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Abstract

In this dissertation, we propose a new class of Bayesian method for nonparametric

function estimation. We denote the new model as Lévy adaptive regression kernel

or “LARK”. The LARK model is based on a stochastic expansion of functions in

an overcomplete dictionary, which can be formulated as a stochastic integration

problem with a random measure.

The unknown function is represented as a weighted sum of kernel or generator

functions with arbitrary location parameters. Scaling parameters of the kernels

are also taken as location specific and thus are adaptive, as with wavelets bases

and dictionaries. Lévy random fields are introduced to construct prior distribu-

tions on the unknown functions, which lead to the specification of a joint prior

distribution for the number of kernels, kernel regression coefficients and kernel as-

sociated parameters. Under Gaussian errors, the problem may be formulated as a

sparse regression problem, with regularization induced through the Lévy random

field prior. To make posterior inference on the unknown functions, a reversible

jump MCMC algorithm is developed.

The LARK framework developed in this dissertation can be used to model

both Gaussian and nonstationary Non-Gaussian data. The adaptability of the

kernels is especially useful for modeling spatially inhomogeneous functions. Unlike

many wavelet based methods, there is no requirement that the data are equally

spaced. The RJ-MCMC algorithm developed for fitting the LARK model provides

an automatic search mechanism for finding sparse representations of a function.

Fitting a LARK model does not involve matrix calculation, thus the model is

amenable to large data set.
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We start with reviews on some basic properties and theories of Lévy pro-

cesses in Chapter 1, which serve as the theoretical foundations for this disserta-

tion. Chapter 2 develops LARK model in the context of nonparametric regression

problems. Both simulated and real examples are used to illustrate the method.

Chapter 3 applies LARK model for multivariate air pollutant time series mod-

eling. Based on LARK framework, we develop a new class of spatio-temporal

models in Chapter 4. A simulated data set and SO2 monitoring data from the

Environmental Protection Agency are used to demonstrate the model. We con-

clude the dissertation in Chapter 5 by summarizing the LARK framework and

pointing out directions for future research.
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2.2.3 Construction of Lévy Random Fields L[g] . . . . . . . . . 21

2.2.4 Extending L[k] . . . . . . . . . . . . . . . . . . . . . . . . 22
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Chapter 1

Introduction

In this dissertation, we explore a new class of Bayesian nonparametric regression

models based on Lévy process priors. We denote it as Lévy adaptive regression ker-

nel or “LARK”. The LARK framework falls into the general category of stochastic

expansions of functions in an overcomplete dictionary (Abramovich et al., 2000).

The unknown function is represented as a weighted sum of kernel functions at

arbitrary locations, with the number of kernels treated as a free parameter. Scal-

ing parameters of the kernels are taken as location specific and thus are adaptive.

The join prior distribution for the number of kernels, kernel regression coefficients

and kernel associated parameters is constructed through Lévy random fields. We

highlight both the modeling and computational advantage of LARK models. In

addition, variety of simulated and real data sets are analysed to illustrate LARK

models. We start by reviewing theory of Lévy processes on which LARK models

are built. We then introduce the LARK model in the context of nonparamet-

ric regression problem followed by discussion of its applications for constructing

flexible time series models and spatio-temporal models.
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1.1 Lévy Processes

A Lévy process is a continuous-time analogue of a random walk. Theory of general

Lévy processes is receiving increasing attention due to its flexibility in modeling

jumps, extremes and other anomalous behavior of phenomena. Lévy processes

have been successfully applied in many fields such as statistics, finance and physics.

In this section we first recall the definition of a Lévy process and some of its

basic properties. We then discuss gamma process in detail since it is the prior

process we used in this dissertation. The connection between gamma processes

and Bayesian adaptive kernel methods is introduced together with a couple of

illustrative examples.

Definition 1.1. (Lévy process) Let P be a probability measure on (Ω,F). X =

{Xt} for t ≥ 0 is said to be a Lévy process for (Ω,F ,P) if

1. X has independent increments.

2. X0 = 0 almost surely.

3. X is stochastically continuous, i.e., for any s, t ≥ 0, Xt+s−Xs
P→ 0 as t→ 0

4. X is time homogeneous, i.e., for t, s ≥ 0, the law of Xt+s − Xs does not

depend on s.

5. X is right continuous with left limits almost surely.

Without 5, X is said to be a Lévy process in law. It can be proved that each Lévy

process in law has a modification that is a Lévy process, where modifications are

defined as:

Definition 1.2. Two stochastic processes {Xt} and {Yt} are modifications of each

other if P(Xt = Yt) = 1 for all t.

2



So, we consider two processes identical in law as the same process. Let φX(u) ≡

E[eiuX ] be the characteristic function for a random variable X. It can be shown

that, for a Lévy process Xt, φXt
(u) = (φX1(u))

t. So, the marginal distribution of

a Lévy process Xt is determined by X1.

There is a strong relationship between Lévy processes and infinitely divisible

distributions, which we shall define now:

Definition 1.3. A random variable X is infinitely divisible (ID) if, ∀n ∈ N, there

is an i.i.d. sequence X1, X2, · · · , Xn, such that X
d
= X1 +X2 + · · · +Xn.

The following theorem links infinitely divisible distributions to Lévy processes:

Theorem 1.1. For any random variable Z, the following conditions are equiva-

lent:

1. Z is infinitely divisible.

2. Z
d
= X1 for some Lévy process Xt.

Actually, there is a one-to-one correspondence between the collection of all in-

finitely divisible distributions and the collection of all Lévy processes.(Sato, 1999).

Next, we state a result that is one of the most fundamental one in probability the-

ory:

Theorem 1.2. (Lévy-Khinchine Formula) (Jacod and Shiryaev, 1987, p.75). X

is a random variable which is infinitely divisible, then for some a ∈ R, some

σ2 ≥ 0 and some σ-finite measure ν on R/0, s.t.
∫

R
(1 ∧ u2)ν(du) ≤ ∞. X has a

characteristic function of the form:

E[eiθX ] = exp

{

iθa− θ2σ2/2 +

∫

R

(eiθu − 1 − iθh(u))ν(du)

}

3



where h(u) = u + O(u2) near u = 0; if
∫

R
(1 ∧ |u|)ν(du) ≤ ∞, then we may take

h(u) = 0.

If the above representation exists, we call the measure ν Lévy measure. Here

are some examples of the characteristic functions and their corresponding Lévy

measures of some common infinitely divisible random variables:

Table 1.1: Several common infinitely divisible random variables and their corre-
sponding Lévy measures.

Distribution Log Chf Lévy measure

Po(λ) λ(eiω − 1) λδ1(du)

Ga(α, λ) −α log(1 − iλω) αe−λuu−1 du

C(γ, 0) −γ|ω| γ u−2 du

SαS(α, β, γ) −γ|ω|α[1 − iβ tan πα
2
sgn(ω)] cαγu

−1−α du

The main results stated above are for one dimensional case, but all the results

can be extended to higher dimensions.

Common Lévy processes include Brownian motion, compound Poisson pro-

cess, gamma process etc. A direct consequence of Lévy Khinchine theorem states

that any Lévy process can be decomposed into sum of a Brownian motion with a

drift and a pure jump process. Actually, Brownian motion with a drift term is the

only Lévy process that has continuous path. In this dissertation, we only consider

pure jump Lévy processes. In particular, we consider a class of increasing Lévy

processes Xt, which is usually called subordinators. For a subordinator, its asso-

ciated Lévy measure ν has the following interpretation. For a Borel measurable

4



set A ⊂ R+, the number of jumps of sizes (Xt−Xt−) ∈ A follows a Poisson distri-

bution with mean ν(A). Implicit in the Lévy-Khinchine theorem, a subordinator

Xt can be represented as a stochastic integral of a Poisson random measure on

R2
+. But first, we shall define a Poisson random field on Rd.

Definition 1.4. Let Π be a random subset of Rd and let N(A) denote the number

of points in {Π∩A}. A Poisson random field on Rd is a random countable subset

Π of Rd, such that:

1. for any disjoint measurable subsets A1, A2, · · · , An of Rd, the random vari-

ables N(A1), N(A2), · · · , N(An) are independent.

2. N(A) has Poisson distribution Po(µ(A)), where µ is a positive measure on

Rd.

If Xt is an increasing Lévy process, it can be shown that

Xt =

∫∫

R+×[0,t]

uN(du ds)

whereN(du ds) defines a Poisson random field on R2
+ with mean measure E[N(du ds)]

= ν(du ds), and ν(du ds) is the Lévy measure. More generally, for a Borel mea-

surable function ψ : T → R, where T is a bounded Borel subset of R+, we can

construct a stochastic integral with respect a Lévy random measure X(dt) as

follows:

X[ψ] ≡
∫

T

ψ(t)X(dt) ≡
∫∫

R+×T

uψ(t)N(du dt) (1.1)

If the integrability condition
∫

R
(|u| ∧ 1)ν(du) < ∞ satisfies, the characteristic

functional of X[ψ] is:

E
[

eiX[ψ]
]

= exp

{
∫∫

R+×T

(eiuψ(t) − 1)ν(du dt)

}
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1.2 Adaptive Kernel Methods and Gamma Pro-

cess Priors

In this section, we consider a particular type of Lévy process, i.e., a gamma pro-

cess, in detail. We then explain how a gamma process can be used to construct the

prior distribution for a wide class of models based on adaptive kernel smoothing.

We start with the conventional definition of a gamma process.

Definition 1.5. A gamma process GP(α, β) denotes a stochastic process Xt (t ≥

0) with the properties:

1. X0 = 0 a.s.

2. Xt has independent increments on disjoint intervals.

3. for any 0 ≤ s < t, Xt −Xs ∼ Ga(α(t− s), β).

where α() is the mean measure and β is the scale parameter. If a Lebesgue

measure is used for α, a gamma process Xt can be represented as a stochastic

integral:

Xt =

∫∫

R+×[0,t]

uN(du ds)

where N(du ds) denotes a Poisson random measure defined on R+×[0, T ] for some

T > 0, with mean measure:

E[N(du ds)] = ν(du)ds = αu−1e−βuds

where ν(du) denotes the Lévy measure associated with a gamma random variable.

So, for any ε > 0, a gamma process defined on [0, T ] can be viewed as jumps of

size u ≥ ε arriving as a Poisson process with rate Tν([ε,∞)) = T
∫∞

ε
αu−1e−βu du.
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Notice that ν([0,∞)) =
∫∞

0
αe−βuu−1du = ∞. This means that there are

infinitely many jumps in a unit interval with probability one. But for any ε > 0,

ν([ε,∞)) < ∞. So we can choose a threshold ε > 0 and the number of jumps of

sizes bigger than ε is finite with probability one. There are still infinitely many

of jumps of sizes smaller than ε, but they add up to a finite number, since for

a gamma process,
∫∞

0
(1 ∧ u)ν(du) < ∞. We can thus approximate the Lévy

measure ν(du) by νε(du):

νε(du) ≡ αe−βuu−1I{u≥ε}du .

Let ∆ε denotes the sum of jumps of sizes smaller than ε for a gamma process

defined on a unit interval, we have

E[∆ε] =

∫ ε

0

uαe−βuu−1du = α(1 − e−βu)/β ≤ αε

V[∆ε] =

∫ ε

0

u2αe−βuu−1du =
α

β2
(1 − e−βε − εβe−βε) ≤ αε2/2,

thus we can approximate a gamma random measure arbitrarily well with arbitrar-

ily small ε.

Conventional gamma processes only allow positive jumps. But the Poisson

representation offers a nice way to extend the conventional gamma process to

allow negative jumps:

Definition 1.6. Xt (t ≥ 0) is said to be a symmetric gamma process GP s(α, β)

if:

Xt ≡
∫∫

R×[0,t]

|u|N(du ds)

where N(du ds) denotes a Poisson random field on R × [0, T ] with mean measure

E[N(du ds)] =
∫∞

−∞
α|u|−1e−β|u| du for some α > 0 and β > 0.
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It is useful to allow negative jumps in certain applications, as we will show a few

examples in Chapter 2.

With Poisson representation, we can easily extend one dimensional gamma

processes to d dimensional gamma random fields.

Definition 1.7. A gamma random field Γ is a continuous (in probability) linear

operator that assigns random variables Γ[ψ] for bounded Borel measurable func-

tions ψ defined on some subset S ⊂ Rd, such that Γ[IA] ∼ Ga(α|A|, β) (A being a

Borel set in S and |A| being the size of A.)

We can construct a gamma random field Γ through a Poisson random field:

Γ[ψ] ≡
∫∫

R+×S

ψ(s)uN(du ds) (1.2)

where N(du ds) defines a Poisson random field on R+ × S with mean measure

E[N(du ds)] = αu−1e−βuds

The Poisson representation suggests an elegant way to sample from a gamma

random field, as was discovered by Wolpert and Ickstadt (1998), and is named

as Inverse Lévy Measure (ILM). We state below a simplified version of the ILM

procedure which suffices for the purpose of this dissertation. More general version

can be found in the cited paper.

1. Generate J independent identically distributed random variables {τ1, · · · , τJ},

where τj is uniformly distributed on S, a bounded subset of Rd.

2. Generate J successive jump times of a standard Poisson process {ξ1, · · · , ξJ}.

3. Set uj ≡ E−1
1 (ξj/α)/β, for j = 1, · · · , J .
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The random field Γ[IA] ≡
∑J

j=1 ujI{τj∈A}(τj) has the gamma random field distri-

bution Γ[IA] ∼ Ga(α |A|, β).

For a kernel function k(s; σ, θ) defined on S ×Θ, where S is a bounded subset

of Rd, s ∈ S, σ ∈ S and θ ∈ Θ, set f(s) by:

f(s) ≡ Γ[k(s; σ, θ)] ≡
∫∫

R+×Θ

uk(s; σ, θ)N(du dσ dθ) (1.3)

where N(du dσ dθ) defines a Poisson random field on R+ × S × Θ, with mean

measure E[du dσ dθ] = ν(du)dσπ(dθ) = αu−1e−βudσπ(dθ), where π(dθ) defines a

finite measure on Θ. The discrete nature of a Poisson random field allows the

following representation of Eqn. (1.3):

f(s) =

J
∑

j=1

ujk(s; σj, θj) (1.4)

In nonparametric regression context, Eqn. (1.4) can be viewed as a stochastic

expansion of a d-dimensional function f defined on S, i.e., f(s) is the sum of J

weighted kernel elements, with (u1, · · · , uJ) being the weights (coefficients) and

(σ1, · · · , σJ) being the locations of the J kernels. The kernels are adaptive since

at each location σj, the kernel has its own parameter θj. The number of kernels J

follows a Poisson distribution. Eqn. (1.4) is essentially an adaptive kernel model

since it can also be interpreted as J smoothing kernels smooth out J jumps with

magnitudes (u1, · · · , uJ). The gamma random field Γ defined on S×Θ governs the

joint probability distribution of (J, u1, · · · , uJ , σ1, · · · , σJ , θ1, · · · , θJ). In Bayesian

framework, Γ[k] serves as a natural prior distribution for functions defined on

S. It can generate wide classes of functions. We conclude this chapter by two

demonstration examples shown in Fig. (1.1) and Fig. (1.2). In the next three
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chapters, we discuss in detail the applications of the model defined in Eqn. (1.4)

in the areas of nonparametric regression, semiparametric time series modeling and

semiparametric spatio-temporal modeling.
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Figure 1.1: Gamma process and adaptive kernel smoothing in one dimension.
The upper left figure shows a realization of a GP(2.0, 1.0) defined on [0, 1]; the
upper right figure shows the kernel k(t; τ, λ) = e−λ|t−τ | putting at each jump, we
choose λ = 20.0 for all jumps; the lower left figure shows the kernel smoothing
of GP(2.0, 1.0); the lower right figure shows the observations generated by adding
white noise N(0, 0.152) to the mean curve at 100 equally spaced points.
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Figure 1.2: Gamma random field and adaptive kernel smoothing in two di-
mensions. The upper left figure shows a realization of a gamma random field
Γ(2.0, 0.5) defined on [0, 1]× [0, 1]; the upper right figure shows the spatial kernels

k(s; σ, λ) = e−λ||s−σ||
2
, we choose λ = 125.0 for all jumps; the lower left figure

shows the spatial surface obtained by kernel smoothing of Γ(2.0, 1.0); the lower
right figure shows the observations generated by adding white noise N(0, 0.252) to
the mean curve at 40 × 40 equally spaced grid points.
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Chapter 2

Lévy Adaptive Regression Kernels

2.1 Introduction

Suppose we have n noisy measurements Y1, . . . , Yn of an unknown real-valued

function f : X → R on some compact space X ,

Yi = f(xi) + ei ei
iid∼ N(0, σ2) (2.1)

observed at points xi ∈ X . In nonparametric regression models, the mean function

f(·) is often regarded as an element of some Hilbert space H of real-valued func-

tions on X , and is expressed as a linear combination of basis functions {gj} ⊂ H:

f(xi) =
∑

0≤j<J

gj(xi)βj (2.2)

with unknown coefficients in the expansion {βj}0≤j<J . There is a vast litera-

ture on classical and Bayesian approaches for estimating f from noisy data using

such methods as regression splines, Fourier expansions, wavelets expansions, and

kernel methods, including kernel regression and support (or relevance) vector ma-

chines (see Chu and Marron, 1991; Cristianini and Shawe-Taylor, 2000; Denison
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et al., 2002; Vidakovic, 1999; Wahba, 1990, 1992, for background and references).

Solutions using smoothing splines and support vector machines (among others)

generally use as many basis elements, J , as there are data points, n, but employ

regularization to avoid over-fitting. Sparser solutions (using fewer basis elements,

J < n) may be obtained through other choices of penalty in the regularization

problem, as in the LASSO (Tibshirani, 1996), or (often equivalently) through

choice of prior distributions, as in relevance vector machines (Tipping, 2001).

Sparse solutions may also be achieved by using variable selection techniques to

choose a few well-placed basis functions, perhaps in conjunction with regulariza-

tion (Chen et al., 1998; Denison et al., 1998; DiMatteo et al., 2001; Mallat and

Zhang, 1993; Johnstone and Silverman, 2005; Smith and Kohn, 1996; Wolfe et al.,

2004).

In most signal processing and other applications where functions exhibit non-

stationarity, no single (especially orthonormal) basis will lead to a sparse repre-

sentation (Donoho and Elad, 2003; Wolfe et al., 2004). Overcomplete dictionaries

and frames (Daubechies, 1992; Mallat and Zhang, 1993) provide a larger collection

of generating elements {gω}ω∈Ω than with a single basis for H, potentially allowing

for more effective signal extraction and data compression for functions. Examples

of overcomplete dictionaries include unions of bases, Gabor frames, nondecimated

or translational invariant wavelets, wavelet packets, or more general kernel func-

tions or generating functions g(x, ω) where ω ∈ Ω controls local or global features

of the generating function, such as translations, dilations, modulations, shape

parameters or other features. Because of the redundancy inherent in the over-

complete representation, coefficients for expansions using the complete dictionary

are no longer unique. This lack of uniqueness is advantageous, as it is possible to
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find a more parsimonious representation from the dictionary than those obtained

using any single basis.

In this paper, we develop a fully Bayesian method for the sparse regression

problem using overcomplete dictionaries. We begin in Section 2.2 by introducing

Lévy random fields, which are used to induce prior distributions for f ∈ H via a

kernel convolution with an infinitely divisible random prior measure. We denote

the new class of kernel models as Lévy adaptive regression kernel or “LARK”

models. The LARK framework allows both the number of kernels and kernel-

specific parameters to adapt to the unknown degree of sparsity in representing f .

For many Lévy measures, this results in a stochastic expansion with an infinite

number of terms. In Section 2.3 we provide an approximation to the Lévy random

field that permits tractable computation via a sequence of compound Poisson

random fields. Exploiting the construction of Lévy random fields through Poisson

random fields, we develop a hierarchical representation of the LARK model in

Section 2.4 and describe posterior inference for the LARK model using reversible

jump Markov chain Monte Carlo (RJ-MCMC) algorithms. We then compare our

LARK method to other procedures in a simulation study and on a real example

in Section 2.5. We conclude in Section 2.6 by contrasting the LARK formulation

with other Bayesian and regularization methods for nonparametric regression and

discussing possible extensions of the LARK model.

2.2 Prior Distributions

To make Bayesian inference about the unknown function f ∈ H of Eqn. (2.1), we

must propose a prior distribution on H for f , with f represented as an expansion

of dictionary elements g. Let Ω to be a complete separable metric space and
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choose a Borel measurable function g : X × Ω → R, and set gj(xi) = g(xi, ωj).

Possible choices for g(x, ω) include kernel functions, such as a Gaussian kernel

gG(x, ω) = exp{−1

2
λ(x− χ)2} (2.3)

with ω ≡ (χ, λ) ∈ X × R+ ≡ Ω, or a Laplace kernel

gL(x, ω) = exp{−λ|x− χ|} (2.4)

with ω and Ω defined as in the Gaussian case. However, there is no need to

restrict attention to symmetric kernels; asymmetric kernels, such as a one-sided

exponential

gE(x, ω) = exp{−λ|x− χ|}1{x>χ} (2.5)

are also of interest, for example, in modeling pollution dissipation over time.

Generating functions such as step functions (as in the Haar wavelet)

gH(x, ω) = I0<(x−χ)<λ (2.6)

with Ω ≡ [0, 1]×Λ, or continuous rescaling and shifting of other wavelet functions

φ(·),

gφ(x, ω) = λ1/2φ(λ(x− χ)) (2.7)

are other possibilities. In each of the examples above, the parameter λ controls

scaling of the function and χ is viewed as a location parameter. While we will

focus on the case X ⊂ R, generating functions g(·, ω) may be defined similarly for

higher dimensional spaces X .

As a slight extension of the basis expansion of Eqn. (2.2), set

f(x) ≡
∑

0≤j<J

g(x, ωj) βj (2.8)
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for a random number J ≤ ∞ of pairs βj ∈ R, ωj ∈ Ω. Note this is equivalent to

specifying a random (signed) Borel measure L(dω) =
∑

βjδωj
(dω) on Ω, giving

the equivalent representation:

f(x) =

∫

Ω

g(x, ω)L(dω). (2.9)

Thus to assign prior distributions on functions of the form (2.8), we need to

specify a prior distribution for the random measure L(dω). It is convenient to

view a random measure as a stochastic process or random field, L(·), indexed by

sets Ai, where (L(A1), . . . ,L(Ak)) is a random vector. Lévy random fields are

ideal for this purpose as they facilitate construction of non-negative functions, as

well as real valued functions, and, as we will see in section 2.4.1, are amenable to

posterior simulation.

2.2.1 Lévy Random Fields

For the random measure L(dω) and disjoint Borel sets Ai ⊂ Ω, the random vari-

ables L(Ai) =
∫

Ai
L(dω) will be independent, if we choose any positive number

ν+ > 0, any probability distribution π on R×Ω, and give J a Poisson distribution,

J ∼ Po(ν+), and, conditional on J , accord the (βj, ωj) ∈ R×Ω independent, iden-

tical distributions, (βj, ωj)
iid∼ π(dβ, dω). In that case, L will assign independent

infinitely-divisible (or ID) random variables L(Ai) to disjoint Borel sets Ai ⊂ Ω,

with characteristic functions

E [exp {itL(Ai)}] = exp

{
∫∫

R×Ai

(

eitβ − 1
)

ν(dβ, dω)

}

(2.10)

where ν(dβ, dω) = ν+π(dβ, dω) is the product of the Poisson rate ν+ for J and

the distribution π(dβ, dω) for {(βj, ωj)}. When they exist, each L(Ai) has mean

16



E[L(Ai)] =
∫∫

R×Ai
β ν(dβ, dω) and variance Var[L(Ai)] =

∫∫

R×Ai
β2 ν(dβ, dω).

Such a random measure L induces a continuous (in probability) linear mapping

g 7→ L[g]; the collection of {L[g] : x ∈ X , g ∈ G} is called a Lévy random field.

The random measure assigns random variables,

L[g] ≡
∫

Ω

g(x, ω)L(dω) =
∑

0≤j<J

g(x, ωj) βj (2.11)

to continuous compactly-supported functions g on X ×Ω, with the characteristic

functional for L[g] given by

E[exp (itL[g])] = exp

{
∫∫

R×Ω

(

eitg(x,ω)β − 1
)

ν(dβ, dω)

}

. (2.12)

When ν(R×Ω) is finite then L[g] is called a compound Poisson random field, and

J in the representation (2.11) is almost surely finite.

More generally, the “Lévy measure” ν(dβ, dω) in (2.10) need not be finite, for

the random measure L to exist and, as we will see, for the random field L[g] to be

well defined. In constructing a random measure, for any countable partition of a

Borel set A into disjoint sets Ai, L(A) =
∑

i L(Ai). In constructing prior distribu-

tions for L, it is convenient to use a family of distributions such that the random

variables L(Ai) are closed under summation for arbitrary partitions; indeed this

is a defining characteristic of infinitely divisible (ID) distributions. By the Lévy-

Khinchine representation theorem (Rajput and Rosiński, 1989, Proposition2.1),

an infinitely divisible (ID) random variable L(A) has characteristic function

E[exp (itL(A))] = exp

{

itδ(A) − 1

2
t2Σ(A) +

∫∫

R×A

(

eitβ − 1 − itβ1[−1,1](β)
)

ν(dβ, dω)

}

(2.13)

where the characteristic triplet of measures (Σ, ν, δ) uniquely characterizes the

random measure L: δ(dω) is a signed measure on Ω, Σ(dω) is a positive sigma-
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finite measure on Ω, and ν(dβ, dω) is a positive sigma-finite measure on R × Ω,

satisfying
∫∫

R×A

(1 ∧ β2)ν(dβ, dω) <∞ (2.14)

and ν({0}, A) = 0 (for more details on the non-stationary version of the clas-

sic Lévy-Khinchine (Khinchine and Lévy, 1936) representation see Jacod and

Shiryaev (1987, p. 75), Sato (1999, §9), Cont and Tankov (2004, pp. 457–459)

or Wolpert and Taqqu (2005)). This representation implies that the ID random

measure L may be decomposed into a deterministic “drift” term based on δ, a

continuous Gaussian component with covariance determined by the measure Σ,

and a discontinuous pure jump component given by the last expression with Lévy

measure ν, which controls the rate and size of jumps. When the Lévy measure

ν satisfies (2.14), but ν([−1, 1], A) is not finite, the term β1[−1,1](β) in the char-

acteristic function is required to “compensate” for the infinite number of small

jumps which are not absolutely summable. Other compensating functions may be

used, with an adjustment to δ. For every bounded measurable function h which

satisfies

h(β) = β +O(β2) (2.15)

for β in a neighborhood around 0, an equivalent version of the Lévy-Khinchine

representation may be obtained as

E[exp (itL[Ai])] = exp

{

itδh(Ai) −
1

2
t2Σ(Ai) +

∫∫

R×Ai

(

eitβ − 1 − it h(β)
)

ν(dβ, dω)

}

(2.16)

where

δh(dω) ≡ δ(dω) +

∫

R

(

h(β) − β1[−1,1](β)
)

ν(dβ, dω) (2.17)
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(see Jacod and Shiryaev (1987, Chapter II) or Cont and Tankov (2004, Chapter

3)). While ν and Σ are unaffected by the choice of compensator or truncation

function h, the so-called “drift” term δh is dependent on the choice of h, thus the

characteristic triplet (Σ, ν, δh) of the Lévy random field is given with respect to

the choice of compensator function h.

This more general construction of L has both continuous and discrete compo-

nents. Because we are interested in stochastic expansions of f with a countable

basis, from now on we will consider random measures without a Gaussian compo-

nent and take Σ ≡ 0 and set δ = 0. As suggested by the connection between the

compound Poisson random field and Lévy random field in section 2.2.1, a random

measure L(dω) may be formally constructed in terms of a (compensated) Poisson

random measure plus a deterministic drift component. Besides providing a more

intuitive understanding of the random measures, this representation is key to the

development of tractable posterior inference using stochastic computation.

2.2.2 Poisson Construction of Lévy Random Fields

As a generalization of the compound Poisson random field, we begin with a Lévy

measure ν(dβ, dω) satisfying a more restrictive condition

∫∫

R×A

(1 ∧ |β|) ν(dβ, dω) <∞ (2.18)

for every A ⊂ Ω. One can always construct a Poisson random measure N(dβ, dω)

on the space R × Ω with intensity (sometimes called control) measure ν(dβ, dω)

assigning independent Poisson-distributed random variables N(Bi) ∼ Po
(

µ(Bi)
)

to disjoint sets Bi ⊂ R × Ω of finite µ-measure. Then the random measure L on

Ω with characteristic triplet (0, ν, 0) may be constructed using a Poisson random
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measure on the larger space R × Ω as

L(Ai) =

∫

Ai

L(dω)
d
=

∫∫

R×Ai

βN(dβ, dω) =
∑

0≤j<J

βj1(βj ,ωj)(dβ, dω) (2.19)

(Wolpert and Taqqu, 2005). Intuitively, the Poisson measure N(dβ, dω) describes

the number of points or jumps in dβ × dω (or Ai), which occur with intensity

E[N(dβ, dω)] = ν(dβ, dω). With β interpreted as jump height, then L(Ai) is the

sum of all jumps in R×Ai. Of course, when J ≡ ν(R,Ω) = ∞, the Poisson measure

will have an infinite number of jumps. A discrete signed random measure L(dω)

will still make sense with infinitely many support points {ωj} with associated

jumps of size {βj}, as long as the jumps are absolutely summable. For J = ∞, we

must have only finitely many large (in absolute value) jumps, so for every ε > 0,

we require

ν((ε, ε)c,Ω) <∞. (2.20)

Thus while ν((−ε, ε),Ω) is infinite, leading to an infinite number of “small” jumps,

it will suffice to have
∫∫

(−ε,ε)×Ai

|β|ν(dβ, dω) <∞. (2.21)

to ensure the absolute summability of small jumps. For ν satisfying the more

restrictive integrability condition (2.18), the Poisson sums are all well defined, so

that no compensation is required (h = 0). For construction of a strictly positive

random measure L(dω) consisting solely of pure jumps, the condition in (2.18) is

actually necessary to guarantee absolute summability.

The situation is a little more delicate in the case where the Lévy measure does

not satisfy the condition in (2.18), but the more general condition in (2.14) holds.

For construction of signed measures, while absolute summability is sufficient for
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the existence of the characteristic function of L(Ai), it is not necessary as long

as there is a suitable “cancellation” of the infinite number of small positive and

negative jumps, which is achieved through the compensator h. The compensated

Poisson representation of (2.19) is

L[Ai] =

∫

Ai

L(dω)

d
=

∫

Ai

δh(dω) +

∫∫

R×Ai

(β − h(β)) N(dβ, dω) +

∫∫

R×Ai

h(β) Ñ (dβ, dω) (2.22)

=

∫∫

[−1,1]c×Ai

βN(dβ, dω) +

∫∫

[−1,1]×Ai

βÑ(dβ, dω) (2.23)

where Ñ(dβ, dω) ≡ N(dβ, dω)−ν(dβ, dω) is the compensated or centered Poisson

measure, with mean 0 (Sato, 1999, page 38). If ν((−ε, ε)c × Ai) <∞, then L[Ai]

may be equivalently represented as

L[Ai]
d
=

∫∫

(−ε,ε)c×Ai

βN(dβ, dω)−
∫∫

[−1,−ε)∪(ε,1]×Ai

βν(dβ, dω)+

∫∫

(−ε,ε)×Ai

βÑ(dβ, dω).

(2.24)

For jumps larger than ε in absolute value, there are only finitely many points,

thus the first integral is in fact a finite sum. So while
∫∫

(−ε,ε)×Ai
|β|ν(dβ, dω) is

infinite, the integral
∫∫

(−ε,ε)×Ai
β2ν(dβ, dω) is finite, as is the integral with respect

to the compensated Poisson measure Ñ (Samorodnitsky and Taqqu, 1994, page

158).

2.2.3 Construction of Lévy Random Fields L[g]

We start by considering initially G defined by continuous compactly-supported

functions g(x, ω) defined on X × Ω. This includes the Gaussian and Laplace

kernels defined over a compact Ω. Let L be an ID random measure with char-
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acteristic triplet (0, ν(dβ, dω), 0), where the Lévy measure ν(dβ, dω) satisfies the

integrability condition of (2.18). Then

L[g] =

∫

g(x, ω)L(dω) =

∫∫

R×Ω

g(x, ω) β N(dβ, dω) (2.25)

=
∑

0≤j<J

g(x, ω) βj,

where {(βj, ωj)} are the (at most countable) support-points of the Poisson measure

N(dβ, dω), thus justifying the expansion in (2.11) for the case with infinite Lévy

measure ν. If the Lévy measure satisfies the more general integrability condition(

2.14), then the random field is given by

L[g] =

∫

g(x, ω)L(dω) =

∫∫

(−1,1)c×Ω
g(x, ω)β N(dβ, dω)+

∫∫

[−1,1]×Ω
g(x, ω)β Ñ(dβ, dω)

(2.26)

The Poisson integrals in (2.25)and (2.26) are well-defined because g(x, ω)β is ν-

integrable on [−1, 1]×Ω and bounded on [−1, 1]c×Ω. For the general case, when

the Lévy measure satisfies (2.14), the characteristic functional may be written as

E[exp (itL[g])] = exp

{

it

∫

Ω

g(x, ω)δh(dω) +

∫∫

R×Ω

(

eitg(x,ω)β − 1 − it g(x, ω)h(β)
)

ν(dβ, dω)

}

(2.27)

where δh(dω) and h may be taken as 0 when condition (2.18) holds.

2.2.4 Extending L[k]

We will need to define integrals
∫

Ω
g(x, ω)L(dω) for measurable functions g :

R × Ω → R that may not be continuous or compactly-supported in the variable
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ω. While L[g] =
∫

Ω
g(ω)L(dω) is defined initially only for continuous compactly-

supported functions g on Ω, it can be extended uniquely to the linear space g of

limits of sequences {gn} for which L[gn] converges in probability. The necessary

and sufficient condition for a measurable function g : Ω → R to be in G, hence for

L[g] to be well defined, is that the real and imaginary parts of (2.27) exist and be

finite, i.e., that g ∈ L1(Ω, dδh) and

∫∫

R×Ω

∣

∣cos
(

g(ω)β
)

− 1
∣

∣ ν(dβ, dω) < ∞

∫∫

R×Ω

∣

∣sin
(

g(ω)β
)

− g(ω)h(β)
∣

∣ ν(dβ, dω) < ∞.

If ν satisfies equation (2.18), then it is enough that

∫∫

R×Ω

(

1 ∧ |β|
)

|g(ω)|ν(dβ, dω) <∞; (2.28)

thus G includes all bounded measurable functions. When compensation is neces-

sary, it is always sufficient for g that

∫∫

R×Ω

(

1 ∧ β2
)[

g(x, ω)2
]

ν(dβ, dω) <∞, (2.29)

(Samorodnitsky and Taqqu, 1994, page 158). More generally, Rajput and Rosiński

(1989) show that the space of functions that are integrable with respect to an ID

random measure L(dω) are certain Musielak-Orlicz modular spaces.

The integral L[g] has a finite expectation whenever it exists. Moments of

f(x) = L[g] , when they exist, are easy to compute from (2.22) or using the
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characteristic function (2.27):

E
{

f(x)
}

=

∫

Ω

g(x, ω)δh(dω) +

∫∫

R×Ω

g(x, ω)
[

β − h(β)
]

ν(dβ, dω)(2.30)

Cov
{

f(x1), f(x2)
}

=

∫∫

R×Ω

g(x1, ω) g(x2, ω) β2 ν(dβ, dω). (2.31)

2.2.5 Choice of Lévy Measure

We now consider specific examples of Lévy measures and the corresponding kernel

integrals. Well known examples of Lévy random fields include the Poisson ran-

dom field, Gamma random field, Cauchy and Stable random fields. The Gamma

random field is an example of a Lévy random field with infinite Lévy measure that

satisfies the integrability condition (2.18), where (in the stationary case)

ν(dβ, dω) = α(dω)β−1e−β/τ1{β>0} dβ (2.32)

for some σ-finite measure α(dω) on Ω, giving L(A) ∼ Ga(α(A), 1/τ) (with mean

α(A)τ) for Borel measurable A ⊂ Ω. Because the Gamma random measure has

only positive jumps, coefficients in any expansion will be non-negative. Combined

with generating functions that are always non-negative, this provides a direct way

to model non-negative functions without having to transform the response Y as

with Gaussian random field priors.

The measure in (2.32) may be generalized to allow construction of signed

measures using a symmetric version of the Lévy measure,

ν(dβ, dω) = α(dω)|β|−1e−|β|/τ dβ (2.33)

for β ∈ R, leading to symmetric Gamma random measures. Both the standard

positive and symmetric Gamma random measures satisfy the bound given by

(2.18), thus no compensation is required and h ≡ 0 and δh ≡ 0.
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The Gaussian kernels, Laplace, and exponential, given by equations (2.3),

(2.4), and (2.5), (2.3), respectively, with ω ≡ (χ, λ), are each in G for the stationary

Gamma (positive and symmetric) random field where α(dω) = α dχπ(λ) dλ, Ω =

R × R+ and π(λ) is a density with respect to Lebesgue measure on R+. Means

may be obtained directly from (2.30). In the case of the symmetric stationary

Gamma random field, E[f(x)] = 0 for any kernel that is in L1(Ω, α) and that is

symmetric in x and χ, i.e. g(x, ω) = k(λr(|x − χ|)) for some function r(·). This

holds more generally for any Lévy measure ν(dβ, dω) that is symmetric in β, as

long as the expectation exists. Specific examples of covariance functions may be

obtained from (2.31). For the Gaussian case, we obtain

Cov
[

f(x1), f(x2)
]

= 2ατ 2

∫

R+

√

π

λ
e−

λ(x1−x2)2

4 π(λ) dλ

which, in the case that λ ∼ Ga(a, b), simplifies to

Cov
[

f(x1), f(x2)
]

= 2ατ 2
√
πb

Γ(a− 1/2)

Γ(a)

[

1 +
(x1 − x2)

2

4b

]1/2−a

for a > 1/2 and b > 0. Using the Gamma prior on the scale parameter, λ, with

a > 1 and b > 0 the covariance function using the exponential kernel is

Cov
[

f(x1), f(x2)
]

= ατ 2

∫

R+

1

λ
e−λ|x1−x2|π(λ)dλ

=
ατ 2b

a− 1

[

1 +
|x1 − x2|

b

]1−a
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and, similarly, the covariance function is

Cov
[

f(x1), f(x2)
]

= 2ατ 2

∫

R+

1

λ
e−λ|x1−x2|

(

1 + λ|x1 − x2|
)

π(λ)dλ

= 2ατ 2 a|x1 − x2| + b

(a− 1)
[

1 + |x1−x2|
b

]a

for the Laplace kernel.

The symmetric α-stable (SαS) for 0 < α < 1 is another example of a Lévy

random field with infinite Lévy measure

ν(dβ, dω) = cαγ(dω)|β|−1−α dβ

for some constant cα > 0 and sigma finite measure γ, giving L[A] ∼ St(α, 0, γ(A), 0).

The construction of SαS random fields with 1 ≤ α < 2 (including the Cauchy,

with α = 1) requires a compensation function. For the choice 1|β|<1β, (or any

h that is an odd function satisfying the condition (2.15)), however, the term δh

is identically zero, so that no “drift” term is required in the measure L. In the

symmetric stable case, where 0 < α < 2, it is enough that g ∈ Lα(Ω, dγ) so that

the function f(x) is well defined.

2.3 Approximating Kernel Integrals

If ν(R × Ω) is finite the number J = N(R ×K) of support points in the random

measure L will almost surely be finite and the ID random measure L may be

constructed by generating the number of support point J , and given J , generate

26



the random support points and jump heights of the distribution as follows:

J ∼ Po
(

ν(R × Ω)
)

(βj, ωj) | J iid∼ π(βj, ωj) ≡
ν(dβj, dωj)

ν(R,Ω)
for j = 1, . . . , J.

In the case of infinite Lévy measure, J will be infinite almost surely, so that

while the integrals L[g] will be well behaved, stochastic expansions with an infinite

number of terms are not practical for simulation or posterior inference for f .

However, when the integrability condition (2.18) holds, we can always approximate

L and L[g] by choosing some small ε > 0, and replacing R in Eqn. (2.25) by [−ε, ε]c.

Thus,

Lε[g] ≡
∫∫

[−ε,ε]c×Ω

g(ω)β N(dβ, dω)
d
=

∫∫

R×Ω

g(ω)β Nε(dβ, dω) (2.34)

where Nε is a Poisson measure on R × Ω with intensity measure νε(dβ, dω) ≡

ν(dβ, dω)1{|β|>ε}. Thus the Lévy random field L[g] may be approximated by

a sequence of compound Poisson random fields, Lε[g] where Lε[g] converges in

distribution to L[g] as ε→ 0. This in fact gives us a simple way to specify the prior

and simulate from L[g] (approximately), as for any fixed ε > 0, J ∼ Po
(

νε(R×Ω)
)

will be finite almost surely. As Lε has a finite Lévy measure, we can generate Lε

as in the compound Poisson case,

J | ε ∼ Po
(

ν(−[ε, ε]c × Ω)
)

(2.35)

(βj, ωj) | J, ε iid∼ π(βj, ωj | ε) ≡
ν(dβj, dωj)1βj∈[−ε,ε]c

ν([−ε, ε]c,Ω)
(2.36)

When ν satisfies the more general integrability condition, we may proceed

similarly, but may be required to adjust for compensation. As ν([−ε, ε]c,Ω) <∞
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for ε > 0, L may be approximated based on the first two terms of Eqn. (2.24),

Lε[g] =

∫∫

[−ε,ε]c×Ω

g(x, ω)β N(dβ, dω)−
∫∫

([−1,−ε]∪[ε,1])×Ω

g(x, ω)β ν(dβ, dω).

(2.37)

The Poisson integral may be simulated using Eqns. (2.35, 2.36), while the second

term is a deterministic integral that may be evaluated either analytically or via

simulation. In the case of the Cauchy random field or other SαS random fields, the

second term is actually zero for ε > 0, due to the symmetry in the Lévy measure,

thus L[g] may be approximated directly by Eqns. (2.35, 2.36).

Rather than “truncating” the support of the Lévy measure, we note that any

other sequence of finite measures νa(dβ, dω) defined on R×Ω where lima νa(dβ, dω)

→ ν(dβ, dω) could be used instead, and La[g] will also converge in distribution

to L[g] due to the convergence of the characteristic functionals. In both cases,

L[g] is approximated by a sequence of compound Poisson random fields. Unlike

the approximation νε, however, these may place positive probability on βj in

an ε neighborhood around zero. The approximation based on the truncated Lévy

measure maintains the same relative prior density for βjε, and sets to zero only the

smallest coefficients. This focus on the large magnitude coefficients is desirable,

as we are interested in potentially sparse expansions.

2.4 Sparse Lévy Adaptive Regression Kernel

Models

Exploiting the Poisson construction of the Lévy random field L[g] for Lévy mea-

sures satisfying Eqn. (2.18), we may express the LARK model given by Eqn. (2.1)

and Eqns. (2.35)–(2.36) in a hierarchical fashion. For the remainder of the paper,
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we consider the specific case of the symmetric stationary Gamma model; other

Lévy measures may be implemented similarly using Eqns. (2.35)–(2.37). When

compensation is required, we may use the same hierarchical model, but will need

to include a deterministic offset to f(x) corresponding to the second term in

Eqn. (2.37). However, as noted in the previous section, for the Cauchy and other

SαS random fields, this offset will be zero, so that we may proceed directly with the

hierarchical specification given below with the appropriate changes in measures.

In the symmetric stationary Gamma model in Eqn. (2.32), the Lévy measure

is decomposed into a product measure, so that in the approximate compound

Poisson formulation of the problem, βj and the components of ωj are independent.

The normalizing constant for the distribution of β and ω as well as the mean of

the Poisson distribution for J depend on ν([−ε, ε]c,Ω) = α(|X | × Ω)E1(ε/τ),

where E1(x) ≡
∫∞

x
u−1e−udu denotes the exponential integral function. In this

parameterization, τ controls the size of the jumps β, but because of the truncation,

also affects the number of jumps. Because a priori the appropriate scaling of the

jumps is unknown, this makes selection of an objective value of ε more difficult.

We also would prefer to have the number of jumps be independent from their

size in the approximate model, as they are in the limiting case. To resolve these

issues, we work instead with the equivalent random field (in that L[g] has the

same characteristic functional) expressed as

L[g] = τ

∫∫

R×Ω

g(x, ω)βN(dβ, dω)

where now E[N(dβ, dω)] = ν(dβ, dω) = α(dω)|β|−1e−|β|. In this version, the jumps

β are scale free, and taking ε = 0.01 (for example) makes sense across problems of

different scales. To complete the choice of Lévy measure, we take α(dω) to be a
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product measure on X ×R+ where α(dω) ≡ αdχπλ(dλ), where χ is uniform on X

and λ has a Gamma distribution on R+. With this Lévy measure, the hierarchical

model is expressed as

Yi | ω,β, J, ε
iid∼ N(f(xi), σ

2) where (2.38)

f(xi) ≡ β0 + τ
J
∑

j=1

g(xi, ωj)βj (2.39)

(βj, ωj) | J, ε iid∼ π(βj, ωj | ε) ≡
νε(dβj, dωj)

νε(R,Ω)
(2.40)

J | ε ∼ Po(νε(R,Ω)) where νε(R,Ω) = 2α|X |E1(ε) (2.41)

where βj, χj, λj are independent and identically distributed from the following

distributions:

πβ(βj|ε) =
|βj|−1e−|βj |

2E1(ε)
, βj ∈ [−ε, ε]c (2.42)

πχ(χj) = 1/|X |, χj ∈ X (2.43)

λj ∼ Ga(aλ, bλ), λj ∈ R+. (2.44)

For the scalar parameters (α, τ, β0, σ
2), we use the following distributions

α ∼ Ga(aα, bα), α ∈ R+

τ ∼ Ga(aτ , bτ ), τ ∈ R+

π(β0, σ
2) ∝ 1/σ2

We place a Gamma prior on the hyperparameter α in the Gamma Lévy measure,

leading to Negative-Binomial distribution for J given ε. This corresponds to a

mixture of Lévy processes and provides more robustness to the choice of hyper-

parameters for the distribution of J for a given ε. We select the values aα and
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bα based on quantiles of J , for example by fixing a prior probability that J = 0

and fixing the 95th percentile of J . The Gamma prior on τ controls the overall

jump size. Finally, in the absence of prior information, we adopt the independent

Jefferey’s prior for (β0, σ
2),

π(β0, σ
2) ∝ 1

σ2
(2.45)

as both parameters are present in all “models”.

2.4.1 Posterior Inference

Given observations Y, the joint posterior distribution of all unknowns under the

LARK model is

p(β,ω, J, α, τ, β0, σ
2 | Y) ∝

(

1

σ2

)−n
2
−1 n
∏

i=1

exp







− 1

2σ2



Yi − β0 − τ
∑

j

g(xi, ωj)βj





2




exp(−νε(R × Ω))

J !







J
∏

j=1

νε(dβj , dωj)







πα(α)πτ (τ). (2.46)

While both β0 and σ2 may be integrated out analytically, the posterior distri-

bution or full conditional distributions of the other components do not exist in

closed form. As we have fixed dimensional parameters (β0, α, σ
2) and varying di-

mensional parameters (βj, ωj), j = 1, · · · , J , the dimension of the parameter space

is not fixed and trans-dimensional Markov chain Monte Carlo (MCMC), such as

a reversible jump MCMC algorithm (Green, 1995; Wolpert et al., 2003; DiMat-

teo et al., 2001) must be used to provide samples from Eqn. (2.46) for posterior

inference.

The RJ-MCMC procedure for sampling varying dimensional parameters typ-

ically involves three types of moves: Birth, Death and Update. A birth step
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involves adding a new point (β∗, ω∗) to ((β1, ω1), · · · , (βJ , ωJ)) and increasing J

by one; a death step involves selecting an index j ∈ {1, · · · , J} and removing

(βj, ωj) from ((β1, ω1), · · · , (βJ , ωJ)) and decreasing J by one; an update step

involves selecting a point (βj, ωj) and updating its values (β∗
j , ω

∗
j ). A Metropolis-

Hastings algorithm is used to sample the fixed dimensional parameters. Details

of the MCMC algorithm may be found in the Appendix.

We now turn our attention to simulated and real examples to illustrate the

performance of the LARK models in practice.

2.5 Examples and Illustrations

In this section, we conducted a simulated study to compare the performance of

the LARK model to other nonparametric methods. An application to a motor-

cycle crash experiment data is then presented to illustrate the methodology with

unequally spaced data.

2.5.1 Simulation Study

We carried out a simulation study for the model on the four test functions com-

monly used in the wavelet literature: Blocks, Bumps, Doppler and Heavysine

(Donoho and Johnstone, 1994). For each function, data were generated by adding

independent Gaussian random noise N(0, σ2) to the true target function f at

1024 equally spaced points on [0, 10]. The value of σ was chosen such that the

root signal-to-noise ratio was seven, where (RSNR ≡
√

∫

(f(x) − ¯f(x)) dx/σ and

f̄ ≡
∫

f(x) dx, as in Abramovich et al. (1998). For each function we generate 100

replicate data sets to evaluate the performance of LARK and other methods.
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According to the features of the test functions, we use a different kernel for

each test function, as indicated in Table 2.1. In Section 2.4, we described the prior

distributions for the LARK model in the symmetric stationary Gamma random

field. In order to implement the model, we need to specify several hyperparame-

ters. Sensitivity analysis shows that within a wide range, the results are insensitive

to the choice of ε; for this analysis we have used ε = 0.5. We use a Ga(aλ, bλ) dis-

tribution (with mean aλ/bλ) as the prior distribution for λj. Because each kernel

has its own scale parameter, the choice of aλ and bλ is important; this is similar

to the issue of bandwidth selection problem in other kernel smoothing methods.

A large λ is necessary to fit a very “spiky” part of a curve, while small values of λ

are needed to fit smoother part of a curve, thus the prior distribution of λ needs

to support an adequate range of values in order to fit a spatially inhomogeneous

curve. For the model to be well defined with a finite covariance function (for the

Gaussian kernel), we need aλ > 1. By specifying 25% and 75% quantiles (for

example) of Ga(aλ, bλ) based on a range of widths or support of the kernel, we

can solve for the corresponding aλ and bλ. In this example, a Ga(2, 0.1) (with

mean being 20) is used for λj. Lastly, we need to specify the prior distributions

for α and τ . Fixing α a priori leads to a Poisson prior Po(2αE1(ε)X ) for J , which

can be too concentrated because of the mean/variance relationship. Taking a

Gamma prior distribution for α and integrating over α, leads to a Negative Bino-

mial prior distribution for J , which is more robust to prior misspecification J , as

the Negative Binomial has a larger variance than Poisson distribution. A Gamma

distribution, Ga(aα, bα), is used as the prior for α, which controls the number of

kernels in a unit interval. A priori, the expected number of kernels per unit in-

terval is 2αE1(ε). The smaller α is, the larger models are penalized. One way to
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Test Function Kernel g(xi;χj, λj)

blocks I{0<(xi−χj)<λj}

bumps e−λj |xi−χj |

doppler e−0.5λ2
j (xi−χj)2

heavysine e−0.5λ2
j (xi−χj)

2

I{|xi−χj |<2.0}

Table 2.1: Kernel functions used for four test functions

choose an appropriate aα and bα is through specifying 25% and 75% quantiles of

J and solving for the corresponding aα and bα. We choose aα = 2 and bα = 0.5,

which in in this example corresponds to 6 and 20 for 25% and 75% percentiles,

respectively, of J a priori. The height of any function at x = χj is τβj. Recall

that βj is scale free such that scale parameter τ controls the overall size of jump.

To complete our specification, a Ga(2.0, 0.2) is used as the prior distribution for

τ to cover the observed range of the data.

We compare LARK with a number of wavelet-based methods. The Translational-

Invariant Marginal Maximum Likelihood (TI-MML) approach of Johnstone and

Silverman (2005) is one of the best wavelet methods currently available for inho-

mogeneous function estimation using an overcomplete representation. In addition

to TI-MML using the Laplace prior, we compare LARK with a number of other

methods previously used for these functions, including BayesThresh (Abramovich

et al., 1998), GlobalSure, Cross-validation (Nason, 1996) and False Discovery Rate

(Abramovich and Benjamini, 1996).

The performance of each method was measured by its average mean square

error (AMSE), which is defined as the average of MSE = n−1
∑n

i=1(f̂(xi)−f(xi))
2,

over the 100 replicated simulations. Overall, the performance of the LARK model

is excellent (Table 2.2). In terms of AMSE, LARK outperformed all methods. In
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Method Blocks Bumps HeavySine Doppler

LARK 0.027 0.092 0.041 0.117
Laplace TI-MML 0.096 0.307 0.118 0.202

BayesThresh 0.38 0.45 0.10 0.16
Cross-validation 0.41 0.46 0.10 0.21

GlobalSure 0.42 0.48 0.12 0.21
False Discovery Rate 0.96 1.23 0.12 0.39

Table 2.2: Average over 100 replications of mean square errors of the four test
functions for different models and methods. Laplace TI-MML the Translational
Invariant Maximum Marginal Likelihood approach using a Laplace prior from
Johnstone and Silverman (2005). The results for BayesThresh, Cross-validation,
GlobalSure and False Discovery Rate are from Abramovich et al. (1998).

Fig. (2.1), we compare the reconstruction between TI-MML and LARK. The left

and the right columns are the constructions using Laplace TI-MML and LARK

models, respectively. The figures show that LARK generally gives a better visual

reconstruction in the sense that the fit is smoother and less noisy than the Laplace.

The adaptive smoothing provided by LARK preserves local features such as peaks,

while eliminating variation due to noise in other regions. Another important

advantage the LARK model offers is the sparsity. On average, it takes the LARK

model 14.0, 15.0, 20.9 and 32.4 kernels to represent blocks, bumps, heavysine

and doppler functions, while TI-MML uses 284.8, 570.4, 0.6 and 147.9 non-zero

coefficients to reconstruct the same functions (this is in addition to the 1024 non-

zero coefficients for the scaling function, which are not thresholded in the TI-MML

approach). Overall, the LARK model provides excellent MSE performance while

identifying sparse representations.
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Figure 2.1: Comparison of fitted functions using TI-MML Laplace (John-
stone and Silverman, 2005) (left column) and Lévy Adaptive Regression Kernels
(LARK) (right column) for the four test functions. From row one to row four, the
test functions are Blocks, Bumps, Doppler and Heavysine, respectively.
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2.5.2 Examples: Motorcycle Crash Data

To further illustrate the method, we consider the motorcycle crash experiment

used by Silverman(1985) ( Fig. (2.2)). There are 133 observations, however, the

time points of the observations are not equally spaced and there are repeated

observations at some time points. While, it is clear from the figure that the

variance of accelerations at different time points is different, we are not going to

address this issue here and for demonstrative purposes, assume an independent

normal error model as the focus of this paper is to discern the general shape of

the curve and concentrate on modeling inhomogeneous features of the curve. An

interesting extension of the LARK model, but beyond the scope of this paper, is

to simultaneously model the error process, in addition to the mean function.

In the simulation study, the power ρ in the kernel g(x;χ, λ, ρ) = exp{−λ|x −

χ|ρ} is fixed and chosen based on the characteristics of the test functions. Rather

than making an ad hoc choice of ρ, the Bayesian paradigm permits treating ρ

as an unknown parameter and making inference regarding it from the data. For

the motorcycle example, we assume a common, but unknown ρ for all kernels. A

relatively concentrated Gamma prior Ga(2.0, 0.75) is assumed for ρ, which includes

the Laplace and Gaussian kernels. We summarize the results in Fig. (2.2). The

solid line is the fitted mean and the dotted lines are 5% and 95% pointwise credible

intervals for the fitted mean respectively. We see clearly from the figure that the

fitted mean captures the general pattern of the data very well, with minimal

boundary effects. The model is parsimonious in the sense we only need 4 kernels

on average to fit the data. In Fig. (2.3), we show the histogram of posterior draws

of ρ from the MCMC output, and overlay the histogram with the prior density of

ρ. The posterior mean of ρ is around 3, with most of the mass of the posterior
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distribution above 2 (the Gaussian kernel).
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Figure 2.2: Results of the LARK model for the motorcycle crash data: the circles
represent the observations; the solid line is the posterior mean and the dotted lines
are 5% and 95% Bayesian credible intervals for the mean function.

2.6 Discussion

In this paper, we have developed a fully Bayesian adaptive kernel method, LARK,

for nonparametric function estimation. The LARK model is based on a stochastic

expansion of functions in an overcomplete dictionary, which may be formulated as

a stochastic integration problem with a random measure. The unknown function

may be approximated as a finite sum of kernel functions at arbitrary locations

where the number of kernels is a free parameter. The kernel parameters are

location-specific and thus are adaptively updated given the data. The adapt-
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Figure 2.3: Histogram of posterior samples of the kernel power parameter ρ: the
solid line is the prior density function for ρ.

ability of the kernels is especially useful for modeling “spatially” inhomogeneous

functions. Unlike many wavelet based methods, there is no requirement that the

data are equally spaced. As with wavelets, the adaptive smoothing using LARK

preserves local features such as high peaks and jumps. The RJ-MCMC algorithm

developed for fitting LARK models provides an automatic search mechanism for

finding sparse representations of a function.

2.6.1 Relation to Other Sparse Regression Methods

Bayesian shrinkage and variable selection have been used successfully to achieve

sparsity in standard finite dimensional regression formulations, and provide a

canonical framework for sparse representations in nonparametric models (see Clyde

and George (2004) for an overview). One of the first examples, Smith and Kohn

(1996) adopted the conjugate Stochastic Search Variable Selection (SSVS) frame-
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work of George and McCulloch (1997) to nonparametric cubic spline regression.

In the case of a cubic spline model in one dimension,

f(x) = β0 + β1x + β2x
2 + β3x

3 +

J
∑

j=1

(x− x̃j)
3
+βj+3

where (z)+ = max(0, z) and x̃1, . . . , x̃J are potential knot locations, typically

chosen at some subset of observed quantiles of the data. The model with all knots

can be re-expressed in matrix form as a linear model

Y = Xβ + ε, ε ∼ Nn(0, σ
2In)

with fixed design matrix X derived from the polynomial and spline. Bayesian

variable selection techniques are then used to identify the basis vectors or knot

locations with non-zero coefficients. This is achieved by introducing a J dimen-

sional vector γ = (γ1, . . . γJ)
T of binary random variables that indicate which of

the spline coefficients are non-zero. Under a particular γ, the model for the data

is

Y = Xγβγ + ε

where βγ are the nonzero elements of β and Xγ is the design matrix with columns

of X corresponding to those elements of γ that are equal to one. This framework

provides the canonical model for soft and hard thresholding of wavelet coefficients

Abramovich et al. (1998); Clyde et al. (1998). In overcomplete Gabor frames,

Wolfe et al. (2004) use the SSVS framework, but allow the number of frame of

vectors J to exceed n.

Many examples in the literature use independent Bernoulli priors on the in-

clusion indicators, γj
iid∼ Ber(π), in which case, the induced prior on the model
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dimension J =
∑

j γj is Bin(J, π). Letting J go to infinity, such that Jπ converges

to a constant µ, we arrive at a Poisson distribution for the number of knots, with

expected number of knots µ, as in the LARK framework. DiMatteo et al. (2001)

adopt Poisson (or truncated Poisson) prior distributions on the number of knots

and allow random knot locations by using a uniform prior on knot locations. The

free-knot framework allows more flexibility over models with knots restricted to

certain quantiles, as both the number of knots and their locations may adapt

based on the observed data, and is the closest to the LARK framework.

The main difference in the LARK formulation and the above approaches con-

cerns prior specifications on the coefficients in the expansion f and choice of

dictionary elements. Letting Xγ denote the kγ × n design matrix conditional

on the knot locations with non-zero coefficients βγ, Smith and Kohn (1996) and

DiMatteo et al. (2001) use Zellner’s (1986) g-prior

βγ | σ2 ∼ Nkγ
(0, gσ2(XT

γ
Xγ)−1)

with hyperparameter g. This prior has been widely adapted for variable selec-

tion because of its computational tractability and that it requires specification of

only one hyperparameter g. DiMatteo et al. (2001) take g = n as in the unit-

information prior of Kass and Wasserman (1995), while Smith and Kohn (1996)

use g in the range of 10 to 1000 after standardizing Xγ. While the g-prior formula-

tion permits efficient MCMC computation, a drawback is that model comparisons

based on g-priors have several undesirable inconsistency properties as discussed

in Berger and Pericchi (2001); Berger et al. (2003); Liang et al. (2005). Paciorek

(2006) shows that the use of the unit information prior, a special case of the g-

prior with g = n, may lead to serious distortion of the posterior distributions in

complex, high dimensional problems, like the free-knot spline model.
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An alternative framework is based on independent prior distributions. Clyde

and George (2000); Tipping (2001); Johnstone and Silverman (2004); Wolfe et al.

(2004), for example, achieve sparsity using independent heavy-tailed priors de-

rived as scale mixtures of normals. The LARK framework, which uses indepen-

dent heavy tailed priors on the coefficients in the expansion, however, does not

a priori restrict support for ω to a lattice as in wavelets (decimated and non-

decimated) and Gabor frames, and thus, as in free-knot splines, allows greater

adaptation. Abramovich et al. (2000) also propose stochastic expansions for over-

complete wavelet dictionaries allowing arbitrary locations and scales. They use

normal priors on the coefficients in the expansion, but with restrictions on the

variances to ensure that the random functions are in a pre-specified Besov space

with probability one. While this model is also a special case of the LARK model,

in practice, a priori determination of the parameters of the Besov space is diffi-

cult. Secondly, the heavy-tailed priors induced by the two-sided Gamma process

or Cauchy process provide additional robustness over normal priors. Viewing the

log of Eqn. (2.46) as a penalized log-likelihood, the approximate Lévy measure

may be seen as inducing a sparsity generating penalty on the addition of terms to

the function f(x), similar (or stronger in fact) to the L1 penalties of the LASSO

(Tibshirani, 1996).

The Gamma and Cauchy processes are both examples of non-finite Lévy mea-

sures, and in order to restrict the expansion to a finite number of terms, we must

restrict |β| > ε. This may be related to the idea of practical significance in the

non-conjugate version of the SSVS algorithm George and McCulloch (1993); Chip-

man et al. (1997) where the prior distribution on β was a mixture of two normal

distributions; one fairly dispersed and the other concentrated around zero. The
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variance of the concentrated distribution was chosen to reflect values of the coef-

ficient that for all practical purposes indicated that the variable could be dropped

from the model. If the coefficient had a high posterior probability of coming from

the concentrated component of the mixture, then that variable would be dropped.

Elicitation of the choice of ε in the LARK framework can be based on practical

significance for estimating f in the presence of noise.

2.6.2 Extensions

Besides the model presented in Section 2.4, there are a number of possible exten-

sions. Although we have introduced the LARK model in the context of functions

on a one dimensional space, the method may be readily adapted to model higher

dimensional data. Current applications include extending the LARK framework

for multiple time series modeling and spatio-temporal modeling and non-Gaussian

likelihoods. While we have focused on normal error models, the LARK model pro-

vides a flexible way to model non-Gaussian data as well, with a nominal change

in the RJ-MCMC algorithm.

In much higher dimensional problems, computational complexity increases and

methods to improve the MCMC algorithms will be of importance. In the current

computational algorithm, we start the MCMC chain at the initial values which are

sampled from priors. Choosing good starting values, for example, starting with

estimates based on kernels at observed quantiles of the data, deserves further

investigation, since it can drastically speed up the convergence. Other improve-

ments include proposals for the addition of a new kernel. In the current BIRTH

step, we propose a new kernel location at a random location generated from the

prior. Because of the local nature of the kernels, one possibility is to bias proposed

43



locations based on residuals of the current model fit, thus making it more likely

that we add a component in any area where the model exhibits more lack of fit.

The kernels used in this paper are from symmetric exponential family distri-

butions. It will be interesting to consider a wider class of kernels such as wavelets

and splines. Although we have used symmetrical kernel functions in the examples,

this is not a restriction for the LARK model. In Section 2.5, we used different ker-

nel functions for different test functions. Automatic selection of kernel functions

may be handled by adding another level of adaptability in the model, such as a

“mark”. For example, we can introduce categorical variables (γ1, · · · , γJ), where

γj ∈ {1, · · · , K}, indicating kernels from K different families. We can combine

all K kernel functions this way and a fully Bayesian approach allows the com-

putational algorithm to choose the optimal kernel at each location based on the

data. Finally, we have used a symmetric Gamma random field to construct a

joint prior distribution for the model parameters. Other prior processes such as

Cauchy process and Stable process are also good candidates, thus it will be of

interest to compare the performance (empirical and theoretical) of different ID

random measures.
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Chapter 3

An Adaptive Kernel Smoothing

Approach to Modeling Multivariate

Time Series of Air Pollutants

3.1 Introduction

PM stands for particulate matter and is also known as particle pollution. PM

is a complex mixture of extremely small particles and liquid droplets. It is one

of the six criteria pollutants, which consist of Ozone (O3), Particulate Matter

(PM), Carbon Monoxide (CO), Sulfur Dioxide (SO2), Nitrogen Oxides (NOx) and

Lead (Pb). PM has primary and secondary sources depending on their origins.

Primary PM is emitted directly into the air whereas secondary PM is formed in

the atmosphere through chemical and physical conversion of gaseous precursors.

In typical urban areas, two broad sets of source categories exist: one is combustion

sources, such as automobile exhaust and emissions from power plants; the other is

mechanical forces such as prevailing wind and vehicle traffic. The Environmental

Protection Agency (EPA) categorizes PM by its size: one is PM10 (coarse particles

that can usually be found near roadways and dusty industries) that have diameters
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range from 2.5 to 10 micrometers; the other is PM2.5 (fine particles that can usually

be found in smoke and haze) that have diameters smaller than 2.5 micrometers.

According to EPA, particles that are 10 micrometers in diameter or smaller

are particularly harmful because once inhaled, these particles can have serious

adverse effects on the health of heart and lungs. PM exposure can affect breathing,

aggravate existing respiratory and cardiovascular disease and damage the body’s

immune system. A comprehensive report of the particulate matter can be found

by EPA (2004). For the 20 largest U.S. cities, Dominici et al. (2000) found that

a 10µg/m3 increase in PM10 on the current day was associated with a 0.05 to

0.92 percent increasing elderly mortality. Review articles on the epidemiological

studies of the health effects of PM can be found by Thurston (1996), Dockery and

Pope (1994) and Bell et al. (2004).

Developing sensible time series models for PM is essential for studying its

health effects. It is well known that meteorological conditions have strong influ-

ence on ambient pollutant concentrations. For example, in a dessert area, strong

prevailing wind can bring sand storm and raise PM level significantly. Cold winter

temperatures usually result in higher PM concentrations due to increased energy

use. PM and other major air pollutants in urban area have common sources

and their concentrations may be correlated. For example, combustion of sulfur-

containing fuels is common source for both PM and sulfur dioxide. Studies have

associated other criteria pollutants such as CO and O3 with adverse health ef-

fects. Thus, developing multivariate time series models for ambient pollutants

that incorporate meteorological covariates is essential.

In this paper, we develop a class of time series models that are based on

adaptive kernel smoothing. The adaptive kernel approach we will describe serves
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two purposes: the first is to offer a satisfying time series model that can capture

the stylized features of air pollutants data; the second is to build a model that has

good predictive power. We start with a univariate time series model for hourly

PM10 data and then extend it for a bivariate time series model for hourly PM10

and CO data.

3.2 Univariate Time Series Modeling for Hourly

PM10 Data

In this section a time series model based on adaptive kernel smoothing method is

developed and applied to model PM10 time series data.

3.2.1 The Model

The data we use are from Maricopa county in Arizona. Particulate matter is a year

round problem in Maricopa county and in 1997 the EPA reclassified the county’s

non-attainment area as “serious”. For illustrative purpose, 30 consecutive days of

hourly PM10 data are selected from one monitor starting on April 8, 1998. The

data are displayed in Fig. (3.1). The 30 day hourly PM10 shows both slowly varying

time trend and sharply falling local peaks. This stylized feature makes it difficult

to apply classic ARMA type of time series models. Since PM10 concentration is

non-negative, a log transformation of the data is needed to apply a Gaussian time

series model. However, a log transformation is not a particularly good choice

since it removes the high peaks which are one of the most important features

to model. The non-stationary, non-Gaussian features make the adaptive kernel

method (LARK) developed by Tu et al. (2005) a suitable building block for this
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Figure 3.1: Time series plot of 30 days of hourly PM10 concentration measure-
ments collected at one monitor in Maricopa county, Arizona. The starting day is
April 8, 1998.

type of data sets. We assume a time series of the form:

Y (t) = µ(t) + ε(t), µ(t) > 0 , (3.1)

where Y (t) denotes the observation at time t, µ(t) is the mean process and ε(t)

is the measurement error process. In this paper, ε(t) is considered to be a Gaus-

sian white noise process and the focus is placed on modeling time trend µ(t).

Exploratory analysis shows daily pattern embedded in the data, thus the mean

process µ(t) is modeled by decomposing it into aperiodic and daily periodic parts:

µ(t) = b0 + b1

∫

Θ1∪Θ2

k(t; θ) L(dθ) , (3.2)
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where the underlying non-stationary Lévy random field L(dθ) defined on the dis-

joint subspaces Θ1 (the aperiodic part) and Θ2 (the daily periodic part) are in-

dependent. Baseline level is modeled via b0, and b1 is used to make the latent

process L(dθ) unit free. Weekly, monthly or any other seasonal behavior can

be modeled using this approach. Let Θ ≡ Θ1 ∪ Θ2 = {[0, T1] × R+ × {1}} ∪

{[0, T2] × R+ × {2}} for T2 = 24 and T1 > 24. Each point θ ∈ Θ has three com-

ponents, θ = (τ, λ, a) with τ ∈ [0, T1] ∪ [0, T2], λ ∈ R+ and a ∈ {1, 2}. With

Poisson construction of Lévy random field (For more details, please refer to Ja-

cod and Shiryaev (1987), Sato (1999), or Wolpert and Taqqu (2005).), we can

represent Eqn. (3.2) by a Poisson stochastic integral:

µ(t) = b0 + b1

∫∫

R+×Θ

u k(t; θ)N(du, dθ) , (3.3)

where N(du, dθ) defines a Poisson random measure on the space R+ × Θ with

mean measure:

E[N(du, dθ)] ≡ νε(du, dθ) ≡ (α1Iθ∈Θ1(θ) + α2Iθ∈Θ2(θ))u
−1e−uI[ε,∞)(u) duπ(dθ) .

The positive measure νε(du, dθ) is usually called Lévy measure, and π(dθ) is a finite

measure defined on Θ. For any ε > 0, it can be shown that
∫∫

R+×Θ
νε(du, dθ) <∞.

An equivalent representation of Eqn. (3.3) is:

µ(t) = b0 + b1

J
∑

j=1

ujk(t; τj, λj, aj) , (3.4)

where the smoothing kernel is defined as:

k(t; τj, λj, aj) =











e−λj |t−τj | aj = 1

e
−λj[(t−τj) mod 24]

 

1+e
−2λj[12− (t−τj) mod 24]

!

1−e−24λj
aj = 2 .

(3.5)
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The derivation of the kernel for the periodic jumps (aj = 2) is detailed in the

appendix B.1. The representation of µ(t) specified by Eqn. (3.4) and Eqn. (3.5) has

a natural interpretation: the mean process µ(t) is driven by J latent jumps with

magnitudes u1, · · · , uJ at time τ1, · · · , τJ , where J is a free parameter. Particulate

matter includes dust, dirt, soot, smoke and liquid droplets directly emitted into

the air by sources such as factories, power plants, cars, construction activity, fires

and natural windblown dust. A latent jump j can be interpreted as a point source

emitted and peaks with magnitude uj at time τj and dissipates exponentially with

rate λj. A categorical variable aj is introduced to label each jump j. A jump j

with aj = 1 is an aperiodic jump, and it only occurs once on [0, T1]; a jump j

with aj = 2 is a daily periodic jump, and it recurs at the same time τj everyday.

Periodic jumps are used to model cyclic pattern of the data.

Daily meteorological data are available in the same area where the monitors

are located. Incorporating meteorological covariates into the model helps build

more sensible model with better predictive power. We introduce daily intensity

factor d1, · · · , ddT/24e, which are modeled by meteorological variables X as follows:

dl ∼ LN(X′
lγ, σ

2
d), l = 1, 2, · · · , dT/24e .

The meteorological covariates matrix X are orthogonalized daily temperature,

wind speed, their interaction term and their the quadratic terms. Precipitation is

another important meteorological factor that influences PM10 level. We did not

include it in the model due to the fact that precipitation is negligible in April

and May in Maricopa, Arizona. The daily factors d serve as scale parameters for

daily periodic jumps, which can inflate or deflate the magnitude of a daily jump,

reflecting the belief that the meteorological factors are one of the driving forces

that influence air pollutants level.
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The Bayesian paradigm is chosen for inference and the final model can be

represented in the following hierarchical fashion:

Y (ti) = µ(ti) + ε(ti), µ(ti) > 0, for i = 1, · · · , n

ε(ti)
iid∼ N(0, σ2)

µ(ti) = b0 + b1

J
∑

j=1

[

ujk(ti; θj)I{aj=1}(aj) + ddti/24eujk(ti; θj)I{aj=2}(aj)
]

(uj, θj) | J, ε iid∼ π(uj, θj | ε) ≡
νε(du, dθ)

νε(R+ × Θ)

J ∼ Po

(

K
∑

k=1

αkTkE1(ε)

)

where uj and components of θj are independently and identically distributed from

the following distributions:

π(uj | ε) =
u−1
j e−uj

E1(ε)
I[ε,∞)(uj), uj ∈ [ε,∞)

π(λj) ∼ Ga(αλ, βλ)

π(τj|aj) ∼ Un[0, Taj
]

π(aj) =
K
∏

k=1

p
I{aj=k}(aj)

k , aj ∈ {1, · · · , K}, pk =
αkTk

∑K
m=1 αmTm

, k = 1, · · · , K .
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The distributions of the rest of the parameters are as follows:

log(dl) ∼ N(x′
lγ, σ

2
d), l = 1, · · · , dtn/24e

π(b0) ∼ Ga(αb0 , βb0)

π(b1) ∼ Ga(αb1 , βb1)

π(γ, σ2
d) ∼ 1

σ2
d

π(σ2) ∼ 1

σ2
,

where E1(ε) ≡
∫∞

ε
u−1e−u du, which is called the exponential integral function,

vector xl is the meteorological data for day l. We justify the choice of p1, · · · , pK
(in the univariate daily model, K = 2) by introducing K auxiliary variables

Jk =

J
∑

j=1

I{aj=k}(aj), for k = 1, 2, · · · , K ,

where Jk represents the number of type k jumps. A priori, the mean of Jk is set

to be αkTkE1(ε). Note that the expectation of Jk can be calculated through an

alternative way:

E[Jk] = E[E[Jk |J ]] = E

[

E

[

J
∑

j=1

Iaj=k(aj) |J
]]

= E[Jpk] = pkE[J ] ,

such that,

pk =
E[Jk]

E[J ]
=

αkTk
∑K

m=1 αmTm
k = 1, 2, · · · , K .

The above specification of pk satisfies the conditions that p1, · · · , pK ≥ 0 and
∑K

k=1 pk = 1.

52



To finish the model specification we need to choose hyperpriors and hyperpa-

rameters. Cut-off value ε controls the minimum size of latent jump. The scale

parameter b1 makes the size of latent jump unit free. Simulation studies show

that the result is normally insensitive to ε within a wide range of values. In this

paper, we have used ε = 0.5. The expected number of type k jumps in a unit

time interval is αkE1(ε). If we fix αk, k = 1, · · · , K, the prior distribution for Jk

is Poisson:

Jk | αk ∼ Po(αkE1(ε)Tk), k = 1, · · · , K ,

which is a relatively concentrated prior distribution. Instead, a Gamma distribu-

tion is used as the prior for αk:

αk ∼ Ga(aαk
, bαk

), k = 1, · · · , K .

We can show that the marginal distribution of Jk is:

π(Jk) =
Γ(Jk + aαk

)

Γ(aαk
)Γ(Jk + 1)

[

bαk

bαk
+ E1(ε)Tk

]aαk
[

1 − bαk

bαk
+ E1(ε)Tk

]Jk

.

If aαk
is chosen to be a positive integer, Jk follows a Negative-Binomial distribu-

tion. Negative-Binomial distribution is a more dispersed distribution compared

to its Poisson counterpart. The prior mean and variance of Jk is:

E[Jk] =
aαk

E1(ε)Tk
bαk

, V[Jk] = E[Jk]

(

1 +
E[Jk]

aαk

)

.

By choosing prior mean and variance for Jk, we can solve the corresponding aαk

and bαk
. The kernel parameter λj controls the decay rate of a latent jump. We

fix αλ to be a constant and assumes a log Normal prior for βλ:

log βλ ∼ N(mb, vb) .
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With experts’ opinion, we can choose the 10%, 50% and 90% quantiles of λj,

and solve the corresponding values of αλ, mb and vb. Numerical procedures are

used since explicit solutions are not available. A Gamma distribution Ga(αb0 , βb0)

(with mean αb0/βb0) is chosen as the prior for b0, which serves as the baseline level.

We set E[b0] = ȳobs and V[b0] to be some large multiple of E[b0], and (αb0 , βb0)

can be solved correspondingly. The values of (αb1 , βb1) are chosen such that prior

distribution of µ(t) covers the range of the observations.

3.2.2 Posterior Simulation

The posterior inference is investigated through MCMC procedure. Since J , the

number of latent jumps, is treated as a free parameter, the dimension of the

parameter space varies. A birth-death type of reversible-jump MCMC algorithm

(Green, 1995) is implemented to sample the varying dimensional parameters. The

detailed algorithm to update varying dimensional parameters can be found in the

paper by Tu et al. (2005). In the appendix B.2, we detailed the MCMC sampling

scheme for fixed dimensional parameters.

3.2.3 Forecasting

In this section, the forecasting method for the time series model is discussed. Let

y ≡ (y1, y2, · · · , yn) denote the data observed on the time interval [0, T ]. In a

Bayesian framework, predicting Y (t) for t ∈ [T, T + ∆T ] amounts to finding the

predictive distribution [Y (t) |y]. Let ω ≡ ({uj, θj}j≤J , b0, b1, ddt/24e, J) denotes the

parameter vector on which µ(t) depends. Note that:

[Y (t) | y] =

∫

[Y (t) | µ(t), σ2] [µ(t) | ω] [ω | y] [σ2|y] dµ(t)dωdσ2 . (3.6)

54



Dependent samples from [Y (t) |y] can be obtained using a Monte Carlo approach.

Posterior samples of (b0, b1, σ
2,γ, σ2

d), and posterior samples of ({uj, θj}j≤J , J)

that are associated with daily periodic jumps and with aperiodic jumps that oc-

cur in the interval [0, T ] on which we have observations, are available through

fitting the model, and we denote them by: (b̃0
(m)
, b̃1

(m)
, σ̃2(m)

, {ũj(m), θ̃j
(m)}j≤J̃(m),

J̃ (m), γ̃(m), σ̃d
2(m)

), for m = 1, 2, · · · ,M , where m denotes the mth thinned poste-

rior samples. Posterior samples of ({uj, θj}j≤J , J) that are associated with ape-

riodic jumps in the interval (T, T + ∆T ] are obtained from their prior distribu-

tions (conditioning on the hyperparameters), since there are no observations in

(T, T+∆T ]. We denote them by ({ŭj(m), θ̆j
(m)}j≤J̆(m), J̆ (m)), which can be obtained

by: first draw J̆ (m) ∼ Po(ᾰ
(m)
1 ∆TE1(ε)); fix aj = 1 since it is for the aperiodic

part; conditioning on J̆ (m), we can sample {u(m)
j , τ

(m)
j , λ

(m)
j }j≤J̆(m) from the prior

distribution as we specified in Section 3.2.1. The hyperparameters (ᾰ
(m)
1 , β̆

(m)
λ ) are

available from model fitting. We can use a composition sampling scheme to draw

samples from Eqn. (3.6) through a hierarchical fashion:

d
(m)
l ∼ N(x′

lγ̃
(m), σ̃d

2(m)
), l = dt/24e

µ(m)(t) = b̃0
(m)

+ b̃1
(m)

J̆(m)
∑

j=1

ŭ
(m)
j k(t; θ̆

(m)
j )I

{ă
(m)
j =1}

(ã
(m)
j )

+ b̃1
(m)

J̃(m)
∑

j=1

[

ũ
(m)
j k(t; θ̃

(m)
j )I

{ã
(m)
j =1}

(ã
(m)
j ) + d

(m)
l ũ

(m)
j k(t; θ̃

(m)
j )I

{ã
(m)
j =2}

(ã
(m)
j )

]

y(m)(t) ∼ N(µ(m)(t), σ̃2(m)
),

for m = 1, 2, · · · ,M , where weather forecast including wind-speed and tempera-

ture for day l is used to calculate xl. The collection
{

y(1)(t), y(2)(t), · · · , y(M)(t)
}

are samples from the posterior predictive density [Y (t)|y], which can be used to
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obtain a point estimate and credible interval for Y (t), among others.

3.2.4 Results

We fit the model specified in Section 3.2.1 to a real data set consisting of 30

consecutive days of hourly PM10 data. There are seven missing values in the 720

observations. We first discuss the hyperparameters used in this example. The

cutoff value ε is chosen to be 0.15 in this example. Let λ0.1, λ0.5 and λ0.9 denote

10%, 50% and 90% quantiles of λj, respectively. We set:

exp(−24λ0.1) = 0.1 =⇒ λ0.1 = 0.01

exp(−2.0λ0.5) = 0.1 =⇒ λ0.5 = 1.15

exp(−0.5λ0.9) = 0.1 =⇒ λ0.9 = 4.6 ,

λ0.1, λ0.5 and λ0.9 are chosen such that the time for a latent point source decaying

to 10% of its maximum intensity is 24, 2 and 0.15 hours, respectively. Analytical

solutions for the corresponding αλ, mb and vb do not exist, so a numerical pro-

cedure based on a grid search is used. For each grid point (αλ, mb, vb), we can

simulate N realizations of λ based on the specified priors and calculate the 10%,

50% and 90% quantiles of λ. Then we calculate l2-distance between the vector

(λ0.1, λ0.5, λ0.9) and (0.01, 1.15, 4.6). The values of (αλ, mb, vb) are chosen such

that this l2-distance is minimized. Following this procedure, αλ, mb and vb are

chosen to be 2.3, 0.53, and 0.76, respectively. We choose aα1 = aα2 = 1.0 and

bα1 = bα2 = 2.0, which corresponds to about one jump per hour in expectation

for both periodic and aperiodic components, a priori. We run the MCMC chain

for 100, 000 iterations, with the first 25, 000 iterations discarded as burn-in. The

remaining samples are used for posterior inference.
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Figure 3.2: Model fit of 30 days of hourly PM10 data. The solid line represents
the posterior mean and the dotted line represents the true observations. The fitted
RMSE is 4.8. The starting day is April 8, 1998.

The fitted mean process is shown in Fig. (3.2). The result is satisfying in the

sense that model captures both local peaks and global trends. Fig. (3.3) shows the

residuals and the autocorrelation plot. The autocorrelation plot strongly indicates

that the model assumption of iid measurement errors is valid. Fig. (3.4) shows the

decomposition of the mean process into its aperiodic and daily periodic compo-

nents. The posterior distribution of the latent process itself is also of interest. We

show in Fig. (3.5) and Fig. (3.6) the time and magnitudes of the latent jumps from

one posterior sample. Posterior distribution of the latent process for the periodic

part shows two strong peaks at around 7 am and 8 pm everyday, which may be
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Figure 3.3: Residuals (resid ≡ yfit − yobs). The left diagram shows the residuals.
The right plot shows the autocorrelation plot of the residuals.

0
10

0
20

0
30

0
40

0

hour

PM
10

  (
ug

/m
3)

0 48 96 144 192 240 288 336 384 432 480 528 576 624 672 720

Figure 3.4: Aperiodic and periodic decomposition. The solid line represents
the posterior mean from the aperiodic part and the dashed line represents the
posterior mean from the daily periodic part.

58



0
10

0
20

0
30

0
40

0
50

0

hour

u

0 48 96 144 192 240 288 336 384 432 480 528 576 624 672 720

0
10

0
20

0
30

0
40

0
50

0

hour

y

0 48 96 144 192 240 288 336 384 432 480 528 576 624 672 720

Figure 3.5: Aperiodic jumps. The upper diagram shows the time and magnitudes
of the aperiodic latent jumps from one posterior sample. The bottom plot shows
the mean process generated by the kernel convolution of the aperiodic jumps.

due to daily traffic. We plot the daily factors dl for l = 1, · · · , 30 with daily wind

speed and temperature in Fig. (3.7), which indicates a positive correlation between

daily factor and wind speed. A five day out of sample prediction was done to test

the predictive performance of the model. The forecasting method described in

Section 3.2.3 is implemented. Instead of using weather forecast, real meteorolog-

ical data are used. In reality, uncertainty due to meteorological forecast needs

to be addressed in the forecasting model. The result is shown in Fig. (3.8). The

90% pointwise Bayesian credible interval is constructed and the coverage is 91.5%.

The root mean square error (RMSE ≡
√

(
∑

(yfit − yobs)2)/n) for the prediction is
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Figure 3.6: Daily periodic jumps. The upper diagram shows the time and mag-
nitudes of the daily latent jumps from one posterior sample. The lower plot shows
the mean process generated by kernel convolution of the daily jumps.

28.1. For comparison, we fit a Bayesian AR(2) model that includes covariates:

Y (ti) = b0 + α1Y (ti−1) + α2Y (ti−2) + X(ti)
′β + ε(ti) ,

where the covariates vector X(ti) includes day, hour and hourly meteorological

data including wind speed, temperature and their quadratic terms. The forecast-

ing based on the AR model is compared with the adaptive kernel model. The

adaptive kernel model performs better: for the adaptive kernel method, the cov-

erage of the 90% credible interval is 91.5%, and the RMSE is 28.1; while for the

AR model, the coverage of the 90% credible interval is only 67.3% and the RMSE

is only 31.2.
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Figure 3.7: Daily Factor. The solid line is the posterior mean of the daily fac-
tor. The dotted and dashed lines are rescaled daily wind speed and temperature,
respectively.
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Figure 3.8: Five day out of sample predictions. The dashed line represents the
true observations; the solid line is the posterior predictive mean; the two grey
solid lines are pointwise 5% and 95% quantile estimates. The coverage of the 90%
Bayesian credible interval is 91.5%, and the RMSE is 28.1.
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3.3 Multiple Time Series Modeling

In the previous section, we developed a Bayesian semiparametric model for univari-

ate air pollutant time series data through an adaptive kernel convolution method.

In this section, the method is extended to model multivariate time series data

for air pollutants. The scheme we are about to discuss is general for modeling

K-variate processes. A bivariate process example is used to illustrate the method.

3.3.1 The Model

We assume a bivariate time series model of the form:

Y1(ti) = µ1(ti) + ε1(ti)

Y2(ti) = µ2(ti) + ε2(ti)

ε1(ti)
iid∼ N(0, σ2

1), ε2(ti)
iid∼ N(0, σ2

2), ε1(ti) ⊥⊥ ε2(ti), for i = 1, 2, · · · , n .

We assume independent Gaussian white noise error processes. The association

between two time series is modeled through their mean processes µ1(t) and µ2(t).

As in Section 3.2.1, the mean processes are modeled by a latent marked point

process. Each latent jump j is assigned with a categorical variable aj to indicate

its type. We show in Table 3.1 the assignment of aj.

Table 3.1: Assignment of categorical variable aj.

aj polutant-1 pollutant-2 shared jumps

periodic 1 2 3

aperiodic 4 5 6
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Six types of jumps are needed in this bivariate time series model, i.e., the aperi-

odic jump for pollutant 1, the aperiodic jump for pollutant 2, the daily jump for

pollutant 1, the daily jump for pollutant 2, the aperiodic jump shared by both

pollutants and the daily jump shared by both pollutants. The latent jumps shared

by both pollutants introduce correlation between two processes. Non-linear asso-

ciation between two time series can be modeled through this way, which cannot be

accomplished by classical multivariate time series models that use cross-covariance

functions to model correlations.

Each of µ1(t) and µ2(t) is decomposed into four components: their own aperi-

odic and daily periodic components, and their shared aperiodic and daily periodic

components:

µ1(t) = b01 + b11

{

J
∑

j=1

ujk(t; θj)I(aj){4,6} + d1dt/24e

J
∑

j=1

ujk(t; θj)I(aj){1,3}

}

(3.7)

µ2(t) = b02 + b12

{

J
∑

j=1

ujk(t; θj)I(aj){5,6} + d2dt/24e

J
∑

j=1

ujk(t; θj)I(aj){2,3}

}

. (3.8)

In the above equations, b0k is the baseline level for pollutant k, and b1k is the

overall scale factor which standardizes the measurements for pollutant k. Since

different pollutants are measured on heterogeneous scales, b1k makes the model

robust with respect to the choice of scales. dkl is daily intensity factor on day

l for pollutant k, and is modeled through meteorological covariates as we did in

the univariate case. Kernel parameter θj ≡ (τj, λ1j , λ2j, aj). There are two decay

parameters λ1j and λ2j assigned to each jump j, which represent decay rates for

pollutant 1 and pollutant 2, respectively. Different pollutants may dissipate with

different rates, as a result, for a jump that is shared by both pollutants, we assign
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each pollutant its own decay parameter. The kernel k(t; θj) is defined as:

k(t; θj) =







































e
−λ1j[(t−τj) mod 24]

 

1+e
−2λ1j[12− (t−τj) mod 24]

!

1−e−24λ1j
if aj = 1 or aj = 3

e−λ1j |t−τj | if aj = 4 or aj = 6

e
−λ2j[(t−τj) mod 24]

 

1+e
−2λ2j[12− (t−τj) mod 24]

!

1−e−24λ2j
if aj = 2 or aj = 3

e−λ2j |t−τj | if aj = 5 or aj = 6,

The prior specifications and the computational algorithms are similar to the uni-

variate case, which we do not detail here.
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3.3.2 Example: A Joint Model of PM10 and CO
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Figure 3.9: Thirty days of hourly PM10 and CO concentration data in Maricopa
county, Arizona. The starting day is April 6, 1998. The Grey line is the time
series for CO and the black line is the time series for PM10.

In this section, we fit the model developed in the previous section to 30 con-

secutive days of hourly PM10 and CO data measured at the same location in

Maricopa county of Arizona. The data are displayed in Fig. (3.9). Note that

PM10 is measured in ug/m3 and CO is measured in PPM. There are 7 missing

observations for PM10 and 34 for CO. Missing observations are excluded from the

likelihood evaluation. The specifications for hyperpriors and hyperparameters are

similar to the univariate case, which we do not repeat here.

The fitted bivariate times series model is shown in Fig. (3.10) and Fig. (3.11).

65



The root mean square errors (RMSE) for the fitting are 4.42 and 0.068, for PM10

and CO respectively. In Fig. (3.12) and Fig. (3.13) we show the decomposition for

the posterior mean process. The results show that there are significant number of

shared aperiodic jumps between PM10 and CO, but not so much for the the shared

daily periodic jumps. The five day out of sample prediction for the joint model

is shown in Fig. (3.14) and Fig. (3.15). We compare the results of modeling PM10

and CO separately to the results of modeling PM10 and CO jointly in Table 3.2.

The results are mixed: fitting of PM10 is improved in the joint model, but the

prediction performance for PM10 is slightly worse in the joint model; fitting of CO

is worse in the joint model but the prediction performance is better in the joint

model.

Table 3.2: Comparisons of the results from univariate time series models of PM10
and CO to the results from the bivariate time series model.

Model RMSE (fit) RMSE (pred) Coverage (pred)

PM10 4.8 28.1 91.5%

PM10 (joint model) 4.42 33.07 80.5%

CO 0.046 0.48 87.8%

CO (joint model) 0.068 0.42 91.3%
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Figure 3.10: Fitted model of 30 days of hourly PM10 data for the joint model of
PM10 and CO. The solid line represents the posterior mean and the dotted line
represents the observations. The fitted RMSE is 4.42.
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Figure 3.11: Fitted model of 30 days of hourly CO data for the joint model of
PM10 and CO. The solid line represents the posterior mean and the dotted line
represents the observations. The fitted RMSE is 0.068.
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Figure 3.12: Decomposition of posterior mean process for PM10. From the top
to the bottom, the four plots represent the mean processes generated from daily
jumps of PM10, daily shared jumps between PM10 and CO, aperiodic jumps of
PM10 and aperiodic shared jumps between PM10 and CO, respectively.
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Figure 3.13: Decomposition of posterior mean process for CO. From the top
to the bottom, the four plots represent the mean processes generated from daily
jumps of CO, daily shared jumps between PM10 and CO, aperiodic jumps of CO
and aperiodic shared jumps between PM10 and CO, respectively.
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Figure 3.14: Five day out of sample prediction for PM10 in the joint model of
PM10 and CO. The coverage of the Bayesian 90% credible interval is 80.5%. The
RMSE is 33.07.
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Figure 3.15: Five day out of sample prediction for CO in the joint model of
PM10 and CO. The coverage of the Bayesian 90% credible interval is 91.3%. The
RMSE is 0.42.
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3.4 Discussion

In this paper, a class of Bayesian semiparametric time series models is developed

for modeling multivariate ambient pollutants. The models are built on adaptive

kernel smoothing of latent Gamma processes. In stead of focusing on modeling

residual process, as most time series models do, we focus on modeling mean process

nonparametrically.

The mean processes is represented as a weighted sum of kernels with arbitrary

location parameters. The kernels are location specific and thus are adaptive. The

adaptive kernels allow us to model both slowly varying long-term trend and fast

decaying local peaks. The Gamma process based approach allows to model non-

negative process directly without the need for data transformations. The method

developed provides a framework to model non-Gaussian and non-stationary time

series data. Many environmental time series data are known to be non-Gaussian

and non-stationary, which are extremely hard for classical ARMA type of time

series model to handle. The adaptive kernel methods developed in this paper will

serve as a strong candidate to model this type of data. Classical multivariate

time series models resort to cross-covariance functions to model inter-dependence

structure. It can only capture linear association between two processes. The

latent process approach we developed can model non-linear association among

time series, thus are potentially more general. Classical time series models usually

require the data being collected at regular grid points. Since the latent process

is defined on continuous time, the time series models we developed is continuous

in time, and can be used to analyze data that are collected at irregularly spaced

time points.
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To conclude, we present here a promising applications of the time series models

we developed in this article. As we discussed in the beginning, air pollution has

strong adverse effect on human health. Studies that try to connect air pollutant

concentration and mortality are drawing ever increasing attention. The frequently

used health effect models that relate mortality rate to pollutants concentration

are regression type of models which include pollutants concentration measured at

discrete time points as regressors. With our latent process approach, we can build

a health effect model that links health outcomes to latent pollutants exposure

field using evolutionary covariates that integrate over past exposures in time.

This avoids the sometimes ad hoc choice of lag structures. It will be interesting

to compare the results of health effects model based on those different time series

models. Maybe more exciting fact is that the latent process approach we developed

in this paper to analyze multivariate time series data can be easily extended to

build multivariate space-time model, which can be used for spatial epidemiology

study. This is part of our ongoing research.
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Chapter 4

Adaptive Kernel Methods in

Spatio-Temporal Modeling

4.1 Introduction

Spatio-temporal modeling has gained increased attention in both applied and

theoretical work in the last several years. To analyze point-referenced space-time

data, the common thread of modeling is through Gaussian processes. Modeling

through Gaussian processes requires specification of a valid spatio-temporal co-

variance function: that for any set of locations and time points the covariance

function for the set of random variables must be positive definite. A frequently

used space-time covariance function takes a separable form which is simply a valid

two-dimensional spatial covariance function multiplied by a valid one-dimensional

autocovariance function. Non-separable space-time covariance functions that al-

low more flexible space-time interaction have been studied by Cressie and Huang

(1999) and Stein (2005). Another class of models for space-time data is dynamic

(West, 1997) spatio-temporal models, which includes classical approaches (Huang

and Cressie, 1996; Wikle and Cressie, 1999; Mardia et al., 1998) and Bayesian
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approaches. (Gelfand et al., 2005; Stroud et al., 2001; Huerta et al., 2004).

An alternative constructive approach to generating a Gaussian process in Rd

is to place latent independent identically distributed Gaussian random variables

on a lattice in Rd and convolve them with smoothing kernels. The process convo-

lution method (Higdon, 1998) is used successfully for spatial and spatio-temporal

modeling. Calder (2003) extended the method by combining the process convolu-

tion approach with space-time Kalman filter. Defining a Gaussian process through

process convolution is equivalent to defining a Gaussian process through specifi-

cation of a covariance function. The advantage of using the process convolution

approach, however, reaches beyond Gaussian process modeling. It can be readily

extended to model non-stationary non-Gaussian spatio-temporal processes, which

are the primary focus of this paper.

In the previous papers pertaining to process convolution, the latent discrete

white noise process is defined on a coarse lattice in the studying region S. An

important modeling decision when applying the process convolution method is

to appropriately choose the number and locations of the grid points. An ad hoc

method of choosing such points is discussed by Calder (2003) if both the latent

process and the convolution kernel are Gaussian. However it is difficult to find a

consistent and appropriate technique for specifying the location of the underlying

process. To remedy this problem, we generate the latent process through first dis-

tributing random variables over space S and time T according to a marked point

process. We then associate each random variable with a kernel defined over space

S and time T . The continuous spatio-temporal process is obtained by smoothing

the latent process according to its kernels. Through this procedure, we develop

a fully Bayesian adaptive kernel convolution approach for spatio-temporal model-
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ing. In this paper, Section 4.2 describes the Bayesian adaptive kernel convolution

approach for spatio-temporal modeling. A Gamma random field is also discussed,

which serves as prior distribution for the latent process. We then discuss the

prior distributions and choice of hyperparameters. In Section 4.3, the prediction

method is discussed. We illustrate the method in a simulation study followed by

a real example in Section 4.4. Conclusions are given in Section 4.5.

4.2 Space-Time Modeling using Adaptive Ker-

nel Convolutions

We consider point-referenced location and continuous time. Let Zi = Z(si, ti)

denote the observation at location si and time ti for i = 1, · · · , n. We write the

general form for Zi as follows:

Zi = µ(si, ti) + εi, εi
iid∼ N(0, η)

where µ(si, ti) denotes the mean structure and εi denotes the error process. For

nonparametric modeling, there are two categories of approaches from which we

can choose. The first approach is to model the mean structure nonparametrically.

Conditional on the mean process, a simple parametric iid model for the error

process is assumed. The second approach is to choose a parametric model for the

mean function but model the error process nonparametrically. In this paper we

adopt the first approach and focus on building the mean spatio-temporal surface

nonparametrically.
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4.2.1 Space-Time Models Based on Kernel Convolutions

As discussed in Section 4.1, we take a constructive approach for creating a spatio-

temporal process µ(s, t) over S × T , where S ⊂ R2 and T ⊂ R. Let Θ be a Borel

measurable subset of Rd, choose a Borel measurable function k : S × T × Θ → R

and set:

µ(s, t) = b0 + b1

J
∑

j=1

ujk(s, t; θj) (4.1)

for a random number J ≤ ∞ of pairs (uj, θj), where uj ∈ R, θj ∈ Θ. We use b0 to

model the baseline level, b1 serves as a scale factor which makes the coefficients

{uj}j≤J independent of the measurement unit of the observations. Each point

θ ∈ Θ contains the following elements: θ = (σ, τ, λτ , λ1, λ2, φ), where σ ∈ S and

τ ∈ T denote the location and time of the underlying process respectively, with

the remaining elements as the kernel associated parameters. Notice that if we fix

J as well as the locations and time of the latent process {σj, τj}, set underlying

variables {uj} to be iid Normal random variables, and choose a non-adaptive

kernel k(s, t; θ), Model (4.1) becomes a discrete process convolution model that

has been studied extensively by Higdon (1998) and Calder (2003), among others.

Model (4.1) contains several important new features. First, the number of

underlying variables as well as the location and time of the underlying variables

are random. Under a Bayesian framework, posterior distributions are used to

determine how many underlying variables are needed in addition to where and

when to place the underlying variables. This relieves the researcher from using an

ad hoc method for choosing J and {σj, τj}j≤J . Allowing the latent variables to

evolve spatially and temporally may help uncover the data generating mechanisms.
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Assigning each latent variable, uj, its own kernel k(·; θj) facilitates modeling of

non-stationary spatio-temporal processes. Assigning uj a distribution other than

a Normal offers us an alternative for modeling non-Gaussian data.

To fully specify Model (4.1), we must specify a joint probability distribution

for J and {(uj, θj)}Jj=1. A Lévy random field is a natural choice for this purpose.

With a Poisson construction of a Lévy random field, we can represent Eqn. (4.1)

through a stochastic integral

µ(s, t) = b0 + b1

∫

Θ

k(s, t; θ)L(dθ)

where L(dθ) defines a Lévy random field on Θ. The mean surface z(s, t) is driven

by the underlying latent Lévy random field L(dθ), which distributes J (where J is

random) point sources of magnitude uj at time τj and location σj for j = 1, · · · , J .

The point sources dissipate in time and space with decay rates controlled by

k(s, t; θ). The mean process µ(s, t) is the weighted average of J point sources

at time {τj}Jj=1 and location {σj}Jj=1, with weights determined by the smoothing

spatio-temporal kernels. A detailed discussion of Lévy random field priors is in

Section 4.2.5.

4.2.2 Spatio-Temporal Kernel

A flexible spatio-temporal kernel is essential in our approach to characterize space-

time dependence. In order to allow non-stationarity, we incorporate location-and-

time-specific parameters into the three-dimensional kernel. Recall that (s, t) and

(σ, τ) are used to denote location and time of observations and the latent process,

respectively. Under Cartesian coordinates x-y, let s ≡ (x, y) and σj ≡ (σxj
, σyj

).
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A separable form of spatio-temporal kernel is defined as follows:

k(s, t; σj, τj, λτj , λ1j
, λ2j

, φj) = kt(t; τj, λτj)ks(s; σj, λ1j
, λ2j

, φj) (4.2)

For the temporal kernel, the kernel of a double exponential probability density

function is used, i.e.,

kt(t; τj, λτj) ≡ e−λτj
|t−τj |.

For the spatial kernel, the kernel of a bivariate Normal probability density function

is used. A standard parametrization of the bivariate Normal distribution is as

follows:

Let Σj ≡
(

ψ2
1j

κjψ1j
ψ2j

κjψ1j
ψ2j

ψ2
2j

)

, ∆sj ≡ s− σj ≡
(

x− σxj

y − σyj

)

ks(s; σj, ψ1j
, ψ2j

, κj) = exp

{

−1

2
∆sTj Σ−1

j ∆sj

}

.

This parametrization, however, does not have a clear spatial interpretation. Fur-

thermore, it may cause mixing problems in posterior simulation. To solve these

problems, we reparametrize the bivariate Normal distribution by decomposing the

covariance function as follows:

Σj = R(φj)

(

λ1j
0

0 λ2j

)

R(−φj), where R(φj) ≡
(

cosφj − sinφj
sinφj cos φj

)

.

Notice thatR(φj) andR(−φj) are orthonormal matrices satisfying R(φj)R(−φj) =

I, where I denotes the identity matrix. R(φj) corresponds to a rotation matrix

that rotates the x-y coordinates clockwise by an angle φj. Solving this equation

78



yields:

ψ2
1j

= λ1j
cos2 φj + λ2j

sin2 φj, ψ2
2j

= λ1j
sin2 φj + λ2j

cos2 φj

κj =
(λ1j

− λ2j
) sinφj cos φj

√

(λ1j
cos2 φj + λ2j

sin2 φj)(λ1j
sin2 φj + λ2j

cos2 φj)
.

The spatial kernel ks can now be reparametrized using parameters λ1j
, λ2j

, and

φj defined in the above equations. If a constraint is included, such that λ1j
≥

λ2j
, then a very nice geometric interpretation of the parameters λ1j

, λ2j
, and φj

in the bivariate Normal distribution results:
√

λ1j
and

√

λ2j
correspond to the

major axis and minor axis of one of the elliptical contours and φj is the angle

between the major axis and the x-coordinate. Swall (1999) suggests additional

parameterizations of spatial kernels.

4.2.3 Modeling Periodic Patterns

Many time series data exhibit periodic patterns. To better understand the data

and efficiently predict future values, it is imperative to capture periodic features.

This section extends the spatio-temporal model to allow cyclic pattern modeling.

Following the classic paradigm, the process is decomposed into its periodic and

aperiodic components. In the context of the model, this can be done by intro-

ducing an indicator variable. For illustrative purposes, we build a model that can

capture daily patterns hidden in the data. Our method is general and can be

extended to model other cyclic features. To model the daily features embedded

in the observed time series data, each jump j is associated with a binary random

variable aj (aj ∈ {1, 2}). Set Pr(aj = 1) = p and Pr(aj = 2) = 1 − p for some

0 ≤ p ≤ 1. Jump j for which aj = 1 appears only once at time τj and is considered
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an aperiodic jump. Jump j for which aj = 2 recurs at the same time of every day

and is called a daily periodic jump. The mean spatio-temporal process is modeled

by decomposing it into periodic and aperiodic parts:

µ(s, t) = b0 + b1

∫

Θ1∪Θ2

k(s, t, θ)L(dθ) ,

where L(dθ) defines a non-stationary Lévy random field on Θ = Θ1 ∪ Θ2 = (S ×

T1×K×{1})∪(S ×T2×K×{2}). In this example we set T2 ≡ [0, 24) , since daily

patterns are modeled. Without loss of generality, we set T1 ≡ [0, T ], for T > 24.

Each point θ ∈ Θ contains the following elements: θ = (σ, τ, λτ , λ1, λ2, φ, a), where

σ ∈ S denotes jump location, τ ∈ T1 ∪ T2 denotes jump time, (λτ , λ1, λ2, φ) ∈

R3
+ × [0, 2π) are kernel associated parameters, and a ∈ {1, 2} denotes the type of

jump, i.e., periodic or aperiodic jump. Let δ ≡ (t−τj) mod 24. The contribution

of a daily periodic jump j at time t is:

∞
∑

n=−∞

e−λτj
|t−τj−24n| =

∞
∑

n=0

e−λτj
δ−24λτj

n +

∞
∑

n=0

e−λτj
|δ−24|−24λτj

n

=
e−λτj

δ

1 − e−24λτj

+
e−λτj

(24−δ)

1 − e − 24λτj
=
e−λτj

δ
(

1 + e−2λτj
(12−δ)

)

1 − e−24λτj

.

Thus, the temporal kernel in this seasonal model is defined as follows:

kt(t; τj, λτj , aj) =











e−λτj
|t−τj | aj = 1

e
−λτj [(t−τj) mod 24]

 

1+e
−2λτj [12 − (t−τj) mod 24]

!

1−e
−24λτj

aj = 2 .

(4.3)

4.2.4 Multiple Processes Modeling

The adaptive process convolution model introduced in the previous sections can be

extended to model multivariate spatio-temporal processes. Since various spatio-
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temporal processes may be correlated with each other, development of models

to capture their correlation is needed. We introduce a bivariate spatio-temporal

model and the extension to higher dimensional problems follows similar tech-

niques.

Suppose there are two spatio-temporal processes Ξ1(s, t) and Ξ2(s, t). The

correlation between the two processes is most naturally introduced by allowing

them to share some common Lévy random field in the construction. For example,

Ξ1(s, t) and Ξ2(s, t) can be constructed as:

Ξ1(s, t) = b01 + b11

∫

Θ1∪Θ3

k1(s, t; θ)L(dθ)

Ξ2(s, t) = b02 + b12

∫

Θ2∪Θ3

k2(s, t; θ)L(dθ) ,

where the underlying Lévy random field L(dθ) on the disjoint subspaces Θ1, Θ2

and Θ3 are all independent. The correlation between Ξ1(s, t) and Ξ2(s, t) arises

from their shared dependence on L(dθ) on Θ3.

This idea clearly extends to multiple space-time fields. To model multiple

spatio-temporal processes, define a latent Lévy random field on a union of sub-

spaces Θ = ∪Θl, with kernels kl(s, t; θ) supported on the appropriate subspaces.

For k processes, a maximum of 2k − 1 subspaces are needed, although very often

in practice, a much smaller number of subspaces is needed to account for their

dependence structure. The implementation of the extension can be conveniently

done by assigning each jump with an indicator variable to determine the type of

jump.
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4.2.5 Gamma Random Field

As discussed in Section 4.1, the prior distribution for µ(s, t) is constructed from

a kernel convolution of Lévy random fields. A Gamma random field is used as

an example to illustrate the construction. For discussions of general Lévy process

priors, see Tu et al. (2005). The motivating example used in Section 4.4 is spatio-

temporal data of hourly measurements of SO2 concentration. A Gamma random

field ensures a non-negative µ(s, t) which is a natural choice for this type of data.

A seasonal model that allows modeling daily patterns is used here. Following

the model specified in Section 4.2.3, the mean spatio-temporal process is modeled

through:

µ(s, t) = b0 + b1

∫

Θ1∪Θ2

k(s, t; θ)L(dθ) .

We start from defining a positive measure νε(du, dθ) defined on R+×Θ by setting:

νε(du, dθ) = (α1Iθ∈Θ1(θ) + α2Iθ∈Θ2(θ))u
−1e−uI(ε,∞)(u)duπ(dθ) ,

where π(dθ) defines a finite positive measure on Θ = Θ1 ∪ Θ2. Let N be a

Poisson random measure defined on R+ × Θ with mean measure νε(du, dθ). For

any bounded Borel measurable function ψ : Θ → R, define L[ψ] ≡
∫

Θ
ψ(θ)L(dθ)

as follows:

L[ψ] ≡
∫

Θ

ψ(θ)L(dθ) ≡
∫∫

R+×Θ

uψ(θ)N(du, dθ) .

Where N(du, dθ) defines a Poisson random field on R+×Θ with intensity measure

E[N(du, dθ)] = νepsilon(du, dθ), and we can calculate the characteristic functional

of L[ψ] through the Lévy-Khinchine formula:

E
[

eiL[ψ]
]

= exp

{
∫∫

R+×Θ

(eiuψ(θ) − 1)νε(du, dθ)

}

.
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In particular, for an indicator function ψ(θ) = IB(θ) for any Borel measurable set

B ⊂ Θ,

E
[

eiL[ψ]
]

= exp

{

C

∫ ∞

ε

(eiu − 1)u−1e−udu

}

,

where C = (α1π(B ∩ Θ1) + α2π(B ∩ Θ2)). When ε = 0, this is the characteristic

function for a Gamma random variable, and L(dθ) defines a Gamma random field

on the space Θ.

4.2.6 Prior Distributions

With the Poisson construction for a Lévy random field, µ(s, t) can be represented

using discrete summation:

µ(s, t) = b0 + b1

∫

Θ

k(s, t; θ)L(dθ)

= b0 + b1

∫∫

R+×Θ

u k(s, t; θ)N(du, dθ)

= b0 + b1

J
∑

j=1

ujk(s, t; θj) ,

where J ∼ Po (νε(R+ × Θ)). Let E1(ε) =
∫∞

ε
u−1e−udu and let the area of S be

S. Since π(dθ) defines a finite measure on Θ,

∫∫

R+×Θ

νε(du, dθ) = (Tα1 + 24α2)S

∫ ∞

ε

u−1e−udu = (Tα1 + 24α2)SE1(ε).

For any ε > 0, it can be shown that E1(ε) < ∞, but for ε = 0, E1(0) = ∞. In

practice, it is only feasible to implement a model that has finitely many parame-

ters. To ensure a finite J (in probability) in the summation, a positive number ε
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is chosen. With Poisson construction of a Lévy random field, our spatio-temporal

model can be represented in the following hierarchical form:

Z(si, ti) | u,θ, J, ε
iid∼ N(µ(si, ti), η) for i = 1, · · · , n

µ(si, ti) = b0 + b1

J
∑

j=1

k(si, ti; θj)uj µ(si, ti) ≥ 0

(uj , θj) | J, ε
iid∼ π(uj | ε)π(θj) for j = 1, · · · , J

π(uj | ε) =
u−1
j e−uj

E1(ε)
I[ε,∞)(uj) , uj ∈ [ε,∞)

π(θj) = Un(σj;S)
(

Un(τj ; T1)I{aj=1} + Un(τj; T2)I{aj=2}

)

Ga(λτj ;ατ , βτ )

Ga(λ1j
;αλ1 , βλ1)Ga(λ2j

;αλ2 , βλ2)Un(φj ; 0, 2π)p
I{aj=1}(1 − p)

I{aj=2}

J | α, ε ∼ Po ((Tα1 + 24α2)E1(ε)S) , J ∈ N ∪ {0}

π(η) ∝ 1

η
, η > 0

π(b0) = Ga(αb0 , βb0)

π(b1) = Ga(αb1 , βb1) .

The baseline level is modeled by b0. Hyperparameters (αb0 , βb0) are chosen

such that E[b0] is close to the sample mean of the observations z, with relatively

large variance of b0. The overall size of latent jump is controlled by b1. Hyperpa-

rameters (αb1 , βb1) are chosen such that µ(s, t) covers the range of the observations.

Hyperparameters ζ = (ατ , βτ , αλ1 , βλ1, αλ2 , βλ2 , α1, α2, p, ε) are associated with

θ. The minimum size of latent jump is controlled by ε. Recall that the sizes of

latent jumps {uj} are unit free. We choose ε = 0.15 in this example, but we

varied ε over a wide range and found no apparent sensitivity to the choice of ε.

For a given ε > 0, α1 and α2 control the average number of jumps of size uj > ε.
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Gamma distributions are used as priors for α1 and α2 such that the posterior

distribution is in closed form. In order to calculate posterior distributions of α1

and α2, two auxiliary variables J1 and J2 are introduced. Let J1 ≡ ∑J
j=1 I{aj=1}

and J2 ≡
∑J

j=1 I{aj=2}, i.e., J1 is the number of jumps in [ε,∞)×Θ1 and J2 is the

number of jumps in [ε,∞) × Θ2. Assume E[J1|α1] = ν(R+ × Θ1) = TSα1E1(ε)

and E[J2|α2] = ν(R+ ×Θ2) = 24Sα2E1(ε). Conditional on α = (α1, α2), p can be

solved through:

E[J1] = E

[

E

[

J
∑

j=1

Iaj=1|J
]]

= E

[

J
∑

j=1

Pr(aj = l)

]

= E[Jp] = pE[J ] ,

such that,

p =
E[J1]

E[J ]
=

Tα1

Tα1 + 24α2
.

By the definition of J1 and J2, J1|J,α ∼ Bin(J, p) and J2|J,α ∼ Bin(J, 1 − p).

Since J ∼ Po((Tα1 + 24α2)SE1(ε)), it can be derived that,

π(J1|α) ∼ Po(α1TE1(ε)) and π(J2|α) ∼ Po(α224E1(ε)).

If a Gamma distribution is specified as the prior for α1 and α2, i.e.,

π(α1) ∼ Ga(aα1 , bα1) and π(α2) ∼ Ga(aα2 , bα2),

then,

α1|J1 ∼ Ga(aα1 + J1, bα1 + TSE1(ε)) and α2|J2 ∼ Ga(aα2 + J2, bα2 + 24SE1(ε)).

Here we give some guidance for the choice of the values for aα1 , bα1 , aα1 and bα1 .

Let p1 ≡ bα1

bα1+E1(ε)TS
, and p2 ≡ bα2

bα2+24E1(ε)S
, and a priori, the marginal distribution

for J1 and J2 is Negative-Binomial (See the appendix C.1 for further details):

J1 ∼ NB(aα1 , p1) and J2 ∼ NB(aα2 , p2).
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In order to favor parsimonious models, we control the size of J a priori. Specifi-

cally, aα1 , aα2 , bα1 and bα2 are chosen so that the mean and variance of J1 and J2

are relatively small. This usually requires a very large bα1 and bα2 and relatively

small aα1 and aα2 . By choosing prior mean and variance for J1 and J2 we can solve

the corresponding aα1 , aα2 , bα1 and bα2 . There is trade-off between the periodic

and the aperiodic parts. Based on the model formulation, the decomposition of

µ(s, t) into periodic and aperiodic parts is not unique. An extreme case is that

the periodic part can be dropped and the model still fits the data very well using

only the aperiodic part. The purpose of introducing the periodic part is to offer

insights to the data generation mechanism and to facilitate prediction, which we

discuss in Section 4.3. Simulation experiments show that in order to capture the

periodic pattern embedded in the data effectively, large value of J1 needs to be

penalized more than large J2 through appropriate prior specification for J1 and

J2, i.e., make aα1/bα1 � aα2/bα2 . (Notice that E1(ε)aα1/bα1 is the prior mean of

the number of jumps in a unit interval in space R+ × Θ1, and E1(ε)aα2/bα2 is the

prior mean of the number of jumps in a unit interval in space R+ × Θ2.)

We now discuss the choice of hyperpriors for hyperparameters (ατ , βτ , αλ1, βλ1 ,

αλ2 , βλ2). One important feature of the spatio-temporal model is the adaptiveness

of the spatio-temporal kernel. Instead of having a universal kernel for all time and

locations, we allow the kernel to be time and location specific. This is particularly

useful to model data that show strong space and time heterogeneity. Placing ap-

propriate prior distributions on the kernel associated parameters {λτj , λ1j
, λ2j

}j≤J
is an important part of the model specification. We parametrize the prior dis-

tributions in a hierarchical fashion, i.e., instead of choosing specific values for

(ατ , βτ , αλ1 , βλ1, αλ2 , βλ2), prior distributions are specified for each. There are
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several advantages to hyperprior specification. First, the hierarchical construc-

tion can alleviate the over-fitting associated with many nonparametric methods.

Second, the hierarchical priors introduce dependency structure among parameters

which is more realistic than using iid priors for multiple parameters. Finally, using

hierarchical priors for kernel parameters facilitates predictions. Because the ker-

nel is adaptive, posterior distribution of kernel parameters at location and time

points where no observations exist coincides with their prior distribution. One

remedy is to use hierarchical priors for kernel parameters. The information asso-

ciated with kernel parameters at location and time points where no observations

occur is gathered indirectly through hyperparameters (ατ , βτ , αλ1 , βλ1 , αλ2, βλ2).

We discuss the choice of hyperpriors for (ατ , βτ ), and other hyperpriors can be

chosen in a similar fashion. Simulation study shows that it is difficult to identify

both ατ and βτ . As a result, we choose to fix ατ and assign a log Normal prior

for βτ . The hierarchical prior for the temporal kernel parameter λτ is:

λτj |J, ατ , βτ
iid∼ Ga(ατ , βτ ), for j = 1, 2, · · · , J

log(βτ ) ∼ N(mb, vb) .

Let λ0.1, λ0.5 and λ0.9 denote the 10%, 50% and 90% quantiles of λτj , respectively.

Since λτj controls the decay rate in the temporal domain for the underlying point

source, it is natural to obtain an estimate of λ0.1, λ0.5 and λ0.9 a priori from

experts’ opinion or historical data. The 10%, 50% and 90% quantiles of λτj can

be matched with the desired values by choosing the appropriate ατ , mb and vb.

Solving this analytically is not feasible, so a numerical procedure is used.
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4.2.7 Posterior Distributions

Given observations {zi}ni=1, the joint posterior distribution of all unknown param-

eters is:

p(u,θ, J,α, b0, b1, η
2 | Z) ∝

(

1

η

)−n
2
−1 n
∏

i=1

exp







− 1

2η



Zi − b0 − b1

J
∑

j=1

k(si, ti; θj)uj





2




e−µ(ν,α)

J !







J
∏

j=1

νε(duj , dθj)







π(α)π(b1)π(b0) (4.4)

The posterior distributions for all the parameters, except for η, are not in closed

form. Because J is random, the dimension of the parameter space is not fixed.

A reversible jump MCMC scheme is therefore used to draw samples from the

posterior distributions of the parameters.

4.3 Predictions

A primary goal for building this spatio-temporal model is prediction. Our interest

focuses on two types of predictive distributions. One is the predictive distribution

at a location that has no observation but at a time which observations at other

locations occur: this predictive distribution is called spatio-temporal interpolation.

The other is the predictive distribution at a future time for any location, which is

referred to as spatio-temporal extrapolation. In this section, we propose a scheme

to handle both types of predictions.

We begin discussion with the spatio-temporal interpolation. LetD ≡ (z1, z2, · · · ,

zn) denote the n observations where zi = Z(si, ti), si ∈ S and ti ∈ T1 for

i = 1, 2, · · · , n. We are interested in the posterior predictive distribution of

Z0 ≡ Z(s0, t0) at a new point (s0, t0), s0 ∈ S and t0 ∈ T1. Based on the spatio-
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temporal model, Z0 = µ0 + ε0, where µ0 ≡ µ(s0, t0) = b0 + b1
∑J

j=1 k(s0, t0; θj)uj

and ε0 ∼ N(0, η). We use [Z |X] to denote the conditional density function of Z

given X. Let ω ≡ (b0, b1, {uj, θj}j≤J , J) denotes all the parameters on which µ0

depends, the posterior predictive distribution can be represented by:

[Z0 |D] =

∫

[Z0 | µ0, η, D][µ0 | ω,D][ω |D][η |D] dµ0dωdη (4.5)

Dependent samples from [Z0 | D] can be drawn using a Monte Carlo approach.

From the MCMC simulation, we obtain Np ≡ b(Nr − Nb)/∆c samples from the

joint posterior distribution [ω, η | D], and we denote them by {(ω̃i, η̃i)}Np

i=1, with

which, we then obtain samples from the posterior predictive distribution, [z0|D].

We first take a posterior sample ω̃i, from which we calculate µ̃0i
by setting:

µ̃0i
= b̃0i

+ b̃1i

J̃i
∑

j=1

ũjik(s0, t0; θ̃ji) ,

where ũji and θ̃ji denote posterior samples of uj and θj from the ith thinned itera-

tion. The spatio-temporal kernel k(s, t; θ) takes the separable form k(s, t; θ) =

kt(t; ...)ks(s; ...) as in Eqn. (4.2), and the temporal part takes the form as in

Eqn. (4.3). We then draw z̃0i
from a Normal distribution with mean µ̃0i

and

variance η̃i. Repeat this process Np times to obtain Np dependent samples from

the posterior predictive distribution [z0|D], which we can use to estimate the

predictive mean and predictive intervals, among other results.

The spatio-temporal extrapolation is slightly more complicated. In order to

proceed, an efficient algorithm to sample from a Lévy random field is needed. The

Inverse Lévy Measure (ILM) algorithm developed by Wolpert and Ickstadt (1998)

offers a very efficient scheme to sample from a wide class of Lévy random fields.
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Appendix C.3 describes the procedure we use here and more examples can be

found in the work cited. For spatio-temporal extrapolation, our interest focuses

on the predictive distribution of [z0|D] at a point z0 = z(s0, t0), s0 ∈ S but t0 /∈ T1.

Once again, we take T1 = [0, T ] and T2 = [0, 24] with T > 24, and choose some

∆T > 0 such that t0 ∈ (T, T + ∆T ]. In order to obtain samples from the posterior

predictive distribution [z0 | D], samples must be drawn from [µ(s0, t0) | D]. The

predictive mean µ(s0, t0) can be represented as the following stochastic integral:

µ(s0, t0) = b0 + b1

∫

S×[0,T+∆T ]×K×{1,2}

k(s0, t0; θ)L(dθ)

= b0 + b1

∫

S×[0,T ]×K×{1,2}

k(s0, t0; θ)L(dθ)

+ b1

∫

S×(T,T+∆T ]×K×{1}

k(s0, t0; θ)L(dθ) (∗)

Using posterior samples of θ ∈ S × [0, T ] × K × {1, 2}, samples can be drawn

from the first stochastic integral in equation (∗) as we did for spatio-temporal

interpolation. Since we have no observations in S × (T, T + ∆T ], the posterior

distribution of θ ∈ S× (T, T +∆T ]×K×{1, 2} is just the prior distribution (more

precisely, it is the prior distribution of θ conditional on the hyperparameters for

which posterior samples are collected). So, we propose the following way to sample

from [z0 |D]:

µ̃0i
= b̃0i

+ b̃1i







J̃i
∑

j=1

ũjik(s0, t0; θ̃ji) +

M̆i
∑

m=1

ŭmi
k(s0, t0; θ̆mi

)







. (4.6)

In the first summation of Eqn. (4.6), as in the spatio-temporal interpolation, b̃0i
,

b̃1i
, J̃i, ũji and θ̃ji are posterior samples from the ith thinned iteration. For the sec-

ond summation, first draw M̆i from a Poisson distribution Po(ᾰ1i
∆TSE1(ε)) where
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ᾰ1i
is a posterior sample from the ith thinned iteration. Given M̆i, {(ŭmi

, θ̆mi
)}M̆i

m=1

are generated from the Lévy process, L(dθ), defined on θ ∈ S × (T, T + ∆T ] × K

with hyperparameters (β̆τi, β̆λ1i
, β̆λ2i

) as posterior samples from the ith thinned

iteration, i.e.: ŭmi
∼ π(u), where π(u) = u−1e−u

E1(ε)
I(ε,∞)(u). (See the appendix C.3

for details on how to sample from π(u)). Furthermore, τ̆mi
∼ Un(T, T + ∆T ),

σ̆mi
∼ Un(S), λ̆τmi

∼ Ga(ατ , β̆τi), λ̆1mi
∼ Ga(αλ1 , β̆λ1i

), λ̆2mi
∼ Ga(αλ2 , β̆λ2i

), φ̆ji ∼

Un(0, 2π) and ămi
= 1 (since this is for the aperiodic part), for m = 1, · · · , M̆i.

After obtaining a sample, µ̃0i
, draw z̃0i

from a Normal distribution, N(µ̃0i
, η̃i),

where η̃i is a posterior sample from the ith thinned iteration. Repeat the above

steps for i = 1, 2, · · · , Np, and obtain Np samples from the posterior predictive

distribution [z0 |D].

4.4 Illustrative Examples

In this section, we consider two examples to illustrate the proposed Bayesian

spatio-temporal model. The posterior distributions of the parameters are investi-

gated using a reversible-jump Markov chain Monte Carlo algorithm(Green, 1995),

since the dimension of the parameter space varies. Tu et al. (2005) provides a

detailed computational algorithm.

4.4.1 A Simulated Example

We first illustrate the spatio-temporal model with a simulation study. Obser-

vations at 33 locations (labeled from 1 to 33 in Fig. (4.1)) are generated on a

[0, 31] × [0, 31] square. The sample frequency is one hour. Four days of hourly

data (96 in total) are collected at each location. At time ti and location si = (xi, yi)
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Figure 4.1: Locations of latent point sources that generate observations. Open
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denote locations of aperiodic latent point sources and solid triangles A-E denote
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Figure 4.2: Time and magnitudes of point sources that generate observations.
The solid lines are aperiodic point sources and the dashed lines are periodic point
sources.

92



the observation zi = z(si, ti) is generated by:

zi =

15
∑

j=1

uj kt(ti; τj, aj, λτj)ks(si; σj, λ1j
, λ2j

, φj) + εi , (4.7)

where εi
iid∼ N(0, 0.22). The form of spatial kernel ks is discussed in Section 4.2.2

and the temporal kernel kt is specified in Eqn. (4.3). The locations and contours

of the spatial kernels of the latent point sources are shown in Fig. (4.1). The

time of the point sources are shown in Fig. (4.2). The values we used for all the

parameters in Eqn. (4.7) are listed in TableC.1 in the appendix C.2. The data

are driven by 15 underlying point sources. Five are daily periodic point sources

which occur at a certain time every day and are labeled from A to E. Ten of the

point sources are aperiodic that occur only once in the entire study period and are

labeled from a to j. Fig. (4.3) shows the time series generated by the Eqn. (4.7)

on four of the 33 sites. Note that the time series generated at different sites have

very different features.

We fit the model in Section 4.2.6 to the simulated data set. The performance

is examined through the following criteria. We first check model fit in temporal

dimension through plotting the true mean function at each location and super-

imposing the posterior mean function. The results are shown at four locations

in Fig. (4.3). We then check the fit in spatial dimension by comparing the true

spatial surface and the posterior mean spatial surface at different time points.

The result at t = 36 is shown in Fig. (4.6). Both results portray a good fit for the

model.

A more challenging task is to recover the latent process which can be extremely

hard for non-adaptive kernel methods. The posterior distribution of the latent
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Figure 4.3: Fitted results at four locations: the open circles are observations, the
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Figure 4.5: Times and temporal kernels of latent point sources. The left diagram
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process is compared with the true one. In Fig. (4.4), the true locations and spatial

kernels of the latent point sources are plotted and superimposed with one sample

from the posterior distribution. In Fig. (4.5) the true time and temporal kernels of

the latent point sources are plotted and superimposed with one sample from the

posterior distribution. Plots like Fig. (4.4) and Fig. (4.5) can be reproduced using

additional posterior samples. Animations created from these plots are available

from the author’s website. The results indicate that the true latent process can

be recovered very well. We found all 15 point sources around the right time

and locations. Spatial and temporal kernels were also identified very well. Not

surprisingly, the latent periodic signals were identified more accurately than the

latent aperiodic signals. Notice that several false positive signals exist, however

the magnitudes of the false positive signals are usually small compared to the true

signals. We finish the simulation example with a leave-one-out prediction study

to test the performance of the model. The model is fitted without the data at

location 31 and a prediction of the observations at location 31 for the entire study

period (96 hours in total) using the prediction method we described in Section 4.3

is conducted. Fig. (4.7) shows the results.

4.4.2 SO2 Monitoring Data

In this section we test the performance of the spatio-temporal model on a real data

set collected by the Environmental Protection Agency (EPA). The data consist

of hourly sulfur dioxide (SO2) concentration levels (ppm) taken at 33 locations

across Pennsylvania, New Jersey, Delaware and Maryland. The locations of the

monitoring stations are shown in Fig. (4.8). A Lambert projection method is

used to reduce the distortion caused by the curvature of the earth’s surface. The
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coordinates used in the analysis are rescaled Lambert coordinates. The study

region delineated by a rectangle in Fig. (4.8) covers a 310 km × 310 km area. For

demonstration purposes, we restrict our analysis to 144 consecutive hours from

September of 2002. About 5% of SO2 readings are missing from the data set.

This is not a problem in the setting of our model; the missing values can be

either omitted from the likelihood calculation or treated as unknown parameters.

The first approach is taken in this paper. We select eight sites and plot the

observed time series at each site in Fig. (4.9). Notice that the time series at

different sites have very different features. This indicates that the target spatio-

temporal field can be highly non-stationary. Another feature of the data is the

spikes embedded in the time series. The spikes represent a high concentration

level of SO2. Modeling the spikes is one of the primary goals of the study, since

an important question of future consideration is whether high level of SO2 is

associated with a high incidence of human respiratory disease. One common

approach to modeling air pollutants data is conducted using Gaussian processes.

Since the mean function to model is strictly positive, a log transformation of

the data is usually necessary. But a log transformation will eliminate the spiky

feature from the data. As a result, a Gaussian process approach may not be an

ideal choice. On the other hand, the adaptive kernel approach developed in this

paper can be used to model non-negative process directly and is especially good

for modeling this type of non-stationary non-Gaussian data.

We fit the SO2 data using the spatio-temporal model we developed in Sec-

tion 4.2.6. The MCMC algorithm was run for 75000 iterations. The first 50000

iterations were discarded as burn-in with the remaining used for posterior infer-

ence. Convergence was diagnosed by examining trace plots of the log likelihood.
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Figure 4.9: Model fitting of SO2 at 8 out of 33 monitors. The dashed line
represents the observations, and the solid line represents the posterior mean.
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Figure 4.10: Posterior mean spatio-temporal surface. From top to bottom
and left to right, each plot shows the fitted spatio-temporal surface at time
3, 7, 11, 15, 19, 23 o’clock on Sep 3rd, 2002 respectively. Lighter region indicates
higher level of SO2.
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Figure 4.13: Spatio kernels from one posterior sample. The ellipses represent
the contours of all the spatial kernels whose corresponding jumps have magnitudes
bigger than some threshold. From top to bottom and left to right the threshold
is 0.5, 1.0, 1.5 and 2.0 respectively. The dots denote the monitors.
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distribution. The dark solid circles represent the aperiodic point sources, and the
grey solid circles represent the daily periodic point sources. The open circles de-
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Figure 4.15: Leave-one-out prediction. The dashed line represents observed time
series at location 31. The solid line is the predictive mean curve, and the two grey
lines are 5% and 95% posterior predictive quantiles respectively. The coverage of
the 90% Bayesian credible interval is 80.3% and the RMSE is 2.94.

The posterior means of µ(s, t) are summarized in Fig. (4.9). At each location, we

plot the fitted mean overlaid with the observed time series. It is evident that

the model not only has a smoothing effect shared by most kernel methods that is

useful for estimating slowly-varying time trends but also can fit the local peaks of

the data very well. We can also construct the spatio-temporal surface using the

spatio-temporal interpolation method we described in Section 4.3. The posterior

mean spatio-surfaces at time 3, 7, 11, 15, 19, 23 o’clock on September 3 are shown

In Fig. (4.10). We show 25% and 75% posterior quantiles of the spatio-surface

for t = 15 in Fig. (4.11). To evaluate the uncertainty of the estimated spatio-

temporal surface, we set up a 50 × 50 regular grid points in the study region
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and apply the spatio-temporal extrapolation method to obtain samples from the

posterior predictive distribution at each grid point. The standard deviation and

coefficient of variation (CV(s,t) ≡
√

V[µ(s,t)|z]

E[µ(s,t)|bz]
) of the posterior samples at each

grid point are calculated and plotted in Fig. (4.12). The coefficient variation map

shows higher CV values for region where no monitor exists. The spatial kernels

from one posterior sample are displayed in Fig. (4.13). Spatial kernels associated

with large jumps are mostly local, resulting in relatively spiky spatio-temporal

surface as shown in Fig. (4.10) . We plot in Fig. (4.14) the locations of latent

point sources from one posterior sample. Spatial patterns associated with the

latent process can be seen in Fig. (4.14). In particular, we found clusters of point

sources with relatively large magnitudes around the Baltimore metropolitan area

and the boarder of New Jersey and Pennsylvania. The latent point process in our

model is more than just a modeling instrument. It has an attractive interpretation

as we discussed in Section 4.2. The point source map such as Fig. (4.14) can help

us to identify underlying sources of pollution. It can also help to make future

decisions on where to place new monitors and which existing monitors can be re-

moved. Finally we test the predictive power of the model through a leave-one-out

prediction experiment. We fit the model without the data at site 31 and use the

output to predict the observations for the entire 144 hours at site 31. The result

shown in Fig. (4.15) is promising. We were able to predict the major peak with

good accuracy. The 90% Bayesian credible intervals cover about 80% of the true

observations.
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4.5 Discussions and Conclusions

The proposed spatio-temporal model provides a flexible framework for modeling

spatio-temporal data. The model is constructed through adaptive kernel convolu-

tion, i.e, we define a discrete process over space and time and then smooth it with

time-and-location-specific kernels. This constructive approach is appealing since

it allows for non-stationary, non-Gaussian models and non-separable space-time

dependence structures. In addition, the MCMC algorithm developed for fitting

the model is computationally tractable even for large data sets. The comput-

ing time is mainly spent on likelihood calculation. But the likelihood calculation

in our model formulation does not involve matrix computation, and the parallel

computing techniques can be applied to speed up the computation. A Normal

additive error model is often used to facilitate computation, although it does not

serve such purpose in our model. The spatio-temporal model we introduced in

this paper can be easily modified to use other error models. A Gamma multiplica-

tive error model is used for the SO2 monitoring data, and the result is satisfying.

(Detailed results are not shown here). The model developed in this paper is valid

for any dataset that is continuous in time and continuous in space, which include

data collected on irregular time and locations. This is an important advantage

over many other existing methods that require lattice-based data.

In addition to the model presented, we are interested in a number of extensions.

Exploring non-separable space-time kernels is of interest because it helps build

more flexible and realistic space-time dependence structures. We are also working

on introducing covariates into our model. In the SO2 concentration modeling

example, introducing meteorological information can help build a more sensible
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model. For example, the direction and magnitude of the prevailing winds can be

used to model the directions and decay rates of the spatial kernels. The EPA has

publicly available information on point pollutant sources such as large chemical

plants, power plants, among others. This information can be incorporated into

our model by adding latent point sources with known fixed locations. The spatio-

temporal model we developed in this paper is very flexible in the sense that it can

be used to model both moving and immobile latent point sources simultaneously.

Additional important ongoing work is to model multivariate spatio-temporal data.

This can be accomplished by applying the idea we discussed in Section 4.2.3. We

use Gamma processes to construct the prior distributions for the model, but other

Lévy processes, such as Stable processes, are also good candidates. It will be

interesting to compare the performance of different Lévy processes.
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Chapter 5

Conclusions and Future Work

The LARK model developed in this dissertation provides an attractive solution for

sparse nonparametric regression problems in a Bayesian framework. The possible

applications of LARK models are broad. We demonstrated its applications in the

areas of nonparametric curve fitting, time series modeling and spatio-temporal

modeling.

The Lark framework offers a number of advantages. In the area of nonpara-

metric curve fitting, it provides a method to represent inhomogeneous functions

sparsely. Unlike traditional basis expansion methods which artificially constrain

the locations and scales of basis functions, the LARK framework chooses the lo-

cations and scales of kernels (basis elements) optimally based on the data. In

addition, the choice of finite Lévy measure νε(du dθ) can have E[J ], the prior ex-

pectation of the number of kernels, as small as we desire, leading to remarkably

parsimonious representation of an unknown function. In the area of multivariate

time series modeling, the LARK models provides a flexible framework for mod-

eling temporal trends, seasonality and exogenous predictor variables. They also

offer a unique way to model association among processes. Classical time series
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models use cross covariance function which can only capture pairwise linear as-

sociation between processes. The LARK framework models association through

shared latent jumps among processes, which goes far beyond linear association. In

the area of spatio-temporal modeling, a common tactic is to use separable covari-

ance structure. The LARK framework allows us to build more general space-time

dependence models. In addition, nonstationary processes can be modeled through

the LARK framework by allowing the smoothing kernels to evolve over time and

space. Since the space-time field is constructed by smoothing out the latent pro-

cess, non-Gaussian fields can be constructed using non-Gaussian latent processes.

The LARK models are valid for data set that is continuous in time and space,

which includes data observed at irregular grids that change over time. This is a

major advantage over most existing models that require lattice-based data. To

conclude this dissertation, we discuss a few possible directions for future work.

Theoretical Properties

In chapter 2, we introduced the LARK models for nonparametric regression prob-

lems. We represent an unknown function f(x) as:

f(x) =

∫

Θ

k(x; θ)L(dθ) (5.1)

for some kernel function k(x; θ) and Lévy process L(dθ) defined on Θ. The choice

of kernel function, the Lévy process and the prior distribution for θ determines the

class of functions Eqn. (5.1) can represent. Relevant work was done by Abramovich

et al. (2000). In the paper, they consider a class of random functions expanded

in an overcomplete wavelet dictionary and prove that under certain regularity

conditions of the prior distributions, the expanded functions fall within certain
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Besov spaces. Similar work needs to be done for the LARK model. Simulation

studies indicate that the LARK model can represent a wide class of functions.

Theoretical work to investigate the regularities of the random functions generated

by the proposed LARK model is left as future research.

Another challenging future theoretical work concerns the Bayesian consistency

properties of the LARK model. Eqn. (5.1) can be viewed as an integral equation

(Wolpert et al., 2003). The goal is to impute the unknown measure L(dθ) from

finitely many observations {yi}, i = 1, 2, · · · , n, where yi = f(xi) + εi for mea-

surement error εi. In the Bayesian framework, the Lévy random field can be

used as a prior distribution for unknown measure L(dθ). With the MCMC based

inference procedure we developed, we can obtain the posterior samples of the un-

known measure. It will be interesting to know whether or not πn(·|y1, · · · , yn),

the posterior distribution of L, is consistent, i.e. for any function g ∈ Cb(Θ),
∫

Θ
g(θ)πn(dθ) →

∫

Θ
g(θ)L(dθ).

Computational Issues

The algorithm developed for posterior inference is tractable even for large data

set. Here we discuss a few possible ways to speed up the computation. The

current MCMC chain starts at initial values drawn from prior distributions. More

intelligent choice of good starting values can speed up convergence significantly.

One possibility is to put one kernel at each data point and use existing fast

algorithms to estimate the regression coefficients, then select the kernels with

coefficients bigger than the threshold (ε) and start the chain at those kernels

with their corresponding coefficient estimates. The most involved part of the

computation to fit the LARK models is likelihood evaluation. When the sample
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size becomes really large (in the order of thousands), fitting LARK models can be

slow. Two possible ways can relieve the computation of likelihood calculation. One

approach is to develop likelihood approximation that can be calculated relatively

fast. The other one is to resort to parallel computing technique which is receiving

increasing attention in statistical community. The algorithm we developed to fit a

LARK model is parallelizable since the likelihood is evaluated at one point a time.

A naive way to parallelize the algorithm is to distribute the likelihood evaluations

to multiple computers.

Modeling Extensions

We focused in this dissertation on usage of Gamma random field in construction

of LARK models. Other Lévy random fields are readily available as candidates for

LARK models. It is worth studying a range of different Lévy random fields and

seeing how they affect posterior inference. In chapter two, we mainly considered

kernels from exponential families. It will be interesting to explore other well

established kernel functions such as wavelet and smoothing spline. On the spatio-

temporal modeling for ambient pollutants, we would like to extend the univariate

model to multivariate and introduce meteorological covariates as we did in the

time series modeling. Finally, we would like to apply the proposed space-time

model for epidemiological studies of air pollution, which is one of our primary

motivation for this dissertation. A predominant approach to study the effect of

ambient pollutants on mortality rate is through Poisson regression:

Yt ∼ Po(µt)

log(µt) = X
′

tβ
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where Yt denotes the daily number of deaths and Xt represents the vector of co-

variates for predicting mortality on day t, including concentrations of pollutants,

important confounding variables, lags of variables and semi-parametric functions

of time to account for a baseline risk. There are a number of concerns for the above

heath effect model. Monitoring air pollutants are expensive, thus the monitors are

sparse. In general, the mortality data and the air pollutants data are often spa-

tially misaligned. The aggregated group level exposure is often approximated by

measurements from monitoring sites which can be quite inaccurate. As the timing

and duration of exposures are unknown, daily lags of pollutants concentrations

are used as predictors. The choice of lags can be artificial and ad hoc. Every now

and then, monitors may not be in operation and the simple area-wide average may

be biased due to the missing data. As we stated earlier, the space-time model we

built is continuous in space and time. With observations at discrete time points

and sparse locations, we can obtain the posterior distribution of spatio-temporal

surface of the air pollutants. Thus we can build models for individual lifetimes

using evolutionary covariates that integrate over past exposures in space and time.

This avoids the problem of spatially misaligned health outcome data and the need

for choosing lag structures.

115



Appendix A

The Appendix for Chapter 2

A.1 MCMC Algorithm

MCMC Algorithms: We use π() to denote prior distribution, q() to denote Metropo-

lis Hastings proposal distribution and l() to denote likelihood function. Let p+,

p− and p= be three positive numbers that satisfy p+ + p− + p= = 1.

We use superscript t on the parameters to denote the posterior samples at

iteration t and let Nb to denote the burn-in period, Nr to denote the run length,

and ∆ to denote the thinning rate (to reduce correlations among samples). The

algorithm we use to draw posterior samples can be summarized in the following

manner:

1. Start the chain at t = 0 by initializing the parameters (β0
0 , α

0, σ20
, J0,β0,ω0).

2. With probability pf we update the fixed dimensional parameters and with

probability 1 − pf we implement one of the three moves (BIRTH, DEATH, UP-

DATE) to update varing dimensional parameters.

3. If t ≥ Nr −Nb and (t−Nb) mod ∆ = 0, save state for later analysis.

4. Increase t by one and return to step 2 above.
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Following the above procedures, we obtain b(Nr − Nb)/∆c posterior samples

of the parameters which can be used to draw inference on the parameters or the

functions of the parameters.

The trans-dimensional steps may be summarized as follows:

• BIRTH Step

With probability p+, we set J∗ = J t−1+1 and generate a random index r uni-

formly from 1, · · · , J t−1 + 1 and sample a new point (β∗, ω∗) from proposal

distribution qb(β, ω), where qb() ensures that β∗ > ε. Set (β∗,ω∗) by letting:

(β∗
j , ω

∗
j ) = (βt−1

j , ωt−1
j ), for j = 1, · · · , r − 1; (β∗

r , ω
∗
r) = (β∗, ω∗); (β∗

j , ω
∗
j ) =

(βt−1
j−1, ω

t−1
j−1), for j = r + 1, · · · , J∗. Let Θ∗ = (β∗,ω∗, J∗, βt−1

0 , σ2t−1
, αt−1),

Θt−1 = (βt−1,ωt−1, J t−1, βt−1
0 , σ2t−1

, αt−1) and θt = (βt,ωt, J t, βt0, σ
2t

, αt).

With probability min(1, H), we accept the proposal and set Θt ≡ Θ∗ ; with

probability 1 − min(1, H), we reject the proposal and set Θt ≡ Θt−1. The

Hastings ratio H for this move is:

H =
l(y|Θ∗)

l(y|Θt−1)
× π(β∗, ω∗|J∗)π(J∗)

π(βt−1, ωt−1|J t−1)π(J t−1)

×

(

p− + p=

∫ ε

−∞
qd(β|β∗)dβ

)

/J∗

p+/J∗
× 1

qb(β∗, ω∗)

• UPDATE Step

With probability 1−p+, generate a random index r uniformly from 1, · · · , Jt−1.

With probability p=, we propose a new point β∗
r from proposal distribution

qd(β|βt−1
r ). If β∗

r ≥ ε, we implement UPDATE step; otherwise we imple-

ment DEATH step which we specify below. We first update βr. Let Θ(−βr)

denote the rest of the parameters in the model. With probability min(1, H),
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we accept the proposal and set βtr ≡ β∗
r ; with probability 1 − min(1, H), we

reject it and set βtr ≡ βt−1
r . The Hastings ratio H is:

H =
l
(

y|β∗
r ,Θ

t−1
(−βr)

)

π(β∗
r )q

d(βt−1
r |β∗

r )

l
(

y|βt−1
r ,Θt−1

(−βr)

)

π(βt−1
r )qd(β∗

r |βt−1
r )

We then update every component of ωr in a similar fashion.

• DEATH Step

Using the random index r and β∗
r generated in the UPDATE step, with prob-

ability p−+p=×Pr(β∗
r < ε), set J∗ ≡ J t−1−1 and generate (u∗, θ∗) by delet-

ing the r-th component from (β,ω), i.e. let (β∗
j , ω

∗
j ) = (βt−1

j , ωt−1
j ), for j =

1, 2, · · · , r− 1 and (β∗
j , ω

∗
j ) = (βt−1

j+1, ω
t−1
j+1) for j = r, r+ 1, · · · , J∗. Let Θ∗ =

(β∗,ω∗, J∗, βt−1
0 , σ2t−1

, αt−1), Θt−1 = (βt−1,ωt−1, J t−1, βt−1
0 , σ2t−1

, αt−1) and

Θt = (βt,ωt, J t, βt0, σ
2t

, αt). With probability min(1, H), we accept the

DEATH move and set Θt = Θ∗; with probability 1 − min(1, H), we reject

the DEATH move and set Θt = Θt−1. The Hastings ratio for this move is:

H =
l(y|Θ∗)

l(y|Θt−1)
× π(β∗,ω∗|J∗)π(J∗)

π(βt−1,ωt−1|J t−1)π(J t−1)

× p+/J
∗

(

p− + p=

∫ ε

−∞
qd(β|βt−1

r )dβ
)

/J∗
× qb(βt−1

r , ωt−1
r )

• Update (β0, σ
2, α) We update (β0, σ

2, α) element by element.

Sample a candidate point β∗
0 from q(β∗

0 |βt−1
0 ). With probability min(1, H),

we accept the proposal and set βt0 = β∗
0 ; with probability 1 −min(1, H), we
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reject the proposal and set βt0 = βt−1
0 . The Hastings ratio for this move is:

H =
l(y|β∗

0)π(β∗
0)q(β

t−1
0 |β∗

0)

l(y|βt−1
0 )π(βt−1

0 )q(β∗
0 |βt−1

0 )

Updating parameter α depends on the choice of prior Lévy process. For

certain Lévy process, there exists conjugate prior for α and we can use a

Gibbs step to update α but for certain Lévy process there is no conjugate

prior for alpha and under this circumstance, we update α in a similar fashion

to the update of β0.

Assuming an independent normal error model and a prior π(σ2) ∝ 1
σ2 , the

conditional distribution of σ2 is InverseGamma, and easily updated using

a Gibbs step. Note that if x ∼ Inv-Gamma(α, β), with density function

βα

Γ(α)
x−(α+1)e−β/x, then the full conditional posterior distribution for σ2 is

σ2|y,Θ ∼ Inv-Gamma





n

2
,

1

2

n
∑

i=1

[

yi −
J
∑

j=1

βjk(xi;ωj)

]2



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Appendix B

The Appendix for Chapter 3

B.1 Kernel Function for Periodic Jumps

Let δ ≡ (t − τj) mod 24, The contribution of a daily periodic jump j at time t

can be calculated in the following fashion:

∞
∑

n=−∞

e−λj |t−τj−24n| =

∞
∑

n=0

e−λjδ−24λjn +

∞
∑

n=0

e−λj |δ−24|−24λjn

=
e−λjδ

1 − e−24λj
+
e−λj(24−δ)

1 − e−24λj
=
e−λjδ

(

1 + e−2λj(12−δ)
)

1 − e−24λj

So, the kernel function k(t; τj, λj, aj = 2) =
e
−λj[(t−τj) mod 24]

 

1+e
−2λj[12− (t−τj) mod 24]

!

1−e−24λj

B.2 Updating Fixed Dimensional Parameters

1. Update αk for k = 1, 2, · · · , K
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Let Jk =
∑J

j=1 I{aj=k}(aj), if αk ∼ Ga(aαk
, bαk

), we can prove that

Jk | J, αk ∼ Bi(J, pk)

Jk | αk ∼ Po (αkTkE1(ε))

αk | Jk ∼ Ga (aαk
+ Jk , bαk

+ TkE1(ε))

2. Metropolis Step to Update bλ

The full conditional distribution for bλ

(bλ | λ, J) ∝
{

J
∏

j=1

baλ

λ

Γ(aλ)
λaλ−1
j e−bλλj

}

1

bλ
exp

{

−(log bλ −mb)
2

2vb

}

∝ bJaλ−1
λ exp

{

−bλ
J
∑

j=1

λj −
(log bλ −mb)

2

2vb

}

is not in closed form. A Metropolis algorithm is used to update bλ. We sam-

ple a new point b∗λ from the proposal distribution q(b∗λ|bλ) ∼ LN(log(bλ), σ
2
bλ

).

With probability min(1, H), we accept the proposal and with probability

1 − min(1, H) we reject the proposal. The Hastings ratio H is:

H =

{

π(b∗λ | λ, J)q(bλ|b∗λ)
π(bλ | λ, J)q(b∗λ|bλ)

}

3. Update d, γ and σ2
d

The full conditional distribution for dk is not in closed form and we choose

Metropolis step to update it. A log normal proposal distribution q(d∗k|dk) ∼

LN(log(dk), σ
2
d) is used. The Hastings ratio H is:

α =
f(y|d∗k, )π(d∗k|γ, σ2

d)q(dk|d∗k)
f(y|dk, )π(dk|γ, σ2

d)q(d
∗
k|dk)
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Since log(d) ∼ MN(Xγ, σ2
dI), under the priors specified in Section ?? sec-

tion, we can use Gibbs step to sample them γ and σ2
d.

γ | d,X, σ2
d ∼ MN([X

′

X]−1X
′

log(d) , σ2
d[X

′

X]−1)

Let D denote the number of days:

σ2
d | d,X,γ ∼ Inv − Ga

(

D + 1

2
,

∑D
k=1(log dk − X

′

kγ)2

2

)
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Appendix C

The Appendix for Chapter 4

C.1 Derivation of π(J1 | α), π(J1) and π(J2)

• Derivation of π(J1|α):

Let α ≡ (α1, α2), p = Tα1

Tα1+24α2
and γ = (Tα1 + 24α2)E1(ε)S. Notice that

J1 | J,α ∼ Bin(J, p) and J | α ∼ Po(γ), for any nonnegative integer k, we

have:

Pr(J1 = k | α) =
∞
∑

j=0

Pr(J1 = k, J = j | α)

=

∞
∑

j=0

Pr(J1 = k | J = j,α) Pr(J = j | α)

=

∞
∑

j=k

(

j
k

)

pk(1 − p)j−k
e−γγj

j!
=

∞
∑

j=k

(γp)k
[γ(1 − p)]j−ke−γ

k!(j − k)!

=
(γp)k

k!

e−γ

e−γ(1−p)

∞
∑

j=0

[γ(1 − p)]je−γ(1−p)

j!
=

(γp)ke−γp

k!

=
(α1TE1(ε))

k e−α1TE1(ε)

k!
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So, π(J1 | α) ∼ Po(α1TE1(ε)). Similarly, we can derive that π(J2 | α) ∼

Po(α224E1(ε)).

• Derivation of π(J1) and π(J2):

Since π(J1 | α) ∼ Po(α1TE1(ε)) and π(α1) ∼ Ga(aα1 , bα1), for any nonneg-

ative integer J1, we have:

π(J1) =

∫ ∞

0
π(J1|α1)π(α1) dα1

=

∫ ∞

0

exp{−α1E1(ε)TS}[α1E1(ε)TS]J1

J1!

b
aα1
α1

Γ(aα1)
α
aα1−1
1 e−bα1α1 dα1

=
Γ(J1 + aα1)

Γ(aα1)Γ(J1 + 1)

[

bα1

bα1 + E1(ε)TS

]aα1
[

1 − bα1

bα1 + E1(ε)TS

]J1

If we choose aα1 to be a positive integer, then J1 ∼ NB(aα1 , p1) for p1 ≡
bα1

bα1+E1(ε)TS
. Similarly, we can show that J2 ∼ NB(aα2 , p2), for p2 ≡ bα2

bα2+24E1(ε)S
.
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C.2 The Complete Information of Point Sources

Used in the Simulation Study

Table C.1: Information of parameters used for the simulation study.

u (σx, σy) τ λt (λ1, λ2) φ a

a 10.0 (24.5, 4.50) 20 0.50 (4.5, 4.5) 1.571 1
b 7.0 (23.5, 9.00) 30 0.50 (4.5, 4.5) 1.571 1
c 12.0 (7.5, 12.50) 37 0.55 (5.0, 5.0) 1.571 1
d 9.0 (22.0, 12.50) 40 0.50 (4.5, 4.5) 1.571 1
e 11.0 (20.5, 15.50) 50 0.50 (4.5, 4.5) 1.571 1
f 13.0 (19.0, 19.00) 60 0.50 (4.5, 4.5) 1.571 1
g 10.0 (17.0, 22.00) 70 0.50 (4.5, 4.5) 1.571 1
h 8.0 (14.0, 25.00) 80 0.50 (4.5, 4.5) 1.571 1
i 10.8 (18.0, 8.50) 81 0.60 (6.5, 6.5) 1.571 1
j 8.0 (7.0, 30.00) 90 0.50 (4.5, 4.5) 1.571 1
A 7.5 (16.0, 6.50) 7∗ 0.45 (6.0, 6.0) 1.571 2

B 9.0 (9.0, 17.00) 8∗ 0.35 (11.0, 11.0) 1.571 2
C 6.0 (19.5, 10.50) 12∗ 0.60 (9.0, 3.0) 0.785 2
D 6.5 (29.5, 20.00) 14∗ 0.40 (4.0, 1.0) −0.785 2
E 7.0 (20.0, 8.75) 18∗ 0.75 (3.0, 3.0) 1.571 2

C.3 Algorithms for Sampling from [u|β = 1]

From Section ??, we find out the prior distribution of [u|β = 1] is as follows:

f(u) =
u−1e−u

E1(ε)
I(ε,∞)(u) , u ∈ (ε,∞)
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where E1(x) =
∫∞

x
u−1e−βudu is the so called exponential integral function. A

simple calculation gives us the CDF F (u), where F (u) ≡ Pr(U ≤ u):

F (u) =

(

1 − E1(u)

E1(ε)

)

, u ∈ (ε,∞)

E1(x) is a strictly increasing function, thus the inverse of F (u) exists:

F−1(u) = E−1
1 (E1(ε)(1 − u)) , u ∈ (0, 1)

So, as long as we can invert the function E1(x), u can be sampled efficiently using

probability integral transform, i.e., sample x from a uniform distribution on [0, 1],

generate u by setting u = E−1
1 (E1(ε)(1 − u)). To invert E1(x), we refer to Wolpert

and Ickstadt (1998), let χ2
d be a random variable that has chi-square distribution

with degrees of freedom d, we have:

E1(x) = lim
d→0

(

2

d
Pr(χ2

d > 2x)

)

Thus E−1
1 (x) can be approximated by:

E−1
1 (x) ≈ 1

2
qχ2

d

(

1 − xd

2

)

where aχ2
d

is the quantile function for chi-square distribution with d degrees of

freedom and d is a small positive number, usually choosing d = 1e − 9 gives an

approximation precise enough for most applications.
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