climate characteristics. The longer periodicities
correspond to periodicities in eccentricity associated with periods of around 95-100k
years and 120-130k years. Our study supports the view that the 100 kyears ice-
age cycle is dominant, followed by cycles related to the obliquity (41 kyears) and

precession (23-24 kyears).
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Chapter 9

Timing Uncertainty

In the previous chapters, we studied the problem of frequency estimation under
equally spaced time scale. We analyzed some cyclical data including the FEG data
and Ozxygen data using our methods. In the application to the Ozygen data, we
addressed the issue of uncertain timing in the data. In this chapter, we investigate the
impact of uncertain timing to the study of frequency estimation. We develop models
that incorporate the uncertain timing and develop methods to estimate frequency and
time under the model. This chapter is organized as follows. First, we discuss the
problem of timing uncertainty in time series studies. Second, we study the impact
of uncertain time on frequency estimation in harmonic model studies. Third, we
develop an harmonic model under uncertain timing and develop methods of conducting
statistical inference on timing. We then apply this model to the Oxzygen and FEG

data analyses.

9.1 Timing Issues in Time Series Studies

One important feature of time series modeling is the timing of the data. Traditional
time series models usually assume equally spaced observations and the timing is
precise. These two assumptions are violated in many applications.

In some cases, there are timing irregularities which occur when observations ar-
rive at intervals of irregular length. For example, monthly data may be recorded

on a particular day towards the end of each month, but the precise day can vary
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between each months. Daily observations may be recorded only to the nearest hour.
In financial time series, data are not observed on weekends and holidays. In these
cases, where the data is reported at an aggregated level but may be based on different
numbers of time intervals at a lower level of aggregation, it’s clear that the timing
should be accounted for in the model. One way to deal with unequally spaced data
is to identify a base, minimum time interval underlying the observed times of obser-
vations and develop the equally spaced model on that time scale. Then the times
with no observations are treated as points of missing data. Other ways to deal with

unequally spaced data include imputing data, etc.

In other applications, the timing of the data is not precise. This happens when
the timing of the data is recorded indirectly through some other measurements. Some
of the timing errors are random, while others are systematic. For example, timing
uncertainty is rooted in every study of geochemical time series. Mclaren (1976), stated
that “Geology has come a long way without an accurate time scale”. In geological
study, geologists collect samples fossils, rock units and mineral bodies, they infer
their position in a geological succession, and use a procedure to correlate the relative
position to a relative time scale. There are many error sources in this whole process.
The formation of fossils, rocks and mineral bodies may be affected by some irregular
climate and geologic change or environmental contaminations which introduces error
in the inference of the position or formation of the sample. Also, the response of
sedimentary records to some periodic forcing may not be a linear one which may
distort the true spectrum of the core. In addition, the various procedures used by
geologists to calibrate the time given a relative position of a core including bio-
chronology, radiometry and magnetostratighaphy have built-in errors. For example,
it is well known that the rather imprecise procedure involved in depth-to-radiocarbon

dating creates significant timing uncertainty for geochemical time series analysis in
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general. Also, perfect sampling of core is hardly achieved which gives additional
source of uncertainty regarding to the relative position of the samples. In summary,
the errors of timing calibration can come from uneven core sampling, uncertainty
in the measuring procedure, bioturbation, non-periodic climate and geologic forcing
mechanisms, and the nonlinear response of the geologic variables to periodic forcing.
See Mclaren (1976) for a discussion of timing in geologic study. All these errors can
have significant effect on the precision of the formal statistical analysis of the time

series.

West(1995) studied a geological time series of proxy records of variations in cli-
matic conditions. The series is a geochemical quantity, from deep lake sediment, that
is a proxy indicator of local climatic conditions of interest in studying climatic change
over time. The data were derived from the original §'*O measurement from Site 677
of the Deep Sea Drilling Project presented in Shackleton and Hall (1989) and was
provided by Park of Yale University. The data was then mapped to calendar ages by
a complex and uncertain process involving carbon-14 calibration discussed in Ruddi-
man, McIntyre and Raymo (1989). Notice that the time must have been truncated
to the nearest 3 kyear since all the times are integers. Finally, the unequally spaced
calendar time series were interpolated to an equally spaced series for analysis by Park
and Maasch (1993). The final values estimate relative abundance of §'®0 and are
timed on an equally spaced, 3k year scale. Each of the above processes brings some
uncertainty into the final timing of the data. A plot of the 6'®0 measurement series
versus the original depth of the core measurement is plotted in Figure 9.1. Partial
plots of §'®O measurement series versus the unequally spaced time and equally spaced

time are in Figure 9.2. The difference of the two series is obvious.

Shackleton and Hall (1989) discussed some of the errors in the sampling of the

core including the quality of the core, and the error from the unequal sampling of
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Figure 9.1: Original depth of the core measurement versus 680 measurement series

the core and gaps between cores which resulted in the uncertainty of the inter-core
depth. Other errors come from carbon-14 calibration of the core, and the error
from the interpolation of unequal time scale to equal time scale. The magnitude of
each error for this data were not recorded, which is a common problem for many
geology studies. Harland et al.(1990) pointed out that in many geology studies, “The
problem is sometimes figuring our just what the original authors intended. Some
don’t even report errors, others fail to state explicitly which error they are using,
assuming everyone understands exactly what they do.” A conservative estimate of
the magnitude of the total error is about 10%, though in most actual cases, the error

could be much bigger.

9.2 Timing Uncertainty in Harmonic Models

From the above discussion, it is clear that timing for most geological time series are
subject to considerable error. Such timing error may have dramatic impact on the

accuracy of the study. In particular, in the context of harmonic models, when the
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Figure 9.2: The first 400 oxygen data under unequally spaced time 3y scale vs. under
equally spaced time scale

interest of the series is on the periodic property of the series, timing error may affect
the estimation of the wavelength of the series under the harmonic model developed
in this thesis. Study on spectral analysis of irregularly spaced data exists, Perzen
(1983) provides a collection of papers in this topic. The key paper by Brillinger
(1972) lays down a theoretical framework and also suggests a general method for
non-parametric spectral analysis in the case where the actual sampling times are
known. The practical use of Brillinger’s methods are discussed by Moore et al. A
discussion of the impact of irregularly spaced sampling on spectra in practice and in
theory can be found in Moore and Thomson (1991). In this section, we discuss the
impact of irregularly spaced sampling on spectra from a Bayesian point of view by

studying the posterior distribution of the frequency p(w|Y).

Refer to the single-frequency harmonic model in Chapter 7,

yi = acos(ws;) + bsin(ws;) + ¢

Here S = {sy, $9,....s, } represents the observed timing of the data. S might be
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equally spaced, or unequally spaced, and subject to error. The posterior distribution
for the frequency p(w|Y,S) depends on the timing S through the observation matrix

X. The posterior distribution for the frequency

pwY) ~ XXV - (FXXG)/(Y'Y))E (9.1)

depends on S.
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Figure 9.3: Log-posterior for the first 400 Ozygen data under equally spaced time
scale compared with that under unequally spaced time scale

We first use p(w|Y’) to study the impact of uncertain timing for the oxygen data
used by West (1995). For conventional purposes, we study the posterior of the wave-
length instead of the frequency, p(A|Y). We illustrate the effect of different timing
scale on p(A|Y) by using both equally and unequally spaced time scale. The equally
spaced time scale is based on an interpolation which takes out the data between each
adjacent equally spaced time scale and use the average of the adjacent time to impute
an equally spaced time scale. Figure 9.3 plots the two log-posteriors. As can be seen,

the peak at A = 96.3 for the log-posterior under the equal time scale used by most
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geologists disappears in the log-posterior under unequally spaced time scale.

Log-posterior under original equal time scale
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Figure 9.4: Log-posterior under equally spaced time scale compared with that from

a uncertain time scale with error from a Normal distribution with a s.d.=0.017
Next, we examine the effect of uncertain timing by simulating time from existing

time scale. We first simulate time s;, 7+ = 1, 2... from a normal distribution centered

at the original equal time scale t = 1,2, .... and we require s; be strictly increasing.

In geological studies, a normal error may represent uncertainties from the cali-
bration process, quality of the core and other sources, etc. This can be represented
by an independent normal prior for each time s;, p(s;|t;,Y) oc N(t;,v). This normal
distribution is truncated at s; ; and s;;; to ensure strict increasing of time. A large
variance v means large sampling error for the time. In the oxygen data, each time
unit represents 3k years. Therefore, an error of 100 years is equivalent to a standard
deviation of 0.034 on the unit time scale.

Figure 9.4 shows p(A|Y') for the oxygen data under the equally spaced time scale
t =1,2,....n along with p(A|]Y) under a time scale simulated from N(¢,0.034%). The
difference between the two log-posteriors is very small. We increase the error range

to +1000 years, this corresponds to a standard deviation of 0.33 (truncated at s; ;
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and s;41). This means big sampling error of the time. Figure 9.5 shows the two

log-posteriors are still similar.
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Figure 9.5: Log-posterior under original equally spaced time scale compared with
that from simulated time from N(0,0.33)

We consider a normal distribution a good representation for the measurement
error in the calibration process and the error resulted from low quality of the core.
There are other forms of errors to the final timing including the error from uneven
sampling of the core which leads to uncertainty in the inter-core depth and errors
from the truncation. These types of error can often be represented by a uniform
distribution over a specified range, namely p(s;) o< U(s; — 9, s; + d). This is still an
independent prior for each time t;.

We now experiment the effect on the posterior distribution of the frequency under
different time scales simulated from p(s;) o« U(s; — d,s; +d) fori = 1,2..n. We
use 0 = 0.3 which corresponds to £900 years of timing error. Figure 9.6 shows no
significant changes in the log-posterior from the simulated data.

These interesting results indicate that independent sampling error of time does not
have significant impact on the spectral estimate even when the error is considerably
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Figure 9.6: Log-posterior under original time scale and simulated time from
U(t; — 0.3,t; +0.3)

large. This is supported by theoretical studies of Moore and Thomson (1991).

Moore and Thomson (1991) considered the case of jittered sampling where samples
have been taken at times perturbed from equally spaced grid. Their focus of study
was on the impact of jittered sampling on traditional spectral analysis. They showed

that when the sampled times are from

t, =nd + €, (n=0,%+1,£2...)

where €, is from a zero mean stationary process, the effect of jittering of the
sampling times redistributes the spectral mass of the underlying process, but neither
creates nor destroys it. In particular, they derived relationship between the new
spectral density function under jittered sampling and the original spectral density
function when ¢, follows a Gaussian process. They showed that when ¢, follows
an independent Gaussian process, the relationship between the new spectral density

function f,(w) under jittered sampling and the original spectral density f(w) is:
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flw) = 7 fw) + e (9.2)

where the constant ¢y is given by

2,2

a = [0

—m/A

Equation (9.2) indicates the impact of uncorrelated Gaussian jitter is to multiply
the spectrum by a roll-off function e 7’%" and to add the lost weight uniformly across
the total frequency range. Significant damage can result if there is weight available
for redistribution in f(w) at the high frequencies where w is large relative to 1/%. But
in general, peak shifting is minimal in the uncorrelated jitter case. Our simulations
above support this.

Having concluded that independent sampling error in time does not affect the
estimation of frequency much, we study the impact of correlated timing errors on the
estimation of spectra. We simulate time s; from a uniform distribution U(s; 1, si1+1)
for i = 1,2,.... subject to s, 1 < s; < s;41. This prior only requires s; be strictly
increasing and it introduces a highly correlated Markov structure to the timing.
Figure 9.7 shows that both peaks under the equally spaced time scale shift to the
right under dependent simulation error.

The intuition of the above results is clear. When the original time is being
“squeezed”, the frequency estimate will be higher and the peaks of the posterior
distribution for the wavelength will shift to the left. When the original time is being
“stretched out”, the frequency estimate will be lower and the peaks of the posterior
distribution for the wavelength will shift to the right.

Moore and Thomson (1991) also addressed the case of correlated sampling errors.
Although exact relationship between new spectral density function under jittered
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Figure 9.7: Log-posterior under original time scale and simulated time from

U(si1, Siy1)

sampling f,(w) and the original spectral density f(w) can not be developed as in the
uncorrelated case, they illustrated potential damages of highly correlated sampling

error using simulation studies.

9.3 An Harmonic Model with Uncertain Time

In the previous sections, we demonstrated the impact of timing error on frequency
estimation. We have shown that although the effect of uncorrelated timing error
is not significant, correlated timing error can result in obvious shifts of peaks in
the posterior distribution for the frequency. In this section, we develop estimation

procedures for the frequency under uncertain timing for the harmonic model.

A single-frequency harmonic model which incorporates timing uncertainty is

yi = acos(ws;) + bsin(ws;) + ¢ (9.3)

where €; ~ N(0,v).
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Equation (9.3) models the observation y; as a single harmonic model. Now s;,
1 =1,..n is a sequence of random variables. Such a model directly counts for timing
uncertainty in the model. We conduct inference on frequency and the timing sequence
s; using the observed y;.

We develop a Bayesian approach to conduct inference on model (9.3). We augment
the time sequence S = {s;} to the parameter space § = {a,b,v,w}. We can now
sample the joint posterior p(6, S|Y) by iterating through

e p(510,Y)
° p(0]S,Y)
We have developed procedures to sample p(#]S,Y’) in the previous chapters. To

sample p(S1]0,Y"), we write

p(S10,Y) o p(S)p(Y'|S,0)

Here we assume that S is independent of the model parameters . Because of the
nonlinear structure of p(Y[S,#), direct sampling of the joint posterior p(S]0,Y) is
not feasible. Therefore, we further break the joint posterior p(si, s, ...s,/0,Y) into
p(si|S,0,Y) for i = 1,2..n where S* = {sy, 89, ..8; 1, Sit1,--Sn}. Since p(Y]S,0) can
be factored into products of individual terms p(y;|s;, @), the conditional distribution

p(54|S%,0,Y) can be written as

p(silS%,0.Y) o< p(sil S")p(yil i, 0)
This can be viewed as the product of the prior for each s; given other s; and the
likelihood for y; given S; and . We now study the choice of prior p(s;|S?).
As discussed earlier, one choice of the prior p(s;|S?) is the independent uniform
distribution p(s;|S*) = U(t; — §,t; + §) where t; is the equally spaced time. This
may represent truncation errors from measurement. A more flexible prior is the
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dependent uniform distribution p(s;|S?) = U(s;_1, si41). This prior only requires a
strict increasing order of the time. Some more sophisticated priors can be constructed
based on knowledge of the collecting process of the core and the calibration process.
For example, in the plot of oxygen data series, it can be seen that the top of each
quasi-cycle is not smooth, but rather flat. A cosine wave of the equally spaced time
will not capture such behaviour. However, it can be approximated by a cosine wave
under a new time scale. Such new time scale within each period looks like the top
plot in Figure 9.8. It can be seen that after such time transformation, a smooth

cosine wave will look like the “flat-top” wave in the bottom of Figure 9.8.

transformed time
10 15 20

5

5 10 15
equally spaced time

cosine wave under equally spaced time t

0.5

cosine wave

-0.5 0.0

-1.0

0 50 100 150 200

cosine wave under transformed time s

0.5

transformed time

-0.5 0.0

-1.0

Figure 9.8: An example of true time vs. equally spaced time

We discuss a possible prior for such timing scales. Let T' = {ty,ts,...t,} denote
the equally spaced time. We assume the observation time is subject to normal errors

around the equally spaced time T. So we would like to have a normal prior on the
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observation times S. A few things we know about S are: s1, s9, ..s,, has to be positively
increasing; s is distributed with a mean function of t; the function s(t) is a periodic
function. so s(t + A) = s(t). To have normal priors, we need to have unbounded
variables which can be both positive and negative. A possible transformation of S
to satisfy this requirement is to assign the log of s(t)/(A — s(t)) to have a normal
distribution; notice that 0 < s(f) < A since s(t + A) = s(¢). The mean of the normal

distribution is

where m*(t) =t mod .

In summary, let x(t) = log/\f(stgt). The prior for p(s;|S?) can be specified by

z(t) ~ N(m(t),v)

for some variance v. If v is small, x(¢) is close to m(¢) and so s() is near t mod
A and the deformation is small. If v is large, x(t) is far from m(t) and so s(t) is far

from t mod A and the deformation is large.

The last constraint is that s(t) should be increasing in t, so x(t; 1) < z(t;) <

x(t;41). This leads to a truncated normal for p(z(t;)|otherz(t;),6). so

z(t) ~ N(m(t),w) x(tim1) < x(t;) < x(tiy1)

~ 0 otherwise

We can easily sample from a truncated normal distribution, and since p(y;|s;, )

is easy to evaluate, we can use a Metropolis algorithm to sample the posterior
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p(siS",0,Y) o p(s:]S")p(yilsi, )

We can use p(s;|S?) as a candidate generating distribution to deliver a candidate
sample s7. The sample is either accepted or rejected according to the Metropolis

acceptance ratio:

p(yilsi. 0) )

a(s;, s;) = min{l,
(55 50 t p(yilsi, 0)

where s; is the last sample from p(s;|S?,6,Y). This ratio depends only on the
evaluation of the conditional normal densities determining the involved likelihood
ratio which can be easily computed.
In summary, the simulation approach to formally address the problem of uncertain
timing can be developed by a Gibbs Sampler iterating through
e p(S)0,Y)
* p(0]S,Y)
The sampling of p(S|6,Y’) can be further broken down to sample p(s;|S%, 0,Y) i =
1,2,...,n, iteratively. Each p(s;|S% 6,Y) can be sampled by a Metropolis algorithm

using the prior distribution as the candidate generating distribution.

9.4 Application

We now apply the harmonic model with unknown timing to analyze the Oxygen data
and the EEG data studied before.

We first apply the harmonic model with unknown timing to the oxygen data. As
discussed earlier, the oxygen data is subject to severe timing error. Possible causes
of such error include errors in the sampling of the core including the quality of the
core, and the error from the unequal sampling of the core and gaps between cores
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which resulted in the uncertainty of the inter-core depth. Other errors come from
carbon-14 calibration of the core, and the error from the interpolation of unequal time
scale to equal time scale. Possible priors discussed earlier include the independent
error and the dependent error. We now compare the frequency estimate using a
four-frequency harmonic model without timing error, with independent timing error
and with dependent timing error. The focus is on how the introduction and different
choices of priors of timing error affects the estimation of frequency and what inference

on timing can be drawn from the data using different priors.
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Figure 9.9: Histograms of the opsteriors for wavelengths using a four-frequency
model without timing error

We first apply a four-frequency harmonic model without timing error to the first
400 observations of the oxygen data. This is basically a repeat of the analysis in
section 8.3.2 of Chapter 8. The Gibbs Sampler was run for 2000 iterations. Figure 9.9
shows the histograms of the four wavelengths. The rejection rates for each Metropolis
chain are: 41%, 39%, 28%, and 31%. The means and variances of the four wavelengths
are p; = 23.62, v; = 0.058, puo = 41.13, vy = 0.012, pu3 = 95.75, vy = 0.376,

py = 121.52, vy = 0.59. These four wavelengths corresponds to the precession (19-23k
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years), obliquity of the earth’s orbit (40-42k years) and periodicities in eccentricity
(95-100k years and 120-130k years).

Second, we apply a four-frequency harmonic model with independent timing error
to the same oxygen data. Namely, the prior for each s; is p(s;) = U(t; — 0.3, ¢; + 0.3)
for t; = 1,2....n. Figure 9.10 shows the trajactory plot of the model parameters from
the Gibbs Sampler. Figure 9.11 shows the histograms of the four wavelengths. The
means and variances of the four wavelengths are uy, = 23.65, vy = 0.0048, o = 41.13,
vy = 0.02, u3 = 95.79, vg = 0.387, us = 121.52, vy = 0.62. These statistics are
very close to those without timing error. It can be seen that the introduction of
independent sampling error to time does not change the estimates of the frequencies
much. A plot of the inferred time versus the equally spaced time scale in Figure
9.12 shows small variations of the inferred time around the equally spaced time. The
scale of the variation is within 4+0.04, which corresponds to £120 years of variation.
Comparing with the range used in the prior £0.3, this means the data is suggesting

a smaller amount of variation in the sampling error of time given the model.
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0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
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Figure 9.10: Trajectory plots of simulations of the wavelengths under independent
timing error from U(s; — 0.3, s; + 0.3)
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Figure 9.11: Posterior distributions of the wavelengths using a four-frequency model
with independent timing error

Third, we apply a four-frequency harmonic model with dependent timing error
to the same oxygen data. Namely, the prior for each s; is p(s;) = U(s;_1, si41) for
1 =1,2...n. As stated before, this general prior only requires the timing to be strictly
increasing. This introduces a highly correlated Markovian structure for the prior on
the time.

60000 iterations was run from the Gibbs Sampler with everything 30 iterations
saved. This forms a chain of 2000 samples to be used for inference. Figure 9.13
shows the trajectory plot of the simulations. The acf plotted for each A indicates the
adjacent samples are highly correlated until lag 30 for most wavelengths. As these
samples are every 30 iterations from the original Gibbs Sampler, this indicates large

autocorrelations exist for lag 900.

This slow convergence problem is similar to what’s observed in the Stochastic
Volatility Model in the first part of this thesis. Yet the Multi-move Gibbs Sampler
which considerably speeds up convergence in the Stochastic Volatility Model can

not be used here because of the complex non-linear structure of the wavelength.
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Figure 9.12: Top: Time series plot of true time minus equally spaced time. Bottom.:
Time series plot of the difference of adjacent true time.

Innovative simulation procedures need to be developed to improve convergence for
the highly correlated Markovian structure of the time in this model before reliable

inference of the model parameters can be made.

The histogram of the wavelengths are plotted in Figure 9.15. The means and
variances of the four wavelengths are p; = 20.11, v; = 0.005, py = 41.27, v, = 0.024,
ps = 94.75, v3 = 0.48, puy = 120.88, vy = 1.56. It’s clear that the high frequency
A1 has shifted significantly from near p; = 23.62 without timing error to near p; =
20.11. The variance for u;, however, decreases from v; = 0.058 to v; = 0.005.
Other wavelengths also shift slightly and the variance for )\, increases considerably.
Therefore, the introduction of highly dependent sampling error to time changes the
estimates of the high frequency. A plot of the inferred time versus the equally spaced
time scale in Figure 9.16 shows obviously jittering around the equally spaced time
scale. The plot of the difference of the adjacent inferred time s; — s, 1 has shocks at
various times which may be compared with any external knowledge on the sampling

error of the core, etc. The mean of the sequence of the difference has mean (0.989.
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Figure 9.13: Trajectory plots of simulations of the wavelengths under dependent

timing error

Table 9.1: Means and variances of the four wavelengths under no timing error,
independent timing error and dependent timing error

A A9 A3 A4

No timing error | 23.62 (0.058) | 41.13 (0.012) | 95.75 (0.376) | 121.52 (0.59)
Independent timing error | 23.65 (0.048) | 41.13 (0.02) | 95.79 (0.387) | 121.52 (0.62)
Dependent timing error | 20.11 (0.05) | 41.27 (0.024) | 94.75 (0.48) | 120.88 (1.56)

Table 9.1 lists the mean and variance of the four wavelengths under no timing

error, independent timing error and dependent timing error. It can be seen that the

mean of the wavelengths are very similar under no timing error and independent

timing error. Yet the means shift considerably for dependent timing error especially

for A;.

The oxygen data was the motivating example to study the impact of timing

uncertainty on the estimation of frequencies. Alternatively, we study the impact of

uncertain timing from a different point of view using the EEG data.

Timing uncertainty is not a major problem in the collection of the EEG data. But

the study of West (1996) suggested the existence of time-varying frequency in some
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Figure 9.14: ACF of the samples from the oxygen data with dependent prior

EEG data series. West has developed time-varying frequency models in the time
domain to analyze the data. Here we apply a fixed-frequency harmonic model and
conduct inference on the time given the data. So instead of studying how frequencies
change through time under fixed time scale, we study how time evolves under fixed
frequencies.

Figure 9.17 shows the posterior distribution of the wavelength for all 300, the first
150 and the last 150 EEG data. It’s obvious that there is one important wavelength
changing through time from A =5.1 to A = 6.2.

We first apply a one-frequency harmonic model with fixed time to the data. Figure
9.18 shows the histogram of the wavelength, the amplitudes and the variance. The
histogram of the frequency has two clear peaks which correspond to the two peaks
in the posterior distribution of the wavelength for the 300 data sets.

We then assign the same depend prior used for the oxygen data to the time.
Namely, p(s;) = U(s;_1,8i+1) for i = 1,2...n. Unlike the Oxygen data, there is

less uncertainty in the EEG data y;. This causes the Gibbs Sampler to converge
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Figure 9.15: Histogram of the wavelengths for the Ozygen data under dependent
timing error

even slower. Figure 9.19 shows the simulation trajectory plots of the wavelength and
other model parameters. They represent simulation chains of 600, 000 iterations after
taking out every 20 iterations. From the trajectory plot of the wavelength, it can be
seen the chain is converging very slowly. Figure 9.20 shows the simulation trajectory
plots of the times at ¢t = 50,t = 100, t = 150, t = 200, t = 250 and ¢t = 300, they also
indicate slow convergence.

Reliable inference on the parameters can not be achieved with the existence of
slow convergence. Yet it is still interesting to compare the posterior distribution of
the wavelength under no timing uncertainty and with timing uncertainty. Figure 9.21
shows the histogram of the wavelength and other model parameters. The 95% for
the wavelength under uncertain time is (4.687,5.282) whereas the two wavelengths
without timing error are centered at 5.02 and 5.27.

Finally, we study the inference on the time for the EEG data. As stated earlier,
timing uncertainty is not a major problem in the collection of the EEG data. Rather,

this EEG data series exhibits time-varying frequency. Using a fixed-frequency har-
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Figure 9.16: Top: Time series plot of true time minus equally spaced time. Bottom.:
Time series plot of the difference of adjacent true time.

monic model and uncertain time, we study how time evolves under fixed frequencies.
Since the wavelength increases through time, we expect to see an increasing trend on
the difference of adjacent inferred time t; — s; in the second part of the data under
the fixed-wavelength model. This is confirmed by the second part of the plot of the

difference of adjacent inferred time ¢; — s; in Figure 9.23.

9.5 Conclusion

In this chapter, we discussed the issue of timing uncertainty in time series analy-
sis. In particular, we studied the impact of uncertain timing on the estimation of
frequencies in harmonic analysis. Our empirical study on the oxygen data indicates
that indecently timing error has little effect to the estimation of the frequencies
whereas highly dependent timing error has large effect to the estimation of frequen-
cies. These findings are consistent with theoretical discussions on the impact of
sampling error to the estimation of frequencies in the spectral analysis literature.
In addition, we develop harmonic models which incorporate timing uncertainty. We
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Figure 9.17: Posterior distribution for the wavelength for all 300, the first 150 and
the last 150 EEG data

develop simulation-based inference methods for the estimation of frequencies under
uncertain time. These methods were applied to the study of the oxygen data and
EEG data. We illustrated the estimation of frequencies under different prior distri-
butions for the timing uncertainty. Further development of prior distributions for the
time is of major interest in future work. Also, innovative simulation procedures need

to be developed for highly dependent prior distribution to faster convergence.
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Figure 9.19: Simulation trajectory plots for A, a,b,v
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True time vs. equally spaced time
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Figure 9.22: Top: Time series plot of true time minus equally spaced time. Bottom:
Time series plot of the difference of adjacent true time.
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Chapter 10

Conclusions and Future directions

In this part of the disseration, we develop Bayesian analysis on spectral estimation
in the frequency domain of time series analysis. This disseration provides an effi-
cient and unified simulation procedure for frequency estimation under a harmonic
model framework. The focus of the frequency estimation in a harmonic model is
the sampling of the posterior distribution of the frequencies. We developed a mode-
based Metropolis sampling approach to tackle the challenging problem of sampling
highly multi-modal and high dimensional posterior distribution of the frequency. The
method can be generalized to sample other multi-modal posterior distributions. The
Gibbs Sampler approach developed in this disseration for frequency estimation allows
the development of more sophosticated dynamics for frequency domain time series
analysis.

Many interesting directions for further developments of the harmonic models de-
veloped in this disseration exist. An immediate extension is models that allow time-
varying amplitudes and phases. Many cyclical time series data exbihit time-varying
amplitudes and phases. For example, the EEG data studied extensively in this dis-
seration exibihits time-varying amplitudes in some channels. We have studied such
features in an alternative way using fixed-frequency model with uncertain time. Dy-
namic models in the time domain that allow time-varying amplitudes and phases
have been developed by Prado and West (1997), for example. Developments of such
models in the frequency domain is still an untouched area of research.

Motivated by timing issues in geological time series study, we developed a har-

monic model which incorporates timing uncertainty. This model is a good illustration
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of the use of Gibbs Sampler for frequency estimation in complex models. The model
directly accounts for timing uncertainty in the estimation of frequencies. This allows
the study of the impact on timing uncertainty on the estimation of frequencies. At
the mean time, inference on time given observed data can also be achieved. Geol-
ogy has come a long way without an accurate time scale. Knowledge on possible
causes of timing uncetainty in the sampling and measurement procedures usually
exist, the model developed in this disseration incorporates such knowledge into the
prior distribution and conducts formal inference on timing and frequency estimation
using such knowledge. We experimented with different choices of priors which repre-
sent different types of sampling errors in time. Our results indicate choice of priors
have obvious impact on the inference on time. When prior knowledge indicates in-
dependent sampling errors of time, our study shows such timing error does not have
significant impact of the estimation of frequencies especially when the frequencies are
not very high. If prior knowledge indicates dependent sampling errors of time, our
study shows such timing error may change the estimation of frequencies dramatically
especially when the timing errors are highly correlated. Also, our study found very
slow convergence of the Gibbs sampler in models with highly correlated timing errors.
This is similar to the slow convergence problem in the stochastic volatility models
when volatilities are highly correlated. In that case, we were able to approximate
the nonlinear model by mixtures of dynamic linear models and apply existing sim-
ulation methods for dynamic linear models to speed up convergence. However, the
same technique can not be transferred to the nonlinear structure presented in the

harmonic model. Innovative simulation techniques need to be developed.

The model with timing uncertainty is a good lead to a more general topic, time
deformation contexts which model the usual dynamic processes from a different point

of view, the dynamics of the evolution of time. This has both theoretical impact on
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the link between linear stationary process and nonlinear nonstationary process and
practical applications where the inference on timing is of interest. For example, the
operational time which relates to news releases in the financial market versus the
calendar time when prices of various financial instruments are recorded. In the study
of the application of time deformation models, identifying the actual deformation
process of time is crucial. The simulation methods developed in our model lay a

basis for future research.
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