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Abstract

In problems of variable selection and model uncertainty, as well as in multivariate

structure assessment, our ability to coherently model and analyze data when faced

with increasing variable dimension is challenged by questions of model structur-

ing, theoretical specification and computation. This dissertation addresses each

of these issues, primarily in the contexts of regression and prediction, and demon-

strates how coherent Bayesian models can be developed and applied in problems

in high dimension.

Chapter 1 sets the context for the dissertation, describing the theoretical and

computational issues that arise as a result of increased variable dimension. The

idea of “sparsity” in high dimensional multivariate models is introduced.

Chapter 2 introduces a novel stochastic search algorithm for exploring large

regression model spaces. Contrasts are made with existing Markov chain Monte

Carlo methods. A simulation study is used to validate the method, and analytic

evaluation of the method’s properties is described.

Chapter 3 gives an overview of regression model selection and averaging from a

Bayesian perspective using the search methods described in Chapter 2. Particular

prior distributions and their advantages for use in linear regression modeling with

many variables are described, with emphasis on coherency and aspects of sparsity.

Chapter 4 illustrates high dimensional linear regression model search using

gene expression data from a survival study in brain cancer.

Chapter 5 introduces useful results regarding the marginal likelihood under

a particular probability model. A lower bound on the marginal likelihood for

models of a common dimension is established and related to sparsity and Bayesian
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regularization. Reasonable assumptions about the distribution of the predictor

variables allow for Bayesian learning about the sparsity inducing prior parameter.

Chapter 6 contains two examples of regression modeling and prediction in high

dimension outside of the context of the linear model from clinical genomics studies

in breast and lung cancer.

Finally, Chapter 7 concludes the dissertation by summarizing coherent Bayesian

regression modeling in high dimensions. Generalizations of the stochastic search

method are described, and future work in complex high dimensional multivariate

modeling is set forth.
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Chapter 1

High Dimensional Regression Modeling

The desire to stretch the limits of statistical modeling and associated inference

problems has greatly increased in recent years due to a variety of factors. Perhaps

the two most relevant factors are related to increases in technology that have af-

fected (i) the way we collect data, and hence the type of data we collect, and (ii)

the way we analyze data. Technological advances have allowed us to design “high

throughput” experiments where (tens or hundreds of) thousands of quantities of

interest can be quickly collected, stored and recalled for analysis. Rather than col-

lecting only the information needed to address specific, predetermined questions,

in many cases it has become standard to collect as much data as possible with

the view that more is better, or at least not any worse; this assumes, of course,

that we can actually extract meaningful information from the data, i.e. that we

can separate interpretable signal from noise.

This assumption relies heavily on the second factor: the way we analyze data.

Here, too, technology has pushed us along, coupled of course with methodological

advances. Evermore available computing resources have enticed statisticians to

work in parameter spaces of larger and larger dimension, testing the limits of both

1



methodology and computation.

This dissertation addresses both methodological and computational issues aris-

ing from regression modeling in high dimension: the “large p” scenario where we

have many possible predictor variables. An often encountered subclass of prob-

lems is the “large p, small n” situation, where one has many more predictor

variables than cases with which to work (e.g. West, 2003), as is typically the case

with analysis of expensive high-throughput experiments such as gene expression

microarrays. Herein, these settings are viewed within the Bayesian paradigm and

addressed as model uncertainty problems. The remainder of this chapter intro-

duces the problem in the context of the variable selection problem. The following

chapters, in turn, describe the regression modeling uncertainty problem, address

computation for the problem, introduce new methods of inference for the problem

and provide analysis of several high dimensional datasets.

1.1 Challenges of High Dimensional Problems

Challenges in high dimensional problems are typically inferential or computational

in nature, and sometimes both. Inference problems often center around construct-

ing estimators that maintain desirable properties as the number of dimensions in-

creases, e.g. the case of estimating the mean of a multivariate normal distribution

in greater than two dimensions. The associated computational problems deal with

calculating estimators, e.g. finding maximum likelihood or Bayesian estimates in

combinatorial optimization situations. The following example highlights both of

these issues and provides the context needed for the types of high dimensional

modeling I address in this thesis.
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1.1.1 Example: Variable Selection

Building predictive models often requires the modeler to choose relevant explana-

tory factors from a set of possible predictor variables. When one particular set

of variables is identified as providing adequate predictive ability and all future

inference is based on this model, the process of identifying the set of variables is

sometimes referred to as “variable selection.” An alternative approach, termed

“model averaging”, regards the true predictive model as a mixture, where each

component consists of a model that uses some subset of the predictor variables.

Under this approach, the choice of variables is not explicit, as all the possible pre-

dictors can be incorporated in the model; rather the choice is implicit in the sense

that the weights for the mixture components must be computed; these weights

are themselves typically functions of subsets of the predictors. A good review of

both topics can be found in Clyde and George (2004) and the references therein;

I discuss Bayesian model averaging for linear regression models in Section 3.

Both model selection and averaging share the often problematic requirement

that – when faced with many candidate predictor variables – a search of the

model space must be performed to either identify the models (subsets of vari-

ables) to be selected or to compute the weights needed for averaging. In small

dimensional problems, variants on common forward-backward stepwise variable

selection strategies can often quickly find “good” models, although they are prone

to becoming “stuck” in local maxima and often do not provide an adequate repre-

sentation of the model space when there is collinearity in the data, an increasingly

common occurence in high dimensional problems. The “leaps and bounds” algo-

rithm of Furnvial and Wilson (1974), another traditional search method, does not

suffer from the same local mode problem, but instead can take so long to identify

3



the best models when p is large that the approach becomes less useful. These

methods also lack explicit measures of model uncertainty, as inference typically

focuses on only one model (although there has been work on post selection un-

certainty from a frequentist perspective, see e.g. Pötscher (1991); Kabaila (1995);

Hjort and Claeskens (2003); Leeb (2005)). From a Bayesian perspective, there are

many Markov chain Monte Carlo (MCMC) algorithms designed to explore the

posterior distribution of a regression model space (e.g., George and McCulloch,

1993, 1997; Green, 1995; Madigan and York, 1995; Geweke, 1996; Raftery et al.,

1997), using Gibbs sampling (Gelfand and Smith, 1990) or some variant of the

Metropolis-Hastings algorithm. When the number of possible predictors is not

large, these methods are able to effectively identify the models that have the most

predictive power and, simultaneously, offer summaries of the importance of each

individual variable.

When the possible number of predictor variables is large, the above methods

tend to be ineffective at providing a comprehensive summary of the model space:

stepwise algorithms become entrenched in local maxima with the possibility of

missing key variables due to collinearity, and MCMC approaches are slow to con-

verge – if they do at all in a practical amount of time – due to the enormous

size of the model space. In this case, characterizing regression model uncertainty

is difficult as it entails performing a search on a space of models which may be

so vast that only a small portion of it may be visited in a reasonable amount of

time. Given this computational constraint, it is necessary to design search algo-

rithms that can quickly identify the important predictor variables and intelligently

explore the neighborhoods of models that are most relevant from a predictive per-

spective.

4



Here I consider the case of the normal linear regression model as an example of

the complications raised by consideration of large numbers of candidate predictor

variables. Let Y ∼ N(Xβ, σ2In), where Y is an n × 1 response vector, X =

(x1, . . . , xn)′ is an n× p design matrix for the n samples, the xi are p× 1 vectors

of covariate information, β is a p× 1 vector of regression coefficients and σ2 is the

variance of the error term. Unless otherwise specified, throughout the dissertation

I consider all data to be standardized in the sense that the columns of X have

been transformed to have sample mean zero and unit sample variance. The same

is true for the response variable y in the case of the normal linear model, and

hence an intercept term is omitted.

When p is “large”, the variable selection problem amounts to choosing some

subset of the p variables to include in the linear model on which inference will be

based. The model averaging problem would ideally average over models consisting

of all subsets of the p variables, or perhaps over all subsets up to a maximum size

determined a priori. The term “large” is, of course, subjective; here I focus on

scenarios where p is in the hundreds, thousands or tens of thousands.

Whatever the purpose of considering different subsets of models, it is conve-

nient to have representative notation, and throughout I adopt common notation

from the variable selection literature: let γ be a p× 1 indicator vector indexing a

particular model, where γj = 1 if variable j is included in the model and γj = 0

otherwise. I define the “dimension” or “size” of a model γ to be |γ| =
∑p

j=1 γj,

the total number of variables in the model. Throughout I assume that models are

full rank.

The variable selection problem, then, amounts to determining which elements

of γ are zero and which elements are one. This binary representation makes it

5



Table 1.1: Order of magnitude of the number of regression models in regression
model spaces for various values of p, the total number of regressors, and K, the
maximum model size allowed.

HHH
HHHK
p

500 1000 2500 5000 7500 10000

4 109 1010 1012 1013 1014 1014

5 1011 1012 1014 1016 1017 1017

6 1013 1015 1017 1019 1020 1021

7 1015 1017 1020 1022 1023 1024

clear that the number of total possible models is 2p, which is of course quite large

even for not-so-large values of p. Even when focus is placed only on models of

lower dimension, i.e. when we allow for models with only a few predictor variables,

perhaps up to a maximum size K, the total possible number of models can be

unwieldy from both computational and inferential perspectives. This is illustrated

in Table 1.1 for various values of p and K.

It is clearly impossible, in a practical sense, to enumerate even these reduced

spaces. From a model selection perspective, where the goal is to identify the

“best” (set of) model(s), this obstacle is not necessarily insurmountable so long

as a given model space is “well behaved” in the sense that the best models are

all contained in a relatively small neighborhood that can be easily reached from

any point in the space. This is rarely the case, however, as complicated datasets

present complicated collinearity structure that leads to complicated model spaces.

Rather, it is more realistic that pockets of “good” models are scattered throughout

the space, and the computational goal is to find these pockets and quickly explore

their neighborhoods.

A key aspect in modeling as we scale to higher dimensions is the idea of
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sparsity. In general this can be viewed as imposing constraints that force objects

of interest to lie in lower-dimensional spaces; for the linear regression problem it

can be viewed as preferring small sized regression models. This coincides with

the general scientific view of parsimony: if two competing models are equally

well supported by the data, the less complicated model should be preferred. A

similar view has been adopted in a model uncertainty context by Raftery et al.

(1997) and called “Occam’s Window”. Enforcing sparsity in the case of the linear

regression model, i.e., focusing attention on small sized regression models, will be

seen to both simplify computation and provide good predictive performance in

cases where the possibility of overfitting is evident. From a Bayesian perspective,

sparsity is introduced – at least in main part – through prior distributions; such

“sparsity inducing” priors are introduced in Chapter 3 and explored in more detail

in Chapter 5.

1.2 Parallel Computing

As will be discussed in Chapter 2, many of the key aspects of this work involve the

use of parallel (distributed, cluster) computing. All examples given below were

run on the Computational Science, Engineering and Medicine (CSEM) cluster

at Duke University, a collection of Intel x86 based machines running Linux. The

nodes used were a subset of forty dual-processing, 3.1 GHz machines. All programs

were written in C++ using MPI to coordinate communication between processing

elements.
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Chapter 2

Model Space Exploration

Even when the focus is on “sparse” regression models, i.e. models with only a few

predictor variables, searching through model spaces derived from large datasets

is very difficult. As even this reduced space cannot be enumerated, we require

stochastic search methods that can capture the interesting features of the model

space, Γ, while compiling a set of the best models found, Γ∗, to be used to address

uncertainty in the modeling process when inference is performed.

In this chapter I review several existing MCMC methods for model space explo-

ration, present a novel stochastic search approach designed with high dimensional

datasets in mind, and provide analysis of its performance.

2.1 Markov Chain Monte Carlo Approaches

MCMC approaches for model search/variable selection can generally be classi-

fied as Gibbs sampling or Metropolis-Hastings (M-H) based algorithms, with the

latter group including reversible jump based methods (Green, 1995). I refer to

Gibbs algorithms as those that sample from full conditional distributions, and
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M-H algorithms as those that explicitly use a non-Gibbs proposal distribution in

sampling. Here I review the Gibbs sampler and M-H algorithms used for model

space exploration for the normal linear model; Clyde and George (2004), Godsill

(2001) and George and McCulloch (1997) provide thorough reviews.

MCMC methods simulate a Markov chain

γ [1],γ [2], · · · ,γ [T ] (2.1)

that converges in distribution to p(γ|y), the posterior distribution over models.

However when p is large, the chain will typically not converge in any reasonable

amount of time. Though it is not, perhaps, appropriate to use such chains for

Monte Carlo integration, the resulting sequence can be thought of as a stochastic

search of the model space and the values γ [t] used to identify high probability

models.

I focus below on MCMC for “conjugate” models, where the marginal likelihood

p(y|γ) =
∫
p(y|θ,γ)p(θ|γ) dθ is available in closed form, as this is the type of

probability model I consider throughout. MCMC for the nonconjugate case is

discussed in George and McCulloch (1993, 1996), Geweke (1996) and Kuo and

Mallick (1998), each of which uses prior distributions related to those of Mitchell

and Beauchamp (1988).

2.1.1 Model Space Exploration via Gibbs Sampling

The simple one-at-a-time, fixed scan Gibbs sampler for variable selection, de-

scribed by George and McCulloch (1997), Smith and Kohn (1996, 1997) and

Brown et al. (1998b), creates the sequence (2.1) by updating the components of

γ by sampling from

p(γj|γ−j, y) ∝ p(y|γ)p(γj|γ−j) (2.2)
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for j = 1, . . . , p at each iteration, where γ−j = (γ1, . . . , γj−1, γj+1, . . . , γp)
′. Com-

mon priors have p(γj|γ−j) = p(γj), and so implementing (2.2) requires sampling

a Bernoulli random variable with probability a function of

p(y|γj = 1,γ−j)

p(y|γj = 0,γ−j)
· p(γj = 1)

p(γj = 0)
. (2.3)

The conditional probability of γj = 1 is an increasing function of (2.3). Other

Gibbs updating strategies besides one-at-a-time fixed scan are available, such as

blocked and random scan Gibbs; details can be found in George and McCulloch

(1997).

If the sequence (2.1) generated by Gibbs based on (2.3) is to be used to identify

high probability models, then Gibbs needs to spend a large percentage of its

iterations in high posterior regions of the model space. Consider the following

scenario: the current Gibbs model at iteration t has k predictor variables. Assume

that the remaining p−k variables are exchangeable and unrelated to the outcome

variable, a common situation when there are many possible predictors. As Gibbs

cycles through the elements with γ
[t]
j = 0, if the ratio of the first term in (2.3) is

approximately one for each of these, Gibbs will try to add each of these variables

with probability p(γj = 1). This amounts to p − k independent Bernoulli trials,

and so on average (p− k)× Pr(γj = 1) variables will be added. Of course, Gibbs

will also try to remove the original k variables, which may or may not happen

depending on how much fit to the data they provide the model. Hence due to

the nature in which Gibbs moves from γ [t] to γ [t+1], extra variables will tend to

be added to the model even when this moves γ [t+1] away from high probability

regions of the posterior. This tendency can add many extra, extraneous variables.

The behavior described above is dependent in part on the equivalence of
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marginal likelihoods for many models. If all 2p marginal likelihoods are equiv-

alent, then Gibbs will simply construct a chain converging in distribution to the

prior, p(γ). One might expect that the inclusion of information from the likeli-

hood would stop Gibbs from wandering for too long in low posterior regions as

described above; however, this is not the case, as in order for the Gibbs sampler

to sample from the correct stationary distribution it must spend time in these low

posterior regions. This is demonstrated in Section 4.7.3 in a real data example.

2.1.2 Model Space Exploration via Metropolis-Hastings

If Gibbs sampling can be problematic for examples with large p due to the nature

of the transition from γ [t] to γ [t+1], then MCMC methods using different transition

kernels are of interest. Metropolis-Hastings algorithms provide a flexible frame-

work for specifying which types of moves are allowed at each iteration. Given a

current model, γ [t], a candidate model γ ′ is sampled from a proposal distribution,

T (γ ′; γ [t]). The next model, γ [t+1], is set to be γ ′ with probability

α = min

{
p(γ ′|y)
p(γ [t]|y)

T (γ [t]; γ ′)

T (γ ′; γ [t])
, 1

}
,

and set to be γ [t] otherwise.

Madigan and York (1995) and Raftery et al. (1997) propose a M-H algorithm,

Markov chain Monte Carlo Model Composition (MC3), using a symmetric pro-

posal distribution, T (γ ′; γ [t]) = T (γ [t]; γ ′). First they define a neighborhood,

nbd(γ), containing γ, all models obtained by deleting a variable from γ, and all

models obtained by adding a variable to γ. They then set T (γ ′; γ [t]) = 0 for all

γ ′ /∈ nbd(γ [t]) and set T (γ ′; γ [t]) constant for all γ ′ ∈ nbd(γ [t]). As this proposal
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distribution is symmetric, the acceptance probability reduces to

α = min

{
p(y|γ ′)

p(y|γ [t])

p(γ ′)

p(γ [t])
, 1

}
. (2.4)

MC3 is equivalent to randomly choosing an index j and proposing γ′j = 1−γ[t]
j .

George and McCulloch (1997) note that this is equivalent to a random scan Gibbs

sampler. However, the probability of accepting the change under Gibbs is strictly

less than the probability of accepting the change based on (2.4), indicating that

the M-H algorithm is more likely to move at each step.

Brown et al. (1998a) develop a M-H approach using a slightly richer proposal

distribution. They generate proposals based on a current model γ [t] by making

one of two possible moves, with probabilities φ and 1− φ respectively:

1. Add/Delete: Randomly choose a variable and propose γ′j = 1− γ
[t]
j ,

2. Swap: Randomly choose a j such that γ
[t]
j = 1 and an l such that γ

[t]
l = 0

and propose γ′j = 0 and γ′l = 1.

The (symmetric) proposal distribution based on a current model γ [t] of dimension

k is therefore

T (γ ′; γ [t]) =



φ
p
, if |γ ′| = k − 1 or k + 1,

1−φ
k(p−k)

, if |γ ′| = k,

0, otherwise.

Denison et al. (1998a) propose a similar MCMC method for Bayesian curve

fitting via piecewise polynomials. They allow for an add, delete or swap-like move

at each iteration, where the elements of interest are “knot” locations for basis
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functions. A modified version of their prior distribution on the number of knots

is used as a proposal distribution for the add, delete and swap moves.

Metropolis-Hastings methods relying on symmetric, near-neighbor based pro-

posal distributions such as described above can be problematic when p is large

relative to the model dimensions of interest. In this case, the probability of propos-

ing a model of dimension k + 1 can be so much larger than proposing a model of

dimension k− 1 that M-H tends to keep adding variables to the model and rarely

makes a move to a lower dimension. This is especially relevant in cases where

n ≤ p and the largest number of allowed variables in a model is capped at n− 1;

in this case there will always be an ample supply of variables to try adding to the

model.

For example, in MC3, if the current model is of size k, the probability of

proposing models of dimension k−1 and k are k/(p+1) and 1/(p+1), respectively,

whereas the probability of proposing a model of dimension k+1 is (p−k)/(p+1).

When p is large relative to values of k of interest, M-H will therefore nearly always

try to add variables, creating a chain that does not move much around the model

space.

In the approach of Brown et al. (1998a), the probabilities of proposing models

of dimension k − 1 and k are φk/p and 1− φ, respectively, while the probability

of proposing a model of dimension k + 1 is φ(p− k)/p. Here the ascent to higher

dimensions will be slower due to φ < 1; however, again, the resulting chain will

not move around the space freely enough.

George and McCulloch (1997) discuss alternative proposal distributions that

avoid this problem. Rather than sampling uniformly from a set of neighboring

models, they suggest first sampling a dimension to which to move with prespecified
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probabilities and then sampling uniformly from a set within that dimension. This

type of asymmetric proposal distribution can focus the M-H search on models of

smaller dimension; however, they require the user to prespecify the probabilities

for sampling models of a given dimension, which can be inefficient if the posterior

distribution of interest is concentrated on dimensions different to those favored by

the proposal.

A new method for model space exploration via MCMC has recently been pro-

posed by Nott and Green (2004) that improves on the above approaches when

there is multicollinearity in the predictor variables. The approach, which uses

auxiliary variable methods related to those of Higdon (1998), is only demon-

strated for examples with up to 62 predictor variables, leaving open the question

of scalability in p.

2.2 Shotgun Stochastic Search

In the following sections I propose and explore a Shotgun Stochastic Search (SSS)

approach – and related methods – for regression model space exploration. SSS is

inspired by MCMC, but addresses the problems raised above for model search in

high dimensions. A key element of the approach is that it is parallelizable in a

distributed computing environment, allowing access to novel search methods that

would otherwise be too slow to be practicable.

In general, a shotgun stochastic search of a model space is a sequential, local-

move, neighborhood-based procedure, where the following are performed at each

step:

STEP 1 Use the current model to define a neighborhood of proposal models,
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STEP 2 Evaluate each proposal model in this neighborhood in parallel,

STEP 3 Choose a new current model from the proposals.

Three keys to this method, depicted graphically in Figure 2.1, are the choice of

neighborhood, the parallelization of STEP 2 and the choice of the criterion used to

distinguish between models. The main idea is that, for any particular regression

model, there will be many other regression models with similar fit to the data,

e.g. models with overlapping sets of covariates; quickly identifying and evaluating

these models provides both a rich description of the (local) model space and a new

set of competitive models from which to choose the next move. In essence, SSS

generates multiple candidate models and “shoots out” proposed moves in various

directions, like a shotgun.

In order for the approach to be effective, the neighborhood of the current model

must be defined to be comprehensive enough to allow the search to move easily

throughout the model space. As I describe in Section 2.3, this is accomplished by

ensuring that SSS considers incorporating each possible predictor variable in one

of the proposal models at each iteration. This approach has the added benefit that,

over the course of the search, every variable is evaluated in the context of many

different regression models. The potential computational burden of considering

every possible predictor variable at each iteration is lessened by the fact that

STEP 2 can be parallelized using distributed computing, as each of the proposal

models can be evaluated independently on separate processing elements. The

results can then be combined into a list which, besides serving as the proposed

moves for the next iteration, can be used to update a running list of top models to

be used for inference (see Section 3.3). This is a clear advantage of SSS procedures

over many Metroplis-based MCMC algorithms, where typically only one proposal
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Current Model

1 2 3 M

New Model

Figure 2.1: Graphical depiction of one step in the general shotgun stochastic
search described in Section 2.2. STEP 2, depicted by the ovals, is the key step: M
candidate models are evaluated in parallel.

model is evaluated and recorded at each iteration, thereby reducing the number

of interesting models evaluated. SSS catalogues many models as it proceeds.

I have yet to describe the third key to the search, the criterion used to compare

models. This tends to be a problem-specific choice, although from a Bayesian

perspective the straightforward answer is to use the relative posterior probabilities

of the models being considered when those (relative) probabilities are available in

closed form, or when they can be easily approximated numerically. Details of how

models are compared from a Bayesian perspective are given in Chapter 3. Other

model scores, such as AIC or BIC, may of course be substituted.

2.3 Regression Model SSS

The two major components of SSS that need to be specified are the neighbor-

hood component (how proposal models are “shot out” at each iteration) and the

sampling component (how we choose from among the proposals). I have already

stated that the neighborhood component should be broad enough to include each

of the possible predictor variables in some way, and now add the requirement that
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the neighborhood should also include regression models of various dimensions to

allow the search to move freely across model size.

Informally, take the neighborhood to be every regression model having a one

variable difference with the current model. For a given regression model of dimen-

sion k (i.e., having k predictor variables) the neighborhood is broken down into

a set with three elements, nbd(γ) = {γ+,γ◦,γ−}, where γ+ is a set containing

neighboring models of dimension k + 1, called the “addition” moves, γ◦ is a set

containing neighboring models of dimension k, called the “replacement” moves,

and γ− is a set containing neighboring models of dimension k − 1, called the

“deletion” moves. Together, these three sets make up the set of proposal models

that “shoot out” at each iteration. Their names are derived from the models from

which they are comprised, e.g. γ+ contains all of the models obtained by adding

one at a time each of the p−k remaining predictor variables to the current model

and γ− contains the k models obtained by deleting one at a time each of the

variables currently in the model. The replacement model set, γ◦, contains all of

the models obtained by replacing one at a time each of the variables in the current

model with the p− k remaining predictor variables.

For example, suppose p = 5 and the current regession model is {x1, x3, x4},

corresponding to γ = (1, 0, 1, 1, 0)′. Then

γ− =

{
{x3, x4}, {x1, x4}, {x1, x3}

}
,

γ◦ =
⋃

j∈{2,5}

{
{x1, x3, xj}, {x1, xj, x4}, {xj, x3, x4}

}
,

γ+ =
⋃

j∈{2,5}

{x1, x3, x4, xj}.
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It should be noted that |γ+| = p− k, |γ◦| = k(p− k) and |γ−| = k if 2 ≤ k < p,

with the convention that γ+ = ∅ when k = p. SSS evaluates the null model,

γ = 0, and all possible one variable models before starting the search, hence it

only considers models of dimension at least k = 2 as the search progresses.

As p is typically large, |γ◦| � |γ+| � |γ−|, which can be problematic for

sampling. If all of the models have equal weight and we sample one model directly

from nbd(γ), then as p → ∞ the probability of staying in the same dimension

goes to k/(k + 1), the probability of increasing dimension goes to 1/(k + 1) and

the probability of decreasing dimension goes to zero. This is a problem similar

to that with symmetric proposal distributions for M-H discussed in Section 2.1.2.

This imbalance clearly needs to be addressed for SSS to move across dimension

effectively; this is accomplish by breaking the sampling step into two parts. First,

three models, γ+
∗ , γ◦

∗ and γ−
∗ are sampled from γ+, γ◦ and γ−, respectively.

The new model is then sampled from the set of three proposals. Breaking down

the sampling into these two steps balances out the dimensional disparity in the

neighborhood and encourages movement across dimension.

Implicit in the approach is the requirement of a measure of goodness of fit

that can be used to score each regression model. Common scores used in the

regression model context are the set of information critera (A/BIC), the simple (or

adjusted) R2 statistic, and variants of the likelihood ratio statistic. In a Bayesian

approach, the key score is the unnormalized posterior probability of each model,

p(γ|y) ∝ p(y|γ)p(γ), making the sampling mechanism interpretable and allowing

for comparisons with MCMC algorithms. The Bayesian Information Criterion

(BIC) can be viewed as an approximation to the marginal likelihood of a given

model, p(y|γ), under a flat prior distribution (Raftery, 1995) and so could be used
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in similar fashion. Other scores such as R2 and AIC can be used, but the user

would have to decide how to use these scores to move from model to model across

iterations, i.e. how to normalize the scores into a probability vector from which to

sample. In general I refer to a score for a model γ that can be normalized within

a set of scores to become a probability as S(γ).

Regression Model Shotgun Stochastic Search:

Let γ be a regression model and let S(γ) be its corresponding (unnormalized)

score. Initialize an empty list, Γ∗, that will contain the best B regression models

evaluated. Given a starting model γ [0], iterate in t = 1, . . . , T the following steps:

STEP 1 In parallel, compute S(γ) for all γ ∈ nbd(γ [t]), constructing γ+, γ◦ and

γ−. Update the list of the overall best models evaluated, Γ∗.

STEP 2 Sample γ+
∗ , γ◦

∗ and γ−
∗ , from γ+, γ◦ and γ−, respectively, with probabil-

ities proportional to S(γ)α1 , normalized within each set.

STEP 3 Sample γ [t+1] from {γ+
∗ ,γ

◦
∗,γ

−
∗ } with probability proportional to S(γ)α2 ,

renormalized within this set.

One iteration is depicted graphically in Figure 2.2. The annealing parameters α1

and α2 are positive numbers set by the user to control the greediness of the search.

Values less than one flatten out the proposal distribution, allowing the search to

wander around more freely. The second parameter, α2, can be adjusted to control

how readily the search moves across dimension, ensuring that a representative

piece of the model space will be explored. Values of α1 and α2 much greater than

one turn the search into a hill climbing algorithm, moving deterministically to the

best neighboring model and eventually resulting in oscillation between two models
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γ− γ◦ γ+

{γ−∗ , γ
◦
∗, γ

+
∗ }

γ [t+1]

Figure 2.2: One iteration of regression model SSS as described in Section 2.3.
The ovals represent the parallelizable step and the unshaded box is the dimen-
sion-balanced collection of models from which γ [t+1] is sampled.

at a local mode. If it is desired, a separate value of α1 can be used for each of the

sets γ+, γ◦ and γ−. Throughout, unless otherwise specified I take α1 = α2 = 1.

As the search progresses, SSS maintains a list of the best models evaluated,

Γ∗, according to their scores, S(γ). Because this list is constructed based on every

model evaluated in STEP 1 and not solely based on the models sampled in STEP 3,

we end up with a list of models that is representative of the high posterior regions

of the model space explored.

2.4 Relationship to MCMC

In cases of high dimensional parameter spaces, MCMC approaches are often used

as stochastic search tools to identify regions of high posterior probability (or in the

context of model selection, to identify the “best” models), rather than with the aim

of performing Monte Carlo integration to summarize the posterior distribution. In
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these cases, the Markov chains created by the MCMC algorithms are not expected

to converge to a stationary distribution in a reasonable amount of time; rather

they are expected to hone-in on high posterior regions. In this section I show that

small changes to SSS result in an MCMC algorithm whose particular form has

advantages over common MCMC approaches.

Say we wish to use a Metropolis-Hastings algorithm to sample from a discrete

distribution, P (x), where we can evaluate P (x) up to a normalizing constant,

P (x) = Q(x)/Z. Consider proposal distributions that sample from P (x) restricted

to a neighborhood B(·):

T (xt+1;xt) =
P (xt+1)1(xt+1 ∈ B(xt))∑

s∈B(xt)
P (s)

=
Q(xt+1)1(xt+1 ∈ B(xt))∑

s∈B(xt)
Q(s)

.

As long as the chain is started in a region of nonzero probability, the acceptance

probability at each iteration is

α = min

1,
Q
(
B(xt+1)

)
Q
(
B(xt)

)
 . (2.5)

In other words, if the distribution we wish to sample from, restricted to a neigh-

borhood, is used as a proposal distribution, then the new state will always be

accepted if P (B(xt+1)) ≥ P (B(xt)) (if the new neighborhood contains more mass

than the old neighborhood); otherwise the new state will be accepted with prob-

ability equal to the relative size of the smaller set.

The SSS approach described in Section 2.3 can be easily adapted to become

a Metropolis-Hastings algorithm using the proposal distribution described above.
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Relating notation, P (xt) is p(γ [t]|y), Q(xt) is S(γ [t]) = p(y|γ [t])p(γ [t]), and B(xt)

is nbd(γ [t]). After performing STEP 1 at iteration t in SSS, sample a proposal γ ′

from the discrete distribution S(·) normalized within nbd(γ [t]), and set γ [t+1] = γ ′

with probability α from (2.5) (otherwise, set γ [t+1] = γ [t]). STEP 2 and STEP 3,

which are related to the two stage sampling process that corrects the dimension

imbalance, are ignored; however, this does not necessarily have the same effect as

in the M-H algorithm described in Section 2.1.2, because SSS samples from the

restricted posterior distribution rather than randomly proposing models.

Compared to using common proposal distributions for Metropolis-Hastings

algorithms that are specified independently of the posterior, using the restricted

posterior as the proposal distribution is advantageous in that the resulting chain

can move more quickly to regions of high posterior probability. This is illustrated

in Figure 2.3 for the continuous random variable case. The open circle represents

the location of the current state in the chain and is plotted at its corresponding

height on the posterior. Typical proposal distributions are commonly symmetric in

the sense that T (xt+1;xt) = T (xt;xt+1), and are often distance based, weighting

points closer to xt more heavily than those far away. Under these conditions,

proposal values near the solid circle are likely to be drawn; however, the resulting

acceptance probability will be less than one as the current value is at a higher

point on the density. In fact, for any proposal that happens to be drawn falling

in the neighborhood defined by the thin dashed lines, the acceptance probability

will be less than one as the current value is at a local mode.

When the restricted posterior, constrained to the neighborhood defined by the

thin dashed lines, is used as the proposal distribution, proposals near the solid

circle are again likely to be drawn as that is a region of relative high posterior
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Figure 2.3: Illustration for the discussion of the Metropolis-Hastings algorithm
in Section 2.4.

probability. In this case, however, the resulting acceptance probability will be

one, as the neighborhood around the proposal, defined by the thick dashed line,

has more posterior mass than the neighborhood around the current value. Hence

using the restricted posterior distribution as a proposal will make it easier to move

away from local modes if there are other modes nearby.

In this sense, MCMC based on SSS behaves differently than previous MCMC

approaches such as the Markov chain Monte Carlo Model Composition (MC3)

algorithm of Madigan and York (1995) and Raftery et al. (1997) described in

Section 2.1.2. As MC3 proceeds, if the chain is in state γ [t], a proposal move γ ′

is drawn from T∗(γ
′; γ [t]), a discrete uniform distribution over nbd(γ [t]), and is

accepted with probability

α∗ = min

{
1,

p(y|γ ′)p(γ ′)

p(y|γ [t])p(γ [t])

}
,

which favors rejecting moves away from local modes as illustrated above even

23



when the moves away would take the chain to more likely neighborhoods. In

addition to this advantage, we expect SSS to perform better due to the fact that

the neighborhood around the current model is much richer than in MC3, as it

includes all of the “replacement” models, γ◦, allowing SSS to quickly explore

larger regions of the posterior. We also expect SSS to perform better than the

approach of Brown et al. (1998a), who consider a similar neighborhood structure,

as they only look at one model at random in the neighborhood.

The above discussion of SSS as MCMC is based on a modified version of

SSS. Directly converting SSS into a Metropolis-Hastings algorithm is complicated

by the two stage sampling process used to balance dimension in the proposal

distribution. The acceptance probability,

α = min

{
1,
p(γ ′|y)
p(γ|y)

T (γ [t]; γ ′)

T (γ ′; γ [t])

}
,

requires calculation of the transition probabilities, which in turn requires marginal-

izing over the two dimensions not sampled in the second stage. For example, if

the sampled proposal γ ′ is from the addition set γ+, then the required forward

transition probability is

T (γ ′; γ [t]) =
∑

γ◦
∗∈γ◦

∑
γ−

∗ ∈γ−

[
p(γ ′|y)

p(γ ′|y) + p(γ◦
∗|y) + p(γ−

∗ |y)

]
×

[
p(γ ′|y)∑

u∈γ+ p(u|y)
· p(γ◦

∗|y)∑
v∈γ◦ p(v|y)

· p(γ−
∗ |y)∑

w∈γ− p(w|y)

]
, (2.6)

where p(γ|y) can be replaced by S(γ) as the normalizing constants cancel. The

large summation in (2.6) makes computation of both the forward and backward

proposal probabilities undesirable. This should not be viewed as problematic,
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though, as computation of these probabilities is only needed to compute the ac-

ceptance probability, α. Because SSS samples proposals based on the restricted

posterior distribution, and because the resulting chain will not be used for Monte

Carlo integration, it seems inefficient to reject a move. SSS can thus be treated

as a stochastic search tool that is similar to a Metropolis-Hastings algorithm and

used to thoroughly explore regions of high posterior probability.

2.5 Analysis of SSS Performance

2.5.1 Random Walk SSS

Consider the case of a fixed dimensional SSS, one where we condition on a par-

ticular number of variables k. Assume that the true model γ∗ is of dimension k,

and only allow moves within this dimension, effectively setting nbd(γ) = γ◦. A

fixed dimensional SSS creates a Markov chain {γt} over the state space of models

restricted to size k, Γ(k), which contains
(

p
k

)
elements. As I have conditioned on

a particular model size, k, any model γ can be categorized as belonging to one

of k + 1 classes: the class where γ shares none of the same variables as the true

model, γ∗, the class where γ shares one of the same variables as γ∗, up to the

class where γ contains all k of the same variables as γ∗. Thus we can define the

map ψ(γt) = Zt, where Zt ∈ {0, . . . , k} and indicates how many of the variables

in γt are shared by γ∗. As interest is on the expected time to find the true model,

I analyze the induced chain {Zt} which is defined on a much smaller state space.

Reformulated, the problem is now to find the expected time for the chain {Zt} to

reach state k.

Let T (p, k) = min{t ≥ 0 : Zt = k} be a random variable representing the
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time to reach the true model when there are p possible predictors and the true

model is of dimension k. Interest is on the quantities vi(p, k) = E[T (p, k)|Z0 = i],

i = 0, . . . , k, noting that vk(p, k) = 0. As a technical note, the state space for

the chain is {max{0, 2k − p}, . . . , k}, which is {0, . . . , k} for relevant values of p

and k (p � k). The reduced state space in certain situations is due to the fact

that, if you have say p = 4 and k = 3, there are no models with zero variables in

common with γ∗. For simplicity of presentation I only consider cases here where

2k − p ≤ 0 so that v0(p, k) is meaningful.

In order to analyze the chain we must specify the transition matrix Pp,k for

a case with p predictor variables conditioned on the true model being of size k.

Pp,k is hence a (k+ 1)× (k+ 1) stochastic matrix with entries Pp,k(i+ 1, j + 1) =

Pr(Zt+1 = j|Zt = i) for i, j = 0, . . . , k. The state k + 1 is treated as an absorbing

state, implying Pp,k(k + 1, k + 1) = 1 and Pp,k(k + 1, l) = 0 for all l 6= k + 1. Due

to the Markovian nature of the chain, we have

vi = 1 +
k−1∑
j=0

Pr(Zt+1 = j|Zt = i)vj, i = 0, . . . , k − 1. (2.7)

Define the substochastic matrix Qp,k to be the matrix Pp,k with the final row and

column removed, i.e., where the absorbing state has been removed. We can then

write (2.7) as

v = 1 + Qp,kv,

and hence the vector of expected times to find γ∗ is

v(p, k) = (Ik −Qp,k)
−11.

Primary interest is on v0(p, k), the expected time to find γ∗ starting from a model
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with no variables in common with γ∗, because when p� k randomly choosing a

starting point will put us in this situation with high probability.

As a baseline, consider a random walk shotgun stochastic search (RWSSS).

This is a SSS where we set S(γ) = |nbd(γ)|−1, i.e. where we sample uniformly

from the neighborhood around the current model. From this we can specify the

elements of Pp,k:

Pr(Zt+1 = j|Zt = i) =



i(p−2k+i)
k(p−k)

if j = i− 1, 0 < i < k,

(k−i)(p−2(k−i))
k(p−k)

if j = i 6= k,

(k−i)2

k(p−k)
if j = i+ 1, i < k,

1 if j = i = k,

0 o.w.

(2.8)

Values of v0(p, k) are shown in the first panel of Figure 2.4 for the RWSSS. For

p = 500, γ∗ is found on average after about 125,000 steps when the true model has

two variables. As the model space grows larger, say to when the true model has six

variables, the number of expected steps increases to about 20 trillion. Including

distinguishing information about the models, namely by sampling based on their

relative posterior probabilities, will reduce these expected times dramatically.

2.5.2 SSS for Orthogonal Designs

In the special case of an orthogonal design, when x′ixj = 0 for all i 6= j, we can

extend the results of the fixed dimensional RWSSS in Section 2.5.1 to the case

of a fixed dimensional SSS. Consider two models of size k, γa and γb, that differ

by only one variable. Let Xa = (X1 X2) and Xb = (X1 X3) be the the design
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Figure 2.4: Expected steps (log base 10 scale) to find the true model for RWSSS
and SSS under an orthogonal design for various values of p and k. The five lines
represent k = 2, . . . , 6, with the lowest line being k = 2 in each plot. Details are
given in Sections 2.5.1 and 2.5.2.

matrices for these two models, where X1 is a set of k−1 common variables. Under

the model specified in Section 3.1, the ratio of marginal likelihoods for these two

models under orthogonality is

p(y|γa)

p(y|γb)
=

(
a− y′X1X

′
1y − y′X3X

′
3y

a− y′X1X ′
1y − y′X2X ′

2y

)ν

,

where ν = (n+ δ + k)/2 and a = (τ + n− 1)2. The numerator and denominator

differ only by the last term, a scaled version of the least squares estimate β̂j =

(n − 1)−1x′jy. Therefore, the amount by which the ratio differs from unity will

depend on the difference between the two regression coefficients β̂2 and β̂3. These

in turn should be related to whether or not the corresponding variables are shared

by the true model: β̂j should be relatively large if xj is in the true model and

relatively small otherwise.

As above, consider a Markov chain {Zt} on the state space {0, . . . , k}. In

order to compute the required transition probabilities under an orthogonal design,

I make the simplifying assumption that all variables not in the true model have
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the same (relatively small) scaled regression coefficient ε = x′jy, and that all of

the variables that are in the true model have the same (relatively large) scaled

regression coefficient λ = x′jy. After specifying these two values the relevant

transition probabilites Pp,k(i, j) can be derived:

Pr(Zt+1 = j|Zt = i) =



(2.9) if j = i− 1, 0 < i < k,

(2.10) if j = i 6= k,

(2.11) if j = i+ 1, i < k,

1 if j = i = k,

0 o.w.,

where the referenced equations are

1

1 +
(

k−i
i

) (
p−2k+2i
p−2k+i

)(
1− ε2−λ2

bi

)ν

+
(

(k−i)2

i(p−2k+i)

)(
bi−(ε2−λ2)
bi+(ε2−λ2)

)ν , (2.9)

1

1 +
(

i
k−i

) (
p−2k+i
p−2k+2i

)(
1− ε2−λ2

bi

)−ν

+
(

k−i
p−2k+2i

)(
1 + ε2−λ2

bi

)−ν , (2.10)

1

1 +
(

i(p−2k+i)
(k−i)2

)(
bi+(ε2−λ2)
bi−(ε2−λ2)

)ν

+
(

p−2k+2i
k−i

) (
1 + ε2−λ2

bi

)ν , (2.11)

and bi = a− (k − i)ε2 − iλ2.

The second panel of Figure 2.4 shows expected hitting times as a function of p

for values k = 2, . . . , 6 under an orthogonal design. Here n = 500, ε = (n−1)0.005,

λ = (n − 1)0.1, τ = 1 and δ = 3. As seen in Figure 2.4, under an orthogonal

design the expected number of steps required to hit the true model is drastically

smaller under SSS than RWSSS: the expected time to find the true model for
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model spaces with p around 500 is on the order of several thousand steps. Note

that this is the expected time for the chain to achieve Zt = k, however in SSS

the true model would be evaluated the step after the chain achieved Zt = k − 1,

because one of the models in nbd(γt) = γ◦ would be the true model. Hence we

could take state k− 1 as the absorbing state in the analysis and find the expected

time until the true model is evaluated, which of course will be smaller than the

results presented here.

2.5.3 Simulation Study

In this section I report a simulation study based on a real dataset to demonstrate

the effectiveness of SSS as the number of possible predictor variables, p, increases.

I do not restrict the analysis to a fixed dimensional SSS as was considered in the

previous two sections, but instead allow SSS to move across dimension fully as

described in Section 2.3. The data on which the simulation is based is a gene

expression dataset from a survival study in brain cancer based at the Keck Center

for Neuro-Oncology at Duke University. A description of the data and an analysis

using SSS can be found in Chapter 4.

The study consists of n = 41 patients, and for each patient there is gene

expression data consisting of p = 8, 408 genes from a tumor specimen. I selected

four genes from the dataset as the variables comprising the “true” model γ∗ and

simulated m = 1, . . . , 50 outcomes using the actual gene expression values xij for

the j = 1, . . . , 4 “true” variables according to the regression model

y
(m)
i = 1.3xi1 + 0.3xi2 − 1.2xi3 − 0.5xi4 + ε

(m)
i , (2.12)

for i = 1, . . . , 41 where the ε
(m)
i are i.i.d. mean zero normal random variables with
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variance 0.5. The simulated outcomes were then standardized to have mean zero

and unit variance within each of the 50 simulations.

To assess the performance of SSS as the size of the dataset increases, I ran SSS

for the 50 simulated responses using 12 datasets with increasing values of p, as

shown in Table 2.1. The datasets were constructed by first reordering the observed

41 × 8, 408 data matrix X so that the four variables used in the simulation are

labeled as variables 1, 2, 3 and 4. To construct a data matrixX(m,p) for a particular

simulation, when p ≤ 8, 408 I extracted the first p columns of X to form X(m,p)

and then randomly permuted the columns. Hence all 50 datasetsX(m,p) for a given

p ≤ 8, 408 contain the same variables and differ only by a column permutation.

For the datasets with p > 8, 408, before permuting the columns I added p− 8, 408

columns of random draws from a N(0, I41) distribution (after centering and scaling

the random draws), effectively adding random noise to the dataset. Note that, for

a given p > 8, 408, different random draws are used for each of the 50 simulated

X(m,p).

The prior distributions over the parameter space used in the simulation study

are consistent with those used in the analysis in Chapter 4, with τ = 1 and

δ = 3. For the prior distribution on the model space, I used the prior (3.7) with

π = 4/p in order to maintain focus on sparse models as the size of the model space

increased.

For a given run of SSS, it was declared that SSS had found the true model

when the true model was evaluated by SSS, i.e. when γ∗ ∈ nbd(γ [t]). For each

value (m, p), if SSS found the true model within 10,000 iterations I recorded the

number of iterations required to find the model and the elapsed time. If the

model was not found within 10,000 iterations I recorded the time required for the
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10,000 iteration run. Note that the “true model” was not necessarily the highest

posterior probability model, but simply the generating model.

Computation was done using 21 processing elements (one master node and

20 compute nodes) on a cluster of dual-processing, 3.1 GHz Intel x86 based ma-

chines running Linux. SSS was run for one value of (m, p) at a time using the

21 processors, and the resulting run-time for the simulation was less than fifteen

days.

Results from the simulation study are shown in Table 2.1 and Figure 2.5. SSS

found over 96% of the models, as seen in the column labeled “missed” in Table 2.1,

which shows the number of models not found within 10,000 iterations. Addition-

ally, SSS found over 94% of models for datasets with p ≥ 5, 000. Increasing the

number of irrelevant variables in the dataset resulted in an increase in the number

of iterations needed to find the true model, however the true model was still found

by SSS a large percentage of the time.

I used the simulation study to obtain an estimate of the run-time of SSS as a

function of p for datasets with a similar number of observations. The top panel of

Figure 2.6 displays the run times for datasets with p ≥ 1000. The lines connect

output from SSS runs with the same value of p. A straight line would indicate

that the load on the computer cluster was constant over runs for a given p; as

the lines are fairly straight our results should not have been greatly affected by

other processes running on the cluster. The first plot in the bottom panel shows

the estimated number of iterations per second as a function of p, where the point

estimates are the slope coefficients from linear regressions of iterations on seconds

for each of the empirical lines shown in the top panel. The second plot on the

bottom panel is the inverse of the first. For each additional 1000 variables added
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Table 2.1: Results from the simulation study described in Section 2.5.3.

iterations seconds
p missed average min max average min max

10 3.38 2 5 0.02 0 1
100 6.66 4 23 0.1 0 1
500 29.68 4 412 1.5 0 22

1000 65.88 3 646 6.64 0 66
2500 181.84 4 1877 46.26 1 492
5000 1 846.88 5 7925 437.02 3 3997
7500 4 790.26 4 9269 601.41 3 7031
8408 1 1001.33 4 8309 878.02 4 7466

10000 3 1542.87 5 9706 1599.51 4 10553
12500 2 1228.35 4 9575 1528.50 5 11937
15000 5 973.07 5 6044 1454.69 7 9403
17500 3 1030.32 5 6938 1785.17 10 12236
20000 3 1259.04 4 9791 2578.11 7 19609
22500 3 1080.89 4 8639 2455.43 8 18371
25000 5 1384.18 6 9850 3522.18 15 24842

to the dataset, SSS took an extra 0.1 seconds per iteration to run.
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Figure 2.6: Run times for SSS from the simulation study in Section 2.5.3. The
legend in the first plot refers to the total number of possible predictors, p.
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Chapter 3

Bayesian Model Averaging via SSS

In this chapter I describe the special case of the normal linear model, showing

how to obtain p(γ|y) under a class of conjugate priors, including specification of

priors over model space in terms of variable inclusion probabilities. I subsequently

describe how to use the output from SSS to perform approximate Bayesian model

averaging for prediction and identification of key variables.

3.1 Normal Linear Regression

As introduced in Section 1.1.1, consider the normal linear regression model Y =

N(Xβ, σ2In), where Y is an n× 1 response variable, X = (x1, . . . , xn)′ is an n× p

design matrix for the n samples, the xi are p× 1 vectors of covariate information,

β is a p × 1 vector of regression coefficients, and σ2 is the variance of the error

term. Throughout I assume the data have been standardized in the sense that

both the observed value of Y , y, and the columns of X have been scaled to have

unit variance and zero mean, and therefore do not include an intercept term in

the model.
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3.1.1 Parameter Space Priors

I place priors on θ = (β′, σ2)′ that are consistent across models in the sense that

they are derived from an encompassing model via conditioning. This follows Dobra

et al. (2004) in assuming each observation (yi, x
′
i)
′ to have joint normality, N(0,Σ),

with (p+ 1)× (p+ 1) covariance matrix Σ and a corresponding precision matrix

Ω = Σ−1. For any given regression model, θ can be written as a transformation

of elements of Σ, and so placing a prior on Σ induces consistent priors across

regression models.

Let Σ ∼ IW(δ, τI), with δ degrees of freedom and scale matrix τIp+1 (see

Appendix A for notational details). Consider a regression model γ. The vector

(yi, x
′
i,γ)

′, consisting of yi and those variables in xi that are included in the regres-

sion model, has covariance matrix Σy,γ ∼ IW(δ, τIk+1), where k = 1′γ. Partition

Σy,γ as

Σy,γ =

[
σyy κ′γ
κγ Σγ

]
,

where σyy is a scalar and κγ is a k × 1 vector. Standard normal theory (see,

e.g., West and Harrison, 1997, Chapter 17) gives the conditional distribution of

yi given those xi implied by γ as

p(yi|xi,γ,Σy,γ) = N(x′i,γβγ , σ
2
γ),

where βγ = Σ−1
γ κγ and σ2

γ = σyy − κ′γΣ
−1
γ κγ. For brevity I write β for βγ and

σ2 for σ2
γ when it is clear from the context that the parameters are defined with

respect to a particular model. As derived in Appendix A, the priors implied by
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the inverse Wishart specified above for a particular regression with k variables are

σ2|γ ∼ IG

(
δ + k

2
,
τ

2

)
, (3.1)

β|σ2,γ ∼ N(0, τ−1σ2Ik). (3.2)

3.1.2 Parameter Space Posteriors

Under the priors specified above, the posterior distribution of θ for any given

model can be factored as p(θ|y,γ) = p(β|σ2, y,γ)p(σ2|y,γ), where routine calcu-

lations give

σ2|y,γ ∼ IG

(
n+ δ + k

2
,
τ + qγ

2

)
, (3.3)

β|σ2, y,γ ∼ N(M−1
γ X ′

γy , σ
2M−1

γ ), (3.4)

Mγ = τIk + X ′
γXγ and qγ = y′y − y′XγM

−1
γ X ′

γy. Routine calculations also give

the marginal posterior distribution of β:

β|y,γ ∼ Tn+δ+k

(
M−1

γ X ′
γy ,

(
τ + qγ

n+ δ + k

)
M−1

γ

)
, (3.5)

a multivariate T distribution, where I write the density function of a Tν(µ,Σ)

distribution of dimension d as

p(x) =
Γ
(

ν+d
2

)
/Γ
(

ν
2

)
νd/2πd/2|Σ|1/2

(
1 +

1

ν
(x− µ)′Σ−1(x− µ)

)−(ν+d)/2

.

These posterior distributions will be used in Section 3.3 for computing model

averaged predictions.
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3.1.3 Marginal Likelihood

The marginal likelihood for a given model is

p(y|γ) =

∫
p(y|θ,γ)p(θ|γ) dθ

=
Γ
(

n+δ+k
2

)
/Γ
(

δ+k
2

)
πn/2τ (n−k)/2|Mγ|1/2(1 + qγ/τ)(n+δ+k)/2

. (3.6)

For the case of the null model,

p(y|γ = 0) =
Γ
(

n+δ
2

)
/Γ
(

δ
2

)
πn/2τn/2(1 + y′y/τ)(n+δ)/2

.

By Bayes theorem, the posterior probability of any model is p(γ|y) ∝ p(y|γ)p(γ).

The marginal likelihood will be used in Sections 3.3 and 3.4 in forming model

averaged predictions and estimates of variable importance.

3.2 Model Space Prior Distributions

As discussed in Chapter 1, prior beliefs for problems with large p typically focus

on sparsity, indicating that prior distributions over model space should place most

of their mass on models with few predictor variables. Perhaps the most common

Bayesian variable selection prior is the independent Bernoulli prior (George and

McCulloch, 1993, 1997; Raftery et al., 1997), namely

p(γ) = πk(1− π)p−k, (3.7)

where conditioning on π is supressed and k = |γ|. Under this prior, the induced

distribution over model dimension, k, is Bin(p, π),

Pr(|γ| = k) =

(
p

k

)
πk(1− π)p−k. (3.8)
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“Default” Bayesian analyses often take π = 1/2 (e.g., Smith and Kohn, 1996),

representing prior ignorance on possible inclusion for each variable separately. In

problems with large p, the induced binomial distribution on model size indicates

that when π = 1/2, on average p/2 variables will be included in the model a

priori, removing focus from sparse areas of model space. As noted in Brown

et al. (1998a) and Dobra et al. (2004), the prior expected model size is πp, and

so priors of the form π = k′/p, where k′ is small, maintain focus on sparse models

as p increases. Experience has shown that values of k′ between 2 and 100 are

reasonable for examples with p on the order of 103 or 104. Unless otherwise

specified, throughout I use the prior (3.7) with k′ set sufficiently small.

3.2.1 Alternative Model Space Priors

Alternate priors based on (3.7) have been proposed (see, e.g., Chipman et al.,

2001). Separate values πj could be used for each variable, however this requires

either specifiying these p values a priori or including them in the model, a difficult

task for large p problems. Other approaches involve placing a prior distribution

on π, say Beta(α, β), resulting in

p(γ) =
B(α+ k, β + p− k)

B(α, β)
,

where B(α, β) is the beta function. This approach was used by Kohn et al. (2001),

who chose α and β by specifying the first two moments of π; Hans and Dunson

(2005) adopted a similar approach in the context of a model selection problem

related to piece-wise regression.

Other formulations first place a prior distribution on model size, Pr(|γ| = k),

40



●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Maximum Model Size

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

Density Function
Distribution Function

Figure 3.1: Density and cumulative distribution functions for the discrete
Cauchy distribution (3.10).

and then conditionally on model size assume a uniform prior:

p(γ) =

(
p

k

)−1

Pr(|γ| = k). (3.9)

Denison et al. (1998a,b) took such an approach, using a truncated Poisson distri-

bution for the prior on model size.

Priors such as (3.7) have the tendency to stack up probability on a few di-

mensions. Priors on sparse models that do not distinguish as harshly between

dimension can be constructed via mixtures. Hierarchically, given a maximum al-

lowable model size k∗, consider specifying a discrete uniform distribution on the

number of predictor variables k:

p(k = r|k∗) =
1(r ∈ {0, . . . , k∗})

k∗ + 1
.
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Under this formulation, all models up to a particular size k∗ receive the same

prior probability, 1/
∑k∗

j=0

(
p
j

)
. To balance the prior probabiliy on model size, a

marginal prior for k∗ should be used that tails off appropriately as model size

increases. One example is a discrete version of the Cauchy distribution

p(k∗) =
6

π2(k∗ + 1)2
, k∗ = 0, 1, . . . . (3.10)

As shown in Figure 3.1, this distribution favors small values of k∗ but has relatively

fat tails: about 95% of the distribution’s mass falls between zero and ten, but less

than 99% of the mass falls between zero and 50. This coincides with prior belief

in sparsity but allows for the possibility of larger sized models.

The marginal distribution on model size can be computed as

p(k = r) =
∞∑

k∗=0

p(k = r|k∗)p(k∗)

=
6

π2

∞∑
k∗=0

1(r ≤ k∗)

k∗ + 1

1

(k∗ + 1)2

=
6

π2

∞∑
k∗=r

1

(k∗ + 1)3

=
6

π2

(∑
k∗=0

1

(k∗ + 1)3
−

r−1∑
k∗=0

1

(k∗ + 1)3

)

=
6

π2

(
∞∑

x=1

1

x3
−

r∑
x=1

1

x3

)

=
6

π2

(
ζ(3)−

r∑
x=1

1

x3

)
. (3.11)

ζ(·) is the Riemann zeta function (Abramowitz and Stegun, 1972, Section 23.2)

and ζ(3), sometimes refered to as Apéry’s constant, is an irrational number

42



(Apéry, 1979) approximately equal to 1.2021. The corresponding probability for

any given model is

p(γ) =

(
p

k

)−1
6

π

(
ζ(3)−

k∑
x=1

1

x3

)
.

Values of (3.11) are shown in Figure 3.2, along with values for the standard prior

(3.8). The mixture prior places much more mass on the null model, however, the

probabilities on the other dimensions are relatively more diffuse for the mixture.

This suggests the approach of placing a prior probability directly on the null

model, and then normalizing the rest of the distribution with respect to this

value.

A similar approach is to replace the discrete Cauchy distribution (3.10) with a

Poisson distribution, k∗ ∼ Pois(λ), with λ fixed a priori. The resulting marginal

distribution on model size is

p(k = r) =
∞∑

m=0

p(k = r|m)p(m)

=
∞∑

m=0

λme−λ

m!

1(r ∈ {0, . . . ,m})
m+ 1

= λ−1

∞∑
m=0

1(r ∈ {0, . . . ,m})λ
m+1e−λ

(m+ 1)!

= λ−1

∞∑
m=r+1

λme−λ

m!

= λ−1

(
1−

r∑
m=0

λme−λ

m!

)

= λ−1 (1− Pr(m ≤ r|λ)) , (3.12)
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Figure 3.2: Comparison of the independent Bernoulli prior with the discrete
uniform-Cauchy mixture. For the Bernoulli prior, p = 8, 408 and k′ = 4.

where Pr(·|λ) is the Poisson cumulative distribution function with parameter λ.

This marginal distribution is plotted in Figure 3.3 for several values of λ. Values

of λ between three and seven appear to provide reasonable penalty on dimension.

3.2.2 Reformulating the Model Space

Rather than placing prior distributions on individual models, it is worthwhile

to consider placing prior distributions on sets of models. The idea is to form a

collection of models that are similar in some sense, and then write the likelihood

conditioned on one of these sets as a mixture of the models in the set.

Let mk by any model of size k. Define a metamodel, M∗, to be a collection of

models,

M∗ = {∅,m1,m2, . . . ,mk∗},
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Figure 3.3: Comparison of the prior on model size induced by both the discrete
uniform-Poisson mixture distribution and the Bernoulli prior (with p = 8, 408 and
k′ = 4).

for some fixed value k∗ ≤ p. Conditionally on a metamodel write

p(y|M∗) =
k∗∑

j=0

αjp(y|mj),

where m0 = ∅ and α = (α0, . . . , αk∗)
′ is a probability vector.

Impose structure on M∗ in the following way: for any model mi ∈ M∗, if

γj = 1 for the model γ corresponding to mi, then γj = 1 for each of the models γ

corresponding to ml ∈ M∗, l > i. In other words, a metamodel is a set of nested

models. Under this structure, the size of the metamodel space M∗ is

|M∗| = p!

(p− k∗)!
= k∗!

(
p

k∗

)
.

If k∗ = p, the metamodel space is much larger than the standard model space Γ.
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Conditioning on this structure, a priori assume a discrete uniform prior dis-

tribution over the metamodel space:

p(M∗) =
(p− k∗)!

p!
=

1

k∗!

(
p

k∗

)−1

, ∀M∗ ∈M∗.

Given a metamodel, M∗, the prior probability of each of its components is given

by the mixing weights defined by α:

p(mk|M∗) = αk.

Accordingly, marginal priors can be computed:

p(∅) =
∑

M∗∈M∗

p(∅|M∗)p(M∗)

=
∑

M∗∈M∗

[α0(p− k∗)!/p!]

= [p!/(p− k∗)!][α0(p− k∗)!/p!]

= α0

= α0

(
p

0

)−1

,

p(m1) =
∑

M∗∈M∗:m1∈M∗

p(m1|M∗)p(M∗)

=
∑

M∗∈M∗:m1∈M∗

[α1(p− k∗)!/p!]

= [p!/(p(p− k∗)!][α1(p− k∗)!/p!]

= α1/p

= α1

(
p

1

)−1

,
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p(m2) =
∑

M∗∈M∗:m2∈M∗

p(m2|M∗)p(M∗)

=
∑

M∗∈M∗:m2∈M∗

[α2(p− k∗)!/p!]

= α2

(
p

2

)−1

.

Note that if k∗ = p, the marginal model probabilities above correspond to the

formulation (3.9), where α corresponds to the prior distribution on model size.

Hence we can recover our original independent Bernoulli prior (3.7) by setting

α based on a Bin(p, π) distribution. Specification (3.7) can then be thought of

either as treating each variable as an independent Bernoulli random variable, or

as placing a uniform distribution on structured sets of similar models, where the

elements of each set are weighted appropriately.

3.3 Variable Identification and Prediction

Having fully specified the probability model, models discovered by SSS can now

be compared and combined by letting the score introduced in Section 2.3 be the

unnormalized posterior probability of a model, p(γ|Y ) ∝ S(γ) = p(y|γ)p(γ).

Using the list of top models discovered by SSS, Γ∗, the relative importance of

each predictor variable xj is measured by computing

p̃(γj = 1|y) = C−1
∑
γ∈Γ∗

1(γj = 1)S(γ), (3.13)

where the normalizing constant is the posterior mass contained in Γ∗, C =∑
γ∈Γ∗ S(γ). If we could have explored the entire space (so that Γ∗ = Γ), then

(3.13) would represent the posterior probability of variable inclusion for variable
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xj. Rather, as we have only explored and recorded some part of the model space,

(3.13) represents the posterior probability of variable inclusion conditioned on the

set Γ∗. Of course, if the set of models not discovered by SSS had near zero proba-

bility relative to Γ∗, then (3.13) would indeed be the posterior probability desired.

Due to the size of the model space for large p examples, this is unlikely to be the

case, and so p̃(γj = 1|y) should be viewed as a measure of the relative impor-

tance of variables xj in the context of the top predictive models found. Similarly,

measure the relative importance of individual models discovered by computing

p̃(γ|y) = C−1S(γ). (3.14)

A measure of posterior importance of model size (a measure of how much sparsity

the data support with respect to the prior) can be computed as

p̃(|γ| = k) = C−1
∑
γ∈Γ∗

1(|γ| = k)S(γ). (3.15)

If desired, higher-order variable inclusion probabilities can be computed, for ex-

ample

p̃(γi = γj = 1|y) = C−1
∑
γ∈Γ∗

1(γi = γj = 1)S(γ) (3.16)

for pairwise inlusion.

Having conditioned on the list of top models, Γ∗, the distribution of model

averaged fitted values can be simluated from, allowing for Monte Carlo integration.

To obtain the samples needed first draw f = 1, . . . , F times from the discrete

distribution implied by (3.14) over Γ∗, providing samples γ(f). For each sampled

model, draw σ2(f) from (3.3), followed by a draw of β(f) from (3.4) conditionally

on σ2(f). The fitted value µ(f) = Xγ(f)β(f) is then stored. Summaries of this
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distribution can then be computed via Monte Carlo integration. See Figure 4.7 for

an example. Alternately one could sample β(f) marginally from (3.5), bypassing

the draw of σ2(f). The distribution of model averaged fitted values can also be

computed analytically as a mixture over all the models in Γ∗, where the mixing

weights are the values p̃(γ|y), avoiding the introduction of Monte Carlo error.

3.4 Cross-Validated Prediction

Leave-one-out cross-validation (LOOCV) provides an often useful predictive model

evaluation tool. Ideally, one would run SSS n times, leaving out the ith observation

on run i, compiling lists Γ∗i , and then simulating from the predictive distributions

for the left-out observation in a manner similar to that described above for the

fitted values. For even small values of n, this becomes computationally infeasible

as SSS may take hours to run for each hold out observation.1 Instead, I take the

view that, had SSS been rerun holding out each observation in turn, it is not the

elements in the lists Γ∗i that would be different from the elements in Γ∗, but that

it is the weights p(y|γ) that would be different. I discuss two methods for using

Γ∗ for LOOCV prediction: importance sampling based methods and a brute-force

calculation method.

3.4.1 Importance Sampling LOOCV

Smith and Gelfand (1992) and Gelfand, Dey, and Chang (1992) introduced an

importance sampling technique for obtaining samples from p(θ|γ, y−i) based on a

1It should be noted, though, that in principle this is not problematic. Given access to enough
processors, the SSS runs can be made independently in parallel.
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sample {θ(j)} from p(θ|γ, y) by resampling from the latter using the weights

w
(j)
i =

1

p(yi|θ(j),γ)
, (3.17)

which is derived from Bayes theorem

p(θ|γ, y−i) ∝
p(θ|γ, y)
p(yi|θ,γ)

. (3.18)

A key to this approach is the conditional independence of yi given (γ,θ). This

importance sampling method will be accurate to the extent that the two distribu-

tions of interest are similar, i.e. the more dissimilar p(θ|y,γ) and p(θ|y−i,γ) are,

the worse the approximation. Peruggia (1997) gives conditions under which the

resampling weights will have finite variance for Bayesian linear models.

Of interest in the context of SSS is sampling from p(γ,θ|y−i) to measure

predictive accuracy as in Gelfand (1996). Extending the above approach, we can

use Bayes theorem

p(γ,θ|y−i) ∝
p(γ,θ|y)
p(yi|γ,θ)

(3.19)

to find the weights

w
(j)
i =

1

p(yi|γ(j),θ(j))
(3.20)

needed to resample from an original sample {γ(j),θ(j)} from p(γ,θ|y). Again, this

will only be accurate to the extent that the two distributions are fairly similar.

From experience with SSS output from large datasets, it is often the case that there

are only a few nontrivial weights on the sampled values {γ(j),θ(j)}, indicating that

the approximation over both models and parameters may not be good.
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It might be the case that while the distribution p(γ,θ|y) is not a good approxi-

mation to p(γ,θ|y−i) for some observations, the conditional distributions p(θ|γ, y)

may be “closer” to the conditional distributions p(θ|γ, y−i) for those observations.

If this is the case, the importance sampling procedure might be more accurate if

a two step approach is taken. For each observation i:

STEP 1 Obtain a sample {γ(j)
−i} from p(γ|y−i) by resampling draws from p(γ|y);

STEP 2 For each γ
(j)
−i use the importance sampling technique based on (3.17) and

(3.18) to draw a sample {θ(j)
−i |γ

(j)
−i} from p(θ|γ(j)

−i , y−i).

The resulting draws will be approximately from p(γ,θ|y−i).

To accomplish STEP 1, draws need to be made from

p(γ|y−i) ∝
p(γ|y)

p(yi|γ, y−i)
.

Draws can be made directly from the numerator, and hence if the denominator

can be approximated the the draws can be weighted by wi = 1/p(yi|γ, y−i) and

resampled. The denominator can be written as

p(yi|γ, y−i) =

∫
p(yi|θ,γ, y−i)p(θ|γ, y−i) dθ

=

∫
p(yi|θ,γ)p(θ|γ, y−i) dθ. (3.21)

Noting that we can obtain samples from p(θ|γ, y−i) using the importance sampling

techniques of (3.17) and (3.18), a Monte Carlo estimate of (3.21) can by computed

by

p(yi|γ, y−i) = Ep(θ|γ,y−i)

[
p(yi|θ,γ)

]
≈ 1

J

J∑
j=1

p(yi|θ(j),γ),

51



where the θ(j) are those drawn from p(θ|γ, y−i) via importance sampling, and the

γ are those drawn originally from p(γ|y). The original draws {γ(j)
−i} can now be

weighted and resampled to obtain draws from p(γ|y−i) for each observation as

required in STEP 1.

To perform STEP 2 for a single observation i, draws need to be made from

p(θ|γ, y−i) for each of the sampled models. This can be done using importance

sampling via (3.17) and (3.18).

This approach, while it may provide a better approximation to p(γ,θ|y−i)

than (3.19) and (3.20), is computationally intensive, requiring several importance

sampling steps and a separate Monte Carlo integration, all of which may need

many draws in order to be stable. Further, the computation must be done sep-

arately for each observation (although note again that the computations may be

done independently in parallel), leading to potentially long computation times for

approximate results.

3.4.2 Direct LOOCV Calculations

Rather than using an importance sampling approach to approximate the case-

deletion distributions, a direct approach is to recompute the marginal likelihoods

for each model in Γ∗ n times, each time holding out a different sample, giving us

pi(y|γ) for each γ ∈ Γ∗ and the corresponding n lists of top models Γ∗i . This can

be done independently in parallel, requiring little computational burden so long

as a parallel distributed computing environment is available. The approximation

to the posterior distribution of the model space (3.14) can be replaced with

p̃i(γ|y) = C−1
i Si(γ)
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for each hold out observation, where Si(γ) = pi(y|γ)p(γ) and Ci =
∑

γ∈Γ∗i
Si(γ).

The predictive distributions for the hold-out observations can then be sampled as

described above. As computation for each hold-out sample is done independently

of the others, the leave-one-out cross-validated predictive distributions can be

simulated in parallel, requiring little computation even when Γ∗ contains many

models, assuming that computation of the marginal likelihood can be done quickly,

as is required when performing SSS.
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Chapter 4

Example: Glioblastoma Survival Study

A contemporary example that demonstrates the usefulness of high dimensional

model search is the analysis of data from gene expression arrays. In this section

I present an analysis using gene expression data from a survival study in brain

cancer based at the W.M. Keck Center for Neuro-Oncology at Duke University.

4.1 Description of the Data

The study consists of n = 41 patients over age 50 diagnosed with glioblastoma,

a particularly lethal form of brain cancer associated with relatively short survival

times. In the general population the median survival time is about 10 to 12

months (Legler et al., 1999), although significant variability is observed. It is of

interest to explore possible biological explanations for such variability through the

analysis of gene expression data in an attempt to identify sets of genes that may

serve as indicators of survival time.

Collected from each patient was their survival time in days (measured from

initial diagnosis), along with a set of clinical variables including age, sex, race and
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type of treatment, and a tumor specimen. All of the patients in the sample are

deceased, and hence there is no censoring information. From the tumor speci-

men, gene expression data is available on Affymetrix human U133A microrarrays,

processed using the current standard RMA method (Irizarry et al., 2003a,b), to

generate summary estimates of expression levels of each gene in each sample,

implemented using the Bioconductor software suite1.

The U133A GeneChip provides expression information for over 20, 000 probe

sets, where a probe set is identified with a particular gene and there may be mul-

tiple (slightly different) probe sets that correspond to the same gene. An initial

screening of the probe sets was performed to (i) exclude probes whose estimated

expression levels did not vary appreciably across samples and (ii) exclude probe

sets whose estimated expression levels are “in the noise”. The first was accom-

plished by excluding probes whose levels did not vary at least four-fold across

samples, and the second was accomplished by excluding probes whose maximum

level did not exceed seven (on the log2 scale). This provides a total of p = 8, 408

genes/probe sets to serve as the potential predictors of survival time. A more

detailed description of the data can be found in Rich et al. (2005).

4.2 Exploratory Analysis

Table 4.1 provides summary statistics for survival time and the age clinical vari-

able, and Figure 4.1 shows box plots of the survival times. The analysis below

is performed on the natural logarithm of the survival times, and so summaries of

this transformation are also presented. Figure 4.2 is a scatter plot of log survival

1Bioconductor is open source software for bioinformatics data analysis, available at
http://www.bioconductor.org.
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Table 4.1: Summary statistics for for the Keck dataset. “Survival” is the survival
time in days, with statistics in years also presented.

Min. 1st Qu. Median Mean 3rd Qu. Max.
Survival 40 207 398 465.7 606 1696
(years) 0.11 0.57 1.09 1.28 1.66 4.65

Log Survival 3.689 5.333 5.986 5.836 6.407 7.436
Age 50 57 62 63.05 68 79

Table 4.2: Genes with the five largest values of R2 for univariate regressions with
log survival time as the dependent variable.

Gene ENSA CRABP1 TF TFa MTMR2
R2 0.245 0.231 0.227 0.227 0.218

versus age, with a least squares line added. The p-value for the coefficient on age

is 0.097, presenting some evidence of decreased survival for older patients. The

survival times are fairly evenly distributed between zero and three years, with one

long term survivor of over four years.

It is common for cancer clinicians to identify potentially interesting genes by

looking at the R2 value for the univariate regression of each gene on survival

time. A histogram of these values is shown in Figure 4.3; no models appear to be

particularly noteworthy. Table 4.2 lists the genes with the largest five values of

R2.

4.3 Small Subsets Regression Analysis

A log-normal survival model was used to assess the association between the genetic

data and survival time,

log y = βγXγ + ε, (4.1)
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Figure 4.1: Boxplots of survival time for the Keck data.
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Figure 4.2: Log survival vs. age, with least squares line added.
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Figure 4.3: Values of R2 for the 8, 408 univariate regressions of log survival time
on each gene.

where γ indexes some subset of the genes and ε ∼ N(0, σ2In). The 41 × 8, 408

data matrix X has been centered and scaled, and hence there is no intercept term

in (4.1).

As the focus is on sparse models, I take the prior distribution to be as in (3.7),

with π = 10/p. For the prior distribution on the parameter space, I take τ = 1

and δ = 3, as described in Section 3.1.1. The value τ = 1 is chosen due to the

common scale of the predictor variables, and δ = 3 is chosen for compatability

with related work in constructing Gaussian graphical models for this data (see

Jones et al., 2005; Rich et al., 2005).
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To explore the model space and build a list of small subset regression models,

I ran SSS for 40,000 iterations, saving the top one million models. The annealing

parameters used were α1◦ = 0.6, α1− = 1, α1+ = 0.8 and α2 = 0.4, which were

chosen based on experience. Twenty six processors were used (one main processor

with 25 compute nodes), and the resulting run time was just under 12 hours.

4.4 SSS Results

The top one million models contain a mix of zero through six variable models, as

shown in Table 4.3. Using (3.15), I computed the estimated posterior probability

of model size |γ|, a relative measure of the importance of model size based on

the set Γ∗. As seen in Table 4.3, the data give most support under the model to

regressions on four, five and three variables, in that order. No model of size greater

than six was found by SSS to belong in the top one million models. The null model

has relative posterior probability of 0.03, which is a non-trivial amount of mass

for a single model in this set; however, as described below, the data give large

support to sets of models containing particular variables, indicating that model

selection methods that focus on choosing one model may be less appropriate than

model averaging methods that combine information across models.

Figure 4.4 gives a sense of how the prior is penalizing dimension. It appears as

though that starting at dimension three, overall the prior is penalizing about the

same amount as the gain in marginal likelihood from adding an extra variable.

Sensitivity to the model space prior distribution is discussed in Section 4.5.

Contionally on Γ∗, four genes were found to have posterior inclusion probability

(3.13) greather than 0.1, as shown in the diagonal entries of Table 4.4. Two of

these variables, DCX and DCXa, are two probesets representing one gene, DCX.
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The sample correlation between the expression levels for these two probes is 0.956,

and in fact there are many “replicate” models in Γ∗, where DCXa replaces DCX.

They rarely entered into a model together; their pairwise inclusion probability

is less than 0.001, as see in the appropriate off-diagonal entry of Table 4.4. It

appears as though DCX and DCXa were only found to be interesting in models

also containing SPARC, as their pairwise inclusion probabilities are the same

as their marginal inclusion probabilities. Of the 273,248 (95,824) models found

containing DCX (DCXa), all but 134 (123) of them also contained SPARC.

The key gene that emerges from the SSS analysis is SPARC (Osteonectin),

which dominates the list of models. Rich et al. (2005) give a description of SPARC:

Osteonectin/SPARC was originally discovered as an important component of
bone (Termine et al., 1981) but is also expressed in epithelia exhibiting high
rates of turnover (gut, skin, and glandular tissue), as well as vascular smooth
muscle cells and endothelial cells. In addition to its normal physiological role,
Osteonectin/SPARC is abnormally expressed in cancers. Many cancers, in-
cluding cancers of the gastrointestinal tract, breast, lung, kidney, adrenal
cortex, prostate, bladder and meninges (Porter et al., 1995; Rempel et al.,
1998, 1999; Thomas et al., 2000; Bellahcene and Castronovo, 1995), express
increased SPARC levels that are associated with a conversion to invasive and
metastatic tumors.

In terms of the other important genes, DCX is a gene that is related to both

smoothness in brains and the development of abnormal amounts of gray matter;

SEMA3B, along with DCX, is known to regulate neuronal migration (Rich et al.,

2005).

The bottom row of Table 4.4 gives the rank of the absolute value of the sample

correlation of the top seven genes with log survival time. While a few of these

genes, notably SPARC and NELL1, may have been found by looking at the top

univariate regressions, genes such as DCX, KIAA0831 and HMP19, which appear

in many of the best models, simply would not have been found in this manner.

Table 4.5 lists the top fifteen models and their comprising genes. The genes
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are listed in order of their posterior inclusion probabilities and the corresponding

model probabilities are given in the final row. All but four of the top 15 models

include both SPARC and SEMA3B. Their pair-wise inclusion probability is 0.633,

indicating that models consisting in part of these two genes play a dominant role.

The highest probability model consists of SPARC, SEMA3B and DCX, who have

a three-way inclusion probability of 0.345 which rises to 0.475 if models with

DCXa replacing DCX are also included. Of interest is model 11, which is the

only model in the top 15 that does not contain any of the the top five variables.

This model contains the gene RAC1, a botulinum toxin related to RAS, a well-

known oncogene. None of these eight genes (SPARC, SEMA3B, DCX, KIAA0831,

NELL1, FABP5, RAC1 and MCAM) are appreciably correlated with each other;

the largest absolute correlation between any pair does not exceed 0.4.

As stated above, SSS was run for 40,000 iterations, which based on experience

is a reasonable run time. Figure 4.5 shows the rate at which posterior mass

accumulated in Γ∗ as a function of both time (in hours) and iterations. A large

percentage of the mass is found very quickly, with 80% discovered in less than two

hours. Small amounts of mass continue to accumulate slowly for the remainder of

the run, which indicates that had we run SSS longer it would likely keep finding

new models to swap into Γ∗. It is very difficult to say whether or not any of these

models would be among the best in Γ∗ or not. Figure 4.6 shows the log posterior

values for models in Γ∗ as a function of the iteration in which they were found, with

the best 1000 models highlighted. Most of these were found very quickly, although

there are quite a few that were found after the search had run for many iterations.

The eleventh best model, containing NELL1, FABP5, RAC1 and MCAM, was

found at iteration 32,786. An appropriate rubric for determining when to stop

61



Table 4.3: Posterior probability of model size, k, conditioned on the top 1,000,000
models found by SSS. The highest posterior probability dimension is highlighted.
The character ∗ indicates a value < 0.001.

k : 0 1 2 3 4 5 6
# of models 1 8,408 120,614 116,545 275,203 477,880 1,349
p̃(|γ| = k|y) 0.030 0.084 0.062 0.165 0.421 0.237 ∗

Table 4.4: Genewise and pairwise inclusion probabilities for the top seven genes.
The diagonal elements are the quantities p̃(γj = 1|y), and the off-diagonal elements
are the quantities p̃(γi = γj = 1|y). The character ∗ indicates a value < 0.001.
The final row gives the rank of the absolute value of the correlation of the gene
with log survival.

SPARC SEMA3B DCX DCXa KIAA0831 HMP19 NELL1
SPARC 0.797 0.633 0.348 0.133 0.062 0.048 0.019

SEMA3B 0.634 0.345 0.130 0.062 0.047 0.002
DCX 0.348 ∗ 0.059 0.002 0.002

DCXa 0.133 0.002 ∗ ∗
KIAA0831 0.062 ∗ ∗

HMP19 0.048 ∗
NELL1 0.034

Corr. Rank 15 59 159 214 5500 424 20
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Table 4.5: Top 15 models from the Keck example. Values of p̃(γ|y) for these
models are given below. The genes are in decreasing order by p̃(γj = 1|y), and
their ranks are given in the leftmost column.

Model
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 SPARC • • • • • • • • • • • • •
2 SEMA3B • • • • • • • • • • •
3 DCX • • • • •
4 DCXa •
5 KIAA0831 • •
6 HMP19 •
7 NELL1 • •
8 C13orf7 •
10 FABP5 •
11 ZNF217 •
12 L1CAM • •
13 SOX4 •
14 STMN2 •
16 RAC1 •
17 TRIM9 •
20 MCAM •
21 IPO4 •
25 SNX1 •
26 HRI •
29 GSTA4 •
Model Size 3 0 3 4 4 2 3 3 4 5 4 3 3 4 4
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Figure 4.4: The top one million models found by SSS. The blue boxplots are
values of the log marginal likelihoods, and the green boxplots are values of the
unnormalized log posterior, log p(y|γ) + log p(γ), which were the values used to
construct Γ∗.
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Figure 4.5: Accumulation of posterior mass in Γ∗ for the example with π = 10/p.
The dotted lines denote 80%, 90%, 95% and 97.5% of the mass.

the search would perhaps involve both the rate at which mass is accumulating in

Γ∗ and also how many iterations have passed since a model belonging to the set

of the top x has been found. Of course, there would be no guarantee that all the

best models had been found.

4.4.1 Assessing Model Fit

To assess the fit of the model to the data, I first sampled from the posterior

distribution of β, p(β|y), as described in Section 3.3, by first sampling γ(f) models,

f = 1, . . . , F , from p̃(γ|y), constructed based on Γ∗, and then for each model by
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Figure 4.6: The values log p(y|γ)+ log p(γ) for the models in Γ∗ as a function of
the iteration in which they were found. The top 1000 models are plotted as red
circles.

sampling a value β(f) from

p(β|y,γ(f)) = Tn+δ+k

(
M−1

γ X ′
γy ,

(
τ + qγ

n+ δ + k

)
M−1

γ

)
,

a multivariate t distribution. Fitted values µ(f) = Xγ(f)β(f) and associated 95%

intervals are plotted in Figure 4.7. Shrinkage towards the empirical mean, 5.836,

is somewhat evident, however there appears to some association between the gene

expression data and log survival.

To examine the extent of this association, I constructed a “metagene” to serve

as a survival index by taking the first principal component from a singular value

decomposition of the three genes comprising the top model, SPARC, SEMA3B and

DCX. Small values of the metagene should represent high-risk, or low survival,

cases whereas large values should represent low-risk, or longer survival, cases.

Figure 4.8 displays the a scatterplot of the survival index with both SPARC and
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Figure 4.7: Model averaged fitted means, µi, for the Keck example with 95%
intervals. “Observed values” refers to the observed yi.
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DCX. The cases are color coded by observed log survival time, with low risk

cases having darker shades of blue high risk cases having darker shades of red.

The metagene is able to separate the samples fairly well into high and low risk,

indicating that there is indeed information relating to survival in the genetic data.

4.4.2 Assessing Aspects of Predictive Fit

To assess aspects of the predictive fit of the overall model, I performed a leave-

one-out cross-validation as described in Section 3.4.2. After leaving out each

observation one at a time and compiling the reordered lists of top models, Γ∗i ,

I computed model averaged predicted means for each observation based on the
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Figure 4.9: Leave one out cross validated predicted means using various numbers
of top models for the analysis with π = 10/p. Point estimates and intervals
are based on 10,000 draws for each observation from the posterior distributions
p(β,γ|y−i).

top models in each list. Figure 4.9 displays these predictions, along with 95%

intervals, having used the lists of top 10, 100, 1000 and 10000 models separately

for prediction. In the leave-one-out cross-validated predictive context, there is

considerable shrinkage towards the mean for each observation. Either there is

not much predictive power in the data or else dimension has been overpenalized,

resulting in the highest posterior probability models not being rich enough from

a predictive perspective. The latter possibility is investigated in the next section.
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4.5 Alternate Analyses

The choice π = 10/p is somewhat arbitrary. In general it reflects prior belief

in sparsity, as the penalty for adding each extra variable, on the log scale, is

log(π/(1 − π)) = −6.733. Alternatively, using π = 2/p or π = 100/p induces

log-penalties of −8.344 and −4.432, respectively. Which of these truly reflects

prior belief? There is perhaps no definitive answer to the question, although one

approach for specifying π is described in Section 5.3. In this section I compare

the results from the previous section with results from two additional runs of SSS,

using the two alternate priors above, to demonstrate the sensitivity of the analysis

to the choice of prior, p(γ).

4.5.1 Effect of π on Posterior Model Size

Table 4.6 displays the values p̃(|γ| = k|y) for each of the three analyses. Clearly,

the set Γ∗ changes dramatically as π increases, favoring richer models and pushing

down the probability on the null model. This will certainly affect predictive

performance as there is a vast difference in the amount of shrinkage toward the

null model for the three analyses. The sensitivity of p̃(γ|y) to the choice of π

indicates that one should be careful about interpreting the amount of support the

data give to the null model.

4.5.2 Effect of π on Variable Inclusion Probabilities

Table 4.7 displays the top fifteen genes for each of the three analyses, listed in

decreasing order by p̃(γj = 1|y). The most obvious difference is that values of

p̃(γj = 1|y) are much smaller for small values of π, due to the fact that the
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Table 4.6: Comparison of posterior probability of model size for the three anal-
yses, conditioned on the top 1,000,000 models for each run of SSS. The highest
posterior probability dimension is highlighted for each analysis. The first line for
each run is the number of models found, and the second line is p̃(|γ| = k|y). The
character ∗ indicates a value < 0.001.

π, k: 0 1 2 3 4 5 6 7
1 8,408 798,128 121,998 61.441 10,024 0 0

2/p
0.576 0.320 0.068 0.025 0.011 * 0 0

1 8,408 120,614 116,545 275,203 477,880 1,349 0
10/p

0.030 0.084 0.062 0.165 0.421 0.237 ∗ 0
1 2 40 841 40,774 794,870 159,849 3,623

100/p
* * * 0.003 0.083 0.698 0.214 0.002

null model (and one variable models) are absorbing much more posterior mass in

these cases. There is fairly high concordance, however, in the genes that make up

the three lists. The top three genes, SPARC, SEMA3B and DCX, are the same

across the three lists; only one gene in the top fifteen for the 10/p analysis was

not included in either of the other two lists.

4.5.3 Effect of π on Predictive Fit

Figures 4.10 and 4.11 display leave one out cross validated predicted means for

the analysis with π = 2/p and π = 100/p, respectively. There is clear shrinkage

for the former, while the latter plots seem to indicate slightly better prediction

than for the π = 10/p case, due to the fact that the high posterior models have

more variables in the 100/p case. The intervals in both cases are 95% regions,

and cover the observed value for most cases in the latter figure.
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Table 4.7: Comparison of variable inclusion probabilities for the top fifteen vari-
ables from each of the three analyses, conditioned on the top 1,000,000 models
for each run. Variables in blue are common to all three lists, while those in green
and red are common to two.

π = 2/p π = 10/p π = 100/p
SPARC 0.047 SPARC 0.797 SPARC 0.896

SEMA3B 0.023 SEMA3B 0.634 SEMA3B 0.763
DCX 0.013 DCX 0.348 DCX 0.433
ENSA 0.009 DCXa 0.133 NELL1 0.186
DCXa 0.006 KIAA0831 0.062 FABP5 0.172

CRABP5 0.005 HMP19 0.048 KIAA0831 0.150
TF 0.005 NELL1 0.062 DCXa 0.107

CNGA3 0.005 C13orf7 0.037 C13orf7 0.105
TFa 0.005 CNGA3 0.036 RAC1 0.102

L1CAM 0.004 FABP5 0.027 HMP19 0.086
MTMR2 0.004 ZNF217 0.027 SOX4 0.081
NKX2-2 0.004 L1CAM 0.024 ZNF217 0.070
NAP1L1 0.004 SOX4 0.021 MCAM 0.065

AK3 0.004 STMN2 0.020 HAN11 0.053
FUBP1 0.004 FUBP1 0.020 HSPA9B 0.038
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Figure 4.10: Leave one out cross validated predicted means using various num-
bers of top models for the analysis with π = 2/p. Point estimates and intervals
are based on 10,000 draws for each observation from the posterior distributions
p(β,γ|y−i).
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Figure 4.11: Leave one out cross validated predicted means using various num-
bers of top models for the analysis with π = 100/p. Point estimates and intervals
are based on 10,000 draws for each observation from the posterior distributions
p(β,γ|y−i).
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4.6 Effect of the Size of Γ∗

Figures 4.9, 4.10 and 4.11 give some insight into how predictive performance

changes as the number of top models conditioned on increases: we typically expect

slightly more shrinkage toward the overall mean, as the infusion of many more

(relatively) “bad” models should just add random noise. We can also explore

how the number of top models saved by SSS and subsequently used for averaging

affects our posterior estimates of model size and variable importance.

Figures 4.12 through 4.14 show the estimated posterior probabilities of model

size as a function of B, the number of top models stored in Γ∗ for the three

analyses. One million top models seems to be enough to have a stable estimate

for this example, although one can see in all three figures that posterior mass is

still slowly accumulating.

Figures 4.15 through 4.17 show cumulative posterior probability plots for vari-

able importance measures p̃(γj = 1|y) for SPARC, SEMA3B, DCX, NELL1 and

CNGA3 for the three analyses. The values stabilize fairly quickly, except perhaps

for NELL1 in the 100/p analysis, which is still decreasing after summing over the

top million models.

4.7 Comparison with MCMC Methods

Important comparisons between SSS and MCMC methods include: (i) the amount

of posterior mass found, (ii) cumulative posterior mass found as a function of both

time and model evaluations, (iii) the best models found and (iv) the amount of

time/model evaluations needed to find the best models. Here I compare SSS with

Gibbs sampling as described in Section 2.1.1, in both cases using π = 10/p.
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Figure 4.12: Values of p̃(|γ| = k|y) as a function of the size of Γ∗ for the analysis
with π = 10/p.

Figure 4.13: Values of p̃(|γ| = k|y) as a function of the size of Γ∗ for the analysis
with π = 2/p.
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Figure 4.14: Values of p̃(|γ| = k|y) as a function of the size of Γ∗ for the analysis
with π = 100/p.

Figure 4.15: Values of p̃(γj = 1|y) for several genes as a function of the size of
Γ∗ for the analysis with π = 10/p.
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Figure 4.16: Values of p̃(γj = 1|y) for several genes as a function of the size of
Γ∗ for the analysis with π = 2/p.

Figure 4.17: Values of p̃(γj = 1|y) for several genes as a function of the size of
Γ∗ for the analysis with π = 100/p.
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I used two baselines to compare the two methods: elapsed time and number

of model evaluations. SSS ran for 40,000 iterations, taking 11 hours and 53 min-

utes. The number of model evaluations performed by SSS for a fixed number of

iterations depends on the current model at each iteration: if the current model is

of size k, then p + k(p − k) model evaluations are performed. For this example,

1, 137, 195, 208 model evaluations were performed in 40,000 iterations. The Gibbs

sampler makes p model evaluations at each iteration, and so Gibbs must be run for

135, 252 iterations in order to make comparisons based on the number of models

evaluated.

To compare the two methods based on run-time, a separate Gibbs run was

performed that was stopped after 11 hours and 53 minutes had elapsed. This

resulted in 29,163 iterations (245,202,504 model evaluations). In the sections

below, it is assumed that when comparisons are made based on run-time, the 11

hour and 53 minute Gibbs run is being used, and when comparisons are made

based on model evaluations, the 135, 252 iteration Gibbs run is being used.

4.7.1 Run-time Comparisons

After running for 11 hours and 53 minutes, the posterior mass of the top million

models found by Gibbs accounted for 75.41% of the total mass of the models

found by SSS. Figure 4.18 shows the accumulated posterior mass by time for

both methods, where the plot is normalized by the total mass found by SSS. SSS

accumulates more mass for a fixed run time compared to Gibbs, and its rate of

accumulation is much greater than Gibbs early on, indicating that SSS is finding

the best models faster.

Looking at only the very best models found by both methods, for the most
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part SSS and Gibbs find the same models, however SSS finds them much faster.

Figure 4.19 displays the best 60 models found by both SSS and Gibbs as function

of the time taken to find them. The character “X” indicates a model found by only

one of the two methods. Of the top 60 models, SSS found five models not found

by Gibbs, and Gibbs found three models not found by SSS. The three models

found by Gibbs but not SSS were of size five (two models) and six. This is likely

due to the fact that Gibbs generally wanders around low probability regions of

the model space (i.e., regions with larger numbers of variables) and happened to

stumble upon a few competitive models. SSS on the other hand spends more time

in regions of generally higher posterior probability, and hence did not explore the

spaces Γ(5) and Γ(6) as well.

Overall, SSS found models in the set of the top 60 much faster in terms of

run-time than Gibbs. Of the top 60 models found by both SSS and Gibbs, all but

two were found first by SSS (indicated by the black/red lines).

4.7.2 Model Evaluation Comparisons

After running for 135,252 iterations, the posterior mass of the top million models

found by Gibbs accounted for 97.49% of the total mass of the models found by

SSS. The search ran for 55 hours and 13 minutes compared to 11 hours and 53

minutes for SSS. Figure 4.20 shows the accumulated posterior mass by model

evaluations for both methods, where the plot is normalized by the total mass

found by SSS. SSS accumulated slightly more mass for a fixed number of model

evaluations compared to Gibbs, and its rate of accumulation is much greater than

Gibbs early on, indicating that SSS is finding the best models using fewer model

evaluations.
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Looking at only the very best models found by both methods, Gibbs found all

of the top 54 models found by SSS plus six others not found by SSS. Figure 4.21

shows that in all but six cases, SSS found the top models using fewer model

evaluations than Gibbs.

4.7.3 Nature of the Gibbs Sampler in Large p Problems

As discussed in Section 2.1.1, the Gibbs sampler has a tendency to wander around

low posterior regions of the model space. Figure 4.22 displays the sizes of the

model at the end of each cycle through the variables for the first 50,000 iterations

of Gibbs. The distribution of model sizes is nearly Bin(p, π), as seen in the Q-

Q plot in Figure 4.23. There is of course variability of model size within each

cycle through the variables. Figure 4.24 is a plot of the value of the log posterior,

log p(y|γ) + log p(γ), for the first 50,000 iterations. The red line is the cut off

point for the top million models found. It is clear that Gibbs spends a significant

portion of its time in low probability regions.
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Figure 4.18: Comparison of accumulated posterior mass as a function of run-time
for SSS (black) and Gibbs (red), based on the top million models for a run of 11
hours and 53 minutes.
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Figure 4.19: Comparison of time to find the top 60 models for SSS (black) and
Gibbs (red). The character “X” means that this model was only found by the
method indicated by color.
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Figure 4.20: Comparison of accumulated posterior mass as a function of model
evaluations for SSS (black) and Gibbs (red), based on the top million models for
a run consisting of 1,137,195,208 model evaluations.
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Figure 4.21: Comparison of model evaluations required to find the top 60 models
for SSS (black) and Gibbs (red). The character “X” means that this model was
only found by the method indicated by color.
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Figure 4.22: The size of the model at the end of each cycle through the variables
for the first 50,000 iterations of Gibbs.
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Figure 4.23: Q-Q plot of the model size at the end of each Gibbs iteration for
the first 50,000 iterations and a Bin(p, π) distribution.
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Figure 4.24: The log posterior of the model at the end of each cycle through the
variables for the first 50,000 iterations of Gibbs. The red line is at −72.48, the
cut off for the top million models.
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Chapter 5

Sparsity in the Normal Linear Model

In this chapter I introduce methods for approximate inference on the parameter

controlling the amount of sparsity in my specification of the Bayesian normal

linear model. This requires investigation of the marginal likelihood p(y|γ) and I

begin with a necessary result.

5.1 A Lower Bound on the Marginal Likelihood

Recall that for each response variable yi, i = 1, . . . , n, we have covariate infor-

mation xij, j = 1, . . . , p. For the discussion below, as throughout, assume that

the data have been centered and scaled to have mean zero and unit variance:

1′xj = 1′y = 0 and x′jxj = y′y = n− 1.

Allowing for a slight abuse of notation, let X be the design matrix for a

model consisting of some subset of the predictor variables, and let the number

of variables in the model be k, as the notation Xγ becomes cumbersome. As
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described in Section 3.1, the probability model is

p(y|β, ψ,X) = N(Xβ , σ2In),

p(β|σ2, k) = N(0 , τ−1σ2Ik),

p(σ2|k) = IG

(
δ + k

2
,
τ

2

)
.

From this, the marginal likelihood (3.6) is

p(y|X) =
Γ
(

n+δ+k
2

)
/Γ
(

δ+k
2

)
πn/2τ (n−k)/2|M |1/2{1 + q/τ}(n+δ+k)/2

, (5.1)

where M = τIk +X ′X and q = y′y − y′XM−1X ′y. The null model is defined to

be the model with no predictor variables, formally k = 0, q = y′y and |M | = 1.

Theorem 5.1. Assume that y and the xj have been centered and scaled to have

zero mean and unit variance, and that for any k < n dimensional model defined

by X, rank(X) = k. Then for fixed values of δ > 0, τ > 0 and y, the marginal

likelihood (5.1) for any model X of dimension k < n is lower bounded:

p(y|X) ≥
Γ
(

n+δ+k
2

)
/Γ
(

δ+k
2

)
πn/2 τ−( δ

2
+k) (τ + n− 1)

n+δ
2

+k
≡ p∗(y|X), (5.2)

with equality when X ′X = (n − 1)Ik, i.e. when X is an orthogonal matrix, and

when X ′y = 0, i.e. when y is orthogonal to the column space of X.

Proof. The components of (5.1) that involve X are q and M . To complete the

proof, I first establish that q ≤ n − 1 and secondly that |M | ≤ (τ + n − 1)k.

Substituting these upper bounds into the denominator of (5.1) yields the lower

bound in (5.2).
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Regarding q, from Appendix B.1, we have that XM−1X ′ is a positive semidef-

inite matrix. Hence ∀y ∈ Rn, y′XM−1X ′y ≥ 0, resulting in q ≤ y′y = n− 1.

To establish that |M | ≤ (τ + n− 1)k, I use the result proved in Appendix B.1

that |M | ≤
∏k

i=1mii. As the data are standardized so that x′jxj = n − 1 for

j = 1, . . . , p, we have mii = τ + n− 1 and thus have |M | ≤ (τ + n− 1)k.

Substituting these two bounds, q ≤ n − 1 and |M | ≤ (τ + n − 1)k into the

denominator of (5.1) yields the lower bound in (5.2).

When X ′X = (n−1)Ik and X ′y = 0, we have q = n−1 and M = (τ+n−1)Ik,

and direct substitution into (5.1) gives equality in (5.2).

The key to the existence of the lower bound is the constraint that the data

have been standardized; otherwise, probability statements would have to be made

about likely values of |M | and q in order to gauge likely values of the marginal

likelihood, which is a more complicated task.

The correspondence of equality in (5.2) with the response vector being an

element of the null space of X can be interpreted as the lower bound being the

“worst case scenario” – when X has no predictive power with respect to the

outcome. All other models can then be interpreted with this baseline value in

mind. Of course, if y is random noise that is uncorrelated with X, the marginal

likelihood will be greater than the lower bound with probability one. Thus the

lower bound provides calibration in a sense, and the task is to determine what

models fall outside of the “noise” region near the lower bound.
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5.1.1 Sparsity and Bayesian Shrinkage

In traditional model selection, the tendency to overfit is usually balanced by the

inclusion of a penalty term in the selection criterion. There are many off-the-

shelf criteria for comparing models, including AIC (Akaike, 1970), BIC (Schwartz,

1978), RIC (Foster and George, 1994) and Cp (Mallows, 1973), along with vari-

ants on them, several of which are considered in Shao (1997). The idea is

that more complex models will incur larger penalties, allowing the addition of

model components only if these components dramatically improve the model

fit. For example, for normal linear models, BIC = n log(1 − R2) + k log n, and

AIC = n log(1−R2) + 2k, where R2 is the coefficient of determintation for a par-

ticular model of size k. Smaller values of BIC and AIC indicate “better” models.

Alternative ways to avoid overfitting not involving selection criteria fall into

the category of shrinkage methods (see, e.g. Hastie et al., 2001, Chapters 3 and

5). Full models are typically fit with constraints on the regression coefficients that

shrink their values toward zero, effectively lowering the degrees of freedom. For a

fixed value of σ2, the prior distribution (3.2) corresponds to a shrinkage procedure

known as ridge regression, where the regression coefficients are estimated under

the constraint that β′β is less than a specified constant related to τ−1σ2.

It is well known that Bayesian model selection methods act as automatic “Oc-

cam’s razors” without the need for inclusion of a separate penalty term (see, e.g.

Smith and Spiegelhalter, 1980; Jefferys and Berger, 1992; Berger and Pericchi,

2001). In general this is accomplished through the specification of the probability

model, i.e. through the likelihood and prior components. In the variable selec-

tion framework, shrinkage priors weight values for the regression coefficients that

are nearer to zero more highly. So, when choosing between models of differing
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dimension with similar fits to the data, the more parsimonious model is favored.

This is encoded mathematically in the marginal likelihood, p(y|γ). After in-

tegrating the likelihood over the prior distribution, the marginal likelihood rep-

resents the balance between the fit of the data to the model and the penalty

on model size imposed through the shrinkage prior. Hence we can think about

breaking down the marginal likelihood into components

marginal likelihood = constant × (model fit ◦ dimension penalty).

The open circle indicates that the marginal likelihood cannot simply be factored

into a product of three separate components, but that the model fit and dimension

penalty parts are often interrelated. Indeed, looking at (5.1), the components can

not be separated out easily: the portion related to model fit, (1 + q/τ)(n+δ+k)/2,

is also explicitly related to the dimension of the model.

Consequently, to make comparisons between the amount of penalty on model

dimension provided by different classes of model selection criteria and/or shrinkage

priors, one must attempt to make comparisons between two models with “similar”

model fit. This is not difficult for a criterion such as BIC, which is conveniently

partitioned into two components: the model fit, n log(1−R2), and the dimension

penalty, k log n. Hence one can simply specify a value of R2 (or equivalenty, for

standardized data, a value of the residual sum of squares, RSS) to represent the

model fit.

Comparing this directly to (5.1) is difficult, as (5.1) is not a nice function of
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R2. We could perhaps define a “ridge regression R2” as

1−R2
τ = (n− 1)−1y′(In −XM−1X ′)y

= (n− 1)−1RSSτ

= (n− 1)−1q,

rather than the traditional 1 − R2 = (n − 1)−1y′(In − X(X ′X)−1X ′)y for stan-

dardized data. Even so, in order to make a direct comparison, assumptions would

still need to be made about X, as |M | is implicitly a function of dimension.

The lower bound formulation provides a natural way to assess the dimension

penalty component, as the model fit has effectively been removed due to the

orthogonality between X and y. We can write the lower bound as a function of

the remaining two components (constant and dimension penalty)

p∗(y|γ) =

[
(τπ)−n/2

(
τ + n− 1

τ

)−n+δ
2

]
·

[(
τ + n− 1

τ

)−k Γ
(

n+δ+k
2

)
Γ
(

δ+k
2

) ] .
Focusing on the case τ = 1 and setting g(n, δ, k) ≡ log Γ((n+δ+k)/2)− log Γ((δ+

k)/2),

log p∗(y|γ) = −
(
n

2
log π +

n+ δ

2
log n

)
− k log n+ g(n, δ, k). (5.3)

As shown in Appendix C.2, for even values of n the final term can be written as

g(n, δ, k) = −n log 2 +

n/2∑
i=1

log(n+ δ + k − 2i).

As seen in Figure 5.1, the function g(n, δ, k) is nearly linear for values of k, n and

δ that we are concerned with. As can be seen from values of the log marginal
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Figure 5.1: The top panel shows the function g(n, δ, k) for fixed δ = 3 and
n = 41. The line is a least squares fit. The bottom panel plots the residuals of
least squares fits for g(n, δ, k) vs. k for fixed values of δ = 3 and values of n as
indicated in the legend.

likelihood in Figure 5.2, the departures from linearity of g(n, δ, k) as a function of

k (as shown in the residual plot in Figure 5.1) are small enough relative to changes

in log p∗(y|γ) as a function of k to make the term “nearly linear” meaningful.

The orthogonality between y and X is equivalent to R2 = 0, and hence the

corresponding BIC penalty is k log n and the corresponding AIC penalty is 2k,

which are both exactly linear in k. Figure 5.2 shows values of these penalties,

along with log p(y|γ) as a function of k. The red line is −BIC + log p(y|γ = 0);
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the negative multiplier means that larger (more positive) values of BIC represent

more favored models, and the shift by the log marginal likelihood for the null

model is intended to facilitate comparison. The same is true for the green line,

which represents AIC. The figure was made with the Keck example in mind (see

Chapter 4), with n = 41, p = 8, 408, δ = 3 and τ = 1.

Care should be taken in interpreting the figure. The two relevant comparisons

are the red and green lines, and the solid black and blue lines. The red and green

lines, BIC and AIC, are used similarly as model selection criteria; we see that

having removed model fit, the penalty incurred from adding an extra irrelevant

variable is greater in BIC than in AIC (which will always be true for n > 7).

Raftery (1995) shows that BIC is an approximation to −2 log p(y|γ), and hence

the solid black line can be compared to the blue line, −1
2
BIC + log p(y|γ = 0).

If this approximation were used in lieu of the marginal likelihood, then the BIC

based criteria would penalize the addition of irrelevant variables less harshly than

the proper Bayesian analysis.

Directly comparing the dimension penalty from p(y|γ) to BIC (the red line)

or AIC is potentially problematic, as the black line implicitly assumes a uniform

prior distribution over the model space, p(γ) = |Γ|−1. In many model/variable

selection type problems, such a prior is viewed as unrealistic, especially in cases

where p is large, as the prior mean on model dimension is p/2. Using a sparsity

inducing prior as discussed in Section 3.2 will penalize dimension a priori more

reasonably: under the Bernoulli prior (3.7) the prior probability of a model with

k variables is (1−π)/π times greater than a model with k+1 variables, which, for

small values of π, greatly favors parsimonious models. Comparing BIC or AIC to

the log unnormalized posterior probability log p(y|γ)+ log p(γ) (the dashed black
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Figure 5.2: Comparison of dimension penalties for several selection criteria for
models with no fit to the data.

line in Figure 5.2), we see that the proper Bayesian model selection criterion

penalizes dimension much more heavily. The example here uses π = 100/p. It

is not until π > 2150/p that BIC penalizes uniformly more harshly on the range

k ∈ {1, . . . , 8}

Of course, these comparisons are conditional on there being no fit of the model

to the data (R2 = 0) and the predictor variables being orthogonal to each other.

However they do serve as a baseline for understanding the way in which different

selection criteria penalize the addition of irrelevant variables to a model, which

gives us an idea about how much extra model “fit” is needed in order to favor the

94



addition of a variable that does indeed have some predictive power.

5.2 Characterizing the Marginal Likelihood

Section 5.1 introduced a lower bound on the marginal likelihood for models of a

given dimension that corresponds to the case where y and the variables X in a

given model are mutually orthogonal. Here I present a stochastic version of the

lower bound result, where y and the xj are no longer assumed to be orthogonal,

but rather distributionally independent. In essence, the result can be viewed as

providing a “distribution” of the marginal likelihood in the case where we are

presented with random models, i.e., where the variables comprising the model

have been drawn from a distribution that is independent of the outcome. Such a

result is particularly relevant in settings where p is large and it is thought that

many of the variables will be unrelated to the outcome, as will be underscored in

Section 5.3.

5.2.1 Stochastic Version of the Lower Bound

For a fixed, observed value y and a given model comprised of some set of k

predictor variables, X, we are interested in the marginal likelihood as a function

of a random X. I make the assumption that y and X are independent as stated

above, but here do not presume them to be orthogonal.

Of interest is the quantity

f(X; y) =
p(y|X)

p∗(y|X)
,

where I have scaled by the lower bound so that the function is defined on the
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interval [1,∞). Using (5.1) and (5.2), this can be rewritten as

f(X; y) =
τ−(n+δ+k)(τ + n− 1)

n+δ
2

+k

|M |1/2(1 + q/τ)(n+δ+k)/2
.

In the discussion that follows, I assume that (yi, x
′
i)
′ ∼ N(0, I) and constrain the

observed values so that X ′X = diagk(n− 1) and y′y = n− 1. Accordingly,

|M |1/2 = |τ +X ′X|1/2 = (τ + n− 1)k/2,

and

f(X; y) =
τ−(n+δ+k)/2(τ + n− 1)(n+δ)/2+k

(τ + n− 1)k/2(1 + q/τ)(n+δ+k)/2

=

(
τ+n−1

τ

)(n+δ+k)/2

(1 + q/τ)(n+δ+k)/2
.

For ease of notation, I let µ = (n+ δ + k)/2, leaving us with

f(X; y) =

(
τ + n− 1

τ + q

)µ

.

Focusing attention on q,

q = y′y − y′XM−1X ′y

= n− 1− (τ + n− 1)−1y′XX ′y.

Letting z = X ′y we have

z | y ∼ N(0, (n− 1)I),

and hence

(n− 1)−1/2z | y ∼ N(0, I).
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Letting u = (n− 1)−1/2z,

q = n− 1− n− 1

τ + n− 1
u′u.

Hence

τ + q = (τ + n− 1)

(
1− n− 1

(τ + n− 1)2
u′u

)
,

and

f(X; y) = (1− w)−µ , (5.4)

where w = νu′u and ν = n−1
(τ+n−1)2

. Noting that u′u | y ∼ χ2
k, we have

w | y ∼ Gamma

(
k

2
,

1

2ν

)
. (5.5)

As in the previous section, focus is on the log marginal likelihood, and so I consider

the function

log f(X; y) = −µ log(1− w). (5.6)

Recall that I originally constrained the observed values of X to lie on the cone

of matrices such that X ′X is diagonal, and hence the distribution of w|y stated

above is only an approximation to the actual case where X ′X is only “close” to

diagonal. It is only under the orthogonality constraint that (5.6) is guaranteed to

exist (i.e., that 1 − w > 0), as |M | was calculated under this constraint. Under

this condition, the approximate distribution of log f(X; y) can be derived. Let

v = −µ log(1−w), with corresponding inverse transformation w = 1−exp{−v/µ}.

Using α = k/2 and β = 1/(2ν),

p(v) =
βα

Γ(α)

1

µ
(1− e−v/µ)α−1 exp{−v/µ− β(1− e−v/µ)}.
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Rewriting µ−1 = µ−αµα−1, we have

p(v) =
(β/µ)α

Γ(α)

(
µ(1− e−v/µ)

)α−1

exp{−v/µ− β(1− e−v/µ)}

=
(β/µ)α

Γ(α)

(
µ(1− e−v/µ)

)α−1

exp{−(β/µ)(v/β + µ(1− e−v/µ))}. (5.7)

If the quantities µ(1 − e−v/µ) and v/β + µ(1 − e−v/µ) are both good approxima-

tions of v, then (5.7) is approximately a gamma density. The first order Taylor

polynomial around zero for these two quantities are v and v(1−2/n), respectively,

which are both good approximations even for modest n (see Figure 5.3). Hence

we have the approximation

log f(X; y)
d
≈ Gamma

(
k

2
,

(τ + n− 1)2

(n− 1)(n+ δ + k)

)
, (5.8)

which in the limit as n→∞ for fixed k is

log f(X; y)
d
≈ Gamma

(
k

2
, 1

)
.

Rather than computing the transformation explicitly as above, the approx-

imate result (5.8) can also be arrived at using a Taylor expansion of g(w) =

−µ log(1− w) around zero. The linear approximation is

g(w) ≈ g(0) + wg′(0)

= wµ,

and thus if w has a Gamma
(

k
2
, 1

2

)
distribution, then w · µ has a Gamma

(
k
2
, 1

2νµ

)
distribution, which is exactly the distribution in (5.8).

Table 5.1 gives the shape and scale parameters in (5.8) as a function of k for

δ = 3 and τ = 1 under the column “Approx.” The values under “Keck” and
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Figure 5.3: The left panel corresponds to µ(1 − e−v/µ) and the right panel
corresponds to v/β + µ(1− e−v/µ) for τ = 1 and δ = 3.
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Table 5.1: Values of the shape and scale parameters for the gamma distribution
discussed in Section 5.2.1. The columns under “Approx.” are from (5.8) for n = 41,
τ = 1 and δ = 3. The other two columns are described in Section 5.2.1.

Approx. Keck Random
k Shape Scale Shape Scale Shape Scale
1 0.5 0.934 0.500 1.024 0.497 0.884
2 1.0 0.914 1.106 1.028 1.016 0.870
3 1.5 0.894 1.788 1.109 1.547 0.841
4 2.0 0.876 2.552 1.014 2.134 0.831
5 2.5 0.858 3.408 1.010 2.718 0.813
6 3.0 0.841 4.333 1.005 3.330 0.796
7 3.5 0.824 5.281 0.994 3.906 0.770

“Random” are method of moments estimates1 of the shape and scale parameters

based on 100,000 samples of models (for each dimension) drawn independently

from (i) the Keck dataset and (ii) standard normal distributions, respectively.

The data in both cases have been scaled to have zero mean and unit variance,

and both have a total of 8,408 possible predictors and 41 observations. The

response variable y for the “Keck” example is the actual (normalized) log-survival

times; for the “Random” example it is a vector whose elements were drawn from

n independent standard normal distributions (independently from the sampled

data matrix X), and then normalized. These values are also plotted in Figure 5.4.

The method of moments estimates for the models drawn randomly from inde-

pendent normal distributions appear to match the moments of the approximation

(5.8) better than the randomly drawn Keck models; this is likely due to collinear-

ity present in the Keck data beyond the amount that appears randomly in the

normal draws. It is clear in Figure 5.4 that the method of moments estimates

1The method of moments estimates are calculated as α̂ = X̄2/σ̂2 and β̂ = X̄/σ̂2, where X̄ is
the sample mean and σ̂2 is the sample variance.
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Figure 5.4: Values of the shape and scale parameters for the gamma distribution
(5.8). The colors correspond to the columns in Table 5.1.

for the shape parameter for both the Keck and Random models becomes less like

the approximation (5.8) as k increases, which we would expect, as it becomes less

likely that X ′X is “close” to orthogonal as k increases.

5.2.2 Assessing the Approximation

The previous section established that under certain conditions, the shifted log

marginal likelihood for models of a given dimension has approximately a gamma

distribution (as a function of models). The approximation relies on the design

matrix being orthogonal, which of course is uncommon in practice, and so we

should check how good the approximate gamma distribution given by (5.8) is for

both simulated and real data of interest.

Figures 5.5 and 5.6 give empirical evidence that the approximation is close

to reality. Figure 5.5 contains Q-Q plots, where the vertical axes represent ran-
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dom draws from gamma distributions with shape and scale parameters defined by

(5.8) for model sizes one through six. The horizontal axes represent the 100,000

randomly sampled models used to construct the column “Random” in Table 5.1.

Figure 5.6 was similarly constructed, with the horizontal axes representing the

100,000 randomly sampled models used to construct the column “Keck” in Ta-

ble 5.1. The approximate gamma distribution seems to be a close match to the

empirical distribution in both cases, however there is a general tendency for the

empirical distributions to have mass farther to the right than the approximate

distributions (k = 2, . . . , 6 in Figure 5.5 and k = 5, 6 in Figure 5.6).

This suggests that perhaps a gamma distribution is a good approximation to

values of log f(X; y) observed in practice, however that the shape and scale pa-

rameters given by (5.8) are not quite right due to the orthogonality restriction.

This is displayed in Figures 5.7 and 5.8. Here, the vertical axes represent draws

from gamma distributions where the shape and scale parameters are given not

by (5.8), but rather by the method of moments estimates from Table 5.1. Fig-

ure 5.7 corresponds to the models drawn from random normal distributions, and

Figure 5.8 corresponds to the models drawn randomly from the Keck dataset.

In both cases, the fitted gamma distributions are a very good match to the ob-

served data, indicating that slight adjustments to the shape and scale parameters

given in (5.8) to account for observed collinearity in the data allow for a better

approximating gamma distribution.

5.2.3 SVD Representation

To see precisely why the result from the previous section is only an approximation,

it is convenient to first transform the representation of the linear model. Notation-
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Figure 5.5: Q-Q plots to assess the approximation (5.8). The vertical axes rep-
resent random draws from gamma distributions with shape and scale parameters
defined by the values under the column “Approx.” in Table 5.1. The horizon-
tal axes are the values log p(y|γ) + log p∗(y|γ) for the 100,000 randomly sampled
models corresponding to the column “Random” in Table 5.1.
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Figure 5.6: Q-Q plots to assess the approximation (5.8). The vertical axes rep-
resent random draws from gamma distributions with shape and scale parameters
defined by the values under the column “Approx.” in Table 5.1. The horizontal
axes are the values log p(y|γ)+log p∗(y|γ) for the 100,000 randomly sampled Keck
models corresponding to the column “Keck” in Table 5.1.
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Figure 5.7: Q-Q plots to assess a general gamma distribution fit to log f(X; y).
The vertical axes represent random draws from gamma distributions with
shape and scale parameters defined by the method of moments estimates
in column “Random” from Table 5.1. The horizontal axes are the values
log p(y|γ) + log p∗(y|γ) for the 100,000 randomly sampled models corresponding
to the column “Random” in Table 5.1.
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Figure 5.8: Q-Q plots to assess a general gamma distribution fit to log f(X; y).
The vertical axes represent random draws from gamma distributions with shape
and scale parameters defined by the method of moments estimates in column
“Keck” from Table 5.1. The horizontal axes are the values log p(y|γ)+ log p∗(y|γ)
for the 100,000 randomly sampled models corresponding to the column “Keck” in
Table 5.1.

106



wise, define the singular value decomposition of a centered and scaled n×k matrix

X as

X = UDV ′,

where U ′U = Ik the columns of U contain the left singular vectors of X, D is a

diagonal matrix whose elements are the k singular values of X, and V ′V = V V ′ =

Ik. Rewrite this decomposition as X = AF , where

A = (n− 1)1/2U,

F = (n− 1)−1/2DV ′.

Then A′A = (n − 1)Ik, i.e. the columns of A are scaled to have mean zero and

unit variance, and FF ′ = (n− 1)−1D2. We can then reparameterize the model as

y = Xβ + ε

= AFβ + ε

= Aµ + ε,

where ε ∼ N(0, σ2In). The induced prior on µ is

p(µ|σ2,γ) = N

(
0 ,

σ2

(n− 1)τ
D2

)
.

Under this parameterization, the marginal likelihood is

p(y|X) =
Γ
(

n+δ+k
2

)
/Γ
(

δ+k
2

)
πn/2τ (n−k)/2|τIk +D2|1/2{1 + q∗/τ}(n+δ+k)/2

, (5.9)

where q∗ = y′y − y′AM−1
∗ A′y, and M∗ = (n− 1)(Ik + τD−2). Note also that

|τIk +D2| =
k∏

j=1

(τ + d2
j),
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and

q∗ = y′y − y′U


d2
1

τ+d2
1

. . .
d2

k

τ+d2
k

U ′y.

Using the notation of Dawid (1981), X ∼ N(In, Ik) means that the n × k

matrix X has a matrix normal distribution, where the rows are independent and

identically distribution N(0, Ik) random variables. We can write U = XVD−1,

and so under the matrix normality assumption on X, U ∼ N(In, D
−2). As D−2

is a diagonal matrix, we have that the rows of U are independent and identi-

cally distribution N(0, D−2) random variables, implying also that the columns are

independent of each other.

Let

B =


d1√
τ+d2

1

. . .
dk√
τ+d2

k

 .

Setting U∗ = UB, then U∗ ∼ N(In, C), where

C =


1

τ+d2
1

. . .
1

τ+d2
k

 .

The quantity q∗ can now be written as y′y − y′U∗U∗′y. For fixed y, we have

y′U∗ ∼ N(I1, (n − 1)C), i.e., U∗′y ∼ N(0, (n − 1)C). Let z = (n − 1)−1/2U∗′y.

Then q∗ = (n− 1)(1− z′z), where z ∼ N(0, C). Also,

z′z =
k∑

j=1

1

τ + d2
j

χ2
1,
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a mixture of standard chi-squared random variables with unequal mixing weights.

We can write

f(X; y) =
p(y|X)

p∗(y|X)

=
(τ + n− 1)

k
2[∏k

j=1(τ + d2
j)

1/2
] (

1− n−1
τ+n−1

∑k
j=1

1
τ+d2

j
χ2

1

)µ .

The condition that X is an orthogonal (scaled) matrix corresponds to D2 =

(n− 1)Ik. If this is the case, then

f(X; y) =

(
1− n− 1

(τ + n− 1)2
χ2

k

)−µ

,

which is the same as (5.4). So the “closer” that X is to orthogonal, the closer

the d2
j will be to n − 1, and hence the closer the (scaled) mixture of χ2

1 random

variables will be to the gamma distribution in (5.5).

5.3 Bayesian Inference on Sparsity

The probability model specified in Chapter 3 required the parameter controlling

sparcity, π, to be specified a priori. This choice is quite arbitrary; in general, small

values serve to enforce sparsity in the model space posterior distribution, however

the posterior can be sensitive to changes in π, as demonstrated in Chapter 4. As

seen in Figure 5.2, setting π = 0.5 imposed much less of a penalty on dimension

than π = 2/p. These two values of π may be sufficiently different enough that,

a priori, we may be able to choose between them, however it is much less clear

whether π = 2/p or π = 10/p truly reflects our prior beliefs.
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Two possible ways to avoid the problem of having to arbitrarily specify π are

to (i) include π as a parameter in the model by assigning it a prior distribution

(e.g., Chipman et al., 2001), and (ii) estimate π using an empirical Bayes-type

approach (e.g., George and Foster (2000), Cui and George (2004) and Johnstone

and Silverman (2004, 2005) in a related setting). I first explore the latter by

describing how to construct a marginal likelihood for π using output from a SSS

and the previous results from this chapter.

5.3.1 Marginal Likelihood for π

The marginal likelihood p(y|π) is computed by marginalizing over the model space:

p(y|π) =
∑
γ∈Γ

p(y,γ|π)

=
∑
γ∈Γ

p(y|γ, π)p(γ|π)

=
∑
γ∈Γ

p(y|γ)p(γ|π), (5.10)

where p(γ|π) is the prior distribution over the model space described in Sec-

tion 3.2,

p(γ|π) = πk(1− π)p−k.

For each dimension k, define the corresponding subset of Γ to be

Γ(k) = {γ ∈ Γ : |γ| = k},

110



k ∈ {0, . . . , p}, noting that Γ =
p⋃

k=0

Γ(k). We can then rewrite (5.10) as

p(y|π) =

p∑
k=0

∑
γ∈Γ(k)

p(y|γ)p(γ|π)

=

p∑
k=0

πk(1− π)p−k
∑

γ∈Γ(k)

p(y|γ). (5.11)

We can evaluate the marginal likelihood p(y|π) over a grid if we can compute

the inner sums in (5.11); this is practically intractable, however, as there are too

many models to evaluate. If we could instead estimate the average value of the

marginal likelihoods within each dimension,

mk =

(
p

k

)−1 ∑
γ∈Γ(k)

p(y|γ), (5.12)

we could then estimate the marginal likelihood,

p(y|π) =

p∑
k=0

mk

(
p

k

)
πk(1− π)p−k. (5.13)

5.3.2 Bounding the Model Space

In the context of the examples considered througout, prior belief places little

support on models with many variables, and in general focus is on mixing over

models with only a few predictor variables. This prior belief in sparsity is well-

encoded in the model by placing an upper bound on the number of variables

allowed in any model. For the rest of this chapter, I entertain a restricted model

space

Γk∗ = {γ ∈ Γ : |γ| ≤ k∗},
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and update the prior distribution over the model space as

p(γ|π) = πk(1− π)p−kCk∗(π)−11(k < k∗),

where

Ck∗(π) =
k∗∑
l=0

(
p

l

)
πl(1− π)p−l.

Using this restricted model space, the marginal likelihood p(y|π) is now

p(y|π) = Ck∗(π)−1

k∗∑
k=0

mk

(
p

k

)
πk(1− π)p−k. (5.14)

5.3.3 Estimating mk

We can use the output from SSS along with the results from Section 5.2.1 to

construct a conservative estimate of mk. First, rather than allowing SSS to move

across dimension, a fixed dimensional SSS should be run on dimension k separately

for k = 2, . . . , k∗, providing lists of B best models evaluated, Γ∗(k). The model

space for each dimension can be broken down into two components, models we

have recorded and models we have not recorded:

Γ(k) = Γ∗(k) ∪ Γ−(k),

where Γ−(k) is the latter set. The quantity mk can then be rewritten as

mk =

(
p

k

)−1
 ∑

γ∈Γ∗(k)

p(y|γ) +
∑

γ∈Γ−(k)

p(y|γ)

 . (5.15)

The first sum in (5.15) can be computed using the output from the fixed dimen-

sional SSS search, while the second sum needs to be estimated.
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The second sum represents those models of dimension k that were not in

the list of B top models found by SSS. If we had taken B just large enough to

capture all the “interesting” models, then then set Γ−(k) would represent those

models that are uninformative about the outcome, i.e., those models having y

uncorrelated with the comprising variables. If this were the case, we could then

use the results from Section 5.2.1 to estimate the average value of the marginal

likelihood for the models in Γ−(k) and then multiply this quantity by
(

p
k

)
− B to

obtain an estimate of the second sum in (5.15).

The parametric approximation (5.8) is to the (shifted) log marginal likelihood,

and so to compute the average value of the marginal likelihood for the models in

Γ−(k), we need to transform W = exp{Z + ck}, where Z is distributed according

to (5.8) and ck = log p∗(y|γ) for a model of size k. The resulting density function

is

p(w) =
βαeβck

Γ(α)
w−(β+1)(logw − ck)

α−1, exp(ck) ≤ w <∞, (5.16)

where α = k/2 and β = (τ + n− 1)2/[(n− 1)(n+ δ + k)]. Note that when τ = 1,

β < 1 for all n > (δ + k)/(δ + k − 1), which is effectively n > 1 when δ = 3 and

k ≥ 0. The expected value is

E[W ] ∝
∫ ∞

eck

w−β(logw − ck)
α−1 dw

≥
∫ ∞

1

w−β(logw − ck)
α−1 dw (5.17)

≥ const.

∫ ∞

1

w−β dw. (5.18)

Line (5.17) follows because ck < 0 for values of n, δ, τ and k of interest, and line

(5.18) follows because logw − ck > 0. The integral (5.18) diverges when β < 1,
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and so E[W ] does not exist. Hence we cannot simply take E[W ], multiply it by(
p
k

)
−B and substitute it for the second sum in (5.15).

Alternatively, we can substitute exp{E[Z] + ck} for the second sum in (5.15);

by Jensen’s inequality, if E[W ] did exist, then

exp{E[Z] + ck} ≤ E[W ], (5.19)

and so the estimate would be conservative in that it would be closer to the lower

bound.

5.3.4 Keck Data Example

Fixed dimensional SSS was run on the Keck dataset as described in Chapter 4 for

dimensions k = 2, . . . , k∗, where k∗ is taken to be six. Additionally the marginal

likelihoods for the null model and all one variable models were computed. The

lists Γ∗(k) for k = 2, . . . , 6 each contain one million models; boxplots are shown in

Figure 5.9. The values
∑

γ∈Γ∗(k) p(y|γ) and the estimates of
∑

γ∈Γ−(k) p(y|γ) are

given in Table 5.2.

Figure 5.10 displays the estimate of the resulting marginal likelihood, p(y|π).

The modal value is zero, indicating that the data support very small models. In an

empirical Bayes type approach, arg max p(y|π) = 0 would be the estimate for π,

indicating the null model is preferred. If a fully Bayesian approach were taken, and

p(y|π) treated as an unormalized posterior under a flat prior p(π) = 1(0 < π < 1),

an estimate of π might be the posterior mean. This can be computed numerically

to be 2.625e-3, as indicated in Figure 5.10, corresponding to a model with on

average 22 predictors. The flat prior corresponds to an a priori average value

of π = 0.5, which is much different than our actual beliefs. If a fully Bayesian

approach is to be taken, priors on π that represent belief in sparsity must be used.
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Table 5.2: Sums of marginal likelihoods for models in Γ∗(k) for the Keck example.
The lower panel displays estimates of the mass in Γ−(k) using the method based
on (5.19).

k : 0 1 2 3 4 5 6

Γ∗(k) 1.22e-26 2.86e-23 2.65e-20 3.78e-17 6.94e-14 1.81e-11 3.77e-10
Γ−(k) 0 0 1.10e-20 4.38e-18 1.19e-15 2.48e-13 4.15e-11

Total 1.22e-26 2.86e-23 3.75e-20 4.22e-17 7.06e-14 1.83e-11 4.19e-10
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Figure 5.9: Marginal likelihood values from fixed dimensional runs of SSS.
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Figure 5.10: Marginal likelihood for π for the Keck data, with k∗ = 6. The axis
on top of the figure denotes the values pπ.

5.3.5 Marginal Posterior Distribution for π

Rather than taking an empirical Bayes type approach where p(y|π) is used to

formulate an estimate of π, we can instead use the approximation to the marginal

likelihood to do full Bayesian learning about the sparsity controlling parameter π.

If we assign a prior distribution to π, the resulting marginal posterior is

p(π|y) ∝ p(y|π)p(π). (5.20)

If a uniform prior, p(π) = 1, is assigned as discussed above, then (5.13) and (5.14)

are proportional to (5.20), and the marginal posterior can be evaluated over a grid

on the interval [0, 1].

More flexibly, and more concordantly with prior belief, we can assign a beta

prior distribution,

p(π) = Beta(k′, p), (5.21)
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where p is the total number of predictors and k′ is specified a priori. If we take

k′ � p, then

E[π] =
k′

k′ + p
≈ k′

p

V[π] =
k′p

(k′ + p)2(k′ + p+ 1)
≈ k′

p2
.

Note that this beta distribution is well-approximated by a gamma distribution,

as seen above by the first two moments, in a manner similar to the Poisson ap-

proximation to the Bin(n, p) distribution as n→∞ for fixed np.

Under formulation (5.21), the prior mean of π approximately corresponds to

an expected model size of k′ if we did not impose an upper bound k∗. Hence this

prior is, in a sense, a stochastic version of the independent Bernoulli prior (3.7),

where now the prior variance of π is reasonable for the size of regression models

considered here. Using prior (5.21) and setting an upper bound on model size,

the resulting posterior distribution is

p(π|y) ∝ Ck∗(π)−1

[
k∗∑
l=0

mk

(
p

l

)
πl(1− π)p−l

]
πk′−1(1− π)p−1

= Ck∗(π)−1

k∗∑
l=0

mk

(
p

l

)
πl+k′−1(1− π)2p−l−1. (5.22)

Again, this can be computed on a grid of values for π on the interval [0, 1]. Note

that if k∗ = p, (5.22) would be a mixture of beta distributions. Priors and

posteriors for various k′ in the Keck example are shown in Figure 5.11. Posterior

means, modes and highest posterior density regions can then be used to gauge the

amount of sparsity supported by the data.
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Figure 5.11: Marginal posterior distributions p(π|y) for the Keck data, with
k∗ = 6, for several values of k′. The axes on top of the figures denote the values
pπ.

The resulting posteriors are sensitive to the choice of k′ just as the model

space posterior was sensitive to the choice of k′ when it was used to set a fixed

value π = k′/p for the independent Bernoulli prior. The fully Bayes formulation

is less rigid, however, as it allows for variability in π and in turn allows the data

to inform more strongly about reasonable model sizes.
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Chapter 6

Further Examples in Clinico-Genomics

Regression modeling is not limited to the case of the normal linear model, and

resulting methodology is needed that addresses model search in large p scenarios.

A key to the search methodology developed in Chapter 3 was that the regression

model scores, p(y|γ)p(γ), could be computed quickly in closed form. This is typ-

ically not the case for generalized linear models, where marginal likelihoods must

be approximated numerically. In this chapter I extend the SSS search method to

the cases of binary regression and survival time modeling via Weibull regression.

6.1 Binary Regression Models

In the case of independent binary outcomes, yi, assume the logistic regression

model framework and set p(y|β,γ) =
∏n

i=1 φ
yi

i (1 − φi)
1−yi , where φi = 1/(1 +

exp{−(β0 + x′iβγ)}). Here xi is taken to mean the dependent variable vector

for respondent i containing only those variables indicated by the model γ. Even

though the data matrix X is assumed to be standardized, the inclusion of the

intercept term β0 is necessary to account for the baseline response probability.
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While the methods below are derived for logistic regression, any link function

could be used.

6.1.1 Prior Distributions

For a given model, the parameter space prior distribution is taken to be

[β0,βγ|γ] ∼ N(0, τIk+1), (6.1)

where k is the number of variables in model γ. As the predictor variables have

been standardized to have common (unit) variance, τ is taken to be one. Figure 6.1

shows the implied prior on φi under the logistic link function for models of sizes

k = 0, . . . , 3 when τ = 1. In each case with k > 0, the value of the predictor

variable is set to be an “extreme” value, 1.96, which is the 97.5th quantile of

the standard normal distribution. Prior mass accumulates at the boundaries as

k increases. A smaller prior variance would slow this accumulation, as shown in

Figure 6.2, where τ = 0.5.

The prior distribution for the model space is the same as for the linear model,

a product of indepdent Bernoulli random variables as in (3.7) with π = k′/p. In

the context of binary regrssion models p represents the total number of possible

predictor variables excluding the intercept, as the intercept is included in every

model. Similarly, the “dimension” or “size” of a model will not include the inter-

cept parameter, hence k = 0 refers to the model with only β0 and γ is taken to

be a p× 1 vector.

6.1.2 Marginal Likelihood

The marginal likelihood p(y|γ) is not available in closed form, however a numerical

approximation can be made using a Laplace approximation. Following DiCiccio
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Figure 6.1: Implied prior for φi when τ = 1 for models with k predictor variables,
each of which is set to be x = 1.96, the 97.5th quantile of the standard normal
distribution.

et al. (1997), letting h(β|γ) = p(y|β,γ)p(β|γ) we can estimate

p̂(y|γ) = (2π)(k+1)/2|Σ̂|1/2h(β̂|γ) (6.2)

= |Σ̂|1/2τ−(k+1)/2 exp

{
− β̂

′
β̂

2τ

}
n∏

i=1

φi(β̂)yi(1− φi(β̂)1−yi ,

where

Σ̂ = −

(
∂2 log h(β̂|γ)

∂β̂i∂β̂j

)−1

. (6.3)
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Figure 6.2: Implied prior for φi when τ = 0.5 for models with k predictor
variables, each of which is set to be x = 1.96, the 97.5th quantile of the standard
normal distribution.

The posterior mode, β̂ = arg maxβ p(y|β,γ)p(β|γ), can be found via Newton’s

method; details are given in Appendix D.

6.1.3 Posterior Summarization

Posterior quantities of interest, such as p̃(γ|y) can be found as before using SSS

output with the marginal likelihood estimates p̂(y|γ). To simulate from the model

averaged distribution of fitted values, as was described for linear models in Sec-

tion 3.3, F models are first sampled from the approximation to the model space

posterior based on the values p̃(γ|y) using Γ∗. For each sample f , a draw of the re-
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gression coefficients needs to be made from their posterior distribution, p(β|γ, y),

which is not available in closed form. One possible method of obtaining a sam-

ple is to use an MCMC method such as a Metropolis-Hastings algorithm with a

simple proposal distribution, retaining the last value as the needed sample. Al-

ternatively, adaptive rejection sampling (Gilks and Wild, 1992) could be used in

a Gibbs sampler to draw from the full conditional distributions, as they are log

concave.

A fast sampling method is to approximate the posterior with a normal distri-

bution, centered at the posterior mode β̂ with covariance matrix Σ−1 as in (6.3),

which is the correct distribution asymptotically. No additional computation is

required, as these quantities are calculated in order to estimate the marginal like-

lihood and can be stored with the model. For each sampled model, f , a draw

of the regression coefficients β(f) is then made from the approximate posterior

distribution, N(β̂, Σ̂). For each β(f) the value φ
(f)
i = 1/(1 + exp{−x′iβ

(f)}) is

computed. Summaries of the posterior distribution of each φi can then be plotted

(e.g. Figure 6.3).

Cross-validated prediction can be performed as in Section 3.4, where the

marginal likelihoods for the models in Γ∗ are recomputed n times, each time hold-

ing out a different sample. This is now more computationally demanding as the

marginal likelihoods must be approximated numerically, however the calculations

can be done in parallel. The cross-validated predictive distributions can be sam-

pled from in parallel using the method described above, and resulting estimates

and intervals for the φi can be computed.
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6.2 Example: Predicting Lymph Node Status

The data are coupled gene expression and lymph node positivity status in human

breast cancers. From a data base of 348 cases, individuals were identified who

were clinically defined as low risk for disease recurrence, or death from disease, in

terms of lymph node negativity (no evidence of cancer metastasis in the axillary

lymph nodes) at the point of surgery; these patients are compared to those that

are in a generally far higher risk group, i.e. those with at least nine nodes in

the axillary regions showing evidence of cancer metastasis. This analysis follows

previous work and relates to the general interest in the potential for tumor derived

gene expression profiles to aid in prognosis – in this case, improved prediction of

low versus high risk based on genomic information could feed into decisions about

post-surgical treatments (West et al., 2001; Huang et al., 2002; Nevins et al.,

2003; Huang et al., 2003; Pittman et al., 2004). Prediction of lymph node status

based on gene expression profiles is a challenging problem, due to the complex

heterogeneity of the disease in terms of genetic and environmental factors, and

also as a result of the levels of experimental and technical noise in gene expression

data. Advances in the ability to better predict lymph node status would be of

substantial interest in clinical cancer genomics.

The data consist of n = 148 samples with n0 = 100 low risk (node negative)

and n1 = 48 high risk (high node positive) cases. Gene expression data is available

on Affymetrix HU95aV2 oligonucleotide microarrays, which were processed using

the current standard RMA method (Irizarry et al., 2003a,b) to generate summary

estimates of expression levels of each gene in the sample. This primary RMA data

was then further screened and normalized, and a total of 4, 512 genes showing
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evidence of more than trivial variation above the noise level were selected to

include in the analysis. In addition to these candidate predictors, each patient has

a number of traditional clinical factors available, including an estimate of tumor

size in centimeters and protein assay-based estrogen receptor (ER) status, coded

as a binary covariate. Using the gene expression data together with these two

clinical factors thus provides p = 4, 514 candidate predictors in total, in addition

to the intercept term occurring in all models.

6.2.1 Small Subset Regression Analysis

Binary regression models are used as described above, with yi = 0 denoting the

node negative cases, and yi = 1 denoting the (high) node positive cases. As the

focus is on sparse models, the prior distribution on the model space is taken to be

the independent Bernoulli prior (3.7) with π = 10/p. For the prior distribution

on the regression coefficients, (6.1) was used with τ = 1. SSS was run for 20,000

iterations saving the top 100,000 models evaluated.

6.2.2 Results

The top 100,000 models evaluated contain a mix of one through seven variable

models, as shown in Table 6.1 in the row labeled τ = 1. Recall that k = 1

corresponds to a model with an intercept plus one predictor variable. Under this

model specification, the data give most support to regression models of size five,

six and four, in that order. No models of size eight or greater were found by SSS

to belong in the list of top models. The null model has a (relative) log posterior

value, log p(y|γ) + log p(γ), of −95.273, while the worst model in Γ∗ has a value

of −85.896.
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Table 6.1: Posterior probability of model size conditioned on the top 100,000
models evaluated by SSS for the lymph node status example. The character *
represents a value < 0.001.

k: 1 2 3 4 5 6 7
# of models 1 54 1,311 11,838 54,597 30,619 1,580

τ = 1
p̃(|γ| = k|y) * 0.001 0.020 0.184 0.534 0.253 0.007
# of models 1 162 5,576 35,863 55,900 2,498 0

τ = 1
2 p̃(|γ| = k|y) * 0.006 0.089 0.422 0.466 0.017 0

Table 6.2: Genewise and pairwise inclusion probabilities for the top seven genes.
The diagonal entries are the quantities p̃(γj = 1|y), and the off-diagonal entries
are the quantities p̃(γi = γj = 1|y). The character * indicates a value < 0.001.

RGS3 DXYS155E ATP6V1F MGC8721 VDAC1 GEM WSB1
RGS3 0.991 0.716 0.495 0.351 0.169 0.133 0.125

DXYS155E 0.716 0.454 0.319 0.069 0.069 0.121
ATP6V1F 0.498 0.250 0.010 0.045 0.108
MGC8721 0.352 0.016 0.042 0.054

VDAC1 0.171 0.037 0.001
GEM 0.134 *

WSB1 0.125

Conditionally on Γ∗, eight genes were found to have posterior inclusion proba-

bility greater than 0.10; the top seven are given in Table 6.2. The most important

gene, RGS3, occurs in almost all of the models. Pairwise importance measures

(3.16) are displayed in the off diagonal entries of the table and confirm that mod-

els consisting of the top four variables dominate the list. Indeed, the four-way

inclusion probability of the top four genes is 0.244, just less than a third of the

total mass for five, six and seven variable models.

To asses the fit of the model, model averaged mean probabilities φi and asso-

ciated 80% intervals were computed using the top ten models. Figure 6.3 plots
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Figure 6.3: Model averaged fitted response probabilities based on the top ten
models with associated 80% intervals. The red points indicate yi = 1 and the blue
indicate yi = 0.

these model averaged fitted values vs. the linear predictor log(φi/(1− φi)), which

serves as a linear risk index. The fitted values have been corrected for the baseline

incidence rate of 32.4%, making φi = 0.5 the reference point. The model fit is

quite good; 95.8% of the red points (true positives) are above 0.5, and 89% of

the blue points (true negatives) are below 0.5. Further, 70.8% of the lower red

quantiles are above 0.5, while 66.7% of the upper blue quantiles are below. These

are patients whom we have fit properly with high probability.

To assess the way in which the top genes combine across models in a predictive

context, two “metagenes” were constructed from the genes that comprise the top

ten models (a total of 18 genes). The metagenes here are defined as the first

two principal components from a singular value decomposition of the 18 genes.

If the singular value decomposition of the data submatrix is X = UDV ′ as in

Section 5.2.3, then the two metagenes are the first two columns of V . Figure 6.4
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Figure 6.4: Association of the metagenes with the model averaged metastasis
index (linear predictor) based on the 18 genes comprising the top ten models. Red
points denote yi = 1 and blue denote yi = 0.

shows the association between these two metagenes and the model averaged linear

predictor computed above. A concordance between the empirical metagenes and

the averaged predictions is expected, but it is evident from variation in the scatter

plot that the complex, data-weighted mixing over the set of regression models is

generating predictions that are not captured by a single linear fit – the metagene

– to the selected set of most interesting predictors.

To assess aspects of the predictive fit of the overall model, a leave-one-out cross-

validation was performed as described above. After leaving out each observation

one at a time and compiling the reordered lists of top models Γ∗i , model averaged

predictions of response probability for each observation were computed, using
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the model averaged posterior mean values of φi based on the top 10,000 models

in each list. A histogram of predicted risk index log(φi/(1 − φi)) is shown in

Figure 6.5. Values to the right of zero are predicted to be node positive, while

those to the left of zero are predicted to be node negative. The histogram is

broken down and colored by the true values of positive or negative. On the basis

of simple thresholding of these point estimates at zero, corresponding to a simple

thresholding of the corresponding point predictions of metastasis, the analysis

indicates an approximate sensitivity of 79.2% (for true positives) and a specificity

of 76% (for true negatives). This level of predictive discrimination is quite high

and suggests promise for the approach relative to prior analyses on much smaller

and selected subsets of patients (West et al., 2001; Huang et al., 2003).

6.2.3 Alternate Analysis

The analysis was also performed for τ = 0.5 to assess the sensitivity of the results

to the choice of prior. Posterior probability of model size is given in the second

row of Table 6.1. Five variable models still receive the most posterior support,

but four variable models are now much more likely. The shift toward smaller

models corresponds to the larger amount of shrinkage induced by the smaller

prior variance. Under this new prior, the null model has a (relative) log posterior

value of −95.190, while the worst model in Γ∗ has a value of −88.399.

A comparison of the top twenty variables for the analysis with τ = 1 with

those from the analysis with τ = 0.5 is given in Table 6.3. Besides differences

in the values of p̃(γj = 1|y), the two lists are fairly concordant, with most of

the variables occuring in only one list having rank less than 35 on the other list.

Model averaged fitted values of φi are not shown, however they are very similar.
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Figure 6.5: Histograms of the leave-one-out cross-validated predictions on the
linear predictor scale. The blue, shaded histogram is for the true negatives and
the red histogram is for the true positives.
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Table 6.3: Comparison of variable inclusion probabilities for the top 20 genes
from the analyses with τ = 1 and τ = 0.5. Red entries are those occuring in
the top 20 on only one of the lists, and their ranks on the opposite list are given
parenthetically.

τ = 1 τ = 0.5
RGS3 0.991 RGS3 0.969

DXYS155E 0.716 DXYS155E 0.468
ATP6V1F 0.498 ATP6V1F 0.351
MGC8721 0.352 VDAC1 0.256
VDAC1 0.171 GEM 0.164
GEM 0.134 PRRG1 0.134
WSB1 0.125 MGC8721 0.098
PRRG1 0.110 WSB1 0.086
UBC 0.075 (22) LOC283970 0.069

KIF13B 0.065 SULT2B1 0.063
HSPA9B 0.062 TOMM40 0.062

OGT 0.054 KIFI3B 0.053
PJA2 0.054 (98) FAM38A 0.051 (31)

LOC283970 0.053 HSPA9B 0.049
SULT2B1 0.051 GNAS 0.047 (33)
TOMM40 0.050 OGT 0.047
MGC5508 0.047 (23) GNAS′ 0.045 (32)

— 0.041 (32) HSPC1111 0.043 (24)
ZNF364 0.039 tumor size 0.039 (46)
DVL3 0.031 (26) ZNF364 0.038

Overall, the results from both analyses are similar enough to not greatly affect

inference.

6.3 Survival Modeling via Weibull Regression

The survival time model used in Chapter 4 was the log-normal model, which

resulted in closed form calculations of the marginal likelihood. Here I analyze a

second set of survival time data that now includes censoring information using a

more flexible family of models based on the Weibull distribution (see, e.g. Ibrahim
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et al., 2001, Chapter 2).

Suppose we have survival times yi for i = 1, . . . , n subjects, and suppose that

the survival times follow a Weibull distribution, Weib(α, λ), with density function

f(yi|α, λ) = αyα−1
i exp{λ− exp(λ)yα

i }.

Assume censoring information is available, where νi = 0(1) if subject i is alive

(dead), and denote d =
∑n

i=1 νi. We can then write the likelihood as

p(y|α, λ) =
n∏

i=1

p(yi|α, λ)νiS(yi|α, λ)1−νi

= αd exp

{
dλ+

n∑
i=1

(νi(α− 1) log yi − exp(λ)yα
i )

}
, (6.4)

where S(yi|α, λ) is the survival function

Pr(Y ≥ y|α, λ) = S(y|α, λ)

= exp(− exp(λ)yα). (6.5)

A regression model is constructed by parameterizing λ via the predictor variables:

λi = x′iβ, where the first value in xi is a constant, 1, and hence the intercept

parameter β0 is taken to be the first element of β.

6.3.1 Prior Distributions

As for binary regression models, the parameter space prior distribution for the

regression coefficients is taken to be

[β0,βγ|γ] ∼ N(0, τIk+1),
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where k is the number of variables in model γ. I take τ = 1 throughout. The

prior distribution for α is taken, independently of β, to be

α ∼ Gamma(α0, κ0).

I set (α0, κ0) = (1, 0.8) throughout, which is reasonably vague and has prior

location around 1.25 (Pittman et al., 2004).

The prior distribution for the model space is the same as for binary regression

(see Section 6.1.1).

6.3.2 Marginal Likelihood

The marginal likelihood p(y|γ) is not available in closed form and must be es-

timated, as is the case for binary regression. A Laplace approximation is again

used, where the posterior mode and corresponding Hessian matrix are computed

via Newton-Raphson as described in Appendix D, leading to the estimate

p̂(y|γ) = (2π)1/2|Σ̂|1/2τ−k/2 κα0
0

Γ(α0)
α̂α0+d−1 ×

exp

{∑
i

(νix
′
iβ̂ + νi(α̂− 1) log yi − yα̂

i λ̂i)− κ0α̂−
1

2τ
β̂
′
β̂

}
.

6.3.3 Posterior Summarization

Summarization of the posterior distribution is done in the same manner as for

binary regression models (see Section 6.1.3) where a normal approximation to the

posterior distribution p(α,β|y,γ) is constructed using the posterior mode and

estimated covariance from Newton-Raphson. After sampling F models based on

p̃(γ|y), a draw is made from the approximation to p(α,β|y,γ). Associated with
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each draw β(f) is a linear predictor for each individual, λ
(f)
i = x′iβ

(f) where xi

corresponds to the model γ(f). A key quantity of interest for each individual is

the survival distribution (6.5), draws from which can be obtained using the draws

from p(α,β|y) obtained by sampling over the model space above. Monte Carlo

integration for each individual can be performed on the draws

S
(f)
i (t) = exp(− exp(λ

(f)
i ) tα

(f)

),

where t is a particular survival time of interest.

Leave-one-out cross-validated predictive distributions can be constructed in

a manner similar to that for binary regression. After recomputing the marginal

likelihoods holding out each observation, the predictive survival distributions can

be sampled from, just as the fitted survival distributions were sampled from above.

6.4 Example: Lung Cancer Survival

The data are from a study at the Duke Cancer Center. Patients in the study

consist of a mix of gender, age, and race. All subjects have been diagnosed with

carcinoma of the lung, and their resulting tumors are a mix of adenocarinoma and

squamous cell carcinoma. Of interest is survival time for the patients, of which

we have d = 45 observed times out of n = 91 patients; 46 patients have censored

outcomes. Expression data is available on 54,613 probe sets from Affymetrix

HU95aV2 (50%) and HU95b (50%) chips, with values estimated via the RMA

method as in the example in the previous section. The 14,592 probe sets with

the most non-trivial expression value distributions across samples were used in an

initial analysis, and the resulting 2,717 probe sets most associated with survival

time were then used as follows.
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Table 6.4: Posterior probability of model size conditioned on the top 100,000
models evaluated by SSS for the lung cancer survival example. The character *
represents a value < 0.001.

k: 1 2 3 4 5
# of models 12 1,295 24,560 69,004 5,129
p̃(|γ| = k|y) * 0.014 0.254 0.690 0.041

6.4.1 Results

SSS was run for 10,000 iterations saving the top 100,000 models, with the prior

distribution on the model space as π = 100/p, where p = 2, 717, to avoid overpe-

nalization and allow for potentially richer models. The models in Γ∗ are mostly

three and four variable models, as seen in Table 6.4. The null model has a (rela-

tive) log posterior value, log p(y|γ)+ log p(γ), of −249.777, while the worst model

in Γ∗ has −248.802.

Using the models in Γ∗, fitted values for the survival function were estimated

for survival times of 12, 18, 24 and 36 months. These results can be seen in

Figures 6.7 and 6.8. Red points, those individuals who actually died before the

time indicated, should ideally fall below the line at 0.5, while blue points, those

individuals who have survived at least until the time indicated, should ideally fall

above. One would expect the intervals to be larger nearer to the indicated survival

time and smaller farther away, which can be seen for those individuals with large

survival times. Overall, the fitted values coincide well with the observed times.

The marginal posterior distribution for the Weibull shape parameter, α, is shown

in Figure 6.6. Approximately 73% of the posterior mass is above one, the value

of α corresponding to an exponential distribution.

Leave-one-out cross-validated predictions of the survival function were also
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Figure 6.6: Samples from the model averaged approximation to p(α|y).

made for the same time points. Figures 6.9 and 6.10 show these predictions, which

were based on the top 1,000 models for each hold-out respondent. The predictive

accuracy is quite high: a simple thresholding of estimated survival probability

(posterior mean) at 0.5 corresponds to the sensitivities and specificities shown in

Table 6.5 for times of 12, 18, 24 and 36 months, and in Figure 6.11 over a range of

times from 12 to 60 months. The results indicate that long term survival survival

(over a range of about three to five years) can be predicted with sensitivity and

specificity greater than 80%.

Figure 6.11 is based on a thresholding rule for the posterior mean survival

probability at 0.5. As seen in Figure 6.9, several of the 90% intervals cover the line

0.5 and so use of the posterior mean may overstate the predictive accuracy. Rather

than using the posterior mean, Figure 6.12 shows results for two different rules
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Table 6.5: Sensitivity and specificity for predictions for the lung cancer data
based on simple thresholding of the posterior mean at 0.5. Survival times are
given in months.

Survival Time: 12 18 24 36
Sensitivity 1.000 0.926 0.885 0.975
Specificity 0.500 0.667 0.760 0.784

representing more conservative thresholding. Individuals having the 60th (70th)

quantile of their survival distribution less than 0.5 are predicted as non-survivors,

and those having the 40th (30th) quantile of their survival distribution greater

than 0.5 are predicted as survivors. Such prediction rules lead to some individuals

not being predicted as either survivors or non-survivors; these are “borderline”

cases that are hard to predict, and perhaps require more investigation. Figure 6.12

also shows the number of unclassified cases, broken down by true survivors and

nonsurvivors. The highest number of unclassified cases across all the survival

times considered was 24. Even under these more conservative thresholding rules,

where the sensitivity and specificity will be lowered due to the fact that some

cases are not classified, we still see a high level of predictive accuracy with respect

to long term survival.
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Figure 6.7: Fitted survival probabilities for the lung cancer example. Red points
denote true negatives and blue points denote true positives. 90% intervals are
given.
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Figure 6.8: Fitted probabilities for the lung cancer example for subjects with
censoring times less than the survival times of interest. 90% intervals are given.
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Figure 6.9: LOOCV predictions for the lung cancer example. Red points denote
true negatives and blue points denote true positives. 90% intervals are given.
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Figure 6.10: LOOCV predictions for the lung cancer example for subjects with
censoring times less than the survival times of interest. 90% intervals are given.
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Figure 6.12: Sensitivity and specificity of survival time predictions for the lung
cancer data based on two different thresholding rules. The dashed lines are the
number of cases not classified.
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Chapter 7

Conclusions and Future Work

7.1 Summary

This work addressed several key issues related to Bayesian model search and av-

eraging in high dimensions. I presented the “shotgun stochastic search”, a novel

approach for high dimensional model space exploration that quickly identifies high

posterior regions and creates a list of high probability models which can be used

for inference and prediction. It was shown through a simulation study that SSS

outperforms standard MCMC methods with respect to several criteria. Theoret-

ical connections were made between SSS and the Metropolis-Hastings algorithm,

demonstrating how SSS can be adapted to become an MCMC algorithm.

I presented results relating to the marginal likelihood for models of the same

dimension, leading to methods for approximate Bayesian learning about sparsity

inducing parameters. Comparisons between model selection criteria were made

based on these result.

Three examples of datasets with thousands of predictor variables were given,

demonstrating the effectiveness of SSS and Bayesian model averaging in high di-
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mensions. Three separate modeling contexts, those of linear, binary and Weibull

survival regression models, were introduced for use with SSS, along with methodol-

ogy for assessing model uncertainty in inference and prediction in high dimension.

I note that although I have focused throughout on the particular parameter

space prior distributions described in Chapter 3, there are many other formulations

that do not rely on this ridge regression type formulation. One popular example

is Zellner’s g-prior (Zellner, 1986), where the prior distribution on the regression

coefficients for a given model is

p(βγ|γ, σ2, g) = N(0, gσ2(X ′
γXγ)

−1), (7.1)

where g is a positive hyperparameter. This class of prior distributions has partic-

ular computational advantages (George and McCulloch, 1997; Smith and Kohn,

1996; Clyde and George, 2004), but has undesirable asymptotic properties related

to the Bayes factor for comparing any model γ to the null model (Berger and

Pericchi, 2001). In the special case of an orthogonal design, the priors I describe

in Chapter 3 are themselves g-priors and so results relating to g-priors can be

applied to the setting considered here. West (2003) shows that the g-prior is a

special, limiting case of of factor regression with a formal latent factor model on

the predictor variables, hence providing a Bayesian justification for this particular

design-dependent approach.

Comparisons to other parameter space prior distributions are also of interest,

especially to those intended to induce sparsity. One such class of priors is the

class of double exponential priors (e.g. Johnstone and Silverman, 2005; Yuan and

Lin, 2005), which places more mass near zero and has fatter tails than Gaussian

priors. For discussions of sparsity induced by parameter space priors, see also

Wolfe et al. (2004) and Tipping (2001).
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7.2 Connections to Other Modeling Frameworks

Regression modeling can be thought of as a special case of the broader class of

Gaussian graphical models. A Gaussian graphical model allows for inference on

conditional independence relationships for elements of a random vector from a

multivariate normal distribution. Let x be a p vector from a N(0,Ω−1) distribu-

tion. Then the (full) conditional distributions are of the form

p(xj|x−j) = N(−Ω′
−jω

−1
jj , ω−1

jj )

where Ω−j is a p − 1 vector representing the jth column of Ω having removed

the element on the diagonal, ωjj (c.f. with the results in Appendix A, where

different notation is used). It is clear from this formulation that xj is conditionally

independent of xi (i 6= j) when the element of Ω−j corresponding to the ith row of

Ω is zero. Gaussian graphical models and corresponding methodology (Dempster,

1972; Whittaker, 1990; Dawid and Lauritzen, 1993; Lauritzen, 1996; Giudici, 1996;

Giudici and Green, 1999; Cowell et al., 1999) allow for structural learning about

such zero values, and hence allow for learning about conditional independence

structure. Setting (y,x′)′ ∼ N(0,Ω−1), it is clear the question of variable selection

for linear regression models is related to learning about conditional independence

relationships for the distribution p(y|x).

Shotgun stochastic search methods have been developed for exploring Gaussian

graphical model spaces (Jones et al., 2005), and constructive methods proposed

for building graphs by sequentially learning about conditional independence re-

lationships via structured regression modeling (Dobra et al., 2004). Of future

research interest is the development of Gaussian graphical model techniques that

simultaneously fit regressions of y on subsets of x and model the covariance struc-
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ture of x. Initial experiences in the development of Rich et al. (2005) have shown

that simply including y in a Gaussian graphical model along with x can be prob-

lematic when p is large. In this case the resulting graph space is so large that the

(needed) sparsity inducing priors tend to supress edges (first order dependence)

between y and possible predictor variables. Additionally, using current SSS meth-

ods, there is no special focus on (i.e., exploration of) graphs with edges involving

y; as the graph space is very large, important regions of the regression model space

of interest may not be visited.

Two immediate areas of future work emerge from this. New prior distribu-

tions are needed that treat graphical structure between y and the elements of x

differently than graphical structure within x in order to prevent sparsity inducing

priors over the graph space based on x to overwhelm important graphical struc-

ture between y and the elements of x. Secondly, hybrid SSS methodologies can

be developed that model graphical structure within x and graphical structure be-

tween y and x in an iterative manner: runs of SSS can be made on x conditionally

on structure between y and x, and then runs can be made on the regression edges

of interest conditionally on a structure for x. Such methods force focus on the

regression models of interest and should yield more relevant results.

7.3 Future Work in Large p Regression

7.3.1 Model Space Priors

There is still much work to be done in the area of Bayesian model search and

uncertainty with many predictors. Of primary interest is the development of

prior distributions over model space that do not treat variables exchangeably. It
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has been noted (George, 1999; Chipman et al., 2001) that when there is nontrivial

multicollinearity in the predictor variables, independent Bernoulli priors place too

much prior mass on clusters of similar models. Some work has been done relating

to prior distributions that can handle “dependence by design” situations such as

for interaction terms and polynomials (Chipman, 1996), however emphasis needs

to be placed on situtations where p is large as the patterns of collinearity can be

become more complicated in large spaces.

A recently proposed prior distribution over model space that conditions on the

observed covariates is due to Yuan and Lin (2005), who take

p(γ|X) ∝ πk(1− π)p−k|X ′
γXγ|1/2. (7.2)

As the authors note, as any two variables become increasingly collinear, (7.2)

converges to a prior placing zero mass on models containing both variables. It is

of interest to examine how this prior penalizes dimension with respect to different

patterns of multicollinearity in the observed data matrix X.

This prior, while having the desirable property regarding multicollinearity de-

scribed above, is ad hoc and dependent on the particular value of X that is

observed, rather than on parameters describing the distribution of X. Ideally

one would formulate a model, say p(xi|Σ) = N(0,Σ) independently for each xi,

and then specify a prior p(γ|Σ) rather than p(γ|X). Of key interest in future

work regarding such priors is discovering links between (7.2) and p(x|Σ), perhaps

directly via marginalization: p(γ|X) =
∫
p(γ|Σ)p(Σ|x) dΣ, assuming the condi-

tional independence of γ and X given Σ. Such links, similar to those between the

g-prior and factor regression described by West (2003), will give (7.2) a theoret-

ically sound footing and obviate the problems associated with specifying a prior

conditionally on the observed data.
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One possible approach in abstracting (7.2) to a more general class of priors is

to view the problem from an information theoretic perspective. Assuming that

x ∼ N(0,Σ) independently for each individual, define the entropy of a model γ

to be

H(xγ) = −
∫
p(xγ) log p(xγ)dxγ (7.3)

= log
(
|Σ|1/2(2πe)k/2

)
(c.f. Shannon, 1948; Lindley, 1956; Kullback, 1959; Bernardo and Smith, 1994,

pp. 157–160). Attempts have been made to cast (7.3) as an absolute measure of

information in x about p(·), although this is not generally accepted as meaningful,

in part due to the lack of invariance of (7.3) under a transformation of x. Viewing

(7.3) simply as an integrated score function, a possible prior formulation sets

p(γ|Σ) ∝ f(k) exp(H(xγ))

= f(k)(2πe)k/2|Σγ|1/2, (7.4)

where f(k) is perhaps some term to penalize dimension. While this formulation

is perhaps equally as ad hoc, (7.4) gives a possible interpretation to (7.2) when

X ′
γXγ is used as an estimate of Σγ.

An alternate approach, more closely related to (7.2), is to consider the directed

divergence

I(2 : 1) = −
∫
p2(x) log

p1(x)

p2(x)
dx,

where p1 and p2 are two possible density functions. I(2 : 1) has the interpretation

as “the mean information per observation from p2 for discrimination in favor of

H1 against H2” (Kullback, 1959, Chapter 1), where Hi is the hypothesis that the
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data are distributed according to pi. If we take p1(xγ) to be the model where the

xj are jointly independent, xγ ∼ N(0, Ik), and take p2(xγ) to be the model where

the xj are possibly correlated, xγ ∼ N(0,Σγ), with each xj having variance one

(Σjj = 1), then the directed divergence for a given model is

I(γ) = − log
(
|Σγ|1/2

)
.

Setting

p(γ|Σ) ∝ f(k) exp(−I(γ))

= f(k)|Σγ|1/2,

we have a “population” version of (7.2) when f(k) = πk(1−π)p−k. The null model

has no particular interpretation under this construction; setting |Σ| = 1 for the

null model corresponds to the approach taken by Yuan and Lin (2005). A more

flexible family of prior distributions is obtained by taking

p(γ|Σ) ∝ f(k)|Σγ|β,

where β controls how tolerable we are to multicollinear models. Other possible

formulations related to the divergence, J(1, 2) = I(1 : 2) + I(2 : 1), are also

available. Careful investigation must be made to understand how such priors

penalize dimension for large “p” scenarios with complex covariance patterns.

These information theoretic views provide a generalization of (7.2), allowing

extension to other classes of models; however, they do not explicitly link (7.2) to

a proper modeling framework for the observed values X, as the substitution of

X ′
γXγ for Σγ must be made. Casting (7.2) as the consequence of an overarching

model is of key interest for future work.
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7.3.2 Further Comparisons of Model Size Penalization

The results of Section 5 can be extended to other probability models. For example,

under the g-prior formulation described in Berger and Pericchi (2001) using prior

(7.1) and p(σ2) ∝ σ−2, the marginal likelihood is

pg(y|γ) =
Γ
(

n
2

)
2πn/2(1 + g)k/2

(
y′y − g

(1 + g)
y′X(X ′X)−1X ′y

)−n/2

,

which has a corresponding lower bound

p∗g(y|γ) =
Γ
(

n
2

)
2πn/2(1 + g)k/2(n− 1)n/2

when the data are standardized. Comparisons to the results in Chapter 5 are

relevant, along with comparisons to other commonly used parameter space prior

distributions, to assess the implicit penalties on dimension.

7.3.3 Extended Analysis of SSS

The results in Section 2.5 regarding the expected time for SSS to find the true

model under an orthogonal design were derived for a case of fixed-dimensional

SSS. These results can be extended to the case where SSS is allowed to move

freely across dimension. It is of interest to compare these expected hitting times

to those for MC3 under an orthogonal design, which can be similarly computed.

A direct analytic comparison may provide more insight into how the nature of the

neighborhood used by SSS provides improved performance over MCMC algorithms

with simpler proposal distributions.
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Appendix A

Wishart Distribution

I use notation for the Wishart/inverse Wishart distributions as in Dawid (1981).

Wishart Distribution: Denote by W(ν,Σ) the Wishart distribution with ν

degrees of freedom and non-negative definite symmetric scale matrix Σ of order

p× p. Define the standard Wishart as W(ν, Ip).

Inverse Wishart Distribution: If Ω ∼ W(ν, τ−1Ip) with ν > p − 1, then

Σ = Ω−1 ∼ IW(δ, τIp), where δ = ν − p + 1. The constraint on the degrees of

freedom parameter is δ > 0.

A.1 Implied Regression Priors

Let Σ ∼ IW(δ, τI), with δ degrees of freedom and scale matrix τIp+1, where Σ

is the covariance matrix for a vector of normally distributed, zero mean data:

(y, x′)′ ∼ N(0,Σ), where y is a scalar. Let xγ be some subset of the vector x

with k components. The covariance matrix for (y, x′γ)
′ has marginal distribution
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Σy,γ ∼ IW(δ, τIk+1). Partition Σy,γ as

Σy,γ =
1
k

[
σ11 κ′γ
κγ Σγ

]
.

Standard normal theory gives us the conditional distribution of y given xγ as

p(y|xγ,Σ) = N(y; x′γβγ , σ
2
γ),

where βγ = Σ−1
γ κγ and σ2

γ = σ11 − κ′γΣ
−1
γ κγ. For brevity, write β for βγ and σ2

for σ2
γ, and note that σ2 is the Schur complement of Σγ.

Let Ω = Σ−1
y,γ. Then Ω ∼ W(δ + k, τ−1Ik+1). Partition

Ω =
1
k

[
ω11 Ω′

21

Ω21 Ω22

]
. (A.1)

Then ω11 ∼ W(δ + k, τ−1I1), and ω−1
11 ∼ IW(δ + k, τI1).

The following results are needed (from Harville, 1997):

Corollary A.1 (Harville (1997), 8.5.12). Let Ω be a non-singular matrix par-

titioned as in (A.1), and define Σ = Ω−1. Partition Σ as

Σ =
1
k

[
Σ11 Σ12

Σ21 Σ22

]
.

Then

ω−1
11 = Σ11 − Σ12Σ

−1
22 Σ21 (A.2)

(i.e., ω−1
11 equals the Schur complement of Σ22) and

Ω21ω
−1
11 = −Σ−1

22 Σ21. (A.3)
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Using (A.2), ω−1
11 = σ2, and hence σ2 ∼ IW(δ + k, τI1), which is the same as

σ2 ∼ IG((δ + k)/2, τ/2).

Using (A.3), we have β = −Ω21/ω11. We need the conditional distribution of

β given σ2, which is equivalent to the conditonal distribution −Ω21/ω11 given ω−1
11 ,

as σ2 = ω−1
11 . The following result is needed (from Muirhead (1982, 3.2.14), due

to Bartlett (1933)):

Theorem A.1 (Bartlett’s Decomposition). Let A be W(n, Im), where n ≥ m

is an integer, and put A = TT ′, where T is a lower-triangular m×m matrix with

positive diagonal elements. Then the elements tij (1 ≤ j ≤ i ≤ m) of T are all

independent, t2ii is χ2
n−i+1 (i = 1, . . . ,m), and tij is N(0, 1) (1 ≤ j < i ≤ m).

Following Odell and Feiveson (1966) and McCulloch and Rossi (1994), and

using the result that if A ∼ W(ν, Cp×p) and B is a p × q matrix, then B′AB ∼

W(ν,B′CB) (Mardia et al., 1979, Theorem 3.4.1), we can decompose

Ω = τ−1TT ′,

where TT ′ is the Bartlett decomposition for a standard Wishart with δ+k degrees

of freedom. The ith element of Ω21 can be written as

(Ω21)i = τ−1 t11 ti+1,1, i = 1, . . . , k

Due to the equivalence of ω11 and t211 and the joint independence of the tij for

i ≥ j, conditioning on ω11 implies that

(Ω21)i|ω11
ind.∼ N(0, τ−1ω11), i = 1, . . . , k.

Because σ2 = ω−1
11 ,

β = (−Ω21/ω11)|σ2 ∼ N(0, τ−1σ2Ik).
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Appendix B

Linear Algebra Results

Useful linear algebra results follow. Theorems and corollaries cited below as “H”

are from Harville (1997, Chapters 13 and 14).

B.1 Results for Lower Bound Theorem

The first needed result is that, under the conditions of Theorem 5.1, XM−1X ′ is a

positive semidefinite matrix. From Corollary H.14.2.14 we have that X ′X is posi-

tive definite because rank(X) = k. Due to the positive definiteness of τIk, Corol-

lary H.14.2.5 gives us positive definitiness of M , and we have positive definiteness

of M−1 from Corollary H.14.2.11. Theorem H.14.2.9 gives us the desired result,

that XM−1X ′ is positive semidefinite due to the fact that rank(X) = k < n.

The second result needed is that |M | ≤
∏k

i=1mii. First, as the diagonal

elements of a positive definite matrix are positive (Corollary H.14.2.13), we have

mii > 0 for k = 1, . . . , k. Second, I use the result that

∣∣∣∣ T U
V W

∣∣∣∣ = |T||W −VT−1U|,

155



for a nonsingular, m×m matrix T, an m× n matrix U, an n×m matrix V and

an n× n matrix W (Theorem H.13.3.8). Now partition M as

M =

[
Mk−1 uk−1

u′k−1 mkk

]
,

where Mk−1 is the principal submatrix obtained by removing the kth row and

column of M (corresponding to T) and uk−1 is a (k−1)×1 vector (corresponding

to U). We thus have

|M | = |Mk−1|(mkk − u′k−1M
−1
k−1uk−1).

By Corollary H.14.2.12, any principal submatrix of a positive definite matrix is

positive definite (and hence nonnegative definite), so x′M−1
k−1x ≥ 0 for every x ∈

R
k−1. As mkk > 0, we have

|M | ≤ |Mk−1|mkk.

Repeating the argument k − 1 more times, we have

|M | ≤
k∏

i=1

mii.
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Appendix C

Gamma Function Results

The gamma function for real arguments is defined as

Γ(z) =

∫ ∞

0

tz−1e−t dt.

For integer arguments n > 0, the closed form expression is

Γ(n) = (n− 1)!.

C.1 Gamma Functions of Half-Integer Arguments

For half-integer values, the gamma function has a closed form solution (Abramowitz

and Stegun, 1972, chapt. 6):

Γ
(n

2

)
=

(n− 2)!!
√
π

2(n−1)/2
, (C.1)

where n!! is a double factorial:

n!! ≡


n · (n− 2) · · · 5 · 3 · 1 n > 0 odd,
n · (n− 2) · · · 6 · 4 · 2 n > 0 even,
1 n = −1, 0.
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C.2 Ratios of Gamma Functions

Equation 5.3 requires the calculation of a ratio of gamma functions of half integer

arguments,

G(n, δ, k) =
Γ
(

n+δ+k
2

)
Γ
(

δ+k
2

) .

Using (C.1), we can write this as

G(n, δ, k) = 2−n · (n+ δ + k − 2)!!

(δ + k − 2)!!
.

For n even, this reduces to

G(n, δ, k) = 2−n ·
n/2∏
i=1

(n+ δ + k − 2i).

For n odd there is no cancellation.
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Appendix D

Newton-Raphson Algorithm

The Newton-Raphson algorithm (see, e.g., Lange, 1999, Chapter 11) is used to

maximize an objective function, say f(θ), by iterating

θ[t+1] = θ[t] −

(
∂2f(θ[t])

∂θ
[t]
i ∂θ

[t]
j

)−1
d f(θ[t])

dθ[t]
.

When the objective function is the posterior distribution of θ, we have f(θ) =

log h(θ) and

h(θ) = p(y|θ)p(θ).

Define the score function and the Hessian matrix to be

g(θ) =
d log h(θ)

dθ
and G(θ) =

(
∂2 log h(θ)

∂θi∂θj

)
,

respectively, and letH(θ) = −G(θ). To find the posterior mode, Newton-Raphson

iterates

θ[t+1] = θ[t] +H(θ[t])−1g(θ[t])

in t until convergence.

159



D.1 Logistic Regression

Under a logistic regression model we have the likelihood function

p(y|θ) =
n∏

i=1

φyi

i (1− φi)
1−yi ,

where φi = 1/(1 + exp{−x′iθ}). Let the prior distribution on θ be specified as in

Section 6.1.1 for a model with k predictor variables plus an intercept:

p(θ) = (2πτ)−(k+1)/2 exp

{
−θ′θ

2τ

}
.

Using the notation above,

log h(θ) = cons.− θ′θ

2τ
+

n∑
i=1

yi log φi − (1− yi) log(1− φi).

Noting that

d log φi

dθ
=

xi

1 + ex
′
iθ

and
d log(1− φi)

dθ
= −φixi,

we have

g(θ) = −θ

τ
+

n∑
i=1

(yi − φi)xi

and

G(θ) = −1

τ
Ik+1 −

n∑
i=1

xix
′
iφi(1− φi).
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D.2 Weibull Survival Regression

Under a Weibull regression model the likelihood function is given by (6.4). The

prior distribution on the paramters θ = (α,β′)′ is

p(θ) = p(β)p(α) ∝ exp

{
−β′β

2τ

}
αα0−1 exp{−ακ0},

and so we have

h(θ) = (α0+d−1) logα+
∑

i

[νix
′
iβ+νi(α−1) log yi−yα

i exp(x′iβ)]−κ0α−
1

2τ
β′β.

Write

g(θ) = (g1(θ), g2(θ)′)′,

where

g1(θ) =
∂ log h(θ)

∂α
and g2(θ) =

∂ log h(θ)

∂β
.

We then have

g1(θ) =
α0 + d− 1

α
+
∑

i

[νi log yi − yα
i (log yi) exp(x′iβ)]− κ0,

g2(θ) =
∑

i

[νixi − yα
i exp(x′iβ)xi]−

1

τ
β.

Continuing with notation, let

G(θ) =

(
G11(θ) G12(θ)′

G12(θ) G22(θ)

)
=

(
∂g1(θ)

∂α
∂g2(θ)′

∂α
∂g2(θ)

∂α
∂g2(θ)

∂β

)
.
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Then

G11(θ) =
1− d− α0

α2
−
∑

i

yα
i (log yi)

2 exp(x′iβ),

G12(θ) = −
∑

i

yα
i exp(x′iβ)(log yi)xi,

G22(θ) = −1

τ
−
∑

i

yα
i exp(x′iβ)xix

′
i.
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