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Abstract

Modeling of extreme data often involves thresholding, or retaining only the most

extreme observations, in order that the tail may “speak” and not be overwhelmed

by the bulk of the data. We describe a transformation-based framework that allows

univariate density estimation to smoothly transition from a flexible, semi-parametric

estimation of the bulk into a parametric estimation of the tail without thresholding.

In the limit, this framework has desirable theoretical tail-matching properties to the

selected parametric distribution. We develop three Bayesian models under the frame-

work: one using a logistic Gaussian process (LGP) approach; one using a Dirichlet

process mixture model (DPMM); and one using a predictive recursion approximation

of the DPMM. Models produce estimates and intervals for density, distribution, and

quantile functions across the full data range and for the tail index (inverse-power-

decay parameter), under an assumption of heavy tails. For each approach, we carry

out a simulation study to explore the model’s practical usage in non-asymptotic

settings, comparing its performance to methods that involve thresholding.

Among the three models proposed, the LGP has lowest bias through the bulk and

highest quantile interval coverage generally. Compared to thresholding methods, its

tail predictions have lower root mean squared error (RMSE) in all scenarios but

the most complicated, e.g. a sharp bulk-to-tail transition. The LGP’s consistent

underestimation of the tail index does not hinder tail estimation in pre-extrapolation

to moderate-extrapolation regions but does affect extreme extrapolations.
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An interplay between the parametric transform and the natural sparsity of the

DPMM sometimes causes the DPMM to favor estimation of the bulk over estimation

of the tail. This can be overcome by increasing prior precision on less sparse (flat-

ter) nonparametric density shapes. A finite mixture model (FMM), substituted for

the DPMM in simulation, proves effective at reducing tail RMSE over thresholding

methods in some, but not all, scenarios and quantile-levels.

The predictive recursion marginal posterior (PRMP) model is fast and does the

best job among proposed models of estimating the tail-index parameter. This allows

it to reduce RMSE in extrapolation over thresholding methods in most scenarios con-

sidered. However, bias from the predictive recursion contaminates the tail, casting

doubt on the PRMP’s predictions in tail regions where data should still inform esti-

mation. We recommend the PRMP model as a quick tool for visualizing the marginal

posterior over transformation parameters, which can aid in diagnosing multimodal-

ity and informing the precision needed to overcome sparsity in the mixture model

approach.

In summary, there is not enough information in the likelihood alone to prevent

the bulk from overwhelming the tail. However, a model that harnesses the likelihood

with a carefully specified prior can allow both the bulk and tail to speak without

an explicit separation of the two. Moreover, retaining all of the data under this

framework reduces quantile variability, improving prediction in the tails compared

to methods that threshold.
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1

Introduction

How high do we need to build this levee to withstand flooding over its 50-year

lifetime? How often do we expect to see an 8% drop of the S&P 500? What is

the largest claim payout that we will have to make over the next 5 years? Each

of these questions attempts to explain rare, extreme phenomena by characterizing

how large measurements could be and how frequently they get that big. Being

able to predict extreme rainfall, wind gusts, temperatures, wave heights, and traffic

conditions is critical to those building infrastructure robust enough to withstand the

extremes. Understanding large gains or drops in the stock market is important for

those seeking to grow their portfolios and diversify their risk. With applications in

environmental science, geology, finance, and insurance, to name a few, this study of

rare-but-extreme events falls under the statistical subfield of extreme value analysis.

The set of extreme values that are either very large or very small in comparison to

other realizations from the same process are sometimes called the “tails” or the “tail

distribution.” Values that are not large or small may be termed the “bulk” or “bulk

distribution.” These terms are adopted throughout this dissertation as general terms

rather than as names of precise regimes. The term “light” is often used to describe
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tail distributions with exponential decay rate (i.e. those that have a survival function

that goes to zero at an exponential rate), while the term “heavy” is used to describe

tails that decay at a rate slower than an exponential distribution. A few examples

of heavy-tailed distributions are the Pareto, lognormal, and t distributions. This

dissertation focuses on univariate density estimation of heavy-tailed distributions,

specifically those with polynomial decay rates, with an aim to capture behavior in

both the bulk and the tails simultaneously.

Chapter 1 provides some background from extreme value theory and puts forward

a framework for heavy-tailed univariate density estimation. Subsequent chapters

implement the framework using different modeling approaches.

1.1 Classic Extreme Value Theory

Models which do a good job of characterizing the bulk distribution may not do a

good job explaining the tail values. When modeling an entire dataset, the relatively-

abundant information in the bulk can overwhelm the relatively-sparse information in

and about the tails. Because extreme values are often also rare values, it is possible

that a particular sample contains very few large (or small) observations to provide

information about behavior at the extreme.

When desired inference is only on the tails, it is common in practice to exclude all

but the most extreme values from analysis. Leaving out the bulk of the distribution

allows the tail to “speak” for itself. This exclusion is well-supported by the extremes

literature. The Fisher-Tippett-Gnedenko theorem (Fisher and Tippett, 1928; Gne-

denko, 1943) says that the limiting distribution of the maximum of a sequence of

independent-and-identically-distributed variables, properly normalized, is the Gener-

alized Extreme Value Distribution (GEVD), provided a limiting distribution exists.

2



The distribution function of the GEVD is

G(y) = P (Y ≤ y) =


e−(1+ξ( y−µ

σ
))−1/ξ

µ− σ/ξ ≤ y <∞, ξ > 0

e−e
−(

y−µ
σ ) −∞ < y <∞, ξ = 0

e−(1+ξ( y−µ
σ

))−1/ξ −∞ < y ≤ µ− σ/ξ, ξ < 0

In the GEVD, the location µ determines support and may need to be estimated, as

the support of the maximum is not usually known ahead of time. The parameter

σ > 0 controls scale, and ξ modifies shape. The ξ > 0 case is also known as the

Fréchet Distribution; the ξ = 0 case is called a Gumbel Distribution; and the ξ < 0

case is a Reversed Weibull Distribution. Practitioners may use the GEVD to model

a dataset of maxima, obtained by grouping observations into blocks (e.g. years or

months) and retaining the maximum of each block.

Another important result from extreme value theory says that for most data, ap-

propriately normalized, the excesses over a high threshold can be well approximated

by the Generalized Pareto Distribution (GPD) (Pickands (1975) and Balkema and

de Haan (1974) theorem). That is, for random variable Y and threshold u, the dis-

tribution function Y under truncation Fu(y) = P (Y −u < y|Y > u) = F (u+y)−F (y)
1−F (u)

→

G0,σ,ξ(y), as u→∞, where Gµ,σ,ξ is the distribution function of the GPD:

Gµ,σ,ξ(y) = P (Y ≤ y)


1− (1 + ξ(y−µ

σ
))−1/ξ µ < y, ξ > 0

1− e−( y−µ
σ

) µ < y, ξ = 0

1− (1 + ξ(y−µ
σ

))−1/ξ µ < y < µ− σ/ξ, ξ < 0

In the GPD, threshold µ determines support, σ > 0 controls scale, and ξ modifies

shape. When ξ > 0 the GPD has heavy tails with polynomial decay. When ξ = 0

the tails of the GPD are light, i.e. follow an exponential decay. Finally, with ξ < 0

a GPD exhibits bounded or short tails. This result allows practitioners to retain

all data above some high threshold and model it with a GPD. This approach is

sometimes called “peaks over thresholds” or POT.

3



1.2 Thresholding Methods

Despite the clean, theoretical, asymptotic results supporting truncation for extreme-

value estimation, in practice it is often unclear where to threshold the tail. Truncation

too far into the tail leaves little data for estimation and increases variance of esti-

mates. Retaining too much of the data and applying a parametric model, on the other

hand, can lead to biased parameter and quantile estimation. A review paper written

by Scarrot and MacDonnald (2012) enumerates, classifies, and critiques many of the

truncation methods proposed and used in extreme value theory, including literature

around rule-of-thumb truncations and automated-truncation methods.

The Scarrot and MacDonnald (2012) paper also covers methods for density es-

timation which attempt to model the bulk and the tail simultaneously. Many of

these existing approaches fall into the category of “mixture” models, meaning that

they stitch together a truncated model for the bulk distribution with a separate

(usually GPD) model for the tail distribution. Some models require continuity of

the probability density function (pdf) at the stitch-point; others additionally require

first-order smoothness at the join-point. Some models are fully parametric and oth-

ers are nonparametric mixtures of these stitched distributions, giving more flexibility

to an unknown bulk shape, as in the case of Carreau and Bengio (2009). Ultimately,

these methods necessitate some sort of join-point estimation, whether implicitly or

explicitly, at the point that the bulk distribution is stitched to the tail distribution.

As there is no standard, accepted, best way to go about thresholding and this re-

mains a difficult question, our goal is to skip the join-point estimation all together if

possible. We would like to separate the estimation of the bulk from the estimation

of the tail but without introducing an artificial boundary between the two.

Other full-distribution, data-retaining models have attempted to bypass the def-

inition and estimation of a tail-threshold location. Frigessi et al. (2003) can be seen
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as a continuous weighting between a Weibull bulk and a GPD tail. Naveau et al.

(2016) employs a parametric transformation to a GPD, resulting in an “extended”

generalized Pareto distribution with support over the same range as the data.

As the framework for tail estimation explored in this dissertation is itself a trans-

formation method, a brief review of transformations in density estimation, including

heavy-tailed density estimation, is warranted.

1.3 Transformations in Density Estimation

Transformations have long been used to improve univariate density estimation. In-

ducing some feature in the estimated distribution—such as reduced skewness, re-

duced kurtosis, or improved normality—was the aim of early work in transformations,

such as that by Bartlett (1947) and Box and Cox (1964), and of much subsequent

work. These features typify the bulk of the distribution, but transformations have

also been appreciated for their ability to smooth estimates in the tail; see Silverman

(1986), Wand et al. (1991), and Yang and Marron (1999) for early uses in kernel

density estimation.

In a typical univariate transformation setup, data yi come from an unknown den-

sity f , which takes the specific form f(y) = G′θ(y)h(Gθ(y)). The transformation

family Gθ(y) is indexed by θ, which may be a single scalar parameter or may be a

vector of parameters. The family of densities h might be parametric or nonparamet-

ric. The support for h must be consistent with the range of G, but need not match

the support of f . For example, the transformation of Clements et al. (2003) takes

G : R→ [−1, 1].

Those transformations, Gθ(y), which are themselves cumulative distribution func-

tions (CDFs) represent a smaller class of transformations with an interesting inter-
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pretation. The model becomes

f(y) = gθ(y)h(Gθ(y)), (1.1)

and gθ, the pdf corresponding to CDF Gθ, shares support with f . Density h has

support [0, 1]. Thus f can be thought of as density gθ that gets scaled by a per-

turbation factor h (see Verdinelli and Wasserman (1998) for nice exposition). The

closer f is to the original gθ the less perturbation is needed and the more closely

h follows a uniform distribution. Such transformations are used in Brunk (1978),

where θ is pre-estimated and fixed and h is estimated by orthogonal polynomials;

in Verdinelli and Wasserman (1998), where h is estimated by Legendre polynomials

simultaneously to the estimation of parameters θ from gθ; and in Buch-Larsen et al.

(2005), where h is estimated by kernel density estimators, to name a few.

1.4 Transformations in Heavy-Tailed Density Estimation

The transformation method has been applied to heavy-tailed data in kernel density

estimation (Wand et al., 1991; Bolancé et al., 2003; Clements et al., 2003; Buch-

Larsen et al., 2005; Markovich, 2007; Gustafsson et al., 2009; Bolancé et al., 2010).

These transformations either raise all Y to a power, or they induce a power-law only

for large values of Y . Typically the parameter that dictates the power transforma-

tion, an element of θ, is estimated first and then fixed in subsequent kernel density

estimation of the transformed data. Markovich (2007) proposes estimation of this pa-

rameter by the Hill estimator, implying a tail-respecting transformation. Markovich

also includes some discussion about how over- or under-estimating this parameter

affects subsequent estimation of h, implying that overestimating the heaviness is

preferred in kernel density estimation because the overestimation can be corrected

by inducing h(τ) to zero in specific ways as τ → 1. What is sometimes overlooked

is that a transformation can not only improve estimation in the tail but be used to
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define estimation in the tail, provided appropriate constraints on h are used. The

following sections put forward those constraints.

1.5 Transformations and Their Tail Properties

Consider a setting in which the data range is (a, b) with the potential for either a or b

to be ±∞. Let {gθ : θ ∈ Θ} be a parametric family of pdfs on (a, b) with parameters

θ and distribution function Gθ.

Lemma 1. For any density function f on (a, b) and any θ ∈ Θ, there exists a pdf h

on [0, 1] such that f(y) = gθ(y)h(Gθ(y)), y ∈ (a, b).

Proof. Let Y ∼ f and let h be the pdf for U = Gθ(Y ).

Let F be the CDF over (a, b) corresponding to f , and let H be the CDF over

[0, 1] corresponding to h. If we further restrict our attention to random variables

Y that do not admit the possibility of a point mass and let F−1, G−1
θ , and H−1 be

the quantile functions for f , gθ, and h respectively, each defined over [0, 1], then the

following relationships are equivalent:

f(y) = gθ(y)h(Gθ(y)) ⇐⇒ F (y) = H(Gθ(y)) ⇐⇒ F−1(p) = G−1
θ (H−1(p)).

Additionally, the inverse probability integral transform says that for random variable

U ∼ Unif(0, 1), Y = G−1
θ (H−1(U)) is distributed with pdf f , providing a specific

form for a data generating mechanism.

With the general form of the transformation defined, the tail properties under

such transformations can be explored. Define h0 := limu↓0 h(u) and h1 := limu↑1 h(u).

Then under the transformation f(y) = gθ(y)h(Gθ(y)),

lim
y↓a

f(y)

gθ(y)
= lim

u↓0
h(u) = h0 and lim

y↑b

f(y)

gθ(y)
= lim

u↑1
h(u) = h1. (1.2)
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Lemma 2. In the case limy→a f(y) = limy→a gθ(y) ∈ {0,∞}, Equation 1.2 im-

plies that h0 ∈ (0,∞) iff f(y) � gθ(y) as y → a. Similarly, when limy→b f(y) =

limy→b gθ(y) ∈ {0,∞}, 1.2 implies h1 ∈ (0,∞) iff f(y) � gθ(y) as y → b.

Proof. L’Hopital’s rule applies here, giving limy→a
f(y)
gθ(y)

= limy→a
f ′(y)
g′θ(y)

= h0. Thus,

f(y) � gθ(y) as y → a. A similar argument holds as y → b.

In words, the consequence of positive finite h0 and h1 is that gθ and f approach

their respective boundaries at identical rates.

The tail-matching property of Lemma 2 also implies the following weaker result:

Lemma 3. For tails in which gθ is regularly varying, if h0, h1 ∈ (0,∞), then the

corresponding tail indices of f exactly equal those of gθ.

Proof. For exposition, suppose y ∈ [0,∞). A regularly varying function gθ can be

written as gθ(y) = yαL(y) for some slow-varying function L and tail index −α. A

function L is slow-varying if limy→∞
L(ty)
L(y)

= 1 for all t > 0. A general reference is

Resnick (2007). Applying the transformation, the regular variation of gθ implies that

f(y) = gθ(y)h(Gθ(y)) = yαL(y)h(Gθ(y)).

Therefore a necessary condition for gθ and f to have equal tail index −α while

h1 ∈ (0,∞) is for L(y)h(Gθ(y)) to be slowly-varying also, which it is:

lim
y→∞

L(ty)h(Gθ(ty))

L(y)h(Gθ(y))
= lim

y→∞

L(ty)

L(y)
lim
y→∞

h(Gθ(ty))

h(Gθ(y))

= lim
y→∞

h(Gθ(ty))

h(Gθ(y))
=

limy→∞ h(Gθ(ty))

limy→∞ h(Gθ(y))
=
h1

h1

= 1. (1.3)

The takeaway is that tails of f can be constrained to follow the asymptotic decay

pattern of parametric gθ by ensuring that h0 and h1 are positive finite. We aim to
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improve estimation of the tail, where little data are naturally available, by leveraging

this constraint. Namely, we incorporate prior information about the tail shape via

selection of gθ and tail heaviness via a prior over the tail index parameter (i.e. the

inverse polynomial decay rate).

The general approach taken in this dissertation is to first select a parametric

family of distributions {gθ : θ ∈ Θ}. Then select a nonparametric family of dis-

tributions H := {h(·)}, constrained such that h are density functions on [0,1] with

||log h||∞ �∞. Having both of these, set F := {f(·) = gθ(·)h(Gθ(·))} for θ ∈ Θ and

h ∈ H. Finally, model Y1, Y2, ...
iid∼ f from f ∈ F using a fully Bayesian approach.

That is, set priors on θ and h and estimate them simultaneously.

While the theory indicates that the tail decay rate is identifiable under the con-

straint, we hope to understand if this approach is practically feasible. Is it possible

for a model to separate the bulk and tail estimation sufficiently to prevent the bulk

from overwhelming the tail? Can we learn the true tail index? Do the estimates pro-

vide improved tail prediction and extrapolation compared to peaks-over-threshold

approaches? How much information is in the likelihood? And what is the influence

of the prior? The models developed and the numerical studies presented in this work

are geared towards answering these practical questions.

The following three chapters detail three different Bayesian nonparametric ap-

proaches to modeling the framework: Chapter 2 models the framework using a logis-

tic Gaussian process; Chapter 3 implements it using a mixture model; and Chapter 4

introduces an approximation to the mixture model using predictive recursion. Each

chapter provides background for the specific nonparametric approach, details for the

model, summaries of validating simulations, and discussions around the strengths

and weaknesses of the approach. Chapter 5 illustrates the three models on a set of

daily rainfall data. Chapter 6 summarizes the results as a whole, comparing between
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the approaches and synthesizing answers to the above questions. It also describes

future work and directions.
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2

Logistic Gaussian Process Model

This chapter explores one approach to modeling the transformation framework, de-

scribed in Chapter 1, for univariate density estimation in the presence of heavy

tails. The framework is composed of two pieces: a parametric family of distributions

{gθ : θ ∈ Θ} and also a nonparametric family of distributions H := {h(·)}, which

have been constrained such that h are density functions on [0, 1] with || log h||∞ �∞.

It brings together both pieces through F := {f(·) = gθ(·)h(Gθ(·))} for θ ∈ Θ and

h ∈ H. In this chapter, h is formulated as a Logistic Gaussian Process (LGP). Mod-

eling of data Y1, Y2, ...
iid∼ f from f ∈ F is performed under a fully Bayesian approach.

That is, priors are set on θ and h, which are estimated simultaneously.

First, we describe the specific approach we take to modeling the pdf, including

selection of g and priors for θ and h. Second, we give an overview of computational

setup, including approximations used to reduce computing time. Third, we explore

the realities of using the method under non-asymptotic, real-life sample sizes by

presenting the results of a simulation study, comparing the LGP model to existing

methods, and highlighting its strengths and weaknesses. We conclude by summariz-
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ing results and future directions.

2.1 Model Setup

2.1.1 Parametric Distribution and Priors

Under the transformation framework Equation 1.1, any family of parametric distri-

butions {gθ : θ ∈ Θ} may be selected that matches the support of Y . However, in

order to model phenomena with heavy tails, the parametric family needs to admit

possibility of heavy tails (see Yang and Tokdar, 2017).

For Y with support (−∞,∞), a possible choice would be to model gθ as a t-

distribution with ν degrees of freedom. The parameter ν is equal to the polynomial

decay rate in the tails. Choosing this gθ would constrain both tails to follow a single

decay rate; whereas, choosing an asymmetric t-distribution, such as that of Jones

and Faddy (2003) or Zhu and Galbraith (2010), would allow for the possibility of

different lower and upper tail indices.

For Y with half-real support (0,∞), the parametric family gθ could contain dis-

tributions such as the half-t with ν degrees of freedom or the GPD with tail index

ξ = 1/ν > 0 and location parameter fixed at 0. Whatever distribution is selected

should reflect an a priori belief about the shape and behavior of the tails. Other

support of the form (a,∞) or (−∞, b) where a and b are known can be modeled by

an appropriate shift and/or reflection of gθ defined on the positive reals.

For each parametric gθ above, the parameter σ ∈ θ may be included to perform

a scaling role. For distributions with support on the full real-line, including location

parameter γ0 ∈ θ allows for a shift in gθ.

For Y with bounded support (a, b), Beta(ν1, ν2) can be used for the base para-

metric distribution gθ. Note that boundaries a and b must be fixed and known, as the

methods herein have not yet been extended to the case where support is unknown

and needs to be estimated, such as in the case of GPD with negative tail parameter.
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Table 2.1: Possible choices for the underlying parametric distribution gθ
Support gθ θ Tail index prior Other prior

(0,∞) Half-t (ν, σ2) log((ν − 0.5)/5.5) ∼ Logis(0, 1/2) π(2 log(σ2)) ∝ 1
2 log(σ2)

GPD (1/ν, σ2) log((ν − 0.5)/5.5) ∼ Logis(0, 1/2) π(2 log(σ2)) ∝ 1
2 log(σ2)

For the remainder of this chapter, we focus on data distributed over the positive

reals. Table 2.1 shows the parametric distributions, gθ, used in this chapter, along

with the independent priors that compose π(θ). The prior for parametric θ is assumed

to be independent of nonparametric h.

2.1.2 Nonparametric Distribution and Priors

There are various ways to obtain nonparametric estimates for density h subject to

the appropriate limit constraints. We pursue the logistic form

h(τ) =
ew(τ)∫ 1

0
ew(t)dt

(2.1)

where w ∈ C [0, 1], the set of continuous functions on [0, 1]. Modeling w ∼ GP (0, c)

as a zero-mean, stationary Gaussian process induces a LGP prior on h. For density

estimation using LGPs see Leonard (1978); Lenk (1988) and Lenk (2003); Tokdar

(2007); Tokdar and Ghosh (2007); van der Vaart and van Zanten (2008) and van der

Vaart and van Zanten (2009).

Because w(τ), the GP curve upon which the likelihood depends, is not handled

well by MCMC, an approximating model similar to that used in Tokdar (2007) is

employed. We replace w(τ) by a finite-rank approximating GP w̃(τ) and thereafter

run the MCMC on the approximating model. This is arguably one of the more

scalable approaches for handling of the LGP prior.

Specifically, we let w ∼ GP (m, c) denote a Gaussian process with mean func-

tional m and covariance function c. Then for any finite set of points {τ1, τ2, ..., τL},
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w(τ1, τ2, ..., τL) has a finite, L-variate normal distribution with mean (m(τ1),

m(τ2), ...,m(τL)) and L × L covariance matrix with elements c(τi, τj). By fixing a

dense grid of L values (τ1, τ2, ..., τL) and evaluating the function between grid points

with a linear interpolator, the curve w is reduced to a parameter of length L.

The GP prior specification can be expressed in the following hierarchical form:

w ∼ GP (0, κ2cSE(·, ·|λ))

(κ2, λ) ∼ πκ(κ
2)πλ(λ)

where cSE(τ, τ ′|λ) = exp{−λ2(τ − τ ′)2} is the squared-exponential covariance func-

tion. The parameter λ acts as a bandwidth parameter, enabling more wavy paths

to be realized as λ gets larger.

We specify a prior for λ by reparameterizing into correlation ρ`(λ) = exp(−`2λ2)

and letting ρ`(λ) ∼ Beta(aλ, bλ). Setting ` = 0.1, aλ = 6, bλ = 4 places 95% of prior

mass of ρ`(λ) ∈ (0.3, 0.86). The prior for κ2 is set to be an IG(aκ, bκ), which allows

κ to be integrated out of the prior at run time. Hyper-parameters aκ = bκ = 3/2

ensure that the resultant t-process has three degrees of freedom, prior expectation

equal to 1, and finite variance, i.e. a reasonably diffuse prior on w.

2.2 Computational Considerations

2.2.1 Posterior Approximations

Even with a discretization of the likelihood to L locations, the use of a Gaus-

sian process still requires inversion of an L × L matrix, a theoretically-feasible

but computationally-expensive undertaking, which also produces slow-mixing chains.

Rather we replace the L-rank approximation with an M -rank interpolating, predic-

tive process, where M is much smaller than L. That is, for fixed knots {t1, t2, ..., tM}

we replace each w(τ) by w̃(τ) := E(w(τ)|(w(t1), w(t2), ..., w(tM)). For more on the

use of low-rank predictive processes see Tokdar (2007) and Banerjee et al. (2008).
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A second approximation, made by substituting πλ(λ) with a dense, discretized

approximation over ρ0.1(λ), allows the GP covariance matrices to be pre-computed,

significantly speeding up algorithm run time. Support points {λ1, λ2, ..., λG} are

selected to be more densely packed for smaller values of λ using the algorithm in

Section 3.2 of Yang and Tokdar (2017).

Regarding the M -rank predictive process, we find that a grid of equally spaced

knots is effective and computationally expedient, provided a sufficient number of

knots is used. Using too few knots can introduce weak multimodality into the pos-

terior, an artifact of poor estimation of the nonparametric density, h(τ), between

sparsely placed knots. For most applications, eleven or more knots are needed to

avoid this artifact.

For additional details on likelihood, priors, and approximations see Appendix A.

2.2.2 MCMC Sampler

The above approximations reduce the number of parameters in the model to M + 2:

M parameterizing h and two for the parameters of θ. Markov chain samplers are

used to obtain draws from the posterior, and Monte Carlo approximation is used

to estimate posterior quantities of interest. Specifically, a blocked, random-walk

Metropolis sampler is used on a transformed parameter space such that multivariate

normal proposals can be used. Candidate proposal covariances are slowly adapted

to achieve a 15% acceptance rate using Algorithm 4 of Andrieu and Thoms (2008).

Results in this chapter were achieved by using one block containing the M knot pa-

rameters, one block updating θ = (ν, σ), and one block updating all M+2 parameters

simultaneously.

In practice, even with a small number of knots, (e.g. M = 11 or M = 21), the

MCMC sampler has difficulty moving around the posterior. We find that multi-

chain MCMC samplers are more likely to “converge” when the parametric base
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distribution is additionally scaled by a large-α-level quantile. It is uncertain exactly

why this happens; however, it does appear that the quantile scaling performs some

orthogonalizing role, at least in the range of values being sampled. We scale our

transformation distribution by the 0.9-level quantile under unit scale and unknown

shape parameter ξ for the GPD or ν for the half-t distribution.

All computing was performed in R (R Core Team, 2018) with the majority of the

sampling work being performed with calls to C.

2.3 Simulation Study

We present the results of a simulation study to compare the LGP model to a few trun-

cated maximum-likelihood methods. Specifically we compare LGP to the maximum

likelihood estimates (MLEs) of 1) a generalized Pareto distribution (GPD) under

various thresholds, fit using the extRemes package (Gilleland and Katz, 2016) in R;

and 2) the extended generalized Pareto distribution (EGPD) proposed by Papas-

tathopoulos and Tawn (2013) under various thresholds, fit using the mev R package

(Belzile et al., 2018). Thresholding proportions for the GPD and EGPD methods

are selected to cover a practical range of thresholds one might pick based on visually-

diagnosed cutoffs. When referring to the method used, plots and tables also refer to

the percentage of data retained in truncation.

2.3.1 Simulation Setup

Six positive-real, heavy-tailed-density scenarios are considered:

1. Standard GPD. Data are generated from a GPD with unit scale and tail index

ξ = 0.25.

2. Half-t. Data are generated from a half-t distribution with unit scale and tail

parameter, ν = 4.
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Figure 2.1: True densities from which data are simulated. Each has tail index
ξ = 1/4. For the spliced gamma-GPD, the black vertical line denotes the location
where the GPD tail meets the truncated gamma bulk.

17



Table 2.2: Simulation scenario sample size, number of LGP knots used, and sum-
maries related to MCMC chains: number of iterations run in total, number discarded
as burn in, number retained during thinning, percentage of simulations converging
as determined by PSRFs, and time to run in minutes per 100,000 iterations using
the GPD base and all data, i.e. LGP-GP 100%.

Simulation Scenario n knots Iteration Burn Retain Converge Time

Standard GPD 1,000 11 600k 500k 1k 97% 2.2
Half-t 1,000 11 600k 500k 1k 92% 1.8
Fourth-power GPD 1,000 11 600k 500k 1k 89% 2.3
Gamma-GPD mixture 1,000 21 800k 500k 2k 82% 2.1
Half-t-normal mixture 2,000 21 600k 500k 1k 100% 3.6
Spliced gamma-GPD 5,000 21 800k 500k 3k 88% 8.2

3. Fourth-power GPD. Data are generated via the probability integral transform

by raising uniform draws, U , to the fourth power (equivalent to transforming

them by the quantile function of a Beta(4, 1) distribution), then transforming

those by the quantile function of a standard GPD with tail index ξ = 0.25, i.e.

Y = qGPD(qBeta(U ; 4, 1); 0.25).

4. Gamma-GPD mixture. Data come from a mixture of gamma and GPD distri-

butions: 80% of observations come from a standard GPD with tail index 0.25

and 20% come from a Gamma(36, 6) distribution (mean 6, variance 1). This

density is multimodal.

5. Half-t-normal mixture. Data come from a mixture of half-normal and half-t

distributions: 50% of observations come from a half standard normal and 50%

come from a half t distribution with ν = 4 and standard deviation σ = 4.

6. Spliced gamma-GPD. Data are generated from a gamma distribution truncated

on both the left and right, making up the bulk, “spliced on” to a GPD tail. The

bulk distribution is truncated at its ninety-second quantile, Q0.92 = 3.81331, so

that a fixed 8% of the distribution comes from the standard GPD(ξ = 0.25) tail.
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The scale parameter of the truncated-gamma is selected to ensure continuity

in the density at the join-point for the two distributions.

All six densities have asymptotic tail index ξ = 1/4, and a representation of each

density is plotted in Figure 2.1. The first four scenarios use sample size n = 1,000,

the fifth uses n = 2,000, and the last uses n = 5,000 (see Table 2.2). One hundred

independently generated datasets are used to calculate the comparison quantities of

interest.

The methods are compared on the basis of their tail-index bias and interval

coverage, as well as on their estimated, upper-quantile bias and root mean squared

error (RMSE). For the sample sizes considered in simulation, we would expect to see,

on average, a single observation above the quantile level p = 0.999 when n = 1,000;

two observations for a dataset of n = 2,000; and five observations for a dataset of

n = 5,000. With this in mind, quantile bias and RMSE are considered for 0.9 < p <

0.9999, which includes both quantile levels where we expect to have seen observations

(roughly p < 0.999) and levels where there are likely no observations (p > 0.999),

a moderate to extreme extrapolation. For methods employing truncation, bias and

RMSE are only displayed for levels p that were retained after thresholding.

In the LGP method, the first three simulation scenarios use eleven evenly spaced

knots. This results in thirteen total parameters: eleven for knots capturing the

nonparametric scaling density, h, and two for the parameters of the transformation

distribution, ν and σ. The last three simulation scenarios use 21 evenly-spaced knots

to capture slightly more difficult or subtle nonparametric densities, resulting in 23

total model parameters. For each scenario a GPD density is utilized for the base

or transformation distribution, gθ. These are labeled with the designation LGP-GP

and the percentage of data used in estimation. The half-t-normal mixture scenario

is additionally performed with a half-t density being used for gθ in order to evaluate
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the sensitivity of LGP to the choice of base distribution. These are designated with

the label LGP-HT. For each simulated dataset, three chains with random “warm”

starts are run. Their covariance matrices are also given “warm” starts: random

MCMC draws from an adaptively-learned covariance matrix over a single, long-run

chain, which have been scale-inflated. Convergence of the MCMC chains is assessed

for each posterior separately by considering Gelman-Rubin potential scale reduction

factors (PSRFs). When the upper limits for all parameters’ univariate PSRFs are

less than 1.1, we consider that posterior MCMC chain to have converged and include

the results from that dataset in the aggregated results.

2.3.2 General Observations

Before delving into the results of each simulation scenario, we make some observations

about the simulations as a whole.

Bulk Estimation

While the primary focus of comparison for these simulations is on the tails, we

also mention that the LGP-GP 100% has low bias in the bulk of the estimated

density. Simulations were essentially unbiased for the median—largest relative bias,

i.e. (estimate - truth)/truth among the six simulations was 0.0074—and the largest

biases for p < 0.9 consistently occurred at or near the lower “tail.” The fourth-

power GPD had the poorest relative bias, under-estimating the 0.00001-level quantile

by nearly 100%. However, this behavior is to be expected given that our model

inherits its left-hand tail properties, including strictly positive values at zero, from

the GPD base gθ; whereas, the fourth-power GPD scenario has true density f(0) = 0.

With positive density at zero, LGP-GP 100% is going to estimate its 0.00001-level

quantile much earlier (at smaller values) than the true fourth-power GPD. Among

the remaining five simulations, the worst left-hand tail relative bias was 0.079, coming
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from the gamma-GPD mixture.

Algorithm Speed

Unsurprisingly, the computational speed of the Bayesian LGP models is nowhere

close to the computational speed of the maximum likelihood methods, each of which

takes just a fraction of a second to run. The maximum likelihood methods are ad-

vantaged 1) by having fewer likelihood evaluations over truncation-reduced samples

and 2) by employing an optimization algorithm rather than an algorithm aimed at

full characterization of the posterior distribution.

Table 2.2 includes the time in minutes per 100,000 iterations it takes to run

each of the simulation scenarios using the LGP-GP 100%. Mostly dependent on the

sample size but also somewhat dependent on the number of knots, each chain took

between 13 and 66 minutes to run. The run times for LGP-HT 100%, not included

in the table and only used for the half-t-normal mixture scenario, were significantly

longer, coming in at 64 minutes per 100,000 iterations, a seventeen-fold increase over

the GPD-base run times for the same scenario. These differences arise because the

half-t base density depends on computationally-expensive evaluations of t density

and quantile functions. Therefore, we find it computationally expedient to use a

GPD base distribution when possible.

MCMC Mixing Issues

The adaptive MCMC sampler has difficulty mixing for many datasets and across

scenarios, moving slowly through a complex posterior space. Figure 2.2 gives an idea

of the potential difficulty, showing the posterior samples for datasets 4 and 53 of

the spliced gamma-GPD scenario. While this scenario tends to have nonparametric

densities, h, that are single-modal and follow a “low-high-low” pattern, the upper-

right panel of the figure shows that even under a “low-high-low” regime the mode
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Figure 2.2: Spliced gamma-GPD posterior samples for dataset 4 (upper) and
dataset 53 (lower). Left panels display sampled density estimates in variegated gray
and truth in black. Middle panels show estimated parametric distributions in varie-
gated gray and truth in black. Right panels show nonparametric scaling densities.

could be anywhere from τ = 0.2 to τ = 0.8. Modes near τ = 0.2 correspond to large

σ, and modes near τ = 0.8 correspond to smaller σ estimates. Some chains for some

datasets sample from part of the parameter space with even smaller σ, resulting

in nonparametric densities closer to the “low-high” pattern shown in dataset 53.

With σ this small, the needed nonparametric density h should have a rapid drop

immediately before τ = 1, but some samples fail to drop at all. This may be another

example of multimodality being induced by too-few knots being placed at τ near 1.

The covariance matrix between sampled parameters in the “low-high-low” pattern

is different than the covariance matrix coming from a “low-high” pattern, making it

difficult and slow for the adaptive sampler to move between these differing regimes.
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Figure 2.3: Standard GPD upper-tail, quantile-extrapolation with p on a log scale.
Left panel shows relative bias (bias / true quantile value); right panel shows ratio of
LGP-GP 100% RMSE to other methods’ RMSE, i.e. ratios greater than 1 indicate
that other methods have lower RMSE than LGP-GP 100%.

Whether a specific dataset should fall into one of these regimes or whether the

sampler should be traversing between them is hard to know. Ultimately, we rely on

long chains with long burn-in, combined with a strict triple-chain PSRF convergence

criterion, to determine (hopefully) that we have faithfully sampled the posterior for

each dataset. Convergence rates for each scenario are shown in Table 2.2.

2.3.3 Simulation Results

The results for tail-index estimation across scenarios and methods are included in

Table 2.3. Across simulation scenarios, the LGP-GP 100% underestimates the true

heaviness of the tail index parameter. The following subsections provide detailed

results by scenario.

Standard GPD Scenario

Averaged across datasets, LGP-GP 100% estimated tail index ξ̂ = 0.21, meaning

that it slightly underestimates the tail index (see Table 2.3); however, it maintains

99% interval coverage. Figure 2.3, which displays upper quantile levels on a log

scale, shows that the LGP-GP 100% tail exhibits similar levels of quantile bias to
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Table 2.3: Simulation tail-index results. Tables include mean tail-index estimates
for each method and coverage of 95% confidence or credible intervals, i.e. proportion
of intervals across simulated datasets that contain the true tail index.

Standard GPD
Method Mean Cover
Truth 0.25
GPD 5% 0.19 0.94
GPD 10% 0.25 0.95
GPD 20% 0.26 0.97
GPD 100% 0.25 0.93
EGPD 5% 0.17 0.94
EGPD 10% 0.22 0.95
EGPD 20% 0.26 0.93
EGPD 100% 0.25 0.94
LGP-GP 100% 0.21 0.99

Half-t
Method Mean Cover
Truth 0.25
GPD 5% 0.18 0.92
GPD 10% 0.18 0.91
GPD 20% 0.16 0.79
EGPD 5% 0.19 0.93
EGPD 10% 0.20 0.88
EGPD 20% 0.17 0.86
LGP-GP 100% 0.12 0.42

Fourth-power GPD
Method Mean Cover
Truth 0.25
GPD 5% 0.18 0.88
GPD 10% 0.21 0.92
GPD 20% 0.21 0.90
EGPD 5% 0.19 0.88
EGPD 10% 0.20 0.89
EGPD 20% 0.22 0.89
LGP-GP 100% 0.20 0.93

Gamma-GPD mixture
Method Mean Cover
Truth 0.25
GPD 5% 0.43 0.92
GPD 10% 0.25 0.87
GPD 20% 0.01 0.07
EGPD 5% 0.50 0.85
EGPD 10% 0.32 0.90
EGPD 20% 0.11 0.48
LGP-GP 100% 0.10 0.87

Half-t-normal mixture
Method Mean Cover
Truth 0.25
GPD 5% 0.18 0.87
GPD 10% 0.17 0.80
GPD 20% 0.12 0.38
EGPD 5% 0.17 0.89
EGPD 10% 0.19 0.90
EGPD 20% 0.14 0.63
LGP-GP 100% 0.14 0.35
LGP-HT 100% 0.26 0.94

Spliced Gamma-GPD
Method Mean Cover
Truth 0.25
GPD 5% 0.23 0.94
GPD 8% 0.24 0.95
GPD 13% 0.21 0.85
EGPD 5% 0.22 0.93
EGPD 8% 0.24 0.94
EGPD 13% 0.24 0.96
LGP-GP 100% 0.10 0.76
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Figure 2.4: Half-t upper-tail, quantile-extrapolation with p on a log scale. Left
panel shows relative bias (bias / true quantile value); right panel shows ratio of
LGP-GP 100% RMSE to other methods’ RMSE, i.e. ratios greater than 1 indicate
that other methods have lower RMSE than LGP-GP 100%.

that of the GPD and EGPD methods. Note that GPD and EGPD are both unbiased

for the standard GPD, so any biases seen in these graphs are due to small sample

estimation over only 100 datasets. The ratio of RMSE (LGP-GP 100% divided by

alternate method) shown in Figure 2.3 is also consistently below 1 when comparing

the LGP-GP 100% to any of the truncation methods (GPD or EGPD, 5%, 10%,

20%), indicating that estimation with LGP on all data is better than the maximum

likelihood methods under thresholding. Both the GPD 100% and the EGPD 100%

have superior tail RMSE to the LGP-GP 100%, but that is not surprising, since they

are specifically designed to estimate this scenario. Given that the LGP-GP 100% is

not grossly inferior to the GPD 100%, i.e. RMSE ratios are not far above 1, the LGP

is doing a reasonable job of capturing the standard GPD scenario.

Half-t Scenario

Table 2.3 shows that all methods underestimate the half-t tail-index parameter; how-

ever, at 0.12 the LGP-GP 100% has the most biased index as well as the poorest

coverage (only 42%). Because the t-tail is not an exact GPD but converges to one

25



−0.05

0.00

0.99 0.999 0.9999
p

R
el

at
iv

e 
B

ia
s

Method

GPD 5%

GPD 10%

GPD 20%

EGPD 5%

EGPD 10%

EGPD 20%

LGP−GP 100%

0.4

0.6

0.8

1.0

0.99 0.999 0.9999
p

R
at

io
 R

M
S

E
 (

LG
P

−
G

P
 1

00
%

 / 
M

et
ho

d)

Method

GPD 5%

GPD 10%

GPD 20%

EGPD 5%

EGPD 10%

EGPD 20%

Figure 2.5: Fourth-power GPD upper-tail, quantile-extrapolation with p on a log
scale. Left panel shows relative bias (bias / true quantile value); right panel shows
ratio of LGP-GP 100% RMSE to other methods’ RMSE, i.e. ratios greater than 1
indicate that other methods have lower RMSE than LGP-GP 100%.

as the threshold goes to infinity, the GPD methods tend to get better tail-index

coverage when less data are retained. For all methods, the underestimation of the

tail index results in underestimates of the tail quantiles; the GPD method bias is to

be expected since the true tail comes from a t-distribution. The LGP-GP 100% has

higher bias in the early tail range (quantile levels 0.9 < p < 0.995) than do the other

methods. Except for in a small region near p = 0.99 where the GPD 10% and GPD

20%-truncations have lower RMSE, the LGP-GP 100% has higher relative efficiency

than all GPD methods considered. The gains are most apparent for p > 0.999, where

data are scarce to non-existent. See Figure 2.4 for quantile bias and RMSE.

Fourth-power GPD Scenario

Table 2.3 shows that all methods are underestimating the fourth-power GPD tail-

index parameter, but not grossly; LGP-GP 100% has similar bias and coverage to

the other methods. For all methods, the underestimation of the tail index results

in slight underestimates of the tail quantiles (see Figure 2.5); however, the LGP-GP

100% has lower bias in the early tail range (quantile levels 0.9 < p < 0.995) than
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Figure 2.6: Gamma-GPD mixture upper-tail, quantile-extrapolation with p on a
log scale. Left panel shows relative bias (bias / true quantile value); right panel
shows ratio of LGP-GP 100% RMSE to other methods’ RMSE, i.e. ratios greater
than 1 indicate that other methods have lower RMSE than LGP-GP 100%.

do the other methods. It also has lower tail quantile RMSE than any of the ML

methods for most quantile levels p > 0.9. In the far-extrapolated tails, quantile

RMSE is reduced by nearly half.

Gamma-GPD Mixture Scenario

All of the methods had a difficult time estimating the tail index in this tricky case (see

Table 2.3). LGP-GP 100% maintained 87% coverage despite grossly underestimating

the index. The LGP-GP 100% quantile estimates have similar magnitudes of bias to

the ML methods, although not necessarily in the same direction. The RMSE results

are mixed, with some methods doing better for some quantile levels and others doing

well for other quantile levels (see Figure 2.6).

Half-T-Normal Scenario

When using the GPD base distribution, the results of this scenario are similar to

those of the half-t scenario, including underestimation of the t tail-index parameter

(see Table 2.3) and superiority of the LGP-GP 100% in quantile estimation RMSE

despite tail quantile bias (see Figure 2.7). In this section we focus on LGP estimation
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Figure 2.7: Half-t-normal mixture upper-tail, quantile-extrapolation with p on a
log scale. Left panel shows relative bias (bias / true quantile value); right panel
shows ratio of LGP-GP 100% RMSE to other methods’ RMSE, i.e. ratios greater
than 1 indicate that other methods have lower RMSE than LGP-GP 100%.

with a half-t distribution being used as the base or transformation density. Results

for the LGP-HT 100% are included in the aforementioned table and figure.

The LGP-HT 100% has a near-unbiased estimate ξ̂ = 0.26 of tail index and

also attains the best tail-index interval coverage of all methods considered with 94%.

Additionally, it has the smallest quantile bias of all methods for large-but-not extreme

quantile levels p < 0.99.

In comparing between LGP methods, the LGP-HT 100% has lowest RMSE for

large quantiles that are still not particularly extreme (e.g. 0.9 < p < 0.995) with

ratio RMSE LGP-GP 100% / RMSE LGP-HT 100% maxing out near p = 0.98 at

a value of 1.09. Moving into the extrapolated tail, however, LGP-GP 100% has

lower RMSE than the LGP-HT 100%. With the target distribution having a t-

like tail, this result was surprising. Further exploration shows that the estimated

nonparametric densities h for the LGP-GP 100% have similar amounts of variability

across replicates to the LGP-HT 100%. If anything, the LGP-HT 100% has slightly

smaller variability in its nonparametric estimates into the upper tail. This implies

that the LGP-GP 100% picks up its overall, quantile-RMSE advantage in the extreme
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tails when it estimates the parametric gθ. This was also surprising, since the LGP-

HT 100% seemed to do so well at estimating the tail-index parameter. Although it

is less biased than other methods, its variance is not sufficiently low to overcome the

inherent quantile-RMSE advantage a method has when it underestimates a power-

law tail index (e.g. a method which underestimates the true tail-index by 0.01 will

have extreme quantiles with lower RMSE than does a method that overestimates

the tail-index by the same amount). In fact, the LGP-HT 100% has a standard

deviation of 0.047 among all simulated tail-index estimates while the LGP-GP 100%

has a standard deviation of 0.033. Perhaps if the MCMC chains were allowed to run

longer, the variance of the LGP-HT 100% tail-index could be reduced sufficiently to

favor the LGP-HT 100% in extreme tail estimation, but there is no guarantee of this.

For the bulk distribution (not pictured), the LGP methods are similar in RMSE

except for p < 0.25, where the LGP-HT 100% has smaller RMSE. There the RMSE

ratio maxes out near p = 0.01 with a value of 1.26. This seems to point towards an

advantage in estimating the lower quantiles when the shape of the parametric base

distribution more closely mirrors the shape of the target distribution.

All of this leads us to believe that LGP is agnostic towards the choice of base

distribution when estimating mid-range or bulk quantiles but that it can be sensitive

to the choice of base distribution when estimating extreme quantiles. Unfortunately,

these results do not provide clear direction as to how to pick the appropriate base

distribution for any given dataset.

Lastly, we compare the LGP methods to the threshold methods as a whole. If

we take a pessimistic view of the LGP, we say that it cannot guarantee superior tail-

quantile estimation over a well-truncated GPD, even when using a base distribution

with “correct” tails, as in the case of a t-tail being estimated by a t base distribution.

But in practice for any given sample, we never know the optimal place to threshold.

Since the LGP methods circumvents truncation all together, it is reasonable to take
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Figure 2.8: Spliced gamma-GPD tail-index intervals estimated under various meth-
ods and truncations. LGP-GP methods contain some non-converged simulations.

a more liberal view and recognize that both LGP methods have lower RMSE across

all p in the tail than the worse-case-RMSE among the various threshold levels.

Spliced Gamma-GPD Scenario

Table 2.3 shows that, except for the GPD 13% method which has coverage of 85%,

the maximum likelihood methods maintain unbiased and near-nominal 95% coverage

for the tail-index parameter. At 76%, the LGP-GP 100% has the poorest tail-index
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Figure 2.9: Spliced gamma-GPD upper-tail, quantile-extrapolation with p on a log
scale. Left panel shows relative bias (bias / true quantile value); right panel shows
ratio of LGP-GP 100% RMSE to other methods’ RMSE, i.e. ratios greater than 1
indicate that other methods have lower RMSE than LGP-GP 100%.

interval coverage. Figure 2.8 plots interval estimates for this scenario under all of the

estimation methods; the lower right panel of that figure shows that LGP-GP 100%

consistently underestimates the heaviness of the true-GPD tail.

The tail quantile estimation plots in Figure 2.9 show that the GPD estimators

that employ truncation at or after quantile-level p = 0.92 are unbiased into the tail,

as expected, as are the EGPD 8% and EGPD 5% estimators. The GPD 13% reflects

bias from a truncation that includes part of the gamma bulk. The EGPD 13%,

on the other hand, is more robust to this truncation, retaining its low bias in the

tails. The LGP-GP 100% estimator has the largest bias in the tail, overestimating

0.9999-level quantiles by nearly 20%.

RMSE is lower for all GPD methods in the tail than for the LGP-GP 100%, as

shown in the right panel of Figure 2.9. While it is not surprising that the GPD

ML methods do a better job of capturing an exactly-GPD-distributed tail than does

the LGP, the magnitude of the differences is surprising. RMSE is 40-80% lower for

the GPD and EGPD methods in the extrapolated tails than for the LGP-GP 100%

method. At an oracle-truncation-level, the GPD 8% method has the lowest RMSE.
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Except for right near p = 0.92, the EGPD estimator with generous data retention

(EGPD 13%) has the lowest RMSE in the upper tail.

2.3.4 LGP as a Truncation Option

Despite having multiple chains converge to the same place, it is unclear whether the

Markov chain samplers in many of the scenarios have explored the entirety of their

posterior distributions. It is possible that some have learned the meaty bulk of the

posterior but have failed to find a second mode or to round a difficult-to-traverse

corner of the posterior, thereby failing to sample a small-but-relevant tail, rendering

posterior inference biased.

The most difficult-to-learn posteriors seem to be those in which the target dis-

tribution departs most markedly from the base distribution. To explore this more

fully, we revisited the spliced-gamma GPD scenario and truncated away part of the

left-side bulk, leaving a greater proportion of the remaining data coming from the

GPD tail. One truncation retained 50% of the data and a second set of truncations

retained only 30%. We then ran the LGP method on the truncated data with a GPD

base distribution. The LGP-GP with 50% truncation had even poorer convergence

than the LGP-GP with 100% data retention; however, those that truncated at the

0.7-level quantile had markedly better convergence after 800,000 iterations than did

the LGP-GP 100% with 96 of the 100 simulations showing adequate potential scale

reduction factors.

Analyzing the converged chains, the LGP-GP 30% had 82% coverage of the tail-

index parameter, better than the 76% coverage of the LGP-GP 100%. The bottom

row of Figure 2.8 shows that this is due to the tail-index estimates and intervals

being less biased. Additionally, the LGP-GP 30% had generally lower RMSE for

p > 0.9 than did the LGP-GP 100%. While the GPD and EGPD methods still had

lower RMSE estimating the GPD tail in pre-extrapolation regions, in extrapolation
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(specifically p ≥ 0.997) the LGP-GP 30% had the lowest RMSE of all methods and

truncations considered. The GPD 13% and EGPD 13% had next lowest RMSE with

ratios (LGP-GP 30% over method) near 0.95 for each. Though the reduction in

RMSE is slight, any advantage in extrapolation is welcome. We also note that the

LGP-GP 30% is beating the GPD and EGPD truncation methods in their optimal

scenario, namely under an exact-GPD-tail case. This RMSE advantage cannot all

be attributed to the difference in sample size. When 30% of the tail data is used

for GPD or EGPD estimation, making it commensurate with the LGP-GP 30%, the

GPD and EGPD quantile estimates become very biased, getting “contaminated” by

the gamma bulk distribution, and thereby have even higher RMSE.

These results are promising. They suggest that if mixing issues crop up when

used on all observations, the LGP may yet be used on truncated tail data to some

advantage. The flexibility of the LGP can accommodate more generous data reten-

tion than the GPD or EGPD methods, resulting in quantile estimates that are closer

on average to the truth as measured by RMSE. While the original goal was to move

away from truncation altogether, we find that in difficult MCMC sampling scenarios

truncation towards the tail may help after all.

2.4 Conclusions and Discussions

We have proposed a model that specifies a logistic Gaussian process form for the non-

parametric density of our framework and accommodates various parametric transfor-

mation distributions. Bayesian priors have been proposed and a method for sampling

from the posterior distribution has been implemented in R. While the theory promises

a match of decay rates and tail-index parameters between the data likelihood f and

the parametric distribution gθ, simulations have not provided conclusive evidence

that the logistic Gaussian process, as implemented, works in reasonable, finite sam-

ple sizes. Given the ambiguity that still remains, there are several directions that
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future research could explore.

First, it is possible that longer MCMC chains are needed or that different MCMC

samplers could be capable of traversing these complex posteriors better or more

quickly than the adaptive MCMC. Once an adaptive MCMC sampler has learned a

proposal covariance structure, it can have difficulty unlearning that structure, pre-

venting it from rounding bends in “banana-shaped” posteriors. Other methods that

might improve the MCMC mixing in this scenario include gradient-based samplers,

such as the Metropolis-Adjusted-Langevian Algorithm (Roberts and Tweedie, 1996)

or its successors, or some type of Hamiltonian Monte Carlo sampler (Duane et al.,

1987).

Alternately, it may be that base distributions, gθ, used in simulation were too

different in shape from the target distribution. Preliminary results in Section 2.3.4

seem to support the idea that a base that more closely resembles the target dis-

tribution reduces the complexity of the posterior, improving the convergence of the

adaptive MCMC sampler. If this avenue is pursued, the GPD could be replaced with

some version of an EGPD, or it may be prudent to implement a base density that is

capable of taking a value of zero at zero in instances where the target is suspected

of having low probability for small values. Ultimately, we choose not to pursue this

line of inquiry, since we want a method that is capable of estimating any sampling

distribution, not just ones for which the bulk mimics some arbitrary transformation

distribution.

Finally, it is possible that the nonparametric specification is simply not flexible

enough to capture the necessary nonparametric density and that something different

should be used altogether. One such approach might be to form the nonparametric

density as a mixture of kernels with support [0, 1]. The next chapter will pursue this

line of inquiry.
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3

Mixture Model Approach

This chapter explores another approach to modeling the transformation framework,

described in Chapter 1, for univariate density estimation in the presence of heavy

tails. As a refresher, the framework requires that we select a parametric family of

distributions {gθ : θ ∈ Θ} and also a nonparametric family of distributions H :=

{h(·)}, which have been constrained such that h are density functions on [0, 1] with

||log h||∞ �∞. Having both of these, we set F := {f(·) = gθ(·)h(Gθ(·))} for θ ∈ Θ

and h ∈ H. Finally, we model Y1, Y2, ...
iid∼ f, f ∈ F using a fully Bayesian approach.

That is, set priors on θ and h and estimate them simultaneously.

As mentioned before, there are various ways to obtain nonparametric estimates

for h(τ) subject to the limit constraints 0 < h(0), h(1) < ∞ outlined in Chapter 1.

Chapter 2 had some success modeling h with a logistic Gaussian process, but the

MCMC sampler was slow to explore the posterior space, and the densities produced

by the LGP were limited in their flexibility. In response to both the slow mixing and

inflexibility, this chapter explores modeling h with both a Dirichlet Process Mixture

(DPM) and a Finite Mixture (FM) of kernels with support [0, 1]. By using a family
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of kernels, k, that obeys the constraint 0 < k(0), k(1) < ∞, h is also appropriately

constrained at the boundaries.

3.1 Background

3.1.1 Mixture Models

It is proposed that h(·) takes the mixture form h(τ) =
∫
k(τ |Ψ)dP (Ψ), where k is

some family of kernels over [0, 1] that obey the constraint 0 < k(0), k(1) <∞. Under

this form, the CDF-transformed data Gθ(yi) ∼ h; however, since θ is unknown and

needs to be estimated simultaneous to h, a different data-likelihood specification is

needed to model yi directly. By noting that

f(yi) =gθ(yi)h(Gθ(yi))

=gθ(yi)

∫
k(Gθ(yi)|Ψ)dP (Ψ)

=

∫
gθ(yi)k(Gθ(yi)|Ψ)︸ ︷︷ ︸

new kernel

dP (Ψ),

(3.1)

we see that unknown f can be represented as a mixture of kernels of the form

gθ(·)k(Gθ(·)|Ψ) over an unknown mixing distribution P , establishing the direct con-

nection yi ∼ f . Both families of pdfs g and k are known and prespecified.

3.1.2 Dirichlet Process Mixture Models

Assigning a Dirichlet process prior P ∼ DP(α,H0) to the mixing distribution P

of Equation 3.1 results in a Dirichlet Process Mixture Model (DPMM). Dirichlet

processes were first proposed by Ferguson (1973). Since then they have been used

widely in density estimation and cluster detection. A standard reference for DPMMs

is Escobar and West (1995), which models data as coming from normal kernels

and assigns Dirichlet process priors to the means of those kernels, resulting in a

nonparametric, flexible Bayesian estimate of the density.
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Incorporating the specific kernel form of Equation 3.1, the full DPMM can be

written as

yi|Ψi, θ ∼gθ(yi) · k(Gθ(yi)|Ψi)

θ ∼π

Ψi ∼P

P ∼DP (α,H0).

(3.2)

This form highlights that the data can be thought of as coming from a mixture of

kernels indexed by some shared parameters, θ, and some observation-specific param-

eters, Ψi. As is true of other DPMMs, the discrete nature of the Dirichlet process

lends itself to the possibility that atomic Ψi = Ψj for some i 6= j, leading to a data-

clustering interpretation. Though clusters can be obtained, this is not our primary

goal, and in practice the kernels do not always lend themselves to strong separation

over [0, 1]. Rather our goal is to create a sufficiently flexible prior on h for estimation

of f .

3.1.3 Mixture Models for Extremes

Mixture models and even DPMMs have been used previously to model extremes.

Some “mixture models” use a bifurcated approach, choosing one form for the bulk

distribution below a threshold that is either explicitly or implicitly defined and an-

other form for the tail distribution above the threshold. Scarrot and MacDonnald

(2012) review these threshold approaches. Other mixture models come from weight-

ing kernels that are defined over the full support of the data. For instance, Tressou

(2008) proposes a DPM of Pareto distributions, and Carreau and Bengio (2009)

propose a finite mixture of their five-parameter kernel, which they create from a

truncated normal density stitched smoothly onto a GPD tail. Both of these ap-

proaches allow the kernels’ tail indices to vary; the largest tail index determines the

dominating rate of decay in the tail. Model 3.2, by contrast, specifies one polynomial
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rate of decay or extreme value index, which will be a parameter of θ, and takes care

of departures from the GPD tail through the nonparametric scaling of h.

Bean et al. (2016) is a mixture approach that uses a power-transformation to

lighten the tails, a transformation they claim “can be directly related to the extreme

tail index of the original density.” It is similar to Model 3.2 in that it uses mixtures

under transformation to model heavy-tailed data; however, the parameters of their

transformation are pre-estimated and applied to the data prior to Bayesian modeling

with DPMM of location-scale normals, i.e. the DPMM models Gθ̂(y) ∼ h. The

formulation of Model 3.2 allows estimation of θ to proceed simultaneously with the

estimation of h.

3.2 Model Setup

3.2.1 Parametric Distribution and Priors

As in Chapter 2, the family of parametric distributions {gθ : θ ∈ Θ} is selected to

match the support of Y . Additionally, in order to model phenomena with heavy tails,

{gθ} needs to admit the possibility of heavy tails. For purposes of this research, we

use a GPD with tail index ξ = 1/ν > 0, scale parameter σ and location parameter

fixed at 0. Additionally the GPD density is scaled by the 0.9-level-quantile of a

unit-scale GPD with tail index ξ = 1/ν, consistent with the approach of Chapter 2.

Again the goal is to reduce dependence between ν and σ and induce some measure

of orthogonalization.

The prior for ν, pictured in Figure 3.1, is chosen to be informative with mass over

heavy-tailed values and support ν ∈ (0.5,∞). Specifically, ln(ν − 0.5) ∼ Logis(2, 1).

The independent prior on σ is set to be a scaled half-Cauchy distribution, with

the scale elicited from the user’s knowledge of the data mean, ỹ. The prior σ ∼

HC(3/4× ỹ), also shown in Figure 3.1, is diffuse but proper. The prior for parametric

θ is assumed to be independent of nonparametric h.
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Figure 3.1: Priors for ν and σ

3.2.2 Nonparametric Distribution and Priors

Our mixture prior for h takes the general form h(τ) =
∫
k(τ |Ψ)dP (Ψ). The kernel,

k(τ |Ψ), is taken to be a normal distribution truncated to the [0, 1] interval. Using a

truncated normal kernel guarantees that 0 < k(0) <∞ and 0 < k(1) <∞, i.e. that

both boundaries are finite and positive, as is needed for the framework constraints.

While a truncated normal kernel of itself does not look like a power law trans-

formation, if the nonparametric kernel mixture distribution in aggregate mimics the

shape of a power transformation, b(1− τ)b−1, then a confounding can exist between

the GPD transformation and the nonparametric distribution form. Specifically,

g(y; ξ, σ)× b(1−G(y; ξ, σ))b−1 ≡ g

(
y;
ξ

b
,
σ

b

)
, (3.3)

where g and G represent the pdf and CDF of a GPD respectively. We aim to inject

identifiability into this problem by placing priors on the nonparametric density that

give prior probability to uniform-like shapes.

The priors for truncated normal kernel parameters Ψ, comprised of µ and β,

are defined jointly by π(µ, β) = π(µ|β) · π(β). The prior over bandwidths, π(β), is

an InverseGamma(shape=0.01, rate=0.0005) truncated to an upper boundary of 1.
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Figure 3.2: Nonparametric draws from prior for h(τ). Each is constrained such
that 0 < h(τ) <∞ for all τ . An estimate of the mean is show in gray.

Over the [0, 1] interval, a truncated normal kernel with µ = 0.5 looks nearly uniform

when β is large. Truncating β at 1 allows there to be uniform-like truncated normals

when β is near 1 without expanding the domain to an otherwise redundant infinity of

uniform-like kernels. Given bandwidth β, the prior for center µ is taken to be µ|β ∼

TrunNormal(mean=0.5, sd=0.5, a = −β/2, b = 1 + β/2). This truncation allows the

kernel means to exist half a standard deviation outside the [0, 1] interval, which in

turn allows the nonparametric density estimates to “go up” at the boundaries. It

also prevents computational loss of numerical significance that can occur if the mean,

µ, falls many bandwidths, β, outside of the interval [0, 1] where the data live.

For the precision parameter α of the Dirichlet process we use a Gamma(1, 1)

prior. Figure 3.2 shows several draws from the resultant prior for h(τ).

A finite mixture can be used in place of the more computationally-intensive in-

finite DPM, if desired. This is easily done through a latent-category likelihood con-

struct, which can be represented as

y|P ∼
K∑
k=1

ρkTrunNorm(µk, βk) with
K∑
k=1

ρk = 1 and P = (ρ1, ρ2, ...ρK)
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or as

y|w ∼
K∏
k=1

TrunNorm(µk, βk)
1(w=k) with w|P ∼ Multinomial(ρ1, ρ2, ..., ρK). (3.4)

When combined with a Dirichlet prior, these multinomial-Dirichlet likelihoods lend

themselves well to Bayesian MCMC sampling because the probabilities can be up-

dated with conjugate Dirichlet draws; latent categories can be simulated for each

observation from a multinomial distribution; and updates to kernel parameters only

depend on data within the associated latent category. Fixing the hyper-parameter

α = 0.5 in the Dirichlet prior P = (ρ1, ρ2, ..., ρK) ∼ Dirichlet(0.5, 0.5, ...0.5) encour-

ages higher weights on fewer mixture kernels.

3.3 Computation

Bayesian posteriors over all model parameters are obtained through Gibbs sampling.

Algorithm 8 of Neal (2000), appropriate in cases of non-conjugacy, is used to obtain

group-membership updates for the infinite Dirichlet process mixture. For updates

to the precision parameter of the Dirichlet process, a modification to the auxiliary

variable scheme of Escobar and West (1995) is used. Namely, a sample drawn from

α ∼ Gamma(1 + K, 1 − log(η)) is followed by an update for η with a random draw

from η ∼ Beta(α, n).

One drawback to the DPMM is that cluster membership updates require se-

quential processing across all n observations and are slow. Replacing the Dirichlet-

process prior with a Dirichlet prior and using a finite mixture approximation with

K = dlog(n)e groups, see Equation 3.4, is computationally expedient. Furthermore,

we find that the finite version provides a sufficiently flexible form for most nonpara-

metric densities but has the added advantage of being able to simultaneously update

all n group memberships, insofar as the implementation software supports vector
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operations. We perform all computing in R (R Core Team, 2018), and so the finite

approximation and these vectorizations provide significant speedups.

Under the finite mixture model (FMM), the parameters dictating the observa-

tions’ group memberships can be updated through conjugate draws. Given latent

observation memberships wi to the K truncated normal kernels, the probabilities in

vector P , which dictate probabilistic membership among K groups, can be updated

with a single conjugate Dirichlet draw. The latent memberships wi use conjugate

multinomial updates, which are vectorizable as previously mentioned.

Having used a truncated-inverse-gamma prior for β and a truncated-normal prior

for µ, conjugate updates are also available for the clusters’ truncated normal param-

eters through an augmented data approach, similar to the one employed in Kotecha

and Djuric (1999). Essentially, data belonging to the cluster are first transformed by

Gθ for the current θ iterate, then taken through the deterministic transformation

xi = µc + βcΦ
−1

(
Φ(Gθ(yi)−µc

βc
)− Φ(0−µc

βc
)

Φ(1−µc
βc

)− Φ(0−µc
βc

)

)
, (3.5)

where µc and βc represent the current cluster mean and standard deviation, respec-

tively. This generates a latent-variable representation of the data in “untruncated”

normal form, i.e. over (−∞,∞) instead of over (a, b). These normal xi combined

with the independent priors result in conjugate complete conditionals. Gibbs draws

provide updates for βc and µc in turn, using the inverse CDF method to obtain

samples from either the inverse gamma or normal distribution truncated to their

respective conditional domains. Numerical difficulties can arise in the inverse CDF

samplers if the transformed xi push (numerically) all of the posterior density for β

or µ outside of the boundaries. In the rare instances where this happens, we take

the draw to be some small ε inside the boundary.

The update for joint (ν, σ) is non-conjugate and uses an independence Metropo-
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lis algorithm. After monotonically transforming ν and σ from [0,∞] × [0,∞] to

[−∞,∞] × [−∞,∞], the complete conditional given all observation-level µi and βi

is optimized, using R’s optim function. The proposal density is then taken to be a

MVN2 centered at the mode with covariance matrix equal to the negative inverse of

the numerically-optimized Hessian upscaled by a factor of 1.1.

It is possible to use a “warm” start to speed up chain convergence. This can

be obtained by numerically optimizing a simplified posterior that only uses a single

truncated normal kernel, which amounts to a 4-dimensional optimization over a

box-constrained space (2 GPD parameters, 2 truncated normal parameters with

0 < µ < 1 used for simplicity instead of the constraint depending on β). Observations

can then be randomly assigned membership among the K groups for the finite case or

into a single group in the infinite case, each of which group starts with the optimized

truncated normal parameters.

After MCMC sampling, the posterior predictive is estimated by numerically in-

tegrating over Ψ and θ using MCMC draws from the posterior π(Ψ, θ|Y1:n):

π(Yn+1|Y1:n) = f(y) =

∫ {∫
k̃θ(y|Ψ)π(Ψ, θ|Y1:n)dµ(Ψ, θ)

}
. (3.6)

The posterior predictive for the nonparametric, truncated-normal kernel mixture

density, h(τ) =
∫
k(τ |Ψ)π(Ψ)dµ(Ψ), can also be approximated via numerical in-

tegration using the marginal Ψ posterior draws. These numerical integrations are

straightforward for the finite mixture.

The DPM posterior predictive is more complicated and is estimated via sampling.

For each iteration of the MCMC sampler, samples are drawn from the prior for Ψ and

are assigned weights according to a truncated stick-breaking process. These samples

are then weighted together with the posterior cluster parameters Ψc for the given

MCMC iteration using a random draw from a Dirichlet(α, nc1 , nc2 , ..., ncKs ), where

ncj represent the number of observations in the j-th cluster of the given iteration.
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These techniques are applied to get estimates for both the density and distribution

functions.

Posterior estimates for the quantiles are obtained by linearly interpolating the

nonparametric posterior predictive distribution function for the desired quantile level

p and sending those inverse CDF estimates through the inverse θ-transformation

function, i.e. the GPD quantile function with θ determined by the current MCMC

iterate.

3.4 Simulation Study

A subset of the simulation scenarios described in Section 2.3.1 of Chapter 2 will be

discussed here, namely the Standard GPD, Half-t, Fourth-power GPD, and Gamma-

GPD mixture, each with sample size n = 1,000. Figure 2.1 has a representation

of each density function. Simulations are again evaluated primarily on the basis of

their tail-index estimation and upper-tail quantile bias and RMSE. With a sample

size of n = 1,000 for each scenario, considering quantile level p out to 0.9999 reflects

extreme extrapolation.

Similar to the simulations of Chapter 2, the mixture model is compared to

maximum-likelihood estimates of 1) a generalized Pareto distribution (GPD) un-

der various truncations fit using the extRemes package (Gilleland and Katz, 2016) in

R; and 2) the extended generalized Pareto distribution (EGPD) proposed by Papas-

tathopoulos and Tawn (2013) under various truncations fit using the mev R package

(Belzile et al., 2018). Thresholding proportions for the GPD and EGPD methods

are selected to span the range of visually-diagnosed cutoffs. For methods employing

truncation, bias and RMSE are only displayed for levels p that were retained after

thresholding. When referring to the method used, plots and tables also refer to the

percentage of data retained.

For five datasets of each scenario, two DPMM chains are run for 200,000 itera-
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Table 3.1: Simulation MCMC summaries for infinite DPMM (five datasets per sce-
nario) and FMM (40 datasets per scenario), including total iterations run for each
chain, number discarded as burn-in, number of draws retained after thinning, number
of chains converging, and time (minutes) needed to run 1k iterations of one chain.

DPMM Draws FMM Draws
Simulation Scenario Total Burn Keep Conv Time Total Burn Keep Conv Time

Standard GPD 200k 80k 3k 5/5 6.6 120k 20k 2k 38/40 1.9
Half-t 200k 80k 3k 3/5 6.9 120k 20k 2k 24/30 2.1
Fourth power GPD 200k 80k 3k 3/5 5.3 120k 20k 2k 30/40 1.7
Gamma-GPD mix 200k 80k 3k 4/5 5.3 120k 20k 2k 35/40 1.7

tions. The first comes from a “warm” start and the second has parameters drawn

from the prior. For each chain, 80,000 iterations are discarded as burn-in and then

further thinned (every 40) to retain only 3000 draws. These chains are meant to

give an idea of the behavior of the model when run as an infinite mixture and are

not included in simulation summaries. Instead, forty datasets from each scenario are

run as FMMs with the number of groups fixed at dlog(n)e = dlog(1000)e = 7 and

analyzed. Two chains, one with a “warm” start and one with a prior start, are run

for 120,000 iterations. The first 20,000 draws are discarded, and thereafter 2,000

thinned samples are retained from the posterior. Table 3.1 summarizes the number

of MCMC iterations obtained, burned, and retained.

Post burn-in, the convergence of MCMC chains is assessed for each posterior

separately by considering Gelman-Rubin potential scale reduction factors (PSRFs)

for ν and σ. PSRFs for mixture model parameters are not assessed since label-

switching is accepted and not adjusted for, and PSRFs under this unidentifiable

scenario would be meaningless.

3.4.1 Computational Speed

In order to draw 200,000 samples from each posterior, the DPMM takes an average

of 17.7 hours (fourth-power GPD) to 23.0 hours (half-t) to run a single chain. This
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Figure 3.3: Traceplots over ν and σ separately and jointly for two example datasets
from the half-t scenario fit using FMM. Black chains come from “warm” starts and
red from random prior draws. Upper row is from dataset 26, and lower row is from
dataset 19.

translates to 6.7 minutes per 1,000 draws when n = 1,000. The FMM takes between

3.3 hours (fourth-power GPD) and 4.2 hours (half-t) to obtain 120,000 draws, av-

eraging 1.7 to 2.1 minutes per 1,000 iterations. That is, the DPM takes about five

times as long to run as the FMM (see Table 3.1). The computational time for these

chains is affected by the sample size, the time it takes for the numerical optimizer

to converge for the θ independence sampler, and (in the case of the DPMM) the

number of clusters, since each cluster requires parameter updates at each iteration.
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3.4.2 Chain Convergence and Sampling Features

Similar to what is seen in Chapter 2, the MCMC samplers exhibit high auto-

correlation, especially apparent in σ. This is because, as the MCMC sampler moves

among different σ possibilities, potentially very different shapes of the nonparametric

densities h are needed to accommodate the true density f , resulting in the need to

adjust all of the mixing distribution parameters, Ψ.

Complicating the interplay between θ and h are complexities seen in some θ

marginal posteriors: MCMC chains show indications of long tails, some of which

are boomerang-shaped, and/or multimodality. The independence sampler used for

θ, designed to adjust proposals to the locally needed covariance between ν and σ, is

able to round bends in the marginal posteriors; however, it is unclear if the sampler’s

forays into these parts of the posterior provide representative marginal samples or if

the sampler is getting caught in regions of lower density due to the slow adjustments

in the mixing distribution parameters. For this model, the quantile scaling of the

base distribution gθ actually seems to be inducing curvature into the θ marginal.

Post-hoc parameterization of the scale parameter to make it correspond to a non-

scaled GPD base reduces some of the apparent curvature, indicating this model may

have been better off without the quantile scaling.

Some chains propose and get stuck at unusual θ values, such as those with ν rela-

tively much larger or smaller than other sampled values. The nonparametric density

h quickly adjusts to these θ, but it can take dozens, hundreds, or even thousands of

iterations before another proposal θ is accepted by the Metropolis-Hastings sampler.

This sort of stickiness, which may be an indication of multimodality, can strongly

affect PSRF metrics for assessing convergence. Knowing this, a generous PRSF limit

is used; only replicates with upper-95% confidence limits below 1.5 for both ν and

σ’s univariate PSRFs are included in analysis. Table 3.1 summarizes the number of
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Table 3.2: Summaries related to DPMM and FMM estimation: mean precision pa-
rameter (α); mean number of clusters with at least 5 observations (K); proportion
of iterations where K stays at or below seven (K ≤ 7); and tail index estimates.

DPMM FMM
Simulation Scenario α K K ≤ 7 Index K Index

Standard GPD 1.23 5.2 0.79 0.29 5.9 0.28
Half-t 1.51 6.7 0.66 0.25 5.3 0.29
Fourth-power GPD 0.65 2.8 0.98 0.28 5.7 0.29
Gamma-GPD mixture 1.62 6.9 0.64 0.26 6.0 0.27

replicates that meet this criterion.

Figure 3.3 shows traceplots for two example datasets, each from the half-t sce-

nario, run using FMM. The sampler for the first dataset has well-behaved, if slow-

mixing, chains over the two θ parameters. The sampler for the second dataset,

displayed in the lower panels, exhibits all three mixing difficulties mentioned above:

a boomerang-shaped tail into small ν values; large σ spread, associated not only

with small ν and but also mid-range ν values; and stickiness at certain unusual θ

pairs. The fact that both chains appear to be experiencing all three of these difficult

mixing situations may point towards these being legitimate features of the marginal

posteriors under this model.

3.4.3 DPMM to FMM Comparison

Across scenarios, about 30% of DPMM clusters are small, containing fewer than five

observations. The following discussion excludes small clusters and focuses on clusters

with at least five allocated observations. The column labeled “K” in Table 3.2 shows

that the DPMM uses on average only 2.8 clusters to explain the nonparametric

density shape of the fourth-power GPD, while the other scenarios use more. The

gamma-GPD mixture uses the most at 6.9. The α precision parameter reflects this

spread, averaging 0.65 across fourth-power GPD datasets and ranging up to 1.62 in
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the gamma-GPD mixture. The FMM precision parameter is not estimated but fixed

at α = 0.5.

FMM is given seven components among which to allocate observations. For

comparison with DPMM, Table 3.2 shows the FMM average number of components

(clusters) having at least five observations. DPMM uses many fewer clusters than did

FMM (2.8 versus 5.7) for the fourth-power GPD scenario. Column “K ≤ 7” of Table

3.2 shows that 98% of DPMM sampling iterations use seven or fewer clusters. For

this scenario, FMM has ample components to describe the nonparametric density

and may even use more than necessary. For the standard-GPD, FMM also uses

slightly more clusters on average than does DPMM. The half-t and gamma-GPD

scenarios, on the other hand, allocate to fewer clusters on average than their DPMM

counterparts, with DPMM using more than seven components in more than a third

of all iterations.

Table 3.2 includes the average tail indices over converged replicates of the DPMM

and FMM. In all but the half-t scenario, indices are within 0.01 of each other. Esti-

mates from nonparametric densities, displayed in Figure 3.4, show that DPMM and

FMM estimates are similar to each other in form, though the FMM may show more

downward cupping at either boundary than the DPMM. Not too much can be refined

on either of these comparisons since the DPMM has few replicates. But overall the

DPMM seems close enough to the FMM that we are comfortable proceeding with

the FMM substitution for the more computationally intense DPMM.

3.4.4 Lower-tail and Bulk Results

The primary focus of analysis is on upper-tail estimation; however, Table 3.3 is in-

cluded to summarize FMM relative bias (bias/truth) for each scenario at the median

as well as at the smallest estimated quantile level, p = 0.00001. Simulations are

essentially unbiased for the median: the largest relative bias among four scenarios
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Figure 3.4: Estimated nonparametric densities for converged DPMM replicates
(pink with mean in red) and FMM replicates (light blue with mean in blue).

is 0.013. The fourth-power GPD has the poorest lower-tail relative bias, under-

estimating the 0.00001 quantile by 95.5%. This happens, in part, because the FMM

inherits its strictly positive density at zero from the GPD base gθ; whereas, the true

value f(0) = 0. This results in FMM hitting its 0.00001-level quantile at much

smaller values than the true fourth-power GPD. Of note also is the half-t scenario,

which had the smallest bias in the left-hand tail of the four scenarios. Unlike the other

scenarios which all have largest relative bias in the bulk or lower tail at p = 0.00001,

the half-t hit its largest relative bias at p = 0.11, underestimating the quantile by
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Table 3.3: Relative bias (bias/truth), for each FMM scenario at the median, p = 0.5,
representative of the bulk, and at the p = 0.00001 quantile level, representative of
the lower tail.

Simulation Scenario Median Lower-tail

Standard GPD 0.010 0.115
Half-t -0.002 0.002
Fourth-power GPD -0.001 -0.955
Gamma-GPD mixture 0.013 0.113

Table 3.4: Simulation tail-index results for all scenarios across comparison methods.
The table includes mean tail-index estimates (Mean); interval coverage (Cov), i.e.
proportion of intervals across replicated datasets that contain the true tail-index;
and width of 95% confidence or credible intervals (Wid).

Standard GPD Half-t Fourth-power Gamma-GPD
Method Mean Cov Wid Mean Cov Wid Mean Cov Wid Mean Cov Wid

Truth 0.25 0.25 0.25 0.25
GPD 5% 0.17 0.89 0.73 0.11 0.92 0.67 0.18 0.83 0.73 0.42 0.94 0.76
GPD 10% 0.25 0.97 0.53 0.14 0.88 0.48 0.20 0.90 0.50 0.23 0.86 0.42
GPD 20% 0.27 0.92 0.36 0.16 0.79 0.32 0.22 0.90 0.34 0.01 0.00 0.19
GPD 100% 0.25 0.92 0.15
EGPD 5% 0.13 0.92 0.94 0.12 0.83 0.89 0.16 0.70 0.95 0.47 0.86 0.89
EGPD 10% 0.20 0.97 0.64 0.14 0.79 0.60 0.16 0.73 0.60 0.32 0.97 0.50
EGPD 20% 0.27 0.92 0.45 0.15 0.83 0.41 0.21 0.87 0.42 0.11 0.51 0.24
EGPD 100% 0.25 0.97 0.18
FMM 100% 0.28 1.00 0.28 0.29 1.00 0.63 0.29 0.97 0.52 0.27 1.00 0.40

just 2%.

3.4.5 Tail-Index Results

Table 3.4 shows that when data come from a standard GPD, the best tail index

coverage and narrowest widths come, not unsurprisingly, from ML estimation without

thresholding; however, those intervals widen quickly with higher thresholds and less

data. The FMM tail index overestimates ξ by 0.03 and has coverage too high for its

nominal level (100% vs. 95%) but maintains this coverage with narrower intervals
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than the methods employing truncation. Similar patterns hold across scenarios: the

tail index is overestimated by FMM (but only at most by 0.04) while coverage remains

high and intervals remain in the range of widths seen under GPD or EGPD with

truncation. Among FMM estimates, the half-t scenario had the heaviest tail-index

estimates and the widest interval widths.

All methods have difficulty in the gamma-GPD scenario dealing with the “con-

tamination” coming from the gamma mixture component, as evidenced by their bias

and/or poor interval coverage. The GPD 10% method gets closest to the true tail

index of 0.25, but the method has coverage that is lower than desired, even with

its wide intervals. The FMM on the other hand is able to use the full bulk of the

GPD-gamma mixture to help in estimating the tail index.

3.4.6 Upper-tail Quantile Estimation

In all four scenarios, FMM exhibits positive bias in the tails, as can be seen in the

relative bias plots of Figure 3.5. The biases can be large, even for levels that should

have some informing data, e.g. p < 0.999. The bias in GPD and EGPD over these

data-informed quantile levels is small in comparison.

Despite these biases, the FMM performs better than GPD or EGPD in RMSE

for several scenarios, as can be seen in the plots of Figure 3.5. In the standard GPD

scenario, FMM has higher RMSE than either GPD or EGPD that retain all 100%

of the data, but it has consistently lower RMSE across all tail levels p > 0.9 for any

of the GPD or EGPD truncations considered. In the fourth-power GPD scenario,

FMM has lower RMSE than all truncation methods at all tail quantile levels. For

the gamma-GPD scenario, the FMM has higher RMSE than any of the MLEs for

0 < p < 0.999, but in extrapolation (p > 0.999) it has slightly lower RMSE than the

truncation methods, likely aided by its more accurate estimation of the tail index.

Figure 3.5b shows the results of the half-t simulation are particularly biased,
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Figure 3.5: Upper-tail, quantile-extrapolation with p on a log scale. Left panel
shows relative bias (bias / true quantile value); right panel shows ratio of FMM
100% RMSE to other methods’ RMSE, i.e. ratios greater than 1 indicate that other
methods have lower RMSE than FMM.

overestimating the 0.9999-level quantile by over 150%. This bias translates into

RMSE being consistently and massively higher in the FMM than in the truncation

methods.

3.4.7 Sensitivity of Model to Left-hand “Tail”

The half-t scenario is unique among the simulation scenarios in several ways: it has

much lower bias at the zero boundary than do the other scenarios; it has higher

proportions of datasets exhibiting difficulty in attaining MCMC convergence; and
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(c) Fouth-power GPD scenario
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Figure 3.5: Upper-tail, quantile-extrapolation with p on a log scale. Left panel
shows relative bias (bias / true quantile value); right panel shows ratio of FMM
100% RMSE to other methods’ RMSE, i.e. ratios greater than 1 indicate that other
methods have lower RMSE than FMM.

it has more datasets with large spread in the σ marginal posterior. Further explo-

ration reveals that features of the data are informative about which MCMC chains

might face difficulties converging. Datasets with lighter-than-usual left-hand tails—

identified by comparing the empirical CDF to the true CDF for the smallest 20% of

values using logged p-p plots—were more likely to have large sampled values for σ.

Also, large sampled values for σ were associated with smaller values for ν, i.e. larger

ξ and heavier tails, through the boomerang-shaped marginal ν-σ posterior.
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Figure 3.6: Estimated densities from same datasets as shown in Figure 3.3: dataset
26 in upper row and dataset 19 in lower row. Left panels show draws for the overall
density in grays, truth in blue, and 95% intervals in black. Middle panels show draws
for the transformation GPD density indexed by θ = (ν, σ) in gray alongside truth
in blue. Right panels show draws for the nonparametric density in grays with 95%
credible intervals in black.

Revisiting the two half-t datasets highlighted in the discussion around sampler

mixing (see Section 3.4.2), Figure 3.6 plots their full estimated sampling densities in

the left panel plots, the parametric densities associated with sampled θ in the middle

panels, and the sampled nonparametric densities in the right panels. Dataset 26, the

example with well-behaved chains, is shown in the first row. Its full or sampling-

density intervals have a negative slope at the left boundary. That is, they tend to

follow the shape of the GPD base distribution (middle) near zero, requiring only

small downscaling from the nonparametric density (right panel) at h(0). Intervals

for the nonparametric density of dataset 26 are greater than 0 at either boundary.
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The estimates for dataset 19, which had chains slowly exploring more complex

marginal θ spaces, are shown in the second row. Its full-density intervals flatten

more at f(0) than did dataset 26, capturing its slightly lighter-than-usual left-hand

tail. The way that it achieves this effect is by accepting θ values that greatly flatten

the parametric density (middle panel), i.e. with large σ and/or small ν, and pairing

those with nonparametric densities h which pile all of their mass towards the zero

end of its [0, 1] support. The FMM is adept at building this nonparametric density

shape because 1) the needed form is so like the truncated normal kernel itself and

2) the mixture model prefers to use as few kernels as possible. The overall effect

across simulation replicates is that quantile estimation in the lower tail and bulk

of the sampling distribution has low bias and RMSE for the half-t scenario, even

more so than the other scenarios. But the upper-tail quantile estimation is very

biased leading to high RMSE. This is clearly a case where the model has favored

bulk estimation and the bulk estimation has overwhelmed the tail estimation. One

takeaway is that the model form can make estimates sensitive to certain lower-tail

and bulk shapes, which can adversely affect the estimation in the upper tail.

3.4.8 Fixing the Transform Scale

When considering simplifications to the model and in response to the mixing difficulty

which is so strongly related to σ, it is worth asking whether σ needs to be estimated

at all or if the value can be fixed. Nearly all literature that employs a transformation

for heavy-tailed univariate density estimation does so by restricting the parameters

θ of the transformation Gθ to a single parameter, the index of the power law. Even

for those that have CDF transforms Gθ, most do not estimate a scaling parameter σ,

unless they pre-estimate and fix it, thereafter estimating the nonparametric density

(see for example Buch-Larsen et al., 2005; Bolancé et al., 2010). Those that do

not include a scaling parameter directly in their model tend to scale the data by
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some empirical measure, e.g. by the inter-quartile range, prior to estimation (see for

example Bean et al., 2016) or back scale their power-transformed model to match

the scale of the data as in Wand et al. (1991) or Bolancé et al. (2003).

Fixing σ is explored more fully in an alternative mixture model, which uses a

kernel that is itself a mixture of uniform and beta distributions in place of the

truncated normal distribution. Details about this model, its computation, and sim-

ulation results, including the fixed-σ analysis, are included in Appendix B. In short,

the findings are that fixing σ improves chain mixing and speeds convergence across

all scenarios, but that it may degrade the quality of tail-index and tail-quantile es-

timation. Namely, the tail index sees a drop in interval coverage. Additionally, the

tail quantile estimates follow similar patterns in bias and relative RMSE to their

σ-estimated counterparts but with slightly more bias and slightly less RMSE advan-

tage. So while fixing σ is not generally advised, it may be expedient if difficulty is

encountered with convergence of the MCMC sampler for a particular dataset.

3.5 Conclusions and Discussions

This dissertation chapter was a response to Chapter 2 and the LGP’s inability to

capture certain nonparametric density shapes and do so quickly. The FMM, while

still plagued by slow mixing, is able to traverse the complex posterior shapes neces-

sitated by varying σ. In most cases, FMM is able to reach steady states in fewer

iterations and adjust its nonparametric form to changing σ more quickly than LGP.

It has proven quite flexible and able to capture many bulk shapes while still giving

form to the heavy tails, at least in three of the four scenarios considered.

An insight from this work that was not fully appreciated with the LGP model

is how much the form of the nonparametric density can influence the estimation of

parametric θ. The various shapes enabled and favored by the nonparametric model—

shapes which may be sensitive to the lower-tail or bulk distribution—dictate where
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the posterior mass of θ will reside (e.g. in long tail regions). Exploration of these

marginal θ posteriors with MCMC samplers can be difficult, and the form of the

model may end up inadvertently favoring θ that enables accurate bulk f estimation

over θ that corresponds to accurate estimation of f ’s upper tail, as was seen in the

half-t scenario.

The FMM has a few drawbacks. The curvature (and potential multimodality)

in the marginal θ posteriors was anticipated, but perhaps not handled as well as it

could have been. Future iterations of work might consider using a more traditional

orthogonalization of ν and σ such as the one proposed in Chavez-Demoulin and

Embrechts (2004), namely σ = σ̃(1+ξ). Another drawback is that the model exhibits

systemic bias in the tails. This bias may be related to the downward cupping shape

that the nonparametric densities show at their boundaries, observed in the plots of

Section 3.4.3.

The model’s primary strength lies in its use of data. By retaining all data and

incorporating prior information that the tails are heavy, the model can reduce RMSE

of quantile extrapolations across many types of densities and tails.

Another strength of this work is the simplicity of the mixture density setup. With

only two parameters indexing the truncated normal mixture kernel, it may be pos-

sible to represent the mixture through an approximation to the DPMM, namely via

predictive recursion. The predictive recursion approximation allows the mixing dis-

tribution to be integrated out entirely. After integrating out the mixing distribution,

all that is left is a marginal likelihood over the two θ parameters. This approach,

termed Predictive Recursion Marginal Likelihood (PRML) and introduced by Martin

and Tokdar (2011), should be much easier to maximize. This approximation may not

only speed up the algorithm, which is admittedly very slow, but may also simplify

the complex posterior σ-h relationships by integrating the mixture distribution h out

of the model entirely. In theory this marginalization would also allow for exploration
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of the θ space more fully. Predictive Recursion Marginal Likelihood will be utilized

in the next chapter.
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4

Predictive Recursion Marginal Posterior Model

This chapter explores a third modeling approach for the transformation framework,

detailed in Chapter 1, for univariate density estimation in the presence of heavy tails.

Within the framework, a family of distributions {gθ : θ ∈ Θ} is selected and also

a nonparametric family of distributions H := {h(·)}, which have been constrained

such that h are density functions on [0, 1] with || log h||∞ � ∞. Having both of

these, set F := {f(·) = gθ(·)h(Gθ(·))} for θ ∈ Θ and h ∈ H. Then the data,

Y1, Y2, ...
iid∼ f, f ∈ F , are modeled using a Bayesian approach. That is, priors on θ

and h and posteriors are estimated simultaneously.

The approach in this chapter uses Predictive Recursion (PR), an approximation

to the Dirichlet process mixture presented in Chapter 3, to model nonparametric h

and thereby f . For a fixed kernel, predictive recursion quickly produces both a mixing

distribution over the kernel’s parameters and an estimate of the data’s generating

distribution in the form of a kernel mixture distribution. An extension to PR called

Predictive Recursion Marginal Likelihoods (PRML), first introduced by Martin and

Tokdar (2011), allows additional parameters to be included in the kernel that are
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not part of the mixing distribution. PRML provides a jumping off point from which

we implement a Bayesian, approximate model capable of estimating the tail index of

a heavy-tailed sampling density and obtaining predictions for the upper tail of that

sampling density.

4.1 Background

As in Chapter 3, it is proposed that nonparametric h(·) takes the mixture form

h(τ) =
∫
k(τ |Ψ)dP (Ψ), where k is some family of kernels over [0, 1] that obey the

constraint 0 < k(0), k(1) <∞. Then using

f(yi) =gθ(yi)h(Gθ(yi))

=gθ(yi)

∫
k(Gθ(yi)|Ψ)dP (Ψ)

=

∫
gθ(yi)k(Gθ(yi)|Ψ)dP (Ψ),

(4.1)

f represents a mixture of kernels of the form k̃θ(·|u) = gθ(·)k(Gθ(·)|Ψ) over an

unknown mixing distribution P . The data are assumed to be independent yi ∼ f .

Both families of pdfs g and k are known and prespecified.

Predictive recursion is one approach to estimating the unknown mixing distribu-

tion P and its corresponding kernel mixture density f . The algorithm was introduced

in Newton et al. (1998) and Newton and Zhang (1999) as an approximation to the

posterior mean of the mixing distribution of a Dirichlet process mixture model. Its

recursive evaluation provides a fast alternative to MCMC for Dirichlet process mix-

tures, and its form can be seen as having roots in empirical Bayes. Martin (2018)

gives a review of the theory, properties, and extensions around predictive recursion.

Presented here are the parts relevant in the context of the extreme density mixture

model.
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4.1.1 Predictive Recursion Algorithm

Given 1) the data sequence y1, ..., yn; 2) a family of kernel densities k̃θ(·|u) indexed by

u and θ, parameters over which the mixing does and does not take place, respectively;

3) some initial guess at the mixing density over mixing parameters u, p0,θ(u), acting

as a prior; and 4) some sequence of weights w1, ..., wn, often taken to be of the form

wi = (i+ c)−γ; the mixing density pi,θ can be found for i = 1, ..., n by

pi,θ(u) = (1− wi)pi−1,θ(u) + wi
k̃θ(yi|u)pi−1,θ(u)

fi−1,θ(yi)
, (4.2)

where

fi−1,θ(y) =

∫
k̃θ(y|u′)pi−1,θ(u

′)µ(du′). (4.3)

The quantity fi,θ is an estimate of the mixture density from which the data are

drawn, technically a conditional mixture density given θ. While useful as an online

or sequential filter, we use PR here by recursing through all n observations and

only retaining the final mixing density, pn,θ, and mixture density, fn,θ. Permuting

the data many times, running the algorithm on each sequence, and averaging the

mixing distributions over all orderings essentially eliminates PR’s dependence on the

ordering of the data (Tokdar et al., 2009).

4.1.2 Predictive Recursion Marginal Likelihood

As functions dependent on θ, the algorithm presented in equations 4.2 and 4.3 can be

classified under the Predictive Recursion Marginal Likelihood umbrella introduced

in Martin and Tokdar (2011). Their paper discusses approximating the marginal

likelihood for θ by

LMn (θ) =
n∏
i=1

fi−1,θ(yi) (4.4)
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and then maximizing the marginal likelihood θ̂ = argmaxθ∈ΘL
M
n (θ). Their estimate

for the standard error of θ is obtained via Laplace approximations, where the cur-

vature of LMn (θ) at its maximum is approximated as part of their PRML-gradient

algorithm. We do not take an optimization approach, but rather set a prior on θ and

incorporate the approximate likelihood into a marginal, Bayesian posterior over θ.

To our knowledge predictive recursion has not been used in a heavy-tailed context

thus far. Nor are we aware of previous usage of the predictive recursion algorithm

over bounded spaces, as our [0, 1] bounded interval will need.

4.2 Model

4.2.1 Kernel

The kernel k̃ used in the mixture model is defined by the product of two kernels,

k̃θ(·|u) = gθ(·)k(Gθ(·)|Ψ). A generalized Pareto distribution (GPD) is used for gθ;

its corresponding distribution function is represented by Gθ. The parameters of θ =

{ν = 1/ξ, σ} correspond to the power of the decay (the reciprocal of the tail index)

and the scale parameter of the GPD respectively. The family of normal distributions

truncated to the fixed interval [0, 1] is used for the second kernel, k(·|Ψ). Truncated

normal densities have a range strictly between (0,∞) and therefore, when mixed

together to create h, maintain the boundary constraint necessary for implementation

of the extreme value framework explained in Section 1.5. Each truncated normal

kernel has parameters Ψ = (µ, β) representing its pre-truncation mean and standard-

deviation (also called bandwidth in this chapter), respectively.

4.2.2 Priors

The priors for θ, comprised of ν and σ, of the GPD are the same as those used in

Chapter 3 and pictured in Figure 3.1 of that chapter. The prior for ν, ln(ν − 0.5) ∼

Logis(2, 1), puts prior mass over heavy-tailed values. The prior for σ is independent
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Figure 4.1: Prior predictive mean for nonparametric density, jointly over µ and β
and also conditionally for a few bandwidth, β, values.

of ν and is a half-Cauchy distribution with scale elicited from the user’s knowledge of

the data mean, ỹ, specifically σ ∼ HC(3/4× ỹ). As before, the prior for parametric

θ is assumed to be independent of nonparametric h(τ).

The priors for truncated normal kernel parameters Ψ, comprised of µ and β,

are defined jointly by π(µ, β) = π(µ|β) · π(β). As in chapter 3, the prior over

bandwidths is an InverseGamma(shape=0.01, rate=0.0005) truncated to an upper

boundary of 1. This results in a median bandwidth of 0.166. Over its [0, 1] sup-

port, a truncated normal kernel with µ = 0.5 begins to look very uniform when

β is large. Truncating β at 1 helps to avoid having many integration evalua-

tion nodes with redundant uniform-like truncated normals feeding into the non-

parametric density estimate. Given bandwidth β, the prior for center µ is µ|β ∼

TrunNormal(mean=0.5, sd=0.5, a=−β/2, b=1 +β/2). Conditioning this truncated

normal on β allows the kernel centers (their modes) to exist half a standard-deviation

outside the [0, 1] interval, which in turn allows the nonparametric density estimates

to “go up” at the boundaries. It also prevents computational loss of numerical sig-
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nificance that can occur if the mean, µ, falls many bandwidths, β, outside of the

interval [0, 1] where the data live. Figure 4.1 shows that the resultant mixture den-

sity prior is not quite uniform, though it is close, peaking in the middle and biasing

slightly downward at the boundaries. Coupling this near-uniform mean with high

prior density over small bandwidths should encourage global flatness while allowing

for local adaptation.

4.2.3 Joint Posterior

From an empirical Bayes view, the PR mixing distribution pn,θ(Ψ) can be thought of

as the posterior for Ψ conditional on θ, π(Ψ|θ, Y1:n). As mentioned in Section 4.1.2,

the marginal likelihood is approximated by LMn (θ) =
∏n

i=1 fi−1,θ(yi). Incorporating

prior π(θ) into a simple application of Bayes theorem gives the approximation to the

marginal posterior for θ up to a normalizing constant:

π(θ|Y1:n) ∝ LMn (θ) · π(θ). (4.5)

The joint posterior across all transformation and mixing parameters is then easily

obtained by π(Ψ, θ|Y1:n) = π(Ψ|θ, Y1:n) × π(θ|Y1:n). And a posterior predictive can

be found via

π(Yn+1|Y1:n) = fn(Y ) =

∫ {∫
k̃θ(y|Ψ)π(Ψ|θ, Y1:n)dµ(Ψ)

}
π(θ|Y1:n)dν(θ) (4.6)

Integrating the joint posterior over θ provides insight into the marginal pos-

terior over mixing parameters: π(Ψ|Y1:n) = pn(Ψ) =
∫
θ
π(Ψ|θ, Y1:n)π(θ|Y1:n)dν(θ).

This becomes useful for looking at the posterior predictive of the nonparametric,

truncated-normal kernel mixture density, hn(τ) =
∫
k(τ |Ψ)pn(Ψ)dµ(Ψ), if desired.

4.3 Computation

Computation is performed in R with calls to C to perform the PR recursions. This

section details and justifies additional computational decisions related to the PR
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algorithm, such as the method of numerical integration and the choice of recursion

weights; approximations made to the marginal posterior over θ; and decisions related

to estimating posterior quantities along with their uncertainty intervals.

4.3.1 Numerical Integration

Each recursive update of the mixture density fi in PR requires an integral to be

calculated over the kernel’s mixing parameters, in this case over the truncated

normal mean and standard deviation (µ, β). Numerical integration via Gaussian

quadrature—or “cubature” as it is sometimes called for more than one dimension,

as we have—is used.

The mvQuad package from R is used to obtain Gauss-Leguerre knots or grid-points

and associated weights over [0, 1] intervals for each parameter. Transformations

coming from the prior quantiles (or inverse CDFs) take the integrals from [0, 1]×[0, 1]

back to the joint domain: 0 < β < 1 with −β/2 < µ < 1 + β/2. The choice of the

prior-quantile transformation also allows the prior described in Section 4.2.2 to be

defined simply as a uniform distribution over the [0, 1]× [0, 1] domain.

While a two-dimensional product grid is easy to setup for quadrature, it is not

particularly efficient for our setting. In order to capture spikes or multimodality in the

nonparametric density, it is desirable to have many narrow kernels evaluated in the

grid; however, wide kernels evaluated at the same centers as the narrow kernels would

overlap a lot with other wide kernels and be redundant. Consequently, we implement

an irregular grid to increase computing efficiency: a denser grid is used for smaller β

bandwidths and a sparser grid is used for larger β bandwidths. The irregular spacing

of the Gauss-Leguerre knots prevents precise discussion of the placement of kernel

means, µ, but generally speaking, for given β, the number of grid points is selected

so that kernels overlap by about two standard deviations or bandwidths.
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4.3.2 Predictive Recursion Weights

Weight sequences of the class wi = (i + c)−γ with γ ∈ (1/2, 1] are suggested in

the PR literature. Specifically, Martin and Tokdar (2009) prove PR convergence in

total variation to the true mixture distribution, when appropriately specified, and

convergence to the mixture which minimizes Kullback-Leibler distance when the

model is misspecified and does this for γ ∈ (2/3, 1]. With little guidance given in

the literature about how to choose c or γ, empirical evaluation guides our choice of

appropriate values.

The value c performs a role similar to the precision parameter in a DPMM. If c is

set too low (e.g. 0.5 or 1), the prior washes out quickly from the PR estimation and

produces no shrinkage towards the prior. If set too high (e.g. 106), the posterior is

biased towards the mean shown in Figure 4.1. Moderate values (c = n/10) encourage

shrinkage towards the nonparametric prior mixing values. An empirical evaluation

across a variety of target shapes shows that γ = 1 weights increase the variability

in estimated h across the [0, 1] interval. Variance decreases for decreasing γ up to a

point, but by γ = 0.5 unwanted bias and some associated variability are introduced.

Ultimately, γ = 0.66 is used as a compromise in the bias-variance trade-off.

4.3.3 Discretization of Marginal Prior

The notion of an approximate marginal posterior over θ = {ν, σ}, π(θ|Y1:n), was

introduced in Section 4.2.3. For practical computing reasons (e.g. to avoid MCMC

or otherwise evaluating the normalizing constant for the posterior), the marginal

prior and posterior are evaluated over a finite, discretized two-dimensional product

grid. The default evaluation points are determined by prior quantiles of ν and σ,

and prior probabilities are determined at each evaluation point from the cumulative

prior probabilities within a bounding box surrounding the point. Heat maps of the

marginal posteriors provide insight into where posterior probability lies and may
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prompt changes to the evaluation grid to “zoom in” on areas of higher probability.

In addition to the default-prior quantile grid, the R code supports a square product

grid over user-supplied independent sequences for ν and σ, which may be equispaced

or non-equispaced.

As a consequence of using a square grid for ν and σ, it is possible that large regions

of the grid have very low posterior probability. To speed up computation of posterior

quantities (see next section), after the marginal posterior has been be computed, grid

points with low posterior probability can be removed and the remaining posterior

renormalized. This thresholding ability is also built into the R code.

4.3.4 Estimation Including Uncertainty Intervals

Estimates for the posterior predictive sampling density and distribution functions can

be found as outlined in Section 4.2.3 by integrating over θ and Ψ. The discretization

of θ makes this straightforward, as posterior mean estimates are probability-weighted

sums of conditional fn,θ(y) or Fn,θ(y) over all θ.

Conditional quantiles F−1
n,θ (p) for quantile level, p, are found by linear interpola-

tion at the nonparametric-distribution level. That is, for some dense τ -prediction grid

and corresponding estimated Hn,θ(τ), the linear interpolant H−1
n,θ(p) is sent through

the parametric transformation, G−1
θ (·), to get composite F−1

n,θ (p) = G−1
θ (H−1

n,θ(p)).

Interpolation error is reduced by performing the interpolation over nonparametric

H rather than the power-law-influenced F directly. Posterior means of predicted

quantiles can then be found by weighting conditional F−1
n,θ (p) by marginal posterior

probabilities π(θ|Y1:n). Separate marginal estimates for ν and σ can be calculated as

π(θ|Y1:n)-weighted sums of ν and σ over θ, if desired.

Interval estimates for the quantities mentioned above—marginal estimates for ν

and σ and posterior predictives for the sampling density, distribution, and quantile

functions—also require weighting across the discrete marginal posterior probabili-
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ties π(θ|Y1:n). We choose a sample-based, weighted-quantile form which linearly-

interpolates (pk, x), where x is a vector of ordered observed values; w is a vector

of x-ordered observed weights; k is a vector of cumulative (x-ordered) weights; and

pk = (k − w/2)/n. This weighted quantile function, in some ways the weighted

analogue to R’s sample quantile function with “type = 5”, provides a conservative

(wide) interval while still providing low bias under a variety of weighting scenarios.

However, these weighted quantiles only account for posterior uncertainty across θ

and not uncertainty across the mixing parameters Ψ from the predictive recursion.

Estimating uncertainty intervals from PR is not as straightforward as it would be

if Ψ were estimated via MCMC; PR, by its nature, only provides the mean of the ap-

proximated DPM distribution. While the PR theory proves asymptotic consistency

for the mixing distribution Ψ, it technically does not yet cover the pointwise consis-

tency for the mixture distribution. Dixit and Martin (2019) argue that permutation-

based approximations to the sampling distribution, which are already calculated to

reduce the algorithm’s dependence on the data ordering, can also be used to pro-

vide interval estimates for the PR mixture distribution, i.e. through approximate

100(1 − α)% confidence intervals based on repeated sampling. Their numerical re-

sults show that nominal interval coverage is approximately valid in regions where the

sampling density has low curvature but that it can depart significantly from nominal

levels in regions where the sampling density has high curvature.

Posterior uncertainty from θ is incorporated using weighted quantiles and Ψ-

PR uncertainty is captured using permutation variability as suggested in Dixit and

Martin (2019). There are several ways in which marginal θ posterior probabilities

and permutations can be incorporated into joint mixture-density interval estimates:

1. Weighted-Quantiles of Mixture-Means. The conditional mixture distributions

are averaged across permutations, and the marginal θ posteriors are averaged
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Figure 4.2: Comparison of three options for obtaining posterior credible interval
estimates of the density function, each incorporating the marginal-θ variability and
the conditional-PR-mixture-density variability.

across permutations. Joint mixture density intervals are calculated, pointwise

across x, as weighted quantiles of the mean mixing distribution, weighted by

the mean marginal posterior.

2. Permutation-Quantiles of Weighted-Densities. The per-permutation condi-

tional mixture distributions are weighted by their respective per-permutation

marginal θ posteriors to get per-permutation joint mixture distributions. Joint

mixture density intervals are calculated, pointwise across x, as (unweighted)

quantiles across the per-permutation joint mixture distributions.

3. Weighted-Quantiles of Permutation-Mixtures. Joint mixture density intervals

are calculated, pointwise across x, as weighted quantiles of the per-permutation

conditional mixture distributions, weighted by their respective per-permutation

marginal θ posteriors.

Figure 4.2 shows interval widths divided by truth under the three proposed
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Table 4.1: Simulation scenario sample size, ν-σ bounding box, number of evaluation
points in ν-σ grid, number of integration nodes in µ-β grid (number of β bandwidths),
and time to run each dataset in minutes while distributing ν-σ pairs across six cores.

Simulation Scenario n ν-σ box ν-σ grid µ-β (β) time

Standard GPD 1,000 (1, 9)× (0.2, 2.4) 41× 45 = 2214 250 (8) 0.98
Half-t 1,000 (2, 13)× (0.3, 1.7) 45× 29 = 1305 250 (8) 0.67
Fourth-power GPD 1,000 (1.5, 12)× (0.3, 4.8) 36× 31 = 1116 250 (8) 0.58
Gamma-GPD mixture 1,000 (1.2, 14)× (1, 6) 33× 34 = 1122 498 (15) 1.09
Half-t-normal mixture 2,000 (1.5, 12)× (0.5, 4.5) 36× 27 = 972 250 (8) 2.47
Spliced gamma-GPD 5,000 (3.5, 18)× (0.9, 2.2) 30× 27 = 810 250 (8) 2.80

joint interval methods for a single jointly-estimated dataset coming from a standard

GPD distribution, using 200 permutations. The permutation-quantiles of weighted-

densities have wider relative intervals in the bulk of the distribution than do the

weighted-quantiles of mixture-means; however, in the tails, their relative interval

widths are narrower than the weighted-quantiles of mixture-means. The weighted-

quantiles of permutation-mixtures seem to capture the width in both the bulk and

the tail of the density, so we use this approach throughout.

4.4 Simulation Study

Chapter 2 introduces six simulation scenarios that are reused here to test the predic-

tive recursion model for the extreme value transformation framework. As in previous

chapters, the method under consideration (PRMP) is compared to maximum likeli-

hood estimates for a GPD or an extended GPD (EGPD) under various truncations

primarily on the basis of their tail-index bias and interval coverage and on their

upper-tail quantile bias and RMSE.

4.4.1 Simulation Settings

For each dataset, 20 permutations were employed to reduce dependence on data

ordering and to estimate variability. Several datasets were fit for each scenario using
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the default, prior-quantile grid in order to give an idea of the bounding box needed

to capture the posterior mass without spending computing power on regions of near-

zero probability, and an appropriate ν-σ region was selected and fixed for all datasets

within the scenario. Grid resolutions over the integrating Ψ were also modified per

scenario. Most scenarios were evaluated with eight β bandwidths and 250 total

integration evaluation nodes; however, fifteen bandwidths with corresponding 498

µ-σ nodes were used for the gamma-GPD mixture, where the nonparametric density

was anticipated to be multimodal. Table 4.1 summarizes the settings used. In

practice, a user can increase the grid size for either Ψ or θ until the results don’t

change between resolutions or until computational resources are exhausted.

4.4.2 Simulation Results

In this section we consider the aggregate results across all six simulation scenarios by

topic: computational speed, ν-σ marginal posteriors, lower-tail and bulk results, tail-

index results, upper-tail quantile-estimation results, and full-distribution quantile

interval coverage. Maximum likelihood results for GPD and EGPD are included in

plots and tables for reference when comparing tail results but discussed only lightly,

as compared to PRMP. For elaboration on why maximum likelihood does well or

poorly in various scenarios, see discussions in Subsection 2.3.3 of Chapter 2.

Computational Speed

Computational speed for the PRMP is affected by sample size, number of permu-

tations, number of integration evaluation points over the Ψ grid, and number of

evaluation points over the discretized θ grid. Table 4.1 includes the average time in

minutes that the PRMP takes to run the scenario for a single dataset, distributing

the conditional θ evaluations across six cores. These range from 0.58 minutes for the

fourth-power GPD scenario (n = 1,000 and approximately 1,100 θ grid points) to 2.8
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minutes for the spliced gamma-GPD scenario (n = 5,000 and approximately 800 θ

grid points).

Marginal Posteriors

The marginal posteriors across scenarios are sensitive to the choice of PR weight

sequences. Specifically, when c, the analogue to a DPMM precision parameter de-

scribed in 4.3.2, is fixed at too-small or too-large of values, undesirable effects appear

in both the estimation of θ and h. The sequence of plots in Figure 4.3 (split across

two pages) elucidate these effects using a single representative dataset from the half-t

scenario by considering c ∈ {0.5, 10, 50, 100, 1000, 100000}.

In the heat maps for marginal θ (left plots of Figure 4.3), large spread is seen

across σ when c = 0.5. This spread decreases and the 99.9% HPD region for the

θ marginal contracts as c is increased to 10 and again as c is increased to 50. The

conditional h densities needed for large-σ tend to put high density at the zero end of

the τ range and low density near τ = 1. This shows up in the corresponding marginal

h posteriors (right plots) as intervals that go well above 1 at τ = 0 and extend down

to 0 at τ = 1. Conversely, smaller values of σ can result in conditional h pushing its

mass towards the τ = 1 boundary. In practice, for these small values of c, so much

variability exists across the parts of the joint model that quantile intervals widen to

the point of becoming essentially meaningless for extrapolation purposes.

When c is small (e.g. c = 0.5 or c = 10 in the illustrated example), the prior over

Ψ washes out quickly from the PR conditional estimates, and h is heavily influenced

by default DPM behavior, favoring the fewest clusters possible. Increasing c starts

to put more weight on the Ψ prior. The effect of this can be seen in Figure 4.3 (see

c = 50 and c = 100) as estimates for marginal h begin to tighten and variability

decreases across σ in the marginal θ posterior. For even larger c (see c = 1,000 and

c = 100,000), the conditional mixture density estimates start to bias towards the prior
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Figure 4.3: Each row of plots corresponds to estimates for dataset 1 of the half-t
scenario under different values of c used in the PR weights wi. (Figure continued
on next page.) Left: Discrete marginal posteriors over decay power, ν, and scale, σ.
Reds show areas of highest probability and yellow shows regions of lower probability.
Subtitles show marginal 95% credible intervals; color displays 99.9% bivariate HPD
region; and contours ring areas of highest probability. Middle: Medians and 95%
intervals for h when conditioned on MAP of marginal θ. Right: Marginal medians
and 95% intervals for h, integrating across θ.
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Figure 4.3: Each row of plots corresponds to estimates for dataset 1 of the half-t
scenario under different values of c used in the PR weights wi. (Figure continued from
previous page.) Left: Discrete marginal posteriors over decay power, ν, and scale, σ.
Reds show areas of highest probability and yellow shows regions of lower probability.
Subtitles show marginal 95% credible intervals; color displays 99.9% bivariate HPD
region; and contours ring areas of highest probability. Middle: Medians and 95%
intervals for h when conditioned on MAP of marginal θ. Right: Marginal medians
and 95% intervals for h, integrating across θ.
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Table 4.2: Relative bias (bias / truth) for each PRMP scenario at the median,
p = 0.5, representative of the bulk, and at p = 0.00001 quantile level, which for each
scenario had the largest relative bias in the lower “tail.”

Simulation Scenario Median Lower-tail

Standard GPD 0.0061 0.132
Half-t 0.0022 0.082
Fourth-power GPD -0.0022 -0.994
Gamma-GPD mixture -0.0019 0.119
Half-t-normal mixture 0.0000 0.074
Spliced gamma-GPD 0.0030 -0.032

mixture density mean, resulting in biased marginal h densities and correspondingly

biased marginal θ posteriors.

Evaluation of each simulation scenario at c = 0.5 showed multimodality or long-

σ tails in the marginal-θ posteriors of the half-t, gamma-GPD mixture, and spliced

gamma-GPD scenarios. Aided by these empirical evaluations, c was set to n/10

across scenarios, acknowledging that c is only large or small relative to sample size n.

This results in unimodal marginal-θ posteriors for all scenarios. Figure 4.4 contains a

marginal posterior over discrete ν and σ for each scenario, using a single, representa-

tive dataset displayed over its bounding box. Permutations within a dataset tend to

follow the pattern of the overall average, as opposed to having certain permutations

with high probability in one area and other permutations with high probability in

another area.

PRMP Lower-tail and Bulk Results

The primary focus of analysis is on tail estimation; however, Table 4.2 is included to

summarize PRMP relative bias (bias / truth) for each scenario at the median as well

as at the lower quantiles’ point of highest relative bias, which in each scenario occurs

at the smallest estimated quantile level, p = 0.00001. Simulations are essentially

unbiased for the median; the largest relative bias among the six scenarios is 0.0061.
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Figure 4.4: Discrete marginal posterior examples over decay power ν and scale σ.
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The fourth-power GPD has the poorest lower-tail relative bias, under-estimating the

0.00001 quantile by nearly 100%. This happens, in part, because the PRMP inherits

its strictly positive density at 0 from the GPD base gθ, whereas the true value

f(0) = 0. This results in PRMP hitting its 0.00001-level quantile at much smaller

values than the true fourth-power GPD. A similar under-estimation of quantile bias

can be seen in the spliced gamma-GPD, which truth also has a single mode pulled

away from the boundary. While both true f(0) > 0 and also gθ(0) > 0 for this

scenario, the nonparametric density does an insufficient job scaling down the GPD

transformation density in the lower tail, resulting in too-large estimates of the density

and correspondingly too-small estimates of the lower quantiles. The standard GPD

and gamma-GPD mixture, both with bulk GPD distributions, seem to have the

opposite problem; they underestimate the density near 0 leading to overestimates of

the quantiles with 13.2% and 11.9% relative bias, respectively.

Tail-Index Estimation

Turning to tail-index estimation, Table 4.3 shows that in all but the standard GPD

scenario, PRMP underestimates the tail index. In all but the spliced gamma-GPD

scenario, where the PRMP is biased with too-narrow widths leading to 0% coverage,

the PRMP tail index interval widths are narrower and have better coverage than

their ML counterparts that require thresholding.

A special note is due to the gamma-GPD mixture scenario, where PRMP does a

good job of capturing the tail index in comparison to the GPD or EGPD truncations.

This is likely because the true “bulk,” which is actually a GPD, informs the tail-index

estimation despite its “contamination” by gamma-component observations. This

could be indicative of how the model would perform if applied only to truncated tail

values in a data-rich scenario where some of those tail observations are suspected to

come from an alternative non-heavy-tailed processes.
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Table 4.3: Simulation tail-index results. Tables includes mean tail-index estimates
for each method and coverage of 95% confidence or credible intervals, i.e. proportion
of intervals across simulated datasets that contain the true tail-index.

Standard GPD
Method Mean Width Cover
Truth 0.25
GPD 5% 0.19 0.73 0.94
GPD 10% 0.25 0.52 0.95
GPD 20% 0.26 0.35 0.97
GPD 100% 0.25 0.15 0.93
EGPD 5% 0.17 0.94 0.94
EGPD 10% 0.22 0.63 0.95
EGPD 20% 0.26 0.43 0.93
EGPD 100% 0.25 0.18 0.94
PRMP 100% 0.29 0.26 0.97

Half-t
Method Mean Width Cover
Truth 0.25
GPD 5% 0.18 0.72 0.92
GPD 10% 0.18 0.47 0.91
GPD 20% 0.16 0.32 0.79
EGPD 5% 0.19 0.92 0.93
EGPD 10% 0.20 0.59 0.88
EGPD 20% 0.17 0.39 0.86
PRMP 100% 0.19 0.18 0.91

Fourth-power GPD
Method Mean Width Cover
Truth 0.25
GPD 5% 0.18 0.72 0.88
GPD 10% 0.21 0.50 0.92
GPD 20% 0.21 0.34 0.90
EGPD 5% 0.19 0.93 0.88
EGPD 10% 0.20 0.61 0.89
EGPD 20% 0.22 0.41 0.89
PRMP 100% 0.22 0.21 1.00

Gamma-GPD mixture
Method Mean Width Cover
Truth 0.25
GPD 5% 0.43 0.78 0.92
GPD 10% 0.25 0.43 0.87
GPD 20% 0.01 0.78 0.07
EGPD 5% 0.50 0.95 0.85
EGPD 10% 0.32 0.51 0.90
EGPD 20% 0.11 0.25 0.48
PRMP 100% 0.21 0.25 1.00

Half-t-normal mixture
Method Mean Width Cover
Truth 0.25
GPD 5% 0.18 0.48 0.87
GPD 10% 0.17 0.32 0.80
GPD 20% 0.12 0.21 0.38
EGPD 5% 0.17 0.59 0.89
EGPD 10% 0.19 0.40 0.90
EGPD 20% 0.14 0.26 0.63
PRMP 100% 0.23 0.19 0.98

Spliced gamma-GPD
Method Mean Width Cover
Truth 0.25
GPD 5% 0.23 0.31 0.94
GPD 8% 0.24 0.25 0.95
GPD 13% 0.21 0.18 0.85
EGPD 5% 0.22 0.38 0.93
EGPD 8% 0.24 0.30 0.94
EGPD 13% 0.24 0.22 0.96
PRMP 100% 0.10 0.08 0.00
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Upper-tail Quantile Estimation

In all six of the simulations, PRMP exhibits positive bias in the tails, as can be seen

in the relative bias plots of Figure 4.5. The biases can be large, even for levels where

there should be some informing data, e.g. p < 0.999. The bias in GPD and EGPD

over these data-informed quantile levels is small in comparison.

Despite these biases, the PRMP performs better than GPD or EGPD in RMSE

for several scenarios, as can be seen in the plots of Figure 4.5. In the standard GPD

scenario, PRMP does not do as well as ML for either the GPD or EGPD that retain

all 100% of the data, but it has consistently lower RMSE across all tail levels p > 0.9

for any of the truncations considered. The bias in the half-t scenario translates to

high RMSE in the 0 < p < 0.999 range, but in extrapolation (p > 0.999) PRMP still

has lower RMSE than the truncation methods. The fourth-power GPD scenario has

lower RMSE than the truncation methods across essentially all tail levels.

The remaining three scenarios (Figures 4.5d, 4.5e, 4.5f) do poorly in comparison

to the GPD and EGPD methods across most tail levels, except in the highest levels

of extrapolation (≈ p > 0.999), where they start to exhibit slight advantage. This

is true, even for the gamma-GPD mixture scenario, which had success in estimating

the tail-index parameter, indicating that the problem might lie with the scaling of

the nonparametric density estimation. This requires further exploration.

Table 4.4 shows the proportion of mean squared error (MSE) that is attributable

to squared bias at p = 0.9999 in each scenario. Contrary to what might be expected

for estimation in a scarce-data, tail scenario, variance does not necessarily dominate

the MSE, but rather bias contributes a large proportion. This is true for all but

the fourth-power GPD, which is unique among the scenarios in that its preferred

nonparametric shape has a positive slope at the right-hand boundary. Taking a closer

look at the conditional nonparametric densities, we notice PR can have difficulty
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(b) Half-t scenario
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(c) Fouth-power GPD scenario
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Figure 4.5: Upper-tail, quantile-extrapolation with p on log scale. Left panel
shows relative bias (bias / true quantile value); right panel shows ratio of PRMP
100% RMSE to other methods’ RMSE, i.e. ratios greater than 1 indicate that other
methods have lower RMSE than PRMP.
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(d) Gamma-GPD mixture scenario
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(e) Half-t-normal scenario
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(f) Spliced gamma-GPD scenario
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Figure 4.5: Upper-tail, quantile-extrapolation with p on log scale. Left panel
shows relative bias (bias / true quantile value); right panel shows ratio of PRMP-GP
100% RMSE to other methods’ RMSE, i.e. ratios greater than 1 indicate that other
methods have lower RMSE than PRMP.
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Table 4.4: Proportion of mean squared error attributable to (squared) bias at p =
0.9999.

Simulation Scenario Proportion

Standard GPD 0.450
Half-t 0.415
Fourth-power GPD 0.061
Gamma-GPD mixture 0.822
Half-t-normal mixture 0.437
Spliced gamma-GPD 0.415
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Figure 4.6: Example nonparametric estimates along with permutation-based 95%
intervals (blue), given ν and σ at their marginal MAPs. True nonparametric distri-
bution, given the same ν-σ pair, is given in black.
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capturing rapid drop-offs in the nonparametric density in the right-hand tail. For

instance, Figure 4.6 shows an example of an estimated nonparametric PR density

(blue) conditioned on the ν and σ pairs which maximize the marginal-θ posterior.

For comparison, the true nonparametric density that is needed, again given the

MAP ν and σ estimates, is plotted in black. The boundary bias decreases with

increasing sample size, but at sample sizes that we might want to consider (e.g. 500 <

n < 50,000) the biases are still readily apparent. If each conditional nonparametric

density is poorly estimated, some positive bias will cancel with negative bias when

weighted across the θ marginal posterior, but the joint estimates may still be biased,

as seen across scenarios in Figure 4.5.

The PR boundary bias may be due in part to 1) the locally-symmetric nature of

the truncated normal mixing kernel and 2) the inherent nature of there being less

data near the boundary. These two problems are simultaneously visible in the half-t

plot of Figure 4.6, where the estimate (blue) follows the truth (black) well in the

0.8 to 0.9 region but poorly in the 0.9 to 1.0 region. PR gets its shape near 1 from

the wide kernels defining the global shape of the nonparametric density, failing to

use local narrow-bandwidth kernels to capture the boundary drop. In other words,

PR favors the shape needed to fit the data-rich interior values over the shape needed

in data-poor boundary region. Additionally, because the kernel is locally symmetric

about µ, there is no dispensation for the density to the right of the mode to fall off

differentially to the density left of the mode: the tail is again overwhelmed by the

bulk. We address potential remedies to this in the conclusions.

Quantile Interval Coverage

While quantile interval coverage has not been a highlighted objective of this work,

we take a moment to make some general observations about the intervals. For mid-

range quantile levels (0.20 < p < 0.80), the quantile interval coverage falls in the
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90% to 100% range across scenarios. The lower quantiles p < 0.20 tend to have the

worst coverage, dropping to essentially 0% at p = 0.00001 for the fourth-power GPD

and into the 55% to 90% range for the other scenarios. The upper tails fare better

in quantile coverage than the lower tails but still drop from their mid-quantile-level

highs. After an initial drop, they rebound into the extreme-most tails. This rebound

is likely due to a boost in variance from estimating the tail-index parameter. Two of

the scenarios have notable drops and rebounds. The spliced gamma-GPD drops from

97% at p = 0.9 to 6% at p = 0.98 before rebounding to 77% at p = 0.9999, and the

gamma-GPD mixture drops from 92% at p = 0.9 to 0% at p = 0.98 before rebounding

to 92% at p = 0.9999. Some of the decreased coverage across quantile levels may be

due to reduced permutation variability in areas with high curvature in the densities

being estimated (see Section 4.3.4); but if this were fully the case, a scenario such

as the gamma-GPD mixture should have a local coverage minimum near p = 0.86,

where the true density hits its local mode from the gamma component of the mixture.

Instead it sees its poorest coverage at p = 0.98. Ultimately, we believe the decreased

coverage in both tails is, again, attributable to the finite-sample boundary biases of

the nonparametric density estimates.

4.5 Discussion and Conclusions

In this chapter, we have developed a fully-Bayesian model for univariate density es-

timation in the presence of heavy tails using a parametric transformation framework

coupled with a nonparametric predictive recursion approximation to the Dirichlet

process mixture model. The PR model proposed for h, which depends upon a trun-

cated normal mixing kernel over [0, 1], exhibits undesirable boundary bias for the

finite sample sizes considered in simulation, affecting all aspects of tail estimation.

One might think that excluding larger bandwidth β values from the prior for the

truncated normal kernel (i.e. truncating the inverse-gamma prior at a value less than
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1) would encourage the nonparametric density to use its small bandwidth kernels

to capture boundary drops in the nonparametric density. Preliminary results show

that while this restricted prior does reduce some boundary bias, it also increases

the variability of the nonparametric estimator, h(τ), across the rest of τ . A second

consequence is that the prior, and thereby the posterior, loses mass over its most

uniform-like kernels. Nonparametric h, without this guidance, piles onto one side of

τ or another, resulting in problems similar to those seen in Section 4.4.2 with small c.

Giving weight to an appropriately-crafted prior turns out to be important to avoid

this problem when estimating under the extreme value transformation framework.

An alternative approach to addressing the bias while staying within the PR con-

struct may be to use an asymmetric kernel for the mixture distribution. For example,

the uniform-beta-mixture distribution p+ (1− p)Beta(a, b) has the requisite bound-

ary constraints needed for the extreme-value framework, provided p > 0, a > 1 and

b > 1. Unfortunately, that kernel uses three parameters, complicating the Gaussian

quadrature used for numerical integration. Alternately, a simple Beta(a, b) kernel

with a ≥ 1, b ≥ 1 could be used, provided that the mixing distribution induces non-

zero posterior mass at a = b = 1 through a point-mass in the prior. Better yet,

independent point masses at a = 1 and b = 1 would allow for kernels that exceed

1 at the boundaries, as well as for the uniform kernel. The PR theory supports

continuous-atomic-mixture priors, though the implementation would be tricky over

two dimensions.

A strength of the PRMP approach lies in its ability to characterize the marginal

posterior over θ and to do so quickly. This helped elucidate the interplay between

θ and h in the joint estimation and clarify the need for a strong prior over the non-

parametric densities. While all scenarios in this chapter are unimodal in θ, it is also

conceivable that a marginal density might be multimodal. For instance, if applying

the transformation framework to data over the full real line, one might wish to add
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a location parameter to the transformation density. Multimodality in the sampling

distribution could easily lead to multimodality in the marginal distribution with

separation occurring as the location parameter locates each sampling-density mode.

PRMP marginal posterior plots would be helpful in diagnosing such multimodality.

The computational speed of the PRMP makes it a powerful tool for first-blush

analysis under the data-retaining, extreme-value transformation framework. While

this analysis makes us wary of relying exclusively on PRMP for tail quantile estimates

because of bias in the lower tail, the overall PRMP approach shows promise, espe-

cially in reducing RMSE in extreme-value extrapolations. Additionally, the marginal

posterior plots can be utilized as a tool to diagnose posterior multimodality. This

information may prove useful in informing alternative models, especially those re-

lying on computationally-intensive MCMC sampling methods. Chapter 5 applies

this and the other models of this dissertation to rainfall data, and Chapter 6 com-

pares the results of PRMP to the MCMC-sampling-based approaches of the LGP

and DPMM/FMM models.
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5

Rainfall Application

This chapter provides a short illustration of how the models of this dissertation can be

applied to real data. The LGP model (Chapter 2), the FMM approach (Chapter 3),

and the PRMP approach (Chapter 4) are used to model rainfall accumulation data

collected daily at a site in south-west England. For comparison, the tail estimates

from the three dissertation models are compared to three other methods: 1) max-

imum likelihood GPD estimation using a visually-selected threshold, 2) maximum

likelihood EGPD estimation of Papastathopoulos and Tawn using a visually-selected

threshold, and 3) EGPD2 of Naveau et al. (2016), which was specifically designed to

model rainfall with all data included.

5.1 Data

We consider the rain data from R’s ismev package. The full dataset represents

daily accumulations of rainfall (mm) at a location in southwest England from 1914

to 1962. Forty seven percent of the observations are zeroes, representing days with

no rainfall. Models are fit on the subset of 9,287 non-dry days, i.e. those with greater

than 0 mm of accumulation. Return-levels are adjusted post-hoc to reflect full years
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of dry and non-dry days. Though the data are temporally dependent, they will be

treated as independent observations.

As is often the case with environmental data, these daily accumulations are mea-

sured with rounding error. Many days have just 0.3, 0.5, 0.8, or 1 mm of accumu-

lation, and other small rounded values are very common. The framework itself does

not admit the possibility of point masses, and difficulties arise in implementation

with large number of ties, as the models try to pick up those point masses as well

as the empty space between them, resulting in inadequately-smoothed estimations

of the density function. To overcome this difficulty, we add a small amount of jitter

to the data, uniformly distributing data between their recorded value and the next

largest recorded value (or between recorded value and recorded value + 0.3 mm for

values greater than 0.5 mm from the next largest record) and run all methods on

the jittered data. If the rounding mechanism were known, it could be built into the

likelihood formula for each data point.

5.2 Methods

The mev R package (Belzile et al., 2018) was used to estimate GPD, EGPD, and

EGPD2 tail indices and standard errors, as well as return-levels. The GPD thresh-

old was determined by fitting multiple GPD thresholds and settling on the largest

threshold for which the estimates had stabilized yet still had narrow intervals. For

this estimator, the threshold was set to 27 mm, representing 230 observations or 2.5%

of non-dry days. Similarly the EGPD threshold was set by visual diagnostics over

EGPD fits at multiple thresholds. For the EGPD a threshold of 25 mm was used,

representing 290 observations or 3.1% of non-dry days. The EGPD2 requires no

thresholding; the three-parameter Method 1, which uses a Beta-distribution carrier,

is the model used from among Naveau’s several methods.

Intervals for the tail index of both EGP methods are formed using the stan-
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dard errors provided in the mev package, assuming asymptotic normality. The

return.level function of the R extRemes package (Gilleland and Katz, 2016) is

additionally used to find return-level interval estimates for GPD. Interval estimates

for return levels are not available for the EGPD or EGPD2 in either package.

With plentiful data, n ≈ 9,300, we elect to use 11 knots for the LGP model with

the usual quantile-scaled GPD acting as the parametric transformation distribution.

Otherwise, the same settings used in simulation are again used here. The LGP

method takes 17 minutes to sample 300,000 posterior draws. The first half of these

are removed and estimates are based on 1,500 thinned samples.

With a large sample size, the FMM is more computationally expedient than the

DPMM and therefore used here. Ten mixture model components were employed,

consistent with the log(n) simulations of Chapter 3. The FMM, run under its stan-

dard configuration and parameter settings, takes approximately 8.8 hours to sample

200,000 posterior draws. The first half of these were removed and estimates were

based on 1,500 thinned posterior samples.

The PRMP takes just under 7 minutes to run distributed across 6 cores, using 8

bandwidths (250 integration grid nodes) and a grid of 756 marginal ν-σ combinations.

5.3 Estimates

Density estimates. Figure 5.1 displays a histogram of the data overlaid against den-

sity estimates, including 95% credible intervals, for each of the methods presented

in this dissertation. The plots exclude the tail in order to give a closer look at how

each estimator is behaving in the bulk distribution. The LGP and PRMP models

employ more smoothing over the bulk distribution than does the FMM, which picks

up many peaks in the zero-to-five mm accumulation range.
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Figure 5.1: Application (rain data): histogram overlaid with density estimators
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Table 5.1: Tail-index estimates and 95% intervals for the rain data. Intervals for
the GPD, EGPD, and EGPD2 methods are based off asymptotic normality.

Method Estimate 95% Interval
GPD 0.150 (-0.000, 0.301)
EGPD 0.172 (0.013, 0.332)
EGPD2 0.090 (0.053, 0.120)
LGP 0.132 (0.108, 0.156)
FMM 0.196 (0.160, 0.302)
PRMP 0.154 (0.105, 0.200)

Tail index. The tail-index parameters for each method are included in Table 5.1.

The index for EGPD2 (Naveau’s data-retaining method) is the smallest at 0.090,

and FMM is the largest at 0.196. The GPD and EGPD intervals are wide, spanning

from tail-index values near 0 to near 0.3. The LGP method admits narrowest interval

estimates of the three methods presented in this dissertation, followed by PRMP and

then FMM. FMM puts its mass over the heaviest tail indices, not even overlapping

95% intervals with either EGPD2 or LGP at all.

Return levels. Figure 5.2 shows the estimated 1-, 10-, 100-, and 200-year return

levels (quantile levels p =0.99726, 0.99973, 0.99997, and 0.99999 respectively), along

with 95% prediction intervals, where available. Prediction estimates and intervals are
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Figure 5.2: Application: return levels under all methods
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similar at the 1-year return level across all methods, and point estimates of GPD,

EGPD2, and LGP are all very similar to each other across all return-levels. The

PRMP and FMM point estimates are slightly higher than the other methods for

the longer return times, reflecting their heavier tail-index estimates. The LGP and

PRMP have narrower prediction intervals than the GPD for the 100- and 200-year

returns, both of which require extrapolation beyond the 48 years of observed data.

At those same return years, the FMM intervals are wider than all other methods,

reflecting the skewed heavy tail-index estimates seen previously. Without knowing

the precise location or region that data were collected, we state these estimates

without making effort to compare them to actual daily rainfall in the years subsequent

to collection; however, we do make brief comparison to the in-sample data.

5.4 Model Fit

The empirical quantiles for the sampled non-dry days are compared to their predicted

quantiles in Figure 5.3 for each of the three data-retaining models. For the lower

quantiles, each model follows the 45-degree line closely indicating good fit through

the bulk of the distribution. The LGP predictions maintain their fidelity to the data

in the tail as well, while the FMM and PRMP seem to be slightly overestimating the

upper quantiles; however, the overestimates are not egregious, as a 45-degree line is

still for the most part contained within the 95% prediction intervals. We conclude

that each of the three models does a reasonable job of fitting the in-sample data and

accounting for the uncertainty in its estimates.
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(a) LGP model quantile-quantile plot
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Figure 5.3: Application quantile-quantile plots for the three data-retaining models
with sampled quantiles plotted against estimated quantiles and their associated 95%
prediction intervals.

94



6

Conclusions

A main question of this work has been whether there is enough information in the

likelihood, as specified under the heavy-tailed transformation framework described

in Chapter 1, to estimate the entire sampling density without the tail getting over-

whelmed by the bulk. The results of the previous chapters have shown that the

information in the likelihood is not strong enough by itself for this estimation. How-

ever, when coupled with a carefully specified prior, models employing the framework

have the potential to lower RMSE and improve estimation of predicted tail quantiles

compared to threshold maximum likelihood methods, which allow the tail to “speak”

by separating it from the bulk.

This chapter provides a comparison of the three models developed in this dis-

sertation: the Logistic Gaussian Process (LGP) model of Chapter 2, the Dirichlet

Process Mixture (DPM) model of Chapter 3, and the Predictive Recursion Marginal

Posterior (PRMP) model of Chapter 4. After a high-level review of the similarities

and differences between the models and their computation, we compare the results of

their simulations. The conclusion highlights model features which are needed for suc-

cessful implementation of the transformation framework in heavy-tailed univariate
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density estimation and talks about future directions that this work could go.

6.1 Model Similarities and Differences

This section covers the high-level similarities and differences between the LGP, DPM,

and PRMP models. All three models proceed under a transformation framework for

univariate density estimation in the presence of heavy tails. Namely, a parametric

family of distributions {gθ : θ ∈ Θ} and a nonparametric family of distributions H :=

{h(·)}, constrained such that h are density functions on [0, 1] with ||log h||∞ <<∞

are brought together through F := {f(·) = gθ(·)h(Gθ(·))} for θ ∈ Θ and h ∈ H.

Though the three differ in their handling of h, all three model data Y1, Y2, ...
iid∼ f, f ∈

F using a Bayesian approach. That is, priors are set on θ and h, which then get

estimated simultaneously.

The density gθ, corresponding to the CDF transformation Gθ, must match the

support of the data and admit the possibility of heavy tails. The focus of this

dissertation has been on data over the positive half-real line. Both the LGP and

DPM models use the location-zero GPD(σ, ξ = 1/ν) scaled by the 0.9-level quantile

of GPD(1, ξ) for gθ. The PRMP model uses GPD(σ, ξ) without the quantile scaling.

The DPM and PRMP use the same priors as each other but different priors from

LGP, placing higher probability on slightly larger ν values than LGP and replacing

the improper LGP prior on σ with a proper half-Cauchy prior. Details about these

priors are available in Section 2.1.1 and Section 3.2.1.

For modeling of the nonparametric density, LGP assigns h a logistic Gaussian

process prior over [0, 1]. The prior centers the LGP around a uniform density. Local

adaptivity is achieved by estimating λ, the GP bandwidth parameter. The DPM and

PRMP model h with a mixture density using a truncated-normal kernel over [0, 1].

Priors are selected for the truncated normal parameters so that the mixture density
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prior mean is close to a uniform distribution. Local adaptivity is encouraged by

placing prior probability over small truncated normal bandwidths, β. Both formula-

tions guarantee that h is strictly positive and finite across the entire domain. Details

about priors for these models are available in Section 2.1.2 for the LGP, Section 3.2.2

for the DPM, and Section 4.2.2 for the PRMP.

6.2 Computational Differences

Both the LGP and DPM models (also the finite mixture model, FMM, substituted

in simulation) use MCMC methods to sample from the posterior distribution. The

LGP approximates its infinite curves with a low-rank predictive processes over a

discretized grid and uses an adaptive multivariate sampler to learn the posterior co-

variance between parameters, slowly adapting over many iterations to the learned

information. The DPMM/FMM posterior curves are of themselves infinite; however,

they too rely on approximations through truncation of infinite mixture components

to a finite number of clusters. The PRMP employs a predictive recursion approx-

imation, allowing it to avoid computationally-intensive MCMC sampling methods;

however, it still requires numerical integration over the two parameters from the

truncated normal mixing distribution.

Multimodality of the posteriors is seen across all three models; however, the rea-

son for multimodality differs between models and is tied to the form and parameters

of the nonparametric model. Multimodality of the LGP model is induced when in-

sufficient knots are used in the low-rank predictive process. With too few knots,

θ adjusts until the knots of h can settle near points of low h variability and can

sandwich regions of high h variability. If multiple such sets of θ exist, multimodal-

ity is seen in the posterior, and moving between modes using the adaptive MCMC

sampler is nearly impossible because it requires major adjustments to the mean and

covariance of the Metropolis-Hastings proposal MVN distribution. The problem can
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be eliminated, however, by increasing the number of knots used in the low-rank

predictive process until multiple chains agree to one posterior mode. Usually ten

to twenty knots is sufficient, but more may be necessary. For instance, some mul-

timodality still exists across spliced gamma-GPD replicates of the LGP, indicating

that 21 knots may yet be insufficient to capture the needed drop in h near the right

boundary for datasets in this scenario.

The DPMM and FMM samplers do not have this same form of multimodality, as

the modes in their nonparametric densities can easily shift by changing the kernel

centers µ. Instead their multimodality (or sometimes just long tail regions) is caused

by the mixture model’s preference for sparsity and its adeptness at moving the mass

of h(τ) from one end of τ to the other. This shaping induces multimodality or long-

tails into the posterior because large σ tends to pair with h having mass pushed

up against its zero boundary, while (relatively) small σ tends to pair with h having

probability pushed near 1 and away from 0. Exploration of the PRMP shows that the

mixture-model long-tail spread and multimodality can be overcome by increasing the

prior precision parameter for the Dirichlet process, giving just enough weight to the

prior to overcome the mixture’s natural tendency towards sparsity and to encourage

a flattening of the nonparametric density curve. The LGP approach does not require

this additional injection of prior information since its natural tendency is toward

non-sparsity and uniform nonparametric h shapes.

For LGP, the quantile-scaling of the base density improves convergence of the

MCMC sampler, but the mechanism for this improvement remains an outstanding

question. It could be that the quantile scaling works in harmony with the LGP

to reduce the curvature of the posterior and condense the posterior mass into a

single region, easily located and sampled by LGP’s adaptive sampler. Or it could be

that the quantile scaling induces more curvature into the posterior, similar to the

curvature seen in the mixture models, making the posterior more difficult to traverse
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by the adaptive sampler and ensuring that it only samples a small region of the

posterior. This would be a problem that needs to be remedied. The same quantile

scaling that (at its surface) appears to aid LGP may have a deleterious effect on

the DPMM/FMM, enabling and exaggerating the natural tendency of the mixture

model formulation towards splitting between one end of σ or the other.

6.3 Simulation Comparisons

In previous chapters, simulation studies were used to compare each proposed model

to two maximum likelihood methods (GPD and EGPD) under various thresholds.

Those simulations show the potential for the transformation framework to reduce

RMSE in prediction of tail quantiles beyond what is possible using thresholding,

though with better effect in some scenarios than in others.

In this section, we compare the results of the simulations to each other, seeking

additional insights. The LGP and PRMP were each run on the full suite of six

simulation scenarios (see a full description in Section 2.3.1 of Chapter 2). The FMM

used a reduced set of scenarios, excluding the half-t-normal and spliced gamma-GPD

scenarios; hence, tables and figures throughout this section do not have FMM results

for these two cases.

6.3.1 Marginal Posteriors

Plots of the θ-marginal posteriors from three example datasets for each scenario are

included in Figure 6.2. The posteriors from each of the three models are overlaid

for comparison. Concentric contours, sometimes called isobands, delimit areas en-

closing deciles of posterior probability. The LGP and FMM scale estimates are back

transformed using σ = σ̃/Q0.9(ν̃), where σ̃ are sampled posterior estimates of scale

obtained under the quantile-scaled base gθ and Q0.9(ν̃) are the estimated quantile

scalars. This back transformation makes the LGP and FMM marginals comparable
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Figure 6.1: Posterior marginal distributions over θ for three datasets from each
scenario, comparing the models run for that scenario. Concentric contour lines
(isobands) enclose deciles of posterior probability.
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Table 6.1: Estimated tail indices for each of the three models across scenarios along
with bias, RMSE, interval width, estimated proportion of intervals containing the
truth (Cov), and count of included or converged datasets. LGP and PRMP were run
on 100 datasets, whereas FMM was run on only 40 datasets.

Scenario & Model Estimate Bias RMSE Width Cov Count
Standard GPD

LGP 100% 0.21 -0.04 0.07 0.30 0.99 97
FMM 100% 0.28 0.03 0.05 0.28 1.00 38
PRMP 100% 0.29 0.04 0.06 0.26 0.97 100

Half-t
LGP 100% 0.12 -0.13 0.14 0.21 0.42 92
FMM 100% 0.29 0.04 0.16 0.63 1.00 24
PRMP 100% 0.19 -0.06 0.08 0.18 0.91 100

Fourth-power GPD
LGP 100% 0.20 -0.05 0.08 0.26 0.93 89
FMM 100% 0.29 0.04 0.05 0.52 0.97 30
PRMP 100% 0.22 -0.03 0.04 0.21 1.00 100

Gamma-GPD mixture
LGP 100% 0.10 -0.15 0.15 0.28 0.87 82
FMM 100% 0.27 0.02 0.03 0.40 1.00 35
PRMP 100% 0.21 -0.04 0.05 0.25 1.00 100

Half-t-normal mixture
LGP 100% 0.14 -0.11 0.11 0.18 0.35 99
PRMP 100% 0.23 -0.02 0.04 0.19 0.98 100

Spliced Gamma-GPD
LGP 100% 0.10 -0.15 0.15 0.30 0.76 88
PRMP 100% 0.10 -0.15 0.15 0.08 0.00 100

to the PRMP model, which did not employ quantile scaling in its transformation

distribution.

First observe that PRMP follows closely the posterior patterns of FMM, except

in cases where the FMM sampler catered to lower-bulk data features (i.e. mostly

occurring with the half-t scenario). This concordance was anticipated, as the PRMP

and FMM are both approximations to the DPMM.

For all but the spliced gamma-GPD scenario, LGP estimates of ν tend to center

at larger values than their FMM or PRMP counterparts. This can also be seen in

the tail-index summary of Table 6.1, where LGP underestimates the tail, leading
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to more tail-index bias and RMSE than the other two models. The LGP also has

greater spread in its ν estimates; however, when inverted to estimate tail index, ξ,

these large-ν values do not translate to much wider intervals, as the tail index is

bounded below by 0. In contrast, the FMM, which often has small-ν-large-σ tails,

has heavier estimated tail indices on average and wider intervals than either LGP

or PRMP. Its bias is still reasonable though, at most overestimating the true tail

index by 0.04 across scenarios. The PRMP has slightly lighter tail indices than its

FMM relative, resulting in the lowest bias among all models. Generally, its tail-index

intervals are also narrowest among the three models, while it also retains high interval

coverage. The one exception to this is the spliced gamma-GPD scenario where the

PRMP completely misses the tail index, underestimating ξ by 0.15 and having 0%

tail interval coverage.

Again visiting Figure 6.2, the standard GPD posteriors have a great deal of

overlap in their marginal posterior isobands across all three models and in both

ν and σ. The overlap in the σ margin is also great in the half-t, fourth-power

GPD, and half-t-normal mixture scenarios, though departures can and do exist on a

per-data-set basis. The models have notable separation across σ in the gamma-GPD

mixture and spliced gamma-GPD scenarios, with the LGP generally preferring larger

σ than either FMM or PRMP. In both of these scenarios, small-σ corresponds to true

nonparametric densities that require precipitous drops (large-in-magnitude negative

slopes) immediately before or at the right boundary. Large-σ, on the other hand,

pushes the true nonparametric density mass away from the right boundary, thereby

requiring smaller negative slopes of h near 1.

Figure 6.2, which displays nonparametric density estimates for each dataset along-

side model averages, highlights the large-σ and small-σ differences for the gamma-

GPD and spliced gamma-GPD scenarios. (Note that the values of the nonparametric

densities of FMM and LGP are not directly comparable to PRMP because their gθ
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Figure 6.2: Estimated nonparametric densities for each dataset and (in darker hue)
averaged across datasets within a model. LGP and FMM are directly comparable,
having used the same transformation density. PRMP should only be compared in
form, having used an alternative transformation density.
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was quantile-scaled and the PRMP was not; however, the form can generally be com-

pared.) The LGP estimates push mass away from τ = 1, seeing their modes in values

τ < 0.9 and values of h(τ) near zero for τ > 0.9. The PRMP and FMM, with their

small-σ estimates, have local nonparametric density modes near τ = 0.9. Thereafter,

they try to capture the true nonparametric density’s precipitous drop with varying

degrees of success, as will become apparent in the subsequent section where quan-

tile bias and RMSE are explored. There tends to be more variability across dataset

replicates in the LGP nonparametric density estimates of these two scenarios than in

either the FMM or PRMP. This corresponds to more varied shapes in the θ marginals

across datasets in the LGP than in FMM and PRMP (see per-dataset 80% isobands

for each model in Appendix C.) The FMM nonparametric density estimates in the

half-t scenario also have a lot of variability, reflective of the spread in estimating σ,

so much so that the mean does not follow the form of any of its constituent datasets.

The nonparametric density estimates in the remaining scenarios are similar in

form within a model and across models, mirroring the similarity of θ estimates.

The PRMP and FMM densities in the standard GPD scenario both tend to bow

downwards at the boundaries. The LGP shrinks toward its mean, h(τ) = 1, at the

boundaries where data are scarce, a behavior inherent to the LGP. Estimates of the

fourth-power GPD are similar across models, though the FMM does extend higher

at the right boundary than the others, more closely following the true, generating

Beta(4, 1) nonparametric density than the other two. The LGP estimates across

replicates have quite a bit of variability in this scenario, some favoring an interior

mode and others placing their mode at τ = 1. The LGP estimates of the half-t-

normal scenario also have more variability than the PRMP estimates, though the

form of both models is similar. For that scenario, PRMP again exhibits downward

cupping at the right-hand boundary.
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6.3.2 Quantile Estimation

Bulk bias. Figure 6.3 displays the bias relative to the true quantile, averaged across

datasets, in the bulk of the distribution. The relative bias is similar in magnitude

among all three models but the LGP (purple) has slightly lower bias across levels p

and across scenarios. As noted in Chapter 3, the FMM for the half-t scenario is sen-

sitive to lower-tail data differences, fitting the extreme lower tail with a great degree

of accuracy. In the fourth-power GPD bulk, all three models do their worst job of es-

timating the quantile at the lower boundary, though the bias for PRMP extends into

larger quantile levels p than for either FMM or LGP. In the gamma-GPD mixture, all

three models have a peak in bias near p = 0.73, the locale where true density h starts

to increase to accommodate gamma mixture-component observations. This bias in-

dicates that all three models have difficulty making a sufficiently sharp transition in

the nonparametric density. The LGP, which favored larger σ, flattening the peak

needed for h, has the lowest bias among the three models through this region. The

bulk quantile bias considered on a per-dataset basis is similar in magnitude across

datasets and models (see Figure C.4 in Appendix C).

Tail bias. The relative quantile bias in the tails of estimated sampling distribu-

tion f (Figure 6.4) are displayed per dataset as well as averaged across datasets.

Generally speaking, LGP has the smallest tail quantile bias. It maintains low levels

of bias in the lower tails, where data should still be plentiful, unlike both FMM and

PRMP which exhibit bias in these lower tails. Within a scenario, the models exhibit

similar amounts of intra-dataset variability. The one exception is LGP estimates of

the gamma-GPD mixture scenario, which show more variability among estimated

datasets than the other two models do with their replicates.

The relative quantile bias reflects the over- and under-estimation trends of the

tail-index parameter: LGP tends to underestimate the tail heaviness, leading to
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Figure 6.3: Estimated relative quantile bias (bias / true quantile value) for the
bulk portion of the sampling density (p ≤ 0.9).
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Figure 6.4: Estimated relative quantile bias (bias / true quantile value) for the tail
portion of the sampling density (p ≥ 0.9). Lighter thin lines represent estimates from
a single dataset and darker broad lines represent estimates averaged across datasets
within a model.
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underestimates of the quantiles of f ; and FMM and PRMP tend to overestimate

the tail index, leading to overestimates of the quantiles. But this does not tell the

full story, since the LGP ends up overestimating the extrapolated tails of both the

gamma-GPD mixture and the spliced gamma-GPD. For both of these scenarios, the

underestimation of the tail index is still apparent in the downward curvature of the

mean bias lines at extreme p = 0.9999 levels, but the nonparametric density must also

play a part to send quantiles into over-estimation territory. These two scenarios both

exhibit LGP estimates of h(1) near zero, which may provide a hint. By spreading

the tail of the nonparametric density over larger τ -regions of h and more fixed-knot

LGP estimation locations, the nonparametric density, aided by transformation Gθ,

can induce much more curvature in the extrapolated tails of f than it does otherwise

in scenarios where the upper tails of h are less spread out and therefore exhibit more

local linearity.

Bulk RMSE. Figure 6.5 shows the bulk RMSE for the three models. RMSE

is similar in magnitude across quantile levels p < 0.9 with perhaps some advantage

going to the LGP and FMM models over the PRMP. The LGP-to-PRMP comparison

is more stark in the half-t-normal and spliced gamma-GPD scenarios, where RMSE

is clearly higher for the PRMP across all bulk quantile levels.

Tail RMSE. The tail RMSE does not clearly delineate which model is best (see

Figure 6.6). LGP has lowest RMSE for the standard GPD, for the half-t-normal, and

for most of the half-t. PRMP has lowest RMSE in the fourth-power GPD scenario.

The gamma-GPD mixture and spliced gamma-GPD plots show that LGP has the

lowest RMSE in the lower tails but higher RMSE in extrapolation than either the

FMM (mixture scenario) or PRMP (spliced scenario). This may mean that the LGP

strategy of sending nonparametric h to near-zero values at τ = 1 does not aid but

hinder quantile estimation after all.

Quantile interval coverage. Finally, Figure 6.7 displays the quantile interval cov-
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Figure 6.5: Estimated relative quantile RMSE (RMSE / truth) for the bulk portion
of the sampling density (p ≤ 0.9). Lighter thin lines represent estimates from a single
dataset and darker broad lines represent estimates averaged across datasets within
a model.
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Figure 6.6: Estimated relative quantile RMSE (RMSE / truth) for the tail portion
of the sampling density (p ≥ 0.9).
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Figure 6.7: Estimated coverage of quantile intervals for the full sampling density.
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erage for all p, for each model, and across all scenarios. The LGP keeps consistently

high interval coverage across all quantile levels in both the bulk and the tail, only ex-

periencing a small drop in upper-tail coverage in the hard-to-estimate gamma-GPD

mixture and spliced gamma-GPD. The drop in coverage for PRMP at either tail is

due to the bias of the PR estimates and is discussed in Chapter 4.

6.4 Conclusions and Future Work

Throughout this dissertation and across approaches, several patterns have repeated

themselves. Small changes in transformation parameters, θ—primarily in the scale

parameter, σ, but also to a lesser part the shape parameter, ξ—can vastly change

the shape needed for the nonparametric distribution, h. Conversely, the way in

which a model captures the nonparametric density has a pronounced effect on how

it captures its transformation parameters. This interplay between the estimation of

h and θ depends upon the form of the model, and elucidating that interplay can be

both subtle and challenging. While model form affects the way that estimation plays

out, commonalities exist across the approaches, pointing to features a model needs

in order to successfully implement the transformation framework for heavy-tailed

density estimation. This section briefly reviews the strengths and weaknesses of each

model, summarizes the key take-aways and desirable features, and discusses some

areas of future work for semi-parametric heavy-tailed density estimation under the

transformation framework approach.

6.4.1 Model Strengths and Weaknesses

Of the approaches considered in this dissertation, LGP has many advantages over

FMM or PRMP: it has lower bias through the bulk and lower tail for many simula-

tion scenarios and exhibits consistently high quantile interval coverage. However, it

has one drawback that leaves a question as to whether the model is functioning as
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intended: LGP underestimates the tail-index parameter of the GPD transformation.

This is not entirely surprising. For given σ, an underestimate of ξ results in less

change to the form of the needed nonparametric density than does an overestimate,

so an adaptive sampler learning the covariance directly on the nonparametric density

might have an easier time settling into shape parameters that are too light. Another

cause of the underestimation of ξ may be the exponentiation of the log-scale nonpara-

metric density estimates, which allows ĥ to scale up more quickly near a boundary

than it allows ĥ to scale down quickly near a boundary.

Despite this shape-parameter-estimation bias, the LGP model does an admirable

job in tail estimation—often producing tail quantile estimates with lower RMSE than

threshold methods—using excellent estimation of its nonparametric density. Our

only indication that LGP’s approach to estimating large h tail drop-offs—namely

adjusting σ until the nonparametric density is spread out enough to capture the

tail with a shape LGP is adept at capturing—is perhaps not optimal for estimating

heavy tails is that our other models, which capture ξ better, exhibit lower RMSE

in extrapolation for these two scenarios. Understanding the mechanism for why

quantile scaling seemed to improve the convergence of the sampler may help uncover

the source of this tail-index bias or at least eliminate MCMC sampling bias as a

probable cause.

The DPMM and FMM models have MCMC sampling difficulty for some datasets

and scenarios, but the good tail-index estimation and the reduction in tail quantile

RMSE compared to the threshold methods make us confident that this model is worth

pursuing and refining. We anticipate that strengthening the prior for the precision

parameter will encourage the DPMM to adapt flatter nonparametric density shapes

and keep the nonparametric density from catering to the bulk at the expense of its

tail estimation. These may also aid in condensing the posterior distribution, reducing

the banana-shaped θ curvature and making it easier to sample.
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The PRMP does the best job of estimating the tail index or shape parameter

among the models considered despite bias of quantile predictions at either tail. This

tail-index estimation is itself is a success, as it helps to validate the semi-parametric

density framework approach in finite samples. When the posterior is integrated ap-

propriately over the nonparametric density space, information is teased out about

tail heaviness. The PRMP also provides a quick and easy tool for looking at the

marginal density and understanding how much weight needs to be given to a mix-

ture density prior in order to balance the interplay between h and θ. An outstanding

question is whether the PR nonparametric density boundary bias is due to the partic-

ular kernel chosen, is inherent to PR, or is somehow related to the interplay between

h and θ.

While none of the three models has emerged as uniformly “best” across scenarios

and quantile levels, all have shown promise as data-retaining estimators for heavy-

tailed density estimation, reducing prediction error in quantile estimation.

6.4.2 Take-aways

From this dissertation, we have acquired knowledge about estimation under the semi-

parametric Bayesian transformation framework for heavy-tailed density estimation.

First, there is not enough information in the likelihood alone to prevent the tail

information from getting overwhelmed by the bulk. However, when the likelihood is

harnessed with a carefully specified prior, there is potential to model both the bulk

and the tail simultaneously, allowing both to speak, without an explicit separation

of the two parts.

Second, the nonparametric prior needs to give strong weight to uniform-type

shapes. If it does not, or if this prior is not appropriately weighted with respect to

the sample size, the nonparametric density may end up serving the bulk distribution

well at the expense of tail estimation. In practice, a nonparametric density estimate
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that drops to near-zero values approaching but well before τ = 1 may be an indication

that the prior has not been given enough weight and that the bulk is being preferred

over the tail. On the flip side, a nonparametric density that never approaches zero

is not necessarily an indication that the model is doing the right thing, which leads

to our next point.

Third, as the nonparametric prior is given more weight, the full-model estimates

may become subject to the biases and the tendencies of the selected nonparametric

model form. Bias in the nonparametric model may have an amplified effect when

sent through the transformation framework. A seemingly small boundary bias will

affect large swaths of the lower and upper quantile estimation.

Finally, the less curvature that is needed from the nonparametric density (i.e. the

closer it can stay to a uniform shape), the easier it will be for a transformation model

to capture the full form. This was seen in the uniform and half-t-normal scenarios

as well as in the truncation exercise of Chapter 2. This is because less curvature in h

is generally associated with a condensed θ posterior, making them easier to sample

when using MCMC sampling approaches.

6.4.3 Future Directions

There are a variety of future directions that this work could take. With the transfor-

mation framework defined and some of its pitfalls and strengths brought to light, the

area is rich for experimentation with alternative model forms as well as for modifying

the approaches of this dissertation.

Nonparametric density modifications. One area begging immediate attention is

the modification of LGP to increase knot placement near the nonparametric density

boundaries, especially at the upper boundary. This should help ensure that mod-

els requiring drops at the boundary do not end up in bimodal situations induced

by sparsity of knot placement at the boundary. This might also allow the model
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to find and utilize a broader range of true-density shapes. Modifications allowing

second-order nonstationarity in the LGP across the domain of the nonparametric

density may also prove useful. Alternatively, to avoid the multimodality induced by

knot sparsity altogether, we could try sampling the nonparametric density using the

Gaussian process density sampler of Adams et al. (2009). This approach infers the

unknown density of the data by framing the generative process (a CDF-transformed

GP) in terms of a rejection sampler, bounded above by 1; augmenting the data

with latent acceptance indicators at sampled locations; sampling posterior Bernoulli

probabilities given the augmented data with its sampled locations as regressors; and

backing out the GP through the probabilities. Because it is based on a rejection

sampler, this may prove to be less efficient than the current LGP implementation.

The DPMM and FMM can be updated based on increased understanding, coming

from the PRMP exploration, that stronger prior weight on the prior precision pa-

rameter can temper the mixture models’ tendency towards sparsity. Additionally, a

more comprehensive study of prior sensitivity could help calibrate the weight needed

to give stability to the model. From a more practical standpoint, both the DPMM

and FMM could benefit from being written in a faster programming language, e.g.

DPM cluster allocation could use a call to C, as their current run times make them

less user friendly.

Some alternative mixture model forms are already under construction or consid-

eration. An alternative kernel may prove to be the solution to the boundary bias

seen using the truncated normal distribution. Appendix B details a kernel that it

is a mixture of one (or three) beta kernels and a uniform density, which keeps h

always strictly greater than zero but may also allow more rapid drops in h near the

right-hand boundary.

Transformation modifications. In each model of this dissertation, the primary

parametric transformation considered is the CDF of a generalized Pareto distribu-
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tion. One aspect of the GPD that was not fully appreciated when selecting it as the

transformation distribution was how fully ξ is integrated with the shape of the bulk.

It is easy to think of ξ as a parameter which dictates the shape of the tail, since

the distribution often gets used to model tails. But as a transformation density, ξ

operates in both the bulk and tail and is therefore influenced by the nonparamet-

ric density in both areas. This is not wholly undesirable, as we never really know

where the tail “starts,” and information about the power decay parameter might be

retrievable from any part of the distribution given the right nonparametric density.

For example, in the simulation scenarios considered, the shape parameter affects the

full standard GPD; informs all parts of the fourth-power GPD, provided a nonpara-

metric shape similar to the generating Beta(4, 1) can be found; and affects the bulk

shaping of the gamma-GPD mixture. This integration also allows ξ to get lost in or

overwhelmed by the bulk information, as may be happening in the LGP model.

Another lesson learned about using a GPD as the transformation is that with

density values gθ(0) strictly greater than zero, the GPD proves difficult to scale

sufficiently down to zero for sampling densities f that need it; the required non-

parametric h has to be incredibly flexible to accommodate these forms. In those

scenarios that did not need scaling down to zero, undesirable bias in the lower “tail”

can still be found. Perhaps a more flexible transformation density, one capable of

taking a variety of shapes, would keep the needed nonparametric form h closer to a

uniform density more naturally, without the need to infuse the prior with additional

information.

One alternative might be an extended generalized Pareto distribution (EGPD),

i.e. one from Papastathopoulos and Tawn (2013) or Naveau et al. (2016). The EGPD

formed by a Beta(κ, 1) transformation of a GPD, common to both papers, results in a

distribution with CDF Gκ,σ,ξ = (1+1/σ(1−ξx/σ)−1/ξ)κ. This density is zero at zero,

i.e. gθ(0) = 0, has a non-boundary mode, and maintains right-hand tail-decay power
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of 1/ξ. The addition of a third parameter κ, which controls the left-hand power

decay of the distribution, may be desirable from a bulk-tail parameter separation

standpoint, but it also increases the dimension and complexity of any model beyond

the two parameters of the standard GPD. Also, the constraint gθ(0) = 0 may not

always be desirable in a candidate transformation density.

An alternative transformation distribution that has gained some traction in the

kernel density estimation literature for heavy-tailed data is the modified Champer-

nowne distribution, introduced by Buch-Larsen et al. (2005). The three-parameter

distribution takes the form

Gc,M,ν(x) =
(x+ c)ν − cν

(x+ c)ν + (M + c)ν − 2cν
. (6.1)

This distribution has some appealing properties as a heavy-tailed transformation

distribution. First, the tail converges to a Pareto tail with power-law decay ν. Sec-

ond, in tandem with ν, the parameter c is capable of ensuring that 0 < gθ(0) < ∞

and of inducing a mode at x > 0. Consequently, the Champernowne distribution

can take a variety of shapes. Lastly, the parameter M can easily be estimated by the

empirical median since G−1
θ (0.5) = M . Pre-estimating and fixing M while continuing

to estimate c and ν, simultaneous to h, could take advantage of the flexibility of the

modified Champernowne while keeping the number of transformation parameters at

two.

Insofar as these transformation densities associate the shape of the bulk with one

set of parameters and the tail power decay with a separate set of parameters, we

believe this will aid in the semi-parametric transformation estimation.

Using a transformation density that exists over the full real line (e.g. a standard

t-distribution or an asymmetric t-distribution) would also be interesting, though

potentially complicated, especially if the sampling density is itself multimodal. De-
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pending on the separation of the sampling density modes, multimodality could show

up in the θ margins (PRMP might help diagnose this), and estimating h under

changing transformation location parameter would not be inconsequential. Estimat-

ing these densities may require more than just strong priors on the nonparametric

densities. They may require intervention in the transformation densities themselves,

such as using a transformation which is itself a mixture or one which somehow en-

forces quantile matching, e.g. H(0.5) = 0.5.

Other directions. Perhaps a more fruitful and interesting approach than trying to

make the transformation density multimodal would be to include additional variables

as predictors in the model, for example by using LGP density regression (Tokdar

et al., 2010). If additional variables can explain some of the underlying variability in

the sampling density form, e.g. via linear prediction of the transformation location

parameter, the scaling needed by the nonparametric density to explain the remaining

variability may be brought closer to uniformity and be easier to estimate. Taking

care of the bulk density in this way could, in turn, aid estimation of the tails.

Alternatively, instead of taking a conditional or regression approach to the heavy-

tailed density estimation, two or more variables can be considered jointly. The LGP

can be formulated in multiple dimensions (Tokdar, 2007) but its theory does not yet

support the notion of multivariate tail dependence. A future direction of research

could be to establish whether asymptotic tail dependence of some arbitrary family

of multivariate transformations Gθ is maintained under a transformation framework

of the multivariate LGP model.

A final question that could be of interest in future work is in regards to the tail

index. Can posterior consistency of the tail-index estimate be proven for either the

LGP model or the DPMM? We know by construction that ξ lies in the Kullback-

Leibler support of our prior. If we could leverage an existing hypothesis test for the

tail index parameter, showing that it can be formulated as a sequence of exponentially

119



continuous tests, then posterior consistency of the tail-index would follow directly

from the Schwartz Theorem (Schwartz, 1965). Li et al. (2019) use such an approach

when establishing necessary criteria for a mixture model to exhibit posterior tail-

index consistency. Their work may be applied directly to determine if posterior

consistency of the tail index applies to the DPMM proposed in this dissertation, and

their work might also inform the steps needed to prove posterior consistency of the

tail index for the LGP model.

This dissertation has laid out the framework necessary for heavy-tailed, univariate

density estimation under a semi-parametric transformation framework. We have

developed three models, complete with error uncertainty quantification, under the

framework and evaluated the relative merits and weaknesses of each. Even so, we

are just beginning to understand the subtleties of estimation under the framework,

and the area is ripe for further development and future work.
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Appendix A

LGP Model Details and Approximations

This appendix provides details for the logistic Gaussian process model of Chapter 2,

including the likelihood, priors, and posterior. It also includes the predictive process

substitution and its subsequent finite approximation.

A.1 Likelihood

The likelihood follows the form f(y|θ, h) = gθ(y) · h(Gθ(y)), and h takes the form

h(τ) = ew(τ)∫ 1
0 e

w(t)dt
. Assuming independence of each yi, the joint likelihood is

f(y|θ, w) =
n∏
i=1

[
gθ(yi) ·

ew(Gθ(yi))∫ 1

0
ew(t)dt

]
.

A.2 Prior

The prior is decomposed into two independent priors, one of which governs the

nonparametric w and one of which governs the parametric θ: π(w, θ) = π(w) · π(θ).

Further details of each prior follow.
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The nonparametric prior π(w) is specified via the hierarchical form

w|κ2, λ ∼ GP (0, κ2cSE(·, ·|λ))

κ2 ∼ IG(aκ, bκ) with aκ = bκ

λ ∼ Discrete(α, π∗λ), where α = (λ1, ..., λG) and κ2 ⊥ λ,

resulting in the marginal prior for w

π(w) =

∫
λ

∫
κ2
π(w|κ2, λ)πκ(κ

2)πλ(λ)dκ2dλ

=
G∑
g=1

π(w|λg)π∗λ(λg)

=
G∑
g=1

TP2aκ(w|0, cSE(·, ·|λg))π∗λ(λg).

This implies that w is distributed a priori as a π∗λ-weighted mixture of t-processes,

each of which has a unique covariance kernel depending on λg ∈ α.

The parametric prior is defined for a location-zero generalized Pareto distribution

GPD(σ, 1/ν) with scale σ and tail parameter 1/ν. The priors on θ are assumed to

be independent: π(θ) = π(ν, σ2) = π(ν)π(σ2) with log((ν − 0.5)/5.5) ∼ Logis(0, 1/2)

and π(2 log(σ2)) ∝ 1
2 log(σ2)

. Taken together we have

π(ν, σ2) ∝ 1

2 log(σ2)
· Logis

(
log

(
ν − 0.5

5.5

)
|0, 0.5

)
. (A.1)

A.3 Log Posterior

The log posterior is given as

log(π(ν, σ2, w|Y )) ∝
n∑
i=1

log(gθ(yi)) +
n∑
i=1

w(Gθ(yi))− n · log

(∫ 1

0

ew(t)dt

)
+

log

( G∑
g=1

TP2aκ(w|0, cSE(·, ·|λg))π∗λ(λg)
)

+ log(π(θ)).
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A.4 Predictive Process Approximation

A low-rank predictive process replaces w in the likelihood. Specifically, w̃(τ) =

E(w(τ)|w(t∗1), ..., w(t∗M)) replaces w(τ) using a finite-predetermined set of knots (t∗1,

..., t∗M). We further define W ∗ = (w(t∗1), ..., w(t∗M)). Recall that w is a π∗λ-prior-

weighted mixture of multivariate t-processes that depend on λg. The expectation of

a t-process conditioned on a finite subset of its points follows the form E(X2|X1) =

Σ21Σ−1
11 X1, which is reminiscent of the expectation of a partitioned and conditioned

multivariate normal. Because this conditional expectation depends on the covariance

kernels, which in turn depend on λ, further conditioning is needed (i.e. law of total

expectation):

w̃(τ) = E(w(τ)|W ∗) = Eλ|W ∗{E(w(τ)|W ∗, λ)}

=
G∑
g=1

π(λ = λg|W ∗) · E(w(τ)|W ∗, λ).

By Bayes rule, for any given λg and realization ψ of W ∗

π(λ = λg|W ∗ = ψ) =
π(W ∗ = ψ|λ = λg) · π(λ = λg)∑G
g=1 π(W ∗ = ψ|λ = λg) · π(λ = λg)

.

From the priors, π(W ∗ = ψ|λ = λg) = MVTM
2ak

(ψ|0, C∗∗(λg)), where C∗∗(λg)

denotes C(·, ·|λg) evaluated at the knots, and π(λ = λg) = π∗λ(λg). Therefore the

conditional probability is

π(λ = λg|W ∗ = ψ) =
MVTM

2ak
(ψ|0, C∗∗(λg))π∗λ(λg)∑G

g=1 MVTM
2ak

(ψ|0, C∗∗(λg))π∗λ(λg)
.

These can be recovered a posteriori even though λ is integrated out of the posterior.

Letting Cτ∗(λg) denote the evaluation of the covariance kernel at input τ and

the knots, E(w(τ)|W ∗ = ψ, λ = λg) = Cτ∗(λg) · C∗∗(λg)−1ψ by the aforementioned
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expectation of a conditioned t-process. Bringing it all together,

w̃(τ) =
G∑
g=1

MVTM
2ak

(ψ|0, C∗∗(λg))π∗λ(λg)∑G
g=1 MVTM

2ak
(ψ|0, C∗∗(λg))π∗λ(λg)

Cτ∗(λg)C∗∗(λg)
−1ψ (A.2)

provides a functional approximation to w(τ) given W ∗ = ψ at the knots.

A.5 Finite Approximations to Posterior

To allow for pre-computation of Cτ∗(λ), w̃(τ) is only tracked over a dense, finite

grid at τ ∈ {t1, ..., tL}, and functional likelihood evaluations w̃(·) are performed by

interpolating between grid points. C∗∗(λ) is also pre-computed.

To facilitate MCMC, we complete the infinite-to-finite transformation by replac-

ing the prior on functional w by a prior on finite W ∗. That is, we use the same

M-dimensional W ∗ that facilitates the reduced-rank w̃(τ) in the likelihood evalua-

tion to approximate w in the prior. The prior changes from being a mixture of t

processes to being a mixture of M-dimensional multivariate t distributions. The final

approximated log posterior is as follows

log(π(ν, σ,W ∗|Y )) ∝
n∑
i=1

log(gθ(yi)) +
n∑
i=1

w̃(Gθ(yi))− n · log

(∫ 1

0

ew̃(t)dt

)
+

log

( G∑
g=1

MVTM
2aκ(W ∗|0, C∗∗(λg))π∗λ(λg)

)
+ log(π(ν, σ2)))

with π(ν, σ2) defined in A.1 and w̃(τ) defined in A.2.
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Appendix B

Alternative-kernel Mixture Model

This appendix provides details for an alternative mixture model, similar to the mix-

ture approach of Chapter 3 but constructed with a customized kernel made of a

mixture of four beta densities in lieu of the truncated normal kernel. Here, only a

finite mixture model (FMM) and not a Dirichlet process mixture model (DPMM) is

implemented.

B.1 Model Setup

B.1.1 Parametric Distribution and Priors

This beta mixture model uses a GPD, parameterized by shape parameter ξ = 1/ν

and scale parameter σ, as its parametric transformation Gθ within the transformation

framework. Priors and transformations for ν and σ are the same as those used in

the truncated-normal-kernel model in Chapter 3.

B.1.2 Nonparametric Distribution and Priors

The mixture prior for h takes the general form h(τ) =
∫
k(τ |Ω,Ψ)dP (Ω,Ψ). The

kernel, k(τ |Ω,Ψ), is constructed from a mixture of four components, each a beta
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density as

k(τ |Ω,Ψ) = ω1Beta(τ |1, 1) + ω2Beta(τ |1, β2) + ω3Beta(τ |α3, 1) + ω4Beta(τ |α4, β4).

By constraining the shape parameters Ψ = {β2, α3, α4, β4} so that each is greater

than 1, we guarantee that none of the four beta density components goes to infinity on

[0, 1]. Additionally, constraining ω1 > 0 (or alternatively simultaneously constraining

ω2 > 0 and ω3 > 0) guarantees that the beta-mixture kernel is also greater than 0 at

the boundary. For simplicity, each weight in Ω = {ω1, ω2, ω3, ω4} is constrained to

be strictly greater than 0 with ω1 + ω2 + ω3 + ω4 = 1.

We take a small diversion to note that finite mixtures can be represented by latent-

category likelihoods. Consequently a single beta-mixture kernel can be represented

marginally as

x|Ω,Ψ ∼ ω1Beta(1, 1) + ω2Beta(1, β2) + ω3Beta(α3, 1) + ω4Beta(α4, β4)

with ω1 +ω2 +ω3 +ω4 = 1 or jointly given the underlying group/cluster memberships

as

x|z,Ψ ∼ Beta(1, 1)1(z=1)Beta(1, β2)1(z=2)Beta(α3, 1)1(z=3)Beta(α4, β4)1(z=4)

with z|Ω ∼ Multinomial(ω1, ω2, ω3, ω4).

Similarly, a finite mixture of beta-mix densities, which we use in place of the more

computationally-intense infinite Dirichlet process mixture, can be represented as

y|P ∼
K∑
k=1

ρkBetaMix(Ωk,Ψk) with
K∑
k=1

ρk = 1 and P = (ρ1, ρ2, ...ρK)

or as

y|w ∼
K∏
k=1

BetaMix(Ωk,Ψk)
1(w=k) with w|P ∼ Multinomial(ρ1, ρ2, ..., ρK). (B.1)
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When combined with a Dirichlet prior, these multinomial-Dirichlet likelihoods

lend themselves well to Bayesian MCMC sampling because the probabilities can

be updated with conjugate Dirichlet draws; latent categories can be simulated for

each observation from a multinomial distribution; and updates to kernel param-

eters only depend on data within the associated latent category. We use Ωk ∼

Dirichlet(4, 1.001, 1.001, 2) for the probability parameters that weight the four com-

ponents of each beta-mixture kernel k = 1...K. This Dirichlet prior guarantees that

all component weights are greater than 0 while placing somewhat higher weight on the

uniform component. A Dirichlet prior P = (ρ1, ρ2, ..., ρK) ∼ Dirichlet(0.5, 0.5, ...0.5)

for the weights that mix the K kernels favors higher weights on fewer kernels.

Finally, the shape parameters of the beta-mixture kernels, Ψk, are constrained to

be greater than 1 using the following priors:

β2 − 1 ∼ Gamma(shape=1, rate=1/2)

α3 − 1 ∼ Gamma(shape=1, rate=1/2)

α4 − 1 ∼ Gamma(shape=2, rate=1/3)

β4 − 1 ∼ Gamma(shape=2, rate=1/3)

Figure B.1 shows several draws from the resultant prior for h(τ).

Before moving on to computational considerations, we stop to note that a com-

plete confounding exists between GPD transformations on uniformly distributed Y

with GPD transformations on Beta(1, b2) power-transformed Y . Specifically,

g(y; ξ, σ)× Beta(G(y; ξ, σ); 1, b) ≡ g

(
y;
ξ

b
,
σ

b

)
× Beta(1, 1), (B.2)

where g and G represent the pdf and CDF of a GPD respectively, and Beta is the pdf

of a beta distribution. In separately estimated situations, this confounding would be

a problem, but within the beta-mixture kernel there should be enough information

to tease out b2, ξ, and σ if the sample size is large enough. Potentially confounded
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Figure B.1: Nonparametric draws from prior for h(τ). Each is constrained such
that 0 < h(τ) <∞ for all τ .

observations should either allocate to the latent uniform component with tail index

ξ or to the latent Beta(1, b2) component with tail index ξ/b2. However, because of

the constraint that b2 > 1, the tail heaviness for the overall kernel will be at most ξ.

This should become estimable with large enough n, even if only a small proportion

of the data belongs to the latent uniform component versus the latent Beta(1, b2)

component.

B.2 Computation

Bayesian posteriors over all model parameters are obtained through Gibbs sampling.

Algorithm 8 of Neal (2000), appropriate in cases of non-conjugacy, can be used to

obtain group-membership updates from an infinite Dirichlet process mixture. How-

ever, these updates require sequential processing across all n observations and are

slow. Instead, we recommend replacing the Dirichlet-process prior with a Dirichlet

prior and using a finite mixture approximation with K = dlog(n)e groups (see Equa-

tion B.1). This provides a sufficiently flexible form for most nonparametric scaling

distributions but has the added advantage of being able to simultaneously update

all n group memberships, insofar as the implementation software supports vector
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operations. We perform all computing in R (R Core Team, 2018), and so this finite

approximation and these vectorizations provide significant speedups.

Conjugate updates are available for many parameters. Given latent observation

memberships wi to the K beta-mixture kernels, the probabilities in vector P , which

dictate probabilistic membership among K groups, are updated with a single conju-

gate Dirichlet draw. The latent memberships wi use conjugate multinomial updates,

which are vectorizable as previously mentioned. Given these memberships, wi, and

the memberships zi among the four BetaMix components, the inter-beta-mixture

probabilities Ωk for k = 1, ..., K can be updated with conjugate Dirichlet updates.

The corresponding zi, now given all Ωk, are updated with conjugate, vectorizable,

multinomial draws.

Non-conjugate draws within the Gibbs sampler are made via Metropolis Hastings

updates. The parameters b2k and a3k each correspond to a beta-mixture component

which is a power transformation distribution. Under full real support, these pa-

rameters would be conjugate with a gamma prior; however, the support for these

parameters is shifted to be strictly greater than 1, so conjugacy does not apply.

However, by taking the full-real-conjugate gamma and truncating greater than 1,

we create a proposal density for the Metropolis Hastings algorithm that achieves

“near-conjugacy,” or a shape very close to the target density, that does not depend

on the previous draw from the MCMC chain, i.e. an independence proposal. This al-

lows for targeting of high acceptance rates without introducing as much problematic

autocorrelation.

Parameters a4k and b4k are obtained jointly from a random-walk-centered sampler.

The proposal density is a two-dimensional multivariate normal (MVN) distribution

truncated to [1,∞]×[1,∞]. The covariance is data-estimated from a beta information

matrix if N(wi = k and zi = 4) > 5 and 10I2 otherwise. This creates a Laplace-like

proposal for the joint parameter set.
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Table B.1: Simulation MCMC summaries

Simulation Scenario n Chain length Burn Retain Converged
Standard GPD 1,000 16,000 1,000 5,000 95%
Half-t 1,000 23,000 3,000 5,000 92%
Fourth-power GPD 1,000 23,000 5,000 5,000 36%
Gamma-GPD mixture 1,000 16,000 1,000 5,000 16%
Half-t-normal mixture 2,000 18,000 2,000 5,000 93%
Spliced Gamma-GPD 5,000 18,000 10,000 5,000 20%

The final non-conjugate update for joint (ν, σ) also uses a random-walk-centered

sampler. After transforming ν and σ from [0,∞]× [0,∞] to [−∞,∞]× [−∞,∞], a

MVN2 proposal density with covariance obtained from a numerically-optimized Hes-

sian is used. A true multivariate Laplace proposal, e.g. centered at the MAP, seems

to miss the “corner” regions of the cornucopia-shaped posterior with its strictly-

elliptical proposals. Centering at the previous MCMC draw allows the proposals to

better explore these corners.

Finally, it is proposed that a “warm” start be used to speed up chain conver-

gence. This can be obtained by numerically optimizing a simplified posterior that

only contains a single beta-mixture kernel, which amounts to a 10-dimensional opti-

mization over a box-constrained space (2 GPD parameters, 4 beta shape parameters,

4 component probabilities). Observations can then be randomly assigned member-

ship among the K groups, each of which starts with these optimized beta-mixture

parameters.

B.3 Simulation Study

The same suite of six simulation scenarios used in Chapter 2 are considered here

against a similar set of comparison methods and using similar metrics.

For each simulated dataset under each scenario, two chains are run, one with a
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warm start and one with parameters being drawn from the prior. Table B.1 sum-

marizes the number of MCMC iterations obtained and the number of MCMC sam-

ples discarded after visual inspection of trace plots. Post burn-in, the convergence

of MCMC chains is assessed for each posterior separately by considering Gelman-

Rubin potential scale reduction factors (PSRFs) for ν and σ. PSRFs for mixture

model parameters are not assessed since label-switching is accepted and not adjusted

for, and PSRFs under this unidentifiable scenario would be meaningless. Only those

replicates which have upper-95% confidence limits below 1.3 for both ν and σ’s uni-

variate PSRFs are included in subsequent analysis. The standard GPD, half-t, and

half-t-normal mixture simulations have at least 90% of replicates achieving the PSRF

standard (percentages in Table B.1), while the other three have considerably worse

convergence rates. The results of the three convergent simulations are described in

the next subsection. A discussion of the simulations experiencing poor convergence

follows.

B.3.1 Convergent Simulation Results

Tail-Index Results. Table B.2 shows that when data come from a standard GPD,

the best tail-index coverage and narrowest widths come, not unsurprisingly, from

ML estimation without thresholding; however, those intervals widen quickly with

higher thresholds and less data. The FMM tail index estimate is unbiased, even if

its coverage is too high for the nominal level (e.g. 100% vs. 95%). While the interval

widths may be unnecessarily wide, they are not unusually wide, falling between the

widths of ML estimators that retain 100% and 20% of data.

Both the half-t scenario and the half-t-normal mixture scenario have the FMM

performing well in tail-index comparisons to the maximum likelihood estimators. Be-

cause the tails of the true densities are not GPD, the ML bias increases when greater

proportions of tail data are included, and the ML interval coverage decreases. Cov-
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Table B.2: Simulation tail-index results for three converged simulation scenarios
across comparison methods. Includes mean tail-index estimates (Mean); interval
coverage (Cov), i.e. proportion of intervals across replicated datasets that contain
the true tail-index; and width of 95% confidence or credible intervals (Wid).

Standard GPD Half-t Half-t-normal
Method Mean Cov Wid Mean Cov Wid Mean Cov Wid
Truth 0.25 0.25 0.25
GPD 5% 0.19 0.94 0.73 0.18 0.92 0.72 0.18 0.87 0.48
GPD 10% 0.25 0.95 0.52 0.18 0.91 0.47 0.17 0.80 0.32
GPD 20% 0.26 0.97 0.35 0.16 0.79 0.32 0.12 0.38 0.21
GPD 100% 0.25 0.93 0.15
EGPD 5% 0.17 0.94 0.94 0.19 0.93 0.92 0.17 0.89 0.59
EGPD 10% 0.22 0.95 0.63 0.20 0.88 0.59 0.19 0.90 0.40
EGPD 20% 0.26 0.93 0.43 0.17 0.86 0.39 0.14 0.63 0.26
EGPD 100% 0.25 0.94 0.18
FMM 100% 0.25 1.00 0.30 0.15 0.97 0.22 0.21 1.00 0.23

erage for the FMM tail index, on the other hand, stays high despite some bias.

Additionally, FMM widths in both scenarios are among the narrowest of the com-

parison methods considered.

Quantile Estimation. Figure B.2, Figure B.3, and Figure B.4 show the results of

tail-quantile estimation for the three simulations that converged well. With either

n = 1,000 or n = 2,000, considering quantile level p out to 0.9999 reflects extreme

extrapolation. For methods employing truncation, bias and RMSE are only displayed

for p in the quantile-levels retained after truncation.

In Figure B.2, the quantiles from the FMM estimator on the standard GPD

scenario show similar amounts of bias and RMSE to the GPD 100% and EGPD 100%

estimators. It is promising that, despite calculating many additional nonparametric

density parameters, the quantile estimates of the FMM behave close to the “gold-

star,” unbiased MLEs in the standard GPD case. Note that apparent bias in the

extreme quantiles of the MLEs is likely due to small sample size, i.e. bias being
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Figure B.2: Standard GPD simulation upper-tail, quantile-extrapolation with p
on log scale. Left panel shows relative bias (bias / true quantile value); right panel
shows ratio of FMM 100% RMSE to other methods’ RMSE, i.e. ratios greater than
1 indicate that other methods have lower RMSE than FMM.
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Figure B.3: Half-t simulation upper-tail, quantile-extrapolation with p on log scale.
Left panel shows relative bias (bias / true quantile value); right panel shows ratio of
FMM 100% RMSE to other methods’ RMSE, i.e. ratios greater than 1 indicate that
other methods have lower RMSE than FMM.
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Figure B.4: Half-t-normal mixture simulation upper-tail, quantile-extrapolation
with p on log scale. Left panel shows relative bias (bias / true quantile value); right
panel shows ratio of FMM 100% RMSE to other methods’ RMSE, i.e. ratios greater
than 1 indicate that other methods have lower RMSE than FMM.

calculated over only 100 replicated datasets.

Figure B.3 shows the results of the half-t scenario. The FMM displays more bias

and RMSE in the region where there is data; however, in extrapolation or beyond

where data is available, the FMM has lower RMSE than any of the thresholding

approaches. The same is true in the half-t-normal mixture simulation, displayed in

Figure B.4, though with not as pronounced an effect.

B.3.2 Non-convergent Simulation Results

Similar to what is seen in Chapter 2, this FMM MCMC sampler can have diffi-

culty moving through a complex posterior space, resulting in high autocorrelation or

stickiness, especially apparent in σ. As the MCMC sampler moves among different

σ possibilities, potentially very different shapes of the nonparametric densities h are

needed to accommodate the true density f .

The plots in Figure B.5 illustrate a case of poor chain convergence occurring in

the Gamma-GPD mixture simulation’s first data-set replicate. The warm-start chain

slowly wanders its way around a complex posterior space while the prior-start chain,
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Figure B.5: Example of nonconvergent chains run on dataset 1 of the spliced
gamma-GPD simulation: black chain comes from a warm start and red from a ran-
dom draw from the prior. The upper row has traceplots for ξ and σ separately and
jointly. The bottom left plot shows the 95% credible intervals for nonparametric
density estimates, and the bottom right plot shows the unnormalized log posterior
values at each iteration.

run on the same data, settles into a small σ value. The bivariate plot of ξ by σ

shows multidimensional separation between the two chains’ θ values, but it is not

until plotting the two nonparametric density estimates against each other (see 95%

posterior credible intervals of density estimates in Figure B.5) that it is apparent

that these chains must lie in distant parts of the posterior space from each other.

Figure B.5 also shows traceplots comparing unnormalized log posterior values of the

two chains. While these posterior values do not give relative importance between the

two chains, it is clear that the values coming from the warm-start chain have higher

posterior likelihood than those from the prior-start chain.
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Figure B.6: Example of variance between two chains run on dataset 1 for the
spliced gamma-GPD simulation. Left panels show draws for the overall density in
grays and the truth in blue. Middle panels show draws for the transformation GPD
density indexed by θ = (ξ, σ). Right panels show draws for the nonparametric density
in grays with 95% credible intervals in bold black.

A second set of plots for the same simulation and the same dataset in Figure B.6

illustrate 1) the two chains’ overall density estimates, 2) parametric or transforma-

tion density estimates under the sampled ξ and σ, and 3) density estimates for the

nonparametric distributions. Notably, the “Density: Prior Start” completely misses

the gamma mode from the gamma-GPD mixture. This is likely the reason that the

prior-start chain has small log posteriors relative to the warm-start chain. Having

this chain get stuck in such a distant, low-density area of the space is a stark example

of the potential posterior sampling difficulty.

For each of the three “nonconvergent” scenarios (i.e. the fourth-power GPD, the
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Gamma-GPD mixture, and the spliced gamma-GPD), there is great concordance

between overall results when run on only the subset of chains that meet the PSRF

criterion and when run on the entire set of chains with warm starts. This gives some

reason to believe that the warm-start chains are in fact starting in and staying in the

areas of highest posterior density and that poor random starts are what makes chains

wander into low density areas. Given this concordance, we proceed with presenting

the results for these three simulation scenarios, using only the warm-start chains,

addressing each simulation separately.

Fourth-Power GPD Simulation Results

The true transformation, Gθ(·), for the fourth power GPD simulation is the density

of a Beta(4, 1), which actually lies just outside of the model space because of the

constraint that all kernels be strictly greater than 0. Therefore, it would be reason-

able to expect posterior density on high probabilities associated with the kernels’

third, boundary-mode, power-law component and at values near the true, generating

σ = 1. However, under the generating transformation, the random variable’s mass

moves upward away from zero, and the prior for σ pulls its posterior upward in the

direction of the data mean. Therefore a larger σ may be needed, and the correspond-

ing “low-high-low” scaling pattern of the nonparametric density, associated with the

kernels’ fourth, central mode component, may point towards the existence of a true,

second posterior mode.

Figure B.7 displays draws of the densities associated with dataset 95. The warm-

start chain (upper three plots) successfully traverses between small values of σ with

their “low-high” nonparametric pattern and larger values of σ with their “low-high-

low” pattern. The random start chain, however, seems to get stuck in the small-σ

regime.

Looking across dataset replicates, most chains appear to be wandering slowly
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Figure B.7: Density plots for dataset 95 of the fourth power GPD simulation.
Left panels show draws for the overall density. Middle panels show draws for the
transformation GPD density indexed by θ = (ξ, σ). Right panels show draws for the
nonparametric density in grays with 95% credible intervals in bold black. The truth
for each is in blue.

through the mode with larger σ; however, some chains spend time in (or get stuck

in) the small σ mode. There is no apparent difference between the warm-start chains

and the prior-start chains as far as which chains end up where. A third set of chains

was also run with starting values very close to the true nonparametric distribution

and generating θ parameters, i.e. with σ = 1 and tail index ξ = 0.25. A visual

comparison shows the new chains moving in similar patterns to the previous two

chains. If for a given dataset the first two chains seem to jump between two modes,

the new chain also moves between both modes. If the chains seem to stick to the

large-σ mode, the new chain quickly and successfully migrates from the σ = 1 into
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Table B.3: Fourth-power gamma scenario tail-index results across comparison meth-
ods. Includes mean tail-index estimates (Mean); interval coverage (Cov), i.e. pro-
portion of intervals across replicated datasets that contain the true tail-index; and
width of 95% confidence or credible intervals (Wid).

Method Mean Coverage Width
GPD 5% 0.18 0.88 0.72
GPD 10% 0.21 0.92 0.50
GPD 20% 0.21 0.90 0.34
EGPD 5% 0.19 0.88 0.93
EGPD 10% 0.20 0.89 0.61
EGPD 20% 0.22 0.89 0.41
FMM 100% 0.20 0.96 0.55

the large σ mode. All of this gives confidence that, while the posterior for any of

these datasets may in fact be multimodal and while the PSRFs may seem large due to

finite sampling of very slow mixing chains, in aggregate across simulation replicates

the chains have converged to the right place! The following results use (arbitrarily)

the warm-start chains and include all 100 dataset replicates.

While the tail index for the true density f is preserved under the generating

Beta(4, 1) transformation, the “GPD-ness” of the tail is not preserved. This is ap-

parent in the decreasing coverage of the ML estimators compared to what they would

be if the tails were exactly GPD instead of just approximately GPD (see Table B.3).

The FMM produces similar tail index estimates to the ML methods. It manages to

get near nominal 95% coverage of the tail index parameter, though at the expense

of slightly wider intervals than the other methods.

A similar pattern plays out in the quantile estimates as was seen previously in

the convergent simulation scenarios, as can be seen in Figure B.8. Namely, the FMM

quantiles are biased, and while they may have poorer RMSE in the parts of the tail

where data is still plentiful compared to the other methods, in extrapolation they

actually have reduced RMSE.
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Figure B.8: Fourth-power GPD simulation upper-tail, quantile-extrapolation with
p on log scale. Left panel shows relative bias (bias / true quantile value); right panel
shows ratio of FMM 100% RMSE to other methods’ RMSE, i.e. ratios greater than
1 indicate that other methods have lower RMSE than FMM.

Gamma-GPD Mixture Simulation Results

Reasoning might lead us to believe that because the true density for the gamma-

GPD mixture scenario is a mixture of a GPD(x; ξ = 1/4, σ = 1) with a gamma

distribution and because the transformation family is a GPD that we should expect

to see a nonparametric density that looks essentially uniform but with a spike coming

from the gamma observations. However, that nonparametric density would need to

pair with σ = 1, which σ would essentially ignore any contribution from the gamma

observations. Instead, as can be seen when revisiting the “Parametric: Warm Start”

plot of Figure B.6, the model prefers values of σ that allow the transformation density

to cut through the middle of the multimodal truth. The corresponding nonparametric

density (upper right plot of Figure B.6) is forced to first scale up and then scale down

the parametric transformation (it “tilts” the uniform density), and the expected peak

of the nonparametric density, which would be very close to 1 under σ = 1, is forced

to move towards more central values of τ and away from 1. Across replicates the

tilt in the left portion of the nonparametric density is apparent. It comes from high
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Table B.4: Gamma-GPD mixture scenario tail-index results across comparison meth-
ods. Includes mean tail-index estimates (Mean); interval coverage (Cov), i.e. pro-
portion of intervals across replicated datasets that contain the true tail-index; and
width of 95% confidence or credible intervals (Wid).

Method Mean Coverage Width
GPD 5% 0.43 0.92 0.78
GPD 10% 0.25 0.87 0.43
GPD 20% 0.01 0.07 0.19
EGPD 5% 0.50 0.85 0.95
EGPD 10% 0.32 0.90 0.51
EGPD 20% 0.11 0.48 0.25
FMM 100% 0.14 0.48 0.19

weight being given to Beta(1, b2) kernel components and is a manifestation of the

confounding mentioned in Section B.1.2 for small sample sizes. That confounding

will also affect tail index estimation. Table B.4 contains those results.

As expected, the tail index is biased down (too heavy) for the FMM, but most

of the methods seem to be having difficulty dealing with the “contamination” com-

ing from the gamma mixture component, as evidenced by their biased and/or poor

coverage. The GPD 10% estimate gets closest to the true tail index of 0.25, but the

method has coverage that is lower than desired, even with its wide intervals.

The quantiles in Figure B.9 tell a now-predictable story. FMM has the highest

bias, and its RMSE is not as good as the other methods until exploring large quantile-

levels, beyond the regions where we expect to have seen data with only n = 1,000.

Spliced Gamma-GPD Simulation Results

The replicates of the spliced gamma-GPD scenario were among the most likely to get

stuck in local, small-σ modes when given random prior starts. For a single dataset,

unnormalized log posteriors from the small-σ chains are clearly smaller than log

posteriors coming from regions with larger σ values; however, there is not as distinct
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Figure B.9: Gamma-GPD mixture simulation upper-tail, quantile-extrapolation
with p on log scale. Left panel shows relative bias (bias / true quantile value); right
panel shows ratio of FMM 100% RMSE to other methods’ RMSE, i.e. ratios greater
than 1 indicate that other methods have lower RMSE than FMM.

Table B.5: Spliced gamma-GPD scenario tail-index results across comparison meth-
ods. Includes mean tail-index estimates (Mean); interval coverage (Cov); and width
of 95% confidence or credible intervals (Wid).

Method Mean Coverage Width
GPD 5% 0.23 0.94 0.31
GPD 8% 0.24 0.95 0.25
GPD 13% 0.21 0.85 0.18
EGPD 5% 0.22 0.93 0.38
EGPD 8% 0.24 0.94 0.30
EGPD 13% 0.24 0.96 0.22
FMM 100% 0.12 0.05 0.15

of separation in the log posteriors as for the gamma-GPD mixture case of Figure

B.5. A small consolation is that across replicates the nonparametric distributions h

produced by the warm-start chains all have similar shapes, which gives some credence

to this warm-start-chain analysis.

With a mean tail index estimate across simulations of 0.12, the FMM is clearly

biased (see Table B.5). Pairing that bias with narrow intervals, narrowest among

all methods considered, there is correspondingly poor interval coverage. As seen in
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Figure B.10: Spliced gamma-GPD simulation upper-tail, quantile-extrapolation
with p on log scale. Left panel shows relative bias (bias / true quantile value); right
panel shows ratio of FMM 100% RMSE to other methods’ RMSE, i.e. ratios greater
than 1 indicate that other methods have lower RMSE than FMM.

Chapter 2, the maximum likelihood estimates with 8% and 5% of tail data retained

do the best in terms of unbiasedness and tail-index coverage. The GPD with 13%

of tail data retained begins to be biased by the gamma bulk and coverage falters,

whereas the EGPD with 13% of data retained continues to do well. These are the

scenarios for which the EGPD was designed.

Again, there is quantile bias through the lower part of the tail and reduced

RMSE in extrapolation (Figure B.10). This is notable in that FMM does a better

job of quantile estimation in extrapolation than the estimators specifically designed

to capture these exact tail cases, and it does this despite grossly overestimating the

heaviness of the tail. The nonparametric density must be performing a compensating

roll. This is another testament to the power of retaining the data.

B.3.3 Simplifying the Kernel

A common mechanism may be hampering the convergence of all three “nonconver-

gent” simulations and could possibly even be contributing to the bias seen in the tails.

Namely, if the sampler has difficulty sampling extremely large α4 and simultaneously
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Figure B.11: Gamma-GPD mixture scenario densities using the modified kernel
for Dataset 1. Left panel shows draws for the overall density in grays and the truth
in blue. Middle panel shows draws for the transformation GPD density indexed by
θ = (ξ, σ). Right panel shows draws for the nonparametric density in grays with
95% credible intervals in bold black.

small β4 values for the Beta(α4, β4) component, that could either create a false bar-

rier between observations that might otherwise move freely between the Beta(α4, β4)

and Beta(α3, 1) components or it could leave observations no better choice than to

associate themselves with some accommodating boundary-mode Beta(α3, 1) compo-

nent, as was seen in the gamma-GPD mixture scenario. While this phenomenon was

seen in the right tail values, it could also exist in left tail values if extremely large

β4 are unable to be sampled with small α4 and observations permanently decamp to

a Beta(1, β2) component.

This line of reasoning prompts the question: “If the sampler has difficulty con-

verging in part because it gives inappropriate weight to the boundary-mode com-

ponents of the beta-mixture kernel, i.e. those governed by α3 and β2 that allow the

nonparametric density to go above 1 at the boundary, what happens if these two

boundary-mode components are eliminated from the beta-mixture kernel?”

This was explored by removing the Beta(1, β2) and Beta(α3, 1) components from

the beta-mixture kernel and running the first four simulation scenarios again on all

100 datasets.
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Table B.6: Tail-index results for the FMM across simulation scenarios using the
modified beta-mixture kernel. Includes mean tail-index estimates (Mean); interval
coverage (Cov); and width of 95% confidence or credible intervals (Wid).

Simulation Scenario Mean Coverage Width
Standard GPD 0.28 1.00 0.34
Half-t 0.17 1.00 0.26
Fourth-power GPD 0.25 0.99 0.66
Gamma-GPD mixture 0.14 0.37 0.18

The most surprising result was that the form of each nonparametric density did

not change much under the simplified kernel. For instance, Figure B.11 shows the

densities for the same gamma-GPD mixture dataset that was discussed in Section

B.3.2. The nonparametric density is able to recreate its characteristic tilt plus tall

right mode without relying on any Beta(1, b2) components. The biggest change to

the nonparametric density appears in τ near 0, where without the boundary-mode

components to let the density be greater than 1 the nonparametric density is forced

to drop below 1.

New tail index summaries for the four scenarios under the simplified kernel are

in Table B.6. In the standard GPD scenario, the tail index went from 0.25 to 0.28

while also increasing in width from 0.3 to 0.34. The tail-index coverage remained

unchanged at 100%. In the half-t scenario, the tail-index increased from 0.15 to

0.17, the width went from 0.22 to 0.26, and the coverage went from 97% to 100%.

In the fourth-power GPD scenario, the tail index mean increased from 0.2 to 0.25,

its 95% interval width increased from 0.55 to 0.66, and its coverage dropped from

99% to 96%. Finally, the gamma-GPD scenario kept its tail index of 0.14, decreased

its tail-index coverage from 0.48 to 0.37, and decreased its width from 0.19 to 0.18.

Overall, there were not drastic changes to the tail-index summaries.

No plots are included for the quantile bias and RMSE from these modified kernel
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simulations. That is because each plot was nearly identical to the plots created for

the full beta-mixture kernel. In short, when it comes to quantile estimation there is

no additional benefit of using the full beta-mixture kernel over using the simplified

beta-mixture kernel form; however, there are several benefits to giving up the full

beta-mixture form in favor of the simplified kernel.

One benefit of eliminating these components is to reduce the total number of

parameters in the model. With each beta-mixture kernel having 8 parameters (7

free parameters if accounting for the weights that are constrained to sum to 1), the

total number of parameters estimated is 2 + K × 8 (correspondingly 2 + K × 7).

Granted, the effective number of parameters is shrunk by the Dirichlet prior over

the K kernels, but this is still a lot of parameters to be estimating. Dropping two

of the four beta-mixture components reduces the total number of parameters per

beta-mixture kernel to four plus a constraint on the weights and the total number of

parameters in the model to 2 +K × 4 (correspondingly 2 +K × 3).

A second benefit to simplifying the kernel is that it may be possible to represent

this simplified kernel mixture through an approximation to the Dirichlet process mix-

ture model, namely via predictive recursion. The predictive recursion approximation

allows the mixing distribution to be integrated out entirely. After integrating out the

mixing distribution, all that is left is a marginal likelihood over the two θ parameters

(Predictive Recursion Marginal Likelihood or PRML), which should be much easier

to maximize. In theory this marginalization would be much faster and would allow

for exploration of the θ space more fully.

B.3.4 Fixing the Transform Scale

While considering simplifications to the model and in response to the mixing difficulty

which is so strongly related to σ, we also questioned whether σ need be estimated at

all or if the value could be fixed. Nearly all literature that employs a transformation
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Table B.7: Tail-index results for the FMM across simulation scenarios after fixing
σ. Includes mean tail-index estimates (Mean); interval coverage (Cov); and width of
95% confidence or credible intervals (Wid).

Simulation Scenario Mean Coverage Width
Standard GPD 0.26 0.97 0.21
Half-t 0.16 0.63 0.18
Fourth-power GPD 0.25 0.93 0.49
Gamma-GPD mixture 0.12 0.03 0.16

for heavy-tailed univariate density estimation does so by restricting the parameters

θ of the transformation Gθ to a single parameter, the index of the power law. Even

for those that have CDF transforms Gθ, most do not estimate a scaling parameter

σ, unless they pre-estimate and fix it, thereafter estimating the nonparametric den-

sity. Those that do not include a scaling parameter directly in their model tend to

scale their data by some empirical measure, e.g. by the inter-quartile range, prior to

estimation. See references in Section 3.4.8.

Simulations were run over the first 30 datasets of the first four simulation scenar-

ios, fixing σ. The value for σ was determined by estimating a ML tail index using

10% of the tail data, then using that index to back out an estimate for σ based on

the empirical IQR under a GPD:

σ̂ =
ξ̂(Q̂0.75 − Q̂0.25)

0.25−ξ̂ − 0.75−ξ̂
(B.3)

In each of the four scenarios, convergence of chains improved. After just 16,000

iterations, all 30 of the standard GPD and half-t datasets had upper limit PSRFs

under 1.3. For the gamma-GPD mixture all but one replicate converged, and for the

fourth-power GPD 21 (70%) had converged. That objective was met.

Fixing σ also resulted in the narrowing of all four tail-index interval widths (see

Table B.7). Interval coverage was closer to the nominal level for both the standard-
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GPD and the fourth-power GPD scenarios, but the interval coverage decreased for

the half-t and gamma-GPD mixture simulations compared to when σ was estimated.

Although the quantile estimates followed very similar forms for bias and RMSE

and still maintained their RMSE edge in the extrapolated-tails, most had some

decline in quality when compared to the simulations where σ was estimated. The

standard GPD and half-t scenarios both saw increased bias and RMSE in the tails

and the gamma-GPD mixture had slightly higher RMSE as before. The fourth-power

GPD quantile estimates were essentially unchanged.

While fixing σ may be a practically useful thing to do to improve convergence in

tricky cases, it may impede the model’s ability to correctly capture the tail index.

B.4 Conclusion

This FMM, while still plagued by slow mixing, is able to traverse the complex poste-

rior shapes necessitated by varying σ. It has proven quite flexible and able to capture

many bulk shapes while still giving form to the tails.

The model has some drawbacks. It still exhibits a bias in the lower part of the

upper-level quantiles. It seems systemic as all simulations see the bias increase over

the 0.9 to 0.99 region and perhaps a little beyond that. If the source of this bias is

found, perhaps it could be remedied. The model also can get stuck in local modes

in low-density parts of the parameter space; although this can largely be remedied

using the proposed warm starts.

The model’s strength lies in its use of data. By retaining all data and incorpo-

rating prior information that the tails are heavy, the model is able to significantly

reduce the RMSE of quantile extrapolation across many types of densities and tails.

The most promising future direction lies in the simplified kernel. Index and

quantile estimation does not seem significantly affected by removing four of the

seven parameters of the beta-mixture kernel. Bringing the mixture kernel down to
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three parameters puts it within the realm where predictive recursion approximations

might be reasonable. Implementing this model using Predictive Recursion Marginal

Likelihood seems like the next natural step. The approximation may not only speed

up the algorithm, but may also simplify the complex posterior σ-h relationships by

integrating the mixture distribution h out of the model entirely.
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Appendix C

Model-Comparison Plots by Dataset

This appendix provides plots of marginal posteriors over the parametric transfor-

mation parameters for each method, for each scenario, and for dataset. One of the

figures also provides dataset-level estimates for the relative bias through the bulk for

each model and each scenario.
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Figure C.1: LGP posterior marginal distributions over θ for each scenario and each
dataset. Each black contour line is an isoband enclosing 80% of posterior mass. The
shapes of the densities are similar to the 80% bands when extending out to enclose
more of the mass.
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Figure C.2: FMM posterior marginal distributions over θ for each scenario and
each dataset. Each black contour line is an isoband enclosing 80% of posterior mass.
The shapes of the densities are similar to the 80% bands when extending out to
enclose more of the mass.
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Figure C.3: PRMP posterior marginal distributions over θ for each scenario and
each dataset. Each black contour line is an isoband enclosing 80% of posterior mass.
The shapes of the densities are similar to the 80% bands when extending out to
enclose more of the mass.
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Figure C.4: Estimates of the relative quantile bias, (bias / true quantile value),
for the bulk portion of the sampling density (p ≤ 0.9) are displayed for each dataset.
The averages, taken pointwise across p, are displayed in a darker hue.
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aléatoeir,” Annals of Mathematics, 44, 423–453.

Gustafsson, J., Hagmann, M., Nielsen, J. P., and Scaillet, O. (2009), “Local Trans-
formation Kernel Density Estimation of Loss Distributions,” Journal of Business
& Economic Statistics, 27, 161–175.

Jones, M. C. and Faddy, M. J. (2003), “A Skew Extension of the t-Distribution,
with Applications,” Journal of the Royal Statistical Society. Series B (Statistical
Methodology), 65, 159–174.

Kotecha, J. and Djuric, P. M. (1999), “Gibbs sampling approach for generation of
truncated multivariate Gaussian random variables,” ICASSP, IEEE International
Conference on Acoustics, Speech and Signal Processing - Proceedings, 3, 1757–1760.

157



Lenk, P. J. (1988), “The logistic normal distribution for Bayesian, nonparametric,
predictive densities,” Journal of the American Statistical Association, 83, 509–516.

Lenk, P. J. (2003), “Bayesian Semiparametric Density Estimation and Model Verifi-
cation Using a Logistic-Gaussian Process,” Journal of Computational and Graph-
ical Statistics, 12, 548–565.

Leonard, T. (1978), “Density estimation, stochastic processes and prior information,”
Journal of the Royal Statistical Society. Series B (Methodological), 40, 113–146.

Li, C., Lin, L., and Dunson, D. B. (2019), “On posterior consistency of tail index for
Bayesian kernel mixture models,” Bernoulli, 25, 1999–2028.

Markovich, N. (2007), Nonparametric Analysis of Univariate Heavy-Tailed Data:
Research and Practice, John Wiley & Sons, Ltd.

Martin, R. (2018), “On nonparametric estimation of a mixing density via the pre-
dictive recursion algorithm,” unpublished, available at arXiv:1812.02149.

Martin, R. and Tokdar, S. T. (2009), “Asymptotic properties of predictive recursion:
Robustness and rate of convergence,” Electronic Journal of Statistics, 3, 1455–
1472.

Martin, R. and Tokdar, S. T. (2011), “Semiparametric inference in mixture models
with predictive recursion marginal likelihood,” Biometrika, 98, 562–582.

Naveau, P., Huser, R., Ribereau, P., and Hannart, A. (2016), “Modeling jointly low,
moderate, and heavy rainfall intensities without a threshold selection,” Water
Resources Research, 52.

Neal, R. M. (2000), “Markov chain sampling methods for Dirichlet process mixture
models,” Journal of computational and graphical statistics, 9, 249–265.

Newton, M. A. and Zhang, Y. (1999), “A recursive algorithm for nonparametric
analysis with missing data,” Biometrika, 86, 15–26.

Newton, M. A., Quintana, F. A., and Zhang, Y. (1998), “Nonparametric Bayes meth-
ods using predictive updating,” in Practical Nonparametric and Semiparametric
Bayesian Statistics. Lecture Notes in Statistics, eds. D. Dey, M. P., and S. D., vol.
133, pp. 45–61, Springer.

Papastathopoulos, I. and Tawn, A. J. (2013), “Extended generalised Pareto models
for tail estimation,” Journal of Statistical Planning and Inference, 143, 131–143.

Pickands, J. (1975), “Statistical inference using extreme order statistics,” Annals of
Statistics, 3, 119–131.

158



R Core Team (2018), R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria.

Resnick, S. I. (2007), Heavy-tail Phenomena: Probabilistic and Statistical Modeling,
Springer-Verlag New York.

Roberts, G. O. and Tweedie, R. L. (1996), “Exponential Convergence of Langevin
Distributions and Their Discrete Approximations,” Bernoulli, 2, 341–363.

Scarrot, C. and MacDonnald, A. (2012), “A review of extreme value threshold esti-
mation and uncertainty quantification,” Statistical Journal, 103, 33–60.

Schwartz, L. (1965), “On Bayes procedures,” Zeitschrift für Wahrscheinlichkeitsthe-
orie und verwandte Gebiete, 4, 10–26.

Silverman, B. W. (1986), Density Estimation for Statistics and Data Analysis, Chap-
man & Hall.

Tokdar, S. T. (2007), “Towards a faster implementation of density estimation with
logistic Gaussian process priors,” Journal of Computational and Graphical Statis-
tics, 16, 633–655.

Tokdar, S. T. and Ghosh, J. K. (2007), “Posterior consistency of logistic Gaussian
process priors in density estimation,” Journal of Statistical Planning and Inference,
137, 34–42.

Tokdar, S. T., Martin, R., and Ghosh, J. K. (2009), “Consistency of a recursive
estimate of mixing distributions,” Annals of Statistics, 37, 2502–2522.

Tokdar, S. T., Zhu, Y. M., and Ghosh, J. K. (2010), “Bayesian density regression
with logistic Gaussian process and subspace projection,” Bayesian Analysis, 5,
319–344.

Tressou, J. (2008), “Bayesian nonparametrics for heavy tailed distribution. Applica-
tion to food risk assessment,” Bayesian Analysis, 3, 367–392.

van der Vaart, A. and van Zanten, J. (2008), “Rates of contraction of posterior
distributions based on Gaussian process priors,” Annals of Statistics, 36, 1435–
1463.

van der Vaart, A. W. and van Zanten, J. H. (2009), “Adaptive Bayesian estima-
tion using a Gaussian random field with inverse Gamma bandwidth,” Annals of
Statistics, 37, 2655–2675.

Verdinelli, I. and Wasserman, L. (1998), “Bayesian Goodness of Fit Testing using
Infinite Dimensional Exponential Families,” Annals of Statistics, 20, 1203–1221.

159



Wand, M. P., Marron, J. S., and Ruppert, D. (1991), “Transformations in density
estimation,” Journal of the American Statistical Association, 86, 343–353.

Yang, L. and Marron, J. S. (1999), “Iterated Transformation–Kernel Density Esti-
mation,” Journal of the American Statistical Association, 94, 580–589.

Yang, Y. and Tokdar, S. T. (2017), “Joint estimation of quantile planes over arbitrary
predictor spaces,” Journal of the American Statistical Association, 112, 1107–1120.

Zhu, D. and Galbraith, J. W. (2010), “A generalized asymmetric Student-t distri-
bution with application to financial econometrics,” Journal of Econometrics, 157,
297–305.

160


	Abstract
	List of Tables
	List of Figures
	List of Abbreviations and Symbols
	Acknowledgements
	1 Introduction
	1.1 Classic Extreme Value Theory
	1.2 Thresholding Methods
	1.3 Transformations in Density Estimation
	1.4 Transformations in Heavy-Tailed Density Estimation
	1.5 Transformations and Their Tail Properties

	2 Logistic Gaussian Process Model
	2.1 Model Setup
	2.1.1 Parametric Distribution and Priors
	2.1.2 Nonparametric Distribution and Priors

	2.2 Computational Considerations
	2.2.1 Posterior Approximations
	2.2.2 MCMC Sampler

	2.3 Simulation Study
	2.3.1 Simulation Setup
	2.3.2 General Observations
	2.3.3 Simulation Results
	2.3.4 LGP as a Truncation Option

	2.4 Conclusions and Discussions

	3 Mixture Model Approach
	3.1 Background
	3.1.1 Mixture Models
	3.1.2 Dirichlet Process Mixture Models
	3.1.3 Mixture Models for Extremes

	3.2 Model Setup
	3.2.1 Parametric Distribution and Priors
	3.2.2 Nonparametric Distribution and Priors

	3.3 Computation
	3.4 Simulation Study
	3.4.1 Computational Speed
	3.4.2 Chain Convergence and Sampling Features
	3.4.3 DPMM to FMM Comparison
	3.4.4 Lower-tail and Bulk Results
	3.4.5 Tail-Index Results
	3.4.6 Upper-tail Quantile Estimation
	3.4.7 Sensitivity of Model to Left-hand ``Tail"
	3.4.8 Fixing the Transform Scale

	3.5 Conclusions and Discussions

	4 Predictive Recursion Marginal Posterior Model
	4.1 Background
	4.1.1 Predictive Recursion Algorithm
	4.1.2 Predictive Recursion Marginal Likelihood

	4.2 Model
	4.2.1 Kernel
	4.2.2 Priors
	4.2.3 Joint Posterior

	4.3 Computation
	4.3.1 Numerical Integration
	4.3.2 Predictive Recursion Weights
	4.3.3 Discretization of Marginal Prior
	4.3.4 Estimation Including Uncertainty Intervals

	4.4 Simulation Study
	4.4.1 Simulation Settings
	4.4.2 Simulation Results

	4.5 Discussion and Conclusions

	5 Rainfall Application
	5.1 Data
	5.2 Methods
	5.3 Estimates
	5.4 Model Fit

	6 Conclusions
	6.1 Model Similarities and Differences
	6.2 Computational Differences
	6.3 Simulation Comparisons
	6.3.1 Marginal Posteriors
	6.3.2 Quantile Estimation

	6.4 Conclusions and Future Work
	6.4.1 Model Strengths and Weaknesses
	6.4.2 Take-aways
	6.4.3 Future Directions


	Appendices
	A LGP Model Details and Approximations
	A.1 Likelihood
	A.2 Prior
	A.3 Log Posterior
	A.4 Predictive Process Approximation
	A.5 Finite Approximations to Posterior

	B Alternative-kernel Mixture Model
	B.1 Model Setup
	B.1.1 Parametric Distribution and Priors
	B.1.2 Nonparametric Distribution and Priors

	B.2 Computation
	B.3 Simulation Study
	B.3.1 Convergent Simulation Results
	B.3.2 Non-convergent Simulation Results
	B.3.3 Simplifying the Kernel
	B.3.4 Fixing the Transform Scale

	B.4 Conclusion

	C Model-Comparison Plots by Dataset
	Bibliography

