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Abstract

Improving the understanding of the complexity of molecular pathways underlying

cancer phenotypes is essential to uncovering the dynamic processes of cancer devel-

opment. As part of this, linking quantified, experimentally defined gene expression

signatures with known biological pathway gene sets is a key challenge. This dis-

sertation presents a novel Bayesian statistical approach to this pathway annotation

problem.

In my approach, a formal probabilistic model delivers probabilities over pathways

for an experimental signature, thus allowing a quantitative assessment and ranking of

pathways putatively linked to the experimental phenotype. The fundamental advan-

tage of this approach is formal modeling of the uncertainty in the pathway analysis.

Biological understanding of the data and knowledge are incorporated in the model.

In addition, coherent inference on uncertainties about gene pathway membership

highlights a key benefit of this model-based approach.

Technically, this research involves advanced statistical modeling and high-dimen-

sional computation. Analysis of the models uses Markov chain Monte Carlo tech-

niques and variational methods for statistical computation. To evaluate model ev-

idence, a critical component of pathway analysis, I propose an innovative Monte

Carlo variational method that provides optimal upper and lower bounds on model

evidence. This method, motivated and developed by genomic pathway analysis, is

in fact general and represents an advance in statistical model-based computation of

much broader utility.

The effectiveness and robustness of my approach are tested through simulation

studies as well as analyses of real data sets, including “proof-of-principle” pathway an-

notation for breast tumor estrogen-receptor and ErbB2 phenotypes. A study of path-

iv



way activities underlying the cellular response to lactic acidosis micro-environment

in breast tumors involves the analyses of both in vitro and in vivo data, and demon-

strates the application of the method in decomposing the complexity of gene expression-

based predictions about interacting pathway activation in this cancer context.

In conclusion, this dissertation generates innovation in statistical methodology

as well as in cancer genomics applications. Current and future research plans and

directions include broad opportunities for application and evaluation in cancer ge-

nomics studies, as well as in other areas of genomics, and follow-on efficient computer

implementations for use of the method by the research community.
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Chapter 1

Introduction

Substantial evidence indicates that most cancers are derived from sequential genetic

alterations that deregulate cellular growth through specific cellular signaling path-

ways. Although all cancer cells share common features of malignant growth associated

with some common biological pathway activities, different categories and subcate-

gories of cancers have their own specific mechanisms. Improving the understanding

of the complexity of molecular pathways underlying cancer phenotypes is essential

to uncovering the dynamic processes of cancer development and identifying cancer

prognostic factors and therapeutic targets.

In cancer research, genome-wide gene expression profiles are generated for specific

cancer-related phenotypes in experiments either on normal tissues or tumors, such

as cancer micro-environments, oncogene perturbation and cancer subtypes. Iden-

tifying pathway activities associated with certain cancer-related phenotypes is the

basic goal, addressed by capturing the characteristics of cancer cell behavior on the

transcriptional level. Moreover, due to aggregated efforts in cancer genomic research,

much genome-wide gene expression data on tumor samples from different sources

is available and of great value for studies of tumor heterogeneity. Many statistical

methods have been developed to analyze such cancer profiling data. Of key interest

here is Bayesian factor regression modeling (Carvalho et al. 2007; Lucas et al. 2006)

that provides a comprehensive tool for cancer signature identification and molecular

phenotype dissection using expression data.

Pathway databases have collected information on cancer signaling pathways de-

rived from biological molecular interaction studies. Besides these, many cancer-

1



oriented gene expression profiling experiments, such as oncogene or tumor suppressor

gene alteration and growth factor stimulation, have been conducted on cell lines and

animal model organisms. The analyses of these gene expression profiles have pro-

vided gene expression signatures characterizing or predictive of certain biological

phenotypes. Presumably a set of signature genes contains genes that are likely to be

participants in underlying biological processes – in other words, members of underly-

ing biological pathways. Such existing pathway gene sets and signatures can be used

as references for pathway annotation in new contexts.

Pathway annotation involves borrowing knowledge from the signaling pathway

databases to investigate pathway activities involved in a current experimental con-

text. Here, linking quantified, experimentally defined gene expression signatures with

known biological pathway gene sets is a key challenge. A necessary step following an-

notation is to reveal the specificity of the identified pathways in the current biological

context. This is the key to imputing the connectivity among pathway modules as well

as to identifying biomarkers and therapeutic targets. None of the existing pathway

annotation methods were developed based on modeling of the quantified association

between gene expression and biological phenotypes. As a result, biological under-

standing of the data and pathways are really not incorporated in the methods; nor

is the context-based pathway specificity problem typically addressed. The existing

methods are reviewed in Chapter 2 following the introduction of pathway-oriented

cancer mechanism studies and Bayesian factor regression modeling.

Motivated by these requirements in practical research, this thesis develops a

Bayesian statistical approach, called probabilistic pathway annotation (PROPA), for

the general problem of genome-wide expression-based pathway annotation. This in-

volves a model-based approach to matching experimental signatures of structure or

outcomes in gene expression to multiple biological pathway gene sets from curated
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databases. This formal probabilistic model delivers probabilities over pathways for

each experimental signature, thus allowing for a quantitative assessment and rank-

ing of pathways putatively linked to the experimental phenotype. The fundamental

advantage of this approach is formal modeling of the uncertainty in the pathway

analysis. For example, accuracy and relevance of genes in á priori defined sets can

easily be incorporated, and inference on uncertainty about gene set membership is

transparent. In Chapter 3, the statistical model for this approach is introduced and

described in detail.

This approach involves Bayesian inference and model comparisons. A pathway

gene set is refined through inference on pathway membership probabilities; multiple

pathways are compared in terms of their association with the studied phenotype

through model comparisons. Both tasks rely on posterior simulation for solutions.

Chapter 4 discusses the Markov chain Monte Carlo method for the PROPA model,

and demonstrates it in a simulation study. Inference on gene pathway membership

is discussed in the simulation example.

Multiple pathway comparisons, formulated as a Bayesian model comparison prob-

lem in PROPA, involve the evaluation of marginal likelihoods or model evidence –

this generates difficult integration problems as is encountered in other areas. The

high-dimensionality of the genome-wide gene expression data causes intractability in

both the analytical and numerical evaluation of the integrals. This core computa-

tional biology and statistical problem is addressed in Chapter 5 with a study of the

characteristics of joint probability density functions in the PROPA model. Numeri-

cal integration methods for marginal likelihood approximation, including quadrature,

Laplace approximation, importance sampling and posterior sampling integration, are

reviewed and evaluated. These methods either fail or are very hard to use in this

situation due to the difficulty caused by the high dimension. Some of these methods
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are tested in a simple simulation study that aims to show PROPA analysis as effective

for pathway comparisons.

To solve the marginal likelihood evaluation problem, I propose a novel Monte

Carlo variational approximation method, which involves innovation in statistical

methodology generally as well as an effective method for PROPA. Traditional mean-

field variational methods, which use conditionally optimal lower bounds to approx-

imate the marginal likelihoods, have desirable mathematical forms that avoid the

numerical problems caused by high-dimensional data. Inspired by this idea, I de-

rive a general optimization method based on Monte Carlo simulation and stochastic

approximation to achieve a conditionally optimal lower bound on the marginal likeli-

hood. More importantly, I propose a novel method that combines posterior simulation

and mean-field variational approximation, providing a conditionally optimal upper

bound to the marginal likelihood. This lower and upper bounding strategy success-

fully solves the statistical computation problem in PROPA. In addition, this gener-

ates advances in the computation of marginal probabilities generally, a key problem

in Bayesian statistical inference, by implementing double-sided bounding. In Chapter

6, this method is discussed in detail and demonstrated in simulation studies.

In Chapter 7, two examples on real data sets are presented to demonstrate the ef-

fectiveness and robustness of PROPA. In the first example, pathway activities related

to breast tumor estrogen-receptor status are analyzed using PROPA. The comparison

of this analysis with that given by gene set enrichment analysis (GSEA) (a pathway

annotation method reviewed in Chapter 2) shows the effectiveness, and some of the

unique features and benefits, of PROPA. The robustness of the PROPA model is stud-

ied through observing the change of annotation results caused by variation in model

hyper-parameters and data distributions. The effectiveness of PROPA is then also

demonstrated in the analysis of pathway activities underlying breast tumor ErbB2
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status, another important phenotype in breast cancer. This example also highlights

inference on gene pathway membership probabilities, a further key feature and benefit

of the new model framework.

Chapter 8 presents an application of PROPA in studies of cancer developmental

mechanisms. A main area of applied interest is in the study of pathway activities

associated with lactic acidosis, a key micro-environmental factor in solid tumors.

Pathway annotation analyses of lactic acidosis status in human mammary epithelial

cells and breast tumor cells identify pathways elucidating the nature of lactic acidosis

as a potential signal for cells as well as linkages to key risk signatures in breast cancers.

Through this study, I demonstrate that PROPA combined with the gene signature

dissection and enhancement methodology, shows considerable promise and utility in

cancer genomic studies.

Current and potential future research directions are discussed in Chapter 9.

The research work in this dissertation is implemented in MATLAB and gener-

ates a software package named PROPA. The major functional components includes

gene set curation, gene-phenotype data pre-processing, pathway annotation, gene

set refinement and result presentation. This software package will be available at

http://www.stat.duke.edu/.
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Chapter 2

Pathway Annotation in Cancer Biology

Cancer begins with genetic mutations, which cause signal cascades leading to the

stimulation of cell proliferation or inhibition of cell-cycle arrest, and suppression of

apoptosis (Evan and Vousden 2001; Kufe et al. 2006; Hanahan and Weinberg 2000;

Jones and Baylin 2002; Esteller and Herman 2002). During cancer development,

sequential genetic alterations occur as both results and driving forces of cancerous

signaling and cell evolution pressured by the extracellular environment. Therefore,

the key to understanding the mechanisms of cancer development lies in the investi-

gation of cancer signaling pathways as the interconnected modules in cancer cellular

circuitry. In this chapter, I first justify the pathway approach as reasonable and

feasible to cancer mechanism investigation. An introduction is given to the Bayesian

factor regression modeling methodology, a powerful tool for cancer phenotype dissec-

tion based on genome-wide gene expression profiles that forms a major context for

development of my pathway annotation analysis method. Then, I motivate model-

based approaches through a review of existing pathway annotation methods.

2.1 Understanding Cancer Through Pathways

Cancer is the complex result of multiple sequential genetic mutations. Very few can-

cer types are the results of single gene mutation, a typical example of which is the

inherited eye tumor caused by a loss of function of retinoblastoma gene (Rb)(Knudson

1971; Friend et al. 1986; Cavenee et al. 1983). Development of the vast majority of

cancer types involves more than one genetic mutation and presents as multi-step

events. Vogelstein and Kinzler (1993) proposed a progression model for colorectal
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neoplasia. In this model, colon cancer development was hypothesized as a step-

wise process, including abnormal initiation in colonic epithelium, propagation and

local aggregation of the abnormality to form adenomatous polyps, and increase of

malignancy as infiltrating adenocarcinoma. Each step involves different contribut-

ing genetic mutations. This multi-step and multi-mutant nature of cancer was also

demonstrated by Hahn et al. (1999) in their work on tumorigenic conversion of normal

human epithelial fibroblast cells.

Effects of genetic mutations differ in different stages of cancer progression, making

the assessment of the effects possibly incomplete. Generally, the common mechanism

under cancer progression is that the activation of oncogenes, inactivation of tumor

suppressor genes and malfunction of stability genes result in the deregulation in

cellular signaling pathways controlling cell proliferation and apoptosis (Vogelstein

and Kinzler 2004). Despite the fact that tumors seem to be associated with the

expression of oncogenes (Giuriato et al.,2004), some oncogene downstream effectors

are more important than the oncogenes themselves for maintaining tumor growth

once the tumors are established (realistically, tumors are usually observed in this

stage). As an example, Lim and Counter (2005) demonstrated that the PI3K/ATK

pathway, one of the residual activities of the upstream Ras oncogene, is sufficient for

tumor maintenance in human cells.

The number of tumorigenic gene mutations appears to be much larger than what

is currently known; meanwhile, mutant gene sets of different tumor types have few

overlaps, and even the mutations within a single histological tumor type are highly

heterogeneous. Sjöblom et al. (2006) presented the evidence for this in their recent

study of coding sequences consensus in human breast and colorectal cancers. The

diversity and heterogeneity of tumorigenic mutations make it difficult to predict the

behavior, prognosis, or therapy response of tumors based on a single set of gene
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mutations.

It has been indicated that different genetic mutations may have similar functions

and play equivalent roles in cancer cell signaling pathways (Vogelstein and Kinzler

2004). Sjöblom et al. (2006) suggested that mutant genes might possibly be grouped

into a limited number of pathways. Hence, exploring signaling pathway activities

under cancer phenotypes to decompose the relationship between genetic mutations

and cancer development may be a way to probe the complex circuitry of cancer cells

and advance the understanding of cancer development.

High-throughput gene expression technology makes comprehensive genomic anal-

yses of human cancers possible (Schena et al. 1995). Through the observation of

genome-scale gene expression profiles, genes are linked in a shared phenotype which

reflects specific underlying biological processes or pathway modules. Genes expressed

at higher or lower levels in cancerous cells with a certain phenotype are involved in the

biological processes, and are components of the signaling pathways contributing to

this phenotype. Many studies have shown that such pathway gene sets themselves, in

absence of interaction information, are able to distinguish cancer phenotypes (West

et al. 2001; van’t Veer et al. 2002; Bild et al. 2006). This provides fundamental

support for pathway annotation approaches to cancer research using genome-wide

gene expression data. Many statistical methods have been developed to identify dif-

ferentially expressed genes. I focus on Bayesian methodology that has the ability

to identify genes associated with explicit phenotypes and dissect complex molecu-

lar phenotypes in heterogeneous tumor samples to facilitate the studies of cancer

development.
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2.2 Bayesian Factor Regression Modeling

Bayesian factor regression modeling (BFRM), a methodology developed for analy-

sis of high-dimensional data, has been applied in cancer biology studies based on

genome-wide gene expression profiles (West 2003; Lucas et al. 2006; Carvalho et al.

2007; Lucas et al. 2007; Chen et al. 2007). This methodology considers sparsity, a

key concept in practical high-dimensional data analysis, in a generalized multivari-

ate regression framework, and combines it with ANOVA and latent factor modeling

to correct experimental artifacts, dissect transcriptional responses to biological per-

turbations and explore the underlying gene expression patterns predictive of cancer

phenotypes. Such multiple tasks are either fulfilled separately or combined in one

analysis according to the goals of biological studies. Without covering the thorough

details and complete framework, I briefly introduce BFRM with a focus on the form

directly linked to the topic of pathway annotation for tumorigenesis studies.

The fundamental framework of BFRM is modeling gene expression as a linear

combination of a number of factors with biological meaning, either explicit or yet to

be identified. For each of n tissue samples, observations are made on the expression

levels of p genes. The expression of gene g in sample i is denoted by xg,i and modeled

as a conditionally Gaussian random variable

xg,i = µg +
r∑
j=1

βg,jhj,i +
k∑
j=1

αg,jλj,i + νg,i, (2.1)

where µg is the expression baseline of gene g across all samples, and νg,i is the Gaussian

error term representing the intrinsic variation or measurement error. The {hj,i}j=1:r

and {λj,i}j=1:k combined by corresponding loadings {βg,j}j=1:r and {αg,j}j=1:k break-

down and interpret the variation of xg,i across samples. The {hj,i}j=1:r are known

design factors for sample i. They can be any known characteristics of the sam-
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ples obtained through predefinition or measurement, such as experimental groups or

treatment variables, sample clinical features, expression level of a certain protein or

experiment artifacts. The {λj,i}j=1:k are unknown latent factors for sample i to be

inferred through model fitting. These latent factors are regarded as representatives

of underlying biological processes or sub-phenotypic structures that impact on the

expression of multiple genes in potentially complex, interacting ways.

Sparsity is an important concept in modeling and variable selection problem in

high-dimensional problems. Based on the fact that most biological phenotypes only

involve the transcriptional response of a relatively small number of genes in a genome,

this concept has been introduced in genomics and successfully applied in microar-

ray gene expression analysis (West 2003; Seo et al. 2007). The regression model

coupled with a novel sparsity modeling idea is implemented in a Bayesian frame-

work by BFRM, and becomes remarkably effective in identifying bio-markers and

pathway gene signatures from the data contaminated by experimental artifacts and

non-biological biases (Lucas et al. 2006). The sparsity concept is embedded in the

model by imposing “variable selection” prior distributions on regression parameters

{βg,j}g=1:p,j=1:r, namely,

p(βg,j) = (1− πg,j)δ0(βg,j) + πg,jN(βg,j; 0, τj), (2.2)

which means that βg,j either is 0 or has a normal prior with variance τj. πg,j, the

probability that βg,j has a normal distribution, is gene-specific and assigned an hi-

erarchical shrinkage prior that heavily favors 0 probability. This sparsity modeling,

benefitting from such hierarchical shrinkage priors, effectively reduces the false dis-

covery rates and enhances the ability to isolate significant gene-variable effects (Lucas

et al. 2006).

Bayesian analysis leads to an estimate of the posterior probability that βg,j is
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non-zero. I use the notation π∗g,j for this estimate, a probabilistic assessment of the

level of expression of gene g being associated with factor j. Here I refer to π∗g,j as the

association probability of gene g with phenotype j. Typically, only a relative small

number of genes will have large association probabilities, while the vast majority

will have very small or 0 probabilities. Similar sparsity ideas apply to the latent

factor loadings {αg,j}g=1:p,j=1:k. As one of the products of the BFRM analysis, the

association probability matrix

[
π∗g,j
]
p×(r+k)

=

 π∗11 · · · π∗1(r+k)
...

. . .
...

π∗p1 · · · π∗p(r+k)

 (2.3)

contains key summary information of the gene-phenotype associations implied by the

gene expression profiling data set. Each column of the matrix is a probabilistically

indexed gene list.

Without considering latent structure of gene expression profiles, this model be-

comes a multivariate regression model

xg,i = µg +
r∑
j=1

βg,jhj,i + νg,i. (2.4)

For all g = 1 : p, statistical inference on regression parameters {βg,j}j=1:r conveys the

expression predictability of each gene on the regressor variables. Instead of predicting

gene expression, such an analysis often aims to identify genes significantly related to

design factors, and the probabilities π∗g,j are key to this goal.

Latent factor modeling added to this regression aims to identify underlying pat-

terns having biological significance and contributing to the gene expression variation

not explained by design factors (Carvalho et al. 2007). The association between each

gene g ∈ {1 : p} and each of the biological phenotypes represented by these latent fac-
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tors are indicated through the inference on the loadings {αg,j}j=1:k. One application

of this latent factor model is to decompose the expression patterns linked to a phe-

notype or intervention. In contrast to conventional gene clustering analysis, rather

than segregating genes into individual groups this analysis emphasizes connections

among the factors reflected in those genes shared by different factors, and infers the

structure by estimating the factors over samples as well as the gene-factor loadings.

If each factor is assumed to represent the transcriptional read-out of one or more

“modules” in a gene regulatory network, the intersecting gene subsets can be viewed

as the nodes connecting the modules. This cross-talk among the factors potentially

provides interaction information on signaling pathways. Lucas et al. (2006) gave an

example on this type of application, in which the pathway activities related to breast

tumor estrogen-receptor and ErbB2 expression variation are dissected.

A strength of this latent factor modeling approach lies in its ability to borrow

information from existing studies to explore the pathway activities in different and

often more complicated contexts, called signature dissection and enhancement (Lucas

et al. 2007). An analysis of this type of application usually starts with a group of

genes predefined as a signature of a certain interesting biological context, for example,

Rb/E2F pathway genes, genes differentially expressed in gastric cancer cell lines

resistant to doxorubicin, or human orthologous genes mapped from certain mouse

oncogenic pathway genes. Through an evolutionary stochastic model search method,

more genes and latent factors are iteratively added to the model. The added genes

strengthen the evolution of the latent factors, while the added factors help to improve

the explanation of the expression variation in the genes. Such a model fitting a process

not only decomposes the biological event projected from the initial set of signature

genes, but also extends the focus to other pathway activities potentially linked to it.

This cross-study strategy based on BFRM has been applied to analyze lactic acidosis
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response in breast tumors (Lucas et al. 2007; Chen et al. 2007), among other recent

and current studies.

Generally, a gene expression profile analysis in BFRM provides an information-

rich output including the measures of the association between genes and biological

phenotypes, sub-phenotypes represented by latent factors, as well as the interactions

between the phenotypes. Here is an example of a typical BFRM analysis. The

microarray readings are collected from 295 breast cancer tumors exhibiting diverse

clinical phenotypes. The factor analysis of the data by BFRM includes four clinical

phenotypes as covariates (estrogen-recptor status, lymph-node status, progestoron-

receptor status and ErbB2 status), and outputs 10 latent factors whose profiles are

shown as a heatmap in Figure 2.1(a). The skeleton plot in Figure 2.1(b) illustrates

the association between each factor – including the four clinical and 10 latent factors

– and 250 genes, each of which is differentially expressed with at least one of the 14

factors in the sense that the association probability π∗g,j is greater then 0.75. The

other genes not shown in the figure have 0 or small association probabilities with all

factors. As can be seen, the factors are distinguished from each other in terms of the

associated gene sets. Meanwhile, each factor is linked to one or more other factors

through cross-talk introduced by common sets of associated genes.

In cancer research, estimated factor “phenotypes” and the association proba-

bilities provide a basis for developing hypotheses in tumorigenesis studies, and are

further utilized to predict cancer phenotypes such as cancer sub-types, development

stage, survival and therapy response (Carvalho et al. 2007; Lucas et al. 2007). An

essential work that builds a bridge between the statistical analysis results and the

applications is the identification of potential or putative biological processes or gene

pathway activities underlying the factors as phenotypes. For each factor phenotype,

the underlying pathway activity information is embedded in the relation between
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(a) (b)

Figure 2.1: Example of BFRM analysis output. (a) The profiles of the 10 latent factors
in the breast tumor gene expressions. (b) Binarized association probability matrix of 250
genes with four clinical phenotypes (first four columns) and 10 latent factors. Here black
if π∗g,j > 0.75, white otherwise.
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genes and the factor phenotype. This highlights the central importance of the corre-

sponding columns of the posterior association probability matrix in (2.3), exemplified

in Figure 2.1 (b). The pathway annotation methodology described in the following

chapters of this thesis is developed for (but not limited to) this setting of studies; I

focus on pathway annotation and identification based on gene-phenotype association

probabilities projected from such an analysis.

2.3 Pathway Annotation Methods

2.3.1 Limitations of Biomarkers

A goal of analyzing gene expression profiles is to reveal the biological pathways linked

to a sample phenotype or response to a biological perturbation. Genes with tran-

scriptional level changes are the participants and carriers of the signals and can

give valuable insight into the underlying biological processes. A variety of statistical

methods have been developed to detect such signature genes or biomarkers based

on the correlation between single gene expression variation and the phenotype or

perturbation. However, identification of biological pathways depending on observing

the expression of individual bio-markers often fails because of instability in the mea-

surement technology as well as experimental bias. Biological variation in single gene

expression can be damped by noise and irrelevant factors and become undetectable.

Many studies have shown that, in the same biological context, the lists of differen-

tially expressed genes obtained from independent experimental data sets, different

platform, or even simply by different statistical methods have poor overlaps. On the

other hand, it has been observed that a large portion of genes, which are truly associ-

ated with a phenotype or respond to a perturbation, are excluded from consideration

due to either subtle expression variation in the genome-wide transcriptional profiling

experiment or the identifying statistical method (van’t Veer et al. 2002; Fan et al.
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2006; Kim and Volsky 2005; Manoli et al. 2006; Cheadle et al. 2007). Additionally,

setting a cutoff of statistical significance of association between a single gene and a

phenotype can be arbitrary. As a result, the interpretations of the underlying bio-

logical processes based on the significant genes in isolation are also often arbitrary

(Subramanian et al. 2005).

2.3.2 Gene-Set Pathway Annotation

To overcome the limitations of biomarker-based pathway annotation, gene-set ap-

proaches, also called gene-class testing (Allison et al. 2006), have been proposed on

the basis of examining the group effect of pathway gene sets. The fundamental idea

is to measure aggregate association between a phenotype and a set of genes in a

predefined gene set. Statistical analysis then often tests the significance of this group

association through comparisons with random gene sets or its association with ran-

domized phenotypes. In these approaches, the phenotype association of individual

genes are integrated in certain ways, hence even subtle expression changes of indi-

vidual genes, which have relatively low correlation with the phenotype and could be

ignored otherwise, contribute to the pathway association with the phenotype and may

make it significant. Besides interpretability and sensitivity, such gene-set pathway

annotation approaches also have advantages in assessing results conducted in in-

dependent experiments or cross-platform (Kim and Volsky 2005; Manoli et al. 2006;

Cheadle et al. 2007). Here I introduce the general framework and summarize existing

methods of gene-set pathway annotation.

Suppose the pathway activities underlying a phenotype is investigated through a

genome-wide gene expression profiling experiment that involves p genes and n sam-

ples. Denote the full gene list by G. The phenotype and gene expression of each

sample i ∈ {1 : n} are observed, and denoted by yi and {xg,i}g=1:p, respectively. The
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value of yi can be binary, categorical or continuous values, depending the character-

istic of the phenotype. Given an association metric W , each gene g ∈ G receives a

phenotype association value wg = W (xg,y), where xg = {xg,i}i=1:n is the expression

profile of gene g, and y = {yi}i=1:n is the phenotype profile. Common choices of W

are Pearson’s correlation, signal-to-noise ratio, fold change and t-statistics. Then all

the genes in the full list are indexed or weighted by their association values. Now

introduce a gene set, A, which has been predefined either based on theoretical reason-

ing or by prior experiments. The gene set A represents a certain biological pathway

or process. Then the variation of values {wg}g∈A in the full set {wg}g∈G provides

information on the pathway-phenotype association. Intuitively, the more genes in A

that have large association values, the more likely the pathway that A represents is

linked to the phenotype. A gene set A that has highly associated genes is said to be

enriched in the phenotype. A gene-set pathway annotation method, in the conven-

tional framework, defines a scoring metric S on the weights to measure this gene set

enrichment. Traditional methods then test the significance of S({wg}g∈G, A) given

the null distribution either in gene set space or phenotype space. To deal with multi-

ple gene sets, certain correction methods, such as Family-Wise Error Rate (FWER)

(Westfall and Young 1993) and False Positive Rate (FDR) controlling (Benjamini

and Hochberg 1995), are often used to correct multiple tests.

2.3.3 Methods Based on Binary Weights

The simplest class of gene-set methods are developed using binary metrics of gene-

phenotype association and Fisher’s exact test. The association values {wg}g∈G are

transformed to 0 or 1 representing whether or not they are considered as being differ-

entially expressed with the phenotype. Given an association cutoff w0, the association
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weight of gene g is

ug =

{
1, wg ≥ w0,
0, wg < w0.

. (2.5)

A natural enrichment score in this case is the number of genes in gene set A with

u equal 1. Under an assumed null hypothesis of random gene assignment to A, this

count has a hypergeometric distribution, and Fisher’s exact test, or a χ2 test when

A has a large number of genes, has been used to test the significance of the gene

set enrichment. This method is widely implemented in gene set function annotation

software packages, where the gene sets are from Gene Ontology functional categories

(Dahlquist et al. 2002; Zhong et al. 2003; Zeeberg et al. 2003; Draghici et al. 2003;

Berriz et al. 2003). A related method based on binary weights is developed in the

Bayesian parametric framework and implemented in the software package GATHER

(Chang and Nevins 2006). In this method, the number of genes labeled with 1 in A

is modeled as a binomial variate, as is that in the complementary gene set. Bayes

factors are then computed to compare the evidence for or against the hypothesis that

these two distributions are different, the null hypothesis being that they are same.

Although this type of method has advantage in terms of simplicity and low com-

putational costs, the shortcomings are obvious. The gene weighting process needs to

choose a cutoff for gene-phenotype association, which highly depends on the statis-

tical method being employed and sometimes appears to be arbitrary. Further, bi-

nary weighting loses considerable information by completely ignoring the differences

among genes in their association values. The annotation is then highly influenced

by false positive and false negative rates in determining associated genes. Another

common problem is that genes are treated as independent, that is, intrinsic biological

interactions among genes are not considered.
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2.3.4 Methods Based on Full Weights

To make better use of the gene-phenotype association information {wg}g∈G, another

type of gene-set pathway annotation method developed to take into account con-

tinuous gene-phenotype association weights. Typically, such methods compute a

statistic that summarizes the weight information in a gene set and represents gene

set-phenotype association, and again compares the value of such a statistic to the

corresponding null distribution followed by the adjustment for multiple testing. Here

I review some representative methods with a focus on the definition of enrichment

summary statistics and null distribution generation.

One category of methods perform non-parametric statistical tests on gene set-

phenotype association. Genes in G are ranked with respect to the gene-phenotype

association weights wg. A certain enrichment summary statistic is defined on the

ranks.

Virtaneva et al. (2001) first implemented this methodology and applied it in func-

tional annotation of gene expression signatures. They use the Wilcoxon rank-sum

statistic

S =
∑
g∈A

R(wg)−
|A|(|A|+ 1)

2

as the enrichment summary statistic. R is the rank function, |A| is the size of

gene set A. Under certain assumptions, on the hypothesis of random rankings, S is

approximately normally distributed when |A| is relatively large. In this method, it

is assumed that there are no transcriptional interconnections among genes.

Gene Set Enrichment Analysis (GSEA) (Subramanian et al. 2005; Mootha et al.

2003) is a more widely used non-parametric method. The enrichment summary

statistic for gene set A is defined as the maximum deviation from zero during the

19



weighted random walk on the ranking list road-marked by gene set A. That is,

S = max
1≤i≤|G|


∑
g∈A
|wg|I(wg < wi)∑
g∈A
|wg|

−

∑
g/∈A

I(wg < wi)

|G| − |A|

 ,

where I is the indicator function, and |G| is the size of full gene list G. Named the

enrichment score (ES), S corresponds to a weighted version of Kolmogorov-Smirnov

statistic. GSEA advocates sample permutation to generate a null distribution of ES

to maintain the gene-wise association and test the association between a gene set

and the phenotype of interest. The null distribution is then adjusted for variation

in gene set size, i.e. the number of genes in the gene set, by dividing each empirical

value of ES by their mean. The empirical nominal p-value is computed for the

adjusted/normalized ES (NES) to show the significance of the association between

the gene set and the phenotype.

Zahn et al. (2006) use Van der Waerden’s test as an alternative to the GSEA

Kolmogorov-Smirnov test. The ranks of genes are converted to standard normal

quantiles to attain a normal score

ug = Φ−1

[
R(wg)

(|G|+ 1)

]

for each gene g ∈ G, where Φ is standard normal cumulative density function (c.d.f.).

The mean statistic

S =
1

|A|
∑
g∈A

ug,

is applied to summarize the gene set enrichment. Since the wg are obtained from

a multivariate regression analysis that has the phenotype under study as one of

the covariates, the null hypothesis is generated using bootstrap resampling instead

20



of sample permutation to preserve relationship between genes and covariates. An

hypothesis test is then performed on the normal distribution standardized by dividing

each S∗ (corresponding to each resampling) by the estimated variance.

The other category of methods use parametric tests with an initiative of modeling

the gene-phenotype association. Efron and Tibshirani (2006) propose a maxmean

statistic that seems to have superior power characteristics compared to the Kolmogo-

rov-Smirnov statistic, and demonstrate it with t-statistic inferred from an expression

analysis with respect to a binary variable, say, control vs. a phenotype. Each weight

is normalized as

ug = Φ−1[F (wg)], g ∈ G,

where Φ is standard normal c.d.f., and F is the c.d.f. of t-distribution with n − 2

degrees of freedom (n is sample size). The maxmean statistic is defined as

S = max(S+, S−)

with S+ and S− the absolute means of {ug : g ∈ A and ug > 0} and {ug : g ∈

A and ug < 0}, respectively. A null distribution is attained by computing the

maxmeans of the gene set under sample permutation or gene randomization followed

by standardization.

Kim and Volsky (2005) directly use gene expression fold change between two

experimental groups for association weights, and empirically show the approximate

normality of the mean statistic

S =
∑
g∈G

wg (2.6)

when a random gene set contains more than 10 genes. Newton et al. (2007) develop a

random-set method based on a very similar idea but with rigorous theoretical justifi-

cation. To improve the normality of the summary statistic, they suggest using more
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regular wg such as log transformed p-value or fold change. Assuming nonexistence of

interconnections among genes, they show the mean statistic S (as expressed in (2.6))

can be standardized as

Z = (S − µ)/σ,

where the overall mean µ and variance σ2 have analytical forms

µ =
1

|G|
∑
g∈G

wg and σ2 =
1

|A|

(
|G| − |A|
|G| − 1

)[(∑
g∈G w

2
g

|G|

)
− µ2

]
.

According to central limit theory, Z is approximately standard normal on the null

hypothesis when the gene set size is large enough. This test is equivalent to Fisher’s

exact test when wg is replaced with a binary quantity ug as shown in (2.5), and

to Wilcoxon test when wg is replaced with its rank. Notably, this standardization

does not involve the estimation of moments based on random set simulation, hence is

more efficient compared to the other methods based on sample permutation or gene

randomization.

In summary, the gene-set pathway annotation methods that use continuous as-

sociation weight information, in terms of the tests being used, have two types: non-

parametric and parametric. Generally, both types at least implicitly depend on sam-

ple permutation or gene set randomization either to generate the null distribution

or to estimate the sufficient statistics of the null distribution. As addressed by Tian

et al. (2005), sample permutation formulates a null hypothesis that the tested gene

set does not show stronger association with the phenotype of interest than with other

randomized phenotypes; gene randomization formulates a null hypothesis that the

phenotype-association pattern of the tested gene set can not be distinguished from

those of random gene sets. Both hypotheses stand on reasonable interpretations of

the concept of gene set enrichment, and show advantages and disadvantages when
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compared to each other. Sample permutation requires the sample size to be large

enough to allow the test to gain the power of rejecting the null hypothesis. Usually,

for bi-categorical samples, at least eight are needed for each group. This limits its

application in some experimental data sets with very few samples. Gene randomiza-

tion upon genome-wide data does not have this problem. Another advantage of gene

randomization lies in the computational efficiency when using mean statistic (Newton

et al. 2007; Virtaneva et al. 2001). However, sample permutation is more appealing

in terms of its consideration and maintenance of the interactions among genes. Gene

randomization, on the contrary, assumes that all genes are expressed independently,

and the transcriptional interconnections among genes are out of consideration when

comparing a gene set with random sets.

2.4 Motivation for Formal Probabilistic Modeling

Analysis of many gene expression studies has generated a tremendous number of

signature gene sets that can further benefit the studies of cancer signaling pathways.

There are also many gene sets derived from experiments that generate other types of

data, such as differential expression of a set of proteins under a certain experimental

perturbation. Then a set of genes encoding these proteins, to some degree, contains

information on consequent pathway activation. Meanwhile, efforts have been made

to dissect the complexity of signaling pathways under cancer phenotypes by using

appropriate computational methodology based on genome-scale expression profile

analysis. Making use of the knowledge carried by existing signature gene sets to

identify biological pathways is an important component of the whole strategy for the

studies of cancer mechanisms. Gene-set pathway annotation methodology has been

developed in this context.

Although the fundamental idea is appealing and well accepted, the existing meth-
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ods have some common problems regardless of their individual defects. None of these

methods attempts to model the gene-set pathway annotation problem based on a clear

biological interpretation. What is the relationship between a pathway and a curated

gene set? When the biological context under study is different from that in which the

gene set was originally defined, how should we consider this intrinsic biological dis-

crepancy in the pathway annotation? Is that a pathway is involved in the phenotype

equivalent to that a gene set is enriched in the phenotype? How should we interpret

the annotation results? These questions arising from the fundamental idea are not

addressed by any of existing methods. In fact, without considering these questions,

these methods literally are gene set enrichment analysis rather than pathway anno-

tation methods. To incorporate rigorous biological thinking in this gene set pathway

annotation problem one needs to develop a model-based approach.

Moreover, pathway annotation analysis borrows knowledge from the signaling

pathway studies in other experimental contexts. A necessary step following annota-

tion is to examine the specificity of these pathways in the current biological context,

i.e. to compare and map the reference pathway to the one involved in the currently

investigated context. This problem arises from these facts: first, a reference pathway

gene set defined through experiments other than gene expression analysis may con-

tain genes whose mRNA levels are apparently unrelated to the phenotype; second,

a reference gene set may be incomplete or include irrelevant genes due to the noise

in the predefining process; more generally, the genes comprising the reference path-

way may not be equally relevant in the pathway under study due to the difference

of biological contexts. Hence, a complete pathway analysis must involve a process

of refining pathway gene sets. This is the key to imputing the connectivity among

pathway modules as well as to identifying biomarkers and therapeutic targets. GSEA

includes a operation to find a group of genes, called leading edge subset. However,
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there is no theoretical support for this operation; hence, the meaning of this subset

of genes is unclear. To address this problem, we also need a model-based approach.
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Chapter 3

Probabilistic Pathway Annotation

In this chapter I propose a model-based approach to matching experimental gene

expression signatures of a phenotype to pathway gene sets. This approach, named as

probabilistic pathway annotation (PROPA), is developed in the Bayesian framework

and assesses the uncertainties of association between the phenotype and multiple

pathways from the database. I first introduce a Bayesian perspective on the gene

set-based pathway annotation problem, then develop the statistical models, discuss

multiple pathway comparisons and gene pathway membership inference followed by

a summary of the practical benefits of this approach.

3.1 Bayesian Foundation

In a genome-wide gene expression profiling data set, the total number of genes under

consideration is p, typically several thousands or several tens of thousands. Assume

the genes are labeled by indices g = 1 : p and denote the full gene list by

G = {1 : p}.

To begin, consider just one specific biological pathway gene set A ⊂ G; this is a

set of genes explicitly assumed to be involved in a defined, specific biological context.

However, the exact information on the genes in A is unavailable. The only knowledge

is that A includes a set of genes that have been experimentally defined as playing

roles in the pathway. Denote this known reference gene set by A. The number of

genes in A is q < p, and A is an incomplete and typically error-prone observation on

the true pathway gene set A.
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The key here is to understand that there is a true but unknown pathway gene

set A and to distinguish this from the current known reference gene set A. If the

experiment and analysis by which A has been defined can be trusted, A should be a

reasonably good representation of A so that the reliability of the pathway annotation

analysis can be guaranteed. Some degrees of discordance would be expected between

A and A. The intrinsic noise of biological experiments and statistical analysis cause

some genes to be falsely included or excluded when A is generated, i.e., there are false

positives and false negatives. Apart from the experimental noise, an experiment usu-

ally only takes a snapshot of one of the several sides of a theoretical pathway rather

than capturing all the information. In other word, the definition of a theoretical path-

way usually is based on the key experimental context and ignores the non-essential

experimental conditions; this is exactly the foundation of the knowledge-based path-

way annotation approach. The impacts of those ignored experimental conditions are

reflected in the discrepancy between A and A. Moreover, the pathway gene sets are

not necessarily defined by gene expression differentiation. Indirect methods can be

used to define pathway gene sets; for example, the genes whose corresponding pro-

teins differentially express with the perturbation, or the human homologs of genes

involved in a biological pathway of some other organism. For these reasons, A cannot

be a perfect representation of A in general.

A statistical analysis of a gene expression microarray data set assigns a value to

each gene that represents the level of its association with a biological phenotype (or

intervention). Thus, a full set of association weights are generated as

Π = {π1, . . . , πp}.

Although the methodology proposed here is applicable to any measure of the asso-

ciation between genes and the phenotype, I exclusively focus in this dissertation on
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the use of association probabilities generated in the framework of BFRM introduced

in Section 2.2. Then Π is a full list of probabilities corresponding to a column in the

association probability matrix exhibited in (2.3) from a particular analysis. In this

context, the factor the column represents is the phenotype of interest.

Now the question is, given knowledge of A, how strongly does the gene-phenotype

association support the claim that the phenotype involves the biological pathway A?

To phrase this problem in statistical language, I represent by F the gene set of

the hypothetical pathway involved in the factor phenotype, F ⊂ G. The pathway

annotation then is a process of assessing the concordance between F and A given the

information in Π and A. In the Bayesian framework, this is quantified through the

evaluation of the posterior probability

Pr(F = A|Π, A).

In a practical context that involves all the pathways in a entire database, the prob-

lem is extended to multiple assessments and a model comparison problem. There are

a set of pathways A1, . . . ,Am, and the corresponding reference gene sets A1, . . . , Am

available; the question is which of these pathways is more likely to be associated with

the phenotype compared to the others.

In Bayesian framework, this is a model comparison problem, in which a model

corresponds to a hypothesis F = Aj (j = 1, . . . ,m) and the partition of the whole

gene list (specified by Aj). The formal solution of the problem is provided by the

evaluation of the posterior probability of each model in a model space constructed by

all the pathways to be compared and their reference gene sets. Explicitly, one needs

to compute the posterior probabilities

Pr(F = Aj|Π, A1, . . . , Am)

∝ Pr(F = Aj|A1, · · · , Am)p(Π|Aj,F = Aj), j = 1 : m
(3.1)

28



with Pr(F = Aj|A1, . . . , Am) some assumed prior probabilities. The marginal like-

lihoods, p(Π|Aj,F = Aj), as j moves across all the pathways, are the probability

densities of the association data Π conditional on the hypotheses that the factor

phenotype F is pathway Aj.

3.2 Summary of Notation

For clarification, I summarize the key quantities and notation as following:

• G = {1 : p} is the full gene list.

• A is the true biological pathway gene set, and A ⊂ G.

• A is the known reference gene set of A, and A ⊂ G.

• F is the hypothetical pathway gene set involved in the factor phenotype being

studied, and F ⊂ G.

• Π = {πg}g=1:p is the full list of the gene-factor phenotype association probabil-

ities.

• Goal is to compute the posterior probabilities Pr(F = A|Π, A).

3.3 Statistical Models

I begin with the development of the model for one biological pathway and then extend

it to the comparison of multiple pathways.

The starting point is to view Π as data. Then statistical thinking focuses on

models of the distribution of the data Π conditional on the hypothesis that A is the

underlying biological pathway of factor phenotype, i.e. F = A. If F is indeed A,

the observed association probability πg would be expected to have higher value for
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gene g ∈ A than for gene g /∈ A. Assuming association probabilities are generated

independently, and no other information about the genes can distinguish them except

the pathway membership, one has models

(πg|g ∈ A,F = A) ∼ f1(πg) and (πg|g /∈ A,F = A) ∼ f0(πg) (3.2)

independently over all g. Here, f1 and f0 are two probability density functions over

the unit interval; f1 favors higher values of πg while f0 favors lower values.

The natural choice of f1 and f0 is beta density functions. Specifically, I choose

f1(π) = Be(α1, 1) and f0(π) = Be(1, α0); explicitly,

f1(π) = α1π
α1−1 and f0(π) = α0(1− π)α0−1 (3.3)

for 0 ≤ π ≤ 1, with α0, α1 > 1. Clearly, from 0 to 1, f1 is monotonically increasing,

while f0 is monotonically decreasing, demonstrated as the blue and black curves,

respectively, in Figure 3.1(a). Such a specification is based on the observation of

the real data generated with sparsity modeling as introduced in Section 2.2. Figure

3.1(b) shows the histogram of the association probabilities Π from the analysis of a

real data set. To allow flexibility in these distributions, I give α0 and α1 reference

priors

p(α0) ∝ α−1
0 and p(α1) ∝ α−1

1 (3.4)

with constraint 1 < α0 < a and 1 < α1 < a. Here a is a large number, say, 100,

serving as the upper limit of the values that α0 and α1 can take. Setting an upper

bound for α0 and α1 is needed for marginal likelihood computation, which will be

discussed in Chapter 5 and 6, rather than as a requirement of modeling.

Introduce a set of indicators {zg}g∈G, where

zg =

{
1, g ∈ A,
0, g /∈ A,
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Figure 3.1: (a) f1(πg) and f0(πg) are Beta density functions specified in (3.3);
model the density function f(πg) as a mixture of them. (b) Histogram of association
probabilities Π generated in a real expression data analysis.

given F = A. The zg are the unknown pathway membership indicators. So the p.d.f.

of πg conditional on α0, α1 and zg is

p(πg|α0, α1, zg,F = A) = [f1(πg;α1)]zg [f0(πg;α0)]1−zg . (3.5)

As mentioned at the beginning, A is unknown, and so is the pathway membership

of each gene g, i.e. the value of zg. Model this uncertainty by giving zg a Bernoulli

distribution

p(zg|βg) = B(zg; βg) = βzg
g (1− βg)1−zg , (3.6)

where βg is the expectation of zg, representing the prior pathway membership proba-

bility of gene g. Marginalizing the distribution of πg in (3.5) with respect to zg leads

to the p.d.f. of πg conditional on βg,

p(πg|α0, α1, βg,F = A) = βgf1(πg;α1) + (1− βg)f0(πg;α0),

which is a mixture of two beta densities f1(πg) and f0(πg) weighted by βg and 1−βg.
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This conditional p.d.f. is illustrated in Figure 3.1(a) as the pink curve.

I further model βg as a parameter whose distribution is conditional on whether

g ∈ A. This modeling is reflecting the natural idea that the determination of the

true pathway membership for a gene should consider its reference set membership.

For convenience, denote the set of genes not in A as B, i.e. B = G\A. Given A and

B, βg is modeled via prior distributions

(βg|g ∈ A,F = A) ∼ Be(φArA, φA(1− rA)),

(βg|g ∈ B,F = A) ∼ Be(φBrB, φB(1− rB)),
(3.7)

with specified rA, rB ∈ (0, 1) and φA, φB > 0. The rA and rB are prior means of βg

given g ∈ A and g ∈ B, respectively,

rA = E(βg|g ∈ A,F = A) and rB = E(βg|g ∈ B,F = A). (3.8)

The values of rA and rB are subject to one’s expectation of the true positive rate and

false negative rate: rA is the á priori probability that gene g in A is a true member

of A, and rB is the probability that gene g in B is actually a true member of A.

Given the assumption that the gene set A is a fairly good representation of the true

pathway gene signature A, rA should be relatively large. The value of rB depends

on an assessment of how many genes in B are likely to be associated with the factor

phenotype F . The number of genes in A, typically tens to a few hundreds (shown in

Figure 3.2) is small and ignorable compared to the full gene list G, which typically

has thousands to tens of thousands genes. Therefore, a reasonable value of rB should

be approximately equal to the ratio of the number of signature genes to the total

number of genes. This ratio usually is small, for example, 0.005. The φA and φB are

the precision parameters in the density functions in (3.7) and constrain the variation

range of βg. The fundamental idea of this statistical modeling is illustrated in the
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diagram in Figure 3.3.
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Figure 3.2: Histogram of the number of genes in 956 gene sets from a human
biological pathway gene set database. The number of genes in a pathway gene set
varies from a few to over a thousand. Nevertheless, a typical range for this number
is tens to a few hundreds.

Under this model specification the likelihood function is

L(α0, α1, β1, . . . , βp) =

p∏
g=1

p(πg|α0, α1, βg, A,F = A)

=

p∏
g=1

[βgf1(πg;α1) + (1− βg)f0(πg;α0)] , (3.9)

with f1(πg;α1) and f0(πg;α0) specified in (3.3), and the likelihood can be rewritten

as

L(α0, α1, z1, . . . , zp) =

p∏
g=1

[f1(πg;α1)]zg [f0(πg;α0)]1−zg . (3.10)

3.4 Data Independence

An assumption in the statistical models discussed above is that the distribution of the

association probability πg, conditional on hypothesis F = A and reference gene set A,
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Figure 3.3: Diagram of the PROPA models. The unknown true pathway gene set A
and the corresponding predefined reference gene set A have reasonably good overlap
and some discrepancy. The light blue area represents the false negative genes. The
light yellow area represents the false positive genes. The left top histogram of Π shows
only a small set of genes in G are associated with the factor phenotype. This gene
signature F should overlap with A if the hypothetical pathway under this phenotype
is indeed the one specified by A. If F = A, true pathway genes πg have distribution
f1 while non-pathway genes πg have distribution f0.
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is independent of the other association probabilities {πk}k 6=g. Note this is assuming

the observations πg to be independent, not at all that there is no interaction or

coregulation among genes. Here I justify the conditional independence assumption

for the πg data distribution.

Suppose genes g1 and g2 are known to be coregulated in the biological context

under study. One can think about an example that g1 and g2 are HER2 and ErbB2,

respectively. They are the same gene named differently and correspond to two probe

sets on a microarray. Ideally, these “two genes” should have same expression profile.

Given that the statistical analysis of the gene expression data is correct, it is the

experimental noise that causes the discrepancy of their expression profiles, and as

consequence the association probabilities with the factor phenotype, πg1 and πg2 ,

are different. Suppose the value of the datum πg1 is observed. Then any form of

dependence would imply that one or more of the components of the distribution for

πg2 , as described in equations (3.5)-(3.7) at g = g2, would now depend on the value

of πg1 . By looking at this in detail, it is argued that there really should be no such

involvement of πg1 , i.e., that the conditional independence assumption (conditional

on all model parameters and model structure) is relevant.

Since g1 and g2 are really two noisy versions of the same gene, it is expected that

either g1, g2 ∈ A or g1, g2 /∈ A. This is key in highlighting the role of the indicators

zg in driving the assumption of conditional independence of the πg, as follows.

Conditional independence of πg1 and πg2 given zg2:

Condition on zg2 = 1 so that g2 ∈ A for sure. Under the assumed independence,

this conditioning information together with other model parameters implies that

πg2 ∼ f1(·;α1), a density generally concentrated on high values. Does knowing πg1

change this? No, for the following reasons:
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• If πg1 is high, this simply suggests g1 ∈ A too, but the relevance of this ad-

ditional information to the belief about πg2 is overridden by already knowing

that g2 ∈ A. That is, f1(πg2 ;α1) already favors high values, and the news that

πg1 is high simply confirms the view that πg2 is likely to be high.

• Conversely, if πg1 is low, that suggests g1 /∈ A; since it is expected, on biological

grounds, that either g1, g2 ∈ A or g1, g2 /∈ A, and since one is conditioning

at this point on g2 ∈ A for sure, the only rationale for a low πg1 is as a false

negative – due to noise in the experimental data. Hence one would reject that

information as relevant to p(πg2|·) and maintain the conditional independence.

A parallel argument applies to the case with condition zg2 = 0.

Conditional independence of zg2 and πg1:

The above discussion indicates the relevance of the assumption of conditional inde-

pendence of the πg in the specific sense that

p(πg2|πg1 , zg2 ,F = A) = p(πg2|zg2 ,F = A) (3.11)

The complete independence assumption then relies on the assumed lack of dependence

of zg2 on the observed value of πg1 . The model specifies (zg2 |βg2) ∼ B(βg2) and βg2

has the mixture prior of equation (3.7), so that marginally with respect to βg2 ,

(zg2|g2 ∈ A,F = A) ∼ B(rA) and (zg2|g2 /∈ A,F = A) ∼ B(rB),

with, generally, rB near zero and rA near 1. Conditional on g2 ∈ A, does learning πg1

change the thinking about zg2 = 1? No, for the following reasons:

• Observing a high value of πg1 suggests that g1 ∈ A. Since it is known that

g1, g2 ∈ A or g1, g2 /∈ A, this suggests zg2 = 1. Conditioning upon g2 ∈ A, one
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is already favoring zg2 = 1, and the news that πg1 is high simply confirms the

view that zg2 is likely to be 1.

• Conversely, observing a low value of πg1 suggests g1 /∈ A and zg2 = 0, but,

again, conditioning upon g2 ∈ A, one is favoring zg2 = 1. Again this apparent

conflict can only be interpreted as arising from a false negative in the sense

of a low value of πg1 due to the experimental noise. One should reject that

information as relevant to p(zg2|·).

A parallel argument applies to the case with condition g2 /∈ A.

The above then supports the lack of dependence of zg2 on any observed datum

πg1 , so that

p(zg2|πg1 , A,F = A) = p(zg2|A,F = A). (3.12)

Equations (3.11) and (3.12) combined imply and therefore support the independence

assumptions, both conditional on zg and unconditional, and hence the treatment

of the πg as randomly sampled from the hierarchical mixture model described in

equations (3.5)-(3.7).

3.5 Model Comparison

One core goal in PROPA is to compare multiple pathways in terms of how strongly

they are associated with the factor phenotype based on the information provided

by Π. As discussed in Section 3.1, the Bayesian solution to this problem is based

on evaluation of the posterior probabilities shown in (3.1). The required marginal

likelihood is the expectation of the likelihood with respect to the prior distribution

of model parameters, namely

p(Π|Aj,F = Aj) =

∫
Θ

L(θ)p(θ|Aj,F = Aj)dθ (3.13)
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with the prior p(θ|Aj,F = Aj) specified in (3.6), (3.4) and (3.7), and likelihood L(θ)

in (3.9) or (3.10), depending on the configuration of parameters θ.

In this model comparison problem, all the models j = 1 : m have the same com-

plexity. They are only differentiated by their reference gene sets Aj. This simplifies

the specification of model priors and allows us to only think about incorporating

biological knowledge into the priors. In the absence of such knowledge, I put non-

informative prior on models and only focus on the evaluation of the evidence, in terms

of the marginal likelihood of the data Π, for each model. Hence, computing marginal

likelihood is the central problem in PROPA and will be discussed in Chapter 5 and

Chapter 6.

The Bayes factor, or weight of evidence, is another quantity to look at, especially

when evaluating multiple models. This is defined as the ratio of the posterior odds to

the prior odds of the model to be tested. In PROPA, for each pathway Aj, j ∈ 1 : m,

BFF=Aj
=
Pr(F = Aj|Π, A1, . . . , Am)/[1− Pr(F = Aj|Π, A1, . . . , Am)]

Pr(F = Aj|A1, · · · , Am)/[1− Pr(F = Aj|A1, · · · , Am)]
. (3.14)

In most cases, a single biological phenotype or perturbation involves complex

pathway activities and may be associated with several pathways in the database.

Sometimes, the association between the phenotype and one or two of these pathways

are strong and appear to dominate the model selection. These dominant pathways

have such large posterior probabilities and Bayes Factors that the other pathways

that are actually associated with the phenotype have posterior probabilities and

Bayes factors that are too small to be considered significant. In such cases, simply

making conclusions based on posterior probabilities and Bayes factors of pathways

would result in missing important information. Combining these quantities with

pathway ranking based on these quantities should be a more reasonable and reliable

way to summarize the annotation result.
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Moreover, the overriding purpose of PROPA is to generate biological hypotheses.

This analysis provides quantified evidence (posterior probability, Bayes factor and

rank) of association between each pathway and the factor phenotype, bringing out

potentially interesting pathways and serving as references for biologists to develop

biological hypotheses.

3.6 Pathway Membership Probability

As has been mentioned in Section 2.4, another question of concern in pathway analysis

is gene pathway membership. This question is addressed via calculation of pathway

membership probabilities. In the PROPA model, the posterior pathway membership

probability of gene g is

β∗g = Pr(g ∈ A|Π, A,F = A) = Pr(zg = 1|Π, A,F = A).

The corresponding Bayes factor is

BFg∈A =
p(Π|g ∈ A, A,F = A)

p(Π|g /∈ A, A,F = A)

=
Pr(zg = 1|Π, A,F = A)/Pr(zg = 0|Π, A,F = A)

Pr(zg = 1|A,F = A)/Pr(zg = 0|A,F = A)
.

Refer to (3.6), (3.8) and (3.7). This Bayes factor in explicit form is

BFg∈A|g ∈ A =
β∗g/(1− β∗g)
rA/(1− rA)

,

and

BFg∈A|g ∈ B =
β∗g/(1− β∗g)
rB/(1− rB)

.

This Bayes factor measures the evidence given by data, Π, for gene g ∈ A versus

g /∈ A. If a gene in reference gene set A has a Bayes factor much less than one, it
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means the data give evidence that this gene is not a true member of A. Such genes

are false positives as shown in Figure 3.3. A gene in B with a large value of the Bayes

factor may be a member of A missed by A and correspond to a false negative, again

as in Figure 3.3.

3.7 Summary

PROPA is a formal model-based framework for matching experimental signatures of

structure or outcomes in gene expression – represented in terms of weighted gene lists

– to multiple biological pathway gene sets from curated databases. In the canoni-

cal setting here, the gene weights are explicit – gene-factor phenotype association

probabilities. The formal probabilistic model delivers probabilities over pathways

for each factor phenotype, allowing for a quantitative assessment and ranking of

pathways putatively linked to the phenotype. The fundamental advantage of this

approach is formal modeling of the uncertainty in the pathway analysis supported

by clear biological interpretation. For example, á priori information on the accu-

racy and relevance of genes in reference gene sets are incorporated, and inference on

both pathway-phenotype association and gene pathway membership is coherent and

transparent.

Compared with existing gene-set pathway annotation approaches, PROPA is a

fully probabilistically coherent model, and provides for posterior inferences regardless

of the size of reference gene set or origin of gene-phenotype association probabilities.

The analysis does not, and should not, involve sample permutation, and is not limited

by the sample size of the data set. It also does not, and should not, involve gene

randomization. The gene interaction or coregulation information is maintained by

the reference gene set. Instead of comparing a pathway gene set with random sets

of genes, PROPA finds significant pathways by comparing the pathway gene sets to
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each other in a coherent way.

Additionally, although I develop the model using the association probability gen-

erated by BFRM, the fundamental modeling idea and framework are applicable to

other metrics of gene-phenotype association, for example, t-tests and Pearson cor-

relation coefficients. For such data, certain adjustment may need to be performed

to reduce the false discovery rate. I suggest the use of the association probability

because it is canonical in my perspective.

Having introduced the conceptual and technical details of the PROPA framework,

I now turn to the core methodological issues – evaluation of the determining marginal

likelihoods (or measure of evidence) of equation (3.13), and the accompanying ques-

tions of computation of posterior distribution for the full set of model parameters and

uncertain variables θ. It turns out that the evidence computations are most effectively

addressed following posterior computations using Bayesian simulation methods, so I

begin with such methods in the next chapter.
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Chapter 4

Posterior Simulation

Markov chain Monte Carlo (MCMC) methods are powerful computational methods

widely used in Bayesian statistical analysis. As has been addressed in the previous

chapter, PROPA is able to refine a pathway gene set based on the belief that this

pathway is associated with the phenotype in the current context of study. Such a

refinement is implemented through the estimation of posterior pathway membership

probabilities for genes. I address these computations, and the broader questions of

posterior analysis, using MCMC methods. Moreover, the central problem in PROPA

is model comparison based on computing marginal likelihood, an integration problem

that appears to be intractable for conventional integration methods due to the high

dimensionality of data. In Chapter 6, I introduce a new Monte Carlo integration

method for PROPA marginal likelihood computation, and that method builds on

posterior simulation. In this chapter, I discuss the core MCMC method introduced

for PROPA, and demonstrate the performance with a simulation study.

4.1 Gibbs Sampling

With the parameterization and priors specified in Chapter 3, the joint probability

density function of the PROPA model is

p(Π, α0, α1,β, z|A,F = A)

= α−1
0 α−1

1

p∏
g=1

{[βgα1π
α1−1
g ]zg [(1− βg)α0(1− πg)α0−1]1−zg

[Be(βg;φArA, φA(1− rA))]I(g∈A) [Be(βg;φBrB, φB(1− rB))]I(g/∈A)}, (4.1)
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where β = {βg}1:p and z = {zg}1:p, and I is an indicator function. Benefiting from

these conjugate priors, the full conditional distribution of each parameter is easy to

derive, and these are summarized as follows:

• Given z, α0 and α1 are independent of the other parameters and have gamma

density functions truncated below 1 and above a. When a takes a large value,

at which both density functions decay to 0, they can be simplified to one-sided

truncation (truncation below 1):

p(α0|z,Π, A,F = A) = Ga>1

(
α0;

p∑
g=1

(1− zg),−
p∑
g=1

(1− zg) log(1− πg)

)
,

(4.2)

p(α1|z,Π, A,F = A) = Ga>1

(
α1;

p∑
g=1

zg,−
p∑
g=1

zg log πg

)
. (4.3)

• Given zg, βg is also independent of the other model parameters and has a Beta

distribution:

p(βg|zg, g ∈ A,F = A) = Be (βg; zg + φArA, (1− zg) + φA(1− rA)) ,

p(βg|zg, g ∈ B,F = A) = Be (βg; zg + φBrB, (1− zg) + φB(1− rB)) . (4.4)

• zg has a Bernoulli complete conditional distribution independent of {βk : k ∈

G, k 6= g} and {zk : k ∈ G, k 6= g}:

p(zg|α0, α1, βg, A,F = A) = B (zg; ρg) , (4.5)

with

ρg =
βgα1π

α1−1
g

βgα1π
α1−1
g + (1− βg)α0(1− πg)α0−1

. (4.6)

Here ρg is the conditional probability of g ∈ A.
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Gibbs sampling based on these full conditional distributions includes the following

steps:

Step 1 : Set starting value for each parameter;

Step 2 : Based on the current value of z, sample α0 and α1 from the density func-

tions in (4.2) and (4.3), respectively, and update α0 and α1 with these samples;

Step 3 : Based on the current value of z, sample β1, . . . , βp in parallel from the

density functions in (4.4) and update β with these samples;

Step 4 : Based on the current values of α0, α1 and β, sample z1, . . . , zg in parallel

from the distribution shown in (4.5) and update z with these samples.

Repeat Step 1 to Step 4 (T +M) times and discard the first T samples of each

parameters (suppose sample Markov chains are stationary after T iterations). Then

model parameters can be estimated using the M posterior samples.

The MCMC procedure is generally fast mixing, and rapid, clean convergence has

been confirmed in experiences across many examples.

4.2 Simulation

The simulated data set concerns p = 18 synthetic genes with association probabilities

Π = [0.9698, 0.9335, 0.9182, 0.9369, 0.7260, 0.0832, 0.5776, 0.4869, 0.3831,

0.0094, 0.0563, 0.0529, 0.6118, 0.0918, 0.1603, 0.0872, 0.1548, 0.2257].

Here the first five genes with relatively high association probabilities are likely the

members of the hypothetical pathway F , while the genes with probabilities lower

than 0.3 are not likely to be the members of F . The pathway memberships of the

other four genes with probabilities 0.5776, 0.4869, 0.3831 and 0.6118 are less certain.
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Clearly, this data set is far from the real case in terms of the number of genes in

G as well as the ratio of the number of pathway genes to the number of non-member

genes. The choice of such a small size of data is for the need of testing the marginal

likelihood approximation methods, which will be discussed in Chapter 5 and 6, as

well as for its utility in clearly illustrating the central aspects and ideas. Further, the

small member p = 18 is a tolerable size of gene list G for analytically computing the

exact values of the marginal likelihoods, so that numerical approximations of various

kinds can be compared to the exact values. The simulation also illuminates how the

Gibbs sampler performs under the PROPA model. Focus on one pathway A as an

example here, corresponding to the reference gene set A that consists of exactly the

first 8 genes. The data set Π and this gene set A are illustrated in Figure 4.1.

In this example, let rA = 0.8, rB = 0.1 and φA = φB = 8. Then the prior

and conditional densities of βg given g ∈ A and g ∈ B are shown in Figure 4.2,

respectively. As can be seen, such settings of these hyper-parameters allow βg to

change in only relatively small ranges. The prior mean of βg, rA or rB, is the key

parameter determining the posterior values of βg, while the value of zg makes βg

fluctuate around its prior mean. The amplitude of this fluctuation is constrained by

the precision φA or φB.

Figure 4.3 demonstrates the trajectories and histograms of the MCMC samples

of parameters α0 and α1. The red portions in the trace plots represent the burn-in

period, 200 samples here. This figure only shows 3000 MCMC samples. The chains

generated by this Gibbs sampler appear to mix rapidly. Meanwhile, the histograms

show that the posterior samples of α0 and α1 have gamma-like distributions.

Figure 4.4 shows the estimated posterior means of each zg, g ∈ G. As can be

seen, the posterior mean of zg, i.e. the posterior pathway membership probability of

gene g, is largely driven by the data, πg. The genes in A that have low association
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probabilities and genes in B that have high association probabilities are more likely

to be false positives and false negatives, respectively, in terms of being members of

A. Through this inference, the incorporated prior information, rA, rB, φA and φB

then provide a quantified standard to identify these falsely labeled genes. Here, for

each gene the Bayes factor of pathway membership is estimated by

BFg∈A|g ∈ A ≈
β̂g
∗
/(1− β̂∗g)

rA/(1− rA)
, (4.7)

and

BFg∈A|g ∈ B ≈
β̂g
∗
/(1− β̂∗g)

rB/(1− rB)
, (4.8)

where β̂∗g is the estimate of pathway membership probability defined in (3.6); this can

be obtained by taking the posterior Monte Carlo sample mean of zg or, alternatively,

the mean of ρg as shown in (4.6) after the chain reaches equilibrium. The pathway

membership evidence in decibans (dB), defined as 10 log10BFg∈A, of each gene is

plotted in Figure 4.5. Gene 6, a member of gene set A, has membership evidence

close to -20dB, strongly suggesting it is not a member of the true pathway signature

A (false positive). Gene 13 is not a member of A, but it has membership evidence

greater than 10dB, which is substantial evidence of gene 13 being a member of A

(false negative).

Although the pathway membership of a gene is largely driven by its association

probability, this relationship is pathway specific. Another two gene sets are con-

structed assumedly corresponding to two different pathways. Gene set A4 contains

genes {1 : 4} and represents pathway A4. Gene set A6 contains genes {1 : 6} and

represents pathway A6. The pathway membership evidence for each gene in these

two pathways are presented in Figure 4.6 (a) and (b), respectively. In the first case,

there is no strong evidence for any false positives or false negatives, which means the
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predefined gene set A4 is likely to be an accurate representative of pathway signature

A4. For A6, the pathway membership inference result gives decisive evidence that

gene 6 is not a member of the theoretical pathway A6.

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

g

π
g

 

 
B
A

Figure 4.1: The association probabilities in the simulated data set. The red dots
correspond to the genes in pathway reference gene set A = {1, 2, 3, 4, 5, 6, 7, 8}, and
the blue dots correspond to those not in A (i.e. in B).
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Figure 4.2: The prior and conditional p.d.f.s of membership probability βg when
rA = 0.8, rB = 0.1, φA = 8 and φB = 8.
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Figure 4.3: The MCMC sample trajectories and histograms of α0 and α1. Burn-in
= 200, samples = 3000.
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Figure 4.5: Pathway membership evidence for each gene g ∈ G. The red star below
the black line represents the gene that has been predefined as a member gene of
pathway A but should not be as strongly suggested by PROPA; the blue star above
the black line represents the gene that has been predefined as not a member gene of
pathway A but may be as suggested by PROPA.
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Figure 4.6: Pathway membership evidence for each gene g ∈ G with respect to two
different pathway gene sets. (a) The pathway gene set includes the first four genes
(A4); no evidence of any false positives or false negatives. (b) The pathway gene set
includes the first six genes (A6); PROPA strongly suggests the sixth red gene in the
gene set is not a member of the pathway.
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Chapter 5

Numerical Integration and Approximation

Marginal likelihood is a key quantity for Bayesian model evaluation, comparison and

selection. Otherwise known as “evidence”, the marginal likelihood is the data prob-

ability averaged with respect to all the model parameters with respect to their prior

probability distribution. Computing marginal likelihood is an integration problem

that, however, appears to be difficult in most realistic applications because of the

intractability of the likelihood function. Sometimes the analytical form of antideriva-

tive is not available. It may also be the case that the antiderivative is given as the

sum or product of an enormously large number of terms. In such cases, numerical

integration and approximation is needed.

In this chapter, the characteristics of the joint density function under PROPA

model are studied. I briefly review some existing numerical integration and approx-

imation methods, including quadrature, Laplace approximation, and Monte Carlo

integration. Difficulties in using these methods to estimate the marginal likelihood in

PROPA are addressed. A simulation study demonstrates the effectiveness of PROPA

in assessing pathway-phenotype association and the marginal likelihood approxima-

tion with quadrature and Laplace approximation.

5.1 Curse of Dimensionality

Refer to the marginal likelihood computation in PROPA, that is, the expression of

(3.13) with the likelihood function p(Π|θ, A,F = A) shown in (3.9) and the prior
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specified in (3.4) and (3.7). Simple algebra leads to the form

p(Π|A,F = A)

=

∫ a

1

∫ a

1

α−1
1 α−1

0

p∏
g=1

[
rAα1π

α1−1
g + (1− rA)α0(1− πg)α0−1

]I(g∈A)

[
rBα1π

α1−1
g + (1− rB)α0(1− πg)α0−1

]I(g/∈A)
dα0dα1 (5.1)

=

∫ a

1

∫ a

1

[
C1α

−1
0 Ga1·1(α1) + C2α

−1
1 Ga2·0(α0) +

2p∑
i=3

CiGai·1(α1)Gai·0(α0)

]
dα0dα1.

(5.2)

where, for i = 1, . . . , 2p, Ci is a constant, and Gai·1(α1) and Gai·0(α0) are gamma

density functions for α1 and α0 specified by certain parameters that can be easily

derived. As can be seen, the integrand is a weighted sum of 2p terms, each of which

has an antiderivative in an analytical form, so the exact value of this integral should be

available. However, the computatioal complexity in this evaluation is O(2p), meaning

the computational cost increases exponentially in p. It is known that genome-wide

expression data usually contains thousands or even tens of thousands of genes. The

computatioal expense in such cases makes it impractical to obtain the exact value of

this integral. Therefore, numerical integration methods are applied to approximate

this marginal likelihood.

In order to choose appropriate numerical integration methods, one needs to ob-

serve the behavior of the integrand (joint density function). Denote the integrand

here by h(α0, α1) and consider the form shown in (5.1),

h(α0, α1) =α−1
1 α−1

0

p∏
g=1

{
[
rAα1π

α1−1
g + (1− rA)α0(1− πg)α0−1

]I(g∈A)

[
rBα1π

α1−1
g + (1− rB)α0(1− πg)α0−1

]I(g/∈A)}. (5.3)

Figure 5.1 presents some examples of h(α0, α1) for various example choices of the data
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set Π, gene set A and hyper-parameters rA and rB. The three figures correspond to

three simulated data sets with p = 18, 100, and 1000, respectively. For each data

set, h(α0, α1) is plotted with respect to three different gene sets A1, A2 and A3. The

heated areas represent the integration domains where the integrand has high values.

Each heated spot corresponds to one distinct gene set.

As can be seen, h(α0, α1) appears (in these example cases) to be a unimodal

function, though this is not guaranteed for a function which is a mixture of gamma

densities (as 5.2). In these examples, h(α0, α1) is usually concentrated in a relatively

small area whose location varies with the data and gene set. Even so, some adaptive

techniques probably can still be found to facilitate standard numerical methods for

this integral.

Many numerical integration methods, such as some of those introduced in the

following section, inevitably involve the evaluation of the integrand at certain loca-

tions in the integration domain, especially where the integrand has high values. As

indicated in (5.3), the integrand h(α0, α1) is a product of p + 2 terms. When p is

large, the multiplication can easily cause a computer floating-point overflow problem.

This is demonstrated in Table 5.1, where the values of log h(α0, α1) and hg(α0, α1)

are exemplified with respect to different p. Even for a moderate value of p, say,

103, h(α0, α1) has exceeded the largest floating-point number representable on the

computer. When such overflows happen, the computer evaluation of the quantities

lose precision. So the overflow problem in large p cases is non-trivial in this marginal

likelihood computation - the curse of dimensionality.
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(a) (b)

(c)

Figure 5.1: Examples of integrand h(α0, α1). (a) p = 18; (b) p = 100; (c) p = 1000.
In each of the three cases, the logarithm of integrand is evaluated for three different
gene set A’s. The heated areas represent the places where h(α0, α1) has high values
corresponding to one gene set.
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Table 5.1: Examples of values of log h(α0, α1) and h(α0, α1) with respect to different
p. h(α0, α1) generally increases with p and overflows when p reaches 103. In such
cases, log h(α0, α1) is a projection of the real value of h(α0, α1).

p log hg(α0, α1) hg(α0, α1)
18 6.6849 800.2307
100 131.6183 1.4491e+57
1000 1.8950e+03 Inf
10000 1.7184e+03 Inf

5.2 Numerical Integration Methods

5.2.1 Quadrature

Quadrature is the standard, most straightforward numerical integration approach

(Ueberhuber 1997; Davis and Rabinowitz 1984). This approach evaluates the inte-

grand h(θ) at a number of pre-determined locations θ(1), . . . , θ(N), which usually are

regularly spaced throughout the whole integration interval, then uses the weighted

sum of these evaluation to approximate the integral, namely,

∫
Θ

h(θ)dθ ≈
N∑
i=1

wih(θ(i)).

There are many rules for assigning weights to the evaluated results at the locations,

such as Trapezoidal rule, Simpson’s rule and Boole’s rule corresponding to the em-

ployment of 2-, 3- and 5-point Newton-Cotes formulas derived from Lagrange inter-

polation. The simplest one is the Trapezoidal rule, by which the evaluation results of

integrand are equally weighted by the spacing interval (except for the first and last

locations). This rule is widely used for its simplicity and accuracy.

A more complicated method is Gaussian quadrature, which optimizes the numer-

ical integration by selecting specific evaluation locations based on certain integration

interval-dependent rules rather than equally spacing the whole integration interval.
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The complication of selecting evaluation locations lowers the desirability of Gaussian

quadrature. Simply decreasing the space between evaluation locations in quadrature

can equally increase the accuracy, while the increased computational cost is not much

more than Guaussian quadrature.

Quadrature is more frequently used for approximating one-dimensional integrals

for its ease and good accuracy in most cases (it is also called cubature in a multiple

integral). However, the number of evaluations increases exponentially with the di-

mension of integral, which leads to tremendous computational cost and a decrease in

approximation accuracy. Thus quadrature is limited in multi-dimensional integrals,

especially when the integrand is not smooth or well diffused. Some more sophisticated

methods, for example, sparse grids (Gerstner and Griebel 1998), have been developed

based on certain techniques of combining one-dimensional quadrature results to solve

multi-dimensional integration problems.

5.2.2 Laplace Approximation

Laplace’s method approximates the marginal likelihood by fitting a normal density

function at the maximum of the joint density h(θ) = p(θ|D)p(θ), where D is data,

and computing the volume under the Gaussian curve within the domain of θ (Tierney

and Kadane 1986). The marginal likelihood estimator is then

p̂(D) =

∫
Θ

h(θ)dθ ≈ (2π)d/2|Ψ̂|1/2h(θ̂)

where d is the dimension of θ and θ̂ = arg max
θ

log h(θ), corresponding to the MAP

estimate of θ, and Ψ̂ = (−Ĥ)−1 where Ĥ is the Hessian matrix of h(θ) evaluated at

θ̂. Newton-Raphson’s method is frequently applied to obtain θ̂. The fundamental

idea of Laplace approximation is using a normal density N(θ̂, Ψ̂) to approximate the
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posterior density p(θ|D), and estimating the marginal likelihood at θ̂. This method

is most relevant when the posterior distribution is unimodal.

5.2.3 Monte Carlo Integration

Generally, Monte Carlo integration methods involve the evaluation and averaging of

certain objective functions, which depend on the integrand and specific approaches,

at locations randomly sampled in the domain of integration. Usually a large number

of samples of integration variables are required to attain good accuracy. The compu-

tational cost for sampling makes the Monte Carlo integration methods uncompetitive

with quadrature in one or two dimensional integration. However the convergence rate

is independent of the number of dimensions. Hence, Monte Carlo integration meth-

ods are more often used for the approximation of higher dimensional integration. In

this section, I briefly summarize importance sampling and Metropolis-based numer-

ical estimators without discussion of the specific integral estimation problem in the

PROPA models.

Importance Sampling

The importance sampling method approximates the integral with a weighted sum of

integrand values evaluated at the locations sampled from an importance distribution

g(θ), which has an explicit mathematical form, i.e.

p̂(D) =
1

N

N∑
i=1

h(θ(i))

g(θ(i))
,

where θ(1), . . . , θ(N) ∼ g(θ). The p.d.f. of the importance distribution g(θ) must have

a support larger than that of the integrand and be easy to sample. There are no

rigorous criteria for choosing a good g(θ) except that the integration is more efficient
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if g(θ) has a shape similar to h(θ) and g(θ) is relatively better diffused than h(θ)

(Robert and Casella 2004).

Quantile integration is an extension of importance sampling (Johnson 1992).

Given the importance distribution, the samples of θ are quantile interval means of

g(θ), i.e.

p̂(D) =
1

N

N∑
i=1

h(w(i))

g(w(i))
,

where w(i) satisfies
∫

Θ(i)(θ−w(i))g(θ)dθ = 0 and
∫

Θ(i) g(θ)dθ = 1/N . Compared with

importance sampling, this approach is theoretically more efficient, but much harder

to implement.

The simplest case is sampling from the prior distribution p(θ), thus,

p̂(D) =
1

N

N∑
i=1

p(D|θ(i)).

This is generally inadequate because poor similarity between the likelihood, p(D|θ),

and the prior leads to high variability in the estimate.

Posterior Sampling Estimator

In the importance sampling method for marginal likelihood estimation, the ideal

importance distribution would be the posterior distribution p(θ|D), because the joint

distribution h(θ) as a function of θ is p(θ|D) times a normalizing constant. However,

the explicit form of p(θ|D) is not available, because the normalizing constant is the

marginal likelihood itself. Importance sampling in such a case can be extended to a

large class of Monte Carlo integration approaches using marginal posterior samples

of each integration variable provided by Metropolis-Hestings sampling or its specific

case, Gibbs sampling when the Markov chains reaches equilibrium. Gamerman and
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Lopes (2006) summarized the existing Monte Carlo marginal likelihood estimators

based on posterior samples. The key approaches are:

• Harmonic mean estimator (Newton and Raftery 1994)

p̂(D) =

(
1

N

N∑
i=1

1

p(D|θ(i))

)−1

,

where θ(1), . . . , θ(N) ∼ p(θ|D). This estimator is extremely sensitive to small

likelihood values.

• Generalized harmonic mean estimator (Gelfand and Dey 1994)

p̂(D) =

(
1

N

N∑
i=1

g(θ(i))

h(θ(i))

)−1

,

where θ(1), . . . , θ(N) ∼ p(θ|D), and g(θ) can be any density function on the same

support of h(θ), but has to be chosen carefully to obtain good accuracy in the

estimation. Clearly, p̂(D) = p(D), when g(θ) = p(θ|D).

• Newton and Raftery’s estimator (Newton and Raftery 1994)

This estimator uses an iterative scheme,

p̂(t)(D) =

∑N
i=1 p(D|θ(i))

[
δp̂(t−1)(D) + (1− δ)p(D|θ(i))

]−1∑N
i=1 [δp̂(t−1)(D) + (1− δ)p(D|θ(i))]

−1 ,

where θ(1), . . . , θ(N) ∼ δp(θ) + (1− δ)p(θ|D) with 0 < δ < 1.

• Laplace-Metropolis estimator (Lewis and Raftery 1997)

p̂(D) = (2π)d/2|Ψ̃|1/2h(θ̃).
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d is the dimension of θ. This estimator is the same as traditional Laplace

approximation except that θ̃ is from the posterior samples of θ that maximizes

h(θ), and Ψ̃ is the MCMC variance of posterior samples.

• Bridge sampling estimator (Meng and Wong 1996)

The marginal likelihood is estimated iteratively as

p̂(t)(D) =

1
N2

∑N2

i=1 ω̃
(i)
[

N1

N1+N2
ω̃(i) + N2

N1+N2
p̂(t−1)(D)

]−1

1
N1

∑N1

i=1

[
N1

N1+N2
ω(i) + N2

N1+N2
p̂(t−1)(D)

]−1 ,

where ω(i) = h(θ(i))/g(θ(i)) for i = 1, . . . , N1, and ω̃(i) = h(θ̃(i))/g(θ̃(i)) for

i = 1, . . . , N2. θ(1), . . . , θ(N1) ∼ p(θ|D), and θ̃(1), . . . , θ̃(N2) ∼ g(θ̃). The accuracy

of this estimator depends on the distance between the proposal density g and

the posterior density.

• Candidate’s estimator (Chib 1995)

A simple and intuitive estimator is

p̂(D) =
h(θ)

p̂(θ|D)
,

where p̂(θ|D) is an approximation density function of the posterior density.

Precise marginal likelihood in principle can be obtained by taking any value of

θ within the support of h(θ) if p̂(θ|D) = p(θ|D). However, p̂(θ|D) is an approx-

imation. Hence, the value of θ need to be chosen so that the distance between

p̂(θ|D) and p(θ|D) can be minimized. Usually, θ is chosen to be the posterior

sample mean or mode, or any value around the mean or mode. The Laplace-

Metropolis estimator can be viewed as a special case of Candidate’s estimator,

where p̂(θ|D) is a normal density whose mean and variance are estimated using

posterior samples of θ.
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5.3 Simulation

In this section, I present a simulation study of marginal likelihood computation for

the PROPA model. The purpose is to demonstrate the effectiveness of PROPA

and the performance of the applicable numerical integration methods, specifically,

quadrature and Laplace approximation. Quadrature requires the evaluation of the

integrand, hence it is limited when p is large. However, I choose this method for

the simulation study because of its simplicity and generally good accuracy. Laplace

approximation is also easy to implement in PROPA. The greatest advantage of this

method is that this estimate has a form allowing log transformation of the integrand.

The main difficulty of importance sampling lies in the choice of the importance den-

sity function, and this is hard when the integrand is a mixture of a large number

of density functions. Figure 5.1 showed that h(α0, α1) is not well diffused in the

integration domain and varies widely depending on the data and model. Finding

an appropriate importance density is a hard problem. The same difficulty exists for

the generalized harmonic mean estimator. Some posterior sampling estimators are

limited by the inevitable evaluation of either joint likelihood or likelihood function

because of their summation forms, such as the harmonic mean estimator, Newton and

Raftery’s estimator and bridge sampling estimator. The Laplace-Metropolis estima-

tor is a substitution of Laplace approximation when analytically fitting the normal

density is difficult. To the integration problem in the PROPA models, it is not nec-

essary. Candidate’s estimator also has an appealing form that allows log transform

of joint density during the marginal likelihood approximation. However, determining

the posterior approximation density p̂(θ|D) appears to be hard in the integration

problem in the PROPA models. The usual procedure for determining p̂(θ|D) is to

choose a parameterized density kernel that looks like the empirical posterior distri-

bution of θ, then use the posterior samples to estimate these parameters to get p̂(θ).
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Since the posterior distribution of parameters α0 and α1 is truncated, it is difficult

to approximate using the posterior samples.

In this simulation study, I use the data set described in Section 4.2. The number

of genes in this simulated data set is p = 18, a small value that allows for exact

evaluation of the joint density function and the marginal likelihood. Seventeen gene

sets are generated and denoted by {AsA
}sA=1:17, representing pathways {AsA

}sA=1:17 .

Each gene set AsA
is composed of the first sA genes. Figure 5.2 shows the association

probabilities of all the genes and illustrates how the 17 gene sets are constructed.

Again, the prior means of gene pathway membership rA = 0.8 and rB = 0.1. The

joint density function conditional on each gene set is exhibited as a contour plot

in Figure 5.3. For different gene sets, the joint density is concentrated in different

domains of α0 and α1. Generally, the concentration field shifts from the large α1 and

small α0 area to the small α1 and large α0 areas with the increase of sA. This is

decided by the arrangement of πg in this data set, which is generally in a decreasing

order.
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Figure 5.2: Association probabilities in the simulated data set. The red dots cor-
respond to the genes in pathway gene set A, and the blue dots correspond to those
not in A (i.e. in B). AsA

is the pathway gene set that includes the first sA genes of
the 18. By increasing sA from 1 to 17, 17 gene sets are generated.
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Figure 5.3: Contour plots of h(α0, α1) corresponding to 17 pathway gene sets. In
each plot, x-axis is α0; y-axis is α1.

Since p = 18 the exact values of the marginal likelihood given each gene set can be

easily computed by using the analytical form derived in (5.2). The standardized log

marginal likelihood (scaled to [0, 1] by dividing the maximum), as shown in Figure

5.4, increases when sA = 1 : 5 and reaches the peak at sA = 4 and 5, giving evidence

that the gene sets containing the first 4 or 5 genes are most likely to be associated

with the phenotype. This is consistent with the original simulation design in that the

first few genes are the signature genes of the hypothetical pathway F . The variation

of log marginal likelihood across the rest of the gene sets can easily be interpreted by

the fluctuation of the πg across genes.
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Figure 5.4: Standardized log marginal likelihood for each of the 17 pathways in the
simulation.

Figure 5.5 presented the exact log marginal likelihoods of the 17 gene sets and

the corresponding approximate values obtained by using quadrature integration and

Laplace approximation. Among the 17 values, the maximum and minimum of quadra-

ture approximation errors are 0.055 and 3 × 10−5. For Laplace approximation, the

minimum error is 0.002; but three approximate values, corresponding to A2, A12 and

A16, are obviously wrong; the approximate value for A17 is not available due to the

numerical problem. Joint density functions with A2, A12 and A16 are exhibited in

Figure 5.6. The poor accuracy of Laplace approximation may be either due to the

irregularity (nonunimodality) or poor Gaussianality of h(α0, α1) in the integration do-

main. Particularly, although h(α0, α1) appears to be unimodal in the contour plots,

the subtle irregularity still exists and may cause the algorithm converging to a local

maximum as well as erratic/unstable values of the Hessian at the local Maximum.

Setting different starting points of integration variables usually is the approach to

dealing with the irregularity. However, this depends on observation of the global

maximum of log h(α0, α1), which can be inaccurate and lead to poor approximation.

In summary, quadrature has good performance in approximating the evidence
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when the number of genes in the data set is not large. Laplace approximation is

a fast approach and potentially can deal with data with a large number of genes,

though the performance is not reliable. An approach needs to be developed to work

with large data sets and provide a reliable estimate of marginal likelihood.
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Figure 5.5: Log marginal likelihoods of 17 pathways in the simulation. Red circles
are exact values; blue +’s are estimates with quadrature integration; black x’s are
estimates with Laplace approximation.
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Figure 5.6: h(α0, α1) when sA = 2, 12 and 16. These are the cases where the
Laplace approximation has the worst accuracy .
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Chapter 6

Variational Methods

Variational methods provide approximate inference algorithms that yield lower bounds

on marginal probabilities of interest (Jaakkola and Jordan 1997; Jordan et al. 1999).

These type of methods have been intensively studied and applied to Bayesian infer-

ence and model comparison (or selection) problems (Corduneanu and Bishop 2001;

McGrory and Titterington 2007). Specifically, for marginal likelihood computation,

an existing variational approximation method, called variational Bayesian EM by

Beal (2003), uses the Expectation Maximization (EM) algorithm to achieve the op-

timal lower bound of a log marginal likelihood under a posterior independence as-

sumption for model parameters. Model comparisons or hypothesis testing based on

the lower bounds of marginal likelihoods, however, is insufficient and not persuasive.

I propose a new method for log marginal likelihood approximation. This method is

built on the same foundation as existing variational approaches, but uses Monte Carlo

simulation to obtain optimum bounds – both upper and lower – for a log marginal

likelihood. Bound optimizations on the two sides correspond to the two-way mini-

mization of Kullback-Leibler (K-L) divergence between two variational densities and

the joint posterior density of model parameters. The upper bound optimization de-

pends on the posterior samples of parameters generated through an MCMC method,

while the lower bound optimization utilizes Monte Carlo stochastic approximation

approach that appears to be more general compared to variational Bayesian EM.

Simulation studies are performed to show the effectiveness of this method.
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6.1 Approximation with Lower Bounds

The computation of marginal likelihood in PROPA encounters a floating-point over-

flow problem when the number of genes is large. As has been discussed in the previous

section, a desirable solution is to approximate the marginal likelihood with a certain

form in which the quantities causing overflow are put in a log transform. Although not

specifically developed for solving such high-dimensional problems, the Cheeseman-

Stutz (Cheeseman and Stutz 1996) method and the Variational Bayesian EM (Beal

2003) meet such a requirement and provide lower bounds on the log marginal like-

lihood. Both methods have been developed for the settings that contain hidden

variables and depend on the EM algorithm providing solutions.

Cheeseman-Stutz Approximation

Denote the marginal likelihood by p(D|M), where D is the data and M is the model

with parameters θ. For any hidden variables z, the log marginal likelihood can be

approximated as

log p(D|M) ≈ LCS = log

(
p(D, ẑ|M)

p(D|θ̂,M)

p(D, ẑ|θ̂,M)

)

= log p(D, ẑ|M) + log p(D|θ̂,M)− log p(D, ẑ|θ̂,M)

where θ̂ is the a maximum likelihood (ML) or a maximum á posteriori (MAP) es-

timate of θ, and ẑ is the expectation of z given θ̂. θ̂ and ẑ are obtained via the

EM algorithm. This approximation was initially proposed by Cheeseman and Stutz

(1996) and later was noted by Minka (2001) as a lower bound of log marginal likeli-

hood in the context of mixture models. Beal (2003) extended this conclusion to any

model and provided a proof.
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Variational Bayesian EM

The mean-field variational methods were initially developed in statistical physics

and extensively studied by machine learning and Bayesian learning communities for

deterministic approximation of marginal distributions (MacKay 1995; Jordan et al.

1999; Jaakkola and Jordan 2000; Humphreys and Titterington 2000; Corduneanu and

Bishop 2001; Ueda and Ghahramani 2002; Beal and Ghahramani 2003; Jordan 2004;

Wang and Titterington 2004; McGrory and Titterington 2007). Beal (2003) reviewed

and examined these methods for Conjugate-Exponential models. The implementation

of the variational method for the purpose of marginal likelihood approximation was

called Variational Bayesian EM (VBEM).

Consider Jensen’s inequality in the marginal likelihood approximation context,

log p(D|M) ≥
∫

Θ

∫
Z

q(z,θ) log
p(D, z,θ|M)

q(z,θ)
dzdθ,

where z and θ, as before, are hidden variables and model parameters, respectively,

and q(z,θ) is any p.d.f. supported by Θ and Z. The inequality sets a lower bound

of log marginal likelihood as an integral in which the joint density function as part of

the integrand is under a log transform. This looks appealing when one thinks about

solving the numerical problem in computing marginal likelihood.

By factorizing the variational density with respect to the hidden variables and

model parameters, i.e. q(z,θ) = qz(z)qθ(θ), VBEM iteratively performs the follow-

ing steps to find the optimum qz(z) and qθ(θ) that maximize this lower bound:

q(t+1)
z (z) =

1

Cz
exp

[∫
Θ

q
(t)
θ (θ) log p(D, z|θ,M)dθ

]
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and

q
(t+1)
θ (θ) =

1

Cθ
p(θ|M) exp

[∫
Z

q(t+1)
z (z) log p(D, z|θ,M)dz

]
,

where Cz and Cθ are normalizing constants. Beal (2003) has shown that this method

can always obtain a tighter lower bound than the Cheeseman-Stutz approximation.

Since optimization in this functional form usually is infeasible, the factors of

the mean-field variational density, qz(z) and qθ(θ), need to be assumed in certain

parameterized density function forms that enable computation. The lower bound

optimization is then carried out with respect to the parameters in the assumed density

forms. This iterative algorithm converges to the local maximum lower bound of the

log marginal likelihood.

Upper Bound on Marginal Likelihood

Clearly, performing model comparisons based only on the lower bounds of marginal

likelihoods can be inappropriate as the approximation error is not quantitatively

limited. An ideal approximation in such cases requires an upper bound coupled

with the lower bound to confine the true value of marginal likelihood. One of the

quantities that could serve as an upper bound is the maximum likelihood given that

the optimization process truly finds the global maximum of the likelihood. Obviously,

this upper bound almost always will be very loose and of little help in restricting the

estimate of marginal likelihood. The expectation of the data likelihood under the

posterior distribution of parameters is also an upper bound on the marginal likelihood

(Beal 2003). This is also a poor upper bound because the tightness of this bound

drifts away as sample size increases. In the following section I propose a new, tight

upper bound for log marginal likelihood.
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6.2 Monte Carlo Variational Method

I propose a new variational method providing optimized lower bound and upper

bound for the marginal likelihood. In this method, a Monte Carlo stochastic approx-

imation algorithm is employed as an alternative but more general approach to the

optimization of the lower bound as defined by Jensen’s inequality and optimized with

EM algorithm in VBEM. The upper bound is derived under the variational frame-

work and optimized by using the posterior samples of model parameters obtained

with MCMC methods.

I begin with derivation of the lower bound and upper bound of log marginal

likelihood in the general framework of variational methods, and follow this up with

the description of the bound optimization methods under the assumption of expo-

nential family mean-field variational density forms. Convergence of the optimization

algorithms proposed is discussed. Then this approach is applied to the marginal likeli-

hood approximation in PROPA models, and the performance is studied in simulation

studies.

6.2.1 Lower and Upper Bounding Marginal Likelihood

Denote the marginal likelihood in a general form by

p(D|M) =

∫
Θ

p(θ, D|M)dθ,

where D is the data, M is the model, and θ = {θ1, . . . , θK} ∈ Θ represents all the

model parameters. In case some of parameters can be analytically integrated out,

the dimension of this integral is reduced. Then the integration over the rest of the

parameters fits in the discussion.

For any density function q(θ) that has the same support as the posterior distri-
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bution p(θ|D,M), by Jensen’s inequality,

log p(D|M) ≥
∫

Θ

q(θ) log
p(θ, D|M)

q(θ)
dθ, (6.1)

a lower-bound for the log marginal likelihood can be set up with specific qL(θ), i.e.

L =

∫
Θ

qL(θ) log
p(θ, D|M)

qL(θ)
dθ.

When qL(θ) takes an analytical form, this lower bound is simply the expectation of

log
p(θ, D|M)

qL(θ)
with respect to this density qL(θ).

Now take a step back. The inequality in (6.1) turns into equality only when

the free distribution q(θ) is the posterior distribution of θ, i.e. q(θ) = p(θ|D,M).

Consider the equality

log p(D|M) =

∫
Θ

p(θ|D,M) log
p(θ, D|M)

p(θ|D,M)
dθ

=

∫
Θ

p(θ|D,M) log p(θ, D|M)dθ −
∫

Θ

p(θ|D,M) log p(θ|D,M)dθ.

(6.2)

The second term −
∫
Θ
p(θ|D,M) log p(θ|D,M)dθ is the mathematical entropy of

p(θ|D,M). According to Gibbs inequality, for any probability density qU(θ) that

has same support as p(θ|D,M),

−
∫

Θ

p(θ|D,M) log p(θ|D,M)dθ < −
∫

Θ

p(θ|D,M) log qU(θ)dθ.
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Plugging this into (6.2) results in an upper bound of log marginal likelihood

U =

∫
Θ

p(θ|D,M) log p(θ, D|M)dθ −
∫

Θ

p(θ|D,M) log qU(θ)dθ

=

∫
Θ

p(θ|D,M) log
p(θ, D|M)

qU(θ)
dθ. (6.3)

Clearly, given the form of qU(θ), this upper bound is the expectation of log
p(θ, D|M)

qU(θ)

with respect to the posterior distribution p(θ|D,M). If p(θ|D,M) does not have

an explicit form (this actually is always the case because its normalizing constant

p(D|M) is unknown), the evaluation of this upper bound becomes a Monte Carlo

integration problem that depends on the samples from p(θ|D,M).

Now the log marginal likelihood is bounded as

L ≤ log p(D|M) ≤ U.

To optimize the approximation of the log marginal likelihood, one needs to find the

density functions qU(θ) and qL(θ) that minimize the upper bound and maximize the

lower bound, respectively. Suppose both qU(θ) and qL(θ) take parameterized form

q(θ;γ) with γ ∈ Γ a vector of tunable parameters. The goal is to find γU and γL, so

that q(θ;γU) and q(θ;γL) minimize the upper bound and maximize the lower bound,

respectively. Then, conditional on the choice of the form of q(θ;γ), the log marginal

likelihood is optimally bounded as

Lo ≤ log p(D|M) ≤ Uo,

where

Uo =

∫
Θ

p(θ|D,M) log
p(θ, D|M)

q(θ;γU)
dθ,
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and

Lo =

∫
Θ

q(θ;γL) log
p(θ, D|M)

q(θ;γL)
dθ. (6.4)

This lower bound optimization is the basic idea of existing variational Bayesian meth-

ods. I name q(θ;γU) and q(θ;γL) the upper bound variational density function and

lower bound variational density function, respectively.

Now the computation of log marginal likelihood relies on the availability of three

things: 1) a good form of the variational density function kernel q(θ;γ), 2) an opti-

mization strategy for γ, and 3) the samples from posterior distribution p(θ|D,M).

The natural way (in fact the only possible way in the context) to generate p(θ|D,M)

samples is the MCMC method. I then focus on the construction and optimization of

variational densities.

The choice of the kernel of q(θ;γ) usually is based on the consideration of compu-

tational convenience. The tightness of the bounds are then determined by how good

q(θ;γ) can be as an approximation to the posterior density p(θ|D,M). In particular,

a factorized form for q(θ;γ) is considered based on the mean field theory, i.e.

q(θ;γ) =
K∏
k=1

qk(θk;γk). (6.5)

For nice algebraic properties as well as generality, let qk(θk;γk) for each k ∈ {1, . . . , K}

be a p.d.f. (or p.m.f.) from the exponential family. Here γk = {γk,j}j=1:Jk
is a vec-

tor of the natural parameters of density qk(θk;γk). Within the exponential family,

a natural choice of density kernel for qk(θk;γk) is the one that most likely captures

the characteristics of the marginal posterior distribution p(θk|D,M). The goodness

of q(θ;γ) as an approximation to p(θ|D,M) then depends on how much fluctuation

the interaction between θk (k = 1, . . . , K) and {θi}i=1:K,i6=k causes in the mean fields.

Now I discuss the optimization of the lower bound and the upper bound separately.
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6.2.2 MCSA for Lower Bound Optimization

This lower bound optimization shares the same basic idea with the existing mean-field

variational approximation method. Given a variational density function q(θ;γ) as an

approximation to the posterior density p(θ|D,M), this lower bound maximization is

equivalent to the minimization of the K-L divergence of p(θ|D,M) from q(θ;γ), i.e.

finding

γL = arg min
γ
{DKL [q||p]} ,

where

DKL [q||p] =

∫
Θ

q(θ;γ) log
q(θ;γ)

p(θ|D,M)
dθ,

a non-negative quantity. This is easy to show. Simply plugging the equality p(θ, D|M) =

p(θ|D,M)p(D|M) into Jensen’s inequality shown in (6.1) (with q(θ) substituted with

q(θ;γ) here) yields

log p(D|M) ≥
∫

Θ

q(θ;γ) log
p(θ|D,M)p(D|M)

q(θ;γ)
dθ

= log p(D|M)−
∫

Θ

q(θ;γ) log
q(θ;γ)

p(θ|D,M)
dθ

= log p(D|M)−DKL [q||p]

= L(γ),

so that raising L(γ) decreases DKL [q||p].

The existing mean-field variational method, as introduced in Section 6.1, uses a

variational density form factorized over hidden variables and model parameters (or

constructs such settings by treating certain model parameters as hidden variables),

and depends on the EM algorithm providing solutions to the lower bound optimiza-

tion. The Monte Carlo EM (MCEM) algorithm has been proposed (in the context
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of maximum likelihood estimation involving missing data) to deal with the cases

that the expectation step in the EM algorithm has no analytic solutions (Celeux and

Diebolt 1992; Chan and Ledolter 1995). In this algorithm, Monte Carlo method is

applied to estimate the expectation. By combining with a stochastic approximation

process, the convergence of this stochastic version of EM was established under mild

conditions (Delyon et al. 1999). This work is the inspiration for a stochastic approx-

imation version of the variational Bayesian method proposed here. The Monte Carlo

method is used to calculate the expectations of the solutions, and optimize the lower

bound iteratively via a stochastic approximation process. The resulting algorithm is

easy to implement, and its convergence can also be guaranteed under conditions that

are applicable to many practical situations.

Refer to (6.4). As a function of the parameter vector γ, the lower bound of log

marginal likelihood is written as

L(γ) =

∫
Θ

q(θ;γ) log
p(θ, D|M)

q(θ;γ)
dθ

with q(θ;γ) taking a factorized exponential family form presented in (6.5). Let the

first order derivative of L(γ) with respect to γk,j equal zero for each k ∈ {1, . . . , K}
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and j ∈ {1, . . . , Jk}, namely,

∂L(γ)

∂γk,j
= − ∂

∂γk,j

∫
Θ

q(θ;γ) log
q(θ;γ)

p(θ, D|M)
dθ

= −
∫

Θ

[
∂

∂γk,j

(
log

q(θ;γ)

p(θ, D|M)

)
q(θ;γ) + log

q(θ;γ)

p(θ, D|M)

∂q(θ;γ)

∂γk,j

]
dθ

= −
∫

Θ

[
∂ log q(θ;γ)

∂γk,j
q(θ;γ) + log

q(θ;γ)

p(θ, D|M)

∂ log q(θ;γ)

∂γk,j
q(θ;γ)

]
dθ

= −
∫

Θ

[
1 + log

q(θ;γ)

p(θ, D|M)

]
∂ log qk(θk;γk)

∂γk,j
q(θ;γ)dθ (6.6)

= 0.

Then the solution of this system of
∑K

k=1 Jk equations is γL, which maximizes the

lower bound of the log marginal likelihood. Here, stochastic approximation is used

to solve this system of equations.

Stochastic approximation (SA) (Kushner and Yin 2003) is a class of algorithms for

finding the roots of possibly non-linear equation f (x) = 0, in the situation where only

noisy measurements of f (x) are available. The Robbins-Monro algorithm (Robbins

and Monro 1951), the simplest form of SA, is a recursive process

x(t+1) = x(t) + s(t+1)ζ(t+1)

with some initial x(0). Here
{
s(t), t ≥ 1

}
is a sequence of step sizes that satisfies

standard conditions:
∑∞

t=1 s
(t) = ∞ and

∑∞
t=1

[
s(t)
]2
< ∞. For any t ≥ 1, ζ(t) is a

noisy measurement of f (x), i.e.

ζ(t) = f (x) + ξ(t),

where
{
ξ(t), t ≥ 1

}
is the so called noise sequence.

In my case, x is γk,j and the function f(γk,j) has an integral form as shown in
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(6.6). Assume Monte Carlo samples {θ(i)}i=1:N from distribution q(θ;γ) are available

(these samples are easy to generate when q(θ;γ) is a factorized exponential-family

density). For each k ∈ {1, . . . , K} and j ∈ {1, . . . , Jk}, f(γk,j) can be evaluated by

its Monte Carlo estimate, namely,

ζ (γk,j) = − 1

N

N∑
i=1

{[
1 + log

q(θ(i);γ)

p(θ(i), D|M)

]
∂ log qk(θ

(i)
k ;γk)

∂γk,j

}
,

By the central limit theorem

ξ (γk,j) = [ζ (γk,j)− f (γk,j)]→ N

(
0,
σ2
f

N

)
,

which means ξ (γk,j) is Gaussian noise.

By using the Robbins-Monro algorithm, γ = {γk,j}k=1:K,j=1:Jk
can be estimated

iteratively via

γ
(t+1)
k,j = γ

(t)
k,j + s(t+1)ζ

(
γ

(t)
k,j

)
.

Then, using the estimate γ̂L produced through the above iterative procedure

and the Monte Carlo samples {θ(i)}i=1:N from q(θ; γ̂L), one obtains the estimate of

the optimal lower bound conditional on the kernel form of the variational density

function,

L̂o =
1

N

N∑
i=1

log
p(θ(i), D|M)

q(θ(i); γ̂L)
. (6.7)

When the iterative steps in the stochastic approximation go to infinity, this estimated

lower bound converges to the true maximum lower bound Lo with probability one.

The proof of this conclusion is presented in Shen et al. (2007).
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6.2.3 MCMC for Upper Bound Optimization

The upper bound optimization tunes the variational density parameters γ so that

U(γ) reaches minimum, i.e. finding

γU = arg min
γ∈Γ
{U(γ)} .

Minimizing U(γ) is equivalent to minimizing U(γ) − log p(D|M). Refering to (6.2)

and (6.3), one has

U(γ)− log p(D|M) =

∫
Θ

p(θ|D,M) log p(θ|D,M)dθ −
∫

Θ

p(θ|D,M) log q(θ;γ)dθ

=

∫
Θ

p(θ|D,M) log
p(θ|D,M)

q(θ;γ)
dθ

= DKL [p||q] ,

the K-L divergence of variational density q(θ;γ) from posterior density p(θ|D,M).

Hence, minimizing the upper bound U(γ) is equivalent to minimizing this K-L di-

vergence with respect to γ, i.e. to find

γU = arg min
γ∈Γ
{DKL [p||q]} .

Since q(θ;γ) comes from the exponential family, which is well known as being log-

concave, DKL [p||q] must be convex with respect to γ = {γk}k=1:K . Consequently,

the global minimum can be found by setting the partial derivatives equal to zero.

For all k ∈ {1, . . . , K} and j = 1, . . . , Jk, let

∂

∂γk,j
DKL [p||q] = −

∫
Θ

p(θ|D,M)

[
∂

∂γk,j
log qk(θk;γk)

]
dθ

= 0.

For qk(θk;γk) from exponential family, these equations can be solved either ana-
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lytically (when qk(θk;γk) is Bernoulli, Binomial or Gaussian) or through numerical

methods when the Monte Carlo samples of p(θ|D,M) are available. By the Strong

Law of Large Numbers, the estimated solution γ̂k converges almost surely to the true

solution if γ̂k,j can be analytically expressed. Then the solutions of all these equa-

tions together form γ̂U , which converges almost surely to γU that truly minimizes

DKL [p||q]. Given the MCMC samples of p(θ|D,M), {θ(i)}i=1:N , the upper bound Uo

can be estimated by

Ûo =
1

N

N∑
i=1

log
p(θ(i), D|M)

q(θ(i); γ̂U)
.

Ûo as consequence converges almost surely to the true globe minimum upper bound

of the log marginal likelihood under the conditions of the variational density form.

6.3 Application to PROPA Models

Here I describe how to approximate the log marginal likelihoods in PROPA models

through lower bound and upper bound optimization using MCVA outlined in the

previous section. This marginal likelihood evaluation solves the central problem in

PROPA and is a good example for the applications of this variational method as well.

6.3.1 Integrand and Parameters

In computation of marginal likelihood, the general principle is to integrate out as

many parameters as possible to reduce the complexity and increase the accuracy of

the last inevitable numerical integration step. The log marginal likelihood has been

presented as a reduced form in (5.1). It is an integral over the parameters α0 and α1.

Using the mean-field variational method to approximate this integral would involve

approximating the joint posterior density of α0 and α1 with a variational density

factorized with respect to these two parameters. According to the simulation in
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Chapter 4, α0 and α1 are continuous variables with truncated gamma-like posterior

densities, increasing the complexity of the variational p.d.f. form and the difficulty

in optimization. Meanwhile, the conditional posterior distributions of α0 and α1 (as

shown in (4.2) and (4.3)) depend on the sum of 1 − zg or zg, g ∈ G, suggesting

strong posterior dependency between them. One would expect that the factorized

variational density is a poor approximation to the joint posterior and leads to a

poor approximation of the log marginal likelihood. Therefore, I take another path

leading to a simple and probably more accurate solution of this log marginal likelihood

approximation problem.

Go back to the joint density function in a form with augmentation variables shown

in (4.1). Integrate out {βg}g∈G, α0 and α1, and leave {zg}g∈G as integration variables.

Equation (4.1) contains an independent gamma density kernel of α0 and α1, so it is

trivial to get

p(Π, z|A,F = A) =

p∏
g=1

[(
rA
πg

)zg
(

1− rA
1− πg

)1−zg
]I(g∈A) [(

rB
πg

)zg
(

1− rB
1− πg

)1−zg
]I(g/∈A)

Γ(ν1)Γ(ν0)

λν11 λ
ν0
0

(1− Φ(1; ν0, λ0))(1− Φ(1; ν1, λ1))

with ν1 =
p∑
g=1

zg, ν0 =
p∑
g=1

(1−zg), λ1 = −
p∑
g=1

(zg log πg), λ0 = −
p∑
g=1

(1−zg) log(1−πg),

and Φ the gamma cumulative density function. It is implied here that the supports

of α0 and α1 are upper bounded by a, which is large enough to make Φ(a; ν0, λ0) = 1

and Φ(a; ν1, λ1) = 1. Then the marginal likelihood is

p(Π|A,F = A) =
∑
z∈Z

p(Π, z|A,F = A).
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The variational p.m.f. is constructed in a factorized form as

q(z;γ) =

p∏
k=1

qzk
(zk;γk). (6.8)

Since zk for each k ∈ {1, . . . , p} is a binary random variable, the density kernel of

each factor must be Bernoulli, i.e.

qzk
(zk; γk) = γzk

k (1− γk)1−zk (6.9)

with parameter γk = Pr(zk = 1).

The reason for choosing this parameterization is that the marginal posterior dis-

tributions of zg, g ∈ G, are more likely to be close to independence in high dimensional

cases. Refer to Chapter 4. In each iteration of sampling in the posterior simulation,

the distributions of α0 and α1 are generally determined by
∑

g∈G(1−zg) and
∑

g∈G zg,

which means the fluctuation of a small number of zg’s may not have a large influ-

ence on the conditional distributions of α0 and α1. It is even more likely that these

fluctuating zg’s are cancelling out each other’s effect on the distributions of α0 and

α1. Hence, for any zk (k ∈ G), the fluctuation of zg (g ∈ G, g 6= k), is not likely to

have an impact on zk through α0 and α1. Parameters {zg}g∈G may be close to being

independent in the posterior. So qzk
(zk; γk) should be a good approximation to the

joint posterior distribution of {zg : g ∈ G}.

6.3.2 Bound Optimization

Refer to equation (6.6). To optimize the lower bound of the log marginal likelihood

here, one needs to solve a system of non-linear equations of p variables {γk}k=1:p. For
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all k ∈ {1 : p}, the equation in an explicit form is

f(γk) =
∑
z∈Z

[
1 + log

∏p
g=1 γ

zg
g (1− γg)1−zg

p(Π, z|A,F = A)

]
(zk − γk) = 0.

The numerical method described in Section 6.2.2 is used to solve these equations. At

each iterative step t, samples of z1, . . . , zp are drawn from the mass function presented

in (6.9), which is parameterized by the γ
(t−1)
1 , . . . , γ

(t−1)
p .

Compared with the lower bound, the upper bound optimization benefits more

from the new setting of the integral. I discuss it in detail as follows.

The goal here is to find the optimum parameters γ = {γk}k=1:p minimizing the

K-L divergence

D(γ) =
∑
z∈Z

p(z|Π, A,F = A) log

(
p(z|Π, A,F = A)

q(z;γ)

)

with q(z;γ) in the form of (6.8). This corresponds to finding the solution of a set of

equations

{
∂D(γ)

∂γk
= 0

}
k=1:p

. Explicitly, for all k ∈ {1 : p},

∂D(γ)

∂γk
=

∂

∂γk

{
−
∑
z∈Z

p(z|Π, A,F = A) log
(
γzk
k (1− γk)1−zk

)}

= − 1

γk(1− γk)
∑
z∈Z

p(z|Π, A,F = A)(zk − γk)

= − 1

γk(1− γk)
(E(zk|Π, A,F = A)− γk) = 0 (6.10)

Clearly, in the domain [0, 1] the solution is γk = E(zk|Π, A,F = A), the posterior

mean of zk. This is to say, given a factorized form, the variational p.m.f. has the

minimum K-L divergence from the posterior p.m.f. of z when each factor qzk
(zk) is
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the marginal posterior p.m.f. of zk, i.e.

qU(z) =

p∏
k=1

p(zk|Π, A,F = A).

The MCMC method as described in Chapter 4 provides the marginal posterior

samples of each model parameter when the Markov chain reaches equilibrium. So

the value of γk that optimizes the log marginal likelihood upper bound can simply

be estimated by the mean of the MCMC samples {z(i)
k }i=1:N , namely,

γ̂k = Ê(zk|Π, A,F = A) =
1

N

N∑
i=1

z
(i)
k .

Then the MCMC samples {z(i)}i=:N from the joint posterior distribution p(z|Π, A,F =

A) are used to estimate the optimal upper bound of log marginal likelihood by

Ûo =
1

N

N∑
i=1

[
log

p(Π, z(i)|A,F = A)

q̂U(z(i))

]
,

where q̂U(z) =
p∏

k=1

γ̂zk
k (1− γ̂k)1−zk .

6.4 Simulation Studies

To demonstrate the performance of MCVA method, I simulate two data sets and

compute the log marginal likelihoods of a few simulated gene sets in the study.

The first data set has been used in Section 4.2 and 5.3 to study posterior simu-

lation and numerical integration. It contains 18 genes, from which 17 gene sets are

constructed, and uses hyper-parameters rA = 0.8 and rB = 0.1. For each gene set,

the exact value, quadrature estimate and MCVA optimal bounds of the log marginal
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likelihood are computed and displayed in Figure 6.1(a). The approximation error,

defined as an estimated value minus the true value for each gene set, is presented in

Figure 6.1(b). Quadrature has the best performance. The error plots show that the

variational optimal bounds are indeed the upper and lower bounds of the log marginal

likelihoods. Although their approximation errors are larger than quadrature, these

bounds are good enough to distinguish different gene sets/models in this example.
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Figure 6.1: MCVA simulation study on the 18-gene data set. (a) The exact values,
optimal upper bounds and optimal lower bounds of log marginal likelihoods of 17
gene sets. (b) The approximation errors of upper bounds and lower bounds.

In the second simulated data set, p = 100, and eleven gene sets are produced

precisely as in generating the 17 gene sets for the 18-gene data set, i.e. AsA
=

{1, . . . , sA} for each sA ∈ {15, . . . , 25}. The data and gene sets are illustrated in

Figure 6.2. Let the hyper-parameters rA = 0.9 and rB = 0.05. The optimal bounds

of log marginal likelihoods by MCVA are computed for each gene set and shown in

Figure 6.3(a). It is unrealistic to compute the exact values when p = 100. Quadrature

integration, as shown in the previous example, can produce a good approximation,

and it may still work when p is less than 103. Hence, the values of quadrature

approximation are used for reference. Figure 6.3(b) presents the difference (called
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error here) between each bound and the quadrature estimate as well as the distance

between the upper and lower bounds (the upper bound minus the corresponding

lower bound). The optimal upper bounds have smaller difference from the quadrature

estimates than the optimal lower bounds. The bound distances show the correctness

of the bound estimation. In this simulation, the upper and lower bounds given by

MCVA are sufficient to distinguish the log marginal likelihoods of all the models, and

the resulting PROPA identification of pathways is very accurate.
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Figure 6.2: Association probabilities in the simulated data set with 100 genes. The
red dots correspond to the genes in pathway gene set A, and the blue dots correspond
to those not in A (i.e. in B). AsA

is the pathway gene set that includes the first sA
genes. By increasing sA from 15 to 25, eleven gene sets are generated.

In these two simulation studies, both the lower and the upper bound optimization

methods have good performance in terms of accuracy. This double-sided bounding

provides sufficient information to facilitate model comparisons. The lower bound

optimization is especially fast when the dimension of data is relatively low. This ad-

vantage of lower bound optimization is lost with the increase of dimension. When p is

greater than 103, convergence becomes unacceptably slow. To solve the approxima-

tion problem in high-dimensional cases, I use a compromised strategy: lower bounding
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Figure 6.3: MCVA simulation study on the 100-gene data set. (a) The quadrature
estimates, optimal upper bounds and optimal lower bounds of log marginal likelihoods
for eleven gene sets. (b) The distance between the upper bounds and lower bounds.

the log marginal likelihood with a pseudo-optimal lower bound that is obtained by

using (6.7), where q(θ, γ̂L) = q(θ, γ̂U). When the factorized variational density q is a

good approximation of the joint posterior distribution of θ, the variational densities

corresponding to optimal upper and lower bounding are likely to converge to the

same function. Clearly, the value of the pseudo-optimal lower bound is always less

than the lower bound obtained through MCVA lower bound optimization.

I demonstrate the approximation using this strategy with a real data set and 15

pathway gene sets from a database. The data set contains probabilities of association

between 19,645 genes and the lactic acidosis (a cancer micro-enviormental factor)

status of human mammary epithelial cell cultures (refer to Section 8.1). Figure

6.4(a) presents the optimal upper bounds and pseudo-optimal lower bounds of log

marginal likelihoods for the 15 pathway gene sets. The distance between each pair

of bounds are shown in Figure 6.4(b). As can be seen, the pseudo-optimal lower

bounds are close to the optimal upper bounds, and such bounds are tight enough to

discriminate the evidence for different models.
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Figure 6.4: MCVA study on the real data set with 19,645 genes. (a) The optimal
upper bounds and pseudo-optimal lower bounds of log marginal likelihoods for 15
pathway gene sets. (b) The distance between the upper and lower bounds (upper
bounds minus lower bounds).

6.5 Discussion

The proposed variational method provides both lower and upper bounds of log

marginal likelihoods that are optimized under a certain variational density form.

These two bounds not only facilitate more reliable model comparisons but also give

a way to see the adequacy of the variational density as an approximation to the

posterior density of model parameters. It is also worth noting that this variational

method is generalizable in terms of the variational density form. It is not necessary

to take a factorized form. This is important when the model parameters left in the

integration are so dependent on each other that the factorized variational density is

a poor approximation to the posterior density of these parameters.

Additionally, the co-existence of the upper and lower bounds can relax the require-

ment for optimization. Clearly, a single bound strongly relies on the optimization

because its distance to the true value of log marginal likelihood itself is not bounded.

The requirement of reducing this distance is imposed on the bound optimization al-
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gorithms and makes marginal likelihood computation difficult when it involves a very

large number of model parameters. In particular, the lower bound optimization that

depends on EM or MCSA is more stressed by dimensionality, and convergence can

be unbearably slow.

This stress can be reduced when the bounds on both sides are available. If the

distances between these two bounds are small enough to distinguish different models,

further optimizing them is not necessary. Furthermore, since the same variational

density form q(θ;γ) is used for both bounds (though this is not necessary otherwise),

if one of the bounds is more easily optimized, the corresponding optimum variational

density can be applied to compute the other bound, which may be good enough for the

purpose of model comparisons even though not optimized. This is due to the fact that

the tightness of the bounds is essentially determined by how good an approximation

q(θ;γ) can be to p(θ|D,M). In such a context, the upper bound shows a particular

advantage because of the better convergence property of the MCMC method-based

optimization algorithm compared to MCSA.
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Chapter 7

Breast Cancer ER and ErbB2 Pathway

Annotation

The simulation studies in the previous chapters have demonstrated the effectiveness

of PROPA from the both modeling and computational aspects. In this chapter,

two further “proof-of-principle” examples are presented to illustrate the use of the

PROPA in real biological contexts: pathway annotation for estrogen-receptor (ER)

status and human epidermal growth factor receptor 2 (ErbB2) status in breast can-

cers. These two phenotypes of breast cancers have been intensively studied and are

clinically relevant. Although the development mechanism of these two phenotypes of

cancers are not fully uncovered, many conclusions have been confirmed and well ac-

cepted, thus making them useful to evaluate the performance of PROPA. I annotate

the pathway activities under these two cancer phenotypes to test the effectiveness

of PROPA. The pathway annotation results are compared to those by GSEA, the

most widely used gene set pathway annotation method. When solving the pathway

annotation problem using the Bayesian modeling approach, one concern is the sen-

sitivity of analysis results to the choice of priors (hyper-parameters) while allowing

the model to have the flexibility to incorporate á priori knowledge. Another concern

is the robustness of the model to real data. In the ER example, the influences of

model hyper-parameters and data are addressed. Besides pathway annotation, gene

pathway membership inference is exemplified by the studies in both simulated and

real circumstances based on the ErbB2 over-expression signature.
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7.1 Pathway Annotation Format

The pathway annotation by PROPA is based on the comparison of multiple path-

ways typically from a pathway gene set database. The information sufficiency of

the pathway database gives PROPA the strength to identify the pathways poten-

tially associated with the investigated biological phenotype. I assembled 956 human

molecular signature gene sets from the MSigDB C2 collection provided by Broad

Institute (http://www.broad.mit.edu/gsea/msigdb/) and re-curated them based on

the Entrez human gene database.

In these examples and the application in the following chapter, the absence of

prior knowledge on phenotype-pathway association is assumed, and all the pathways

are given equal prior probabilities. In the summary of a PROPA analysis result, the

approximated log marginal likelihoods of all pathways are plotted in increasing order.

Histograms of the log marginal likelihood upper bounds are presented as well. These

graphics aim to give some ideas of how much the levels of the association between the

“top” pathways and the phenotype are distinguished from the other pathways. Some

quantities representing the evidence of associations are depicted in a summary table

for a number of top pathways. In this table, the top pathways are listed according

to their ranks based on log marginal likelihood variational upper bound. Besides the

rank and name of each pathway, the following quantities are provided as reference:

• Post. Pr: The posterior probability of the pathway as shown in (3.1). The

variational upper bound (refer to logML (UB) as follows) is used to compute

this posterior probability.

• Post. Pr (sub): The posterior probability of the pathway after removing the

dominant pathway(s). In some analysis, some pathways have such high pos-

terior probabilities that the other pathways all appear to have zero posterior
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probability, though they might also be interesting pathways in terms of the

association with the phenotype. The posterior probabilities of the pathways

are recomputed without including the top dominant pathways.

• BF: Bayes factor of the pathway as shown in (3.14).

• BF (sub): Bayes factor of the pathway after removing the dominant pathway(s).

• Size: The number of genes in the pathway gene set from database.

• LogML (UB): The optimal upper bound of log marginal likelihood for the path-

way obtained by using the variational method described in Section 6.3.2;

• LogML (LB): The lower bound of log marginal likelihood for the pathway ob-

tained by using the variational density function corresponding to the optimual

upper bound (refer to Section 6.4);

• UB-LB: The distance between the upper bound and lower bound of log marginal

likelihood for the pathway. When this distance is large, the approximation of

the log marginal likelihood might be poor, and the reliability of association

between this pathway and the phenotype is questionable.

7.2 Breast Tumor ER Pathway Annotation

Estrogen is an important factor in the development and progression of breast car-

cinoma. Estrogen-receptor α (ERα), one of the two forms of estrogen-receptor, is

the primary mediator of estrogenic actions in breast cancer. Upon estrogen binding,

ERα is activated and becomes a transcription activator in mammary cells. Estrogen-

bound ERα can bind to the estrogen response element of the target genes and activate

the transcription, stimulating mammary cell proliferation through the downstream

signaling pathways. It has been shown that over-expression of ERα and estrogen
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binding increase the cell division and DNA synthesis, which elevate the risk for repli-

cation errors and induce breast tumorigenesis. About two-thirds of breast cancers

show over-expression of ERα at the time of diagnosis. Both basic science and clinical

data indicate the value of ERα level as an important predictor of breast cancer prog-

nosis and disease-free survival. In general, ER-positive breast cancer is associated

with more differentiated tumors and favorable prognosis (Deroo and Korach 2006;

Moggs and Orphanieds 2001).

7.2.1 Data and Results Overview

A data set including 153 primary breast tumor samples is used to investigate the

pathway activities associated with ER status (Carvalho et al. 2007). The ER level

of each tumor sample has been measured by immunohistochemical (IHC) staining.

Overall, 95 tumors are ER-positive, and 58 tumors are ER-negative. For each sample,

the cRNA has been derived and hybridized to Affymetrix Human genome U95Av2

microarray to yield genome-wide gene expression data. The gene expression data

and ER status of these tumor samples are analyzed with a regression analysis using

the BFRM software, which yields the posterior probability, as well as the sign of

association (positive or negative) between the gene expression on each probe set and

ER status. The 12,532 probe sets are then collapsed to 8,764 unique genes according

to their corresponding Entrez gene IDs. The association probability histogram of the

8764 genes is presented in Figure 7.1(a). Figure 7.1(b) is the expression heatmap of

1,140 genes with highest association probabilities. These comprise the gene expression

signature – the factor phenotype under study – of the ER status in this breast tumor

set.

The optimal upper bound and non-optimal lower bound of log marginal likelihood

are computed for each of the 956 pathways by using the variational method described
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Figure 7.1: Association probabilities and expression profiles of the genes correlated
with the ER status of breast tumors. (a) Histogram of association probabilities. (b)
Expression profiles of 1,140 genes whose association probabilities are greater than
0.9; the expression level change from low to high corresponds to the color change
from blue to red.
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Figure 7.2: Log marginal likelihoods for 956 pathways in breast tumor ER status
pathway annotation. (a) Pathway log marginal likelihood upper bounds (blue +) and
lower bounds (black ×); pathways are sorted in a decreasing order of log marginal
likelihood; pathways on the left side of the green and red lines are the top 10 and 25
pathways, respectively. (b) Histogram of the pathway log marginal likelihood upper
bounds; bars on the right side of the green and red lines correspond to the top 10
and 25 pathways, respectively.
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in Section 6.4. These bounds are plotted in Figure 7.2(a), where the pathways are

arranged in a decreasing order of the upper bound. For some pathways, the dis-

tance between the upper bound and the lower bound is too large to give a reliable

approximation for the log marginal likelihood, i.e. the mathematical quantities do

not provide sufficient information for us to judge whether or not these pathways are

associated with the phenotype compared to the others. However, for most of the

top 25 pathways, especially those of interest, the bound distances are small enough

for good estimation of their true log marginal likelihoods. Both Figure 7.2(a) and

(b) show obvious drops of log marginal likelihoods within the top ∼20 pathways,

suggesting that the top ∼20 pathways are likely to have significant association with

ER status compared to the rest. The first several pathways have larger log marginal

likelihoods and appear to be dominant in this analysis.

7.2.2 Significant Pathways

The top 25 pathways associated with beast tumor ER status are summarized in

Table 7.1, and the association probability histograms of a subset of these gene sets

are presented in Figure 7.3. In each of the plots, the red bars are the association

probability histogram of the genes in the gene set positively correlated with the ER

status, while the blue bars are the association probability histogram of the genes

negatively correlated with ER status.

The first two gene sets are breast tumor ER negative and positive signatures de-

fined by van’t Veer et al. (2002) through the DNA microarray analysis of a set of

primary breast tumors. The association probability histograms of this two gene sets

are shown in Figure 7.3(a) and (b). As can be seen, almost all the genes in A1, espe-

cially those with high probabilities, are negatively associated with ER status; almost

all the genes in A2, especially those with high probabilities, are positively associated
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with ER status. This observation confirms the reliability of the annotation provided

by PROPA. Besides the ER signatures, PROPA has also identified some other path-

way signatures whose linkage to breast tumor ER status have been confirmed by

previous research.

• Breast cancer prognosis signatures

van’t Veer et al. (2002) defined a breast cancer prognosis signature correspond-

ing to four gene sets in the database. All of them show up in the top list,

A6, A12, A18 and A21. A6 and A12 represent the breast cancer prognosis nega-

tive signature, containing genes whose expression are negatively correlated with

breast cancer outcome. These two gene sets have different number of genes due

to different curation. A18 and A21 represent the breast cancer prognosis posi-

tive signature, containing genes whose expression are positively correlated with

breast cancer outcome. Clinical research has concluded that patients with ER-

negative tumors generally have worse prognosis than those with ER-positive

tumors (Maynard et al. 1978). As shown in Figure 7.3(c), (e), (h) and (i), this

correlation between these prognosis signature and tumor ER-status are clearly

reflected in the data set and identified by PROPA.

• Undifferentiated cancer signature

The level of cell differentiation, technically quantified as histological grade, is

an important measure in cancer evaluation. Undifferentiated (high-grade) can-

cers, irrespective of any tissue types, often maintain rapid and abnormal cellular

proliferation and invasion, hence are associated with poor prognosis. The undif-

ferentiated cancer transcriptional signature was defined by Rhodes et al. (2004)

and includes the genes higher expressed in the cells of undifferentiated cancers

compared to well-differentiated cancers of different tissues. Compared with

ER-positive breast cancers, ER-negative cancers are more likely to be poorly
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differentiated, and consequently appear to be more aggressive and associated

with poor patient outcomes (Maynard et al. 1978; Pichon et al. 1996). This

provides the rationale to the finding of the undifferentiated cancer signature

(A9) in the pathway annotation analysis of breast cancer ER phenotype here.

Figure 7.3(d) shows that almost all the signature genes are negatively correlated

with the tumor ER status, i.e. upregulated in the ER-negative tumors in this

data set, supporting this relationship between the breast tumor ER phenotype

and the cancer differentiation phenotype.

• Myb pathway signature

The Myb pathway gene set A15 includes the genes regulated by Myb (A-Myb or

c-Myb) transcription factors in MCF-7 mammary cells, primary lung epithelial

cells or primary lung fibroblasts. Lei et al. (2004) summarized these genes

and showed that the Myb-regulated gene sets in the three different cell types

are nearly non-overlapping; less than half of the genes in the gene set are Myb-

regulated in MCF-7 mammary cells. Importantly, previous work has shown that

estrogen-induced MCF-7 mammary cell proliferation involves the expression

of A-Myb, B-Myb and C-Myb proteins (Hodges et al. 2003), providing the

evidence of association between breast tumor ER status and Myb pathway

activation. As shown in Figure 7.3(g), less than half of the Myb pathway

signature genes have relatively high probabilities of either positive or negative

correlation with ER status, which is concordant with the summary of the gene

set given by Lei et al. (2004). Further verification of this annotation would

requires identifying of the Myb-regulated genes in MCF-7 cells from A6 and

observing the distribution of their ER-association probabilities.
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7.2.3 Comparison with GSEA

This data set is also analyzed with GSEA. Totally, 29 gene sets are significantly en-

riched at nominal p-value less than 0.01, including all the interesting ones described

above except the undifferentiated cancer signature and the Myb pathway signature.

Table 7.1 exibits the NES rank, nominal p-value, FDR q-value and correlation status

with ER reported by GSEA for each of the top 25 PROPA gene sets. In general, those

gene sets clearly relevant to the breast tumor ER status are correctly identified by

both PROPA and GSEA. Some of the other top PROPA gene sets are also identified

by GSEA with relatively low false discovery rate (FDR q-value < 0.25). In conclu-

sion, the pathway annotation results provided by PROPA and GSEA are generally

consistent, showing similar performance of these two methods for the analysis of this

data set in terms of detecting relevant pathways.

The gene sets, which are found in the top list given by PROPA, but not by

GSEA due to the insignificance according to nominal p-value, FDR q-value and NES

rank, tend to be composed of both positively and negatively associated genes. For

example, A14, A15 and A16 are non-significant according to GSEA. The association

probabilities of genes in A15 has been shown in the histogram in Figure 7.3(g), and

the histograms of A14 and A16 are in Figure 7.4(a) and (b).

Although they contain many genes highly associated with ER status, these gene

sets are considered not enriched by GSEA; This is because GSEA performs one-way

tests. A gene set appears to be significant only when a majority of genes are correlated

with the phenotype in the same way. Therefore, GSEA only works properly on gene

sets curated as upregulation and downregulation sets exclusively. PROPA does not

currently use the sign information on the association between each gene and the

phenotype. Instead, it leaves this information to the posterior investigation of the

top gene sets. This is why PROPA detects the gene set representing Myb pathway,

99



0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

(a)

A14: CIS XPC UP

 

 

Postive
Negative

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

(b)

A16: RUTELLA HEMATOGFSNDCS DIFF

 

 

Postive
Negative

Figure 7.4: Association probability histograms of two gene sets highly ranked by
PROPA, but not by GSEA. These gene sets contain both positive and negative genes
in terms of correlation with ER status. GSEA cannot identify such gene sets, because
it ranks gene sets by one-way NES.

which is critically biologically related to breast tumor ER regulation. In such cases,

those gene sets exclusively containing upregulated or downregulated genes in certain

contexts (for example, A14) may not be of biological interest in terms of the pathway

name they represent.

The ability of PROPA to identify gene sets comprised of both upregulated and

downregulated genes offers advantage when gene sets are complicated and the ex-

pression regulation direction information is not available.

7.2.4 Influence of Hyper-parameters and Data

PROPA hyper-parameters rA and rB represent the prior means of the true positive

rate and false negative rate of gene pathway membership specified by the reference

gene set A. The specification of rA and rB depends on á priori knowledge on how

precisely a gene set represents the theoretical pathway in the context being studied.

These two parameters are involved in the evaluation of marginal likelihoods for the

pathways in comparison. In a Bayesian analysis, ideally, the priors should have the

flexibility to incorporate existing knowledge or justified beliefs. Meanwhile, moderate

change of their values should not have dominant effects on the model inference. The
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values of rA and rB that have been used in the above analysis are 0.7 and 0.005. To

demonstrate the influence of these two hyper-parameters, I replace their values with

0.9 and 0.01 and observe the change of the pathway annotation results.

Association probabilities, the data in PROPA, come from the gene expression

analysis using BFRM (refer to chapter 2 and 3). The sparsity modeling that aims

to minimize the false positive rate in biomarker identification pushes the association

probabilities toward 0 or 1. This forms the basis of the beta mixture modeling of

the association probability for each gene in PROPA. Without á priori knowledge of

pathway activities under the phenotype, PROPA ranks the pathways according to

the data marginal likelihood given the allocation of genes specified by the reference

gene set. Here the robustness of PROPA is tested on the simulated data generated

by manipulating the true association probabilities in the ER example. The simulated

association probability of gene g is generated by π′g = F−1(R(πg)/(p + 1)), where p

is the number of genes, R is the ranking function, and F is a polynomial cumulative

density function, explicitly, F (x) = 1
6
x3 − 1

2
x2 + 3

2
x. In this manipulation, the as-

sociation ranks of all the genes are unchanged, while the distribution of association

probability is much more diffused. The histogram of {π′g}g∈G is shown in Figure 7.5.

Then the pathways related to ER status are analyzed with PROPA based on these

simulated association probabilities.

I focus on the top 30 pathways in each analysis. The level of log marginal like-

lihood generally is not changed when hyper-parameters change, but drops largely in

the analysis of the simulated data, meaning that the manipulated data poorly fit the

PROPA model in general. In spite of the levels of log marginal likelihoods, these two

analyses show considerable consensus with the original one in terms of the identified

top pathway gene sets. In the top 30 lists, three analyses have fifteen gene sets in

common, including nine ER related significant gene sets that have been discussed
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Figure 7.5: Histogram of the simulated association probabilities in the ER example.

in Section 7.2.2 and shown in Figure 7.3. The ER negative and positive signatures

are still the most significant ones in all analyses. This consensus of results indicates

the robustness of PROPA to the choice of hyper-parameters and data distribution.

Particularly, the analysis of the simulated data implies that the gene-phenotype as-

sociation ranks have a driving effect on the annotation results.

Further observation on the sizes of the top gene sets may help us in understanding

the roles of the hyper-parameters and data in the analyses. Figure 7.6 summarizes

the sizes of the top 30 gene sets in each of the three analyses. As illustrated, in

this example, increasing rA and rB results in more findings of smaller pathway gene

sets, while diffused data tend to give higher probabilities to large pathway gene sets.

In the original data distribution in Figure 7.1, one can see that a relatively large

number of genes are involved in the breast tumor ER phenotype. Increasing the

value of rA imposes tighter constrains on a gene set in terms of its accuracy as a

representative of the corresponding pathway. Meanwhile, a larger value of rB allows

for adding more genes in the superficial pathway signatures in the currently exam-
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Figure 7.6: Box plots of the sizes of top 30 ER related pathway gene sets identified
by PROPA in three analyses. 1 is the analysis of the original data with rA = 0.7 and
rB = 0.005; 2 is the analysis of the original data with rA = 0.9 and rB = 0.01; 3 is
the analysis of the simulated data with rA = 0.9 and rB = 0.005.

ined biological context, hence relaxing the size constraint on the gene set from data

likelihood. Therefore, more small gene sets that contain large portions of highly ER-

associated genes are identified under such a setting of hyper-parameters. The effect

of data diffusion is rather obvious. Diffusing the the distribution of gene association

probabilities makes the differences between genes ambiguous. Large gene sets tend

to benefit from this ambiguity, because the flatness of the beta distribution of as-

sociation probability for pathway member genes allows a larger number of genes in

a gene set to have low association probabilities. Hence, while the gene ranks have

a fundamental effect on pathway ranking, the distinct beta mixture distribution of

data is essentially important for PROPA to remove the gene set size effect and ensure

its sensitivity.
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7.3 Breast Tumor ErbB2 Pathway Annotation

ErbB2, also called HER2 or Neu, is in the same transmembrane receptor family as

epidermal growth factor receptor (EGFR or HER1), ErbB3 and ErbB4. Upon epider-

mal growth factor (EGF) binding, these proteins can form homo- or hetero-dimers,

which recruit signaling molecules and activate specific cell growth signaling pathways.

The structure of the ErbB2 protein allows it to interact with the other ErbB fam-

ily members, especially with ErbB3, to form hetero-dimers in the absence of ligand

binding. Such hetero-dimers formed with ErbB2 appear to be remarkably efficient in

signal transduction. The downstream signaling pathways lead to cell proliferation,

differentiation, survival and migration. There is also evidence of ErbB2 translocation

to nucleus regulating the expression of certain pro-oncogenic genes. Additionally,

ErbB2 also plays a role in controlling translation of specific proteins. About 20-25%

of breast cancers have over-expression of ErbB2. This over-expression is primarily

due to gene amplification, which seems to be the major cause of ErbB2 pathway

deregulation in breast cancers (Ménard et al. 2003; Badache and Gonçalves 2006).

ErbB2 has been identified as the therapeutic target of ErbB2-positive breast cancer

and clinically treated with Herceptin. Here I use PROPA to detect the pathways

associated with the breast tumor ErbB2 status, then focus on demonstrating gene

pathway membership inference.

7.3.1 Data and Gene Sets

Pathways associated with ErbB2 status are analyzed by using the 146 primary breast

tumor samples from Carvalho et al. (2007) (a subset of the original data set with sam-

ple ErbB2 status available). Among these tumors, 86 are ErbB2-postive, i.e., have

ErbB2 over-expression, while the other 60 are ErbB2-negative. The genome-wide

gene expression profiles are obtained through microarray experiments on Affymetrix
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Human genome U95Av2 chips. The probability and status (positive or negative) of

association between each gene expression and tumor ErbB2 status are obtained from

a regression analysis with BFRM. Figure 7.7(a) is the histogram of the association

probabilities of the 8,764 unique genes. The gene signature of the hypothetical path-

way under study is a relatively small set of genes whose expression profiles are shown

in Figure 7.7(b).
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Figure 7.7: Association probabilities and expression profiles of the genes correlated
with ErbB2 status of breast tumors. (a) Histogram of association probabilities πg;
(b) Expression profiles of 143 genes whose association probabilities are greater than
0.9.

The 956 human pathway gene sets drawn from the MSigDB do not include path-

way signatures explicitly linked to breast tumor ErbB2 status. To validate the ef-

fectiveness of PROPA, I curate two gene sets from literatures representing ErbB2

associated pathway signatures in breast cancer. The first gene set, called “molecular

portrait” of ErbB2-positive breast tumors for convenience, consists of several genes

that are mainly located at the chromosome 17 and have been identified as a cluster

corresponding to ErbB2 over-expression through gene clustering analyses of breast

tumor microarray data sets (Perou et al. 2000; Sørlie et al. 2001). The second gene
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Figure 7.8: Log marginal likelihoods for 958 pathways in breast tumor ErbB2 status
pathway annotation. (a) Pathway log marginal likelihood upper bounds (blue +) and
lower bounds (black ×); pathways are sorted in a decreasing order of log marginal
likelihoods; the pathways on the left side of the red line are the 6 pathways with the
largest marginal likelihoods. (b) Histogram of the pathway log marginal likelihood
upper bounds; the bars on the right side of the red line correspond to the top 6
pathways.

set is curated from the ErbB2 gene expression signature defined by Bertucci et al.

(2004). It includes the genes that differentially expressed in tumors and cell lines

with vs. without over-expression of ErbB2 protein. Notably, among the 24 genes,

three are negatively correlated with ErbB2 status. Although many positive correlated

genes in the signature gene set locate in chromosome 17, only two of them (ErbB2

and GRB7) overlap with those in the molecular portrait gene set.

7.3.2 Pathway Annotation

Figure 7.8(a) shows the optimal upper bound and corresponding lower bound of log

marginal likelihood for each pathway. The pathways are arranged in a decreasing

order of log marginal likelihood upper bounds. Figure 7.8(b) is the histogram of

the upper bounds. The first five or six pathways may be of particular interest,
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because the log marginal likelihoods drop slowly after them. As mentioned above,

the regression analysis indicates that only a very small set of genes appear to be

strongly associated with this ErbB2 status in this breast tumor samples, suggesting

either the pathway activities related to ErbB2 over-expression are weakly reflected

on the transcriptional level, or the heterogeneity of tumors within the two categories

defined by ErbB2 status makes the related changes of gene expression too subtle

to be detected. The distribution of the evidence (or posterior probabilities) for the

pathways under test, as shown in Figure 7.8, corroborates with this observation on

the overall gene-phenotype association, and implies that only a few pathways are

prominently associated with the breast tumor ErbB2 status.

Table 7.2 contains the summary of the top six pathways in terms of association

with ErbB2 status of the 146 breast tumor samples. PROPA identifies the two

ErbB2 signatures as the top one and four in the whole list of 958 pathway signatures.

In Figure 7.9(a) and (c), the association probabilities of genes in the two sets are

categorized by the sign of the correlation. Concordantly, all the genes except one

in the ErbB2 portrait gene set are positively correlated with ErbB2 status, while

the three negative signature genes in the ErbB2 signature gene set fall right in the

negative correlation category.

Additionally, almost all the genes in the third pathway gene set have positive cor-

relation with the ErbB2 status. This gene set contains genes upregulated in multiple

myeloma cells treated with pro-proliferative cytokine IL-6 (Croonquist et al. 2003).

Most of these IL-6 upregulated genes are involved in cell cycle progression; ErbB2 has

been known for triggering cell G1/S transition by activating Ras/Erk signaling cas-

cade through Shc/Grb-2 recruitment, and consequently increasing cell proliferation

(Badache and Gonçalves 2006; Ricci et al. 1995). This effect between IL-6 treatment

on myeloma cells and ErbB2 over-expression on breast tumor cell may provide the
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rationale for this pathway phenotype association.
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Figure 7.9: Association probability plots of the ErbB2-related pathway gene sets
identified by PROPA. In each plot, x-axis is probability, and y-axis has two states, -1
and 1, representing negative and positive correlation with ErbB2, respectively. For
each gene set, the association probabilities of the genes positively correlated with
tumor ErbB2 status are in red, while those of the genes negatively correlated with
tumor ErbB2 status is in blue.

The same data set and pathway genes sets are analyzed by GSEA. According to

GSEA report, none of the 958 gene sets are enriched in the ErbB2 cancer pheno-

type with FDR q-value less than 25%. If thresholded with p-value 0.01, four gene

sets are significantly downregulated in ErbB2-postive tumors, but no gene sets are

significantly upregulated. Table 7.3 gives the GSEA summary of the gene sets with

highest NES. The two gene sets that have been specifically curated and added to

the database are identified by GSEA in top upregulated gene set list (top four and

six). However, neither of them can be considered with strong significance. In this

example, compared with GSEA, PROPA presents better sensitivity and specificity

when transcriptional evidence of phenotype-pathway association are relatively weak.
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7.3.3 Pathway Membership Inference

Here I demonstrate gene pathway membership inference in PROPA focused on refin-

ing the ErbB2 molecular portrait gene set. The pathway represented by this gene set

has strongest association with breast tumor ErbB2 status among the 958 pathways

from the database. According to the description of the context, this pathway signa-

ture should only include the genes located in the chromosomal region where ErbB2

gene is, and amplified together with ErbB2 on DNA on the transcription level. I il-

lustrate gene pathway membership inference with a simulation followed by discussion

of refining this gene set in its real biological context.

Simulation Study

The ErbB2 molecular portrait gene set, as described in the previous section, has nine

genes including ErbB2, the key signature gene whose amplification is the substan-

tial factor activating the cancer signaling cascades in ErbB2-positive breast tumors.

PROPA has identified this gene set from over 900 gene sets in the database in path-

way annotation analysis of breast tumor ErbB2 status. I choose this gene set as an

example, slightly manipulate the members of the set and observe how PROPA infers

gene pathway membership.

Denote the ErbB2 portrait gene set by A1. Generate a new gene set A2 by

excluding the ErbB2 gene from A1 and adding another gene gr, which is randomly

chosen from the full gene list G and has small association probability. In the data

set, ErbB2 and gr have association probability 0.94 and 0.11, respectively. Run

PROPA on these two gene sets. This predefined membership swap between ErbB2

and gr results in a four to five points drop of the log marginal likelihood, which

does not change the rank of this pathway signature in the whole list. For each gene

g ∈ G, the Bayesian estimate of its pathway membership probability β̂∗g is obtained
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from the posterior mean of ρg in (4.6), and the pathway membership Bayes factor

BFg∈A is indicated in (4.7) and (4.8). The pathway membership evidence in nats,

defined as log(BFg∈A), is plotted in Figure 7.10(a) and (b) for gene sets A1 and

A2, respectively. Similarly, the pathway membership evidence in decibans (dBs),

defined as 10 log10(BFg∈A), is plotted in Figure 7.11. The genes in the gene set

are represented by stars, while the genes not in the gene set are dots. Genes are

sorted with respect to their association probabilities. The yellow curve is generated

through polynomial curve fitting to the dots and somehow shows the expected values

of pathway membership evidence given πg for g /∈ Ax (x = 1 or 2).

In each scatter plot, the genes located above the horizontal zero line have evidence

greater than 0, suggesting these genes might be the members of the true pathway;

vice versa for the genes below the line. Within a category (in Ax or not in Ax),

stronger belief goes to those genes far away from the zero line. Such a scatter plot

gives us a summary of gene pathway membership inference results. The blue dots

with large positive membership evidence values correspond to the genes that are

likely to be true pathway members but are missed by the pathway gene set defining

process (false negatives); the red stars with large negative membership evidence values

represent the genes that may have been incorrectly defined as pathway members (false

positives).

The ErbB2 gene, which is a member of gene set A1 but not a member of A2, is

shown as a green star in Figure 7.10(a) and Figure 7.11(a), and as a green dot in

Figure 7.10(b) and Figure 7.11(b); inversely, gene gr is shown as a green dot in Figure

7.10(a) and Figure 7.11(a), and a green star in Figure 7.10(b) and Figure 7.11(b).

Under both models (corresponding to A1 and A2), ErbB2 has pathway membership

evidence near 20 dBs, very strongly suggesting that ErbB2 is a true member of the

ErbB2 portrait signature; on the contrary, gr has substantially large negative evidence
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values in both cases confirming that it is not a member of this pathway signature.

Refining the ErbB2 “Portrait”

As discussed in Section 4.2, the pathway membership of a gene is largely driven by

its association probability. Nevertheless, this relation is pathway specific and inferred

through the posterior simulation. The monotonically increasing yellow curve in Fig-

ure 7.10(a) or 7.11(a) displays the positive association between posterior pathway

membership probability and association probability. In real applications of PROPA,

one is interested in a pathway with relatively high posterior probability of associa-

tion with the investigated phenotype. Pathway membership inference provides the

basis for decision-making on whether certain genes potentially are the members of

this pathway. Given the biological context in which the pathway is defined, pathway

membership inference can help to refine the pathway gene sets by highlighting those

false positive and false negative genes.

Table 7.4 gives the information as well as the pathway membership inference sum-

mary on the genes in the ErbB2 molecular portrait gene set A1. Six genes located in

the chromosomal regions 17q11-q12 and 17q21 have relatively high probabilities of

positive association with breast tumor ErbB2 status. The posterior pathway member-

ship probabilities of these genes are also high enough to confirm their membership.

The other three genes with relatively low association probabilities are inferred by

PROPA as false positive genes. Their posterior pathway membership probabilities

are zero. Notably, gene MMP15 is located at 16q13-q21. It was included in the

ErbB2 portrait gene set by a gene clustering analysis based on microarray data. I

conclude that MMP15 should not be a true member of this ErbB2 pathway.

Table 7.5 lists the genes not in the ErbB2 portrait gene set that have posterior

pathway membership probabilities greater than 0.5. As can be seen, these genes
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have association probabilities higher than 0.97. Several genes (G6PC, ERAL1, OMG,

RPL19, CRKRS) are located in the regions 17q11-q12 and 17q21, and have positive

correlation with ErbB2 status. Their pathway membership evidence are greater than

8 nats (greater than 34 dBs), decisive evidence for these genes being false negatives,

i.e. members of the true ErbB2 portrait signature.

This example has presented how PROPA identifies those false positive and false

negative genes in terms of pathway membership. Naturally, the interpretation based

on the knowledge of individual genes and the understanding of the pathway is essen-

tially important in this process. If the pathway signature is defined in a biological

context different from the one being studied, which is usually the case in reality,

such inference may also convey the difference of biological processes in the two con-

texts. Those genes in Table 7.5 other than those identified as false negatives can be

interpreted as being involved in the biological processes beyond the ErbB2 chromoso-

mal region amplification, for example, the downstream signaling pathway members.

These genes may also be the members of other significant pathways. For example,

RPL19 is in the ErbB2 gene expression signature, and OIP5 is in the IL-6 up-regulated

gene signature.

From another point of view, this gene pathway membership inference is poten-

tially useful for identifying potential cancer biomarkers. In most cases, a biological

phenotype under investigation involves complex biological processes; this is reflected

in the pathway annotation as several distinct biological pathways may appear to be of

interest. It is not surprising that some genes with high probability would be suggested

as members of many of these pathways with or without considering the precise biolog-

ical contexts. Without interaction information among signature genes, such results

in a larger sense do not conflict with the understanding of biological pathways, the

artificial dissections of the underlying dynamic gene regulatory network. These path-
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ways are modules in the whole network and linked through gene regulation activities

that have or have not been discovered or indicated in the database. In such cases,

a key function of pathway membership inference is to identify potential biomarkers

of the biological phenotype based on the prior knowledge on pathway gene sets and

beliefs in the pathway activities under the phenotype. Hence, those genes inferred as

false negatives are of particular interest.
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Figure 7.10: Gene pathway membership probability inference for ErbB2 molecular
portrait: scatter plots of membership evidence in nats (log(BFβ∗g )) vs. association
probability πg for each gene g ∈ G. Dots and stars correspond to genes in and not
in pathway signature gene set Aj (j = 1 or 2), respectively. The genes not in Aj
and with large positive evidence values, corresponding to the blue dots in the upper
right corner, potentially are true members of the theoretical pathway A, i.e. false
negatives; the genes in Aj (red stars) with large but negative evidence potentially are
not true members of A, i.e. false positives. (a) A1 is the original ErbB2 expression
signature gene set; the green star represents ErbB2 gene, while the gene dot represents
the randomly picked gene gr. (b) A2 shares the same set of genes with A1 except
that the gene set-membership of ErbB2 and gene gr are exchanged; the green dot
represents ErbB2 gene, while the gene star is gr.
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Figure 7.11: Gene pathway membership probability inference for ErbB2 molecu-
lar portrait: scatter plots of membership evidence in decibans (10 log10(BFβ∗g )) vs.
association probabitlity πg for each gene g ∈ G.
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Chapter 8

Analysis of Lactic Acidosis Response in

Breast Tumors

In this chapter, the application of PROPA in decomposing the complexity of the

mechanisms of cancer development is demonstrated with a study of cellular response

to lactic acidosis in breast cancers.

One characteristic of solid tumor micro-environment is the high production of

lactate and extracellular acidity, called lactic acidosis. This physiological change

with the other common traits of malignant extracellular environment – oxygen de-

pletion (hypoxia) and nutrient deprivation – is initially caused by insufficient and

inappropriate vascular supply, and poor tissue perfusion in solid tumor micromilieu

due to unregulated proliferation and rapid growth of cells (Vaupel et al. 1989; Vaupel

2004). When tissue oxygenation is inadequate, cells obtain energy through anaerobic

glucose metabolism (glycolysis) and produce lactic acid. Therefore, hypoxia is com-

monly thought to be the primary cause of lactic acidosis. It has been demonstrated

that hypoxia indeed promotes tumor cell glycolysis by upregulating genes encoding

glucose transporters and glycolytic enzymes (Ebert et al. 1996; Elson et al. 2000).

However, even in the presence of oxygen, tumor cells still rely on glycolysis for en-

ergy production, a phenomenon known as aerobic glycolysis or the “Warburg effect”

(Warburg 1956).

Many studies have shown that tumor glycolytic phenotype may be achieved

through oncogenic activation or stabilization of transcription factors such as HIF-

1 through mechanisms other than hypoxia (Kim and Dang 2006). Several oncogenes

and tumor suppressors involved in cell respiration circuits may directly contribute to
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the acquisition of a tumor cell glycolytic phenotype. The AKT oncogene is able to

enhance glucose uptake over cell membrane and trigger intracellular glucose trapping

and phosphorylation leading to enhanced glycolytic flux. The MYC transcription

factor, which is widely activated in human cancers, can activate glycolytic enzyme

genes and cause mtDNA mutations that in turn cause enhanced glycolysis and aerobic

respiration dysfunction of mitochondria. Expression loss of the p53 tumor suppressor

may inactivate the aerobic respiratory chain and cause the switch of cellular respi-

ration to glycolysis. Besides the direct oncogenic activation, HIF-1 stabilization is a

factor significantly contributing to aerobic glycolysis. The transcription factor HIF-

1 can activate glycolytic enzyme genes as well as PDK1, which in turn inactivates

the mitochondrial pyruvate dehydrogenase (PDH) and inhibits mitochondrial func-

tion and aerobic respiration. HIF-1, a heterodimer of HIF-1α and HIF-1β, cannot

be formed in normal cells under nonhypoxic conditions because of the sensitivity of

HIF-1α to oxygen. However, in some human tumor cells HIF-1 can be stabilized in

the presence of adequate oxygen when certain oncogenic events occur, such as the

activation of RAS and SRC, and the repression of VHL, SDH and FH.

Gatenby and Gillies (2004) proposed that the tumor glycolytic phenotype is a

result of active selection processes and must confer a significant growth advantage

necessary for evolution of invasive human cancers. Through somatic evolution, tumor

cell populations manage to survive in lactic acidosis environment and become resis-

tant to acid-induced toxicity. Furthermore, through upregulation of glycolysis, tumor

cells worsen the extracellular environment by increasing the acidity to a toxic level

for normal populations; the consequent destruction of adjacent normal issues and

degradation of the extracellular matrix facilitate tumor cell invasion and angiogene-

sis. This suggests increasing glycolysis and resistance to extracellular lactic acidosis

of tumor cells is a malignant phenotype associated with cancer aggressiveness and
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a driving force for the evolution to invasiveness of primary cancers as well, which

may further be crucial in cancer metastasis. Studies of lactic acidosis through in

vivo measurement of acidity and lactate in a variety of human cancers have provided

evidence for such association (Walenta et al. 2000; Brizel et al. 2001). Hence, under-

standing the fundamental cellular response to lactic acidosis in tumors may facilitate

cancer risk prediction and lead to novel cancer therapies to improve patients out-

comes. However, compared with that on glycolytic phenotype induction, the existing

knowledge on tumor lactic acidosis response is rather limited.

The primary goal of the study of Chen et al. (2007) is to analyze the cellular

response to lactic acidosis in human breast cancers using genome-wide gene expression

data. This study has two steps. The first is to observe gene expression variation in

normal mammary cells induced by in vitro exposure in a condition of lactic acidosis.

This gene expression variation characterizes mammary cell transcriptional response

to lactic acidosis in general. This may give us opportunities to examine the existence

of association between lactic acidosis and breast cancer phenotypes. This approach

is based on the premise that normal and tumor cells from same type of tissue may

have common traits of behavior on certain levels. Similar approaches have previously

been used to study the association of cellular wound healing and hypoxia response

with tumor progression (Chang et al. 2004; Chi et al. 2006; Bild et al. 2006). The

second step is to evaluate the molecular mechanisms and prognostic roles of cellular

response to lactic acidosis in breast cancers in vivo. To determine the lactic acidosis

response phenotype of breast cancers, a general molecular signature of this phenotype

is defined from cultured cell in vitro study on normal mammary cells and used to

impute the response level of a heterogeneous set of breast tumor samples (Lucas et al.

2007; Chen et al. 2007). Using evolutionary factor analysis and probabilistic pathway

annotation, this aim to deconvolute molecular mechanisms of breast tumor lactic
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acidosis response and detect possible connectivities with other clinical phenotypes of

breast cancers. Figure 8.1 shows a overall workflow diagram of this analysis. The

detail is described in the following sections.

8.1 HMEC Lactic Acidosis Response Annotation

To characterize the transcriptional response of mammary cells to lactic acidosis, Chen

et al. (2007) cultured human mammary epithelial cells (HMECs) in lactic acidosis

environment (25mM lactic acid, pH = 6.7), then measured global gene expression

of each of the treated and control samples with Affymetrix GeneChip U133 plus 2.0

array, which contains more than 54,000 probe sets corresponding to about 20,000

unique genes. The microarray data set attained from this experiment includes 12

HMEC samples – six controls and six lactic acidosis samples. A one-way ANOVA

with BFRM generates the posterior probability of association with lactic acidosis

status π∗g as well as the posterior mean of loading βg for each gene g (refer to equation

(2.4)). The posterior association probabilities of the whole gene list appear in the

histogram in Figure 8.2(a). A gene expression signature of HMEC lactic acidosis

response can be defined as a gene set comprising about 200 genes with association

probabilities near 1 and highest absolute loadings on lactic acidosis covariate (Lucas

et al. 2007). A preliminary functional annotation of these signature genes using the

Gene Oncology tool GATHER (Chang and Nevins 2006) show that lactic acidosis

induces genes involved in G-protein coupled receptor signaling, antigen processing

and presentation and cellular catabolism, and represses genes involved in cell cycle,

RNA metabolism and RNA processing.

Pathway annotation is then applied to further reveal the biological processes un-

derlying mammary cell lactic acidosis response. I use PROPA to compare the phe-

notype association of 965 pathway gene sets that include 956 human pathway gene
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Figure 8.1: Workflow diagram of the analysis of cellular response to lactic acidosis
in breast tumors
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sets from the MSigDB database and nine oncogenic pathway signature gene sets.

Five of these oncogenic pathway signatures, corresponding to the activation of RAS,

MYC, E2F3, SRC and β-catenin, are curated from the paper by Bild et al. (2006).

The other four, corresponding to the activation of AKT, P110, E2F1 and P63, are

curated from unpublished data sets. The log marginal likelihoods are distributed as

Figure 8.2(b). I only focus on the top 12 pathways summarized in Table 8.1. These

top pathways link to cell proliferation and cancer phenotypes, giving abundant ev-

idence to the nature of lactic acidosis as a potential signal and predictor of cancer

development, and are reviewed as follows:

0 0.2 0.4 0.6 0.8 1
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Figure 8.2: Distributions of association probabilities and pathway log marginal
likelihoods in HMEC transcriptional response analysis. (a) Histogram of association
probabilities. (b) Histogram of pathway log marginal likelihood upper bounds; the
bars on the right side of the red line correspond to the top 12 pathways.

• Pathways linked to other traits of cancer micro-environment

Gene set A1 includes the human genes downregulated in response to glutamine

deprivation. Glutamine is the principal energy, carbon, and nitrogen source for

mammalian cells. Peng et al. (2002) used murine CTLL-2 T lymphocytes to

generate transcription profiles in response to glutamine deprivation, and the hu-
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man homologs of the perturbed genes were collected in a gene set to impute the

human cell transcriptional response to the same intervention. The histogram of

association probabilities in Figure 8.3(a) shows that most of the genes downreg-

ulated by glutamine deprivation are also downregulated in HMECs exposed in

lactic acidosis environment. Some genes (corresponding to the red bars) appear

to be upregulated by lactic acidosis. However, a majority of them have large

uncertainty in their association with lactic acidosis. The downregulation gene

set in response to leucine deprivation (A7), which was generated in a similar ex-

periment by Peng et al. (2002), and largely overlaps with glutamine deprivation

downregulated gene set, is also in the top pathway list. This reveals that the

cells perceive lactic acidosis as an energy deficient status. Gene set A4 was gen-

erated by Manalo et al. (2005) from the examination of gene profile variation

in human pulmonary endothelial cells exposed in hypoxia or with hypoxia-

inducible factor 1 (HIF-1α) activated. It contains the downregulated genes

under either conditions. The activation of the genes involved in nutrient de-

privation and hypoxia signaling pathways under the condition of lactic acidosis

is consistent with the fact that nutrient starvation, hypoxia and lactic acidosis

are commonly coexisting/interacting conditions in tumor micro-environment.

• Pathways linked to cancer progression

PROPA identifies that lactic acidosis can shut down transcription of the genes

whose activation are associated with cancer progression. Several gene signatures

directly characterize wound healing, or are linked to certain biological processes

during wound healing. Wound healing is a program initiated by extravasated

blood coagulation and involving a complex pathway activities to restore tissue

integrity, including immune cell recruitment, fibroblast and epithelial cell prolif-

eration, cell migration and angiogenesis induction. The presence of deregulated
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wound healing resembles cancer invasion and metastasis, and is predictive of

breast, lung and gastric cancer metastasis (Chang et al. 2004).

A2 and A8 contain genes periodically expressed (cell-cycle dependent) and con-

sistently upregulated (not cell-cycle dependent), respectively, following expo-

sure to serum in human fibroblasts from a variety of anatomic sites; A3 contains

the genes commonly upregulated in these fibroblasts under serum stimulation.

A fibroblast is a type of cell that synthesizes and maintains the extracellular

matrix of many animal tissues and plays a critical role in wound healing. These

gene sets characterizes the underlying transcriptional activities of wound heal-

ing. Genes in A5 were found upregulated in myeloma cells when supplemented

with IL-6. Gene set A12 has a relatively large overlap with A5 (Croonquist et al.

2003). IL-6 is one of the key cytokines increasing endothelial cell proliferation

and strongly associated with tumor angiogenesis (Kishimoto 1989), a hallmark

of cancers that correlates with the risk of metastasis, recurrence and progression

in a variety of cancers such as lung, breast, espophagus and prostate cancers.

A10 contains genes with higher expression in less mature T cells than in more

mature T cells. The biological functions of these genes are mainly linked to

cell cycle regulation, cell cycle progression, mitosis, DNA replication, recombi-

nation or repair (Lee et al. 2004). The association between this gene set and

cell lactic acidosis response implicates the impact of lactic acidosis on immune

cells, which regulate angiogenesis, tissue homeostasis and wound healing. A

majority of the genes in these sets are downregulated in HMECs as response to

lactic acidosis (as shown in Figure 8.1(b), (c), (e), (h), (j) and (l)), indicatiing

that lactic acidosis may have a general inhibiting effect on the wound healing

program in cells.

• Pathways linked to cancer prognosis
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Three cancer prognosis signatures are found linked to lactic acidosis response in

HMECs. A6 includes genes identified by Rhodes et al. (2004) that are commonly

upregulated in undifferentiated cancer (correlating with poor prognosis) relative

to well-differentiated cancer (correlating with good prognosis). A11 includes

genes expressed higher in breast cancers with poor outcomes than in those

with good outcomes (van’t Veer et al. 2002). A9 includes genes upregulated

in gastric cancer cell lines resistant to doxorubicin, a chemotherapeutic agents,

compared to chemosensitive cell lines (Kang et al. 2004). Upregulation of these

sets of genes is related to aggressiveness in a variety of cancers. Here, these

genes appear to be generally downregulated in HMECs in presence of lactic

acidosis (Figure 8.3 (f), (i) and (k)).

In conclusion, from the transcriptional response to lactic acidosis in HMECs,

the pathway annotation by PROPA has identified pathways relevant to the common

biological processes and traits of cancer development, such as energy metabolism

modulation, progression through collaborative interactions between diverse cell types,

and clinical outcomes. The association between these pathways and cell lactic acidosis

response strongly suggests the molecular mechanism by which lactic acidosis, as an

important feature of tumor micro-enviroment, modulates cellular behaviors and links

with cancer phenotypes. The annotation results also show that the genes in these

pathways, which have been found induced during the biological processes involved

in cancer development, are mostly downregulated in HMECs under the condition of

lactic acidosis. This implies the function of lactic acidosis as a direct environmental

factor that suppresses cell malignant proliferation and growth, thereby potentially

leads to favorable clinical outcomes of cancers. Surprisingly, among the top significant

pathway gene sets identified in this analysis, no biologically interpretable pathways

contain large number of genes upregulated by lactic acidosis in this experiment. In
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other words, the genes with high probabilities of being positively correlated with

lactic acidosis status do not appear in any top pathway gene sets that can lead to

reasonable biological interpretation. The most plausible reason is that the pathway

gene sets included in the database do not yet adequately represent the range of

biological processes involved in the cellular response to lactic acidosis.

8.1.1 Pathway Signature of HMEC Lactic Acidosis Response

Twelve gene sets were generated based on the 12 top pathways identified in this

annotation analysis of HMEC response to lactic acidosis. Each of these gene sets

contains the true positive genes in the original pathway gene set inferred by PROPA

during the pathway annotation, and represents the intersection between the annotat-

ing pathway signature and HMEC lactic acidosis response signature. For example,

gene set A1 in the HMEC data pathway annotation result, as shown in Table 8.1, is

named “PENG GLUTAMINE DN” and represents the genes downregulated in the

cells under glutamine deprivation. I refine this gene set by selecting the genes with

pathway membership evidence greater than 20dB, i.e. the refined gene set

AHMEC,1 = {g : g ∈ A1, 10 log10BFg∈A1 > 20},

where BFg∈A1 is the Bayes factor of pathway membership computed as (4.7). I

name the pathway represented by this refined gene set AHMEC,1 as “HMEC LA DN:

PENG GLUTAMINE DN”. This represents a certain sub-module of transcriptional

activity in cell glutamine deprivation response that is linked to HMEC lactic acidosis

response. In the same way, the pathways are defined on the other corresponding

refined gene sets. These new pathway gene sets, listed in Table 8.2, compose a

“pathway signature” for the lactic acidosis response of HMECs. The member genes

of each pathway in this signature, as have been shown in the last section, are generally
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downregulated by lactic acidosis.

8.2 Lactic Acidosis Response Analysis of In Vivo

Gene Expression Programs of Breast Tumors

8.2.1 Signature Dissection and Enhancement

The breast tumor data set from Miller et al. (2005) are used to dissect the in vivo

lactic acidosis response. This data set includes 251 primary invasive breast tumor

samples. The expression profiles of more than 44,000 probe sets, corresponding to

∼18,000 unique genes, have been measured with the Affymetrix GeneChip U133 set

arrays.

Lucas et al. (2007) used the 200 signature genes of HMEC lactic acidosis re-

sponse as seeds for BFRM in a setting of evolutionary factor analysis over the Miller

expression data set. This analysis decomposes the lactic acidosis response signature

into a number of factors according to the latent expression patterns of the signature

genes, and recruits new genes from the full gene list to enhance the expression signal

in each factor and bring in new factors. Through such iteration, ten latent factors

linked to lactic acidosis response of the breast tumor samples were extracted from

gene expression profiles. These represent ten factor-phenotypes for PROPA analysis.

Meanwhile, the posterior probability of association between each gene and each factor

was estimated. Based on the regression of gene signature predefined in the HMEC

lactic acidosis data analysis, each tumor sample achieves a score of lactic acidosis

response. Among the ten factors derived from the lactic acidosis signature, some

are highly related to the lactic acidosis response variation across the tumor samples,

while the others are more likely to be subtler phenotypes linked to lactic acidosis

response identified through the evolutionary factor analysis.
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To demonstrate the application of PROPA in such type of analysis, I focus on

five factors and use PROPA to identify the pathway activities under each of them.

To be consistent with the description given by Lucas et al. (2007), I maintain their

original indices: factor 3, factor 2, factor 7, factor 9 and factor 6. In addition to the

956 gene sets from MSigDB and the nine curated oncogenic pathway signature gene

sets, the 12 signature pathways of HMEC lactic acidosis response, as listed in Table

8.2, are added in this annotation analysis.

8.2.2 Factor Pathway Annotation

Here I exhibit some interesting moleculer phenotypes of breast cancers identified by

PROPA that are potentially related to lactic acidosis cellular response. To show the

identification of each factor, I present the top 30 pathways ranked by PROPA without

using any cut-offs. In contrast to the earlier analyses, the goal of this annotation

analysis for each specific latent factor is to inversely identify a tumor factor phenotype

rather than explore the pathway activity under a known phenotype.

Sometimes, the biological themes represented by a factor are not easily recogniz-

able due to the limitation of sample size. Each tumor sample is a combination of

numerous entangled molecular phenotypes. Although dissecting this complexity is

exactly the purpose of the analysis, the tumor sample size is almost always limited.

One or two hundred sample is not large when dealing with the complexity of tu-

mor progression. Some strong/well distinguishable phenotypes, such as ER status in

breast cancers, are easier to detect, but some others are vague. One needs to examine

the top pathway gene sets, and see whether they are enriched for a certain biological

theme. In this sense, the phenotype identification relies on the evaluation of pathway

sets enrichment.
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Factor 3: Inverse lactic acidosis response factor

Table 8.3 lists the top 30 pathway gene sets associated with factor 3. As can be seen,

among the top pathways, HMEC lactic acidosis response signature pathways are

highly enriched. Totally eight of the 12 show up in the top 30 pathway list, while six

of them are in top eight. Figure 8.4 presents the association probability histograms of

each top pathway gene sets. The member genes of each signature pathways, as shown

in the previous section, are downregulated in HMECs in presence of lactic acidosis.

Here these genes concordantly have positive correlation with factor 3. Hence, factor 3

is believed to inversely represent the lactic acidosis response phenotype of the tumor

samples.

A set of gene sets in this top list – A15, A18, A19, A26 and A29 – are related to the

activation of the p21 pathway, either independent or dependent on the p53 tumor

supressor gene (Wu et al. 2002). p21 has been reported as a cell cycle regulator that

can mediate the p53-dependent cell cycle G1 and G2/M phase arrest and apoptosis

of tumor cells in response to stress stimuli. The expression of p21 gene is tightly

controlled by protein p53. The genes included in these gene sets are downregulated

following transduction of p21 in ovarian cancer cells, but in general are positively

correlated with factor 3. It may implies a positive correlation between tumor lactic

acidosis response and cell apoptosis.

Factor 2: ER/good prognosis factor

Figure 8.5 shows the association probability distributions of the pathway gene sets

that are most associated with factor 2 (Table 8.4) and can be biologically interpreted.

Several pathway gene sets predefined by van’t Veer et al. (2002) are identified. These

gene sets have been mentioned in Section 7.2 in pathway annotation for breast tumor

ER phenotype, the status of which is highly associated with breast cancer outcomes.
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The top two gene sets A1 and A2 contain genes lower-expressed and higher-expressed,

respectively, in ER positive tumors vs. ER negative tumors. A11 and A18 contain

genes lower-expressed and higher-expressed, respectively, in breast tumors with vs.

without BRCA1 mutants, which are highly associated with ER phenotype. The

expression of genes in A14 and A27 are negatively and positively correlated with

breast cancer good prognosis, respectively. Another prognosis-related gene set A17

defined by Rhodes et al. (2004) contains genes higher-expressed in undifferentiated

cancers vs. well-differentiated cancers. The significant association with these gene

sets gives substantial evidence that factor 2 is positively linked to breast tumor ER

phenotype and good prognosis.

Some oncogenic pathway gene sets are identified being associated with factor 2,

including Ras, p110-α, E2F3, Myc and β-catenin pathways. Although Ras muta-

tions are infrequent in breast cancers (less than 5%), considerable evidence suggests

that Ras pathways are deregulated in breast cancer cells (Clark and Der 1995). It

has been reported that gene Ha-ras, the normal prototype of Ras, is over-expressed

in 50% breast cancers, contributing to tumorigenesis. Pethe and Shekhar (1999)

have shown evidence of the existence of estrogen-mediated Ha-ras upregulation in

breast tumor cells. p110-α (or PI3K) activity has been reported to be associated

with the activation of ER pathway in breast cancers (Fry 2001; Baldi et al. 1986;

Simoncini et al. 2000; Ahmad et al. 1999; Razandi M 2000; Campbell et al. 2001).

Myc pathway controls cell proliferation and cell fate decisions. Sears et al. (2000)

have demonstrated that Ras can enhance the accumulation of Myc activity by stabi-

lizing a normally short-lived Myc protein. Leone et al. (2001) have shown that the

Myc transcription factor induces transcription of the E2F3 gene, a member of E2F

transcription factor family, whose activities are an essential component of the Myc

pathway. The concurrence of these oncogenic pathways in the ER factor may be due
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to such interactions. Further examination of the correlation (positive or negative)

between these oncogenic pathway genes and the factor will give the confirmation of

whether these pathways are activated or inactivated in the factor.

The identification of this factor links tumor lactic acidosis response to ER status,

cancer prognosis as well as oncogenic pathways. It has been mentioned that onco-

genic pathways may play a role in tumor glycolytic phenotype formation, and it is

also possible that tumor cells response to lactic acidosis through evolution includ-

ing oncogenic mutation. These oncogenic mutation then affect the ER pathway. Of

course, it is also possible that lactic acidosis directly perturbs the ER pathway, which

can be a testable biological hypothesis.

Factor 7 and factor 9: Immune function factors

Factor 7 and factor 9 are enriched for immune function pathway gene sets (Table

8.5 & 8.6, Figure 8.6 & 8.7). For example, the top gene set in both factors contains

immune function genes relevant to cancer development (Brentani et al. 2003); A2 in

factor 7 is a collection of genes whose upregulation are associated with transplanted

kidney rejection (Flechner et al. 2004); A6 in factor 7 or A4 in factor 9 contains

cytolytic effector genes induced during antigen activation of CD8+ T cells (Goldrath

et al. 2004). A majority of pathway gene sets in these two factors are related to

immune activities in many different contexts. Generally, the over-expression of the

genes in those immune activation pathways are negatively correlated with factor 7

and factor 9, suggesting that these two factors reflect inhibitory immune function

status of the tumor samples.

The identification of the factors related to immune function inhibition implies the

connection between tumor lactic acidosis response and immune activity perturbation,

a key process in cancer development. A recent study by Fischer et al. (2007) has
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provided evidence for the inhibitory effect of lactic acid on tumor-reactive T cell

proliferation and cytokine production. The cytotoxtic/immune activity of T cells rely

on glycolysis and efficient secretion of lactic acid. The increase of extracellular lactic

acid concentration diminishes the pH gradient between cytoplasmic and extracellular

environment and blocks lactic export in T cells, thereby results in impaired immune

function.

Factor 6: TGF-β induced EMT factor

Factor 6 is enriched for pathways related to epithelial-to-mesenchymal transitions

(EMTs), especially, transforming growth factor-β (TGF-β) pathways (Table 8.7, Fig-

ure 8.8). EMT is a process involved in wound healing whereby fully differentiated

epithelial cells undergo transition to a mesenchymal phenotype giving rise to fibrob-

lasts and myofibroblasts (Vincent-Salomon and Thiery 2003). TGF-β is a family of

multifunctional cytokines that plays an important role in the regulation of epithe-

lial cell growth, differentiation and apoptosis. Evidence show that TGF-β inhibits

epithelial cell growth in early stage of breast tumorigenesis, and induces EMT in

a later stage of carcinogenesis (Knabbe et al. 1987; Colletta et al. 1991; Dannecker

et al. 1996; Rodriguez et al. 2002; Zavadil et al. 2004). A19 is a upregulated signature

gene set of EMT in tumor regression (Jechlinger et al. 2003). A1, A4, A10, A11, A18

and A30 together include genes induced by TGF-β in skin fibroblasts (Verrecchia

et al. 2001). These gene signatures in general are positively correlated with factor 6,

suggesting that factor 6 may correspond to TGF-β induced EMT phenotype in tu-

mors. The factor analysis thus links together the tumor lactic acidosis response and

TGF-β/EMT phenotype, a connection which has not been made before. It provides

a foundation for a novel and testable hypothesis that lactic acidosis has an effect

on breast tumor EMT through changing the expression of TGF-β. Moreover, it is

important to note that hypoxia has been shown to induce TGF-β (Falanga et al.
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2002), trigger the EMT (Manotham et al. 2004), and link to poor clinical outcomes

(Chi et al. 2006). Hence, the regulation effect of lactic acidosis on TGF-β and EMT,

if can be validated, may consequently provides an explanation for its link with cancer

prognosis.

8.2.3 Summary

This tumor analysis takes advantage of the heterogeneity in a large set of tumor

samples to dissect the pathway activities involved in cancerous cellular response to a

biological intervention. Each factor derived from this analysis represents a molecular

phenotype that may be relevant to the intervention. PROPA plays a central role

in identifying these molecular phenotypes. In this lactic acidosis response dissection

example, it is found that lactic acidosis may be a signal to breast cancer ER, immune,

and TGF-β induced EMT pathways. The ER pathway is a prominent phenotype of

breast cancers that involves complex pathway activities. This analysis connects the

ER pathway activation with some oncogenic pathway through the lactic acidosis

response signature. The detection of immune function pathway provides evidence

for the role of lactic acidosis in immune cell function perturbation during cancer

development. A more intriguing finding of the TGF-β induced EMT pathway forms

a more concrete hypothesis that can be tested through experimental investigation.

This study demonstrates how to define a “pathway signature” for a phenotype

through gene set refinement, and how to use this pathway signature to identify the

molecular phenotype represented by a derived factor. A pathway signature is a set

of pathway gene sets. If one believes each biological phenotype can be represented

by a specific set of pathways, then a unknown molecular phenotype can be identified

through the evaluation of pathway set enrichment. Inspired by pathway annotation,

I call this approach phenotype annotation. PROPA ranks all the pathways in the
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database according to their posterior probabilities of association with a factor. By

using a non-parametric method similar to those for gene set-based pathway anno-

tation, one can compute the enrichment of the pathway set representing a known

phenotype, thereby identifying the unknown phenotype and its association with the

known phenotypes. Although not quantitively, this approach has been used to iden-

tify the latent phenotypes in the tumor samples.

This application also demonstrates how PROPA works with BFRM to dissect the

complexity of tumor phenotype in tumorigenesis studies. PROPA is based on likeli-

hood evaluation, and can directly compare the phenotype association of all pathways

based on gene-phenotype association. In contrast, GSEA is limited in such applica-

tions – it depends on sample permutation to generate null distribution and so loses

power when sample size is small. This limitation is shown in the pathway annotation

for the HMEC lactic acidosis response. The sample size is 12, hence, the annotation

output is generally informative. Moreover, GSEA is not applicable in the multiple

regression setting in the tumor lactic acidosis response decomposition by BFRM.
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Chapter 9

Concluding Remarks and Future

Directions

This dissertation presents a methodology for studying cancer signaling pathways us-

ing genome-wide gene expression profiles. The major contribution is innovative statis-

tical modeling and computational methodology for the pathway annotation problem

from a Bayesian perspective. This is the first time that understanding of data and

knowledge from the biological perspective has been incorporated into formal sta-

tistical modeling of the uncertainty in pathway analysis. The development of this

methodology involves advanced high-dimensional computation for biological model-

ing. Analysis of the models uses MCMC methods and novel variational methods

for statistical computation. My work generates innovation in these areas of statisti-

cal methodology as well as in the cancer genomics applications. The application of

probabilistic pathway annotation is demonstrated in a series of examples and stud-

ies, including a study of the cellular response to a cancerous micro-environment.

The work represents a successful combination of advanced statistical modeling and

computation with modern cancer biology research.

The method is currently used in many other ongoing cancer genomics research

projects, one of which focuses on oncogenic signature dissection in different type of

tumors and cancer cell lines. Although it is developed and discussed in the context

of cancer research, this method can be applied to any other biological studies based

on genome-wide gene expression profiling data.

Technically, the methodology developed in this dissertation can be extended in

terms of statistical modeling, biological applications as well as statistical computa-
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tion.

Model extension

One of the key idea in PROPA is the modeling of knowledge uncertainty. In the

current model, all the gene sets presumably have the same accuracy (false positive

and false negative rate) as the representation of corresponding pathways. In fact, the

existing pathway gene set databases contain heterogeneous noise, either due to the

experimental and statistical defining procedures or the database curation processes.

This generally reduces the reliability of analysis with any pathway annotation meth-

ods. Apparently, improving database quality will solve this problem. An alternative

solution may be derived from my method through the modeling of the uncertainty

related to the pathway gene set databases. The corresponding model refinement in-

volves the modeling of the prior gene pathway membership probabilities βg (refer to

Section 3.3).

In the current model, the βg á priori depend on the hyper-parameter rg, which

have two states, rA and rB, determined by the relationship between g and A. The

most straightforward extension is to allow more states of rg to incorporate additional

information on the relationship between genes and true pathway A. As a simple and

practical example, two gene sets A1 and A2 in a database – either defined via different

experiments or generated by different statistical procedures – represent the same

pathway A. This uncertainty in knowledge can simply be modeled by introducing an

extra states of rg. Explicitly,

(βg|g ∈ A1, g ∈ A2,F = A) ∼ Be(βg; rA),

(βg|g /∈ A1, g /∈ A2,F = A) ∼ Be(βg; rB),

(βg|g ∈ A1, g /∈ A2,F = A) ∼ Be(βg; rC),

(βg|g /∈ A1, g ∈ A2,F = A) ∼ Be(βg; rC),
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where rC is the prior mean of βg for g in one of A1 and A2, and rA > rC > rB,

representing deterministic á priori belief in gene pathway membership according to

the voting by these two reference gene sets. Such an extension does not increase the

complexity of the PROPA model. The computational methods for model inference

and comparison remain the same.

More sophisticated extensions would involve specifying priors of rg that incorpo-

rate general uncertainty and the factors affecting the thinking about the accuracy of

reference gene sets. A direct extension is to give rg the priors in some general forms,

such as beta distributions, that allow rg to vary in specific ranges. Furthermore, if the

influencing factors can be identified, the rg can be modeled with priors parameterized

with these factors. The size of a reference gene set, which can be associated with

the biological characteristics of the true pathway as well as the defining process, may

be a potential factor to consider. Importantly, the posterior estimates of rg in such

extended models can be instrumental in refining the understanding of the database

and facilitate further analyses through a Bayesian procedure. However, such model

refinement will involve more complicated and intensive computation that requires

further study and methodology development.

There are also some methodological issues related to the specification of model

priors across the pathway spaces that have only been partially studied in my work.

So far I have been treating all the pathways represented by corresponding reference

gene sets as á priori equally possible to be associated with a phenotype. How to

link this prior specification to biological thinking about pathways and databases is

worth further research efforts and will shed light on the statistical modeling for other

similar type of knowledge-based analysis approaches and application contexts.
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Gene set refinement

One of the major components of my pathway annotation methodology is the infer-

ence on gene pathway membership. In Chapter 2, I have discussed the significance

of this membership inference for the studies of cancer signaling pathways, further

demonstrated with the breast tumor ErbB2 pathway analysis in Chapter 7 and lactic

acidosis response pathway dissection analysis in Chapter 8. This inference gener-

ates a formal statistical refining process for pathway gene sets that aims to increase

pathway specificity, identify new biomarkers or correct defining errors in gene sets.

With such a refining process, pathway annotation can be applied reciprocally as an

in silico approach to defining new context-specific pathway gene sets. Such gene sets,

combining the original and current biological contexts, are more informative, and can

be added into pathway databases to facilitate future studies.

Phenotype annotation

An important application area of pathway annotation is to identify the biological

themes related to substructures of an experimental phenotype. This application is

essential to the analyses of the gene expression data sets containing heterogeneous

cancer phenotypes. Such data sets are enriched in information on cancer devel-

opmental mechanisms and usually depend on unsupervised learning approaches to

decompose the phenotype complexity. A major component of this type of study

is the identification of the molecular phenotypes emerging from the decomposition.

Chapter 8 has demonstrated this phenotype identification analysis using the pathway

annotation approach combined with BFRM. In this example, I identified some bio-

logical processes or cancer phenotypes in the latent factors of gene expression profiles

by observing the annotation pathways. As has been mentioned, it is potentially valu-

able to formalize this phenotype annotation with a quantitative “pathway enrichment
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analysis”. My pathway annotation method has already formed a foundation for this

analysis by ranking the pathways from the database according to their uncertainty of

association with the unidentified molecular phenotype. This ranked list of pathways

can easily be used to test the enrichment of pathway sets that represent certain bio-

logical themes. The current difficulty lies in the lack of such pathway sets databases.

The preliminary study in Chapter 8 presented the possibility of this approach. In-

tensive research is needed to address the pathway sets definition problem to bring

this analysis approach into reality.

Application of Monte Carlo variational method

The Monte Carlo variational method developed in this dissertation successfully solves

the computational problem in probabilistic pathway annotation. The innovative

double-sided bounding technique improves the approximation of marginal likelihoods

in Bayesian model comparisons. Intriguingly, this new method is generally applica-

ble in models analyzed using MCMC. Particularly, the framework of this approach

demonstrated in PROPA can be directly generalized for estimation of marginal like-

lihoods in the finite mixture models. This type of statistical models are frequently

employed in analysis of many types of biological data, such as gene expression, flow

cytometry data, mass spectrum and biological images, showing considerable promise

and utility of this new variational method in computational biology.

Software

PROPA is implemented in MATLAB. The major functional modules include path-

way gene set database curation, pre-processing of gene-phenotype association prob-

abilities, pathway annotation, gene set refinement and result presentation. Future

work will involve the development of a software package in C++, integrating these
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functional modules, and providing a higher-speed, user-friendly, and web-available

analysis platform for use of the method by the research community.
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