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AbstractThis dissertation studies two models in Bayesian time series analysis: the StochasticVolatilityModel in the time domain and the Harmonic Model in the frequency domainof time series.Volatility plays a central role in modern �nance especially in the pricing ofderivative securities. Research on changing volatility can be categorized into twogroups: the time-varying volatility models represented by ARCH type models andthe Stochastic Volatility Models. Research on ARCH type models o�ers straight-forward implementation and has been empirically successful but they generally lackeconomic intuition. Stochastic Volatility models are statistically elegant and havestrong connection to continuous-time �nance models. Yet estimation of StochasticVolatility models has been very di�cult which makes further development of themodel and comparison of empirical results with ARCH/GARCH type models di�-cult.We propose an e�cient Bayesian Markov Chain Monte Carlo estimation proce-dure for a Log-AR(1) Stochastic Volatility Model. We develop new simulation-basedmodel diagnostics methods for in-sample model adequacy check and compare withthe popular EGARCH model. Our in-sample diagnostic check shows better kurtosisproperties and di�erent Smile e�ect generated by the Stochastic Volatility Modelthan the EGARCH model. We also discuss issues of the comparison of historicalvolatility and implied volatility and propose a new model which combines the his-torical volatility and implied volatility under one model framework. This new modelcan be used for both forecasting and testing of the hypothesis of the existence ofstochastic volatility.Two common methods exist for frequency estimation in cyclical time series: prob-iv



ability theory and Fourier transform. Recent work of Jaynes and Bretthorst hasshown the connection of the two methods and the theoretical advantage of the prob-ability method. We develop a uni�ed approach for accurate frequency estimationunder the Bayesian MCMC framework for the single-frequency and multi-frequencyharmonic model which can be generalized to more complex models for the frequency.We apply the method to real cyclical data. Motivated by the study of Oxygen isotopedata in geology study, we discuss timing issues in harmonic analysis, particularly theimpact of uncertain timing to the estimation of frequencies. We develop a harmonicmodel with uncertain timing to investigate the impact of uncertain timing in fre-quency estimation and to illustrate the use of Bayesian MCMC simulation methodsas a general method for complex models in Bayesian spectral analysis. We illustrateour idea using real Oxygen data in geology study and provide evidence of the impactof uncertain timing to frequency estimation.
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Chapter 1IntroductionVolatility plays a central role in modern �nance especially in the pricing of derivativesecurities. The Black-Scholes model for the pricing of an European option is by farthe most widely used option pricing formula. Yet it is well known that the assumptionof constant volatility of the Black-Scholes model is violated in the market. Researchon changing volatility using time series models has been active in the last twentyyears. There are two major types of volatility models: the determinstic time-varyingvolatility models represented by ARCH type models and the stochastic time-varyingvolatility models represented by Stochastic Volatility models.ARCH/GARCH type models were pioneered by Engle (1982) and grew rapidlyinto a rich family of empirical models for volatility forecasting during the 1980's.They model the volatility as a linear function of the square of past observations andare therefore also called observation-driven models (Shephard, N. 1996). Such rep-resentation provides explicit one-step-ahead forecasting distribution for the volatil-ity and o�ers straightforward implementation and interpretation. Empirical re-sults indicated ARCH/GARCH type models have been very successful in forecastingvolatilities and are popular among practitioners. They also parallel directly withthe successful autoregressive and moving average models. The major criticism onARCH/GARCH type models were their lack of economic intuition. Surveys of workon ARCH/GARCH type models are given in the papers by Bollerslev, T. Chou, R.and Kroner, K. (1992), Bollerslev, Engle and Nelson (1994) and Engle (1995).Stochastic Volatility Models have long attracted researchers in �nance and econo-metricians since the 1970's for various theorectical reasons. One use of the Stochastic1



Volatility Models is to explain the random behavior of �nancial markets and theorieson option pricing. Early work on using Stochastic Volatility Models to explain therandom behavior of the market includes Clark (1973) and Tauchen and Pitts (1983)and Gallant,Hsieh and Tauchen (1991). Clark used stochastic volatility to representthe random and uneven 
ow of new information to the �nancial market. Tauchen andPitts (1983) and Gallant, Hsieh and Tauchen(1991) re�ned this work and proposeda mixture of distributions of asset returns with temporal dependence in informationarrivals. Another popular area of research on Stochastic Volatility Models is optionpricing theory using Stochastic Volatility models. These include Hull and White(1987) who suggested a di�usion process for asset prices with volatility following apositive di�usion process, Melino and Turnbull (1991) who used a log-autoregressivestochastic process for the volatility, and Johnson and Shanno (1987), Scott (1987),Stein and Stein (1991), among others.There are two reasons for the concentration of theoretical research on Stochas-tic Volatility models: modern derivative pricing theory is based on continuous-timestochastic processes with which Stochastic Volatility Models has a close resemblance,and estimation of stochastic volatility models has been a very di�cult task. UnlikeARCH type models which model volatility as a function of past volatility, they in-troduce a seperate stochastic process for the volatility and are therefore also calledparameter-driven models. Their statistical properties are easier to understand andgeneralize. Unfortunately, estimating the model is very di�cult because of the non-linear structure of the model. The lack of e�cient estimation procedures and there-fore empirical results seriously hampered theoretical research on Stochastic VolatilityModels.Recent developments in estimating non-linear latent variable models has madee�cient estimation of Stochastic Volatility Models a reality. This makes extensive2



research on studying the empirical aspect of Stochastic Volatility Models feasible. Inthis part of the dissertation, we modify the pioneer work of Jacquier, Polson andRossi (1994) and develop a more e�cient Bayesian Markov Chain Monte Carlo esti-mation procedure for a Log-AR(1) Stochastic Volatility Model. We also develop newsimulation based model diagnostics methods. We then compare some aspects of theStochastic Volatility Model with the popular EGARCH model in the ARCH/GARCHmodel family using real exchange rate data. Finally, we discuss issues of the com-parison of historical volatility and implied volatility and propose a new model whichcombines both the historical volatility and implied volatility under one model frame-work. The techniques developed on parameter estimation, residual diagnostic andmodel comparison can be generalized to other non-linear time series models.This part of the dissertation is organized as follows: Chapter 2 develops a com-plete Bayesian analysis on the Log-AR(1) Stochastic Volatility Model. This includesan e�cient MCMC estimation procedure whose performance is compared with theMCMC estimation procedure of Jacquier, Polson and Rossi (1994), new model dig-nostic procedures for the Log-AR(1) Stochastic Volatility Model, and illustrationsof the methods on real exchange rate data. Chapter 3 develops three extensions tothe basic Log-AR(1) Stochastic Volatility Model developed in Chapter 2. These in-clude the Log-AR(p) Stochastic Volatility Model, the correlated Log-AR(1) Stochas-tic Volatility Model and the model which combines both historical volatility andimplied volatility. Chapter 4 discusses the issue of model comparison under the con-text of �nancial forecasting models. In particular, an option trading strategy wasdeveloped for the comparison of the Log-AR(1) Stochastic Volatility Model and theEGARCH model. Chapter 5 discusses future directions on the study of StochasticVolatility Models.
3



Chapter 2Log-AR(1) Stochastic Volatility Model
Motivated by the work of Jacquier, Polson and Rossi (1994), we propose an e�-cient Bayesian Markov Chain Monte Carlo (MCMC) simulation method in this chap-ter to estimate a Log-AR(1) Stochastic Volatility Model. We �rst discuss the modeland traditional estimation techniques for the model. We then propose two di�erentMCMC techniques (a Single-Move and a Multi-Move Gibbs Sampler) to estimate themodel and compare their performance. We apply the model to real exchange ratedata and study the convergence behavior of both samplers. We then develop modeldiagnostic tools to check model adequacy on real exchange rate data.

2.1 The ModelA good forecasting model should capture all the forecastable patterns in the dataand generate similar random behavior as observed in the market. To compare twoforecasting models statistically, we need to compare both their in-sample performanceand out-of-sample performance. Models with both good in-sample and out-of-sampleperformance will engender con�dence in application to real market.Before we proceed, we list some intuitive reasons for the use of Stochastic VolatilityModel to forecast volatility. Among other empirical �ndings, the following stylizedfacts about volatilities are commonly observed in �nancial data: volatility clustering;fat tails distribution of asset returns; and the leverage e�ect (asymmetrical e�ects ofprice change on volatility). A good volatility forecasting model should capture all4



these patterns.There are many versions of Stochastic Volatility Models in the literature, varyingthrough the choices of stochastic processes used to characterize the change of volatil-ity. In virtually all current published continuous-time models, the stochastic processrepresenting the underlying volatility is represented by a Wiener process. We adopta discretized Log-AR(1) Stochastic Volatility Model proposed by Melino-Turnbull(1987) to model foreign exchange rates.
yt = eht=2�t; (2.1)ht+1 = � + �ht + �h�t: (2.2)Here yt is the return of the asset and ht is the log-volatility at time t. Thelog-volatility process respects the non-negativity of volatility and follows an AR(1)process. Both �t and �t are independent standard normal errors.This model explains the stylized facts of volatility in a very elegant way. The Log-AR(1) process for the volatility captures volatility clustering, high values of b (closeto 1) indicates high degree of volatility clustering; the additional random variance inthe volatility process generates excess kurtosis in the marginal distribution of returnswhich leads to the fat tail distribution of the data; if we allow the two randomnoise �t and �t be correlated, this model neatly generates the asymmetrical e�ectsof price change to volatility. In this chapter, however, we will assume �t and �t beindependent.2.2 Parameter EstimationAlthough intuitively sound and statistically elegant, practical uses of StochasticVolatility Models have been limited because of di�culties in model �tting. The5



derivation of the likelihood function of model parameters ! = fa; b; �hg involves anN dimensional integration problem where the latent volatility process is being inte-grated out (N as the number of observations). Such computation becomes prohibitivewith large N. This is a common problem for all nonlinear latent variable models.2.2.1 Classical Estimation MethodsRecent development in statistical technology has made the estimation of nonlinear la-tent variable models possible with the increasing computing power. Among them, theGeneralized Method of Moments (GMM) and Quasi-Maximum-Likelihood Estima-tion (QML) are two popular methods currently being applied. Other computationally-extensive procedures include simulated maximum likelihood( Daniellson 1994), e�-cient method of moments ( Gallant, Hsieh and Tauchen 1995).Method of Moments is a popular tool in econometrics. Applications of this methodto the stochastic volatility model includes Chesney and Scott (1989), Melino andTurnbull (1990) and Anderson and Sorensen (1995). The main idea of the Methodof Moments is to exploit the stationary and ergodic properties of the process whichyield the convergence of sample moments to their unconditional expectations. It isuseful in cases when distributional assumptions of the parameters are di�cult if notimpossible to make. For a fully speci�ed parameter model like the stochastic volatilitymodel, the Generalized Method of Moments method is expected to be ine�cient.Furthermore, there are a number of reasons that make the GMM approach anunattractive approach for the stochastic volatility model:� GMM can only be used if the log-volatility process is stationary. When themean reversion � is close to 1, which is common for most �nancial data series, GMMis expected to work poorly.� Parameter estimates of GMM are not invariant. This is important if other6



parameterizations are more interesting.� GMM does not deliver an estimate of the volatility process ht, either �ltered orsmoothed. Since the main use of the model is to forecast volatility, another estimationprocedure has to be developed for that task.Jacquier, Polson and Rossi provided the accuracy of the GMM estimates in their1994 work and demonstrated its a less e�cient estimation procedure for the stochasticvolatility model.Harvey, Ruiz and Shephard (1994) applied a Quasi-Maximum-Likelihood (QML)procedure to estimate the SV model. The basic model can be transformed into alinear state-space model by taking the logarithm of the squares of the observations.
logyt2 = ht + log�t2; (2.3)ht+1 = �+ �ht + �hut: (2.4)By using a normal approximation to the log�2(1) distribution, Harvey, Ruiz andShephard approximated the model to a Gaussian state-space model and employedthe standard Kalman Filtering technique to estimate the latent volatility process.The attraction of QML is that it is very easy to implement and extends easily tomore general models. And it provides �ltered and smoothed estimates of the latentvolatility process. But it is expected to have poor small sample properties since thelog�2(1) distribution is poorly approximated by the normal distribution as shown inFigure 2.1. Jacquier, Polson and Rossi (1994) provided some empirical evidence onthe performance of QML and concluded that as �h decreases, the QML proceduregave poor sampling properties.We propose MCMC simulation techniques to conduct �nite sample inference onthe exact distribution of parameters of the Stochastic Volatility Model. Comparing7
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2.2.2 A Single-move Gibbs SamplerIn the Bayesian context, the Stochastic Volatility Model is treated as a hierarchicalmodel. The latent volatility process is treated as a sequence of parameters in themodel. This idea is termed data augmentation and was pioneered by Tanner andWong (1987). Let ! = fa; b; �hg denote the space of model parameters, let h denotethe vector of the volatility process, upon augmenting the volatility process fhg to theparameter space f!; hg, the joint posterior distribution of !; h can be written as theproduct of three conditional distributions. Namely, p(!; hjY ) / p(Y jh)p(hj!)p(!).Upon assigning a prior distribution to !, we can design a Gibbs Sampler whichiteratively re-simulate the two conditional distributions:� p(hjY; !);� p(!jh; Y );and converges to the joint distribution of p(!; hjY ). The marginal distributionp(!jY ) can then be used to make inferences about model parameters. The marginaldistribution p(hjY ) provides the solution to the \smoothing" problem of inferring thelatent volatility process as a natural by-product.Now we study ways to sample from each conditional distribution.Sampling from the second conditional distribution, p(!jh; Y ), is easy from stan-dard Bayesian inference on linear models. Given the volatility process, the secondequation in the model is a linear AR(1) regression model with unknown slope andintercept. We specify a conjugate prior for f�; vg where � = fa; bg and v = �2h. Uponassigning a reference prior p(�; v) / 1=v, the posterior p(�; vjh) can be easily derivedfrom Bayesian linear models theory. In detail,p(�; vjh) = N(�j�̂; (X 0X)�1v)Ga(1=vj(n� 2)=2; ns2=2)where n is the number of observations, X(n�1)�2 is an (n� 1) dimensional matrix9



(1; ht)n�1, t = 1; ::n � 1, and ns2 is the standard residual sum of square. Clearly,under the same framework, extension to higher order AR models and adding otherregressors including seasonal dummy variables to either the volatility or the returnprocess is straightforward using Bayesian linear model theory.Sampling from the �rst conditional distribution, p(hjY; !), however, is not an easywork because of the log-normal structure. One way to sample the joint distributionas suggested in Jacquier, Polson and Rossi (1994) is to break the joint distributionp(hjY; !) into a set of univariate conditional distributions p(htjh�t; Y; !), where h�tdenotes the rest of the h vector other than ht. Iterating through draws from each uni-variate conditional p(htjh�t; Y; !) distributions will converge to the joint distributionp(hjY; !). This is called a Single-Move Gibbs Sampler since sampling of the joint dis-tribution is achieved by iterating through each univariate conditionals p(htjh�t; Y; !)Sampling of each marginal conditional distribution p(htjh�t; Y; !) is not easy be-cause of the log-normal structure. A Metropolis algorithm is suggested by Jacquier,Polson and Rossi (1994). Because the Metropolis algorithm is going to be usedT times for each univariate conditional distribution for each iteration of the GibbsSampler, and the Sampler will be iterating another N times, a highly e�ective pro-posal distribution for the Metropolis algorithm is needed. Notice that the univariateconditional distribution is a product of normal and log-normal distributions,p(htjht�1; ht+1; yt; !) � p(ytjht)p(htjht�1)p(ht+1jht):This density can be very well approximated and dominated by a product of twoinverse Gamma densities. Since the product of two inverse Gamma is still an inverseGamma, an inverse Gamma distribution is chosen to be the Candidate GeneratingDistribution for the Metropolis algorithm. Experiments show a acceptance rate of70%� 80% for the Metropolis algorithm which indicates the inverse Gamma density10



is a good approximation to the conditional density.Another possible way to sample p(htjh�t; Y; !) is to use accept/reject sampling al-gorithm as suggested by Geweke (1994). This can be achieved because that p(htjh�t; Y; !)is globally concave, consequently the general approach to acceptance sampling fromdistributions with log-concave distribution suggested by Wild and Gilks (1993) isapplicable. This procedure is considerably faster than the Metropolis algorithm.In summary, the Single-Move Gibbs Sampler iterates through the following steps:1. Initialize h and !.2. Sample each ht from p(htjh�t; Y; !).3. Sample from p(!jh).4. Go back to 2.It is easy to prove that the Single-Move Gibbs Sampler is ergodic and converges tothe stationary distribution. But the actual rate of convergence has to be accessed byexperimentation. We simulate data from the stochastic volatility model with knownparameters and estimate the convergence rate of the sampler. After extensive exper-iments, we �nd that the sampler converges considerably fast when the autoregressiveparameter b is small or the variance of the volatility process � is large. But when themean reversion parameter b is high, or � is small, the sampler converges very slow.To illustrate this, we simulate 1000 data from the model with a low b valueand relatively large � and study the convergence behavior of the sampler. We thensimulate 1000 data with the same starting value but with a high b value and relativelysmall � and compare the convergence of the sampler.Figure 2.2 shows the simulation trajectory for b, the autocorrelation plot of thesamples and the histogram of b for both series. It can be seen that the Samplerconverges relatively faster for the series with b = 0:5 and � = 0:3. The autocorrelationof the samples dies out after lag 400, and the chain converges to the stationary stage11
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y1Figure 2.2: Left: Trajectory plots, acf and histogram of b for a Single-move GibbsSampler with b = 0:95, � = 0:1. Right: comparison with b = 0:5, � = 0:3.after iterations 2000. For the series with b = 0:95 and � = 0:1, the autocorrelationof the samples remains signi�cant until lag 1500, and the chain converges to thestationary stage after iterations 5000.This is because when b is high, or �h is very small, adjacent volatilities are highlycorrelated. This makes the mixing of the Gibbs Sampler in the parameter spacevery slow. When b is bigger than 0.9, signi�cant autocorrelations in the samplesof Gibbs Sampler remains even after lag 400. This unfortunate characteristic of thesingle-move Gibbs Sampler is common to all parameter-driven models, see Carter andKohn (1994). If a component, such as ht, changes slowly and persistently, the single-12



move Gibbs Sampler will converge slowly. In the limit, when ht = ht�1, the samplerwill not converge at all. Given that volatility in �nancial series tend to be highlycorrelated, this suggests that the Single-move Gibbs Sampler may be unreliable forreal �nancial data.2.2.3 A Multi-move Gibbs SamplerA common solution to the slow mixing problem caused by highly correlated elementsis to block the highly correlated elements and sample them together ( see Smith andRoberts, 1993, and Liu, Wong and Kong, 1994 ). In the context of time series models,works on designing methods to sample blocks includes Carter and Kohn (1994) andFruhwirth (1994). Instead of breaking the joint distribution p(hjy; !) into severalunivariate conditionals p(htjht; y; !) and sample from each univariate conditionals,we sample the joint distribution p(hjy; !) directly.To do this, the model
yt = exp(ht=2)�t; (2.5)ht+1 = � + �ht + �hut; (2.6)is transformed into a linear state-space model.

log(y2t ) = ht + log(�2t ); (2.7)ht+1 = � + �ht + �hut: (2.8)Here, log(�2t ) follows a log�2(1) distribution. After this transformation, Model(2.1) becomes a non-Gaussian dynamic linear model with ht as the state vector. It isnon-Gaussian because the error distribution for the observation process is a log�2(1)13



Table 2.1: Mean and Variance of the Mixture of Normals and the mixing probabilityMean Variance Mix P-10.12999 5.79596 0.00730-3.97281 2.61369 0.10556-8.5668 5.17950 0.000022.77786 0.16735 0.043950.61942 0.64009 0.340011.79518 0.34023 0.24566-1.08819 1.26261 0.25750instead of a normal distribution. Yet, the log�2(1) distribution can be extremely wellapproximated by a seven component normal mixture following the idea of Carter andKohn (1994). The degree of accuracy can be improved arbitrarily by increasing thenumber of mixtures. Following the work of Titterington, Smith and Makov (1985),we matched the �rst four moments of the seven component normal mixture densityto that of the log�2(1) and require that the approximating densities lie within a smalldistance of the true density. The resulting mixing normals have means, variances andmixing probabilities displayed in Table 2.1.Note that the mixture of normals are chosen independent of data. So this needsto be done only once.After transforming the non-Gaussian state space model into a mixture of GaussianState-Space model. The model becomes a standard Gaussian State-Space model ateach time t. It is then possible to sample the entire joint distribution p(hjy; �) atonce using the standard State-Space simulation technique via Kalman �lter. Now,in addition to the model parameter vector � = f�; �; �hg and volatility process fhg,we need to sample the mixing indicator series K =1; :::Ng, where each kt = 1; 2::7.The basic steps involves iterating through1. Initialize �;K.2. Sample p(KjY; h; �). 14



3. Sample p(hjY;K; �).4. Sample p(�jh).5. Go back to 2.Sampling of p(�jh) is the same as the Single-move Gibbs Sampler following stan-dard Bayesian linear model theory.To sample the indicator variables K(t), we write down the joint likelihood of Kgiven Y; h; �. p(KjY; h) = p(kN jY N ; h) N�1Yt=1 p(KtjY t; ht; Kt+1):Here Y t consists of all yi for i � t. Thus to generate K from p(KjY; h), we �rstgenerate kN from p(kN jY N ; h) and then for t = N � 1; :::1, we generate kt fromp(KtjY t; ht; Kt+1). Because p(kN jY N ; h) and p(KtjY t; ht; Kt+1) are discrete valued,we can generate from them easily, once we have calculated them.To sample the state vector h all at once, we derive the joint likelihood functionfor h. For notational convenience, we omit the dependence on the indicator processK in the derivation of the following conditionals.p(hjY; �) / p(hN jY N) N�1Yt=1 p(htjY t; ht+1)Thus to generate fhg from p(hjY; �), we �rst generate hN from p(hN jY N) and thenfor t = N � 1; :::1, we generate ht from p(htjY t; ht+1). Note that p(hN jY N) and eachp(htjY t; ht+1) are normal distributions, in order to generate the fhg process, we onlyneed to calculateE(hN jY N) and var(hN jY N), and E(htjY t; ht+1) and var(htjY t; ht+1)for t = N � 1; :::1.E(hN jY N) and var(hN jY N) can be obtained using Kalman Filter. To get E(htjY t; ht+1)15



and var(htjY t; ht+1), we treat the equation ht+1 = a + bht + �t+1 as an additionalobservation on the state vector ht and apply the Kalman Filter again. In other words,the sampling of the joint likelihood involves two stages. The �rst is forward �lteringto calculate E(hN jY N) and var(hN jY N) and the second is backward smoothing tocalculate E(htjY t; ht+1) and var(htjY t; ht+1). For details of derivation, see Carterand Kohn (1994).One remaining issue is the speci�cation of a prior for the initial state vector h1.We choose a di�use prior h1 / N(0; S0) with a large S0.The convergence of the Multi-Move Gibbs Sampler is much faster even with highvalues of b and small values of �h. To compare with the Single-move Gibbs Sampler,we apply the Multi-Move Gibbs Sampler to the same data series generated in theprevious section for b = 0:95 and � = 0:1. Figure 2.3 shows the correspondingresults. The sampler converges after 500 iterations. The autocorrelations in thesamples of the Multi-Move Gibbs Sampler die out much faster than those in theSingle-Move Gibbs Sampler. And the simulation time is also much shorter. Thesimulation time for 10; 000 iterations of the Multi-Move Gibbs Sampler is less than10 minutes on an Alpha 3000 whereas that for the Single-move sampler is about 30minutes. For b = 0:95 and � = 0:1, the autocorrelations in the samples die out afterlag 350 comparing to 1; 500 in the Single-move sampler.2.3 Application to Exchange Rate DataVolatility clustering, which is one of the most important motivations for the devel-opment of GARCH type models and Stochastic Volatility Models, is most obvious instock/stock index return data and exchange rate data. We apply the model to ana-lyze daily returns on the Deutschemark (DM)/US Dollar exchange rate from 1/3/81to 5/31/96 and compare with existing research results on the same data set with16
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Table 2.2: Data: Parameter Estimates for Single-move and Multi-move Gibbs Sam-pler Single-move Multi-moveMean Variance Mean Variance�jY 0.963 0.02 0.9627 0.02�hjY 0.168 0.04 0.168 0.04�hjY -0.315 0.02 -0.317 0.02Time 115 minutes 28 minutesapplied to the data. We experimented with di�erent starting values for h and !.The results show that the e�ect of initial values disappear quickly after the �rst fewthousand runs of the Gibbs Sampler. We run the Single-Move Gibbs Sampler for110,000 iterations and discard the �rst 10,000 iterations. We then take a samplefrom every 200 samples to form a sample size of 500. This ensures that they areclose to iid samples from the posterior distribution. These samples are then usedto conduct inference on the parameters. For the Multi-move Gibbs Sampler, we runthe chain for 80,000 iterations and discard the �rst 10,000 iterations. We then takea sample from every 100 samples to form a sample size of 800. Figure 2.4 shows thehistogram of the posterior distribution of the parameters, the simulation trajectoryand autocorrelation in the samples for both the Single-move and the Multi-moveGibbs Sampler. Table 2.2 shows the results of parameter estimates and simulationtime. As can be seen, the autocorrelation in samples from the multi-move GibbsSampler is much smaller than that from the Single-move Gibbs Sampler and thereforerequires much less iterations. The total simulation time for the Single-move sampleris about 2 hours for 1000 data sets whereas that for the Multi-move sampler is 30minutes on a Sparc 20.The results show the high values of the mean reversion parameter posterior meanof b is 0.96 and small variance for the volatility process, �2 = 0:04. These are consis-tent with JPR(1994)'s �ndings on the DM/Dollar data. JPR(1994) also provides an18
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procedures include residual analysis. The di�culty of residual analysis with everyvolatility forecasting model is that volatility is unobserved. This can be remediedby studying the properties of the squared returns. An additional di�culty with theresidual analysis of Stochastic Volatility Models is the lack of analytic forms of thelikelihood function. So simulation based diagnostic methods need to be developed.Traditional residual analysis includes the check of model assumptions. In theStochastic Volatility Model, model assumptions include normality of the return andvolatility process and autocorrelation in the return residuals de�ned as �t = yt=exp(ht=2).In the Bayesian context, residual analysis are conducted under the distributionalform. From the MCMC simulation of model estimation, we have the joint posteriordistributions of the volatility process p(h0; :::hT jY ), therefore, the joint posterior dis-tributions of the residuals p(e0; :::eT jY ) where �t = yt=exp(ht=2) are available. Thesecan be used to calculate the distribution of autocorrelations of any lag, kurtosis,skewness, Box-Ljung and other statistics for normality and autocorrelation.If the model captures the behavior of the data well, the residuals sequence �t;j,t = 1; :::T for each j should be independent. This can be checked by computing theautocorrelation of any lag for each residuals sequence et;j t = 1; :::T and then plottingthe distribution of autocorrelation of all lags. The mean of the distribution of theautocorrelation of any lag can be calculated. A useful test statistics for checking theautocorrelations of a time series is the Box-Ljung test statistics. We also report thistest statistics.From the distribution of p(�0; :::�T jY ), we can also calculate the distribution ofthe skewness, kurtosis among other test statistics to check the normality assumption.Figure 2.6 shows the distribution of autocorrelation of lags 1 to 9 for the DEM/USDdata. There is no signi�cant autocorrelation in any lag. Figure 2.5 shows the thedistribution of skewness and kurtosis statistics. The mean of the kurtosis statistics20



is 3.38, a 95% con�dence interval for the kurtosis statistics is (2:54; 5:23). A 95%con�dence interval for the skewness statistics is (�0:81; 0:85). They indicate thereis no excessive skewness or fat-tail behavior in the residuals. The QQ-plot in Figure2.7 indicates the normality assumption is basically satis�ed although there are someoutliers.
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skewFigure 2.5: Histogram of the skewness and kurtosis statistics for the DEM/USDDataA more ambitious in-sample diagnostic for a time series forecasting model is toevaluate the model's ability to capture the forecasting distribution of market vari-ables. This is related to the Value at Risk (VaR) concept in risk management. Theheart of market risk management is the forecast of the distribution of the relevantmarket variables. If an institution is estimating the Value at Risk in its tradingand/or investment portfolio on a daily basis, it is implicitly forecasting the entirejoint distribution of the market variables it is exposed to. Similarly, a forecast ofa distribution is the central input into any asset allocation and/or hedging model.In this spirit, model diagnostics for any time series forecasting model should revealthe ability of the model to capture the distributional form of the variables forecast.21
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a9Figure 2.6: Histogram of acf of the residuals of lag 1 to 9 for the DM/Dollar DataThis can be checked by computing the percentiles of each new observation underthe corresponding forecasting distribution. If the forecasting distribution capturesthe distribution of the market variable accurately, the percentiles should be inde-pendently and uniformly distributed. Independence measures how well the forecastmodel identi�es the rapidly changing structure of the market; uniformity measureshow well the forecasting model captures the shape of the distribution of the marketvariable over time. For a further discussion on this, see Crnkovic and Drachman(1996) from J.P. Morgan.In the context of Stochastic Volatility Model, this requires the calculation ofthe predictive distribution p(yt+1jYt) where Yt = fy1; ::ytg. This can be done usingposterior samples of fh; �g from the Gibbs Sampler. Note thatp(yt+1jYt) = Z p(yt+1jYt; ht+1; �)p(ht+1jYt; ht; �)p(htjYt)p(�jYt)dht+1dhtd�So, p(yt+1jYt) can be sampled by the method of composition as follows. For eachhjt , j = 1; :::M from p(htjYt) and each � from p(�jYt), we sample hjt+1 from22



hjt+1 � N(� + �hjt ; �h)Based on the M draws on ht+1, we can estimate the probability that y2t+1 willexceed the observed yo2t+1 byPr(y2t+1 � yo2t+1) = 1=M MXj=1Pr(y2t+1 � yo2t+1jhjt+1)for each t = 1; ::n.This approach can be extended to an arbitrary step ahead forecasting. Comparingto the traditional �ltering framework where p(ht+1jYt; !) are calculated using anestimated !, the Bayesian predictive distribution approach eliminates the parameterestimation error.Once the simulated predictive distribution p(yt+1jYt) is available, we can computethe sequence of percentiles for the observed yobst+1. This sequence should be approx-imately iid uniformly distributed. These variables can then be transformed into anormal distribution using the inverse of the normal distribution function. This se-quence of standard iid normal variables can then be used to carry out Box-Ljung,normality and heteroscedasticity tests, among others.The predictive density procedure was applied to the DEM/USD data set. Table2.3 shows the results from the diagnostic checks on the model. These results areconsistant with the Bayesian residual analysis and suggest no obvious failures inthe way the model has been �tted. In particular, there is no excess kurtosis inthe residuals which means the Stochastic Volatility Model is capable of generatingexcessive kurtosis the data exhibits. In comparison, the kurtosis generated by theEGARCH on the same data is not enough. (From personal communication withresearchers at J.P. Morgan) 23
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Figure 2.7: QQ-plot of the sequence of normal variables from the predictive residualdiagnostic of the DM/Dollar DataTable 2.3: Statistics from the predictive residual diagnosticSkewness Kurtosis BL(30) Normality0.65 3.13 27.56 2.132.5 ConclusionIn this chapter, we proposed a Log-AR(1) Stochastic Volatility Model as a volatilityforecasting model for �nancial data series. We developed two Bayesian Markov ChainMonte Carlo (MCMC) estimation procedures for the model and applied the modelto some exchange rate data series. We developed both classical and Bayesian modeldiagnostic tools to check in-sample model adequacy for the real data. This representsa complete study for the development of a �nancial forecasting model. Our studyindicates that the Log-AR(1) Stochastic Volatility Model is a promising volatilityforecasting model comparing with existing volatility forecasting models. Comparingto the EGARCH model, the Log-AR(1) Stochastic Volatility Model is capable ofgenerating excessive kurtosis exhibit in the �nancial data. In the following chapters,24



we will discuss extensions to the model and procedures for out-of-sample forecastingusing the model and the problem of option pricing using the model.

25



Chapter 3Model Extension
In this chapter, we propose three extensions to the simple Log-AR(1) StochasticVolatility Model. In the �rst section, we implement a Log-AR(p) Stochastic VolatilityModel and apply it to some real exchange rate data. In the second section, we discussthe leverage e�ect of volatility and the work of Jacquier, Polson and Rossi (1995) onthe correlated Stochastic Volatility Model and Breidt (1996) on a threshhold StochasticVolatility Model. In the third section, we propose a new model which combines optionpricing model and stochastic volatility model under one model framework. Unlike theprevious model speci�cations which solely model the behavior of historical volatility,this model combines historical and implied volatility and provides a uni�ed approachto forecast volatility. This new model can be used for both forecasting and testing ofthe hypothesis of the existence of stochastic volatility.

3.1 A Log-AR(p) Stochastic Volatility ModelVolatility clustering is one motivation of applying Autoregressive Stochastic VolatilityModels to forecast volatility. Therefore, exploring autocorrelations in the volatilityprocess is the central role in model building. Although no autocorrelation was foundin the residual of Log-AR(1) Stochastic Volatility Model in DM/Dollar data, it is stillworthwhile to explore a Log-AR(p) Stochastic Volatility Model as an alternative wayto study further autocorrelation structure in the data. The signi�cance of the higherorder AR(p) parameters will suggest the existence of higher order autocorrelations in26



the volatility process. As stated in the last chapter, it is conceptually easy to extendthe model �tting procedure to higher order AR(p) process for the volatility. It isworth while implementing the procedure and examine the �t of a higher order Log-AR(p) Stochastic Volatility Model to the data. We start with a Log-AR(2) StochasticVolatility Model: rt = exp(ht=2)�t; (3.1)ht+1 = � + �1ht + �2ht�1 + �h�t: (3.2)In this model, the log-volatility process is an AR(2) process. The signi�cance ofthe AR(2) parameters will suggest the existence/nonexistence of the second orderautocorrelation in the volatility.Both the Single-Move Gibbs Sampler and the Multi-Move Gibbs Sampler can beextended easily to the Log-AR(2) Stochastic Volatility Model. We will discuss thedetails of applying the Multi-Move Gibbs Sampler here.After transforming the model into a non-Gaussian State-Space model, we use amixture of normal distributions to approximate the log�2(1) distribution as beforeand transform the model into a Gaussian State-Space model at each time t.Re-write the model as a standard State-Space Model:yt = F�t + vt; (3.3)�t+1 = G�t + !t; (3.4)where yt = log(r2t ), �t = (ht; ht�1; 1)0, F1�3 = (1; 0; 0), G3�3 = 0B@ �1 �2 11 0 00 0 1 1CA, vt �N(�i; �2i ) at each time t with a pre-speci�ed (�i; �2i ), !t = (!t; 0; 0)0 has a trivariate27



normal distribution with zero mean and variance-covariance matrix 0B@ �2h 0 00 0 00 0 0 1CA.The two error sequences vt and !t are mutually independent.Before we apply the multivariate version of the Multi-move Gibbs Sampler, westudy the asymptotic distribution for p(�; �1; �2jY ). To do so, we transform thenon-linear Log-AR(2) model to a linear State-Space model,
log(y2t ) = ht + �t (3.5)ht+1 = � + �1ht + �2 � ht�2 + �t (3.6)Here �t / log�2(1), the variance v1 of the log�2(1) is 4:6 and the variance �t /N(0; v2). In most �nancial data series, v2 is less than 0.3. So the variance of the �rstequation is at least 15 times bigger than the variance of �t in the second equation.Plugging h(t) into the �rst equation, we getyt = �+ �1ht�1 + �2ht�2 + �t + �tThis is not exactly true since yt should also depend on �t�1. But the focus here isto study the variance scale of the marginal posterior distribution for p(�; �1; �2jY ).Since the variance of �t is much smaller than that of �t, v2 is negligible.Consider this as a regression function in matrix form and assuming the fhg se-quence is known,then p(�; �1; �2jY ) / N((X 0X)�1X 0Y; (X 0X)�1v1)where X = 0@ 1 ht ht�1... ... ... 1A is the (N � 2) � 3 matrix of fhg.To estimate the scale of the variance-covariance matrix, we need to know the scale28



of (X 0X)�1. (X 0X) = 0B@ n� 2 �12 �13�12 v2 �23�13 �23 v3 1CAwhere �12 = Pn�2t=2 h2t , �13 = Pn�2t=2 htht�1, v2 = Pn�2t=2 h2t , �23 = Pn�2t=2 htht�1 andv3 = Pn�1t=1 h2t�1.We simulated 1000 data using a = �0:6, b = 0:8, v2 = 0:04, the variance-covariance matrix for the data is: 0B@ 0:55 0:0238 0:02310:0231 0:0233 �0:02130:0231 �0:0213 0:0233 1CA. Increasing thenumber of observations decreases the variance. For t = 10000, the variance-covariancematrix for the data is:0B@ 0:0399 0:00167 0:001660:00167 0:00241 �0:002270:00167 �0:00227 0:00242 1CAExperiments with di�erent parameter values and di�erent number of observationsshow the scale of the variance-covariance matrix stays in that range. The smalleststandard deviation for the marginal distribution of � , �1 and �2 is at the scale of0:1. This is assuming known fhg. With unknown fhg, the standard deviations forthe marginal distribution of �,�1 and �2 will be much bigger. This indicates thevariances of the marginal distribution for �,�1 and �2 are very big.These studies suggest that the joint posterior distribution p(a; bjY ) has largevariances comparing to the AR(1) model. This is because the second autoregressioncoe�cient introduces much more uncertainty in the parameter estimates.We now apply the Multi-move Gibbs Sampler to some simulated data from themodel. We simulate 1000 data from the model with �1 = 0:8, �2 = 0:1 and �h = 0:2.We choose a uniform distribution over a constrained region �1+ �2 < 1, �2� �1 < 1,and �1 < �2 < 1 to ensure stationarity.Figure 3.1 shows the simulation trajectory and histogram of parameters. Theautocorrelation in the samples is big until lag 2000 for the Multi-move Gibbs Sampler.29



0 10000 20000 30000 40000 50000

0.
0

0.
5

1.
0

1.
5

0 10000 20000 30000 40000 50000

-0
.5

0.
0

0.
5

0.0 0.5 1.0 1.5

0
20

00
40

00
60

00

b1
-0.5 0.0 0.5

0
20

00
40

00
60

00

b2

Lag

A
C

F

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : b1

Lag

A
C

F

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : b2

Figure 3.1: Simulation trajactory, histogram and acf of b1 and b2 for the Log-AR(2)model with b1 = 0:65, b2 = 0:2This is much bigger than that in the Log-AR(1) model. The 95% con�dence intervalfor �1 is (0:185; 1:43) the 95% con�dence interval for �2 is (�0:5; 0:64). The mean for�1 is 0.64, the mean for �2 is 0.22. It can be seen that the uncertainty in the �1 and�2 is very big.We then apply the Log-AR(2) model to the DM/Dollar data. The results are inFigure 3.2. The autocorrelation in the samples is similar to that using simulated data.The 95% con�dence interval for �1 is (0:08; 0:97), the 95% con�dence interval for �2is (�0:01; 0:86). The mean for �1 is 0.28, the mean for �2 is 0.66. It is not intuitivethat the lag 1 autocorrelation parameter is bigger than the lag 2 autocorrelation30
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Figure 3.2: Simulation trajectory, histogram and acf of b1 and b2 for DM/Dollardata with the log-AR(2) modelparameter.3.2 Correlated Log-AR(1) Stochastic VolatilityModelA more important extension to the simple Log-AR(1) Stochastic Volatility Model isto allow the correlation between the two innovations. This will create the so-called\leverage e�ect" which allows the sign and the value of the return to a�ect the valueof the volatility. The intuition behind is that market is more volatile in a bear market31



than in a bull market. The second extension to the model is to allow the correlationbetween the two error processes in the return and volatility process. This allows theasymmetric e�ect of return on volatility. Since the leverage e�ect is one of the threemost important stylized e�ects of volatility found in �nancial data series, we discussthe work of Jacquier, Polson and Rossi (1995) on the correlated Stochastic VolatilityModel and Breidt (1996) on a threshold Stochastic Volatility Model.3.2.1 A Correlated Stochastic Volatility ModelEmpirical study has shown the \leverage e�ect" is common in stock returns and incurrency returns of emerging markets. In EGARCH model, the \leverage e�ect" ismodeled by adding the return term into the equation for volatility. The signi�canceof the parameter of the return will indicate the e�ect of the return on the value ofthe volatility. The Correlated Stochastic Volatility Model treats the \leverage e�ect"in a more elegant way by allowing the error distribution of the two processes to becorrelated.The model is:
yt = exp(ht=2)�t; (3.7)ht+1 = � + �ht + �h�t: (3.8)Now �t and �t have a bivariate normal distribution with variance-covariance ma-trix �1 �� 1� where � denotes the covariance.Estimation of this model now requires simulation from the joint posterior distri-bution p(h; !; �jY ). Two di�culties arise. First, one needs to specify an appropriatejoint prior distribution for the correlation � and volatility of volatility �h. Second,the simulation algorithm needs to be modi�ed to accommodate the covariance �.32



Jacquier, Polson and Rossi (1995) discussed ways to assign a joint prior for � and�h and developed a Single-Move Gibbs Sampler to estimate the correlated model.The main di�culty in specifying a joint prior is that the top left element in thevariance-covariance matrix is equal to one. The standard conjugate inverse Wishartfamily prior can not be used because it is impossible to model beliefs where someelements of the matrix are known whereas others are not. To solve this problem, themodel is re-parameterized as f�; �;�g, where � =  1 ��h��h �2h !. Here, � denotesthe correlation. The joint distribution of the data and the volatilities arep(Y; hj�; �;�) = NYt=1 h�3=2t p(h�1=2t yt; loghtjht�1; �; �;�)Further rewrite the joint distribution in terms of residuals (rt; �t)0 where rt =h�1=2t yt and �t = loght � � � �loght�1, for t = 1; ::; N . The joint distribution of thedata and the volatilities is nowp(Y; hjA;�) = NYt=1 h�3=2t j�j�3=2exp(�1=2tr(��1A))where A = Pt rtr0t is the residual matrix.Further rewrite the variance-covariance matrix with an hierarchical structure tothe probability distribution. Let  = ��h and 
 = �2h(1� �2) with inverse transfor-mation �2h = 
 +  2 and � =  =p
 +  2. The joint prior can then be speci�ed in aconditional fashion as p(�) = p( j
)p(
). This reparameterization can be viewed asreformulating the covariance matrix of rt and �t in terms of the linear regression of�t on rt, The new parameters  and 
 are the slope coe�cient and variance of theerror distribution. A natural joint prior distribution for the regression coe�cients isa normal-gamma distribution as used in previous chapters.33



A Single-Move Gibbs Sampler can be constructed to sample the joint posteriordistribution p(h; �; �;�jY ) by iterating through the following three conditionals:� p(hjY;  ;
; �; �)� p( ;
jh; Y; �; �)� p(�; �jh; Y;  ;
)For details of sampling p( ;
jh; Y; �; �) and p(�; �jh; Y;  ;
), see Jacquier, Pol-son and Rossi (1995).Unfortunately, the Multi-Move Gibbs Sampler can not be applied to estimate thecorrelated Stochastic Volatility Model because the log transformation of the returnequation destroys the variance-covariance structure.3.2.2 A Threshold Stochastic Volatility ModelAn alternative speci�cation for the leverage e�ect is the Threshold Log-AR(1) Stochas-tic Volatility Model dicussed by Breidt (1996). The Threshold Log-AR(1) StochasticVolatility Model allows the log volatility process switches between two AR(1) pro-cesses according to the sign of the previous return. The model is:yt = exp(ht=2)�t; (3.9)�t+1 = ( �1 + �1�t + �1�1t ; yt � 0;�2 + �2�t + �2�2t ; yt > 0: (3.10)The volatility process is modeled as a threshold process with threshold variable yt.�1t and �2t are iid normally distributed errors. �t and �jt (j = 1; 2) are independent.One attraction of the Threshold Stochastic Volatility Model is the ease of spec-i�cation of a prior distribution for the parameters. In addition, it allows additionaldynamics of the volatility process by assigning di�erent mean-reversion and driftparameters for positive and negative returns.34



The main di�culty in the estimation of the correlated Stochastic Volatility Modelis the speci�cation of a prior distribution for the correlation parameter �. The Thresh-old Stochastic Volatility Model avoids this problem. The parameters �1, �2, �1, �2and �1 and �2 can be considered as independent. A multivariate normal distributionwith speci�ed mean vector and diagonal variance-covariance matrix can be used asthe joint prior distribution for �1, �2 and �1, �2. The prior distribution for �21 and �22are independent inverse gamma distributions with pre-speci�ed positive parameters.Breidt (1996) proposed a Single-Move Gibbs Sampler for the Threshold StochasticVolatility Model. Let � = f�1; �1; �2; �2g, � = f�1; �2g, the sampler iterates through� p(�jY; h; �)� p(�jY; h; �)� p(hjY; �; �)To sample the h vector, the joint posterior p(hjY; �; �) is broken into N univariateconditional posterior p(htjht�1; ht+1; Y; �; �). Following Breidt (1996),p(htjht�1; ht+1; Y; �; �) / p(ht+1jht; yt; �; �)p(ytjht)p(htjht�1; yt; �; �)/ ktp�(ht);
where kt contains all factors not depending on ht, so thatlogp�(ht) = �ht=2� (ht � �t)2=(2� 2t )� y2t e�ht=2;� �ht=2� (ht � �t)2=(2� 2t )� y2t e�ht=2f1� (ht � �t)g;= �(ht � �t)2=(2� 2t ) + (�2t � �2t )=(2� 2t )� ktp(ht)y2t e�ht=2(1 + �t);35



with � 2t = (��2t + �2t+1��2t+1)�1, �t = [�t + �tht�1=�2t + (ht+1 � �t+1)�t+1=�2t+1]� 2tand ��t = �t + � 2t =2(y2t e��t � 1).This suggests a rejection algorithm to draw from each p(htjht�1; ht+1; Y; �; �).Breidt (1996) applied the Threshold Stochastic Volatility Model to the Centerfor Research in Security Prices (CRSP) data used by Nelson (1991) in his originalEGARCH paper. He found that there is some evidence in the CRSP data thatvolatility following a positive return di�ers from volatility following a negative return,not only in level but also in dynamic behavior. There is some evidence that �1 > �2and �1 > �2. This suggests that the mean reversion and drift parameters for thevolatility process could be di�erent for positive and negative returns. This di�erenceis not captured by the constant parameter Correlated Stochastic Volatility Model.3.3 Combining Historical and Implied Volatilityin one ModelUp to this point, we are modeling historical volatility. We believe future volatilitycan be predicted using patterns from historical volatility. In the market, historicalvolatility is not the only source of estimate of volatility. The \implied volatility",computed from current option prices in the market, is another important source forvolatility estimation. In we consider constant interest rate, volatility is the onlyunknown parameter in the option pricing formula. Therefore, after observing marketoption prices, a volatility estimate can be computed using the option pricing formula.The implied volatility has two distinct features from historical volatility. First,it contains information of expectation towards the future since option price is theexpectation of future price movements and volatility of the underlying asset. Thismakes the information from implied volatility very di�erent from that of historicalvolatility. There is some empirical evidence that future expectation causes a di�erent36



behavior of \implied volatility" from historical volatility. For example, in 1995, afew months before the Canadian election, implied volatility from the Canadian dollaroption increased signi�cantly following the news of possible independence of Quebecwhereas the historical volatility of the currency itself did not change much.Second, the calculation of \implied volatility" is model dependent. Usually, theterm \implied volatility" means \Black-Sholes implied volatility" which indicates thevolatility is calculated from the Black-Sholes option pricing formula. But it is wellknown that the assumptions of the benchmark Black-Sholes option pricing formulais violated in the market. In fact, Black-Sholes assumes the volatility is constant.Option prices observed from the market could be derived from di�erent option pricingformulas which is unknown to the public. Therefore, studies of the implied volatilityusing one option pricing formula are model dependent.The debate over which volatility is a better estimate of the market expectationof the variance has existed long and has received mixed support from empirical evi-dence. The time series study of Lamoureux and Lastrapes (1993) considers options onnon-dividend paying stocks and compared the forecasting performance of GARCH,implied volatility and historical volatility estimates and found that implied volatil-ity forecasts, though biased, outperform the others. In sharp contrast, Canina andFiglewski (1993) studied S&P500 index call options for which there is an extremelyactive market. They found that implied volatilities were virtually useless in fore-casting future realized volatilities of the S&P500 index. In a di�erent setting usingweekly sampling intervals for S&P100 option contracts and a di�erent sample, Dayand Lewis (1992) not only found that implied volatilities had a predictive contentbut also were unbiased. Studies examine options on foreign currencies, such as Jorion(1995) also found that implied volatilities outperformed historical volatilities to pre-dict future realizations. As to my best knowledge, no one has yet, combined historical37



and implied volatility in a uni�ed approach to forecast volatility and price options.In this section, we propose a method which, for the �rst time, combines historicalvolatility and implied volatility under one model framework. We test the hypothesisof the existance of stochastic volatility and we investigate the possibility of a moreaccurate prediction of the future volatility and therefore a more accurate forecastof option price using the combined information from both the historical return andcurrent option price.We start with a simple stochastic volatility model developed by Hull and White(1987) to illustrate our idea and discuss extensions to more complicated dynamics ofother stochastic volatility models.3.3.1 The ModelWe follow the stochastic di�usion model developed by Hull and White (1987) in thissection to illustrate our idea and discuss ways to extend this idea to the Log-AR(1)Stochastic Volatility Model and other more complicated models in the following sec-tions.Hull and White (1987) proposed an option pricing model with stochastic volatilitywhich assumes that the volatility itself is a state variable following a di�usion process.The model represents the class of stochastic volatility option pricing models, includingthose of Scott (1987), Wiggins (1987) and Johnson and Shanno (1987), that assumesvolatility risk doesn't a�ect the option price. The continuous time process for theunderlying asset is:
dS = �Sdt+pV Sd!; (3.11)dV = �V dt+ �V dz; (3.12)38



where S is the asset price, V is the volatility of the return of the asset. Here � isa parameter that may depend on S; � and t, � and � may depend on V and t, butnot on S, and d! and dz are two Brownian motions which have an instantaneouscorrelation �. Under the assumption that volatility risk is not priced, � = 0.Under this setting for the return and volatility, Hull and White (1987) derived aformula for a call option asOt = R BS( �Vt)h( �VtjVt)d �Vt = E[BS( �VtjVt)]where �Vt = 1T�t R Tt Vidi.The term h( �VtjVt) in (3) is the density of �Vt conditional on the current volatilityVt, T is the expiration date of the option, Vt is the volatility at time t and BS(:) is theBlack-Sholes pricing formula. Thus, the Hull-White price of the option is the meanBlack-Sholes prices, evaluated over the conditional distribution of average variance�Vt. Under this framework, the \Black-Sholes implied volatility" can be interpretedas the average implied volatility.Notice that the Hull-White option pricing formula is a function of the currentvolatility vt, not the average volatility �Vt. Given vt, the option price is completelydetermined.Under this framework, we propose a volatility forecasting model which combineshistorical volatility and implied volatility in an uni�ed way. We then discuss howto apply Markov Chain Monte Carlo simulation to the model and produce volatilityestimates conditioning on both historical volatility and implied volatility.A discrete approximation to the above continuous model is:ln(St+1=St) = �� 1=2Vt +qVt�t;lnVt+1 = � � �2�=2 + lnVt + ���t:39



Adding the option price formula into the model, we have a series of three processesregarding the return, option price and volatility:
ln(St+1=St) = �� 1=2Vt +qVt�t; (3.13)lnVt+1 = � � �2�=2 + lnVt + ���t; (3.14)O1t = f(St; Vt) + �!!t; (3.15)where

f(St; Vt) = Z BS( �Vt)h( �VtjVt)d �Vt = E[BS( �VtjVt])]: (3.16)Here, �t, �t, !t are independent normally distributed, !t can be interpreted asmarket friction, bid-ask spread and other noises in the option prices, and O1t indicatesone option price at time t. We can add di�erent options on the same underlyingvariable with di�erent time to maturity to the model.Notice that Vt appears in both the return process and option pricing formula, sothat Vt is the combination of both historical volatility and implied volatility. Boththe observed return and option prices contribute to the estimation of Vt and forecastof future option prices.As stated earlier, one limitation of using implied volatility for volatility estimationis that implied volatility is model dependent. Empirical evidence shows that this isespecially true for the commonly used \Black-Sholes Implied Volatility" derived fromthe Black-Sholes pricing formula. The commonly observed \smile e�ect" of volatilitysuggests the \Black-Sholes Implied Volatility" usually over-estimates volatility. How-ever, the problem of model dependence is less severe in our model since the optionprices are derived using the process for the return and volatility speci�ed within the40



model. If the underlying process for the return and volatility is a good approximationto what's observed in the market, forecasts of future option prices using this modelwill be more accurate than forecasts using historical or implied volatility alone.Next, we develop a sampling scheme for the model using the Markov Chain MonteCarlo simulation framework. As will be seen later, MCMC sampling allows theestimation of volatility conditioning on both return and option prices in a uni�edapproach.3.3.2 MCMC for the ModelAgain, estimation is the major di�culty of the study of this model. We now developa MCMC sampling algorithm for the model using a combination of Gibbs Samplerand Metropolis algorithm. Consider model (3.14) and let Y = (y1; y2; :::yn) whereyt = ln(St+1 � St), V = (v1; v2; ::::vn), O = (O1; O2; ::; On), and � = f�; �; ��; �!g.In the Bayesian context, the model setup leads to a hierarchical structure ofconditional distributions. They are,� p(OjY; V; �)� p(Y jV; �)� p(V j�)� p(�)Here, Y andO are observed. The parameters to be estimated are � = f�; �; ��; �!g.Following earlier approaches, we augment the volatility process to the parameterspace. The joint posterior distribution of p(�; V jY;O) is proportional to the productof the four conditional distributions:p(V; �jY;O) / p(OjY; V; �)p(Y jV; �)p(V j�)p(�):From this joint posterior, the marginal p(�jY;O) can be used to make inferences41



about model parameters, and marginal distribution p(V jY;O) provides the solutionto the smoothing problem of inferring about the unobserved volatilities.As can be seen, both return and option prices are used to make inference onV . The marginal distribution of p(V jY;O) combines both the historical and impliedvolatility.Direct sampling of p(�; V jY;O) is not possible. Instead, we sample the jointposterior p(!; V jY;O) indirectly by iterating through� p(�jV; Y; O)� p(V jY;O; �)The �rst conditional distribution p(!jv; Y; O) can be written as
p(�jV; Y; O) / NYt=1 p(otjyt; vt; ��)p(��)NYt=1 p(ytjvt; �)p(�) NYt=1 p(vtj�; ��)p(�)p(��):Assuming the standard reference prior on linear models, p(�jV; Y; O) is easy tosample from when the three innovations are independent. A technical di�culty isthe sampling of p(otjvt; st; �!), a Normal distribution with mean equal to f(St; Vt) =E[BS( �VtjVt])]. There is no analytical solution to this integration since the conditionaldistribution p( �vtjvt) is unknown. Monte Carlo simulation of this integral within eachdraw of the Gibbs sampling will be very time consuming. This problem will occur inthe sampling of p(V jY;O; �) as well, so we will discuss the solution of it later.The second conditional distribution is more di�cult to sample from. It is notpossible to apply the Multi-move Gibbs Sampler and sample the entire vector of Vat once because of the non-linear and highly complex structure of f(St; Vt). Instead,we decompose the joint distribution into a set of conditionals p(vtjv�t; ot; ; yt; �) where42



v�t denotes the rest of the v vector other than vt.From model(5), each vt depends on only the adjacent vt�1 and vt+1. Thus,p(vtjv�t; ot; ; yt; �) can be written asp(vtjv�t; ot; ; yt; �) / p(vtjvt�1; vt+1; ot; ; yt; �) (3.17)/ p(otjvt; yt; �!)p(ytjvt)p(vtjvt�1; �; ��)p(vt+1jvt; �; ��)(3.18)Equation (3.18) has an unusual form, and it requires the evaluation of the integralf( �V jSt; Vt) in p(otjvt; st; �!). Since the integral is evaluated within each iteration ofthe Gibbs sampling n+1 times, Monte Carlo methods of numerical integration toevaluate the integral within each sample of the Gibbs Sampler is computationallyprohibitive.One way to avoid the integration is to approximate the integral is using Taylorexpansion. Although an analytical expression for the conditional distribution of �vis not available, all the moments of �V can be derived. Therefore, a Taylor seriesexpansion of f( �V jSt; Vt) about its expected value E( �V ) can be applied. Hull-White(1987) showed that for su�ciently small values of k = �2� (T � t), the series convergesvery quickly.Therefore, when � = 0, (3.17) can be approximated byf(St; Vt) = E[BS( �V jVt)]= BS(Vt) + 1=2StpT � tN 0(d1)(d1d2 � 1)4�3 2�4(ek � k � 1)k2 � �4g+ SpT � tN 0(d1)[(d1d2 � 3)(d1d2 � 1)� (d21 + d22)]8�5� �6 e3k � (9 + 18k)ek + (8 + 24k + 18k2 + 6k3)3k3 + ::::::where k = �2� (T � t). 43



The choice of � = 0 is justi�ed on the grounds that, for any nonzero �, options ofdi�erent maturities would exhibit markedly di�erent implied volatilities. Since thisis never observed empirically, we must conclude that � is at least close to zero.This approximation allows us to evaluate the integral at a low cost. Hull andWhite (1987) compared Monte Carlo simulation results and Taylor Series approxi-mation results for the integral for a 3-month option with � = 0, � = 1 and �2� = 0:1.It can be seen that for short-term at-the-money and out-of-the-money options, thisapproximation is reasonably well.In (3.18), the conditional posterior p(vtjv�t; ot; ; yt; !) is a product of four com-ponents: p(otjyt; vt), p(ytjvt), p(vt+1jvt) and p(vtjvt�1). The last two terms are log-normal distributions and can be approximated and dominated by an inverse Gammadistribution similar to what is used for the Single-Move Gibbs Sampler for the Log-AR(1) model. The inverse Gamma distribution is a good proposal distribution forthe Metropolis because it has a fatter tail to the right and therefore can dominate thelog-normal distribution. The �rst two terms in (9) are not of any known distributionform. But p(ytjvt) can be evaluated easily and p(otjyt; vt) can be approximated bythe the above series. When the posterior can be written as the product of two dis-tributions, �(t) /  (t)h(t), where  (t) can be easily sampled from and h(t) can beeasily evaluated, then  (t) is a natural envelop for �(t) since h(t) is always less than1. We can use  (t) as the proposal distribution to generate samples since  (t) willdominate �(t). Then the acceptance ratio for the Metropolis distribution is simply�(x; y) = minf1; p(y)p(x)g:See Chib and Greenberg (1993) for a discription of this method.In summary, the Gibbs Sampler is constructed as follows:� Sample p(!jV; Y; O) by 44



p(!jV; Y; O) / Y p(otjvt; st; �!)p(�!)/ Y p(ytjvt; �)p(�)Y p(vtj�; ��)p(�)p(��)� Sample the joint posterior p(V jY;O; !) by iterating through each individualchain, i.e.,
p(vtjv�t; ot; ; yt; !) / p(vtjvt�1; vt+1; ot; ; yt; !);/ p(otjvt; yt; �!)p(ytjvt)p(vtjvt�1; �; ��)p(vt+1jvt; �; ��):3.3.3 Model TestingOne important use of Stochastic Volatility models is to infer the unobserved condi-tional volatility processes both within the sample (smoothing) and out of the sample(forecasting). Inference on the volatility can then be used to price and forecast op-tions. In our model, this goal can be achieved in a natural way under the MCMCframework. Past return and option prices contribute to the forecast of volatility andin turn to the forecast of future option prices.If the option price does follow the stochastic volatility speci�ed, both past behav-ior and future expectation of price movement will help contribute to the estimationand forecasting of volatility. For in-sample smoothing, this will result in a moreconcentrated posterior distribution of the volatility than the posterior distributionof volatility from a model for historical or implied volatility only. This can be usedto test the hypothesis of the existance of the stochastic volatility. For out-of-sampleprediction, this will result in a more accurate forecasting of option prices and hencea higher sharp ratio for the forecasting model.45



We have shown how to conduct Bayesian analysis on option pricing theory underMCMC sampling technique when the underlying volatility follows the Hull and White(1987) stochastic di�usion process. This uni�ed approach has obvious theoreticaladvantage over existing model testing procedures ( e.g. option pricing with GARCHtype models rely on asymptotic approximations to the continuous time di�usionprocess; classical analysis on option pricing with stochastic volatility requires anapproximate non-linear �lter to volatility smoothing.) Bayesian analysis combinesoption pricing and historical volatility under one model framework and conduct �nitesample inference on volatility in a coherent way using MCMC sampling technique.3.3.4 Extension to the Log-AR(1) ModelIn the above section, we illustrated how to combine historical and implied volatil-ities under one model framework and testing option pricing theory with stochasticvolatility using the MCMC simulation technique. We followed the Hull-White (1987)di�usion model for the return and volatility in the analysis. We have illustrated thetheoretical advantage of our approach to test option pricing theory with stochasticvolatility. The Hull-White model, however, does not incorporate the autoregressivee�ect commonly observed in �nancial series. Therefore, forecasting performance ofoption prices using this model may be limited.As developed in earlier chapters, we have seen the Log-AR(1) model has thepotential to be a successful empirical model for the forecast of historical volatility.It is therefore natural to consider the Log-AR(1) model as the candidate model forhistorical volatility. Unfortunately, no option pricing formula has been developedwhen the underlying volatility process follows a Log-AR(1) process.To understand the di�culty of option pricing with Log-AR(1) stochastic volatilitymodel, we brie
y discuss the problem of option pricing with stochastic volatility46



Table 3.1: Examples of Continuous-Time Stochastic Volatility ProcessesHull and White d�2t = �2t (adt+ bdzt)Scott d�t = a(b� �t)dt+ cdztWiggins dlog�t = a(b� log�t)dt+ cdztJohnson and Shanno d�t = a�tdt+ b�ctdztMelino and Turnbull dlog�2t = a(b� log�2t )dt+ cdztHeston d�2t = a(b� �2t )dt+ c�tdztin general. Two major di�culties exist in option pricing problem with stochasticvolatility. The �rst is the estimation of unknown parameters in the model. We havedeveloped a reasonably e�cient simulation approach to tackle this problem in theprevious chapters. The second di�culty in option pricing problem is, like optionpricing with stochastic interest rate, option pricing with stochastic volatility doesnot admit closed-form solutions. A large literature exists on deriving option pricingformula under stochastic volatility. Currently, almost all published continuous-timestochastic volatility models assume a geometric Brownian motion process for thereturn process. But di�erent models have been suggested for the volatility process.Table 3.1 lists some examples of continuous-time processes for the volatility. As canbeen, Melino-Turnbull applies a Log-AR(1) model for currency options.Various approaches have been proposed to price options under the above models.Hull-White derived option price as the average of extended Black-Shole Prices andderived a power series approximation to the expectation. Wiggins (1987) proposed�nite di�erences \hopscotch" numerical methods with logarithmically transformedstate variables to solve the partial di�erential equation. Stein and Stein (1993) andHeston (1993) developed analytic approaches based on Fourier inversion methods.Of these approaches, the numerical solution of the PDE is the most general but,unfortunately, it is also the most computer intensive. The Hull-White and Steinand Stein approaches depend on the distribution of the average stochastic volatilityand require instantaneous correlation between increments in state variables to be47



zero. Heston applies the Fourier method more generally for nonzero correlation ofstate variables. Among these methods, the Hull-White power series approximationremains the most tractable one but it is only valid for their di�usion process. Melino-Turnbull used Monte Carlo simulation to price options under the Log-AR(1) model.It can be seen that analytical approximation to the option pricing formula isonly available for limited processes of the volatility. Numerical approximation ofoption price with our model framework, however, will be computationally prohibitivesince the integral is going to be evaluated n times within each iteration of the GibbsSampler where n is the number of observations. An e�cient option pricing formula isneeded to conduct e�cient Bayesian analysis on option pricing when the underlyingvolatility follows a Log-AR(1) process.

48



Chapter 4Model Comparison
In Chapter 2, the in-sample model diagnostic results indicate the Log-AR(1) Stochas-tic Volatility Model �ts real exchange rate data well. According to research results fromJ.P. Morgan, the degree of kurtosis generated by the EGARCH model is smaller thanthat from the Stochastic Volatility Model which is closer to what is observed in themarket.In this chapter, we develop a model comparison method to compare the StochasticVolatility model with EGARCH model using option prices. We �rst study the Smilee�ect of volatility generated by the market using the Log-AR(1) Model. We thendiscuss model comparison for �nancial forecasting models and develop a method tocompare the Stochastic Volatility model and EGARCH model. Finally, we discussoption pricing problem with stochastic volatility which is an unsolved problem for theLog-AR(1) Stochastic Volatility Model.

4.1 The Smile E�ectBefore we compare the forecasting performance of the Stochastic Volatility Modeland EGARCH model, we explore some interesting features of the Stochastic VolatilityModel.First, the posterior distribution of volatility has a log-normal shape with rightskewed tails. The skewness statistics for the DEM/USD data is 0.86, the kurtosisstatistics is 4.43. 49
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vFigure 4.1: Histogram of the posterior distribution of the last day's volatilityThis is not surprising since the model assumes the volatility follows a log-normalprocess. This implies if the model is correct, then the traditional inference on volatil-ity using asymptotic normal approximations can be very misleading since it loses theasymmetric information in the distribution of the volatility.Second, we study the Smile e�ect generated by the Stochastic Volatility Model.The Smile e�ect is a very important real-world measure of the deviation of marketoption prices from Black-Sholes option pricing theory. It is calculated by inverting thevolatility parameter from the Black-Sholes option pricing formula after a market priceof an option is observed. As stated in the previous chapter, this implied volatilityis called a Black-Sholes implied volatility. There are two components of the Black-Sholes implied volatility: one is the volatility smile and the other is the term structureof the volatility.Volatility smile is the way in which implied volatility varies with strike price foroptions of a �xed time to expiration. It is usually plotted as the graph of strike priceversus implied volatility.Term structure for volatility describes the way at-the-money implied volatilityvaries with time until expiration. Thus, to look at the term structure of volatility,we graph time until expiration versus implied volatility for all of the at-the-money50



options on the underlying asset.The volatility smile e�ect refers to the phenomena that the graph of strike priceversus implied volatility has a U-shape. The implied volatility is relatively higher forout-of-the-money options and relatively lower for in-the-money options. This e�ectis more obvious as time to expiration increases and the degree in which the option isin or out of the money increases. For some options, this smile is also skewed. Thise�ect violates the constant volatility assumption of the Black-Sholes option pricingformula. If we assume Black-Sholes formula price at-the-money option correctly,the Smile e�ect indicates Black-Sholes formula over-prices out-of-the-money optionsand under-prices in-the-money options. Since the market crash of October 1987, theSmile e�ect for most world equity markets has become more pronounced. This hasimmediate impact on the way options are priced and therefore attracts the attentionof researches on this topic. However, as of today, no sound theoretical explanation isaccepted for the Smile e�ect. Of all the competing theories, the stochastic volatilitytheory is the most popular one. Simulation studies by Hull and White (1986) haveshown that stochastic volatility model can generate the volatility Smile e�ect. Yet asto my knowledge, no one has applied a stochastic volatility model on real market dataand study the volatility Smile e�ect generated from the real data under the model.From our forecasts of volatility using the Log-AR(1) model, we plotted the impliedvolatility versus di�erent strike prices. The Smile e�ect is very obvious, which isclose to what is observed in the market. This is much bigger than the Smile e�ectgenerated from EGARCH model by research results from J.P. Morgan (from personalcommunication with Dr. Jordan Drachman). The Smile e�ect generated from ourmodel is consistent with simulation results from Hull and White (1986). This con�rmsthe Smile e�ect can be e�ectively explained by the Stochastic Volatility Model for realmarket data. And this can be considered an alternative way to check the in-sample51



adequacy of the Log-AR(1) model.4.2 Comparing Financial Forecasting ModelsWe are encouraged by these �ndings to investigate the forecasting power of theStochastic Volatility Model and compare with that of the EGARCH model.Model comparison in general is a very di�cult and controversial task. Traditionallikelihoods ratio tests of model comparison enable comparison between models onlyin the nested case where there is an unambiguous null hypothesis. Selection is basedon an asymptotic �2 approximation (deviance di�erence) which is inapplicable tomodels whose number of parameters increases to in�nity as the number of observationincreases. Most distressingly, classical theory o�ers little for comparison of non-nestedmodels. See Neyman and Scott (1948) for an overview of classical approaches.The Bayesian perspective o�ers a formal decision-based approach for model selec-tion. The Bayesian approach utilizes the marginal distribution of the data f(Y ) toassess model performance. Regardless of a model, f(Y ) is a density over the space ofobservables which can be compared with what was actually observed. If Yobs denotesthe actual observations and f(Y jMi) denotes the marginal density under model Mi,i = 1; 2 the Bayes Factor BF = f(YobsjM1)f(YobsjM2)provides the relative weight of evidence for model M1 compared to model M2.The Bayes factor arises formally as the ratio of the posterior odds for M1 versus M2to the prior odds for M1 versus M2, see Je�reys (1961). A table elaborating a roughcalibration of the Bayes factor has been proposed by Raftery (1995). A problem with52



the Bayes factor is that for many models, at least some part of the prior speci�cationsis vague so that f(�) is improper. This makes it di�cult to calibrate the Bayes factor.In the context of �nancial forecasting models, the 0� 1 loss function adopted bythe Bayes factor is not appropriate. Instead, we have a very clear utility function,the Pro�t and Loss (P/L) generated by the model over a period of time. The modelwhich generates a higher pro�t over a long period of time will be considered a betterforecasting model. In this section, we are going to use the pro�t and loss generatedby the model as the model selection criteria for the comparison of the StochasticVolatility Model and EGARCH model.There are many ways in applying a volatility forecasting model in trading andevaluating its P/L. Therefore, the P/L generated by the model will depend on thespeci�c trading strategy applied. Di�erent trading strategies may result in di�er-ent back-testing results for the P/L. This can be considered as a limitation of ourapproach. But to build a quantitative trading system and apply it in real trading,we need a consistant and systematic trading strategy to evaluate the performance ofa quantitative model. So this approach is considered adequate for our purpose. Inthe mean time, the need to carefully study the in-sample performance of a forecast-ing model becomes important since properties from the in-sample model adequacychecking may reveal some important features in the data which may lead to the de-velopment of a corresponding trading strategy. For example, if we conclude that theStochastic Volatiliy model captures volatility smile e�ect relatively better, we maytrade in strips and compare the P/L from trading strips of the two models.Now we design a trading strategy to compare the Stochastic Volatility Model andEGARCH model. Since volatility is unobserved and not traded, we can't comparethe P/L generated by forecasting volatility. But since volatility is the only unknownparameter in the pricing of options, we can use volatility forecasts from both models53



Table 4.1: Payo� of a straddleRange of Stock Price Payo� from call Payo� from put Total payo�ST � X 0 X � ST X � STST > X ST �X 0 ST �Xto price options and compare the P/L from trading options.
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Figure 4.2: Payo� of a straddleThere are many option trading strategies. For example, writing naked positions,covered positions, spreads, straddles, strips, etc. For proprietary trading purpose,if we believe that we have a good forecasting model on volatility, we should selecta trading strategy that bets on volatility. Trading straddles is such a strategy. Astraddle is a combination of buying a call and put option with the same strike priceand expiration data. The pro�t pattern is shown in Figure 4.2. The strike price isdenoted by X. If the stock price is close to this strike price at expiration time ofthe option, the straddle leads to a loss. However, if there is a large move in eitherdirection of the stock price, a signi�cant pro�t will result. The payo� from a straddleis calculated in Table 4.1.The straddle in Figure 4.2 is also called a bottom straddle or straddle purchase.A top straddle or straddle write is the reverse position. It is created by selling acall and a put with the same exercise price and expiration data. It is a highly riskystrategy. If the stock price on the expiration date is close to the strike price, it leads54



to a signi�cant pro�t. However, the loss arising from a large move in either directionis unlimited. One example of the misuse of the selling of straddles is the collapse ofBarings Bank, see the report by Martin (1996).So in practice we need to delta hedge the position when buying or selling astraddle. A delta of a derivative, 4, is de�ned as the rate of change of its pricewith respect to the price of the underlying asset. See, Figure 4.3. It is the slopeof the curve that relates to the derivative's price to the underlying asset price. Anapproximation to the slope is de�ned by4 = 4C4Swhere 4S is a small change in the price of the underlying asset and 4C is thecorresponding change in the option price. It is the number of units of the stock neededto be held for each option shorted to create a riskless hedge. The construction ofsuch a riskless hedge is sometimes referred to as delta hedging. When the delta of theposition in the underlying asset o�sets the delta of the option position, the delta isequal to zero and the position is called delta neutral. By delta hedging the position,the downside risk of selling an option is eliminated.After a trading strategy is selected, a criteria for entering and leaving a positionneeds to be constructed. The basic principle of trading is to buy if the market priceis undervalued and sell if the market price is overvalued. This means we shouldenter a position (buy an option) if the market price is below the forecasted price andleave a position (sell an option) if the market price is above the forecasted price. Aquantitative approach to determine the entering or leaving of a position is to usea con�dence interval from the posterior distribution of the forecasted option prices.If the market observed value falls out of the con�dence interval of the posteriordistribution, we enter or leave a position. Because of the time value of money, we55
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Figure 4.3: Calculation of deltawant to be more con�dent when entering a hedged position than leaving a hedgedposition. Therefore, a 95% con�dence interval for the option price is used for enteringa hedged position (buy an option) and a 50% con�dence interval is used for leavinga hedged position (sell an option).Another issue is the volumn of each trade. One way is to assume equal volumn ofeach trades. A better approach would be to relate the volumn of the trade with thepercentile of the observed option price on the posterior distribution of the forecastingoption prices. This will involve the concept of Expected Sharp Ratio. The expectedSharp Ratio is de�ned as the ratio of the expected return devided by the variance ofthe expected return. For each unit of trade, the Expected Sharp Ratio is de�ned asR = E(r)qV ar(r)Similarly, for n units of trades, the Expected Sharp Ratio is de�ned as R =nE(r)n2pV ar(r) = E(r)npV ar(r) . So, the Expected Sharp Ratio for n trades is a function of the56



trading volumn n. This ratio measures the risk adjusted return and is a commonlyused measure for the performance of a forecasting model. A ratio bigger than zerofor a forecasting model indicates the model is making a pro�t. Similarly, an expectedratio bigger than zero for a trade means an expected postive cash 
ow. Unlike thereturn-based criteria which uses the con�dence interval of the forecasting distributionof option prices to determine for entering or leaving a position, the Expected SharpRatio distinguishes the volumn of each trade.In summary, the speci�c trading strategy we select is to trade delta hedged strad-dles using the forecasting distribution of option prices. The criteria for enterting orleaving a position is the Expected Sharp Ratio being bigger than zero. We comparethe P/L performance of the two models in trading delta hedged straddles over acertain historical period. The model with higher pro�t will be considered a betterforecasting model.4.3 Bayesian Option Pricing with Stochastic Volatil-ityAnother issue in the back-testing procedure is an option pricing formula with stochas-tic volatility. This is the major obstacle in the implementation of the comparison ofout-of-sample forecasting performance of the Log-AR(1) Stochastic Volatility Modeland EGARCH model. As stated in the previous chapter, no analytical approxima-tion of options prices under the Log-AR(1) Stochastic Volatility Model has beendeveloped.Option pricing with stochastic volatility in general is a very di�cult task and isbeyond the scope of this dissertation. We will discuss the major developments in thisarea and discuss numerical approximation approaches to the option prices. We alsodiscuss Bayesian analysis of option prices.57



A vast literature exists on the development of an option pricing formula withstochastic volatility. Hull and White (1986) derived an option pricing formula whenthe underlying volatility follows a di�usion process with constant drift. Heston (1990)developed a closed-form solution to allow a more general stochastic process for thevolatility. The volatility process in Heston's model isd�2t = a(b� �2t )dt+ c�tdzt;Yet no analytical work on the pricing formula for options when the underlyingvolatility follows the Log-autoregressive process has been done. The closest formulaavaliable for the Log-AR(1) process is the general conclusion of Hull and White (1986)on representing option price as the average of the extended Black-Sholes price whichis true when the underlying volatility follows a Log-autoregressive process, e.g.,Ot = Z BS( �Vt)h( �VtjVt)d �Vt = E[BS( �VtjVt)];where �Vt = 1T�t R Tt Vidi.Therefore, one approach to price options using the Log-AR(1) model is to dosimulation over the Hull and White option price integral. Comparing with simulationover the original de�nition of option prices, simulate using the average of the extendedBlack-Sholes price formula only requires the simulation of the volatility process. Thiscuts the simulation time in half comparing to simulation of both the volatility processand return process using the original de�nition of option prices.Another issue we discuss is the estimation of option prices. Most (and to mybest knowledge, all) current literature uses point estimates for option prices. Acon�dence interval is constructed assuming asymptotic normal distributions for theoption price for error estimate. In the context of Bayesian analysis, a posterior58



distribution can be constructed using the distribution of vt. From either the Black-Sholes model with constant volatility assumption or Hull-White model with stochasticvolatility, the option price is a funtion of the current volatility, O = f(vt). From theGibbs Sampler, a posterior distribution of vt is avaliable. Therefore, simulation-basedoption prices can be obtained using each sample from the posterior distribution.And an empirical posterior distribution of the option price can be obtained from theposterior distribuion of vt. This posterior distribution will contain more informationthan a point estimate of the option price using asymptotic normal assumption. Itis well known that returns of stock price, exchange rates have fat tail and skeweddistributions from extensive empirical studies. Yet the distributional property ofthe option prices are rarely studied. The key issue is computational di�culty whichinvolves double-simulation of the option pricing integral and the posterior distributionof the option prices. Yet studies on the distributional property of option prices willhave important applications in option trading and risk management of derivativeproducts.
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Chapter 5Conclusions and Future directionsThe goal of this part of the dissertation is to develop simulation methods to esti-mate the highly di�cult Stochastic Volatility Model and evaluate the performanceof Stochastic Volatility Models as a forecasting model and compare with the exist-ing popular EGARCH model. Motivated by the work of Jacquier, Polson and Rossi(1994), we develop two e�cient MCMC sampling procedures to �t a Log-AR(1)Stochastic Volatility Model. We then develop model diagnostic procedures to checkin-sample model adequacy. We apply the model to real exchange rate data series.We found that both MCMC simulation procedure developed in the dissertation workswell on real �nancial data where the correlation of volatility is high. In particular, theconvergence of the multi-move Gibbs Sampler is much faster than the Single-moveGibbs Sampler. Our model diagnostic results indicate that the Log-AR(1) StochasticVolatility Model captures the fat tail property of the data better than the EGARCHmodel. Also, the Smile e�ect generated by the Log-AR(1) Stochastic Volatility Modelis bigger than that from EGARCH model and is closer to the Smile e�ect observed inthe market. This suggests the forecasting behavior of the stochastic volatility modelmight be di�erent from that of the EGARCH model.There are many immediate extensions to the current study. A �rst immediatefollow up would be the comparison of the out-of-sample forecasting performance ofthe Stochastic Volatility Model and the EGARCH model. As stated in Chapter 4,the most commonly used criteria for selecting �nancial forecasting models is out-of-sample forecasting performance from backtesting results.There are many unsolved issues in the back-testing procedure. The �rst issue60



is the derivation of an option pricing formula. Since the loss function used in thecomparison of the two volatility forecasting models is the pro�t and loss generatedby the trading of options using the model, an option pricing formula under theLog-AR(1) Stochastic Volatility model needs to be developed. Option pricing understochastic volatility will involve simulation. Since simulation of option prices will beperformed daily for a long period of time, approximations or innovative simulationtechniques need to be developed to reduce simulation time and make large scaleback-testing feasible.The second issue involved in the back-testing process is the development of aBayesian trading strategy. The common practice in the estimation of option pricesin both academic research and in practice is to conduct point estimates of optionprices. However, it is clear from both the Black-Shole's model and the Hull andWhite option pricing formula with stochastic volatility that option price is a functionof the volatility. Since the volatility has a distribution which is usually skewed, use ofa point estimation of option price as a summary of such distribution will de�nitely loseinformation. A trading strategy using the distribution of the option price will reducethe risk of selling not heavily over-priced options and buying not heavily under-pricedoptions. Since such distribution of option prices will be simulation-based, an e�cientoption pricing formula and innovative simulation techniques need to be developed sothat practical use of the Bayesian idea is feasible.The third immediate extension to the current study is the extension to the corre-lated stochastic volatility model. Such a model will account for the skewness e�ectcommonly observed in the stock market and the exchange rates from the emergingmarkets. As discussed in Chapter 3, the introduction of the correlation destroysthe variance-covariance structure. As a result, the Multi-move Gibbs Sampler canno longer be applied. Therefore, we again face the problem of slow convergence of61



the Single-move Gibbs Sampler. Innovations in either model modi�cation or MCMCsampler need to be developed to speed up convergence.The fourth extension to the current study is the development of MultivariateStochastic Volatility Model. This is of use in portfolio management and cross-sectional analysis. Multivariate analysis of volatility in general is di�cult and rathernew. Computational di�culties are the major obstacles. Developments in multivari-ate GARCH type models have experienced di�cult identi�cation problems. Earlierwork includes Kraft and Engle (1982), Bollerslev, Engle and Wooldridge (1988),Bollerslev (1990). These models are either extremely unparsimonious or quite tightlyconstrained. Another important extension in the GARCH literature is the factortype GARCH models, following the work of Engle, Ng and Rothschild (1990) andDiebold and Nerlove (1989) which is re�ned by King, Sentana and Wadhwani (1994).Such models have the potential to improve the parsimony problem.The corresponding multivariate extensions to the Stochastic Volatility Models areeasier than the multivariate GARCH models. A representative work is by Harvey,Ruiz and Shephard (1994) who used Quasi-likelihood Kalman �ltering technique to�t a model of the form yit = �itehit=2;where ht = (h1t; :::hNT )0 follows a multivariate random walk and �t = (�1t; :::�NT )0 �NID(0;��). Other work on this model includes Mahieu and Schotman (1994) andJacquier, Polson and Rossi (1995) who applied a MCMC sampler to the model.Another promising direction in the multivariate extensions to the Stochastic VolatilityModels is the factor type Stochastic Volatility Models which can capture the longmemory property in the volatility process.The �fth extension to the current study is to implement the model developed in62



Chapter 3 which combines implied volatility and historical volatility under one modelframework. As discussed in Chapter 3, if the Log-AR(1) Stochastic Volatility Modeldoes capture the behavior of the historical volatility, then a model which utilize bothhistorical information from past return data and future expectation incorporated inoption prices based on correct characterization of the historical movement of returnwill have great potential to provide better forecasting of future volatility and optionprices than any single model which models only the historical volatility or the impliedvolatility. On the other hand, such a model can provide useful empirical evidence forthe hypothesis of the existence of stochastic volatility. For example, if the volatilitydoes follow the Log-AR(1) structure speci�ed in the model, the addition of optionprices information will result in a more concentrated posterior distribution for thevolatility than the posterior distribution obtained from a model for historical orimplied volatility only. The main issue in the implementation of such a model is againan e�cient option pricing formula and e�cient simulation technique for simulatingthe option prices. This is especially crucial since the simulation of option prices needsto be done n times within each iteration of the Gibbs Sampler.Other extensions in the Stochastic VolatilityModels include the heavy tail Stochas-tic Volatility Models, the Volatility-in-mean Stochastic Volatility Model which incor-porates volatility in the mean part of the return process, etc.Research on stochastic volatility is growing rapidly. With the ever increasingcomputer power and development of innovative estimation methods, we are readyto explore many interesting topics in theoretical �nance. For example, how to makeinference on continuous-time models in theoretical �nance using discrete-time dataespecially high frequency intra-day data; the relationship between stochastic volatilityand trading volume (Gallant, Hsieh and Tauchen,1991, Anderson,1995); understand-ing the cause of stochastic volatility using time deformation (Ghysels, Gourieroux63



and Jasiak,1996), etc. On the other hand, Stochastic Volatility Models provide agood testing ground for the development of new nonlinear and non-Gaussian timeseries techniques for model estimation, model diagnostic and model comparison.In addition, Bayesian MCMC methods provides excellent framework for the esti-mation of other sophisticated hierarchical models in �nance where a latent processhas sound economic intuition. For example, the jump-di�usion models used in optionpricing theory and the Regime-Switching models used in interest rate forecasting, etc.These are going to be my continuing research topics at Prudential Securities.
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Chapter 6IntroductionThe problem of spectral inference in time sampled data is very old. The �rst signif-icant advance in frequency estimation occured in the early 20th century when twoseparate methods of analyzing the problem came into being: the use of probabilitytheory and the use of Fourier transform. Two prominent limitations of the Fouriertransform approach exist: Fourier transform can not distinguish multiple signals ef-fectively, and implicit windowing of the data occurs when the Fast Fourier transformis performed. The `'leakage"from the main lobe of a spectral response causes thedistorting and obscuring of other spectral responses. On the other hand, use of prob-ability theory under a statistical model permits one to incorporate one's knowledgeabout the process from which the data samples are taken ( e.g. the number of fre-quencies in the signal). By adding reasonable assumptions to the model, one candescribe the nature of the process outside the measurement interval more precisely.Another advantage of using statistical models is the elimination of the windowinge�ect when processed with the Fast Fourier Transform.In over 100 years since the introductory of spectral analysis and probability the-ory, no particular connection between the two has been noted. That the two meth-ods could be very related was �rst introduced when Jaynes (1983) derived the pe-riodogram directly from probability theory and demonstrated it to be a su�cientstatistic for the inference of a single stationary frequency in a time series with anormally distributed noise. Direct Bayesian inference of the frequency was �rstdeveloped by Bretthorst (1987) under an harmonic model framework. Bretthorstprovided comparison between Bayesian posterior analysis of the frequency and the65



traditional Fourier transformation. However, the approximations used by Bretthorstfor estimation of frequency are not accurate when multiple close frequencies exist, thecase when Fouriour transform fails to work. Furthermore, these approximations cannot be generalized to more complex models for the frequency. Therefore, althoughtheoretical framework for Bayesian analysis of frequency is avaliable, developmentof methods for accurate estimation of the frequency is still an essentially untouchedarea of research.In this part of the dissertation, we develop a uni�ed approach for frequency es-timation using the Gibbs Sampler under the single-frequency and multi-frequencyharmonic model framework. The focus of the analysis is on the computation of theposterior distribution of the frequency. I develop e�cient procedures to tackle thechallenging problem of sampling highly multi-modal posterior distribution for the fre-quency. The method is then applied to study some EEG and Oxygen isotope data.Motivated by the study in Oxygen data and other geophysical time series, I studythe impact of uncertain timing in the estimation of frequency and develop methodsfor the estimation of frequency and time given observed time series data.This part of the dissertation is organized as follows. Chapter 7 develops aMetropolis algorithm to sample the posterior distribution of frequency under thesingle-frequency harmonic model. Chapter 8 extends the methods to a multi-frequencyharmonic model and improves the methods for the high dimensional cases. Chapter 9discusses the impact of uncertain timing in frequency estimation and develops a uni-�ed Gibbs Sampler approach for frequency estimation under uncertain timing. Thisgeneral framework can be generalized to more sophisticated models for frequencydomain time series analysis. Chapter 10 discusses future directions on the study ofspectral analysis. Illustration of the methods by analyzing the EEG data and Oxygendata are presented at the end of each chapter.66



Chapter 7A Single-frequency Harmonic Model
Bretthorst (1987) �rst adopted Bayesian posterior distribution analysis for fre-quency estimation. However, Bretthorst was only able to conduct approximate esti-mation to the Bayesian posterior distribution of the frequency. Such approximationswork well only when the assumptions of Fourier transformation hold. Therefore, asdiscussed in the previous chapter, although Bayesian posterior analysis of the fre-quency is established under more general conditions than Fourier transformation,accurate posterior estimation procedures are needed.In this chapter, we follow the basic harmonic model developed by Bretthorst (1987).We develop a general approach for frequency estimation using the Metropolis algo-rithm to sample from posterior distribution of the frequency and a Gibbs sampler toconduct inference on other model parameters. The Gibbs sampler is used to conductexact �nite-sample inference for the model parameters especially for the frequency andcan be generalized to more complex dynamics for the frequency. I �rst discuss theharmonic model and the connection between Bayesian posterior distribution for thefrequency and traditional Fouriour transformation. Then I propose an e�cient simu-lation procedure to conduct exact �nite sample estimation on the frequency. Finally,I apply the model to analyze some EEG data series.
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7.1 The ModelSuppose we have a time series y(t) over time t observed at times ft1; :::tng to givedata y(t) = y(ti); fi = 1:::ng.The simplest harmonic regression model is
yt = rcos(!t+ �) + �t �t � N(0; v) (7.1)Here ! is the frequency of the signal, r > 0 represents the amplitude � 2 (0; 2�) isthe phase, and �t is a zero mean error process. In this case, �t � N(0; v) independently.Rewrite (2.1) as

yt = acos(!t) + bsin(!t) + �t �t � N(0; v); (7.2)where a = rcos(�), b = rsin(�) and r = pa2 + b2.In the case of equally sampled data, e.g. t1 = 1; t2 = 2; :::, w is between (0; 2�).For 0 < ! < �, we get the same model with the sign of b changing to �b, at frequency2� � !, so the range of ! can be further restricted to 0 < ! < �. This implies thatw=2� < 0:5, or � > 2. So at least two equally spaced observations are needed to besampled per cycle.With arbitrary equally spaced data, e.g. ti = i� for some � > 0, the range for !is 0 < ! < �=�, correspondingly, and the wavelength � has to be bigger than 2�.When the time scale is changed, e.g. u = (t � x)=s, (7.1) changes to yt =rcos((sw)u+ (�+ xw)) + et, with the same amplitude.Model (7.1) assumes the underlying process as a single cosine wave with �xedfrequency, amplitude and phase, plus some white noise with constant variance.68



7.2 Posterior Distribution for the FrequencyWe are mostly interested in the estimation of the frequency in a harmonic analysis.Maximum likelihood estimates and Least Square estimates of the frequency havebeen used for many years. See Kay and Marple (1981) for an extensive review. Inthe Bayesian paradigm, the marginal posterior distribution of the frequency can beobtained by integrating out other parameters, e.g, the amplitude, the phase and thevariance of the noise. Details can be found in Bretthorst (1988), as follows.Assuming �xed !, rewrite (7.2) asY = X� + �t �t � N(0; v)where Xn�2 = (cos(!t); sin(!t)) � = (a; b)0Given the reference prior p(�; �2) / 1=�2p(Y jX) = p(Y jw) = Z Z p(Y jX; �; �2)p(�; �2)d�d�2:So,
p(Y j!) � jX 0Xj�1=2(1� (�̂ 0X 0X�̂)=(Y 0Y ))(2�n)=2 (7.3)where �̂ = (X 0X)�1X 0Y is the Least Square estimator of �.The calculation of (7.3) is easy to implement. Nevertheless, when n is reasonablylarge, ! is not too small, and the data are equally spaced, a useful approximationarises. Using the facts thatPni=1 cos2(wti) ' n=2,Pni=1 sin2(wti) ' n=2,Pni=1(cos(wti)sin(wti)) ' 0, 69



and (x0x)�1 ' 2=nI,Letd2 = (Y 0Y )=n,R(w) = Pni=1 yicos(wti),I(w) = Pni=1 yisin(wti),and C(w) = (R(w)2 + I(w)2)=n.Then p(Y j!) simpli�es to
p(Y|!) / (1� 2C(!)=(nd2))(2�n)=2:Under a uniform prior p(!) � c, the posterior for the frequency is
p(!jY ) / (1� 2C(!)=(nd2))(2�n)=2 (7.4)Here C(!) is called the periodogram, introduced by Schuster 200 years ago.Traditionally, the view is that large C(w) implies important frequencies becauseC(w) / â2 + b̂2 which estimates the theoretical squared amplitude r2 = a2 + b2.The posterior for ! in this one-cycle model is a monotone function of C(w) underthe above approximation. Now under the pioneer work of Jaynes, the two separatemethods of estimating frequencies, probability theory and Fourier transform, werebeautifully linked together under the Bayesian paradigm. Furthermore, the poste-rior distribution greatly improves the resolution of the frequency and eliminates thewindowing e�ect of the Fourier transform.Remember that, the above approximation is true only when the following assump-tions are held, e.g.,� the number of data n is large; 70



� there is no very small frequency;� there is only one frequency in the data;� the amplitude and phase are constant;� the data are equally sampled.When these assumptions are not held, discrete Fourier transformation and theperiodogram are no longer well de�ned, e.g, Fourier transform always interprete thedata as a single frequency harmonic model. Yet, the posterior distribution of ! is stillperfectly well-de�ned and gives the correct scale of the estimation of the frequencywithout windowing the data. Furthermore, assessment of the estimates is avaliablefrom the posterior distribution of the frequency which neither least squares, maximumlikelihood, nor the Fourier transform can give directly.7.3 Metropolis Sampling of the Posterior Distri-butionInference from the posterior distribution is a challenging problem. The posteriordistribution p(!jY ) does not have a standard form. As a result, analytical approxi-mation and simulation methods need to be developed to achieve inference in !.Bretthorst (1988) adopted an analytical approximation approach to the problemin which he applied a t-distribution approximation to the approximated posteriordistribution (7.4). Such appoximation is obviously crude with today's sampling tech-niques. In addition, it is rather limited since the approximation equation (7.6) holdsonly when the assumptions of Fourier transforms are held. As discussed in the previ-ous section, when assumptions of Fourier transforms are violated, the approximationof (7.5) using (7.6) is already not true, not to mention the t-distribution approxima-tion to it. So although Bayesian posterior probability approach has shown theoreticaladvantage under more general assumptions, direct inference from the posterior dis-71



tribution was still not avaliable under general conditions.Sampling the posterior distribution of the frequency is a very challenging problem.A plot of p(!jY ) reveals that p(!jY ) is typically highly multi-modal. The probabil-ity mass is highly concentrated at one or several major peaks which indicates the"important frequencies" in the data. When the signal is strong, the intervals wherethese main frequencies lie are extremely small comparing to the standard (0; �) in-terval for the frequency. Meanwhile, numerous local modes exisit in other areas ofthe distribution because of the property of trigometry. This makes it hard to applystandard accept/reject sampling methods since the search of an \envelope" for theposterior distribution is very di�cult without knowledge of the location of the impor-tant frequencies. A random walk Metroplis sampling with a small variance will tendto be misled by local modes and one with a large variance will result in large rejectionrates. We consider an independence chain Metropolis algorithm with a good proposaldistribution as the most e�cient approach to sample the posterior distribution.The advantage of an e�cient algorithm for the sampling of the frequency pa-rameter is not obvious in the single-frequency harmonic model since the samplingof the frequency is independent of other parameters. But in the following chaptersthe need for an e�cient sampler for the frequency is obvious when we introducemulti-frequency model, time-varying amplitudes and timing uncertainties into thebasic harmonic model. Therefore, we spend some e�ort on developing an e�cientMetropolis algorithm for the sampling of frequency.In an independence chain Metropolis algorithm, a good proposal distribution iscrucial for e�ciencient sampling. It is expected to mimic the targeting distributionreasonably well, and the tails of the starting distribution should dominate those ofthe targeting distribution to insure convergence of the Markov chain. Also, it shouldbe fast to compute. Three choices of starting distributions are presented here.72



7.3.1 Mode-Based Proposal DistributionOne choice of proposal distribution is a mixture of t-distributions centered at themodes of the targeting distribution. It was proposed by Gelman and Rubin(1992).Such mixture distribution should mimic the shape of the targeting distribution rea-sonably well, and a t-distribution with small degree of freedom will gurantee domi-nance at the tail. Although mode-based distributions don't work for every problem,it is a good choice for this univariate exponential like distribution.As stated earlier, p(!jY ) is highly multi-modal and highly concerntrated aroundthe major peaks. Therefore, mode-�nding for p(!jY ) isn't an easy task. Since the�rst derivative of p(!jY ) is analytically avaliable and with similar structure of p(!jY ),Newton's method is known to be the fastest mode searching method. However, New-ton's method requires fairly accurate starting values to guarantee correct convergence.Because of the numerous local modes presented in p(!jY ), it's very likely for Newton'smethod to converge to local modes. On the other side, since the posterior is highlyconcerntrated around the peak, large number of starting points are needed to insure astarting point close to the peak was selected. For equally sampled data, the problemis easier since the frequency is known to be between (0; �), and in most practicalproblems, prior knowledge allows us to further constrain the interval. This allowsus to sample thousands of points in the interval (0; �) to guarantee a close startingpoint to be used. The procedure to construct the mixture starting distribution is asfollows:1. Randomly sample a large number of starting points from (0; �).2. Perform Newton's method using each starting point.3. Evaluate p(!jY ) at each local mode. Select K most important ones.73



4. Compute the second derivative at each local mode as an estimate of the varianceat the mode.5. Construct a mixture of t-distributions centered at the modes with a small degreeof freedom as a starting distribution.Here, much attempt has been made on obtaining an accurate starting distribution.Since the searching for starting value of Newton's method is needed to be done onlyonce in the single-frequency model, it's worth spending the computing time here toguarantee fast convergence of the Metropolis algorithm.7.3.2 Kernel Density Proposal DistributionAn alternative way to �nd a good proposal distribution is to use kernel densityestimate as an approximation of the posterior distribution, see West (1992). Theidea is as follows, in exploring a univariate posterior density, p(x), in general,� Draw a sample of size n (usually several thousands points) x1::::xn from auniform distribution which covers the interval in which the frequency lies.� Evaluate the weights wj; fj = 1::ng determined by !j = p(xj)=Pnj=1 p(xj)� construct a mixture functionp(x) = nXj=1!jd(xj; vh2)The function d(xj; vh2) can be either a Normal distribution or a T-distribution.The quantity v is the Monte Carlo estimate of posterior variancev = nXj=1wj(xj � �x)274



where �x = Pnj=1 wjxj.The scaling parameter h is usually chosen as a decreasing function of the samplesize n, so that the kernel components are more concerntrated at the locations xj forlarger sample sizes. A traditional speci�cation with normal kernels ish = c=n1=(1+4p)with c = f4=(1 + 2p)g1=(1+4p) although much smaller c can be found for speci�cmodels.This approach is similar to the �rst one in computing time and accuracy, butis more general and is suitable for problems where an interval within which theparameter lies is unknown.Once the starting distribution q(y) is determined, Metropolis algorithm proceedsas follows:Repeat for j = 1; 2; :::N� Generate y from q(y), and generate u from U(0; 1),� Let x(j+1) = y if U < �(xj; y); otherwise let x(j+1) = xj.Return the values fxn0+1; xn0+2; :::xNg. Here n0 is the \burn-in" period neededto ensure the chain has passed the transient stage and converged to the targetingdensity. Since the starting distribution found by the above three ways are fairlyaccurate, the convergence of the Metropolis algorithm should be fast.7.4 Estimation of Other Model ParametersBesides the frequency, other parameters to be estimated in model (7.2) are the am-plitudes, and the variance of the noise. The amplitudes are useful in determining theimportance of the frequency and the power carried by the signal. The variance of the75



noise is a good indication of the signal-to-noise level and can help determine whetherone should try a new model for the data.Bretthorst (1988) estimated the amplitude and the variance assuming the fre-quency is known since direct analytical forms of the marginal distribution of the am-plitude and the variance are unobtainable. To get direct inference from the marginaldistribution for the amplitude and the variance, a Gibbs sampler is used.To generate samples from the marginal distributions for the amplitude and thevariance,Rewrite (2.2) as a linear model Y = X� + �where the design matrix Xn�2 = (cos(wt); sin(wt)), � = (a; b)0, and � is a n � ndiagnoal matrix with v as the variance of each �t.The joint posterior isp(a; b; v; !jY ) / p(!jY )p(vjy; !)p(a; bjy; !; v)Under the assumption that (a; b; v) are it a priori independent of !, using standardBayesian linear model theory, we sample p(a; b; vjY; !) by composition. Using auniform prior for !, and a reference prior p(�; �) / 1=�2, p(vjy; !) is an inverseGamma distribution with shape parameter (n � 2)=2 and scaled parameter ns2=2.The conditional distribution p(a; bjy; !; v) is a bivariate normal distribution.After breaking the joint posterior into several conditional distributions, the fullposterior can be sampled by sequentially simulating as follows:� Sample ! fromp(wjY ) / jX 0Xj�1=2(1� (�̂ 0X 0X�̂)=(Y 0Y ))(2�n)=2;� Sample v from p(1=vjY; w) � Ga((n� 2)=2; ns2=2)76



� Sample (a; b) fromp(a; bjY; w; v) � N(�̂; (X 0X)�1v); �̂ = (X 0X)�1X 0YIn this sampling scheme, sampling of ! is independent from the sampling ofother model parameters. Therefore, the mode-�nding procedure in the Metropolisalgorithm needs to be done only once.7.5 ApplicationOne motivating problem of harmonic analysis arises from the collaboration with Dukepsychiatrists studying issues of clinical design and e�cacy of brain seizure treatments.Electroconvulsive therapy (ECT) is a major tool in brain seizure treatment. EEGmonitoring is the primary method of observation on brain activity during ECT. Verylong EEG time series, of the order of several tens of thousands of recordings, areavailable from individuals under varying treatments. Such series usually exhibitsquasi-cyclicity among other features. Figure 7.1 shows a plot of a single series of 300EEG data over time. There are obvious periodicities in the data and the amplitudesvary as well. We assume the data are equally spaced and apply the single frequencyharmonic model to the data.Figure 7.1 also shows a smoothed periodogram estimate of the spectral densityfunction using the default spec.pgram in S-plus, the Schuster's periodogram C(!),the Bayesian posterior distribution calculated from the single frequency model aswell as the log-posterior distribution. These plots are consistent with each other andindicates a single high frequency at ! = :2975 ( wavelength � = 21:13 ) and someminor frequencies.We estimate the parameters in the model using the sampling procedure describedin section 4 of the chapter. First, 5000 samples of the frequency given the data aredrawn. Then, samples of the variance given the frequency and the data are drawn77
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Figure 7.1: Time series plot of the EEG data. The acf, periodogram , Schuster'speriodogram, posterior distribution and log-posterior distribution of the frequency.and �nally samples of the amplitudes given the frequency and the variance are drawn.An independence chain Metropolis algorithm is used to sample from the posteriordistribution for the frequency. The mode-�nding procedure de�ned in 7.1 was usedto construct the mixture of t-distribution as the candidate generating distribution.For this data set, there is only one signi�cant mode in the posterior distribution, sothe candidate generating distribution is a t-distribution centered at the mode. Thedegree of freedom of the t-distribution was chosen to be 3 to insure it's over-dispersed.A uniform prior in the range (0; �) was used for the frequency !. This is the entirerange for the frequency assuming the data were equally sampled. Simulation result78



of 5000 samples is displayed in Figure 7.2. The posterior distribution is plotted ontop of the histogram. As can be seen, the variance of the posterior distribution isvery small, e.g. around 0.004.Samples of the variance v and the amplitudes a; b are drawn from the correspond-ing conditional distributions described in Section 7.4. The marginal distribution ofa; b are plotted on top of the histogram. Notice that the variance estimate is verybig (around 7000), indicating the model does not �t the data very well.
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frequencies or further development of the model.
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posteriors of the 8 wavelengths.
0 50 100 150 200 250 300

-1
50

-5
0

0
50

10
0

EEG data after taken out 8 frequencies

Lag

A
C

F

0 5 10 15 20

-0
.4

0.
0

0.
4

0.
8

 Series : eeg9

Figure 7.5: Top: Residual plot of the EEG data after taking out 8 frequencies.Bottom: acf plot of the residualsBefore any inference can be drawn for the parameters, we check the convergenceof the sampler. Since the sampling of the frequency depends only on the data, not onthe other parameters a; b; v, each draw of fa; b; v; !g is independent of the previousone. So the sampling of fa; b; v; !g is not a Markov Chain. Therefore, there isno need to check the convergence of the entire sampling procedure. However, thesampling of the frequency is based on an Independence Chain Metropolis Sampling,so a convergence check for the sampling of ! is performed.We apply various convergence check methods to analyze the results using CODA.Since the proposal distribution for the Metropolis Algorithm is very close to theposterior distribution, we expect quick convergence of the sample chain.A single chain with 10,000 samples was drawn from the the posterior distribution82



Table 7.1: Statistics from the predictive residual diagnosticWavelength a b V23.38 -21.35 14.44 320021.137 -65.452 -62.72 700019.458 37.845 -28.55 450017.647 39.467 -38.94 560016.18 9.856 -29.56 390012.923 23.83 -11.66 250011.178 -26.74 0.56 35009.657 23.94 -0.15 28000.65 3.13 27.56 2.13of ! using the Independence Chain Metropolis Algorithm. The starting value wasdrawn from the over-dispersed t-distribution. The summary statistics shows an em-pirical mean of 21.1 and a standard error at about 0.02. The lag 1 autocorrelationbetween the batch for every 25 samples is close to zero (-0.0296). This indicates ap-proximate independence between batches is achieved. The autocorrelation betweeneach adjacent sample is only -0.0114, the autocorrelation between every 50 draws canbe considered very close to zero (-0.00136). These results support our expectationthat the convergence should be very quick for our Metropolis algorithm.The Geweke convergence diagnostic calculates the mean for the �rst 10 percentand the last 50 percent of the sample in the chain, then compute the Z diagnosticwhich is the di�erence of these 2 means divided by the asymptotic standard errorof the di�erence. A Z = :0019 for this chain means that the sampling distributionof Z is very close to a standard Normal distribution. Therefore the chain convergedsurely. A plot of the Geweke convergence diagnostic shows that almost all Z-scoresfall into the 95% con�dence interval.The Raftery and Lewis Convergence diagnostic proposed by Raftery and Lewis(1992) gives the total number of iterations N needed for this chain based on thebinomial variance is 3680. The number of initial runs to be discarded as the \burn-83
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Chapter 8A Multi-frequency Harmonic Model
In the previous chapter, we discussed the advantage of using Bayesian posteriordistribution over traditional Fourier analysis for the estimation of frequencies. Weproposed a Gibbs Sampling procedure for the estimation of frequency under the singleharmonic model. In this chapter, we extend our analysis to the Multi-frequency Har-monic Model. We develop three sampling procedures to estimate a Multi-frequencymodel. We then apply the model to the EEG data and Oxygen data.

8.1 The ModelThe motivation for the development of multi-frequency harmonic model is obvious.The main advantage of statistical modeling over Fourier analysis is frequency reso-lution, i.e., the ability to distinguish the spectral response of two or more signals.Traditional Fourier analysis assumes only one frequency in the data, when multiplefrequencies especially multiple close frequencies are presented in the data, Fourieranalysis may give misleading results. A multi-frequency harmonic model, when prop-erly speci�ed, will identify the multiple signals presented in the data.A harmonic model with multiple frequencies is
yt = JXj=1(ajcos(!jt) + bjsin(!jt)) + �t (8.1)where �t � N(0; v). The number of frequencies to be included in the model can86



be determined a priori from external information or by preliminary checking of data.The frequencies can be well separated or they can be close.8.2 Parameter EstimationWe illustrate our idea with a two-frequency model, although the methods applyfor models with higher number of frequencies.The parameters to be estimated in model (8.1) are the frequencies f!1; !2g, theamplitudes and phases fa1; b1; a2; b2; vg.Again, rewrite (8.1) as a linear modelY = X� + �Where Xn�4 = (cos(!1t); sin(!1t); cos(!2t); sin(!2t)), � = (a1; b1; a2; b2)0 and �is the diagonal variance-covariance matrix with variance v as each element on thediagonal.Given reference prior p(�; �2) � 1=�2, the posterior distribution for the frequen-cies under a uniform prior for the frequencies is
p(!1; !2jY ) / jX 0Xj�1=2(1� (�̂ 0X 0X�̂)=(Y 0Y ))(4�n)=4 (8.2)The structure of (8.2) is similar to (7.4) in the single-frequency model. It ishighly concentrated at major frequencies and has numerous local peaks. No sidelobes are presented in the posterior distribution around the frequencies because thedata was not windowed. When there are two frequencies in the data, the contour ofjoint posterior distribution has two symmetric \eyes" at the two frequencies for bothwell-separated or close frequencies. 87



A t-distribution approximation was again used by Bretthorst (1988) to performanalytical inference of the frequencies. The approximation works well when the twofrequencies are well separated, but no solution was given for short data set withtwo close frequencies, the case when traditional Fourier transforms fail to work. Toachieve accurate estimation of the frequencies, sampling-based inference has to bedeveloped.Sampling from a multi-modal high dimensional joint posterior distribution is notan easy task. The grid method to search for modes developed in the previous chap-ter is not appropriate for high dimensional distributions. We propose three Gibbssamplers to sample the joint posterior distribution. Let � = fa1; b1; a2; b2; vg, thesemethods are:Gibbs Sampler 1: Sample joint distribution of the frequencies conditioning onlyon the data� sample p(!1; !2jY )� Sample p(�jY; !1; !2)Gibbs Sampler 2: Sample the conditional distribution of the frequency condi-tioning only on the data� p(!1j!2; Y )� p(!2j!1; Y )� Sample p(�jY; !1; !2)Gibbs Sampler 3: Sample the frequencies conditional on the data and modelparameters� p(!1j!2; a2; b2; Y )� p(!2j!1; a1; b1; Y )� Sample p(�jY; !1; !2)We discuss each of these in the following sections.88



8.2.1 Sampling of the Joint PosteriorWhen there are only two frequencies in the model, we can sample the joint dis-tribution directly. The marginal posterior f!1; !2g is thenp(!1; !2jY ) � jX 0Xj�1=2(1� (�̂ 0X 0X�̂)=(Y 0Y ))(4�n)=4 (8.3)The shape of the joint distribution has high conical peaks at the frequencies andhas numerous local conical peaks elsewhere. It might have two symmetric peaksat the two most important peaks if there are only two frequencies or it might havemore peaks if the data has multiple frequencies. We need a sampling algorithm toe�ciently traverse the whole probability surface and sample all the modes.As stated earlier, (8.3) is often highly concentrated within a very small or severalvery small intervals, and has numerous small local modes everywhere. Such charactermakes it easy for the standard random walk Metropolis algorithm to stay at a localmode. Therefore, standard random walk Metropolis algorithm will not be e�cientsince a candidate generating distribution with large variance will result in high re-jection rate at local modes, and one with small variance will not be able to traversethe whole surface e�ciently. Instead, the Independence Chain Metropolis algorithmis again used.Because of the exponential shape of (8.3) at each mode, a mixture of t-distributioncentered at the modes of (8.3) is selected as the candidate generating distributionwill can best mimic (8.3). For a joint distribution with higher dimension, directmode-�nding of the joint distribution isn't an easy task though.The gridding method was used in the last chapter to search for modes. It isreasonably fast in the one dimensional case especially when it has to be performedonly once. In higher dimensional case, the grid size increase exponentially and the89



computation becomes impractical. The drawback of this method is that it spends aneven amount of e�ort on the huge unimportant areas and the very small importantareas where the frequencies lie.To search for modes e�ciently in the entire probability surface, we need a methodwhich traverse the whole surface yet can move quickly to the modes. We proposea random walk Metropolis-like algorithm which serves this purpose. We borrow theidea of the Metropolis algorithm as a method to traverse the probability surface.Yet we make three modi�cations to the algorithm to speed up the movement of thealgorithm for the purpose of mode-�nding rather than sampling the distribution.The grid method evenly divides the probability surface and search for modes.When evaluation of the distribution is expensive, this slows down the process con-siderably. In contrast, the random walk Metropolis algorithm moves towards themodes of the distribution by assigning higher acceptance probability to samples. Thedilemma with the random walk Metropolis algorithm is the coverage of the probabil-ity surface versus rejection rates. Namely, a random walk Metropolis algorithm witha large variance for the proposal distribution will ensure coverage of the probabilitysurface, yet the rejection rates will be high when a sample near the modes is found.Since the purpose here is to search for modes rather than sampling the distri-bution, the dilemma with the random walk Metropolis is solved. We modify thealgorithm to only accept samples with higher density values. This ensures the sam-pler moves only towards the direction where a mode lies.Another problem with the random walk Metropolis algorithm is that it is easy forthe random walk Metropolis algorithm to stay at local modes when the distributionis multi-modal. Again, for the purpose of mode searching, this can be avoided by�nding modes sequentially rather than simultaneously. This means that after a localmode is found, the corresponding frequency can be removed from the data. The same90



procedure can then be applied to the posterior distribution of the frequency of thenew data.A detailed description of the method is as follows:� Generate one sample yn+1 from a proposal distribution centered at the currentdraw yn with a reasonably large variance.� Evaluate the value of the posterior distribution at both the current draw ynand the new sample yn+1, calculate the ratio: p(yn+1)=p(yn), accept yn+1 if theratio is bigger than 1.� If the ratio is signi�cantly big, it means a sample near a mode is found. Thesample can be used as a starting value for the Newton's method to �nd theexact mode of the distribution.� Save the mode found, then remove the corresponding frequency from the data.And the above procedure can be performed again to �nd other modes.This method of searching for modes is useful especially for high dimensional pos-terior distributions when the computation for the grid size method increases expo-nentially.Since the joint posterior distribution of !1; !2 depends only on the data, thejoint distribution (8.2) doesn't change in each iteration in the Gibbs Sampler, theabove routine for �nding modes needs to be performed only once before the GibbsSampler starts. The mixture of t-distribution resulted from the method will mimicthe target distribution very well. Therefore, the convergence of the independenceChain Metropolis sampler will be very fast.
91



8.2.2 Sample f!1; !2g iterativelyAn alternative approach to sample the joint distribution that can be generalizedto higher dimensions is to sample p(!1; !2; jY ) indirectly by iterating through theconditional posterior distributions� p(!1j!2; Y )� p(!2j!1; Y )Without loss of generality, assume !1 > !2. Given an uniform prior, the condi-tional posterior distribution can be found from the joint distribution:p(!1j!2; Y ) � jX 0Xj�1=2(1� (�̂ 0X 0X�̂)=(Y 0Y ))(4�n)=2; !1 > !2;= 0; !1 < !2:And similarly,p(!2j!1; Y ) � jX 0Xj�1=2(1� (�̂ 0X 0X�̂)=(Y 0Y ))(4�n)=2; !2 > !1;= 0; !2 < !1:Here p(!1j!2; Y ) and p(!2j!1; Y ) have the same structure as the marginal pos-terior p(!jY ), with an additional constraint of the order of the two frequencies.Therefore, the same sampling methods can be used to sample from p(!1j!2; Y ) andp(!2j!1; Y ).In Chapter 7, sampling of the posterior distribution of the frequency given thedata is based on the Independence Chain Metropolis Algorithm using a mixtureof t-distributions as the candidate generating distribution. Various methods wereproposed to �nd the modes of the candidate generating distribution. Since the con-ditional posterior distribution of each frequency depends only on the data and the92



other frequency, the mode �nding procedure needs to be done only once with slightmodi�cation according to the newly sampled frequency.8.2.3 Sample f!1; !2g conditioning on other parametersA slight modi�cation to Gibbs Sampler 2 is to allow the the frequencies conditioningon the data as well as on the amplitudes and phases. The setup of the Gibbs Sampler3 is as follows:� p(!1j!2; a2; b2; Y )� p(!2j!1; a1; b1; Y )� p(1=vjY; !1; !2) � Ga((n� 4)=2; ns2=2)� p(a1; b1; a2; b2jY; !1; !2; v) � N(�̂; (X 0X)�1v)Given f!2; a2; b2g, the corresponding cosine wave a2cos(!2t) + b2sin(!2t) can beremoved from the data. The reminding part ŷ should follow the single frequencymodel ŷt = a1cos(!1t) + b1sin(!1t) +N(0; v)if the model is correct.So the conditional posterior distribution of !1 given f!2; a2; b2g is the conditionalposterior distribution of !1 given ŷ. Again, this is a one-frequency model and theconditional posterior distribution of !1 given ŷ is the same as (7.3), i.e.,p(!1j!2; a2; b2; Y ) � jX 0Xj�1=2(1� (�̂ 0X 0X�̂)=(Ŷ 0Ŷ ))(2�n)=2: (8.4)Therefore, the same sampling methods from Chapter 7 can be used to sample(8.4). Since each iteration of the Gibbs Sampler uses di�erent data, the Griddymethod needs to be repeated for each iteration of the Gibbs Sampler.93



In comparison with Gibbs Sampler 2, removing the given cosine wave from thedata and sample from the new posterior distribution from the new data is moreintuitive as we \�lter" out cosine waves sequentially. On the other hand, samplingthe frequencies given only the data theoretically converge faster to the joint posteriordistribution since the other parameters have been integrated out. But since thefunctional form of both distributions and the methods used to sample them are thesame, the convergence rate is similar. Simulation experience supports this argument.8.3 ApplicationWe now apply the multi-frequency harmonic model to analyze some cyclical data.We �rst analyze the EEG data used in the previous chapter. Then we apply themodel to some Oxygen data in geological studies.8.3.1 EEG DataIn the previous chapter, we applied the single-frequency harmonic model to the EEGdata repeatedly to �nd 8 frequencies. We also found evidence of time-varying wave-lengths. This suggests the existence of multiple frequencies in the EEG data. Ofthe eight frequencies, three or four frequencies are probably important. This prelimi-nary analysis can be used to help determine the starting point of the frequencies andamplitudes in the multiple frequencies sampling procedure and to help identify thenumber of frequencies in the data.We now apply the multi-frequency harmonic model to the EEG data. As anillustration, we start with a two-frequency model. As outlined in section 2, thereare multiple ways to sample the joint posterior distribution. We adopted the secondapproach, which samples the two conditionals p(!1j!2; Y ) and P (!2j!1; Y ). Thisapproach doesn't require starting values for a1; b1; a2; b2.94



Since the posterior distribution is symmetric about !1 and !2. We assume !1 < !2and consider only one side of the joint posterior distribution.The independence chain Metropolis sampling algorithm was used to sample theconditional posterior distribution p(!1j!2; Y ). The mode �nding procedure was con-structed with the range constrained by !2. And the same procedure was performedfor p(!2j!1; Y ).5000 samples of �1; �2 were drawn. Figure 8.1 shows the histograms of the modelparameters. The two most important wavelength � = 21:137 and � = 19:354 arefound. The corresponding amplitudes of the frequencies are around a1 = 35, b1 = �30for � = 19:354. And a2 = �62:5, b2 = �55 for � = 21:137. The variance estimate ofthe model is centered at v = 6000. About 1000 less than that of the single-frequencymodel.
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Next, we apply a four-frequency model to the data. We apply a Gibbs Samplerto sample p(!1; !2; !3; !4jY ) by iterating throughP (!1j!2; !3; !4; Y )P (!2j!1; !3; !4; Y )P (!3j!1; !2; !4; Y )P (!4j!1; !2; !3; Y )conditional on !1 < !2 < !3 < !4.
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a2 = 42:5, b2 = �25 for � = 19:354, a3 = �62:5 b2 = �55 for � = 21:137 anda4 = �30,b4 = 15. The variance of the model is centered at v = 4000. Far lessthan the 7000 from the single-frequency model. The rejection rates recorded for theMetropolis algorithm for each �j, j = 1::4 were 30%; 19%; 24%; 33%.
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b4Figure 8.3: Histogram of the amplitudes for the four-frequency model8.3.2 Oxygen DataNext, we apply the multi-frequency model to some Oxygen data studied by West(1996). Geological time variations in oxygen and other isotope measurements fromdeep ocean cores relate to patterns of variation in global ice volume and ocean tem-perature (See Shackleton and Hall 1989, Park and Maasch 1993). Periodic and quasi-periodic behaviors are usually observed in such series. We study a time series of singledeep ocean core oxygen isotope which is representative of several oxygen isotope se-97



ries from cores of various geographical locations. See Figure 8.4 for a time seriesplot of the data with the mean subtracted. This data series is derived from original�18O site 677 measurements presented in Shackleton and Hall (1989) and was pro-vided by Park of Yale University. The values estimate relative abundance of �18Oand are timed on an equally spaced 3k year scale. The time scale is based on that ofRuddiman, McIntyre and Raymo (1989), and is discussed in Park (1992). Park andMaasch (1993) discusses the process of interpolation of original, unequally spacedmeasurements to this equally spaced scale. This series dates back to roughly 2.5million years, and is plotted in reverse of sign, by convention, so that the apparentincrease in level in model times re
ects generally warmer average global tempera-tures and smaller average ice masses. There are surely errors in the timing of theobservations, due to the process of estimating true calendar times of the geochemicaldata as well as calibration times to the nearest unit. (3000 years here). West (1996)applied a state-space autoregressive model which allows time-varying amplitudes andmultiple periodicities to study the data. Here, we assume the imputed equally spacedtimes are accurate and study the series using a multi-frequency harmonic model inthe frequency domain. In the next chapter, we study the impact of timing error inthe estimation of frequencies. Since time-varying amplitudes are obvious, we dividethe data into two parts, and study the �rst 433 data.Plots of the log-posterior distribution for the wavelength for the �rst 433 Oxygendata in Figure 8.5 shows two dominant wavelengths near � = 95 and � = 41. With theone near � = 95 being more important. This period around 100 kyears (also calledthe \100,000-year ice-age cycle") is of major interest and has been the subject ofintensive investigation in recent years. Identifying the nature and structure of quasi-periodic components of period around 100 kyears is of importance in contributing todebates over the genesis of the ice-age cycles, roughly a million ago, and to questions98
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Figure 8.4: Time series plot of the Oxygen dataof whether or not the onset was gradual and inherent or the result of a signi�cantstructual climatic change. (See Ruddiman et al 1989 and Park 1992 for discussionon this).The log-posterior distribution indicates other small wavelengths at around � =120 and � = 23.we �rst apply a two-frequency harmonic model to the data since two prominentfrequencies appear in p(!jY ). A Gibbs Sampler which iterates through p(!1j!2; Y )and p(!2j!1; Y ) was run for 3000 iterations after discarding the �rst 500 iterationsas the \burn-in" period. Figure 8.6 shows the posterior distribution of the twowavelengths centered at �1 = 41:2 and �2 = 95:5. The corresponding amplitudesare a1 = 0:05, b1 = �0:22 for �1 and a1 = 0:19, b1 = 0:15 for �2. The varianceis around v = 0:14. The autocorrelation for every 10 draws is very small (-0.025for �1 and -0.004 for �2). The Z scores for Geweke's convergence check were veryclose to zero, indicated that 3000 draws were enough for the simulation. The Rafteryand Lewis convergence diagnostic gave the burn-in period 5 and 9 for �1 and �2.99
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Chapter 9Timing Uncertainty
In the previous chapters, we studied the problem of frequency estimation underequally spaced time scale. We analyzed some cyclical data including the EEG dataand Oxygen data using our methods. In the application to the Oxygen data, weaddressed the issue of uncertain timing in the data. In this chapter, we investigate theimpact of uncertain timing to the study of frequency estimation. We develop modelsthat incorporate the uncertain timing and develop methods to estimate frequency andtime under the model. This chapter is organized as follows. First, we discuss theproblem of timing uncertainty in time series studies. Second, we study the impactof uncertain time on frequency estimation in harmonic model studies. Third, wedevelop an harmonic model under uncertain timing and develop methods of conductingstatistical inference on timing. We then apply this model to the Oxygen and EEGdata analyses.

9.1 Timing Issues in Time Series StudiesOne important feature of time series modeling is the timing of the data. Traditionaltime series models usually assume equally spaced observations and the timing isprecise. These two assumptions are violated in many applications.In some cases, there are timing irregularities which occur when observations ar-rive at intervals of irregular length. For example, monthly data may be recordedon a particular day towards the end of each month, but the precise day can vary103



between each months. Daily observations may be recorded only to the nearest hour.In �nancial time series, data are not observed on weekends and holidays. In thesecases, where the data is reported at an aggregated level but may be based on di�erentnumbers of time intervals at a lower level of aggregation, it's clear that the timingshould be accounted for in the model. One way to deal with unequally spaced datais to identify a base, minimum time interval underlying the observed times of obser-vations and develop the equally spaced model on that time scale. Then the timeswith no observations are treated as points of missing data. Other ways to deal withunequally spaced data include imputing data, etc.In other applications, the timing of the data is not precise. This happens whenthe timing of the data is recorded indirectly through some other measurements. Someof the timing errors are random, while others are systematic. For example, timinguncertainty is rooted in every study of geochemical time series. Mclaren (1976), statedthat \Geology has come a long way without an accurate time scale". In geologicalstudy, geologists collect samples fossils, rock units and mineral bodies, they infertheir position in a geological succession, and use a procedure to correlate the relativeposition to a relative time scale. There are many error sources in this whole process.The formation of fossils, rocks and mineral bodies may be a�ected by some irregularclimate and geologic change or environmental contaminations which introduces errorin the inference of the position or formation of the sample. Also, the response ofsedimentary records to some periodic forcing may not be a linear one which maydistort the true spectrum of the core. In addition, the various procedures used bygeologists to calibrate the time given a relative position of a core including bio-chronology, radiometry and magnetostratighaphy have built-in errors. For example,it is well known that the rather imprecise procedure involved in depth-to-radiocarbondating creates signi�cant timing uncertainty for geochemical time series analysis in104



general. Also, perfect sampling of core is hardly achieved which gives additionalsource of uncertainty regarding to the relative position of the samples. In summary,the errors of timing calibration can come from uneven core sampling, uncertaintyin the measuring procedure, bioturbation, non-periodic climate and geologic forcingmechanisms, and the nonlinear response of the geologic variables to periodic forcing.See Mclaren (1976) for a discussion of timing in geologic study. All these errors canhave signi�cant e�ect on the precision of the formal statistical analysis of the timeseries.West(1995) studied a geological time series of proxy records of variations in cli-matic conditions. The series is a geochemical quantity, from deep lake sediment, thatis a proxy indicator of local climatic conditions of interest in studying climatic changeover time. The data were derived from the original �18O measurement from Site 677of the Deep Sea Drilling Project presented in Shackleton and Hall (1989) and wasprovided by Park of Yale University. The data was then mapped to calendar ages bya complex and uncertain process involving carbon-14 calibration discussed in Ruddi-man, McIntyre and Raymo (1989). Notice that the time must have been truncatedto the nearest 3 kyear since all the times are integers. Finally, the unequally spacedcalendar time series were interpolated to an equally spaced series for analysis by Parkand Maasch (1993). The �nal values estimate relative abundance of �18O and aretimed on an equally spaced, 3k year scale. Each of the above processes brings someuncertainty into the �nal timing of the data. A plot of the �18O measurement seriesversus the original depth of the core measurement is plotted in Figure 9.1. Partialplots of �18O measurement series versus the unequally spaced time and equally spacedtime are in Figure 9.2. The di�erence of the two series is obvious.Shackleton and Hall (1989) discussed some of the errors in the sampling of thecore including the quality of the core, and the error from the unequal sampling of105
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Figure 9.1: Original depth of the core measurement versus �18O measurement seriesthe core and gaps between cores which resulted in the uncertainty of the inter-coredepth. Other errors come from carbon-14 calibration of the core, and the errorfrom the interpolation of unequal time scale to equal time scale. The magnitude ofeach error for this data were not recorded, which is a common problem for manygeology studies. Harland et al.(1990) pointed out that in many geology studies, \Theproblem is sometimes �guring our just what the original authors intended. Somedon't even report errors, others fail to state explicitly which error they are using,assuming everyone understands exactly what they do." A conservative estimate ofthe magnitude of the total error is about 10%, though in most actual cases, the errorcould be much bigger.9.2 Timing Uncertainty in Harmonic ModelsFrom the above discussion, it is clear that timing for most geological time series aresubject to considerable error. Such timing error may have dramatic impact on theaccuracy of the study. In particular, in the context of harmonic models, when the106
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equally spaced, or unequally spaced, and subject to error. The posterior distributionfor the frequency p(!jY; S) depends on the timing S through the observation matrixX. The posterior distribution for the frequency
p(!jY ) � jX 0Xj�1=2(1� (�̂ 0X 0X�̂)=(Y 0Y ))(2�n)=2 (9.1)depends on S.
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geologists disappears in the log-posterior under unequally spaced time scale.
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Figure 9.4: Log-posterior under equally spaced time scale compared with that froma uncertain time scale with error from a Normal distribution with a s.d.=0.017Next, we examine the e�ect of uncertain timing by simulating time from existingtime scale. We �rst simulate time si, i = 1; 2::: from a normal distribution centeredat the original equal time scale t = 1; 2; :::: and we require si be strictly increasing.In geological studies, a normal error may represent uncertainties from the cali-bration process, quality of the core and other sources, etc. This can be representedby an independent normal prior for each time si, p(sijti; Y ) / N(ti; v). This normaldistribution is truncated at si�1 and si+1 to ensure strict increasing of time. A largevariance v means large sampling error for the time. In the oxygen data, each timeunit represents 3k years. Therefore, an error of �100 years is equivalent to a standarddeviation of 0:034 on the unit time scale.Figure 9.4 shows p(�jY ) for the oxygen data under the equally spaced time scalet = 1; 2; :::::n along with p(�jY ) under a time scale simulated from N(t; 0:0342). Thedi�erence between the two log-posteriors is very small. We increase the error rangeto �1000 years, this corresponds to a standard deviation of 0.33 (truncated at si�1109



and si+1). This means big sampling error of the time. Figure 9.5 shows the twolog-posteriors are still similar.
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fy(!) = e��2!2f(!) + c0 (9.2)where the constant c0 is given byc0 = Z �=4��=4(1� e��2!2)f(!)d!Equation (9.2) indicates the impact of uncorrelated Gaussian jitter is to multiplythe spectrum by a roll-o� function e��2!2 and to add the lost weight uniformly acrossthe total frequency range. Signi�cant damage can result if there is weight availablefor redistribution in f(!) at the high frequencies where ! is large relative to 1=2. Butin general, peak shifting is minimal in the uncorrelated jitter case. Our simulationsabove support this.Having concluded that independent sampling error in time does not a�ect theestimation of frequency much, we study the impact of correlated timing errors on theestimation of spectra. We simulate time si from a uniform distribution U(si�1; si+1)for i = 1; 2; :::: subject to si�1 < si < si+1. This prior only requires si be strictlyincreasing and it introduces a highly correlated Markov structure to the timing.Figure 9.7 shows that both peaks under the equally spaced time scale shift to theright under dependent simulation error.The intuition of the above results is clear. When the original time is being\squeezed", the frequency estimate will be higher and the peaks of the posteriordistribution for the wavelength will shift to the left. When the original time is being\stretched out", the frequency estimate will be lower and the peaks of the posteriordistribution for the wavelength will shift to the right.Moore and Thomson (1991) also addressed the case of correlated sampling errors.Although exact relationship between new spectral density function under jittered112
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Equation (9.3) models the observation yi as a single harmonic model. Now si,i = 1; ::n is a sequence of random variables. Such a model directly counts for timinguncertainty in the model. We conduct inference on frequency and the timing sequencesi using the observed yi.We develop a Bayesian approach to conduct inference on model (9.3). We augmentthe time sequence S = fsig to the parameter space � = fa; b; v; !g. We can nowsample the joint posterior p(�; SjY ) by iterating through� p(Sj�; Y )� p(�jS; Y )We have developed procedures to sample p(�jS; Y ) in the previous chapters. Tosample p(Sj�; Y ), we write p(Sj�; Y ) / p(S)p(Y jS; �)Here we assume that S is independent of the model parameters �. Because of thenonlinear structure of p(Y jS; �), direct sampling of the joint posterior p(Sj�; Y ) isnot feasible. Therefore, we further break the joint posterior p(s1; s2; :::snj�; Y ) intop(sijSi; �; Y ) for i = 1; 2::n where Si = fs1; s2; ::si�1; si+1; ::sng. Since p(Y jS; �) canbe factored into products of individual terms p(yijsi; �), the conditional distributionp(sijSi; �; Y ) can be written asp(sijSi; �; Y ) / p(sijSi)p(yijsi; �)This can be viewed as the product of the prior for each si given other sj and thelikelihood for yi given Si and �. We now study the choice of prior p(sijSi).As discussed earlier, one choice of the prior p(sijSi) is the independent uniformdistribution p(sijSi) = U(ti � �; ti + �) where ti is the equally spaced time. Thismay represent truncation errors from measurement. A more 
exible prior is the114



dependent uniform distribution p(sijSi) = U(si�1; si+1). This prior only requires astrict increasing order of the time. Some more sophisticated priors can be constructedbased on knowledge of the collecting process of the core and the calibration process.For example, in the plot of oxygen data series, it can be seen that the top of eachquasi-cycle is not smooth, but rather 
at. A cosine wave of the equally spaced timewill not capture such behaviour. However, it can be approximated by a cosine waveunder a new time scale. Such new time scale within each period looks like the topplot in Figure 9.8. It can be seen that after such time transformation, a smoothcosine wave will look like the \
at-top" wave in the bottom of Figure 9.8.
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Figure 9.8: An example of true time vs. equally spaced timeWe discuss a possible prior for such timing scales. Let T = ft1; t2; :::tng denotethe equally spaced time. We assume the observation time is subject to normal errorsaround the equally spaced time T. So we would like to have a normal prior on the115



observation times S. A few things we know about S are: s1; s2; ::sn has to be positivelyincreasing; s is distributed with a mean function of t; the function s(t) is a periodicfunction. so s(t + �) = s(t). To have normal priors, we need to have unboundedvariables which can be both positive and negative. A possible transformation of Sto satisfy this requirement is to assign the log of s(t)=(� � s(t)) to have a normaldistribution; notice that 0 < s(t) < � since s(t+ �) = s(t). The mean of the normaldistribution is m(t) = log m�(t)��m�(t)where m�(t) = t mod �.In summary, let x(t) = log s(t)��s(t) . The prior for p(sijSi) can be speci�ed byx(t) � N(m(t); v)for some variance v. If v is small, x(t) is close to m(t) and so s(t) is near t mod� and the deformation is small. If v is large, x(t) is far from m(t) and so s(t) is farfrom t mod � and the deformation is large.The last constraint is that s(t) should be increasing in t, so x(ti�1) < x(ti) <x(ti+1). This leads to a truncated normal for p(x(ti)jotherx(ti); �). sox(t) � N(m(t); !) x(ti�1) < x(ti) < x(ti+1)� 0 otherwiseWe can easily sample from a truncated normal distribution, and since p(yijsi; �)is easy to evaluate, we can use a Metropolis algorithm to sample the posterior116



p(sijSi; �; Y ) / p(sijSi)p(yijsi; �)We can use p(sijSi) as a candidate generating distribution to deliver a candidatesample s�i . The sample is either accepted or rejected according to the Metropolisacceptance ratio: �(s�i ; si) = minf1; p(yijs�i ; �)p(yijsi; �) gwhere si is the last sample from p(sijSi; �; Y ). This ratio depends only on theevaluation of the conditional normal densities determining the involved likelihoodratio which can be easily computed.In summary, the simulation approach to formally address the problem of uncertaintiming can be developed by a Gibbs Sampler iterating through� p(Sj�; Y )� p(�jS; Y )The sampling of p(Sj�; Y ) can be further broken down to sample p(sijSi; �; Y ) i =1; 2; :::; n, iteratively. Each p(sijSi; �; Y ) can be sampled by a Metropolis algorithmusing the prior distribution as the candidate generating distribution.9.4 ApplicationWe now apply the harmonic model with unknown timing to analyze the Oxygen dataand the EEG data studied before.We �rst apply the harmonic model with unknown timing to the oxygen data. Asdiscussed earlier, the oxygen data is subject to severe timing error. Possible causesof such error include errors in the sampling of the core including the quality of thecore, and the error from the unequal sampling of the core and gaps between cores117



which resulted in the uncertainty of the inter-core depth. Other errors come fromcarbon-14 calibration of the core, and the error from the interpolation of unequal timescale to equal time scale. Possible priors discussed earlier include the independenterror and the dependent error. We now compare the frequency estimate using afour-frequency harmonic model without timing error, with independent timing errorand with dependent timing error. The focus is on how the introduction and di�erentchoices of priors of timing error a�ects the estimation of frequency and what inferenceon timing can be drawn from the data using di�erent priors.
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years), obliquity of the earth's orbit (40-42k years) and periodicities in eccentricity(95-100k years and 120-130k years).Second, we apply a four-frequency harmonic model with independent timing errorto the same oxygen data. Namely, the prior for each si is p(si) = U(ti� 0:3; ti+ 0:3)for ti = 1; 2::::n. Figure 9.10 shows the trajactory plot of the model parameters fromthe Gibbs Sampler. Figure 9.11 shows the histograms of the four wavelengths. Themeans and variances of the four wavelengths are �1 = 23:65, v1 = 0:0048, �2 = 41:13,v2 = 0:02, �3 = 95:79, v3 = 0:387, �4 = 121:52, v4 = 0:62. These statistics arevery close to those without timing error. It can be seen that the introduction ofindependent sampling error to time does not change the estimates of the frequenciesmuch. A plot of the inferred time versus the equally spaced time scale in Figure9.12 shows small variations of the inferred time around the equally spaced time. Thescale of the variation is within �0:04, which corresponds to �120 years of variation.Comparing with the range used in the prior �0:3, this means the data is suggestinga smaller amount of variation in the sampling error of time given the model.
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Chapter 10Conclusions and Future directionsIn this part of the disseration, we develop Bayesian analysis on spectral estimationin the frequency domain of time series analysis. This disseration provides an e�-cient and uni�ed simulation procedure for frequency estimation under a harmonicmodel framework. The focus of the frequency estimation in a harmonic model isthe sampling of the posterior distribution of the frequencies. We developed a mode-based Metropolis sampling approach to tackle the challenging problem of samplinghighly multi-modal and high dimensional posterior distribution of the frequency. Themethod can be generalized to sample other multi-modal posterior distributions. TheGibbs Sampler approach developed in this disseration for frequency estimation allowsthe development of more sophosticated dynamics for frequency domain time seriesanalysis.Many interesting directions for further developments of the harmonic models de-veloped in this disseration exist. An immediate extension is models that allow time-varying amplitudes and phases. Many cyclical time series data exbihit time-varyingamplitudes and phases. For example, the EEG data studied extensively in this dis-seration exibihits time-varying amplitudes in some channels. We have studied suchfeatures in an alternative way using �xed-frequency model with uncertain time. Dy-namic models in the time domain that allow time-varying amplitudes and phaseshave been developed by Prado and West (1997), for example. Developments of suchmodels in the frequency domain is still an untouched area of research.Motivated by timing issues in geological time series study, we developed a har-monic model which incorporates timing uncertainty. This model is a good illustration130



of the use of Gibbs Sampler for frequency estimation in complex models. The modeldirectly accounts for timing uncertainty in the estimation of frequencies. This allowsthe study of the impact on timing uncertainty on the estimation of frequencies. Atthe mean time, inference on time given observed data can also be achieved. Geol-ogy has come a long way without an accurate time scale. Knowledge on possiblecauses of timing uncetainty in the sampling and measurement procedures usuallyexist, the model developed in this disseration incorporates such knowledge into theprior distribution and conducts formal inference on timing and frequency estimationusing such knowledge. We experimented with di�erent choices of priors which repre-sent di�erent types of sampling errors in time. Our results indicate choice of priorshave obvious impact on the inference on time. When prior knowledge indicates in-dependent sampling errors of time, our study shows such timing error does not havesigni�cant impact of the estimation of frequencies especially when the frequencies arenot very high. If prior knowledge indicates dependent sampling errors of time, ourstudy shows such timing error may change the estimation of frequencies dramaticallyespecially when the timing errors are highly correlated. Also, our study found veryslow convergence of the Gibbs sampler in models with highly correlated timing errors.This is similar to the slow convergence problem in the stochastic volatility modelswhen volatilities are highly correlated. In that case, we were able to approximatethe nonlinear model by mixtures of dynamic linear models and apply existing sim-ulation methods for dynamic linear models to speed up convergence. However, thesame technique can not be transferred to the nonlinear structure presented in theharmonic model. Innovative simulation techniques need to be developed.The model with timing uncertainty is a good lead to a more general topic, timedeformation contexts which model the usual dynamic processes from a di�erent pointof view, the dynamics of the evolution of time. This has both theoretical impact on131



the link between linear stationary process and nonlinear nonstationary process andpractical applications where the inference on timing is of interest. For example, theoperational time which relates to news releases in the �nancial market versus thecalendar time when prices of various �nancial instruments are recorded. In the studyof the application of time deformation models, identifying the actual deformationprocess of time is crucial. The simulation methods developed in our model lay abasis for future research.
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