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Abstract

In this dissertation we present a Bayesian approach for nonparametric function es-

timation based on continuous wavelet dictionaries, where the unknown function is

modeled by a sum of wavelet functions at arbitrary locations and scales. By avoiding

the dyadic constraints for orthonormal wavelet bases, the continuous wavelet dic-

tionaries have greater flexibility to adapt to the structure of the data, and lead to

sparser representations. The price for this flexibility is the computational challenge

of searching efficiently over an infinite number of potential dictionary elements. We

develop a reversible jump Markov Chain Monte Carlo algorithm which utilizes local

features in the proposal distributions for the addition of new wavelet elements to

improve mixing of the Markov chain. By utilizing continuous wavelets, we have the

flexibility to handle data with non-equal spacing without resorting to interpolation

or imputation of missing data.

In Chapter 1 we start with a review of wavelets and function estimation and pro-

vide an overview of array Comparative Genomic Hybridization (CGH) and gene ex-

pression data. Chapter 2 introduces the continuous wavelet dictionaries. We discuss

the basic setting of the model and estimation. We present simulation results using

standard wavelet test functions, which show that the new method leads to greater

sparsity and improved mean square error over translational invariant wavelets, an-

other overcomplete representation. We illustrates the method on non-equally spaced

data, and show that the method compares favorably to methods using interpolation

or imputation.

In Chapter 3 and 4 we present applications with array CGH, which is a technology

used to detect DNA copy number alterations that could help identify the relevant

genes for cancer development. This recent technology calls for new statistical meth-

iv



ods for analyzing array CGH data. In Chapter 3 we present a hierarchical model

to analyze multiple samples via a functional data analysis approach using the over-

complete dictionaries. The hierarchical model is based on samples grouped according

to the disease progression and survival status. The posterior probabilities of copy

gain/loss are estimated for each gene at the group level. From that result, we can

also classify new patients and identify the genes relevant to the group differences. We

demonstrate the performance of our method using simulated and real data sets.

In Chapter 4 we extend our model to analyze gene expression and gene copy

number alterations jointly. Both types of data have been linked to cancer develop-

ment and progression and have been studied extensively to describe the pattern of

expression levels and copy number changes in cancer. However, uncovering the genes

related to cancer development is still a difficult task and few studies have combined

analysis of both data types. Here we discuss our model and inference methods for

joint analysis of these two genomic measurements. We present results from simula-

tion studies and the breast cancer cell line data published by Hyman et al. (2002).

We provide estimates for both gene expression levels and DNA copy numbers, along

with the degree to which the two types of data are associated. We identify a subset of

genes for which the expression levels are most likely attributable to gene copy number

alterations across the samples, including some of the oncogenes that were previously

associated with breast cancer and some new targets.
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Chapter 1

Introduction

Massive high-dimensional data brought by new technology, such as microarray and

gene expression data, generate an increasing demand for new data analysis tools.

A fundamental statistical question there is how to retrieve or estimate a signal (or

function) from the massive data. Many of these application problems can be thought

of as a non-linear regression problem which is to estimate a function f(x) conditional

on data generated from f . For that purpose, non-parametric function estimation

methods have been popular as they do not restrict f to have some predetermined

form. In Bayesian non-parametric methods, the unknown function f is modeled with

infinitely many parameters, which gives a wide range of possible functions.

Wavelets are an attractive option for non-parametric regression and have been of

great interest for modeling features in many statistical application areas as they offer

better localization and parsimony than other orthonormal bases. In this dissertation

we propose a new class of non-parametric regression models based on continuous

wavelets using an overcomplete wavelet dictionary, where the number of basis ele-

ments is greater than a regular orthonormal wavelet basis. In our model the unknown

function f is modeled by a sum of an unknown number of wavelet functions at ar-

bitrary locations and scales. We start by introducing the basics of wavelets and

overcomplete dictionaries and discuss their advantages over other non-parametric

methods.

The continuous wavelet dictionaries can be useful in many application areas. In

this dissertation we focus on the application in genomic microarray data. The mi-

croarray data usually consist of measurements of thousands of genes or gene segments,
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such as the numbers of DNA copies and the expression level. Nonparametric methods

are frequently used in analysis of microarray data since their patterns usually do not

have an obvious parametric form (Hsu et al., 2005). We will review the basic of array

CGH and expression data and motivate the use of wavelet-based methods in these

application problems. We then provide an outline of the remaining chapters in the

thesis.

1.1 Wavelets

Wavelet bases are generated by translation and dilation of a single wavelet function

ψ(x) called the mother wavelet. For example, the simplest wavelet basis is the Haar

basis which is generated by the Haar function

ψ(x) =







−1/
√

2 if − 1 < x ≤ 0

1/
√

2 if 0 < x ≤ 1
0 otherwise.

(1.1)

The family of dyadic dilations and translations {ψjk}j,k∈Z where ψjk(x) = 2j/2ψ(2jx−

k) forms an orthonormal basis for the space of L2 functions, where j and k are in-

dices for the scale and location, respectively. Some sample translations and dilations

for the Haar wavelets family are graphed in Figure 1.1. Any L2 function f can be

represented as

f(x) =
∑

j,k

θjkψjk(x),

where the coefficient θjk can be obtained by

θjk =

∫

ψjk(u)f(u)du.

An advantage of wavelets is their flexibility. Since wavelets are localized in both

time and frequency, they can be used to represent both smooth and locally bumpy

2
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Figure 1.1: Some translations and dilations for the Haar wavelets family.
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function with only a few coefficients. On the other hand, a Fourier basis is only

localized in frequency and may not lead to a sparse representation for a wide range

of functions. We may pick the wavelet family with suitable level of smoothness and

regularity for a given application. For example, Daubechies’ Compactly Supported

Wavelets are among the most commonly used wavelet bases. From Figure 1.2 we can

see the varying degree of smoothness of the wavelet functions in the Daubechies’ fam-

ily. The computation for wavelet estimation with regularly spaced data is extremely

fast and easy with discrete wavelet transform (DWT) and the Cascade algorithm

which takes advantage of the tree-like structure of the basis elements. As a result,

wavelet bases have become very popular in signal processing and compression.

When the data are non-equally spaced, the DWT cannot be directly applied. We

can treat the data as if they were equally spaced; or we can approximate (interpolate)

the function at equally spaced dyadic points. In either case the structure of the data

may be distorted. Extensions of the DWT for the non-equally spaced data have been

proposed by Sardy et al. (1999) and Pensky and Vidakovic (1998). However, most

computer packages for wavelets, such as wavethresh and waveslim in R, still cannot

accommodate non-equally spaced data.

1.2 Overcomplete Dictionaries

In contrast to the orthonormal basis traditionally used for function estimation, over-

complete (or redundant) representations have been advocated due to their flexibility

and adaptation. In an overcomplete dictionary, the number of basis vectors is greater

than the dimensionality of the data. Suppose we have a vector y ∈ R
n, and a col-

lection of vectors ai ∈ R
n, i = 1, ...m, where m > n. The collection of ai’s is “more

than a basis”. Therefore we usually refer to it as an overcomplete “dictionary” rather

than a basis, and the dictionary elements are referred to as “atoms”. If we want to

4
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represent our data y as a linear combination of the dictionary atoms, we will solve

β ∈ R
m satisfying y = Aβ, where A = {a1, ...am}. Since m > n, the solution is not

unique.

An overcomplete representation, however, has some advantages. The overcom-

plete dictionary can offer greater flexibility to match the structure of the data, since

regular bases are not designed specifically for the data under consideration (Donoho

and Elad, 2003). The overcomplete dictionary can also represent functions more

parsimoniously (Chen et al., 2001; Coifman et al., 1992; Mallat, 1998; Wickerhauser,

1994). It has been shown that the overcomplete dictionaries outperform other or-

thonormal bases in application area such as biology (Olshausen and Field, 1997) and

signal processing (Berg and Mikhael, 1999; DeBrunner et al., 1997). Theoretically,

overcomplete dictionaries can give better approximation (Candés and Donoho, 2004).

One important example of overcomplete dictionaries is continuous wavelets (Vi-

dakovic, 1999, Sec. 3.1). The atoms ψa,b(x), indexed by a scale parameter a and a

location parameter b, are the dilations and translations of the mother wavelet ψ(x)

ψa,b(x) =
1√
a
ψ

(

x− a

b

)

,

where a ∈ R \ {0}, b ∈ R and the mother wavelet ψ satisfies the admissibility condi-

tion:

Cψ =

∫

R

|Ψ(ω)|2
|ω| dω <∞,

where Ψ(ω) here is the Fourier transformation of ψ(x).

The continuous wavelet transform of an L2 function f is defined as

CWT f (a, b) =

∫

f(x)ψa,b(x)dx.

6



With the continuous wavelets transform the original function f can be represented

as

f(x) =
1

Cψ

∫ ∫

ψa,b(x)CWT f (a, b)
da

a2
db.

Overcomplete dictionaries can also be constructed by combining multiple or-

thonormal bases, such as Fourier, Gabor, or wavelets. Other example of overcomplete

dictionaries include frames (Gröchenig, K., 2001; Wolfe et al., 2004); stationary (non-

decimated) wavelets (Nason and Silverman, 1995); and wavelet packets (Coifman and

Meyer, 1990).

Since there is no unique solution to the representation problem, to find the “best”

representation among all the overcomplete representations can be a challenging prob-

lem, as we have to search over a much larger space of possible representations. Algo-

rithms for this type of search can be unstable if the data are slightly disturbed. The

development of overcomplete dictionaries and efficient learning algorithms for them

has been an active research area (Lewicki and Sejnowski, 1998).

1.3 Array CGH Data

In recent years researchers have found strong evidences that cancer is related to

the abnormalities in the number of copies of genomic DNA (Pinkel and Albertson,

2005). Recent technological advancement has made it possible to measure the copy

numbers of segments of DNAs. We will introduce Microarray Comparative Genomic

Hybridization which provides a means to measure the DNA sequences copy number

gains and losses and discuss the significance of DNA copy numbers in cancer research.

The Figure 1.3 demonstrates the Central Dogma of Molecular Biology. During a

cell cycle a cell replicates its DNA by using its existing DNA as a template (Repli-
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cation). During this process several possible mutations can occur. For example, a

copy number gain or an amplification means that regions of DNA are duplicated or

multiplied. On the other hand, a loss of DNA copy or a deletion is where regions are

deleted or failed to replicate. Sometimes a segment of chromosome can be mixed up

with other chromosomes, resulting in a translocation. These mutations are illustrated

in Figure 1.4.

Figure 1.3: The Central Dogma of Molecular Biology. The graph illustrates the
three stages of transcription of DNA to RNA to protein: Replication, Transcription
and Translation. Source: www.accessexcellence.org

Normal cells have a checkpoint system that monitors and corrects this genomic

instability. For example, mutations can be corrected or a cell can go through a

programmed cell death so the mutation will not be passed on to other cells. However,
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Figure 1.4: Some possible types of mutations that can occur during the cell cycle.
In deletion, there is a loss of copy number for a chromosomal region. In duplication
there is a gain in copy number. And in translocation there are both gains and losses
for different chromosomal regions. Source: wikipedia.
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if the system fails, the cell can survive the mutation and has the potential danger

of growing uncontrollably. An amplified region may indicate an oncogene, a gene

which stimulates cell growth and has become hyperactive. Conversely, a loss region

may contain a tumor suppressor gene, which actively stops the tumor growth. These

aberrations in copy numbers are frequently observed in tumor cells and it has been

speculated that such genomic instability play a prominent role in cancer development.

Therefore, it is important to understand these mutations.

Comparative Genomic Hybridization (CGH) is a recent technology advancement

for detecting such alteration in DNA sequences. The samples from cancerous cells

(“test” sample) and normal control cells (“reference” sample) are labeled with dif-

ferent fluorochromes, usually red and green so that they are easily distinguishable.

The samples are then hybridized and superimposed on an array. The fluorescence

intensity ratios of the test sample and the reference sample give a measurement of

the relative copy number at each location on the chromosome. For example, if the

tumor DNA was labeled green and the normal DNA was labeled red, when there is

a deletion in copy number in the cancer DNA, the normal DNA will dominate and

the hybridized sample will appear red. Conversely, when there is an amplification,

the hybridized sample will appear green. When there is no gain or loss in the cancer

genome, both DNA will be present equally and the resulting hybridization will be

yellow. One advantage of the comparative hybridization procedure is the reduction

in sources of variation, as whatever measurement error affecting both the test and the

reference samples will likely be canceled (Pinkel and Albertson, 2005). The procedure

of CGH is illustrated in Figure 1.5. Figure 1.6 shows the result from a CGH experi-

ment. The x-axis is the chromosomes ordered from 1 to 22 and the sex chromosome.

The y-axis is the log2 ratio of the test sample to the reference sample, centered by

subtracting the median of all observations. We can clearly see the regions of copy
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number aberrations in chromosomes 6,8,9,12 and 13. Note that in this experiment,

the reference sample is an opposite sex, resulting in the copy number differences in

the sex chromosomes.

With the invention of CGH technology the development of statistical methods of

analyzing array CGH data has become an active research area. The main goal is to

locate the regions of copy number changes accurately and to infer the number and

significance of those changes (Willenbrock and Fridlyand, 2005). The step function

is a good choice to model array CGH data. As we see from Figure 1.6, it is a com-

mon phenomenon that simultaneous gains or losses occur in multiple adjacent genes,

sometimes spanning the whole chromosome (e.g., chromosome 13). Therefore, the

step function naturally fits the block-like structure of the data (Hsu et al., 2005). In

later chapters we will introduce the overcomplete dictionary based on step functions,

which is particularly suitable for detecting the breakpoints for DNA copy number

aberrations.

1.4 Gene Expression Data

Gene expression is the process by which the genetic information is transferred from

DNA to RNA and protein (transcription and translation, see Figure 1.3). There are

various technologies to measure the abundance of the transcripts and their encoded

proteins, or expression levels, including serial analysis of gene expression (SAGE)

(Velulescu et al., 1995), oligonucleotide arrays (Lockhart et al., 1996), and cDNA

microarrays (Schena et al., 1995), all of which enable us to measure the expression

levels of thousands of genes. In recent years the patterns of gene expression levels have

been studied extensively for several complex diseases, such as cancer. For example,

gene expression patterns have been used to classify cancers into biologically distinctive

subcategories (Golub et al., 1999; Perou et al., 2000; Dhanasekaran et al., 2001; Sørlie
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Figure 1.5: Comparative Genomic Hybridization. The genomic DNAs from the
“test” sample and the “reference” sample are labeled with different fluorchromes, and
then hybridized and superimposed. The resulting ratio of the fluorescence intensities
of the two samples for a given location is a measurement of the ratio of copy numbers
of the corresponding DNAs. Source: wikipedia.
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Figure 1.6: A plot of array CGH analysis. The x-axis is the chromosomes and the
y-axis is the log2 ratio.

et al., 2001).

When the protein encoded by a gene is expressed in increased quantity, it is

referred to as gene overexpression. Conversely, underexpression means a gene is ex-

pressed in decreased quantity. Overexpression and underexpression may result from

the copy number change of the gene. An amplified region containing an oncogene

may be overexpressed. On the other hand, if a loss region contains a tumor suppres-

sor gene, that gene may be underexpressed. Identifying the genes that contribute to

such genomic abnormalities can provide new insights in the mechanism behind cancer

formation and development and help the researchers find therapies against those dis-

ease genes. There have been successful new treatments targeting amplified oncogenes

such as ERBB2 and EGFR (Ross and Fletcher, 1999; Arteaga, 2001). However, the

impact of DNA copy number changes on gene expression patterns remains unclear.

A parallel study of expression levels and DNA copy number may help us understand

the relationship between these two biological measurement and facilitate discovery of

genes related to cancer progression.
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1.5 Outline of the Dissertation

Chapter 2 of the thesis introduces the continuous wavelet dictionaries. We discuss

the basic setting of the model, the methods for estimation and inference, and compu-

tational issues. We provide simulation results from standard test functions and the

results from a real-life non-equally spaced data set.

In Chapter 3 and 4 we present applications of the model to problems in genomics.

In Chapter 3 we present a model for array CGH (aCGH) data. The analysis of

aCGH data requires functional estimation, so the overcomplete wavelet dictionaries

naturally come into play. The CGH analysis also introduces other issues, such as

summarizing information across multiple patients, patient classification and predic-

tion, and comparisons between patients with different progression and survival status.

We propose a hierarchical extension of the model from Chapter 2 and illustrate our

methods with simulation studies and ovarian cancer data set from Duke Medical

Center.

Extending from the model in Chapter 3, in Chapter 4 we consider a problem of

joint analysis of DNA copy number data and gene expression data. Our model gathers

information from two different biological measurements to detect the genes whose

expression levels are associated with the copy number changes. We demonstrate the

performance of our method using simulated data and the breast cancer cell line data

from Hyman et al. (2002).

To conclude the dissertation, in Chapter 5 we present some ideas for future work,

including computational improvement and model extensions.

14



Chapter 2

Continuous Wavelet Dictionaries

2.1 Introduction

Suppose we have observed data Y = {Y1, ..., Yn} at points x1, ..., xn ∈ [0, 1] of some

unknown function f measured with noise

Yi = f(xi) + εi εi
iid∼N(0, σ2).

A standard approach in nonparametric function estimation is to expand f with re-

spect to an orthonormal basis, such as Fourier, Hermite or Legendre, and then to

estimate the corresponding coefficients of the basis expansion. Wavelets, as a choice

of orthonormal basis, are widely used in nonparametric function estimation and signal

processing because they offer better localization and parsimony than other orthonor-

mal bases (Mallat, 1989b; Donoho and Johnstone, 1998).

Given a wavelet function ψ(x), let ψjk(x) = 2j/2ψ(2jx−k), j, k ∈ Z, then the ψjk’s

are an orthonormal basis for L2 functions and any L2 function can be represented as

f(x) =
∑

j,k

θjkψjk(x).

For equally-spaced samples x1, ..., xn, we can obtain the coefficients θjk through filters

by the cascade algorithm (Mallat, 1989a,b), which is fast as it takes advantage of the

tree-like structure of the basis elements when j and k are integers.

However, orthonormal wavelets bases have constraints: the basis functions are

subject to dyadic constraints on their location and scale. Some generalizations

have been proposed, and they generally give much better results. For example,
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the translation-invariant wavelet transform (Dutilleux, 1989; Nason and Silverman,

1995), which gives 2J coefficients at each level (2J−1 < n ≤ 2J), is an example of

an overcomplete representation, where the number of elements is greater than the

dimensionality of the data. Other examples of overcomplete bases include Frames

(Gröchenig, K., 2001; Wolfe et al., 2004) and wavelet packets (Coifman and Meyer,

1990). However, with these bases the data are still required to be equally spaced and

if not, some modification such as interpolations has to be done. The drawback of

these modifications is that they will distort the structure of the data and complicate

inference. Therefore it is appealing to generalize the wavelet basis functions to have

more flexible locations and scales: not only can we apply it directly on the original

data without any modification, but we will also have more flexibility to match the

structure of the data.

In this chapter, we propose a Bayesian approach in function estimation using the

continuous wavelet dictionary where the wavelet components have arbitrary locations

and scales. It has been shown that in such an overcomplete setting, we may achieve

greater sparsity and robustness against noise (Lewicki and Sejnowski, 1998; Donoho

and Elad, 2003; Wolfe et al., 2004; Donoho et al., 2006). In practice, the expense for

this setting is the computation in searching over the infinite model space. We will

discuss a reversible jump Markov Chain Monte Carlo algorithm for inference on the

parameters and strategies to achieve better convergence.

The remaining of this chapter is arranged as follows. In Section 2.2 we introduce

the concept of the continuous wavelet dictionary. In Section 2.3 we discuss the

prior specification. In Section 2.4 we describe the posterior inference by means of

a reversible jump Markov Chain Monte Carlo sampling scheme. In Section 2.5 we

present results from simulation studies and from a real example, which show that

our new method leads to better performance in terms of sparsity and mean squared
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error. Finally we present concluding remarks in Section 2.6.

2.2 The Model

Abramovich et al. (2000) introduced the stochastic expansions based on an overcom-

plete wavelet dictionary, where the function is modeled as a sum of wavelet compo-

nents at arbitrary locations and scales, and the randomness of the locations, scales,

and coefficients of the wavelet components are modeled by a marked Poison process.

Our model is a modified version of their stochastic expansions model. Though their

focus is not on Bayesian analysis, the stochastic expansion proposed in their paper

suggests a prior choice for our model. We review the details of their setting in this

section.

2.2.1 Stochastic Expansions

Suppose φ and ψ are the compact-supported scaling and wavelet functions that

correspond to an r-regular multi-resolution analysis for some integer r > 0 (See

Daubechies, 1992). Any function f may be decomposed as a sum of a coarse-scale

function f0 and a fine-scale function f1. The function f0 is given by

f0(x) =
M
∑

i=1

ηiφλi
(x), (2.1)

where φλi
(t) = a

1/2
i φ(ai(t− bi)) for some finite set of indices λi = (ai, bi) ∈ (0, a0) ×

[0, 1], i = 1, ...M . The function f1 is given by a stochastic expansion

f1(x) =
∑

λ∈S

βλψλ(x), (2.2)

where both λ and βλ are random and ψλ is defined analogously as φλ but with

a ≥ a0. Here the index λ = (a, b) follows a Poisson process S on Λ = [a0,∞) × [0, 1]
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with intensity µ(λ) and given any realization of S, the wavelet coefficients βλ are

independent normal variables

βλ | S ∼ N(0, τ 2(λ)). (2.3)

Both the variance τ 2(λ) and the intensity µ(λ) are assumed to depend on the scale

a only

τ 2
a ∝ a−δ and µa ∝ a−ζ , (2.4)

where δ, ζ ≥ 0, with δ + ζ > 0.

2.2.2 Continuous Wavelet Dictionary

Under the continuous wavelet dictionary (CWD) setting, we model the response

variable Y as N(f(x), σ2) with

f(x) = f0(x) +
K
∑

k=1

βλk
ψλk

(x), (2.5)

where f0 is a fixed scaling function as defined before. For example, we can take

f0 = Ȳ, the sample mean, or the scaling function from the regular discrete wavelet

transform (DWT). The unknown parameters here are the error variance σ2, the num-

ber of wavelet elements K, and the corresponding location-scale index and coefficient

for each wavelet component (βλ, λ). Notice that in regular DWT where a and b have

dyadic constraints and data are on an equally spaced grid, we can obtain the coeffi-

cients through filters without evaluating the wavelet function ψ directly. In CWD the

basis elements do not have a tree-like structure needed for the cascade algorithm and

in addition our data may not be equally spaced, therefore we will have to evaluate

the wavelet function directly. Here we use the Daubechies-Lagarias local pyramid

algorithm (Vidakovic, 1999, Sec. 3.5.4), which enables us to evaluate φ and ψ at an

arbitrary point with preassigned precision.

18



In practice, wavelets are often used to represent functions from certain Besov

spaces. Naturally one would ask under what kind of conditions, the random function

f will still be in the same Besov space almost surely (a.s.). Note that the number of

elements in (2.2) follows a Poisson distribution with intensity µ(Λ). When µ(Λ) <∞,

we will have a finite number of elements (a.s.) and therefore f will belong to the same

Besov space (a.s.) as the mother wavelet function ψ does for any reasonable choice

of the probability distribution for βλ. However, when µ(Λ) = ∞ which is the case

considered in Abramovich et al. (2000), extra conditions are needed for the random

function f to be well-defined.

2.3 Prior Specification

2.3.1 Prior for λ = (a, b)

Following Abramovich et al. (2000), the prior for the scale parameter a takes this

form

p(a) ∝ a−ζ , a0 ≤ a ≤ a1 and ζ > 0. (2.6)

The hyperparameter ζ controls the relative number of the fine-scale wavelet com-

ponent in the function. If ζ is large, we will have relatively few fine-scale (spiky)

components in the function, and vice versa. The lower bound a0 corresponds to the

coarsest-scale component allowable in the function and the upper bound a1 corre-

sponds to the finest-scale. Theoretically, a can go up to infinity to span the whole

space as in Abramovich et al. (2000). However in practice, allowing a to go up to

infinity is not desirable, as when a increases we obtain spiky wavelet functions with

very small support which have little or no effect on the likelihood. Therefore we set

an upper bound for a so that the wavelet functions will have a large enough support.

These bounds will depend on the data and the support of the wavelet ψ. For exam-
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ple, suppose we have 1024 equally-spaced data points and use a mother wavelet with

support of length 1. If we set a > 1024 , the support of the wavelet function could

fall entirely between two data points, and it will have no effect on the likelihood. As

a result, the corresponding coefficient can not be estimated effectively and we could

overfit the data.

The prior for the location parameter b takes the form

p(b) = γ
n
∑

i=1

1

n
δxi

(b) + (1 − γ), 0 < γ < 1, (2.7)

which is a mixture of point masses on all the data points and a uniform distribution

on [0, 1]. This prior is a compromise of flexibility, which allows b to be at arbitrary

positions, and efficiency, which focuses on the data points where the information is

abundant. This mixture prior also enables us to search the dictionary elements more

efficiently by using the information from residuals, which we will discuss in detail

in the next section. Notice that when γ = 1 and p(b) has support on data points

only, we return to the non-decimated DWT setting, and when γ = 0, we have the

continuous distribution from Abramovich et al. (2000).

2.3.2 Prior for K

For K, the number of wavelet components with non-zero coefficients, the stochastic

expansion model in Abramovich et al. (2000) implies a Poisson prior distribution

with mean

E(K) = c1

∫ a1

a0

∫ 1

0

a−ζdbda,

where c1 is some constant. Here we impose a negative binomial prior on K

p(K|r, q) =

(

r +K − 1

K

)

qr(1 − q)K.
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The negative binomial distribution is a Gamma mixture of Poisson but is more flexible

than the Poisson distribution, which has only one parameter that controls both the

mean and the variance. We choose the hyperparameters r and q by specifying the

probability of the null model p(K = 0) and the range of K (for example, the 95%

quantile of p(K)). We can easily solve these two equations to obtain the values of r

and q.

Both the Poisson and negative binomial priors can be regarded as a limiting case

for the mixture prior from Clyde et al. (1998) when the model space moves from

being finite to being infinite. Recall that in the orthonormal wavelet model with N

wavelet basis functions, the mixture prior implies a Binomial distribution (N, π) on

the number of non-zero coefficients. When N goes to infinity as in the continuous

wavelet dictionary model, if we let π ∝ 1/N and go to zero, we obtain the Poisson

model with mean µ = πN for the number of non-zero coefficients. If we have a

Gamma distribution on µ, we obtain the negative binomial model.

2.3.3 Prior for βλ and σ2

Given the location and scale of a wavelet function, we can set the prior distribution

for the corresponding wavelet coefficient βλ to be independent normal

p(βλ | a) = N(0, ca−δ), (2.8)

where c is a tuning parameter specified by users and independent of a. A natural

choice for c is to set c = n, the sample size, as in the unit-information prior (Kass and

Wasserman, 1995). Note that βλ being normally distributed is one of the condition

for f1 to be well-defined in the general setting in (2.2), where we can potentially

have infinitely many elements in f1. However, if we put an upper bound a1 on a,

with µ(Λ) <∞ we will have a finite number of elements almost surely, therefore the
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normality of β is not necessary. Instead we can use a heavier-tailed prior for β, e.g.

Laplace with a scale parameter that depends on a the same way as in (2.8)

p(β | a) =
1

2σ
exp

−|β|
σ

, σ2 = ca−δ/2. (2.9)

The heavy-tailed priors have been shown to have theoretical advantage over normal

distribution, and may lead to greater sparsity and further reduction of the mean

squared error (Johnstone and Silverman, 2004).

It may be appealing to use priors on β which take into account the dependence

structure of the design matrix, such as g-priors (Zellner, 1986; Fernández et al., 2001;

Liang et al., 2005). However it is known that Zellner’s g-prior and its variations

can not be directly applied on the regression coefficients in an over-complete setting

(Liang et al., 2005).

We set an non-informative prior for σ2, p(σ2) ∝ 1/σ2.

2.4 Posterior Inference

A big challenge here is how to search efficiently over a continuous model space. Since

the dimensionality of the parameters may vary, we propose a reversible jump Markov

Chain Monte Carlo (RJ-MCMC) techniques (Green, 1995) (see Appendix A). Our

RJ-MCMC algorithm includes three types of movements: a birth step where we add

a wavelet element, a death step where we delete a wavelet, and an update step where

we move a wavelet element but leave the dimension K unchanged. A Metropolis-

Hasting step is used to sample the parameters for wavelet elements {β, a, b}, because

the corresponding full posterior does not have a close-form.
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2.4.1 RJ-MCMC

For RJ-MCMC algorithms a good proposal distribution is necessary to speed up

convergence. For example, proposing a “birth” of a new dictionary element from

the prior on (β, a, b|K + 1) may simplify the calculation, but it often results in slow

convergence since it does not necessarily lead to proposal values where the likelihood

is high. Similarly, picking a component at random to remove may lead to frequent

attempts to remove important wavelets. Here we discuss some of the proposal distri-

butions we use, particularly the “birth” of the location parameter b, which is critical

when we start the MCMC chain with few elements. The detail of the RJ-MCMC

algorithm is in Appendix A, Sec 1.

Because of the local nature of wavelets, information in the residuals may aide in

placing new wavelets. We choose a mixture proposal for the location parameter b of

the new wavelet functions which is a mixture of point masses on the data points with

weights that depend on the current residuals and uniform on [0, 1]. In particular, the

proposal for the birth step is

q(bK+1) = γ
n
∑

i=1

δxi
(bK+1)vi + (1 − γ), 0 < γ < 1, (2.10)

where

vi =
|Yi − f̂(xi)|

∑n
j=1 |Yj − f̂(xj)|

is proportional to the magnitude of the residual. Since the prior for b is also a mixture

of point masses and uniform, it has density on the same measure as the proposal,

which is a necessary condition for the transition kernel to be reversible. The proof of

detailed balance condition and reversibility is in Appendix A, Sec 2.
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The proposal for the death step is inversely proportional to the wavelet coefficient:

q(bk | K) =
1/|βk|

∑K
i=1(1/|βi|)

, (2.11)

so that small magnitude coefficients are more likely to be removed.

Finally, the proposal for the update step is

q(b̃k | bk) = δbk(b̃k)uk + N(b̃k; bk, σ
2
b )(1 − uk), (2.12)

where

uk =

{

1 if bk is a data point
0 otherwise,

which is a point mass at bk if bk is a data point and a random walk otherwise. Notice

that this will cancel with the reverse proposal in either case, so the form (A.6) is still

valid.

These proposal distributions can improve convergence in practice since a suc-

cessful birth is more likely where the residual is large, and it makes more sense to

kill a wavelet of which the coefficient is small since it will not change the likeli-

hood dramatically. After T MCMC iterations post burn-in, each collection of the

parameters {β, a,b, K} represents a sample from the posterior distribution , where

β = (β1, β2, . . . , βK)T and a and b are defined similarly. At each iteration we plug

{β, a,b, K} back into equation (2.5), obtaining posterior samples f (t)(xi), t = 1, .., T

from p(f | Y) which provide a full spectrum of description of the posterior distribu-

tion of f given the data Y.

2.4.2 Estimation of f

In Bayesian model averaging (BMA), the posterior distribution of f(x) given data Y

is
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P(f(x) | Y) =
J
∑

j=1

P(f(x) |Mj,Y)P(Mj | Y), (2.13)

and the mean estimate is given by

E(f(x) | Y) =
J
∑

j=1

E(f(x) | Y,Mj)P(Mj | Y), (2.14)

where M1, ...MJ are the models considered, and each model corresponds to a set

of parameter {β, a,b, K}. Since the number of models is infinite here, the exact

posterior distribution cannot be obtained. However, we can use Markov chain Monte

Carlo model composition (MC3) (Madigan and York, 1995) to approximate (2.14). In

particular, given T MCMC samples, we can take posterior mean as a point estimate

for f(x), that is,

f̂BMA(x) =
1

T

T
∑

t=1

ˆf (t)(x) =
1

T

T
∑

t=1

E(Y | x, a(t),b(t),β(t), K(t)), (2.15)

where f̂ (t) is the model from the tth MCMC iteration. Standard Markov chain Monte

Carlo results show that f̂BMA converges to E(f | Y) (a.s.) as T goes to infinity (Smith

and Roberts, 1993).

Alternatively we can provide point-wise posterior medians in a similar way.

2.4.3 Bayesian Credible Bands for f

We can construct point-wise credible bands for f

Cp(α) = {C : P(f(xi) ∈ C | Y) = α ∀i},

which covers f(xi) with α% posterior probability at each data point xi.
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We can also construct simultaneous credible band to be the convex hull of all

the posterior samples of f such that their square distances (at the data points) to

the BMA estimate are below the α% quantile. This idea is similar to the Baraud

Confidence Set from Baraud (2004), where the confidence set of θ is taken as the ball

Bn centered at some estimate θ̂.

For f̂ (t) from the MCMC iteration t, we take the Euclidean distance to the BMA

estimate

Dt =
n
∑

i=1

{f̂BMA(xi) − f̂ (t)(xi)}2,

then take the threshold D∗
α to be the α% percentile of all Dt’s and T ∗ to be the

collection of indices t for which the distance Dt is below D∗
α

T ∗ = {t : 1 ≤ t ≤ T, Dt ≤ D∗
α}.

Then the α% simultaneous credible band can be defined as

Cs(α) = [min
t∈T ∗

f (t)(xi),max
t∈T ∗

f (t)(xi)] ∀i.

2.4.4 Model Selection

When the goal is model selection and a single model must be reported, we choose to

report the model which is closest to the BMA estimate in the following sense:

f ∗ = arg mint∈{1,...,T}

n
∑

i=1

{f̂BMA(xi) − f̂ (t)(xi)}2. (2.16)

If β has a normal prior, we can reduce the Monte Carlo variation by replacing β (t)

by its posterior mean when we calculate f̂ (t)

β̂(t) = E(β | Y, a(t),b(t), K(t)).
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2.5 Examples

2.5.1 Simulation Studies
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Figure 2.1: (a)The EBayes and CWD fit of the null function and (b) The posterior
histogram for K overlaid with the prior NB(1,0.01)

As the stochastic representation allows extremely flexible representations, an ini-

tial concern is that the method may lead to over-fitting of the data. To test this, we

applied the CWD method the null function f(x) = 0 observed with noise. The prior

for the number of coefficients K is negative binomial with r = 1 and q = 0.01, which

corresponds to 0.01 probability of the null model and 95% percentile at K = 400.

The prior distribution function is relatively flat and covers a wide range of possible

models (See Figure 2.1b). The results are shown in Figure 2.1. We can see from the

posterior histogram that the null model (K=0) is the one with the highest posterior

probability, while the empirical Bayes (EBayes) (Johnstone and Silverman, 2005)

method, which always keeps the scaling function includes 1024 coefficients of the

father wavelet.

We carried out a simulation study on four standard test functions from Donoho

and Johnstone (1994): bumps, blocks, doppler, and heavysine. For each test

function, 100 replications were generated with a fixed signal-to-noise ratio of 7. In

each replicate, the function was simulated at 1024 equally spaced points xi in [0, 1].
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Figure 2.2: Four standard test functions from Donoho and Johnstone (1994). The
data points and fitted function from Ebayes and CWD are from one replication for
each function.

The hyperparameters for the variance and intensity are set to δ = 2 and ζ = 1.5.

We tried several values and the result turned out not to be very sensitive to these

hyperparameters. The default choice of wavelet in R (la8) was used in all functions

except for blocks, where we used the father wavelet of Haar (step function). Unlike

many other wavelet methods, we do not assume a boundary correction here, since

some of the functions (e.g. doppler) are clearly not periodic. We set f0 to be the

constant function at the data mean Ȳ, c = n = 1024, and the upper bound a1 for a

such that the wavelet elements cover at least 14-15 data points. Usual convergence

diagnostic methods, such as Gelman and Rubin (1992) do not apply here since we

are moving within an infinite model space and the parameters are not common to all

models. Instead we look at K and the mean squared error, which have a coherent
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Figure 2.3: Box plot for mean squared error for four standard test functions using
EBayes method (Johnstone and Silverman, 2005) and continuous wavelet dictionary
(CWD) method with Bayesian model averaging (BMA) with normal and Laplace
priors and model selection (MS) with normal prior

interpretation throughout the model space (Brooks and Giudici, 2000). The trace

plots and the Gelman-Rubin shrink factor for K and mean squared error suggest that

convergence usually occurs within 1 million MCMC iterations. The following results

are based on 5 million iterations, which takes about 8-9 hours to run on 64-bit cluster

computers.

Figure 2.2 shows these test functions and the results from one replication for

each function. We compared the CWD fits with the ones from EBayes based on

mean-squared error

MSE =
1

n

n
∑

i=1

{f̂(xi) − f(xi)}2. (2.17)

BMA estimates from both the normal and Laplace prior for β are presented here,
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Figure 2.4: Box plot for the number non-zero coefficients for the four test func-
tions using EBayes method (Johnstone and Silverman, 2005) and continuous wavelet
dictionary (CWD) method with Bayesian model averaging (BMA) with normal and
Laplace priors and model selection (MS) with normal prior

along with the model selection (MS) estimate from in (2.16) with normal prior,

compared with Ebayes with Laplace prior. Figure 2.3 shows that the model average

estimate in (2.15) has smaller MSE than EBayes for all four functions. Taking the

heavy-tailed Laplace prior instead of normal does reduce the MSE slightly further

except for bumps. If we take the MS estimate, then EBayes is doing better for

bumps and doppler. However, if we compare the number of non-zero coefficients in f̂

(See Figure 2.4) then CWD method clearly gives a much sparser representation than

EBayes. Notice that the EBayes results for K do not include the 1024 coefficients

from the scaling function, which are not shrunk.
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2.5.2 Application

One of the advantage of the CWD based method is that it can be applied directly

to non-equally spaced data sets. To illustrate this point, we applied our method to a

well-studied data set, ethanol data, from Brinkman (1981). This data set consists

of n = 88 measurements from an experiment where ethanol was burned in a single

cylinder engine. The concentration of the total amount of nitric oxide and nitrogen

dioxide in the engine exhaust, normalized by the work done by the engine is related

to the “equivalence ratio”, a measure of the richness of the air ethanol mixture.

We applied our CWD method with 4, 8, and 10 vanishing moments of the least

asymmetric Daubechies’ wavelets (symm4, symm8 and symm10). We use the same

hyperparameters as in Section 2.5.1, except that the upper bound a1 is lower since

there are fewer data points. We report the model selection estimated curves defined

in (2.16), in figure (2.5a) and the 95% pointwise and simultaneous credible bands

with symm8 in figure (2.5b).

This same data set was studied by Nason (2002) using the linear interpolation

method. To compare with their result, we did a leave-one-out cross validation study
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and calculated the cross validation score

CV-score =
1

n

n
∑

i=1

{f̂−i(xi) − Yi}. (2.18)

where f̂−i is the estimated f from all the data except the ith point. With no attempts

to optimize the hyperparameters, the CV score from CWD with symm8 ranked 2nd

out of the 60 combination reported in Nason (2002), and the estimated function looks

very similar to their best combination. The credible bands here cover all but four

data points. We can see that over the left region where there are fewer data points,

there seems to be a lot more uncertainty, as the credible bands are wider and the

estimates disagree (symm4 gives two extra bumps). On the right hand side where all

estimates seem to agree on the same downward slope, the credible bands are much

narrower as we have more information here. We can see that CWD has managed to

capture the main feature of the data without overfitting.

2.6 Conclusion

In this chapter we have introduced a Bayesian method for function estimation based

on the stochastic expansion in a continuous wavelet dictionary. Despite the richness

of the potential representations, RJ-MCMC algorithms are able to identify sparse

representations. The simulation study shows that the new method leads to greater

sparsity and improved mean squared error performance than the current wavelet-

based methods. Because the models do not require the data to be equally spaced,

this will permit wavelet methods to be used in a greater variety of applications. We

have also introduced a new approach for constructing simultaneous credible bands in

overcomplete settings.
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Chapter 3

On Detecting Gene Copy Number

Changes and Patient Classification

3.1 Introduction

Changes in the number of genomic DNA copy numbers have been associated with

cancer (Lockwood et al., 2006). As a result, detection of DNA copy changes is impor-

tant for identifying relevant genes for cancer development and patient classification.

Array comparative genomic hybridization (CGH) is a current technology used to de-

tect DNA copy number alterations. The test and reference DNA samples are labeled

with different colors then hybridized and superimposed on an array. Then the log

ratios of the intensity of the test and reference samples are obtained. Those ratios

are measurements of DNA copy number changes.

There have been many studies of analysis of array CGH data to identify the genes

and contiguous chromosomal regions with copy number changes. There are two main

estimation problems with CGH data. First is to locate the copy number transition

or breakpoints, which is commonly referred to as segmentation (Willenbrock and

Fridlyand, 2005). The other problem is to infer the number and statistical signif-

icance of the alterations. Numerous methods and algorithms have been proposed

for these problems. Olshen et al. (2005) proposed a non-parametric change point

method, Circular Binary Segmentation (DNAcopy). Hupe et al. (2004) used a Gaus-

sian model-based approach (GLAD). CLAC by Wang et al. (2005) involved building

a hierarchical clustering trees along each chromosome. Picard et al. (2005) used a

penalized-likelihood criterion to estimate breakpoints. Myers et al. (2004) proposed

33



an EM algorithm-based method and Hsu et al. (2005) used wavelets for smoothing

and denoising. Some Bayesian methods also have been proposed, including CGH-

MIX (Broët and Richardson, 2006), a Hidden-Markov-Model (HMM) based method,

and RJaCGH (Rueda and Daz-Uriarte, 2006), which used reversible jump MCMC to

explore an unknown number of hidden states. See Lai et al. (2005) and Willenbrock

and Fridlyand (2005) for comparative studies and summarization for some of these

methods.

Lai et al. (2005) concluded that when the segments of aberration are short, it is

hard to detect their existence, especially when the signal-to-noise ratio (SNR) is low.

Therefore, when we have multiple samples, it is important to borrow strength from the

information across the samples to assess the significance of the segments. Moreover,

we are usually interested in the area where the aberrations occur more frequently

among the patients, as these are more likely candidates for future research. The only

method that analyzes multiple samples at the same time and gives inference across

samples is cghMCR (Aguirre et al., 2004), in which they define minimal common

regions (MCR) as contiguous regions of gains/losses with a certain recurrence rate

across the samples.

Here we propose a Bayesian hierarchical model on the samples from the same

cancer group, which allows us to find the common structure of patients with tu-

mor growth and/or survival status. We combine the segmentation problem and the

inference problem and obtain the segments and quantitative measure of gain/loss

automatically in one step. There are several other improvements over the currently

available methods. Our model incorporates the physical distance of the probes, which

is useful information that other methods often ignore by assuming equally-spaced

probes. In theory, if the two probes indicating the same direction of change are very

far apart, it will be less likely that they refer to the same alteration than if they
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were closer (Lai et al., 2005). Also, we do not assume a discrete state-space for the

copy numbers as in many HMM based methods, because when we compare differ-

ent samples, it is reasonable to assume that the same log ratio levels do not always

correspond to the same underlying copy number, as each individual sample contains

a different proportion of tumor cells. The model is highly flexible and operates on

individual chromosomes as well as a genome-wide level, and forces a standard mea-

surement error for all chromosomes and patients. The Bayesian method provides the

posterior probability of gain/loss and also a measure of uncertainty in the level of

gain/loss. Finally, we can summarize the overall results from different cancer groups

and use it for patient classification, and we can also identify the genes and regions

most relevant to the different cancer development and survival status.

The remaining of this chapter is arranged as follows. First we give an overview

of the statistical model in Section 3.2. In Section 3.3 we go through the methods

for estimation, inferences and prediction. In Section 3.4 we present results from

simulated and real data. Finally we present concluding remarks discussion of related

issues in Section 3.5.

3.2 Model

Let n be the number of probes, and x1, ...xn be the physical location of the probes.

The locations are rescaled to [0, 1]. Suppose we have L groups of patients indexed

by l = {1, 2, ...L}, and in each group we have Jl patients indexed by j = 1, ...Jl. Let

Yijl be the log ratio of fluorescence intensities between tumor and reference samples

of probe i of patient j in group l. Since the main goal is to find the copy number

changes that span over consecutive probes, we model Y by a step function
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E(Yijl) = fjl(xi) =

Kl
∑

k=1

βjklhkl(xi), hkl(x) = I(akl ≤ x < bkl) (3.1)

Yijl = fjl(xi) + εij, εij
iid∼N(0, σ2).

We assume that the patients in the same groups share the same segmentations.

Here hkl is the element which represents the kth segment where a copy number alter-

ation occurs in the lth group, spanning from akl to bkl. This setting is related to the

continuous wavelet dictionary in Chapter 2 with Haar wavelets, but the dictionary

elements are parametrized differently with the end points of the segments, instead of

the scale and location. Here al = {a1l, ...aKll},bl = {b1l, ...bKll} are the end points for

the segments for group l. We set 0 ≤ a1l, blKl
≤ 1, alk < blk for all k and blk ≤ al(k+1)

for k = 1, ..Kl− 1, so no segment will overlap. The part not covered by any segment

will have a zero mean, which means the copy number there is unchanged. These

segments span the space of the step functions, as in the continuous wavelet case with

Haar wavelets. Since any L2 function can be approximated by a step function, these

collections of segments can represent a rich enough class of functions for our purpose.

We assume a uniform prior for al and bl on the set of data points x1, ..., xn,

and a negative binomial prior on the number of segments Kl. The uniform prior

combined with a restriction on no overlapping segments induces a prior on segment

length bkl−akl, which favor short segments over long ones. The prior suggests that a

priori it is more likely to find segments of gain/loss where the data points are more

concentrated and more information is available. Depending on the size of the data

and other information, we may have a prior expectation on the distribution of the

number of segments, which can be used to set the hyperparameter of the negative

binomial prior. Without prior information, we have found that a flat prior such as
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NB(1, 0.01) often works as well.

The coefficient βjkl of the segment k for patient j in group l indicates the degree

to which the copy number changes at that segment. The hierarchical nature of the

model comes from the assumption that a priori the individual coefficients βjkl have a

normal distribution centered at some common mean µkl, which in turn have a normal

distribution common to all the groups

βjkl | µkl, σ2
l ∼ N(µkl, σ

2
l )

µkl | akl, bkl ∼ N(0, c(bkl − akl)
δ),

which means the individual copy number changes within the same group are all

correlated and centered at zero. The prior for µkl is taken from the continuous

wavelet dictionary from Abramovich et al. (2000) and Chapter 2, where the variance

depends on the segment length. Here c is a tuning parameter which does not depend

on a and b. We can see the shrinkage effect of the prior from the posterior of µ in

(B.1, See Appendix B). If we set δ > 0, then the longer the segment, the less it will be

shrunk toward zero. Therefore, this prior has the effect of keeping the magnitudes of

long segments closer to the sample mean while shrinking the short ones which might

have been outliers. To see the biological explanation behind this setting, suppose we

have 2 segments A and B from Figure 3.1. The data plotted here are the sample

mean for all patients in a group, and they are the same for the two segments, except

that segment B is longer and more spread out. The prior will shrink µkl for A more

toward zero, and will more likely find A insignificant. This is consistent with the

biological background because the probes in the left hand side of the dash line are

more likely to belong to the same segment due to their proximity, and segment A is
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more likely just outliers.

A B

Figure 3.1: Two sample segments. The data on the left and right hand side of the
dash line are identical except for the distance between probes.

We also have non-informative priors for σ2 and σ2
l (Hill, 1965; Hobert and Casella,

1996; Sun et al., 2001). It is straight forward to show the propriety of the joint

posterior distribution in our setting

p(σ2) ∝ σ−2, p(σ2
l ) ∝ (σ−2

l )1/2.

The likelihood of the model, L(K, a,b,β,µ, σ2
l , σ

2 | Y) is just a multivariate nor-

mal density with mean f and variance σ2I. Therefore the joint posterior distribution

is proportional to

L(Y;K, a,b,β,µ, σ2
l , σ

2)p(a,b)p(β|µ, σ2
l )p(µ|a,b)p(σ2

l )p(σ
2).

3.3 Methods

Since the model has a varying number of segments, we use a Reversible Jump Markov

Chain Monte Carlo (RJ-MCMC) algorithm (Green, 1995), which allows us to jump
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between models with different dimensions. The RJ-MCMC here involves four kinds

of steps: birth, death, split and merge. In birth/death step, we propose to add/delete

a segment of copy gain/loss. In split step, we propose to split one segment into two

adjacent ones, and in merge move, we propose to merge two adjacent segments into

one. Though those are standard moves, one would have to make clever proposals or

other changes to improve the acceptance rate, which is often difficult in Reversible

Jump. Most of the innovative ideas are slight variations of Chapter 2, however,

with different parametrization and conjugate structure of the model we are able to

integrate out some of the parameters and preform block Gibbs sampling, which speeds

up the algorithm and improves the mixing from our previous work. The details of

the RJ-MCMC is in Appendix B.

After we run the algorithm for a large number of times and discard the first

iterations, we will have samples from the joint distribution from which we can make

inference. For example, to get the posterior probability of a copy number change

common to a group, let gil be the underlying mean copy number of probe i for group

l:

gil =

{

µkl if akl ≤ xi < bkl for some k
0 otherwise.

(3.2)

Let sil be the underlying state of probe i in group l, which can be gain(G), loss(L)

or unchanged(U), then the posterior probability

p(sil = G | Y) = p(gil > 0|Y)

p(sil = L | Y) = p(gil < 0|Y)

p(sil = U | Y) = p(gil = 0|Y),

which can be estimated by the ergodic average over all models from the MCMC run,

for example,
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p̂(sil = G | Y) =
T
∑

t=1

1

T
I(gtil > 0), (3.3)

where T denotes the total number of MCMC draws after burn-in and gtil denotes

the estimation for gil from the tth draw from the posterior. The probability for loss

and unchanged can be estimated similarly. Notice that there is a positive probability

that gil = 0, and no threshold needs to be specified as it has been applied implicitly.

Though the segmentation/classification is done at group level, not the individual

level, we can still get the estimation of each individual patient by looking at the

posterior draw of β’s.

In addition, given new data Y∗ = {y∗1, ...y∗n}, we can calculate the posterior prob-

ability that Y∗ belongs to group l:

p(Y∗ ∈ l | Y,Y∗) =
π(Y∗ ∈ l)f(Y∗ | Y∗ ∈ l,Y)

∑

s π(Y∗ ∈ s)f(Y∗ | Y∗ ∈ s,Y)
, (3.4)

where π(Y∗ ∈ l) is the prior probability for group l and θl = {al,bl,µl, σ
2
l } denotes

the parameter particular for group l. The posterior distribution of the new data Y∗,

given that Y∗ belongs to group l, is

f(Y∗ | Y∗ ∈ l,Y, θl) (3.5)

= f(Y∗
0 | a,b)f(µ | a,b)

∏

k

∫

f(Y∗
k | β∗

kl, σ
2, akl, bkl)f(β∗

kl, | µkl, akl, bkl, σ2
l )dβ

∗
kl

= f(Y∗
0 | a,b)f(µ | a,b)

×
∏

k

{

N

(

Ȳ∗
k;µkl,

σ2

nkl
+ σ2

l

)

(2πσ2)−
nkl−1

2 n
−1/2
kl exp−

∑

i(y
∗
ik − Ȳ∗

k)
2

2σ2

}

,

where Y∗
k = {y∗i ∈ Y∗; akl ≤ xi < bkl} = {y∗ik, i = 1, ...nkl}, and Y∗

0 = {y∗i ;
∑

k I(akl ≤

xi < bkl) = 0} is the part not “covered” by any basis elements.
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Notice that the posterior probability of the new data can be factored into k

elements and the non-aberration areas. Ideally when we compare the groups we

would like to isolate the effect of each probe on the group differences. Though the

posterior cannot be factored into the multiple of individual probes, we can define the

contribution of an individual probe as follows:

p̃(y∗i | Y∗ ∈ l, θl) (3.6)

=























N

(

Ȳ∗
k;µkl,

σ2

nkl
+ σ2

l

)
1

nkl

×N
(

µkl; 0, c(bkl − akl)
δ
)

1

nkl N
(

y∗i ; Ȳ
∗
k, σ

2
)

if ∃k akl ≤ xi < bkl

N (y∗i ; 0, σ
2) otherwise,

and express (3.5) as the product of p̃(y∗i | Y∗ ∈ l, θl)’s. Let θ1
l , ..., θ

T
l denote the T

draws from the posterior distribution, then we can calculate the ratio of predictive

density with the same form as the Bayes factor:

B̂01(Y
∗) =

f(Y∗ | θt0)
f(Y∗ | θt1)

=

∑T
t=1

∏n
i=1 p̃(y

∗
i | Y∗ ∈ 0, θt0)

∑T
t=1

∏n
i=1 p̃(y

∗
i | Y∗ ∈ 1, θt1)

(3.7)

=

∑T
t=1 exp

∑n
i=1 log(p̃(y∗i | Y∗ ∈ 0, θt0))

∑T
t=1 exp

∑n
i=1 log(p̃(y∗i | Y∗ ∈ 1, θt1))

.

Therefore, we can break down the predictive ratio into individual probes and see

which ones differ significantly from 1 to identify the probes that are relevant to the

group features. Note that this factorization only works for an individual model drawn

from the posterior, but not the ergodic average. However, looking at the marginal

contribution at each probe for all individual model compared to the baseline model

should give us an idea where these two groups differ.
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3.4 Results

3.4.1 Ovarian cancer data

As an illustration, we applied our method on the ovarian cancer data set from Duke

University Medical Center. Sixty-nine patients are sorted into 4 different cancer

groups (Borderline, Early stage, Late stage/Short term survivor and Late stage/Long

term survivor). Each sample (patient) has 2,016 observations on the genomic se-

quence, with about 5% of the data missing.

Figure 3.2 shows the estimate at the group level gil (solid line) with the group

sample mean (points). The colored areas indicate the pointwise and simultaneous

Bayesian credible band. Notice that in some segments it looks like the sample mean

differs significantly from zero, while we find it insignificant. For example, the first

part of chromosome 3 in the early stage group. This is due to a few outliers in that

group driving the sample mean from zero. Since our goal is to find the area where the

copy number changes are common to the patients, we tend to not declare a segment

gain or loss when the gain or loss is only present in a few samples. If we plot the

fitted values for individual samples (Figure 3.3), we can see that overall we capture

the overall structure of the data well.

The estimated posterior probability of copy gain or loss is shown in Figure 3.4.

Samples from the borderline group look like pure noise and do not suggest any copy

number changes anywhere. But for the other groups, we can clearly see the area where

a copy number alteration is most likely. We compare our results with the minimum

common region found by cghMCR package (Zhang and Feng, 2006). First we try the

default threshold value in (Aguirre et al., 2004), and no MCR are found. When we

lower the thresholds we get somewhat comparable results, which are shown in the

shade areas in Figure 3.4. We can see that MCRs mostly agree with the posterior
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Figure 3.2: The estimate of the copy number change at the group level gil from
the ovarian cancer data (the solid line) and the group sample mean (points) with
Bayesian credible bands
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Figure 3.3: Heatmap for individual samples in early stage group
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Figure 3.4: The posterior probability of gain/loss at the group level. The area
above zero indicates the probability of copy gain and the area below zero indicates
the probability of copy loss. The yellow area is the minimum common region found
by cghMCR.
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probability found by our method, though there are some obvious discrepancies. For

example, In chromosome 8 of the late stage/longterm group there is a region declared

as both gain and loss by cghMCR, but looking at the sample mean it is obviously a

loss region. Also in chromosome 7 of the late stage/short term group, we declare it

a gain region with very high posterior probability, but looking at the sample mean

you can see that though they are all positive, the magnitude is smaller than other

significant regions, therefore it was not called a gain region by cghMCR.

3.4.2 Simulated Data

To make a full comparison of our method and cghMCR, we test both methods on a

simulated data set. We generate 10 genomic sequences from the posterior draws of the

ovarian data, to create a realistic log2-ratio-copy number profile. We try to choose the

samples with different numbers of segments to get a variety of mean function while

keep the setting more realistic. The number of patients from each group are kept

the same as the real data (9 early stages, 25 late stage/longterm, 30 late stage/short

term), except that we can discard the 5 borderline case since the posteriors are all

null functions.

The simulated data are generated from the following equations:

f̂jl(xi) =

Kl
∑

k=1

β̂jklhkl(xi), hkl(x) = I(akl ≤ x < bkl) (3.8)

Ŷijl = f̂jl(xi) + εij, εij
iid∼N(0, σ2).

Note that the simulated data only depend on the posterior draws for β, a,b and σ2,

not on µ and σ2
l .

We run cghMCR on the simulated data with 3 set of parameters, the default value

in (Aguirre et al., 2004) and two other ones with lower thresholds. For our method,
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we set the classification rule to be the highest probability model:

s∗il = arg max
S

p(sil = S|Y), S = {G,U, L}, (3.9)

where we put each probe in the category with the highest posterior probability. To

see if the decision rule affects our performance, we also try two other decision rules

with lower threshold for gain or loss:

s∗il =







G if p(sil = G|Y) ≥ p∗

L if p(sil = L|Y) ≥ p∗

U otherwise.
(3.10)

with p∗ = 0.25, 0.1, and we declare a copy number gain or loss when the posterior

probability exceeds that threshold p∗ = 0.25.

The overall results can be further summarized by the following summary statistics:

Correct Classification Rate (CCR) The proportion of probes assigned to the

correct class.

False Discovery Rate (FDR) The proportion of unchanged probes assigned to

class Gain or Loss.

True Positive Rate (TPR) The proportion of probes predicted to be gain or loss

of all the true gains/losses.

True Negative Rate (TNR) The proportion of probes predicted to be unchanged

of all the true unchanged probes.
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Table 3.1: Summary statistics from simulation study

Hierarchical model cghMCR

Thresholds High Med Low High Med Low

CCR 0.8465 0.9185 0.9120 0.5789 0.5888 0.7901
FDR 0.0022 0.0213 0.0966 0.0000 0.0011 0.0203
TPR 0.6417 0.8269 0.9126 0.0129 0.0363 0.5189
TNR 0.9989 0.9866 0.9273 1.0000 0.9999 0.9920

We see that cghMCR achieves great FDR and true negative rate but is not a

great method overall since it predicts unchanged most of the time and the overall

correction rate is lower. If we look at the correct classification rate, which is a good

indication of the overall performance of the method, our method did better than

cghMCR for all combination of thresholds tested.

Note that the simulated data has the same noise level as the real data and the

resulting signal-to noise ratio is less than one. We perform the same analysis with

simulated data with lower noise (signal-to-noise ratio=3):

Table 3.2: Summary statistics from simulation study, low noise

Hierarchical model cghMCR

Thresholds High Med Low High Med Low

CCR 0.9886 0.9895 0.9886 0.6112 0.7718 0.9906
FDR 0.0059 0.0071 0.0104 0.0039 0.0049 0.0088
TPR 0.9791 0.9824 0.9836 0.0892 0.4676 0.9868
TNR 0.9957 0.9948 0.9923 0.9997 0.9982 0.9935

In cghMCR with lower thresholds, where the thresholds are set at the 67% and

33% percentiles of the data and the recurrence rate at 50%, the results are comparable

to our methods. But we can see that the performance of cghMCR depends on the

threshold values, while our method gives consistently good performance for all three

decision rules we tried.
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Figure 3.5: Receiver operating characteristic (ROC) curves for our methods and
cghMCR measured at two different signal-to-noise ratios. The curves were generated
by measuring the true and false positive rates on simulated data at 21 threshold
values for each method.

We calculate the ROC profiles for each method and each noise level, and results

are shown in Figure 3.5. We run both methods with a sequence of threshold values,

and each threshold give a TPR and TNR. The false positive rate (FPR) is defined

as 1-TNR, and each pair of TPR and FPR is represented by a point in the ROC

curve, with the upper left corner representing the optimal result. We can see that

in the high noise scenario, which is more realistic, our method is doing better than

cghMCR. However in the low noise scenario, both methods seem to be doing equally

well.
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3.4.3 Classification

To demonstrate the new patient classification, we run out-of-sample prediction on

another simulated data set. The setting is similar to Lai et al. (2005), with various

aberration segment widths. The simulated data consist of 4 groups, each with 10

patients. The first group has three “gain” segments with widths of 5,10 and 20

probes. And the remaining three groups have only two of the corresponding segments

while missing one of them. Gaussian noise was added to make the SNR around 2.

Figure 3.6 shows the features of each group and their difference.

simulated data, sample mean group 1 simulated data, sample mean group 2

simulated data, sample mean group 3 simulated data, sample mean group 4

Figure 3.6: Sample mean of the simulated data for each group. The solid lines are
the mean underlying copy numbers

The predictive probabilities of each group in (3.4) were estimated by fitting the

model after taking out 20% of the patients in each group. Given a uniform prior

on the groups and taking the group with the highest posterior probability as the
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prediction, we obtain the confusion matrix:

Table 3.3: Confusion matrix for cross validation of the sim-
ulated data. The numbers in parenthesis show the average
posterior probability for each group.

Predicted Group

1 2 3 4

True

Group

1
8 2 0 0

(0.8000) (0.2000) (0.0000) (0.0000)

2
2 8 0 0

(0.2761) (0.7239) (0.0000) (0.0000)

3
2 0 8 0

(0.2553) (0.0000) (0.7446) (0.0000)

4
4 0 0 6

(0.3791) (0.0000) (0.0000) (0.6209)

This gives us a 75% correction rate. Sometimes group 2,3,4 patients are misclassi-

fied as group 1 because the fitted model for group 1 failed to pick up the corresponding

signal, due to high noise. As Lai et al. (2005) showed, the segmentation based meth-

ods have not done well under high-noise scenarios, especially when the segments are

short. Given the difficulty of detecting these small segments with noisy data, our

method is preforming reasonably well.

We can also identify the probes most relevant to the group difference by plotting

the marginal contribution at each probe. Figure 3.7 shows the log ratios for all

posterior draws, and one can clearly see the region where the log ratios are below

zero. Compared to Figure 3.6, those regions correspond to the part where the two

groups differ. We also see a larger variance in all the aberration segments because

there is another layer of uncertainty that is the within group variance.

We return to the ovarian cancer data and run the same out-of-sample prediction.

As we can see from Figure 3.2, all the groups except the borderline group have very
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Figure 3.7: The log ratios of marginal contribution at each probe for one simulated
sample in group 1. Group 1 is the baseline model. The solid line is the average of
all posterior draws, which should not be taken as the model averaging estimate. 500
thinned samples from MCMC draw are plotted at each location.

similar features. As a result, we could not separate those groups very well. However,

the marginal contribution can still show subtle differences. For example, if we take

the early stage group as the baseline, and plot the log ratio at each position for

patient 7, from Figure 3.2 we can see a gain region present in chromosome 19 for

both the late stage groups, but not in the early stage group. This is clearly seen

in Figure 3.8. As we can see in Figure 3.3, this particular patient does have a gain

segment in chromosome 19, which is a feature in the late stage groups, while most

in the early stage group do not. Not surprisingly, she was (mistakenly) classified as

late stage.

52



−
20

0
10

20

Log ratios of marginal contribution Borderline vs Early stage patient 7

lo
g 

ra
tio

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920212223
−

20
0

10
20

Log ratios of marginal contribution Late stage/longterm vs Early stage patient 7

lo
g 

ra
tio

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920212223

−
20

0
10

20

Log ratios of marginal contribution Late stage/short term vs Early stage patient 7

lo
g 

ra
tio

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920212223

Figure 3.8: The log ratios of marginal contribution at each probe for one patient in
the early stage group. Early stage is the baseline model. 100 thinned samples from
MCMC run are plotted at each location.

3.5 Discussion

We propose a procedure based on a hierarchical model to detect the region where the

gene copy number changes. We apply the method to the ovarian cancer data and the

simulated data and the results show that our method can capture the features shared

among the majority of the patients in a group. We find our model-based approach

works better than cghMCR, the only current method that deals with multiple sam-

ples. In addition, the features found in the groups can again be used for new patient

classification, and we can also identify the genes relevant to the group differences,

which can be useful in both the basic research and clinical applications.

One of the main issues of the model-based approach is if our model could ad-
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equately describe the data structure. Although our model assumes the same seg-

mentation for all the patients in the same group, which is a strong assumption, the

hierarchical nature of the model accounts for the heterogeneity within the group. For

example, looking at the early stage plot in Figure 3.2, there is bump in chromosome

7. While the upper panel of the heatmap (Figure 3.3) shows that such bump is not

common among all the patients, the hierarchical model will shrink the individual

coefficients near zero for those who do not share that gain region, as we can see from

patient 5 and 6 in the lower panel in Figure 3.3. When we look at the fitted values

for individual patients the model does give a good fit overall, even though it can keep

a very small non-zero coefficient for someone when it’s supposed to be zero.

In conclusion, the complexity of CGH data calls for a model-based approach to

analyze multiple samples jointly to get more accurate information. Our model offers

an efficient way to find the common feature among the samples.
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Chapter 4

Joint Analysis of Gene Expression and

DNA Copy Number Data

4.1 Introduction

It has been suggested that the changes in number of genomic DNA copy numbers

play a prominent role in cancer activity (Lockwood et al., 2006). Detection of DNA

copy changes has been simplified due to array comparative genomic hybridization

(CGH) technology, which measures DNA copy numbers indirectly. In recent years

a great amount of research has been conducted in this area, in both applied and

methodological work (Willenbrock and Fridlyand, 2005; Olshen et al., 2005; Hupe

et al., 2004; Wang et al., 2005; Myers et al., 2004; Broët and Richardson, 2006; Lai

et al., 2005). Cancer development can also appear in the form of gene over or under

expression (Lockhart and Winzeler, 2000; Perou et al., 1999, 2000; Sørlie et al., 2001,

2003), which may result from copy number changes. When copy numbers increase, the

extra RNA transcripts and their encoded proteins may lead to gene overexpression,

and vice versa. However, the gene expression patterns are noisy and it is still unclear

to what extent copy numbers affects expression level, especially on the individual

level. Combining information from DNA copy numbers and expression levels may

reduce the source of variation and lead to more accurate and reliable results.

To date, only a few studies have analyzed both DNA copy number and gene

expression level simultaneously. Hyman et al. (2002) studied 14 breast cancer cell

lines and concluded that 44% of the highly amplified genes showed overexpression.

Pollack et al. (2002) analyzed 37 breast cancer tumor samples and found that a 2-fold
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change in DNA copy number was associated with 1.4-1.5 fold changes in expression

level. They also found that 7-12 percent of the variation in expression level may be

attributed to copy number variation. For other cancer types, Platzer et al. (2002)

found only 3% of the genes showed overexpression among all the amplified genes in a

colon cancer study. Therefore, the effect of copy number alteration on the expression

level may be cancer specific. Those studies are either exploratory or based on a

hypothesis-testing framework and are mostly done on a gene-by-gene scale. More

recently, Berger et al. (2006) proposed a generalized singular value decomposition

(GSVD) algorithm that iteratively selects the genes with highly similar patterns of

variation for both data sets. Chin et al. (2006) did a more comprehensive analysis of

gene expression and CGH data for breast cancer and identified 66 genes with highly

amplified copy numbers that are associated with expression levels. Nine of them are

considered druggable. Their results also suggested some strong association of DNA

copy numbers with outcome and other clinical variables, such as stage and survival

time.

In this chapter we propose a Bayesian hierarchical model to analyze gene ex-

pression and copy number data jointly. We extend the hierarchical model for CGH

data from Chapter 3 to incorporate gene expression data. Our main goal here is to

identify the genes in which pattern of expression is related to DNA copy number,

as these are likely genes related to cancer progression. We can also detect the copy

number change regions and their significance. The level of association between gene

expression level and DNA copy number is defined by a linear regression coefficient θ

and inferences about θ are based on posterior probabilities. Our method can easily

accommodate missing and misaligned data, which is an improvement over GSVD.

The remaining chapter is arranged as follows. In Section 4.2 we present the

hierarchical model. In Section 4.3 we outline our methods of estimation and inference.
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In Section 4.4, we present the result using simulated data and the breast cancer

cell line cDNA data from Hyman et al. (2002). We conclude in Section 4.5 with a

discussion of the extensions of our model.

4.2 Approach

Suppose we have J patients indexed by j = 1, ...J and n probes located on the

genomic sequence with their physical locations labeled as x1, ...xn. Let cij be the

observation of the CGH data of probe i of patient j, which is the log ratio of fluores-

cence intensities between tumor and reference samples. As in Chapter 3, we model

cij by a step function of the form

cij = fj(xi) + εij, εij
iid∼N(0, σ2), (4.1)

fj(xi) =
K
∑

k=1

βjkhk(xi), hk(x) = I(ak ≤ x < bk). (4.2)

Most model-based methods take similar approaches (Lai et al., 2005). Here hk is

the kth segment where a copy number alteration occurs, spanning from ak to bk. In

this CGH segmentation model, all the patients share the same segmentation, but

may have different coefficients βjk. All segments are mutually exclusive and do not

overlap. We use a = {a1, ...aK},b = {b1, ...bK} to denote the beginning and end

points for the segments, respectively.

In the Bayesian framework, we have to specify prior distribution for all unknown

parameters. The prior settings for the parameters related to the copy numbers are

similar to Chapter 3. We have uniform prior distribution for a and b on the set of

data points x1, ..., xn. We take a negative binomial prior distribution NB(r, q) on

the number of segments K. We can choose the hyperparameter r and q based on

the size of data and other information about a reasonable range of K. From our
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experience a flat prior such as NB(1, 0.01) can often work as well in the absence of

prior information. Note that although these segment can be as small as one probe,

in practice we cannot detect those very small regions with much confidence.

The prior distributions for the coefficients βjk’s and σ2 are given below

βjk|µk, σ2
l ∼ N(µk, σ

2
l ),

µk | ak, bk ∼ N(0, c(bk − ak)
δ),

p(σ2
l ) ∝ (σ−2

l )1/2, p(σ2) ∝ σ−2.

The βjk’s are centered around a common mean µk, which is centered at 0. The

hierarchical structure allows us to extract common features across patients, while

it also accounts for heterogeneity among patients. The hyperparameters c and δ

control the level of shrinkage in relation to the segment length. A reasonable choice

for c is to set c = J , the sample size, as in the unit-information prior (Kass and

Wasserman, 1995). For δ, generally we choose δ > 0 so the short segments will

be shrunk more toward zero as they will more likely be outliers instead of real copy

number aberrations. The non-informative priors given for the variance parameters, σ2

and σ2
l , are improper, but it can be easily shown to have proper posterior distributions

(Hill, 1965; Hobert and Casella, 1996; Sun et al., 2001).

Our prior specification also implies a model for the CGH data at the population

level,

f(xi) =
K
∑

k=1

µkhk(xi). (4.3)

We will refer to the function above as the mean function of fj.

Let dgj denote the probe measurement on log scale for patient j at location xg.

We model the gene expression data as the following

dgj = αg + θgfj(xg) + εgj , εgj
iid∼N(0, σ2

d). (4.4)
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Here θg represents the level at which the expression associates with the latent gene

copy number. There is no association when xg is not covered by any gain/loss seg-

ment, i.e., fj(xg) = 0, so in that case, we set θg = 0. Since previous studies suggest

that associations between gene expression levels and DNA copy numbers are not likely

to be present in all genes, we expect only a portion of the θ’s would be significantly

different from zero. Therefore we propose a mixture prior for θg with a point mass

at zero with probability π and a normal component centered at some common mean

ξ which has a normal prior centered at zero, namely,

p(θg) =

{

πδ0(θg) + (1 − π)N(θg; ξ, τ
2) if xg ∈ [ak, bk)

δ0(θg) otherwise,

p(ξ) ∼ N(0, ν2).

Although previous studies (Hyman et al., 2002; Pollack et al., 2002) suggest that

the association parameter θg, if non-zero, will be more likely positive than negative,

our hierarchical setting does allow some of the θg to be less than zero. Also, this

hierarchical prior for θ forces some dependency among all the θ’s. This prior should

guide the θ’s to follow the overall trend ξ as the data suggest, but also accounts

for heterogeneity of the genes. We specify non-informative priors on the remaining

parameters, the intercept αg and the error variance σ2
d:

p(αg) ∝ 1, p(σ2
d) ∝ σ−2

d .

It is straight forward to show that the posterior distribution is proper although the

prior distributions are improper.

Let C = {cij} and D = {dgj} denote the set of CGH and expression data. To

present the likelihood we introduce the following notation. Given the segmentation

parameter (a,b), we define

Ck
j = {ckij, i = 1, ..nck}, Dk

j = {dkgj, g = 1, ..ndk}
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as the collections of data points “covered” by segment k for patient j for CGH and

expression data, respectively, with nck and ndk denoting the corresponding numbers of

data points in segment k. We also define

C0 = C \ ∪jkCk
j D0 = D \ ∪jkDk

j

as the data points not “covered” by any segment, where f(xi) = 0. Now the likelihood

may be written as

L(β,µ, a,b, σ2, σ2
l , σ

2
d, θ, α | C,D)

∝







∏

cij∈C0

N(cij; 0, σ
2)
∏

dgj∈D0

N(dgj ;αg, σ
2
d)

×
∏

jk

∏

cij∈Ck
j

N(cij; βjk, σ
2)
∏

dij∈Dk
j

N(dgj ;αg + θgβjk, σ
2
d)







.

4.3 Methods

Inference for parameters is done by sampling from the joint posterior distribution

using a Reversible Jump Markov Chain Monte Carlo (RJ-MCMC) algorithm (Green,

1995), which consists of four types of steps: birth, death, split and merge. As the

names suggest, in a birth/death step, we propose to add/delete a segment of copy

number gain/loss; in the split step, we propose to split a segment in two; and in the

merge step, we propose to merge two segments into one. The RJ-MCMC algorithm

allows us to jump between models with different dimensions, in our case, models with

different numbers of copy number gain/loss segments. The detail of the RJ-MCMC

algorithm is in Appendix C.

The results presented in the following section are based on 5,000 steps of the RJ-

MCMC algorithm after a burn-in period of 5,000. The trace plots of the parameters
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suggest good mixing for the MCMC chain after 5,000 steps. After we collect the

samples from the posterior distribution, summary statistics for parameters of interest

can be obtained. For example, we can provide an estimate the posterior probability

of θg 6= 0 for each probe as a measurement of the degree of association between the

CGH and expression data. The investigator can then focus on the probes with high

posterior probability of θg 6= 0.

Notice that our model does not require the CGH and expression data to be ob-

served to be at the same location. Missing data can also be easily treated in our

model by adding a step in the algorithm to sample the missing data from its poste-

rior distribution.

4.4 Results

4.4.1 Simulation study

We designed a simple simulation study to validate our model. In this simulated data

the CGH and expression data are aligned, i.e. {xi} = {xg} and there are no missing

data.

We have {xi} = {xg} located at 128 equally spaced points in (0,1). There are

30 patients. For simulated CGH data, the true function f is a step function with

7 gain/loss segments. The patient-specific coefficients β’s are drawn from the prior

with σ2
l = 0.7. For the expression data, the association parameter θg is either 0 (no

correlation) or a non-zero value drawn from N(θ1, 1), where θ1 takes on three positive

values: 1,3 and 5. In addition, when xg is not covered by any gain/loss segment, we

set θg to be zero. In our simulated data, the non-zero θ’s make up about one-third

of the probes (42 out of 128). The intercept αg are randomly drawn from N(0, 1).

Random noise is added to both sets of data to make the signal-to-noise ratio around

2. We generate three data sets with different values of θ1 and run the analysis on the
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same data set with 3 different hyperparameters τ 2 to test the sensitivity of the prior

specification. Other hyperparameters are fixed: ν2 = 1, q = 0.5, δ = 1 and c = 30,

the sample size.

We reported our results on the posterior probability of θg 6= 0 in the following

tables. The results do not appear to be sensitive to the hyperparameter τ 2. From

the tables we can see that as the signal gets stronger (higher θ1), our algorithm does

a better job separating those relevant probes. If we consider the median probability

model (Barbieri and Berger, 2004), we can detect about 90% of the probes with

positive association levels when θ1 = 3 or 5.

Table 4.1: Posterior probability of θ 6= 0 from simulation
study, θ1 = 1.

P (θ 6= 0)

0-0.1 0.1-0.25 0.25-0.5 > 0.5

τ 2 = 1
θg = 0 65 15 2 4
θg 6= 0 5 0 3 34

τ 2 = 3
θg = 0 65 5 8 8
θg 6= 0 3 2 5 32

τ 2 = 10
θg = 0 73 5 4 4
θg 6= 0 8 4 2 28

Table 4.2: Posterior probability of θ 6= 0 from simulation
study, θ1 = 3.

P (θ 6= 0)

0-0.1 0.1-0.25 0.25-0.5 > 0.5

τ 2 = 1
θg = 0 81 5 0 0
θg 6= 0 2 0 3 37

τ 2 = 3
θg = 0 81 3 2 0
θg 6= 0 4 1 1 36

τ 2 = 10
θg = 0 84 1 1 0
θg 6= 0 2 1 2 37
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Table 4.3: Posterior probability of θ 6= 0 from simulation
study, θ1 = 5.

P (θ 6= 0)

0-0.1 0.1-0.25 0.25-0.5 > 0.5

τ 2 = 1
θg = 0 86 0 0 0
θg 6= 0 2 0 1 39

τ 2 = 3
θg = 0 86 0 0 0
θg 6= 0 1 0 3 38

τ 2 = 10
θg = 0 86 0 0 0
θg 6= 0 1 1 2 38

The upper panel of Figure 4.1 shows the sample mean and the fitted mean function

of the simulated CGH data, along with the true mean function. The lower panel

shows the posterior probability of copy number gain/loss (solid line), as well as the

posterior probability that θg 6= 0 for each probe. We correctly identify all the regions

with copy number aberrations, including the short one on the right hand side of the

plot. We can also separate the probes that are associated with copy number changes

(black points) and those that do not (circles). The 95% pointwise predictive interval

(not shown) covers about 90% of the observed data. Notice that in the model the

association is only detectable when there is a copy number aberration present. Since

there is another layer of uncertainty about the location of the copy number changes,

the problem becomes more difficult. However, those probes coming out on top despite

the noise will likely be the most relevant, since both the copy number change levels

and its association with the expression level have to be strong enough for θg to stay

consistently in the model.

4.4.2 Breast cancer cell lines

Hyman et al. (2002) analyzed the gene expression and copy number of 14 breast cancer
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Figure 4.1: The upper panel shows the sample mean, the fitted mean function (dash
line) and the true mean function (solid line) for a simulation run with θ1 = 5 and
τ 2 = 10. The lower panel shows the posterior probability of θg 6= 0. The black
dots are the genes of interest with true θg 6= 0 and the circles are the genes with true
θg = 0. The solid line is the posterior probability of DNA copy amplification/deletion.
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Figure 4.2: The heatmap illustrates the patterns of copy number ratios from chro-
mosome 17 of 14 breast cancer cell lines in Hyman et al. (2002). Each gene occupies
a grid and the the locations on the map do not correspond to the actual physical
location of the genes.

cell lines with cDNA microarrays. Berger et al. (2006) used the same data set for their

generalized singular value decomposition (GSVD) algorithm. After preprocessing,

each cell line contains 11,994 CGH and cDNA observations. The cDNA and CGH

copy number ratios have been log2 transformed and missing values were inferred prior

to our analysis by Hyman et al. (2002). The cDNA and CGH data are observed at the

same locations ({xi} = {xg}). Figure 4.2 and 4.3 show the pattern of copy number

ratios and expression levels from the breast cancer cell line data.

For the breast cell line data set, the hyperparameter τ 2 and ν2 are set to be
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Figure 4.3: The heatmap illustrates the patterns of expression levels from chromo-
some 17 of 14 breast cancer cell lines in Hyman et al. (2002). Each gene occupies
a grid and the the locations on the map do not correspond to the actual physical
location of the genes.
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τ 2 = 3, ν2 = 1, so the marginal prior distribution for θ will cover a reasonable

range implied from the exploratory analysis by Hyman et al. (2002) and Pollack

et al. (2002). The prior probability of zero coefficients π is set at 0.56, which is the

proportion of highly amplified genes that do not show overexpression in Hyman et al.

(2002). We plot the posterior summary for chromosome 17 in Figure 4.4 and Figure

4.5. The upper panel of Figure 4.4 shows the posterior probability that θg 6= 0 for

each gene. We can clearly separate the genes whose expression levels are influenced

by their copy numbers and the ones that are not. The ones that come out on top

include ERBB2 gene (99.4%), which has been linked to the progression of some type

of breast cancer. From Figure 4.2 we can see that three of the cell lines (SKBR3,

BT474, UACC812) all have identifiable amplified regions around that gene, which

makes it easier to detect the association between two data sets. Notice that in the

upper panel of Figure 4.5 the sample mean for the CGH data shows an elevated region

around 40M. It is driven by three cell lines out of 14 so our model does not consider

it a common gain region across the patients. This indicates that the model is robust

against outliers. We also found HOXB7 (96%), which is also clinically associated

with cancer progression (Hyman et al., 2002). There are other additional genes

with high posterior probabilities of θg 6= 0 that have not been previously studied.

Table 4.4 lists posterior summaries of θ for some of the genes at 17q11-12 that are

identified in Chin et al. (2006) as potential drug targets as they have high-level copy

number amplifications that are associated with expression numbers. Most of them are

confirmed in our study as having high posterior probabilities that θ 6= 0, including the

ones that have been functionally validated in literature (PPARPB, ERBB2, GRB7)

and the ones considered druggable (PNMT, ERBB2, NR1D1). Though it is not clear

if these genes play a role in breast cancer, we believe they are good candidates for

future investigation.
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Figure 4.4: The upper panel shows the posterior probability of θg 6= 0 for each
gene in chromosome 17; the lower panel shows the posterior mean (points) and 95%
Bayesian credible band for θg (gray area).
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Figure 4.5: The sample mean from 14 breast cancer cell lines for CGH data (upper
panel) and cDNA data (lower panel) from chromosome 17, plotted against the fitted
mean function for all the MCMC draws. The black dots for the lower panel indicate
the genes with over 50% posterior probability of θg 6= 0. The expression levels of
those genes are more likely to be associated with DNA copy number changes. The
triangles represent the genes with less than 50% posterior probability of θg 6= 0. The
gray areas are the 95% Bayesian credible bands for the mean function of CGH data
and expression data, respectively.
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Figure 4.6: Bayesian R2 for each chromosome based on posterior mean estimate. R2

indicates the percentage of observed variation in expression level that can be directly
explained by variation in copy numbers.
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mosomes. The red lines indicate the empirical posterior median.
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The lower panel of Figure 4.4 shows the marginal posterior distribution of θ. Even

though the prior is centered at zero the posterior is mostly supported on the positive

side, as expected. Figure 4.5 shows the sample mean and fitted mean functions of

the two data sets. Compared with Figure 4.4 we can clearly see the region with high

probability of amplification/deletion and the region with no copy number change.

The posterior probabilities for the no-change areas are all close to zero as we would

not be able to estimate θ there. We calculate the Bayesian R2 based on posterior

mean estimates, which gives the percentage of variation in expression level directly

explained by variation of copy numbers. The Bayesian R2 has this following form

R2 = 1 −
∑

gj(dgj − α̂g − θ̂gf̂j(xg))
2

∑

gj(dgj − α̂g)2
, (4.5)

where α̂, θ̂g and f̂ are the posterior mean estimate for α, θ and f , respectively. From

Figure 4.6 we can only see variation explained in the chromosomes showing amplicons

in breast cancer cell lines as documented by Hyman et al. (2002), namely chromosome

1,8,17 and 20. For those chromosomes the R2 are between 7 and 13 percents, which

is consistent with the findings by Pollack et al. (2002). The association between two

types of data at the population level ξ, appears to be positive (see Figure 4.7). At the

individual level only 22% of the genes (2686 genes) have over 50% probability of θ 6= 0

and only 2% (241 genes) have over 90% probability. Those genes are concentrated

on the amplified regions, as expected (See Figure 4.8). The overall mean for θ is

0.725, also consistent with the results from Pollack et al. (2002), who found that 2-

fold change in DNA copy number is associated with 1.4-1.5 fold change in expression

level. As they pointed out, this is likely an underestimation of true impact of the DNA

copy number on expression level, mostly due to the measurement error caused by the

non-tumor cells contained in the tumor samples. There is also a lot of variability

in θ, as the overall 95% credible interval for θ ranges from -0.39 to 4.79. If we only
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include the genes with over 50% probability of θ 6= 0, the overall mean for θ is about

1.5.

Table 4.4: Posterior summary of θ of selected genes with high-level copy number
amplifications associated with gene expression levels as found in (Chin et al., 2006).
The last column indicates the genes for which drugs have been developed (Vogel
et al., 2002) (Trastuzumab; for ERBB2) or considered to be druggable (Russ and
Lampel, 2005).

Gene P(θ 6= 0) Median 95% Credible Cancer function Druggable
of θ interval

PSMB3 0.994 1.842 (-1.133,5.136)
PIP5K2B 0.936 1.216 (-2.017,5.147)
FLJ20291 0.946 1.683 (-1.381,5.339)
PPARBP 0.98 1.776 (-1.841,5.227) Zhu et al. (2000)
TCAP 0.282 0 (-0.54,3.799)
PNMT 0.624 0.292 (-1.577,4.74) Yes
ERBB2 0.996 1.796 (-1.449,4.899) Slamon et al. (1989) Yes
GRB7 0.996 1.76 (-2.096,5.296) Tanaka et al. (2000)
PSMD3 0.718 1.068 (-1.379,4.836)
NR1D1 0.696 0.767 (-1.403,5.453) Yes

4.5 Discussion

Joint analysis of different type of microarray data can give us more accurate predic-

tions and a more coherent view of the information from different sources of data. In

this chapter, we take a model-based approach to integrate CGH copy number data

with gene expression data in order to understand the relation of these two different

genomic measurements. We believe that our model can adequately capture the com-

plicated interaction between the two types of data. We propose a procedure based on

a Bayesian hierarchical model for identifying regions with gains or losses of genomic

DNA copy numbers and genes whose expression levels are associated with such copy
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number changes.

From the simulation study, our method can correctly identify the regions with

copy number gains or losses without having to choose an arbitrary threshold. Our

method also has very strong performance picking out the genes whose expression

levels are associated with copy numbers. Those genes may provide some insight on

the mechanism behind such genomic abnormality and are good candidates for further

research. Our analysis of the breast cancer cell lines successfully identifies most of the

genes that have been clinically associated with cancer in the literature (Hyman et al.,

2002). At the same time it also gives an estimate of the underlying copy number of

each gene and the level of uncertainty at each location from the Bayesian credible

bands.

In conclusion, combining information from more than one kind of genomic mea-

surement, such as CGH and gene expression levels, can lead to more accurate es-

timation and prediction. Our method provides an efficient way to jointly analyze

the CGH and expression data to identify the patterns of the data. Hopefully it will

lead to better understanding of the mechanism behind the cancer development and

effective therapeutic measures.
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Chapter 5

Discussion

5.1 Summary

In this thesis we have developed a Bayesian approach for function estimation in an

overcomplete wavelet dictionary setting.

In Chapter 2 we described the overcomplete wavelet dictionary setting in a func-

tion estimation context. The model allows for arbitrary location and scale parameters

instead of fixing them on a grid; it also allows the data to select the number of ele-

ments. The advantages of our methods include: 1. It can be applied to non-equally

spaced data without interpolation or other kind of data manipulation. 2. It gives

sparser representation and better performance in prediction. However, the MCMC

algorithm requires evaluation of wavelet functions at arbitrary locations. Without

the benefit of the cascade algorithm the wavelet function evaluation is more com-

putationally intensive than it would be if we only evaluated it on an equally-spaced

grid.

There is one exception. The Haar wavelet can be evaluated easily at any point.

Therefore for data where a step function model is appropriate, we can model it

with an overcomplete Haar wavelet dictionary without the heavy computation of the

Daubechies-Lagarias algorithm. Therefore the CGH data for Chapter 3, which are

typically modeled as a step function in the current available model-based methods,

is a prefect candidate for our overcomplete Haar wavelet dictionary model. The dic-

tionary has been slightly modified to improve computational efficiency. For example,

the dictionary elements that represents segments of copy number alterations are mu-

tually exclusive, instead of laying on top of each other as in Chapter 2. The elements
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will still span the same space of step function but the mixing improves significantly.

The hierarchical model for patient grouping is built on the CWD which helps us

tackle important issues beyond copy number estimation, such as patient classifica-

tion, prediction, and identifying the genes relevant to the group difference. We use

simulation studies and an ovarian cancer data set to demonstrate the performance of

our method.

In Chapter 4, we extended the model to incorporate gene expression data. Our

goal is to detect the genes of which the expression level is related with its copy number

change, as those genes are likely associated with cancer. Building on the model in

Chapter 3, we conduct a joint analysis with both types of data and separate the

potentially relevant genes from the rest. The results from the breast cancer data

confirm the association of two genomic measurement in genes that have been linked

to cancer development in the literature. Even though the examples in the chapter

do not involve some of the model features discussed in Chapter 3, such as patient

classification and prediction, our joint model does not preclude that type of analysis

and can be easily extended to accommodate it if more patient information becomes

available.

5.2 Future Work

Here we discuss possible improvements and extensions to my research.

5.2.1 Improving Computational Efficiency

First of all, we plan to make our code available for the public in the future as an

R package. For that purpose, the speed of the RJ-MCMC algorithm needs to be

improved. For example, we can port part of the sampling function for Chapter 3

and 4 from R to C, utilizing the C code for a single function estimation in Chapter
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2. Even though we have bypassed the most time-consuming part of the program

(Daubechies-Lagarias algorithm) for the CGH data analysis by modeling it as step

function, the processing time of the Markov chain needs to be reduced. This has

become especially important as higher-resolution CGH array becomes available.

In addition, the models for Chapter 3 and 4 can take advantage of parallel com-

puting. Since the only parameter common to all chromosomes is σ2, we can estimate

the parameters for each chromosome in parallel on 23 nodes in a computer cluster,

then collect all the fitted values to sample σ2. This will increase the speed of our

algorithm significantly.

5.2.2 Model Specification for CGH Data

Our model for CGH data in Chapter 3 assumes the same segmentation for all pa-

tients in the same group. Even though the assumption is reasonable and our model

specification still accounts for the heterogeneity within the group, there are still ways

to extend the model to be more flexible. For example, putting a mixture prior with

some point mass at zero for β will shrink some coefficients to zero therefore allowing

different segmentation and number of segments within a group. Though the focus

of our method is to analyze the group as a whole, the features that only appear in

some particular patients can be of interest as well. For that purpose, further exten-

sions of model that introduce even more flexibility for segmentation is also possible,

if computationally feasible.

5.2.3 Modeling Interval Data

One important assumption in our model in Chapter 4 is that the locations of the

probes x are measured without error. In practice it is not always the case. Some

CGH microarrays are from lower-resolution bacterial artificial chromosomes (BACs)
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clones which are about 250KB long and spaced roughly at 1MB intervals, so that a

number of genes may “fall under” a probe. There will also be genes near a probe,

but not under it. Some of the probes cannot be accurately located. In addition,

each of these probes span a certain interval, with some of the intervals overlapping.

Potentially we could have multiple gene expression probes corresponding to one CGH

probe, or vice versa. Our model can be extended to accommodate these misaligned

arrays by redefining the endpoints of gain/loss segments a and b.

For example, let zi = [xLi , x
R
i ] represent the CGH data and zg = [xLg , x

R
g ] represent

the expression data observed on intervals. We still have the same model as in (4.1)

and (4.4)

cij = fj(zi) + εij

dgj = αg + θgfj(zg) + εgj .

Now cij represents the CGH data observed at interval zi and dgj represents the

expression data observed at interval zg for patient j.

Define Ac = {xLi ; ∀i}, the collection of left endpoints of all the CGH probes. Also

define Ad = {xLg ; xLg /∈ zi, ∀g, i}, the collection of left endpoints of all the expression

probes that do not fall under any CGH probe. Similarly we define Bc = {xRi ; ∀i}

and Bd = {xRg ; xRg /∈ zi, ∀g, i}. In the RJ-MCMC algorithm, when we propose a new

segment, the candidate for left endpoint a∗ are drawn from A = Ac ∪ Ad and the

candidate for left endpoint b∗ are drawn from B = Bc ∪Bd such that (1) b∗ > a∗ and

(2) [a∗, b∗) ∪ {zi} 6= ∅ ∀i. The second condition is added to make sure the segment

[a∗, b∗) covers at least one CGH probe. If the segment only covers expression probes

it might not change the likelihood at all since the expression levels do not always

depend on the copy number changes. We only need to check the condition if both

endpoints are from expression probes, a∗ ∈ Ad and b∗ ∈ Bd.
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Example of Misaligned CGH and Expression probes

1 2 5 6 8 10

1.5 3 3.5 4 4.5 7 8.5 9

CGH probes

Expression probes

Figure 5.1: Illustration of misaligned intervals for CGH and expression probes. The
solid lines are for CGH probes and the dashed lines are for expression probes.

For example, in Figure 5.1, we have Ac = {1, 5, 8}, Ad = {3.5, 4.5}, Bc = {2, 6, 10},

Bd = {3, 4, 7}. Any interval (a, b) with a ∈ A and b ∈ B will be a valid candidate

for a new segment. For example, [1, 3), [3.5, 6) and [5, 10). However, intervals such

as [1.5, 3), [3.5, 4) and [8.5, 9) will not be proposed because they do not contain a

whole CGH probes or they break a CGH probe in half. Even though theoretically a

breakpoint can occur anywhere, in practice if a breakpoint occurs in the middle of a

CGH probe it will be very difficult to get a reliable estimate for the segments that

cover that probe, as the expression data only contain weak information about the

underlying copy number. Therefore, it is reasonable to assume that all points on one

CGH probe correspond to the same underlying copy number. The assumption re-

duces the number of possible number of configurations and simplifies the computation
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significantly.

The function fj(x) is modeled as the following

fj(x) =

{

βjk if x ∈ [ak, bk)
0 otherwise.

(5.1)

In practice, the paired CGH and expression data are often misaligned and the data

have usually been preprocessed and missing values inferred to make a full matrix.

While the CGH probes and expression probes do not always correspond to the same

set of genes, this kind of measurement error has not been considered. In the future

we plan to extend our model to interval data and hopefully more accurate inference

and prediction will result from it.
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Appendix A

Appendix to Chapter 2

A.1 Reversible Jump MCMC

We follow the general framework by Green (1995) and Denison et al. (1998) and

include three types of movement in the MCMC algorithm:

1. Birth step.(add a wavelet)

2. Death Step. (delete a wavelet)

3. Update Step. (move a wavelet)

As in Green (1995), the birth and death probabilities are chosen to be

pb(K) = cmin{1, p(K + 1)/p(K)},

pd(K) = cmin{1, p(K)/p(K + 1)},

where c < 0.5 is some constant. For the birth step, we propose to add a wavelet

coefficient βK+1 with scale aK+1 and bK+1 from some joint proposal q(β, a, b). Let

f̂(x) be the mean estimate for the current model and f̃(x) be the mean estimate for

the proposed model, then the likelihood ratio:

LR =
N(Y; f̃(x), σ2I)

N(Y; f̂(x), σ2I)
. (A.1)

The acceptance ratio for the birth step is

LR × prior ratio × proposal ratio × Jacobian,
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where the prior ratio is

p(K + 1)p(β1:K+1, a1:K+1, b1:K+1)

p(K)p(β1:K, a1:K, b1:K)

=
p(K + 1)(K + 1)!

∏K+1
k=1 p(βk, ak, bk)

p(K)K!
∏K

k=1 p(βk, ak, bk)

=
p(K + 1)(K + 1)p(βK+1, aK+1, bK+1)

p(K)
,

and the proposal ratio is

pd(K + 1)q′(βK+1, aK+1, bK+1 | K + 1)

pb(K)q(βK+1, aK+1, bK+1 | K)
,

where q′(β, a, b) is the proposal for the death step. In particular, q ′(βK+1, aK+1, bK+1 |

K + 1) is the probability of proposing to delete {βK+1, aK+1, bK+1} given that the

current model has K + 1 wavelets.

The Jacobian here is 1 since once we propose the added wavelet we will have one-

to-one mapping to the new model space. And if we take Green’s birth and death

probabilities, those will cancel with the prior ratio and the acceptance rate will be-

come:

AR = LR× p(βK+1, aK+1, bK+1)(K + 1)q′(βK+1, aK+1, bK+1 | K + 1)

q(βK+1, aK+1, bK+1 | K)
. (A.2)

Notice that with normal prior for β as in (2.8), the full posterior for βK+1 is also

normal

p(βK+1 | β1:K, a1:(K+1), b1:(K+1),Y) ∼ N(β̂, σ̂2
β), (A.3)

where

σ̂2
β = (

1

ca−δ
+
ψaK+1 ,bK+1

′ψaK+1,bK+1

σ2
)−1,

83



and

β̂ =
σ̂2

β

σ2
ψaK+1,bK+1

′(Y − f̂),

which we can take as a Gibbs-step like proposal, though it is not really a Gibbs step

as it can still be rejected along with a and b, it can improve the acceptance rate. This

normal proposal can also apply to heavy-tailed priors, with which the the posterior

for β does not have a close-form.

Similarly, the acceptance rate for a death step is:

AR = LR× q(βk, ak, bk | K − 1)

p(βk, ak, bk)Kq′(βk, ak, bk | K)
, (A.4)

where q′(βk, ak, bk | K) is given in (2.11).

In an update step, we randomly pick an index k from Unif(1 : K), and propose a scale

ak and location bk from a random-walk proposal and propose the wavelet coefficient

βk from (A.3) so that

q(β̃k, ãk, b̃k) = p(βk | β−k, a1:K, b1:K ,Y)N([ãk, b̃k]; [ak, bk], [σ
2
a, σ

2
b ]
T I2). (A.5)

The second part cancels the reverse proposal so that the acceptance rate

AR = LR × p(β̃k, ãk, b̃k)

p(βk, ak, bk)
× p(βk | β−k, a1:K, b1:K ,Y)

p(β̃k | β−k, a1:K, b1:K ,Y)
. (A.6)

The reversible jump algorithm goes as follows:

1. Initially, selectK0 wavelet coefficients and scale and location parameters {β, a, b}0.

2. Find the mean estimates f(x|{β, a, b}0).

3. Generate a uniform (0,1) random number u,

(i) If u < pb(K), perform the birth step.
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(ii) If pb(K) < u < pb(K) + pd(K), perform the death step.

(iii) If u > pb(K) + pd(K), perform the update step.

4. Update σ2 by Gibb Sampling:

σ2
new ∼ IG(n/2, 2/SSE)

where SSE =
∑n

i=1(Yi − f̂(xi))
2.

5. Repeat steps 2-4.

A.2 Proof of Detailed Balance

Define θ = {β, a,b, K} as the set of parameters of interest in CWD and C as the

parameter space, which is the union of parameter subspaces Ck with dimension K = k.

When the current state is θ, we propose a type of move m ∈ {b, d, u} which moves the

state to dθ′ with a proposal probability qm(θ, dθ′). Let αm(θ, θ′) be the acceptance

rate for such move and π(θ | Y) be the posterior distribution for θ which is our

target distribution. Then we can define α

αm(θ, θ′) = min

{

1,
π(dθ′ | Y)qm(θ′, dθ)

π(dθ | Y)qm(θ, dθ′)

}

= min

{

1,
p(dθ′)L(dθ′ | Y)qm(θ′, dθ)

p(dθ)L(dθ | Y)qm(θ, dθ′)

}

, (A.7)

where p and L are the prior distribution and likelihood for θ, respectively. Then we

can write the transition kernel as

T (θ,B) =
∑

m

∫

B

qm(θ, dθ′)αm(θ, θ′) +
∑

m

∫

C

qm(θ, dθ′)(1 − αm(θ, θ′))I(θ ∈ B)

(A.8)

for any Borel set B in C. The move from θ into B results from either an acceptance

of proposal to B or from a rejection from any proposal if θ is already in B.
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Theorem A.1. The MCMC algorithm described in Chapter 2 and Appendix A.1

satisfies the detailed balance condition and induces a reversible Markov chain with π

as its invariant distribution.

Proof: The detailed balance condition requires that for any measurable set A and

B in C:

∫

A

T (θ,B)π(dθ) =

∫

A

∫

B

T (θ, dθ′)π(dθ)

=

∫

A

∫

B

T (θ′, dθ)π(dθ′)

=

∫

B

∫

A

T (θ′, dθ)π(dθ′)

=

∫

B

T (θ,A)π(dθ). (A.9)

Plugging in (A.8), we get

∑

m

∫

A

π(dθ)

∫

B

qm(θ, dθ′)αm(θ, θ′) +
∑

m

∫

A∩B

π(dθ)qm(θ, dθ′)(1 − αm(θ, θ′))

=
∑

m

∫

B

π(dθ′)

∫

A

qm(θ′, dθ)αm(θ′, θ) +
∑

m

∫

A∩B

π(dθ′)qm(θ′, dθ)(1 − αm(θ′, θ)).

For this condition to hold it is sufficient that

∫

A

π(dθ)

∫

B

qm(θ, dθ′)αm(θ, θ′) =

∫

B

π(dθ′)

∫

A

qm(θ′, dθ)αm(θ′, θ) (A.10)

for all m,A,B.

Without loss of generality, we consider only birth and death move here. The

update move does not involve a change in dimensionality and it is straight-forward to

show the detailed balance condition for this standard Metropolis-Hasting algorithm.

86



Consider the birth move from θ ∈ Ck to θ′ ∈ Ck+1. For any Borel set A ∈ Ck and

B ∈ Ck+1 we can define a probability measure ξb on C × C

ξb(A × B) = ξb(B × A)

= ξb((A ∩ Ck) × (B ∩ Ck+1)) + ξb((A ∩ Ck+1) × (B ∩ Ck))

= P (θ : θ ∈ B), (A.11)

where P is a k+ 1 dimensional probability measure on Ck+1. It is easy to see that ξb

is symmetric and a symmetric measure ξd for the death step can be defined similarly.

Therefore, to show that

∫

A

π(dθ | Y)

∫

B

qm(θ, dθ′)αm(θ, θ′) =

∫

A

∫

B

ξm(dθ, dθ′)π(θ | Y)qm(θ, θ′)αm(θ, θ′)

=

∫

B

∫

A

ξm(dθ′, dθ)π(θ′ | Y)qm(θ′, θ)αm(θ′, θ)

=

∫

B

π(dθ′ | Y)

∫

A

qm(θ′, dθ)αm(θ′, θ),

will only require

π(θ | Y)qm(θ, θ′)αm(θ, θ′) = π(θ′ | Y)qm(θ′, θ)αm(θ′, θ), (A.12)

due to the symmetry of ξm. Substituting (A.7) it is clear that the condition in (A.12)

is satisfied.

Since the parameter space C is connected, following Theorem 6.2.2 in Robert and

Casella (1999, pg. 235) we can see that π is the invariant density of the reversible

Markov chain.
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Appendix B

Appendix to Chapter 3

This is an outline of the RJ-MCMC algorithm in Chapter 3.

• For l = 1, . . . , L, sample (a,b,β,µ | σ2, σ2
l ,Y) jointly.

1. Sample (a,b | σ2, σ2
l ,Y) using Metropolis-Hasting step.

The RJ-MCMC includes four kinds of step:

1. birth step.

2. death step.

3. split step.

4. merge step.

For birth step, we propose two new location from qb(asl, bsl).

For death step, we propose the element to kill from qd(hkl).

For split step, we propose a new location from qs(cs).

For merge step, we propose two adjacent elements to kill from qm((hkl, h(k+1)l)).

pb, pd, ps, pm are the proposal probabilities for each kind of step.

For the birth step where we propose (akl, bkl), the acceptance rate for the

birth step is

likelihood ratio × prior ratio × proposal ratio.

Here the likelihood ratio is based on the marginal likelihood f(a,b|Y, σ2, σ2
l ),

which has a closed form since µ and β both have normal priors and we can
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integrate them out. Notice that we only need to calculate the likelihood

ratio on the probes that involve a change from the birth proposal.

The proposal ratio is

p′dq
′
d(hkl)

pbqb(akl, bkl)
,

and the prior ratio is

p(akl, bkl, al,bl)p(k = Kl + 1)

p(al,bl)p(k = Kl)
.

Similarly for the split step where we propose a new jump point ckl between

akl and bkl we can calculate the marginal likelihood ratio over the probes

affected by the split proposal.

The proposal ratio is

p′mq
′
m(h(k−)l, h(k+l))

psqs(ckl)
,

and the prior ratio is

p(ckl, al,bl)p(k = Kl + 1)

p(al,bl)p(k = Kl)
,

where

p(ckl, al,bl)

p(al,bl)
= p(ckl|al,bl) =

∑K
s=1 I(asl < ckl < bsl)I(ckl ∈ {x1, ...xn})

∑Kl

s=1

∑n
i=1 I(asl < xi < bsl)

.

The death and merge steps are the reverse of the birth and split steps,

respectively.

2. Sample (µ | a,b,Y, σ2, σ2
l ) from the posterior

f(µkl|a,b,Y, σ2, σ2
l ) ∼ N(µ̂kl, σ̂

2
kl), (B.1)
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where

µ̂kl =
JlȲ

k
·lc(bkl − akl)

δ

σ2

nkl
+ σ2

l + Jlc(bkl − akl)δ
,

and

σ̂2
kl =

( σ
2

nkl
+ σ2

l )Jlc(bkl − akl)
δ

σ2

nkl
+ σ2

l + Jlc(bkl − akl)δ
.

Let Ȳk
jl be the average of yijl between akl and bkl

Ȳk
jl =

∑n
i=1 yijlI(akl ≤ xi < bkl)
∑n

i=1 I(akl ≤ xi < bkl)
=

∑n
i=1 yijlI(akl ≤ xi < bkl)

nkl
.

Ȳk
·l be the average of Ȳk

jl for j = 1, . . . , Jl and nkl =
∑n

i=1 I(akl ≤ xi < bkl),

be the number of probes between akl and bkl.

3. Sample (β | µ, a,b,Y, σ2, σ2
l ) from its posterior

βjkl|Y, σ2, σ2
l , al,bl, µkl ∼ N

(

Ȳk
jlσ

2
l + µklσ

2/nkl

σ2
l + σ2/nkl

,
σ2σ2

l

σ2
l nkl + σ2

)

. (B.2)

• For l = 1, . . . , L, sample (σ2
l | β,µ).

σ2
l ∼ IG

(

α +
Jl ∗Kl

2
, γ +

∑Jl

j=1

∑Kl

k=1(βjkl − µkl)

2

)

.

• Sample (σ2 | a,b,β, Y )

σ2 ∼ IG(n/2, SSE/2),

where SSE =
∑

l

∑Jl

j=1

∑n
i=1(Yijl − f̂jl(xi))

2.
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The proposal distribution in RJ-MCMC algorithm is very important since it often

suffers from slow convergence if the proposal rarely leads to parameter values with

high likelihood. Here our proposal is based on current configurations and residuals,

which can improve convergence in practice.

In Green (1995), the birth and death probabilities are chosen to be

pb(K) = cmin{1, p(K + 1)/p(K)},

pd(K) = cmin{1, p(K)/p(K + 1)},

where c ≤ 0.5 is some constant.

Therefore we can let

pb + ps = cmin{1, p(K + 1)/p(K)},

pd + pm = cmin{1, p(K)/p(K + 1)},

for some constant c = 1/(pb + pd + ps + pm).

For the birth and split step, we increase the dimension by 1, so we can consider

these two kind of steps together. Same for the death and merge step. First we pick a

“seed” point z with probability proportional to the magnitude of the current residual.

The reason is that proposing a birth at the region with large residuals can potentially

reduce the residual the most, therefore increase the likelihood the most. If the seed

point has been occupied (
∑Kl

k=1 I(akl ≤ z < bkl) = 1), we propose a split step. If it’s

not been occupied (
∑Kl

k=1 I(akl ≤ z < bkl) = 0), we propose a birth step.

Therefore we have

pb = min{1, p(Kl + 1)/p(Kl)}
(

1 −
∑n

i=1

∑Kl

k=1 vilI(akl ≤ xi < bkl)
∑n

i=1 vil

)

,
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and

ps = min{1, p(Kl + 1)/p(Kl)}
(

∑n
i=1

∑Kl

k=1 vilI(akl ≤ xi < bkl)
∑n

i=1 vil

)

,

where vil is the magnitude of the current residuals. Since we do not propose µ and

β at step 1, the proposal for (akl, bkl) cannot depend on µ and β. So we define the

current “residual” as follows:

vil =

{

∑Jl

j=1 |Yijl − Ȳk
jl| if Yijl ∈ Yk

l
∑Jl

j=1 |Yijl| if Yijl ∈ Y0.

If it’s a birth step, define the proposal probability of the “seed” location z:

qbz(xi) =
vil

∑n
s=1 vsl(1 − I(akl ≤ xs < bkl))

,

and pick another point z′ uniformly from [b(k−1)l, akl). Then our birth proposal will

be (z, z′) or (z′, z), depending on which one is larger.

So the birth proposal

qb(akl, bkl) =
qbz(akl) + qbz(bkl)

∑n
i=1 I(b(k−1)l ≤ xi < a(k+1)l) − 1

.

Similarly, for the split step,

qs(ckl = xi) =
vil

∑n
s=1 vsl(I(asl ≤ xi < bsl))

.

The proposal of the death or merge step is inversely proportional to the difference

of the coefficients between two adjacent regions. If either coefficient is zero, we

propose a death step and kill the other one. If both coefficients are non-zero, we

propose a merge step of these two elements. For the death step, we want to kill
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the one with small coefficient, so we do not remove the significant ones. Similarly,

it makes more sense to merge two adjacent segments with coefficients close to each

other, which do not change the likelihood dramatically therefore more likely to get

accepted.

First we label the jump points cl = {c0l, .....cMl}. We define c0l = 0, cMl = 1,

cml < c(m+1)l for all m and cl = {c0l, cMl, al,bl}. And let θ1l, ...θMl be the coefficient

for the regions separated by the jump points. Then define θ̂ as the mean of the data

at each segments, which is the MLE of the coefficients given a set of a,b, since the

proposal cannot be dependent on the actual coefficients:

θ̂ml =

{

Ȳm
·l if c(m−1)l = akl, cml = bkl for some k

0 otherwise.

Therefore

pd = min{1, p(Kl)/p(Kl + 1)}
∑M−1

m=1 1/|θ̂(m+1)l − θ̂ml|I(θ̂mlθ̂(m+1)l = 0)
∑M−1

m=1 1/|θ̂(m+1)l − θ̂ml|
,

pm = min{1, p(Kl)/p(Kl + 1)}
(

∑M−1
m=1 (1/|θ̂(m+1)l − θ̂ml|)I(θ̂mlθ̂(m+1)l 6= 0)

∑M−1
m=1 (1/|θ̂(m+1)l − θ̂ml|)

)

,

and

qd(hkl) =
1/|Ȳk

·l|(I(akl 6= b(k−1)l) + I(bkl 6= a(k+1)l))
∑M−1

m=1 (1/|θ̂(m+1)l − θ̂ml|)I(θ̂mlθ̂(m+1)l = 0)
,

qm(hkl, h(k+1)l) =
(1/|Ȳk

·l − Ȳk+1
·l |)I(bkl = a(k+1)l)

∑M−1
m=1 (1/|θ̂(m+)l1 − θ̂ml|)I(θ̂mlθ̂(m+1)l 6= 0)

.
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Appendix C

Appendix to Chapter 4

This is an outline for the Reversible Jump Markov chain Monte Carlo algorithm used

in Chapter 4 for sampling from the posterior distribution of the parameters. The

following algorithm will apply to the simulation study and the breast cancer data in

the paper, where the CGH and expression data are observed at the same locations

and there is no missing data. The algorithm can be easily extended to accommodate

missing and/or misaligned data.

1. Sample (a,b,β,µ | σ2, σ2
l , σ

2
d, θ,α,C,D) using the Metropolis-Hasting step.

The RJ-MCMC includes four kinds of step: birth, death, split and merge. The

probability of proposing each type of steps are pb, pd, ps and pm, respectively.

At each step, we generate a uniform (0, pb + ps + pd + pm) random number u,

(i) If u < pb, perform the birth step.

(ii) If pb < u < pb + ps, perform the split step.

(iii) If pb + ps < u < pb + ps + pd, perform the death step.

(iv) If pb + ps + pd < u, perform the merge step.

For birth step, we propose two new location from qb(ak, bk) and new coefficients

µ∗
k, β

∗
k = {β∗

jk; j = 1, ...J}.

For death step, we propose the element to kill from qd(hk).

For split step, we propose a new location from qs(ck) and new coefficients

µ1
k, µ

2
k, β

1
k = {β1

jk; j = 1, ...J}, β2
k = {β2

jk; j = 1, ...J} for the newly split seg-

ments.
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For merge step, we propose two adjacent elements to kill from qm((hkl, h(k+1)l)).

The proposal qb, qd, qs and qm and the proposal probabilities pb, pd, ps and pm

are the same from Appendix B. The proposal for µ and β for the birth and split

steps are from those following proposals:

q(β∗
jk) ∼ N(β̂jk, σ̂

2
jk), (C.1)

where

σ̂2
jk =

σ2σ2
dσ

2
l

nckσ
2
l σ

2
d +

∑

dgj∈Dk
j ,θg 6=0 θ

2
gσ

2
l σ

2 + σ2σ2
d

,

β̂jk =

∑

cij∈Ck
j
cijσ

2
l σ

2
d +

∑

dgj∈Dk
j ,θg 6=0(dgj − αg)θgσ

2
l σ

2 + C̄k
jσ

2σ2
d

nckσ
2
l σ

2
d +

∑

dgj∈Dk
j ,θg 6=0 θ

2
gσ

2
l σ

2 + σ2σ2
d

,

q(µ∗
k | β∗

jk) ∼ N

(

∑J
j=1 β

∗
jkc(bk − ak)

δ

Jc(bk − ak)δ + σ2
l

,
c(bk − ak)

δσ2
l

Jc(bk − ak)δ + σ2
l

)

, (C.2)

which is based on their posterior distribution, except we use the sample mean

C̄k
j instead of µk when it’s not available.

The acceptance rate for the birth step is

likelihood ratio × prior ratio × proposal ratio.

The likelihood ratio for the birth step where we propose a new segment k and

coefficients βjk for all j:

LR =

∏

cij∈Ck
j
N(cij; β

∗
jk, σ

2)
∏

dij∈Dk
j
N(dgj ;αg + θgβ

∗
jk, σ

2
d)

∏

cij∈Ck
j
N(cij; 0, σ2)

∏

dij∈Dk
j
N(dgj ;αg, σ

2
d)
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and the proposal ratio is

p′dq
′
d(hk)

pbqb(ak, bk)q(µ
∗
k, β

∗
k)
,

where p′dq
′
d(hk) is the probability of reverse proposal, i.e., the death proposal in

which we kill the segment hk that spans from ak to bk.

The prior ratio is

p(ak, bk, a,b)p(k = K + 1)p(µ∗
k, β

∗
k)

p(a,b)p(k = K)
.

For the split step where we propose a new jump point ck between ak and bk the

likelihood ratio is

LR =

∏

cij∈Ck
j
N(cij; β

new
jk , σ2)

∏

dij∈Dk
j
N(dgj;αg + θgβ

new
jk , σ2

d)
∏

cij∈Ck
j
N(cij; βjk, σ2)

∏

dij∈Dk
j
N(dgj;αg + θgβjk, σ2

d)
,

with

βnewjk =

{

β1
jk if ak ≤ xi < ck
β2
jk if ck ≤ xi < bk,

where β1
jk, β

2
jk are the proposed coefficients for the split segments.

The proposal ratio is

p′mq
′
m(h(k−), h(k+))

psqs(ckl)q(µ1
k, µ

2
k, β

1
k, β

2
k)
.

where p′mq
′
m(h(k−), h(k+)) is the probability of the reverse proposal. In the reverse

proposal we propose a merge of two adjacent segments h(k−) = (ak, ck) and

h(k+) = (ck, bk).
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The prior ratio is

p(ck, a,b)p(k = K + 1)p(µ1
k, µ

2
k, β

1
k, β

2
k)

p(a,b)p(k = K)
,

where

p(ck, a,b)

p(a,b)
= p(ck|a,b) =

∑K
s=1 I(asl < ck < bs)I(ck ∈ {x1, ...xn})

∑K
s=1

∑n
i=1 I(as < xi < bs)

.

The death and merge steps are the reverse of the birth and split steps, respec-

tively. And the likelihood ratio and the acceptance rate for those steps can be

derived similarly.

2. Sample (µ | β, a,b,C,D, σ2, σ2
l , σ

2
d,α, θ) from the posterior

The posterior has the same form as equation (C.2). Though we already update

µ and β in the above Metropolis-Hasting step, we only change them one at a

time and that will result in slow mixing. Therefore, we might want to update

the coefficients of the unchanged parts once in awhile. For example, we can

update all the β and µ’s every ten steps.

3. Sample (β | µ, a,b,C,D, σ2, σ2
l , σ

2
d,α, θ) from the posterior

The posterior for β has the same form as in equation (C.1) except for β̂jk which

is changed to:

β̂jk =

∑

cij∈Ck
j
cijσ

2
l σ

2
d +

∑

dgj∈Dk
j ,θg 6=0(dgj − αg)θgσ

2
l σ

2 + µkσ
2σ2

d

nckσ
2
l σ

2
d +

∑

dgj∈Dk
j ,θg 6=0 θ

2
gσ

2
l σ

2 + σ2σ2
d

Notice that if θg = 0, then that point g does not enter the likelihood at all.

4. Sample α
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Define an index zg

zg =

{

1 ak ≤ xg < bk for some k
0 otherwise.

Assuming a flat prior on α, then

f(αg | D, a,b, θ,β, σ2
d)

{

∝ N(
∑

j
dgj−θgβjk

J
,
σ2

d

J
) if zg = 1

∝ N(
∑

j
dgj

J
,
σ2

d

J
) if zg = 0.

5. Sample θ

Introduce a new variable γ where

γg =

{

0 if θg = 0
1 if θg 6= 0.

Notice that if xg is not covered by a segment, then θg does not enter the like-

lihood at all and we can not make any inference about it. Therefore we fix

θg at zero in this situation. If zg = 1, then θg has a mixture prior of a point

mass at 0 and some distribution π(θg) centered at ξ, and ξ also has a normal

prior distribution center at zero. Let q be the prior probability of γg = 0 and

π(θg | γg = 1) ∼ N(ξ, τ 2), π(ξ) ∼ N(0, ν2) then

p(γg = 0 | D, a,b,α,β, σ2
d, ξ)

=

∫

p(γg = 0 | D, a,b, θg,α,β, σ2
d)π(θg)dθg

=

{

q
Q

jl,zg=1
N(dgj ;αg ,σ2

d
)

q
Q

j,zg=1
N(dgjl;αg ,σ2

d
)+(1−q)N(dg ;αg+ξβg,σ

2
d
I+τ2βgβ′

g)
if zg = 1

1 if zg = 0,
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where dg,βg and αg are vectors with length J : dg = {dgj; ∀j}, βg = {βjk; ∀j},

and αg is αg repeating J times.

f(θg | γg = 1,D, a,b,α, τ 2, σ2
d, ξ)

= N

(

τ 2
∑

j βjk(dgj − αg) + σ2
dξ

τ 2
∑

j β
2
jk + σ2

d

,
σ2
dτ

2

σ2
d + τ 2

∑

j β
2
jk

)

,

then update ξ from its posterior:

ξ ∼ N

(

ν2
∑

θg
ν2
∑

I(θg 6= 0) + τ 2
,

τ 2ν2

ν2
∑

I(θg 6= 0) + τ 2

)

.

The hyperparameters τ 2 and ν2 are chosen so the prior for θ covers a plausible

range.

6. Sample (σ2
l | β,µ)

σ2
l ∼ IG

(

J ∗K
2

− 1

2
,

∑J
j=1

∑K
k=1(βjk − µk)

2

2

)

.

7. Sample (σ2 | a,b,β,C)

σ2 ∼ IG(nJ/2, SSEc/2),

where SSEc =
∑J

j=1

∑n
i=1(cij − f̂ cj (xi))

2.

8. Sample (σ2
d | a,b,β,D,α, θ)

σ2
d ∼ IG(nJ/2, SSEd/2),

where SSEd =
∑J

j=1

∑n
g=1(dij − αg − θgfj(xg))

2.
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