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Abstract

Improving the understanding of the complexity of molecular pathways underlying
cancer phenotypes is essential to uncovering the dynamic processes of cancer devel-
opment. As part of this, linking quantified, experimentally defined gene expression
signatures with known biological pathway gene sets is a key challenge. This dis-
sertation presents a novel Bayesian statistical approach to this pathway annotation

problem.

In my approach, a formal probabilistic model delivers probabilities over pathways
for an experimental signature, thus allowing a quantitative assessment and ranking of
pathways putatively linked to the experimental phenotype. The fundamental advan-
tage of this approach is formal modeling of the uncertainty in the pathway analysis.
Biological understanding of the data and knowledge are incorporated in the model.
In addition, coherent inference on uncertainties about gene pathway membership
highlights a key benefit of this model-based approach.

Technically, this research involves advanced statistical modeling and high-dimen-
sional computation. Analysis of the models uses Markov chain Monte Carlo tech-
niques and variational methods for statistical computation. To evaluate model ev-
idence, a critical component of pathway analysis, I propose an innovative Monte
Carlo variational method that provides optimal upper and lower bounds on model
evidence. This method, motivated and developed by genomic pathway analysis, is
in fact general and represents an advance in statistical model-based computation of
much broader utility.

The effectiveness and robustness of my approach are tested through simulation
studies as well as analyses of real data sets, including “proof-of-principle” pathway an-

notation for breast tumor estrogen-receptor and ErbB2 phenotypes. A study of path-

v



way activities underlying the cellular response to lactic acidosis micro-environment
in breast tumors involves the analyses of both in vitro and in vivo data, and demon-
strates the application of the method in decomposing the complexity of gene expression-
based predictions about interacting pathway activation in this cancer context.

In conclusion, this dissertation generates innovation in statistical methodology
as well as in cancer genomics applications. Current and future research plans and
directions include broad opportunities for application and evaluation in cancer ge-
nomics studies, as well as in other areas of genomics, and follow-on efficient computer

implementations for use of the method by the research community.
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Chapter 1

Introduction

Substantial evidence indicates that most cancers are derived from sequential genetic
alterations that deregulate cellular growth through specific cellular signaling path-
ways. Although all cancer cells share common features of malignant growth associated
with some common biological pathway activities, different categories and subcate-
gories of cancers have their own specific mechanisms. Improving the understanding
of the complexity of molecular pathways underlying cancer phenotypes is essential
to uncovering the dynamic processes of cancer development and identifying cancer

prognostic factors and therapeutic targets.

In cancer research, genome-wide gene expression profiles are generated for specific
cancer-related phenotypes in experiments either on normal tissues or tumors, such
as cancer micro-environments, oncogene perturbation and cancer subtypes. Iden-
tifying pathway activities associated with certain cancer-related phenotypes is the
basic goal, addressed by capturing the characteristics of cancer cell behavior on the
transcriptional level. Moreover, due to aggregated efforts in cancer genomic research,
much genome-wide gene expression data on tumor samples from different sources
is available and of great value for studies of tumor heterogeneity. Many statistical
methods have been developed to analyze such cancer profiling data. Of key interest
here is Bayesian factor regression modeling (Carvalho et al. 2007; Lucas et al. 2006)
that provides a comprehensive tool for cancer signature identification and molecular

phenotype dissection using expression data.

Pathway databases have collected information on cancer signaling pathways de-

rived from biological molecular interaction studies. Besides these, many cancer-



oriented gene expression profiling experiments, such as oncogene or tumor suppressor
gene alteration and growth factor stimulation, have been conducted on cell lines and
animal model organisms. The analyses of these gene expression profiles have pro-
vided gene expression signatures characterizing or predictive of certain biological
phenotypes. Presumably a set of signature genes contains genes that are likely to be
participants in underlying biological processes — in other words, members of underly-
ing biological pathways. Such existing pathway gene sets and signatures can be used

as references for pathway annotation in new contexts.

Pathway annotation involves borrowing knowledge from the signaling pathway
databases to investigate pathway activities involved in a current experimental con-
text. Here, linking quantified, experimentally defined gene expression signatures with
known biological pathway gene sets is a key challenge. A necessary step following an-
notation is to reveal the specificity of the identified pathways in the current biological
context. This is the key to imputing the connectivity among pathway modules as well
as to identifying biomarkers and therapeutic targets. None of the existing pathway
annotation methods were developed based on modeling of the quantified association
between gene expression and biological phenotypes. As a result, biological under-
standing of the data and pathways are really not incorporated in the methods; nor
is the context-based pathway specificity problem typically addressed. The existing
methods are reviewed in Chapter 2 following the introduction of pathway-oriented
cancer mechanism studies and Bayesian factor regression modeling.

Motivated by these requirements in practical research, this thesis develops a
Bayesian statistical approach, called probabilistic pathway annotation (PROPA), for
the general problem of genome-wide expression-based pathway annotation. This in-
volves a model-based approach to matching experimental signatures of structure or

outcomes in gene expression to multiple biological pathway gene sets from curated



databases. This formal probabilistic model delivers probabilities over pathways for
each experimental signature, thus allowing for a quantitative assessment and rank-
ing of pathways putatively linked to the experimental phenotype. The fundamental
advantage of this approach is formal modeling of the uncertainty in the pathway
analysis. For example, accuracy and relevance of genes in d priori defined sets can
easily be incorporated, and inference on uncertainty about gene set membership is
transparent. In Chapter 3, the statistical model for this approach is introduced and

described in detail.

This approach involves Bayesian inference and model comparisons. A pathway
gene set is refined through inference on pathway membership probabilities; multiple
pathways are compared in terms of their association with the studied phenotype
through model comparisons. Both tasks rely on posterior simulation for solutions.
Chapter 4 discusses the Markov chain Monte Carlo method for the PROPA model,
and demonstrates it in a simulation study. Inference on gene pathway membership

is discussed in the simulation example.

Multiple pathway comparisons, formulated as a Bayesian model comparison prob-
lem in PROPA, involve the evaluation of marginal likelihoods or model evidence —
this generates difficult integration problems as is encountered in other areas. The
high-dimensionality of the genome-wide gene expression data causes intractability in
both the analytical and numerical evaluation of the integrals. This core computa-
tional biology and statistical problem is addressed in Chapter 5 with a study of the
characteristics of joint probability density functions in the PROPA model. Numeri-
cal integration methods for marginal likelihood approximation, including quadrature,
Laplace approximation, importance sampling and posterior sampling integration, are
reviewed and evaluated. These methods either fail or are very hard to use in this

situation due to the difficulty caused by the high dimension. Some of these methods



are tested in a simple simulation study that aims to show PROPA analysis as effective

for pathway comparisons.

To solve the marginal likelihood evaluation problem, I propose a novel Monte
Carlo variational approximation method, which involves innovation in statistical
methodology generally as well as an effective method for PROPA. Traditional mean-
field variational methods, which use conditionally optimal lower bounds to approx-
imate the marginal likelihoods, have desirable mathematical forms that avoid the
numerical problems caused by high-dimensional data. Inspired by this idea, I de-
rive a general optimization method based on Monte Carlo simulation and stochastic
approximation to achieve a conditionally optimal lower bound on the marginal likeli-
hood. More importantly, I propose a novel method that combines posterior simulation
and mean-field variational approximation, providing a conditionally optimal upper
bound to the marginal likelihood. This lower and upper bounding strategy success-
fully solves the statistical computation problem in PROPA. In addition, this gener-
ates advances in the computation of marginal probabilities generally, a key problem
in Bayesian statistical inference, by implementing double-sided bounding. In Chapter

6, this method is discussed in detail and demonstrated in simulation studies.

In Chapter 7, two examples on real data sets are presented to demonstrate the ef-
fectiveness and robustness of PROPA. In the first example, pathway activities related
to breast tumor estrogen-receptor status are analyzed using PROPA. The comparison
of this analysis with that given by gene set enrichment analysis (GSEA) (a pathway
annotation method reviewed in Chapter 2) shows the effectiveness, and some of the
unique features and benefits, of PROPA. The robustness of the PROPA model is stud-
ied through observing the change of annotation results caused by variation in model
hyper-parameters and data distributions. The effectiveness of PROPA is then also

demonstrated in the analysis of pathway activities underlying breast tumor ErbB2



status, another important phenotype in breast cancer. This example also highlights
inference on gene pathway membership probabilities, a further key feature and benefit

of the new model framework.

Chapter 8 presents an application of PROPA in studies of cancer developmental
mechanisms. A main area of applied interest is in the study of pathway activities
associated with lactic acidosis, a key micro-environmental factor in solid tumors.
Pathway annotation analyses of lactic acidosis status in human mammary epithelial
cells and breast tumor cells identify pathways elucidating the nature of lactic acidosis
as a potential signal for cells as well as linkages to key risk signatures in breast cancers.
Through this study, I demonstrate that PROPA combined with the gene signature
dissection and enhancement methodology, shows considerable promise and utility in
cancer genomic studies.

Current and potential future research directions are discussed in Chapter 9.

The research work in this dissertation is implemented in MATLAB and gener-
ates a software package named PROPA. The major functional components includes
gene set curation, gene-phenotype data pre-processing, pathway annotation, gene
set refinement and result presentation. This software package will be available at

http://www.stat.duke.edu/.



Chapter 2

Pathway Annotation in Cancer Biology

Cancer begins with genetic mutations, which cause signal cascades leading to the
stimulation of cell proliferation or inhibition of cell-cycle arrest, and suppression of
apoptosis (Evan and Vousden 2001; Kufe et al. 2006; Hanahan and Weinberg 2000;
Jones and Baylin 2002; Esteller and Herman 2002). During cancer development,
sequential genetic alterations occur as both results and driving forces of cancerous
signaling and cell evolution pressured by the extracellular environment. Therefore,
the key to understanding the mechanisms of cancer development lies in the investi-
gation of cancer signaling pathways as the interconnected modules in cancer cellular
circuitry. In this chapter, I first justify the pathway approach as reasonable and
feasible to cancer mechanism investigation. An introduction is given to the Bayesian
factor regression modeling methodology, a powerful tool for cancer phenotype dissec-
tion based on genome-wide gene expression profiles that forms a major context for
development of my pathway annotation analysis method. Then, I motivate model-

based approaches through a review of existing pathway annotation methods.

2.1 Understanding Cancer Through Pathways

Cancer is the complex result of multiple sequential genetic mutations. Very few can-
cer types are the results of single gene mutation, a typical example of which is the
inherited eye tumor caused by a loss of function of retinoblastoma gene (Rb)(Knudson
1971; Friend et al. 1986; Cavenee et al. 1983). Development of the vast majority of
cancer types involves more than one genetic mutation and presents as multi-step

events. Vogelstein and Kinzler (1993) proposed a progression model for colorectal
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neoplasia. In this model, colon cancer development was hypothesized as a step-
wise process, including abnormal initiation in colonic epithelium, propagation and
local aggregation of the abnormality to form adenomatous polyps, and increase of
malignancy as infiltrating adenocarcinoma. FEach step involves different contribut-
ing genetic mutations. This multi-step and multi-mutant nature of cancer was also
demonstrated by Hahn et al. (1999) in their work on tumorigenic conversion of normal

human epithelial fibroblast cells.

Effects of genetic mutations differ in different stages of cancer progression, making
the assessment of the effects possibly incomplete. Generally, the common mechanism
under cancer progression is that the activation of oncogenes, inactivation of tumor
suppressor genes and malfunction of stability genes result in the deregulation in
cellular signaling pathways controlling cell proliferation and apoptosis (Vogelstein
and Kinzler 2004). Despite the fact that tumors seem to be associated with the
expression of oncogenes (Giuriato et al.,2004), some oncogene downstream effectors
are more important than the oncogenes themselves for maintaining tumor growth
once the tumors are established (realistically, tumors are usually observed in this
stage). As an example, Lim and Counter (2005) demonstrated that the PI3K/ATK
pathway, one of the residual activities of the upstream Ras oncogene, is sufficient for

tumor maintenance in human cells.

The number of tumorigenic gene mutations appears to be much larger than what
is currently known; meanwhile, mutant gene sets of different tumor types have few
overlaps, and even the mutations within a single histological tumor type are highly
heterogeneous. Sjoblom et al. (2006) presented the evidence for this in their recent
study of coding sequences consensus in human breast and colorectal cancers. The
diversity and heterogeneity of tumorigenic mutations make it difficult to predict the

behavior, prognosis, or therapy response of tumors based on a single set of gene



mutations.

It has been indicated that different genetic mutations may have similar functions
and play equivalent roles in cancer cell signaling pathways (Vogelstein and Kinzler
2004). Sjoblom et al. (2006) suggested that mutant genes might possibly be grouped
into a limited number of pathways. Hence, exploring signaling pathway activities
under cancer phenotypes to decompose the relationship between genetic mutations
and cancer development may be a way to probe the complex circuitry of cancer cells

and advance the understanding of cancer development.

High-throughput gene expression technology makes comprehensive genomic anal-
yses of human cancers possible (Schena et al. 1995). Through the observation of
genome-scale gene expression profiles, genes are linked in a shared phenotype which
reflects specific underlying biological processes or pathway modules. Genes expressed
at higher or lower levels in cancerous cells with a certain phenotype are involved in the
biological processes, and are components of the signaling pathways contributing to
this phenotype. Many studies have shown that such pathway gene sets themselves, in
absence of interaction information, are able to distinguish cancer phenotypes (West
et al. 2001; van’t Veer et al. 2002; Bild et al. 2006). This provides fundamental
support for pathway annotation approaches to cancer research using genome-wide
gene expression data. Many statistical methods have been developed to identify dif-
ferentially expressed genes. I focus on Bayesian methodology that has the ability
to identify genes associated with explicit phenotypes and dissect complex molecu-
lar phenotypes in heterogeneous tumor samples to facilitate the studies of cancer

development.



2.2 Bayesian Factor Regression Modeling

Bayesian factor regression modeling (BFRM), a methodology developed for analy-
sis of high-dimensional data, has been applied in cancer biology studies based on
genome-wide gene expression profiles (West 2003; Lucas et al. 2006; Carvalho et al.
2007; Lucas et al. 2007; Chen et al. 2007). This methodology considers sparsity, a
key concept in practical high-dimensional data analysis, in a generalized multivari-
ate regression framework, and combines it with ANOVA and latent factor modeling
to correct experimental artifacts, dissect transcriptional responses to biological per-
turbations and explore the underlying gene expression patterns predictive of cancer
phenotypes. Such multiple tasks are either fulfilled separately or combined in one
analysis according to the goals of biological studies. Without covering the thorough
details and complete framework, I briefly introduce BFRM with a focus on the form

directly linked to the topic of pathway annotation for tumorigenesis studies.

The fundamental framework of BFRM is modeling gene expression as a linear
combination of a number of factors with biological meaning, either explicit or yet to
be identified. For each of n tissue samples, observations are made on the expression
levels of p genes. The expression of gene g in sample 7 is denoted by x4, and modeled

as a conditionally Gaussian random variable

r k
Tgi =t + O Bajhii + > agidii+ Ve, (2.1)

j=1 j=1
where p, is the expression baseline of gene g across all samples, and v, ; is the Gaussian
error term representing the intrinsic variation or measurement error. The {hjyi}jzlzr
and {\;;}j=1.x combined by corresponding loadings {3, ,};=1. and {ay;}j=1.x break-
down and interpret the variation of x,; across samples. The {h;;};=1. are known

design factors for sample i. They can be any known characteristics of the sam-



ples obtained through predefinition or measurement, such as experimental groups or
treatment variables, sample clinical features, expression level of a certain protein or
experiment artifacts. The {\;;},;—1. are unknown latent factors for sample i to be
inferred through model fitting. These latent factors are regarded as representatives
of underlying biological processes or sub-phenotypic structures that impact on the
expression of multiple genes in potentially complex, interacting ways.

Sparsity is an important concept in modeling and variable selection problem in
high-dimensional problems. Based on the fact that most biological phenotypes only
involve the transcriptional response of a relatively small number of genes in a genome,
this concept has been introduced in genomics and successfully applied in microar-
ray gene expression analysis (West 2003; Seo et al. 2007). The regression model
coupled with a novel sparsity modeling idea is implemented in a Bayesian frame-
work by BFRM, and becomes remarkably effective in identifying bio-markers and
pathway gene signatures from the data contaminated by experimental artifacts and
non-biological biases (Lucas et al. 2006). The sparsity concept is embedded in the

model by imposing “variable selection” prior distributions on regression parameters

{8y, }g=1:p,j=1:r» namely,
p(ﬁgd) =(1- Wg,j)(so(ﬁg,j) + ngjN(ﬂg,ﬁ 0, Tj)a (2.2)

which means that 3, ; either is 0 or has a normal prior with variance 7;. 7, ;, the
probability that 3, ; has a normal distribution, is gene-specific and assigned an hi-
erarchical shrinkage prior that heavily favors 0 probability. This sparsity modeling,
benefitting from such hierarchical shrinkage priors, effectively reduces the false dis-
covery rates and enhances the ability to isolate significant gene-variable effects (Lucas

et al. 2006).

Bayesian analysis leads to an estimate of the posterior probability that 3, ; is
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non-zero. I use the notation 7 ; for this estimate, a probabilistic assessment of the
level of expression of gene g being associated with factor j. Here I refer to 7} ; as the
association probability of gene g with phenotype j. Typically, only a relative small
number of genes will have large association probabilities, while the vast majority
will have very small or 0 probabilities. Similar sparsity ideas apply to the latent
factor loadings {ay ;}g=1pj=1:. As one of the products of the BFRM analysis, the
association probability matrix

* *
e 7 Ti(rtk)

(2.3)

[755] px(r+k)

T Tk
contains key summary information of the gene-phenotype associations implied by the
gene expression profiling data set. Each column of the matrix is a probabilistically

indexed gene list.

Without considering latent structure of gene expression profiles, this model be-

comes a multivariate regression model

T
Tgi = Mg + Z By,ili + Vi (24)
j=1
For all g = 1 : p, statistical inference on regression parameters {3, ;};1., conveys the
expression predictability of each gene on the regressor variables. Instead of predicting

gene expression, such an analysis often aims to identify genes significantly related to

*

design factors, and the probabilities 7

; are key to this goal.

Latent factor modeling added to this regression aims to identify underlying pat-
terns having biological significance and contributing to the gene expression variation
not explained by design factors (Carvalho et al. 2007). The association between each

gene g € {1 : p} and each of the biological phenotypes represented by these latent fac-
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tors are indicated through the inference on the loadings {ay, ;};=1.4. One application
of this latent factor model is to decompose the expression patterns linked to a phe-
notype or intervention. In contrast to conventional gene clustering analysis, rather
than segregating genes into individual groups this analysis emphasizes connections
among the factors reflected in those genes shared by different factors, and infers the
structure by estimating the factors over samples as well as the gene-factor loadings.
If each factor is assumed to represent the transcriptional read-out of one or more
“modules” in a gene regulatory network, the intersecting gene subsets can be viewed
as the nodes connecting the modules. This cross-talk among the factors potentially
provides interaction information on signaling pathways. Lucas et al. (2006) gave an
example on this type of application, in which the pathway activities related to breast

tumor estrogen-receptor and ErbB2 expression variation are dissected.

A strength of this latent factor modeling approach lies in its ability to borrow
information from existing studies to explore the pathway activities in different and
often more complicated contexts, called signature dissection and enhancement (Lucas
et al. 2007). An analysis of this type of application usually starts with a group of
genes predefined as a signature of a certain interesting biological context, for example,
Rb/E2F pathway genes, genes differentially expressed in gastric cancer cell lines
resistant to doxorubicin, or human orthologous genes mapped from certain mouse
oncogenic pathway genes. Through an evolutionary stochastic model search method,
more genes and latent factors are iteratively added to the model. The added genes
strengthen the evolution of the latent factors, while the added factors help to improve
the explanation of the expression variation in the genes. Such a model fitting a process
not only decomposes the biological event projected from the initial set of signature
genes, but also extends the focus to other pathway activities potentially linked to it.

This cross-study strategy based on BFRM has been applied to analyze lactic acidosis
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response in breast tumors (Lucas et al. 2007; Chen et al. 2007), among other recent

and current studies.

Generally, a gene expression profile analysis in BFRM provides an information-
rich output including the measures of the association between genes and biological
phenotypes, sub-phenotypes represented by latent factors, as well as the interactions
between the phenotypes. Here is an example of a typical BFRM analysis. The
microarray readings are collected from 295 breast cancer tumors exhibiting diverse
clinical phenotypes. The factor analysis of the data by BFRM includes four clinical
phenotypes as covariates (estrogen-recptor status, lymph-node status, progestoron-
receptor status and ErbB2 status), and outputs 10 latent factors whose profiles are
shown as a heatmap in Figure 2.1(a). The skeleton plot in Figure 2.1(b) illustrates
the association between each factor — including the four clinical and 10 latent factors
— and 250 genes, each of which is differentially expressed with at least one of the 14
factors in the sense that the association probability m; ; is greater then 0.75. The
other genes not shown in the figure have 0 or small association probabilities with all
factors. As can be seen, the factors are distinguished from each other in terms of the
associated gene sets. Meanwhile, each factor is linked to one or more other factors
through cross-talk introduced by common sets of associated genes.

In cancer research, estimated factor “phenotypes” and the association proba-
bilities provide a basis for developing hypotheses in tumorigenesis studies, and are
further utilized to predict cancer phenotypes such as cancer sub-types, development
stage, survival and therapy response (Carvalho et al. 2007; Lucas et al. 2007). An
essential work that builds a bridge between the statistical analysis results and the
applications is the identification of potential or putative biological processes or gene
pathway activities underlying the factors as phenotypes. For each factor phenotype,

the underlying pathway activity information is embedded in the relation between
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Figure 2.1: Example of BFRM analysis output. (a) The profiles of the 10 latent factors
in the breast tumor gene expressions. (b) Binarized association probability matrix of 250
genes with four clinical phenotypes (first four columns) and 10 latent factors. Here black
if m, ;> 0.75, white otherwise.
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genes and the factor phenotype. This highlights the central importance of the corre-
sponding columns of the posterior association probability matrix in (2.3), exemplified
in Figure 2.1 (b). The pathway annotation methodology described in the following
chapters of this thesis is developed for (but not limited to) this setting of studies; I
focus on pathway annotation and identification based on gene-phenotype association

probabilities projected from such an analysis.

2.3 Pathway Annotation Methods

2.3.1 Limitations of Biomarkers

A goal of analyzing gene expression profiles is to reveal the biological pathways linked
to a sample phenotype or response to a biological perturbation. Genes with tran-
scriptional level changes are the participants and carriers of the signals and can
give valuable insight into the underlying biological processes. A variety of statistical
methods have been developed to detect such signature genes or biomarkers based
on the correlation between single gene expression variation and the phenotype or
perturbation. However, identification of biological pathways depending on observing
the expression of individual bio-markers often fails because of instability in the mea-
surement technology as well as experimental bias. Biological variation in single gene
expression can be damped by noise and irrelevant factors and become undetectable.
Many studies have shown that, in the same biological context, the lists of differen-
tially expressed genes obtained from independent experimental data sets, different
platform, or even simply by different statistical methods have poor overlaps. On the
other hand, it has been observed that a large portion of genes, which are truly associ-
ated with a phenotype or respond to a perturbation, are excluded from consideration
due to either subtle expression variation in the genome-wide transcriptional profiling
experiment or the identifying statistical method (van’t Veer et al. 2002; Fan et al.
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2006; Kim and Volsky 2005; Manoli et al. 2006; Cheadle et al. 2007). Additionally,
setting a cutoff of statistical significance of association between a single gene and a
phenotype can be arbitrary. As a result, the interpretations of the underlying bio-
logical processes based on the significant genes in isolation are also often arbitrary

(Subramanian et al. 2005).

2.3.2 Gene-Set Pathway Annotation

To overcome the limitations of biomarker-based pathway annotation, gene-set ap-
proaches, also called gene-class testing (Allison et al. 2006), have been proposed on
the basis of examining the group effect of pathway gene sets. The fundamental idea
is to measure aggregate association between a phenotype and a set of genes in a
predefined gene set. Statistical analysis then often tests the significance of this group
association through comparisons with random gene sets or its association with ran-
domized phenotypes. In these approaches, the phenotype association of individual
genes are integrated in certain ways, hence even subtle expression changes of indi-
vidual genes, which have relatively low correlation with the phenotype and could be
ignored otherwise, contribute to the pathway association with the phenotype and may
make it significant. Besides interpretability and sensitivity, such gene-set pathway
annotation approaches also have advantages in assessing results conducted in in-
dependent experiments or cross-platform (Kim and Volsky 2005; Manoli et al. 2006;
Cheadle et al. 2007). Here I introduce the general framework and summarize existing
methods of gene-set pathway annotation.

Suppose the pathway activities underlying a phenotype is investigated through a
genome-wide gene expression profiling experiment that involves p genes and n sam-
ples. Denote the full gene list by G. The phenotype and gene expression of each

sample ¢ € {1 : n} are observed, and denoted by y; and {z,;}4=1., respectively. The
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value of y; can be binary, categorical or continuous values, depending the character-
istic of the phenotype. Given an association metric W, each gene g € G receives a
phenotype association value w, = W(x,,y), where ¢, = {x,;};=1., is the expression
profile of gene g, and y = {y;}i=1., is the phenotype profile. Common choices of W
are Pearson’s correlation, signal-to-noise ratio, fold change and t-statistics. Then all
the genes in the full list are indexed or weighted by their association values. Now
introduce a gene set, A, which has been predefined either based on theoretical reason-
ing or by prior experiments. The gene set A represents a certain biological pathway
or process. Then the variation of values {w,}sea in the full set {w,},4eg provides
information on the pathway-phenotype association. Intuitively, the more genes in A
that have large association values, the more likely the pathway that A represents is
linked to the phenotype. A gene set A that has highly associated genes is said to be
enriched in the phenotype. A gene-set pathway annotation method, in the conven-
tional framework, defines a scoring metric S on the weights to measure this gene set
enrichment. Traditional methods then test the significance of S({wg}seg, A) given
the null distribution either in gene set space or phenotype space. To deal with multi-
ple gene sets, certain correction methods, such as Family-Wise Error Rate (FWER)
(Westfall and Young 1993) and False Positive Rate (FDR) controlling (Benjamini

and Hochberg 1995), are often used to correct multiple tests.

2.3.3 Methods Based on Binary Weights

The simplest class of gene-set methods are developed using binary metrics of gene-
phenotype association and Fisher’s exact test. The association values {wg}seg are
transformed to 0 or 1 representing whether or not they are considered as being differ-

entially expressed with the phenotype. Given an association cutoff wy, the association
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weight of gene g is

_ ]-7 Wy Z Wo,
e = { 0, w, <wy. (2:5)

A natural enrichment score in this case is the number of genes in gene set A with
u equal 1. Under an assumed null hypothesis of random gene assignment to A, this
count has a hypergeometric distribution, and Fisher’s exact test, or a x? test when
A has a large number of genes, has been used to test the significance of the gene
set enrichment. This method is widely implemented in gene set function annotation
software packages, where the gene sets are from Gene Ontology functional categories
(Dahlquist et al. 2002; Zhong et al. 2003; Zeeberg et al. 2003; Draghici et al. 2003;
Berriz et al. 2003). A related method based on binary weights is developed in the
Bayesian parametric framework and implemented in the software package GATHER
(Chang and Nevins 2006). In this method, the number of genes labeled with 1 in A
is modeled as a binomial variate, as is that in the complementary gene set. Bayes
factors are then computed to compare the evidence for or against the hypothesis that

these two distributions are different, the null hypothesis being that they are same.

Although this type of method has advantage in terms of simplicity and low com-
putational costs, the shortcomings are obvious. The gene weighting process needs to
choose a cutoff for gene-phenotype association, which highly depends on the statis-
tical method being employed and sometimes appears to be arbitrary. Further, bi-
nary weighting loses considerable information by completely ignoring the differences
among genes in their association values. The annotation is then highly influenced
by false positive and false negative rates in determining associated genes. Another
common problem is that genes are treated as independent, that is, intrinsic biological

interactions among genes are not considered.
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2.3.4 Methods Based on Full Weights

To make better use of the gene-phenotype association information {w,},eg, another
type of gene-set pathway annotation method developed to take into account con-
tinuous gene-phenotype association weights. Typically, such methods compute a
statistic that summarizes the weight information in a gene set and represents gene
set-phenotype association, and again compares the value of such a statistic to the
corresponding null distribution followed by the adjustment for multiple testing. Here
I review some representative methods with a focus on the definition of enrichment

summary statistics and null distribution generation.

One category of methods perform non-parametric statistical tests on gene set-
phenotype association. Genes in G are ranked with respect to the gene-phenotype
association weights wy. A certain enrichment summary statistic is defined on the

ranks.

Virtaneva et al. (2001) first implemented this methodology and applied it in func-
tional annotation of gene expression signatures. They use the Wilcoxon rank-sum

statistic

SIZR(%)_%

geA

as the enrichment summary statistic. R is the rank function, |A| is the size of
gene set A. Under certain assumptions, on the hypothesis of random rankings, S' is
approximately normally distributed when |A| is relatively large. In this method, it
is assumed that there are no transcriptional interconnections among genes.

Gene Set Enrichment Analysis (GSEA) (Subramanian et al. 2005; Mootha et al.
2003) is a more widely used non-parametric method. The enrichment summary

statistic for gene set A is defined as the maximum deviation from zero during the

19



weighted random walk on the ranking list road-marked by gene set A. That is,

> fwgll(wg < wi) > Iwy < wy)
geA o g¢A

1<i<|g| > Jwgl G| — |A| ’

where I is the indicator function, and |G| is the size of full gene list G. Named the
enrichment score (ES), S corresponds to a weighted version of Kolmogorov-Smirnov
statistic. GSEA advocates sample permutation to generate a null distribution of ES
to maintain the gene-wise association and test the association between a gene set
and the phenotype of interest. The null distribution is then adjusted for variation
in gene set size, i.e. the number of genes in the gene set, by dividing each empirical
value of ES by their mean. The empirical nominal p-value is computed for the
adjusted /normalized ES (NES) to show the significance of the association between

the gene set and the phenotype.

Zahn et al. (2006) use Van der Waerden’s test as an alternative to the GSEA
Kolmogorov-Smirnov test. The ranks of genes are converted to standard normal
quantiles to attain a normal score

v+ [

for each gene g € G, where @ is standard normal cumulative density function (c.d.f.).

The mean statistic

is applied to summarize the gene set enrichment. Since the w, are obtained from
a multivariate regression analysis that has the phenotype under study as one of

the covariates, the null hypothesis is generated using bootstrap resampling instead
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of sample permutation to preserve relationship between genes and covariates. An
hypothesis test is then performed on the normal distribution standardized by dividing
each S* (corresponding to each resampling) by the estimated variance.

The other category of methods use parametric tests with an initiative of modeling
the gene-phenotype association. Efron and Tibshirani (2006) propose a maxmean
statistic that seems to have superior power characteristics compared to the Kolmogo-
rov-Smirnov statistic, and demonstrate it with t-statistic inferred from an expression
analysis with respect to a binary variable, say, control vs. a phenotype. Each weight

is normalized as

ug =07 F(w,)], g€g,

where @ is standard normal c.d.f., and F' is the c.d.f. of t-distribution with n — 2

degrees of freedom (n is sample size). The maxmean statistic is defined as
S =max(S*,S7)

with S* and S~ the absolute means of {u, : ¢ € A and u, > 0} and {u, : g €
A and u, < 0}, respectively. A null distribution is attained by computing the
maxmeans of the gene set under sample permutation or gene randomization followed
by standardization.

Kim and Volsky (2005) directly use gene expression fold change between two
experimental groups for association weights, and empirically show the approximate

normality of the mean statistic

S=> w, (2.6)

when a random gene set contains more than 10 genes. Newton et al. (2007) develop a
random-set method based on a very similar idea but with rigorous theoretical justifi-

cation. To improve the normality of the summary statistic, they suggest using more
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regular w, such as log transformed p-value or fold change. Assuming nonexistence of
interconnections among genes, they show the mean statistic S (as expressed in (2.6))

can be standardized as
Z=(S—mw]o.

where the overall mean p and variance o2 have analytical forms

degwg 2
( 9] )”]

According to central limit theory, Z is approximately standard normal on the null

1 1 \gr—\Ar>
= d o= —
h=igia e ad o |A|<|g|—1

hypothesis when the gene set size is large enough. This test is equivalent to Fisher’s
exact test when w, is replaced with a binary quantity u, as shown in (2.5), and
to Wilcoxon test when w, is replaced with its rank. Notably, this standardization
does not involve the estimation of moments based on random set simulation, hence is
more efficient compared to the other methods based on sample permutation or gene

randomization.

In summary, the gene-set pathway annotation methods that use continuous as-
sociation weight information, in terms of the tests being used, have two types: non-
parametric and parametric. Generally, both types at least implicitly depend on sam-
ple permutation or gene set randomization either to generate the null distribution
or to estimate the sufficient statistics of the null distribution. As addressed by Tian
et al. (2005), sample permutation formulates a null hypothesis that the tested gene
set does not show stronger association with the phenotype of interest than with other
randomized phenotypes; gene randomization formulates a null hypothesis that the
phenotype-association pattern of the tested gene set can not be distinguished from
those of random gene sets. Both hypotheses stand on reasonable interpretations of

the concept of gene set enrichment, and show advantages and disadvantages when
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compared to each other. Sample permutation requires the sample size to be large
enough to allow the test to gain the power of rejecting the null hypothesis. Usually,
for bi-categorical samples, at least eight are needed for each group. This limits its
application in some experimental data sets with very few samples. Gene randomiza-
tion upon genome-wide data does not have this problem. Another advantage of gene
randomization lies in the computational efficiency when using mean statistic (Newton
et al. 2007; Virtaneva et al. 2001). However, sample permutation is more appealing
in terms of its consideration and maintenance of the interactions among genes. Gene
randomization, on the contrary, assumes that all genes are expressed independently,
and the transcriptional interconnections among genes are out of consideration when

comparing a gene set with random sets.

2.4 Motivation for Formal Probabilistic Modeling

Analysis of many gene expression studies has generated a tremendous number of
signature gene sets that can further benefit the studies of cancer signaling pathways.
There are also many gene sets derived from experiments that generate other types of
data, such as differential expression of a set of proteins under a certain experimental
perturbation. Then a set of genes encoding these proteins, to some degree, contains
information on consequent pathway activation. Meanwhile, efforts have been made
to dissect the complexity of signaling pathways under cancer phenotypes by using
appropriate computational methodology based on genome-scale expression profile
analysis. Making use of the knowledge carried by existing signature gene sets to
identify biological pathways is an important component of the whole strategy for the
studies of cancer mechanisms. Gene-set pathway annotation methodology has been

developed in this context.

Although the fundamental idea is appealing and well accepted, the existing meth-
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ods have some common problems regardless of their individual defects. None of these
methods attempts to model the gene-set pathway annotation problem based on a clear
biological interpretation. What is the relationship between a pathway and a curated
gene set?” When the biological context under study is different from that in which the
gene set was originally defined, how should we consider this intrinsic biological dis-
crepancy in the pathway annotation? Is that a pathway is involved in the phenotype
equivalent to that a gene set is enriched in the phenotype? How should we interpret
the annotation results? These questions arising from the fundamental idea are not
addressed by any of existing methods. In fact, without considering these questions,
these methods literally are gene set enrichment analysis rather than pathway anno-
tation methods. To incorporate rigorous biological thinking in this gene set pathway

annotation problem one needs to develop a model-based approach.

Moreover, pathway annotation analysis borrows knowledge from the signaling
pathway studies in other experimental contexts. A necessary step following annota-
tion is to examine the specificity of these pathways in the current biological context,
i.e. to compare and map the reference pathway to the one involved in the currently
investigated context. This problem arises from these facts: first, a reference pathway
gene set defined through experiments other than gene expression analysis may con-
tain genes whose mRNA levels are apparently unrelated to the phenotype; second,
a reference gene set may be incomplete or include irrelevant genes due to the noise
in the predefining process; more generally, the genes comprising the reference path-
way may not be equally relevant in the pathway under study due to the difference
of biological contexts. Hence, a complete pathway analysis must involve a process
of refining pathway gene sets. This is the key to imputing the connectivity among
pathway modules as well as to identifying biomarkers and therapeutic targets. GSEA

includes a operation to find a group of genes, called leading edge subset. However,

24



there is no theoretical support for this operation; hence, the meaning of this subset

of genes is unclear. To address this problem, we also need a model-based approach.
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Chapter 3

Probabilistic Pathway Annotation

In this chapter I propose a model-based approach to matching experimental gene
expression signatures of a phenotype to pathway gene sets. This approach, named as
probabilistic pathway annotation (PROPA), is developed in the Bayesian framework
and assesses the uncertainties of association between the phenotype and multiple
pathways from the database. I first introduce a Bayesian perspective on the gene
set-based pathway annotation problem, then develop the statistical models, discuss
multiple pathway comparisons and gene pathway membership inference followed by

a summary of the practical benefits of this approach.

3.1 Bayesian Foundation

In a genome-wide gene expression profiling data set, the total number of genes under
consideration is p, typically several thousands or several tens of thousands. Assume

the genes are labeled by indices g = 1 : p and denote the full gene list by
G={1l:p}

To begin, consider just one specific biological pathway gene set A C G; this is a
set of genes explicitly assumed to be involved in a defined, specific biological context.
However, the exact information on the genes in A is unavailable. The only knowledge
is that A includes a set of genes that have been experimentally defined as playing
roles in the pathway. Denote this known reference gene set by A. The number of
genes in A is ¢ < p, and A is an incomplete and typically error-prone observation on

the true pathway gene set A.
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The key here is to understand that there is a true but unknown pathway gene
set A and to distinguish this from the current known reference gene set A. If the
experiment and analysis by which A has been defined can be trusted, A should be a
reasonably good representation of A so that the reliability of the pathway annotation
analysis can be guaranteed. Some degrees of discordance would be expected between
A and A. The intrinsic noise of biological experiments and statistical analysis cause
some genes to be falsely included or excluded when A is generated, i.e., there are false
positives and false negatives. Apart from the experimental noise, an experiment usu-
ally only takes a snapshot of one of the several sides of a theoretical pathway rather
than capturing all the information. In other word, the definition of a theoretical path-
way usually is based on the key experimental context and ignores the non-essential
experimental conditions; this is exactly the foundation of the knowledge-based path-
way annotation approach. The impacts of those ignored experimental conditions are
reflected in the discrepancy between A and A. Moreover, the pathway gene sets are
not necessarily defined by gene expression differentiation. Indirect methods can be
used to define pathway gene sets; for example, the genes whose corresponding pro-
teins differentially express with the perturbation, or the human homologs of genes
involved in a biological pathway of some other organism. For these reasons, A cannot

be a perfect representation of A in general.

A statistical analysis of a gene expression microarray data set assigns a value to
each gene that represents the level of its association with a biological phenotype (or

intervention). Thus, a full set of association weights are generated as
II={m,...,m}.

Although the methodology proposed here is applicable to any measure of the asso-

ciation between genes and the phenotype, I exclusively focus in this dissertation on
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the use of association probabilities generated in the framework of BFRM introduced
in Section 2.2. Then II is a full list of probabilities corresponding to a column in the
association probability matrix exhibited in (2.3) from a particular analysis. In this

context, the factor the column represents is the phenotype of interest.

Now the question is, given knowledge of A, how strongly does the gene-phenotype
association support the claim that the phenotype involves the biological pathway A?
To phrase this problem in statistical language, I represent by F the gene set of
the hypothetical pathway involved in the factor phenotype, F C G. The pathway
annotation then is a process of assessing the concordance between F and A given the
information in IT and A. In the Bayesian framework, this is quantified through the

evaluation of the posterior probability
Pr(F = A|Il, A).

In a practical context that involves all the pathways in a entire database, the prob-
lem is extended to multiple assessments and a model comparison problem. There are
a set of pathways Ay, ..., A,,, and the corresponding reference gene sets Ay,..., A,
available; the question is which of these pathways is more likely to be associated with

the phenotype compared to the others.

In Bayesian framework, this is a model comparison problem, in which a model
corresponds to a hypothesis 7 = A; (j = 1,...,m) and the partition of the whole
gene list (specified by A;). The formal solution of the problem is provided by the
evaluation of the posterior probability of each model in a model space constructed by
all the pathways to be compared and their reference gene sets. Explicitly, one needs
to compute the posterior probabilities

Pr(F=A11LA,...,A,)

(3.1)
O(P?“(f:Aj‘Al,--- >Am)p<H|Aj,f:Aj), jzlm
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with Pr(F = A;|As, ..., A,,) some assumed prior probabilities. The marginal like-
lihoods, p(II|A;, F = A;), as j moves across all the pathways, are the probability
densities of the association data II conditional on the hypotheses that the factor

phenotype F is pathway A;.

3.2 Summary of Notation

For clarification, I summarize the key quantities and notation as following:

e G ={1:p} is the full gene list.

A is the true biological pathway gene set, and A C G.

A is the known reference gene set of A, and A C G.

F is the hypothetical pathway gene set involved in the factor phenotype being
studied, and F C G.

IT = {my}4=1, is the full list of the gene-factor phenotype association probabil-

1ties.

Goal is to compute the posterior probabilities Pr(F = A|II, A).

3.3 Statistical Models

I begin with the development of the model for one biological pathway and then extend
it to the comparison of multiple pathways.

The starting point is to view Il as data. Then statistical thinking focuses on
models of the distribution of the data II conditional on the hypothesis that A is the
underlying biological pathway of factor phenotype, i.e. F = A. If F is indeed A,

the observed association probability 7, would be expected to have higher value for
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gene g € A than for gene g ¢ A. Assuming association probabilities are generated
independently, and no other information about the genes can distinguish them except

the pathway membership, one has models
(mglg € A, F =A) ~ fi(my) and (mylg & A, F =A) ~ fo(my) (32)

independently over all g. Here, f; and fy are two probability density functions over

the unit interval; f; favors higher values of 7, while f; favors lower values.

The natural choice of f; and fy is beta density functions. Specifically, I choose

fi(m) = Be(aq, 1) and fo(m) = Be(1, ay); explicitly,
filr) =am®™t and  fo(m) = ag(l —m)* (3.3)

for 0 < 7 <1, with g, a1 > 1. Clearly, from 0 to 1, f; is monotonically increasing,
while fy is monotonically decreasing, demonstrated as the blue and black curves,
respectively, in Figure 3.1(a). Such a specification is based on the observation of
the real data generated with sparsity modeling as introduced in Section 2.2. Figure
3.1(b) shows the histogram of the association probabilities IT from the analysis of a
real data set. To allow flexibility in these distributions, I give ay and a; reference
priors

plag) x agt and p(a;) oc ap? (3.4)
with constraint 1 < ap < a and 1 < a; < a. Here a is a large number, say, 100,
serving as the upper limit of the values that ay and «; can take. Setting an upper

bound for ay and «; is needed for marginal likelihood computation, which will be

discussed in Chapter 5 and 6, rather than as a requirement of modeling.

Introduce a set of indicators {z,},eg, where

L 1, ge A,
9010, g¢ A,
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Figure 3.1: (a) fi(m,) and fo(m,) are Beta density functions specified in (3.3);
model the density function f(m,) as a mixture of them. (b) Histogram of association
probabilities II generated in a real expression data analysis.

given 7 = A. The z, are the unknown pathway membership indicators. So the p.d.f.

of m, conditional on ag, o; and z, is

p(7T9|Oz0, a1, Zg, F = -A) = [fl(ﬂ-g; al)]zg [fO(ﬂ-g; ao)]l—zg : (3'5>

As mentioned at the beginning, A is unknown, and so is the pathway membership
of each gene g, i.e. the value of z,. Model this uncertainty by giving z, a Bernoulli

distribution
P(2gl8y) = Blzg; By) = ﬁ;g(l - ﬁg)l_zg7 (3.6)

where f3, is the expectation of 2,4, representing the prior pathway membership proba-
bility of gene g. Marginalizing the distribution of 7, in (3.5) with respect to z, leads

to the p.d.f. of 7, conditional on f3,,

p(ﬂ-g|a0’ 051759"F = -’4) = ﬁgfl(ﬂ—g; al) + (1 - 59)](0(77-9; aO);

which is a mixture of two beta densities fi(7,) and fy(7,) weighted by 3, and 1 — 3.
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This conditional p.d.f. is illustrated in Figure 3.1(a) as the pink curve.

I further model 3, as a parameter whose distribution is conditional on whether
g € A. This modeling is reflecting the natural idea that the determination of the
true pathway membership for a gene should consider its reference set membership.
For convenience, denote the set of genes not in A as B, i.e. B = G\A. Given A and

B, B, is modeled via prior distributions

(Bylg € A, F = A) ~ Be(para, pa(l —r4)),
(3.7)
(Bylg € B,F = A) ~ Be(¢prp, ¢p(1 —rg)),

with specified r4,75 € (0,1) and ¢4, ¢pp > 0. The r4 and rp are prior means of 3,

given g € A and g € B, respectively,
ra=EB,lge A, F=A) and rp=E(f,|g€ B,F=A). (3.8)

The values of r4 and rg are subject to one’s expectation of the true positive rate and
false negative rate: r4 is the @ priori probability that gene ¢g in A is a true member
of A, and rp is the probability that gene ¢ in B is actually a true member of A.
Given the assumption that the gene set A is a fairly good representation of the true
pathway gene signature A, r4 should be relatively large. The value of rz depends
on an assessment of how many genes in B are likely to be associated with the factor
phenotype F. The number of genes in A, typically tens to a few hundreds (shown in
Figure 3.2) is small and ignorable compared to the full gene list G, which typically
has thousands to tens of thousands genes. Therefore, a reasonable value of rg should
be approximately equal to the ratio of the number of signature genes to the total
number of genes. This ratio usually is small, for example, 0.005. The ¢4 and ¢p are
the precision parameters in the density functions in (3.7) and constrain the variation

range of ;. The fundamental idea of this statistical modeling is illustrated in the
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diagram in Figure 3.3.
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Figure 3.2: Histogram of the number of genes in 956 gene sets from a human
biological pathway gene set database. The number of genes in a pathway gene set
varies from a few to over a thousand. Nevertheless, a typical range for this number
is tens to a few hundreds.

Under this model specification the likelihood function is

/C(CVOaalaﬁla--wﬁp) :Hp(ﬂg|a07alaﬁg7*47f‘:-’4)
g=1
p
B hilmgan) + (1= B fo(myan)l,  (3.9)
g=1

with fi(m,; 1) and fo(m,; ) specified in (3.3), and the likelihood can be rewritten

as

p
E(Oéo,&l,zl,..., H f1 7Tg,Oél [fo(ﬂg;a())]l_z'q . (310)
g=1

3.4 Data Independence

An assumption in the statistical models discussed above is that the distribution of the

association probability 7,, conditional on hypothesis " = A and reference gene set A,
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Figure 3.3: Diagram of the PROPA models. The unknown true pathway gene set A
and the corresponding predefined reference gene set A have reasonably good overlap
and some discrepancy. The light blue area represents the false negative genes. The
light yellow area represents the false positive genes. The left top histogram of II shows
only a small set of genes in G are associated with the factor phenotype. This gene
signature F should overlap with A if the hypothetical pathway under this phenotype
is indeed the one specified by A. If 7 = A, true pathway genes 7, have distribution
f1 while non-pathway genes m, have distribution fj.

34



is independent of the other association probabilities {7y };.,. Note this is assuming
the observations 7, to be independent, not at all that there is no interaction or
coregulation among genes. Here I justify the conditional independence assumption

for the 7, data distribution.

Suppose genes g; and g, are known to be coregulated in the biological context
under study. One can think about an example that g; and g, are HER2 and ErbB2,
respectively. They are the same gene named differently and correspond to two probe
sets on a microarray. Ideally, these “two genes” should have same expression profile.
Given that the statistical analysis of the gene expression data is correct, it is the
experimental noise that causes the discrepancy of their expression profiles, and as
consequence the association probabilities with the factor phenotype, 7, and =,
are different. Suppose the value of the datum m, is observed. Then any form of
dependence would imply that one or more of the components of the distribution for
Ty, as described in equations (3.5)-(3.7) at g = g2, would now depend on the value
of m4,. By looking at this in detail, it is argued that there really should be no such
involvement of 7, i.e., that the conditional independence assumption (conditional
on all model parameters and model structure) is relevant.

Since g; and go are really two noisy versions of the same gene, it is expected that
either g1,92 € A or g1,92 ¢ A. This is key in highlighting the role of the indicators

24 in driving the assumption of conditional independence of the 7, as follows.

Conditional independence of 7, and 7, given z,:

Condition on z4, = 1 so that g» € A for sure. Under the assumed independence,
this conditioning information together with other model parameters implies that
g ~ fi1(+; 1), a density generally concentrated on high values. Does knowing 7,

change this? No, for the following reasons:
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o If 7, is high, this simply suggests g; € A too, but the relevance of this ad-
ditional information to the belief about m,, is overridden by already knowing
that go € A. That is, fi(my,; 1) already favors high values, and the news that

Tg, is high simply confirms the view that m,, is likely to be high.

e Conversely, if 7y, is low, that suggests g1 ¢ A; since it is expected, on biological
grounds, that either g1,90 € A or g1,92 ¢ A, and since one is conditioning
at this point on g» € A for sure, the only rationale for a low 7, is as a false
negative — due to noise in the experimental data. Hence one would reject that

information as relevant to p(m,,|-) and maintain the conditional independence.

A parallel argument applies to the case with condition z,, = 0.

Conditional independence of z,, and 7,,:

The above discussion indicates the relevance of the assumption of conditional inde-

pendence of the 7, in the specific sense that
p(ﬂ-g2|7r91’zg27f:-’4) :p(ﬂ-g2|zg2"’r:"4) (3'11)

The complete independence assumption then relies on the assumed lack of dependence
of z,4, on the observed value of 7, . The model specifies (z4,|3,,) ~ B(8y,) and [y,

has the mixture prior of equation (3.7), so that marginally with respect to (,,,
(292’92 € A7f - A) ~ B(TA) and (292|g2 ¢ Avj: = A) ~ B(TB>7

with, generally, 7z near zero and r4 near 1. Conditional on g, € A, does learning ,,

change the thinking about 24, = 17 No, for the following reasons:

e Observing a high value of 7, suggests that g; € A. Since it is known that

91,92 € Aor g1, 92 ¢ A, this suggests z, = 1. Conditioning upon g, € A, one
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is already favoring z,, = 1, and the news that 7, is high simply confirms the

view that z,, is likely to be 1.

e Conversely, observing a low value of m, suggests ¢; ¢ A and z, = 0, but,
again, conditioning upon g, € A, one is favoring 2z, = 1. Again this apparent
conflict can only be interpreted as arising from a false negative in the sense
of a low value of 7, due to the experimental noise. One should reject that

information as relevant to p(z,|-).

A parallel argument applies to the case with condition go ¢ A.

The above then supports the lack of dependence of 2z, on any observed datum
Tg,, S0 that

P(2g3 |90, A, F = A) = p(24,|A, F = A). (3.12)

Equations (3.11) and (3.12) combined imply and therefore support the independence
assumptions, both conditional on z, and unconditional, and hence the treatment
of the 7, as randomly sampled from the hierarchical mixture model described in

equations (3.5)-(3.7).

3.5 Model Comparison

One core goal in PROPA is to compare multiple pathways in terms of how strongly
they are associated with the factor phenotype based on the information provided
by II. As discussed in Section 3.1, the Bayesian solution to this problem is based
on evaluation of the posterior probabilities shown in (3.1). The required marginal
likelihood is the expectation of the likelihood with respect to the prior distribution

of model parameters, namely

p(IlJA;, F = A;) = /@E(O)p(@]Aj,]: =A,;)do (3.13)
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with the prior p(8|A;, F = A,) specified in (3.6), (3.4) and (3.7), and likelihood £(8)
in (3.9) or (3.10), depending on the configuration of parameters 6.

In this model comparison problem, all the models j = 1 : m have the same com-
plexity. They are only differentiated by their reference gene sets A;. This simplifies
the specification of model priors and allows us to only think about incorporating
biological knowledge into the priors. In the absence of such knowledge, I put non-
informative prior on models and only focus on the evaluation of the evidence, in terms
of the marginal likelihood of the data II, for each model. Hence, computing marginal
likelihood is the central problem in PROPA and will be discussed in Chapter 5 and
Chapter 6.

The Bayes factor, or weight of evidence, is another quantity to look at, especially
when evaluating multiple models. This is defined as the ratio of the posterior odds to

the prior odds of the model to be tested. In PROPA, for each pathway A;, j € 1: m,

PT(f:A]u_LAl? 7Am)/[1 —PT(fIA]‘H,Al,yAm)]
BFr—a; = A '

Pr(F = Aj’Ala“..’ ST PrF A& ) (3.14)

In most cases, a single biological phenotype or perturbation involves complex
pathway activities and may be associated with several pathways in the database.
Sometimes, the association between the phenotype and one or two of these pathways
are strong and appear to dominate the model selection. These dominant pathways
have such large posterior probabilities and Bayes Factors that the other pathways
that are actually associated with the phenotype have posterior probabilities and
Bayes factors that are too small to be considered significant. In such cases, simply
making conclusions based on posterior probabilities and Bayes factors of pathways
would result in missing important information. Combining these quantities with
pathway ranking based on these quantities should be a more reasonable and reliable

way to summarize the annotation result.
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Moreover, the overriding purpose of PROPA is to generate biological hypotheses.
This analysis provides quantified evidence (posterior probability, Bayes factor and
rank) of association between each pathway and the factor phenotype, bringing out
potentially interesting pathways and serving as references for biologists to develop

biological hypotheses.

3.6 Pathway Membership Probability

As has been mentioned in Section 2.4, another question of concern in pathway analysis
is gene pathway membership. This question is addressed via calculation of pathway
membership probabilities. In the PROPA model, the posterior pathway membership

probability of gene g is
By =Pr(ge AllLA,F = A) = Pr(z, = 1|ILA, F = A).

The corresponding Bayes factor is

p(Illg e A, A, F = A)
p(lg ¢ A, AF=A)

_ Pr(z=1ILA,F = A)/Pr(z, = 0]ILA, F = A)
© Pr(z, = 1A F=A)/Pr(z, =0[A, F=A)

BFQG.A ==

Refer to (3.6), (3.8) and (3.7). This Bayes factor in explicit form is

B/ (1= 57)

BF,culg e A= ,
el €A=L )

and
By /(1= 5;)

BF, €eB= .
96A|g TB/(]. N TB)

This Bayes factor measures the evidence given by data, II, for gene g € A versus

g ¢ A. If a gene in reference gene set A has a Bayes factor much less than one, it
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means the data give evidence that this gene is not a true member of A. Such genes
are false positives as shown in Figure 3.3. A gene in B with a large value of the Bayes
factor may be a member of 4 missed by A and correspond to a false negative, again

as in Figure 3.3.

3.7 Summary

PROPA is a formal model-based framework for matching experimental signatures of
structure or outcomes in gene expression — represented in terms of weighted gene lists
— to multiple biological pathway gene sets from curated databases. In the canoni-
cal setting here, the gene weights are explicit — gene-factor phenotype association
probabilities. The formal probabilistic model delivers probabilities over pathways
for each factor phenotype, allowing for a quantitative assessment and ranking of
pathways putatively linked to the phenotype. The fundamental advantage of this
approach is formal modeling of the uncertainty in the pathway analysis supported
by clear biological interpretation. For example, d priori information on the accu-
racy and relevance of genes in reference gene sets are incorporated, and inference on
both pathway-phenotype association and gene pathway membership is coherent and
transparent.

Compared with existing gene-set pathway annotation approaches, PROPA is a
fully probabilistically coherent model, and provides for posterior inferences regardless
of the size of reference gene set or origin of gene-phenotype association probabilities.
The analysis does not, and should not, involve sample permutation, and is not limited
by the sample size of the data set. It also does not, and should not, involve gene
randomization. The gene interaction or coregulation information is maintained by
the reference gene set. Instead of comparing a pathway gene set with random sets

of genes, PROPA finds significant pathways by comparing the pathway gene sets to
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each other in a coherent way.

Additionally, although I develop the model using the association probability gen-
erated by BFRM, the fundamental modeling idea and framework are applicable to
other metrics of gene-phenotype association, for example, t-tests and Pearson cor-
relation coefficients. For such data, certain adjustment may need to be performed
to reduce the false discovery rate. I suggest the use of the association probability

because it is canonical in my perspective.

Having introduced the conceptual and technical details of the PROPA framework,
I now turn to the core methodological issues — evaluation of the determining marginal
likelihoods (or measure of evidence) of equation (3.13), and the accompanying ques-
tions of computation of posterior distribution for the full set of model parameters and
uncertain variables 6. It turns out that the evidence computations are most effectively
addressed following posterior computations using Bayesian simulation methods, so I

begin with such methods in the next chapter.
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Chapter 4

Posterior Simulation

Markov chain Monte Carlo (MCMC) methods are powerful computational methods
widely used in Bayesian statistical analysis. As has been addressed in the previous
chapter, PROPA is able to refine a pathway gene set based on the belief that this
pathway is associated with the phenotype in the current context of study. Such a
refinement is implemented through the estimation of posterior pathway membership
probabilities for genes. I address these computations, and the broader questions of
posterior analysis, using MCMC methods. Moreover, the central problem in PROPA
is model comparison based on computing marginal likelihood, an integration problem
that appears to be intractable for conventional integration methods due to the high
dimensionality of data. In Chapter 6, I introduce a new Monte Carlo integration
method for PROPA marginal likelihood computation, and that method builds on
posterior simulation. In this chapter, I discuss the core MCMC method introduced

for PROPA, and demonstrate the performance with a simulation study.

4.1 Gibbs Sampling

With the parameterization and priors specified in Chapter 3, the joint probability
density function of the PROPA model is
p(H,Oéo,Oél,ﬁ,ZlA,f = A)

= aglaj! H{[ﬁgalﬂgl_l]zg[ﬂ — By)ao(l — my) 1]

g=1

[Be(By; para, da(l — ra))]"<Y [Be(By; dprm, op(1 —rp))] ¥V}, (4.1)

42



where 3 = {f,}1, and z = {z,}1,5, and [ is an indicator function. Benefiting from
these conjugate priors, the full conditional distribution of each parameter is easy to

derive, and these are summarized as follows:

e Given z, ap and oy are independent of the other parameters and have gamma
density functions truncated below 1 and above a. When a takes a large value,
at which both density functions decay to 0, they can be simplified to one-sided
truncation (truncation below 1):

plaolz, I, A, F = A) = Gasy (ao; Z(l — 24), — Z(l — z,) log(1 — 71'9)) :

g=1

[y

@

(4.2)

P
Zg, — Z 24 log 7Tg> . (4.3)
g=1

hS]

plar|z, 1A, F = A) = Gayy (Oél;

g=1

e Given z4, 3, is also independent of the other model parameters and has a Beta

distribution:
p(ﬁg|zg,g € A7F = A) = Be (ﬁgv Zg + qurA? (1 - Zg) + ¢A(1 - TA)) 5

p(Bylzg, 9 € B,F = A) =Be (By; 2y + 975, (1 — 24) + op(1 —75)) . (4.4)

e 2, has a Bernoulli complete conditional distribution independent of {g; : k €

G, k#g}and {2z, : k€ G, k# g}

p(zglaw, a1, By, A, F = A) = B (243 py) , (4.5)
with
Byaqmer!
Pyg — (4.6)

a ﬁg@lﬂgl_l + (1 - 69)0‘0(1 - 7Tg>a071.

Here p, is the conditional probability of g € A.

43



Gibbs sampling based on these full conditional distributions includes the following

steps:
Step 1 : Set starting value for each parameter;

Step 2 : Based on the current value of z, sample o and o from the density func-

tions in (4.2) and (4.3), respectively, and update ap and «; with these samples;

Step 3 : Based on the current value of z, sample ,..., [, in parallel from the

density functions in (4.4) and update B with these samples;

Step 4 : Based on the current values of ap, oy and 3, sample z1, ..., z, in parallel

from the distribution shown in (4.5) and update z with these samples.

Repeat Step 1 to Step 4 (T + M) times and discard the first 7" samples of each
parameters (suppose sample Markov chains are stationary after 7" iterations). Then

model parameters can be estimated using the M posterior samples.

The MCMC procedure is generally fast mixing, and rapid, clean convergence has

been confirmed in experiences across many examples.

4.2 Simulation

The simulated data set concerns p = 18 synthetic genes with association probabilities
IT = [0.9698, 0.9335, 0.9182, 0.9369, 0.7260, 0.0832, 0.5776, 0.4869, 0.3831,

0.0094, 0.0563, 0.0529, 0.6118, 0.0918, 0.1603, 0.0872, 0.1548, 0.2257].

Here the first five genes with relatively high association probabilities are likely the
members of the hypothetical pathway F, while the genes with probabilities lower
than 0.3 are not likely to be the members of F. The pathway memberships of the
other four genes with probabilities 0.5776, 0.4869, 0.3831 and 0.6118 are less certain.
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Clearly, this data set is far from the real case in terms of the number of genes in
G as well as the ratio of the number of pathway genes to the number of non-member
genes. The choice of such a small size of data is for the need of testing the marginal
likelihood approximation methods, which will be discussed in Chapter 5 and 6, as
well as for its utility in clearly illustrating the central aspects and ideas. Further, the
small member p = 18 is a tolerable size of gene list G for analytically computing the
exact values of the marginal likelihoods, so that numerical approximations of various
kinds can be compared to the exact values. The simulation also illuminates how the
Gibbs sampler performs under the PROPA model. Focus on one pathway A as an
example here, corresponding to the reference gene set A that consists of exactly the
first 8 genes. The data set II and this gene set A are illustrated in Figure 4.1.

In this example, let r4 = 0.8, rg = 0.1 and ¢4 = ¢ = 8. Then the prior
and conditional densities of 3, given ¢ € A and g € B are shown in Figure 4.2,
respectively. As can be seen, such settings of these hyper-parameters allow 3, to
change in only relatively small ranges. The prior mean of 3,, 74 or rp, is the key
parameter determining the posterior values of 3;, while the value of 2, makes 3,
fluctuate around its prior mean. The amplitude of this fluctuation is constrained by
the precision ¢4 or ¢p.

Figure 4.3 demonstrates the trajectories and histograms of the MCMC samples
of parameters o and ;. The red portions in the trace plots represent the burn-in
period, 200 samples here. This figure only shows 3000 MCMC samples. The chains
generated by this Gibbs sampler appear to mix rapidly. Meanwhile, the histograms
show that the posterior samples of oy and «; have gamma-like distributions.

Figure 4.4 shows the estimated posterior means of each z,, ¢ € G. As can be
seen, the posterior mean of 24, i.e. the posterior pathway membership probability of

gene g, is largely driven by the data, m,. The genes in A that have low association
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probabilities and genes in B that have high association probabilities are more likely
to be false positives and false negatives, respectively, in terms of being members of
A. Through this inference, the incorporated prior information, r4, rg, ¢4 and ¢p
then provide a quantified standard to identify these falsely labeled genes. Here, for
each gene the Bayes factor of pathway membership is estimated by
Gy /(1= 5;)

BF ulge An 220" " ")
g€A|g TA/(l _ TA)

and
By /(1= B;)

BF, € Br
QGA‘g TB/<1 _ TB) )

(4.8)

where Bg is the estimate of pathway membership probability defined in (3.6); this can
be obtained by taking the posterior Monte Carlo sample mean of z, or, alternatively,
the mean of p, as shown in (4.6) after the chain reaches equilibrium. The pathway
membership evidence in decibans (dB), defined as 10log,qy BF,c4, of each gene is
plotted in Figure 4.5. Gene 6, a member of gene set A, has membership evidence
close to -20dB, strongly suggesting it is not a member of the true pathway signature
A (false positive). Gene 13 is not a member of A, but it has membership evidence
greater than 10dB, which is substantial evidence of gene 13 being a member of A
(false negative).

Although the pathway membership of a gene is largely driven by its association
probability, this relationship is pathway specific. Another two gene sets are con-
structed assumedly corresponding to two different pathways. Gene set A4 contains
genes {1 : 4} and represents pathway A4. Gene set Ag contains genes {1 : 6} and
represents pathway Ag. The pathway membership evidence for each gene in these
two pathways are presented in Figure 4.6 (a) and (b), respectively. In the first case,

there is no strong evidence for any false positives or false negatives, which means the
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predefined gene set Ay is likely to be an accurate representative of pathway signature
Ay. For Ag, the pathway membership inference result gives decisive evidence that

gene 6 is not a member of the theoretical pathway Ag.

091
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Figure 4.1: The association probabilities in the simulated data set. The red dots
correspond to the genes in pathway reference gene set A = {1,2,3,4,5,6,7,8}, and
the blue dots correspond to those not in A (i.e. in B).
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Figure 4.2: The prior and conditional p.d.f.s of membership probability 3, when
ra=0.8rg=0.1, ¢4 =8 and ¢ = 8.
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Figure 4.3: The MCMC sample trajectories and histograms of oy and a;. Burn-in
= 200, samples = 3000.
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Figure 4.4: The estimated posterior means of 3; and z, for each g € G.
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Figure 4.5: Pathway membership evidence for each gene g € G. The red star below
the black line represents the gene that has been predefined as a member gene of
pathway A but should not be as strongly suggested by PROPA; the blue star above
the black line represents the gene that has been predefined as not a member gene of
pathway A but may be as suggested by PROPA.
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Figure 4.6: Pathway membership evidence for each gene g € G with respect to two
different pathway gene sets. (a) The pathway gene set includes the first four genes
(A4); no evidence of any false positives or false negatives. (b) The pathway gene set
includes the first six genes (Ag); PROPA strongly suggests the sixth red gene in the
gene set is not a member of the pathway:.
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Chapter 5

Numerical Integration and Approximation

Marginal likelihood is a key quantity for Bayesian model evaluation, comparison and
selection. Otherwise known as “evidence”, the marginal likelihood is the data prob-
ability averaged with respect to all the model parameters with respect to their prior
probability distribution. Computing marginal likelihood is an integration problem
that, however, appears to be difficult in most realistic applications because of the
intractability of the likelihood function. Sometimes the analytical form of antideriva-
tive is not available. It may also be the case that the antiderivative is given as the
sum or product of an enormously large number of terms. In such cases, numerical
integration and approximation is needed.

In this chapter, the characteristics of the joint density function under PROPA
model are studied. I briefly review some existing numerical integration and approx-
imation methods, including quadrature, Laplace approximation, and Monte Carlo
integration. Difficulties in using these methods to estimate the marginal likelihood in
PROPA are addressed. A simulation study demonstrates the effectiveness of PROPA
in assessing pathway-phenotype association and the marginal likelihood approxima-

tion with quadrature and Laplace approximation.

5.1 Curse of Dimensionality

Refer to the marginal likelihood computation in PROPA, that is, the expression of
(3.13) with the likelihood function p(II|@, A, F = A) shown in (3.9) and the prior
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specified in (3.4) and (3.7). Simple algebra leads to the form

a a p
I o ao—111(geA
:/ / allaoln[mamgl Y (1= ra)ap(l —m,)* 1] (oc4)
1 J1 =1

[TBozm;"l_l + (1 —rp)ap(l — ﬂg)ao_l}l(g¢A) dagday (5.1)
a a 2P
:/ / ClOéalGal.1<Oél> + CQO(IlGaQ.Q(Oéo) + Z CiGai.l(Oél)Gai.o(Oéo) dOéodOél.
1 )1 i=3
(5.2)
where, for i = 1,...,2P, C; is a constant, and Ga;1(a1) and Ga;g(p) are gamma,

density functions for a; and «q specified by certain parameters that can be easily
derived. As can be seen, the integrand is a weighted sum of 2P terms, each of which
has an antiderivative in an analytical form, so the exact value of this integral should be
available. However, the computatioal complexity in this evaluation is O(27), meaning
the computational cost increases exponentially in p. It is known that genome-wide
expression data usually contains thousands or even tens of thousands of genes. The
computatioal expense in such cases makes it impractical to obtain the exact value of
this integral. Therefore, numerical integration methods are applied to approximate
this marginal likelihood.

In order to choose appropriate numerical integration methods, one needs to ob-
serve the behavior of the integrand (joint density function). Denote the integrand

here by h(ap, 1) and consider the form shown in (5.1),

p
oo - ao—1711(geA
h(a, 1) =ay'ag ! H{ [racam ™+ (1= ra)ag(l — )] (g€4)
g=1
[rponmy* ™ + (1 = rp)ag(l — Wg)ao_l}l(gﬂ)}. (5.3)

Figure 5.1 presents some examples of h(ayg, ) for various example choices of the data
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set II, gene set A and hyper-parameters r4 and rg. The three figures correspond to
three simulated data sets with p = 18, 100, and 1000, respectively. For each data
set, h(ap, ) is plotted with respect to three different gene sets Ay, A and As. The
heated areas represent the integration domains where the integrand has high values.

Each heated spot corresponds to one distinct gene set.

As can be seen, h(ag, ;) appears (in these example cases) to be a unimodal
function, though this is not guaranteed for a function which is a mixture of gamma
densities (as 5.2). In these examples, h(ag, o) is usually concentrated in a relatively
small area whose location varies with the data and gene set. Even so, some adaptive
techniques probably can still be found to facilitate standard numerical methods for

this integral.

Many numerical integration methods, such as some of those introduced in the
following section, inevitably involve the evaluation of the integrand at certain loca-
tions in the integration domain, especially where the integrand has high values. As
indicated in (5.3), the integrand h(ag, 1) is a product of p + 2 terms. When p is
large, the multiplication can easily cause a computer floating-point overflow problem.
This is demonstrated in Table 5.1, where the values of log h(ag, a1) and hy (oo, o1)
are exemplified with respect to different p. Even for a moderate value of p, say,
103, h(ap, ) has exceeded the largest floating-point number representable on the
computer. When such overflows happen, the computer evaluation of the quantities
lose precision. So the overflow problem in large p cases is non-trivial in this marginal

likelihood computation - the curse of dimensionality.
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Figure 5.1: Examples of integrand h(ag, aq). (a) p = 18; (b) p = 100; (c) p = 1000.
In each of the three cases, the logarithm of integrand is evaluated for three different
gene set A’s. The heated areas represent the places where h(ag, 1) has high values
corresponding to one gene set.
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Table 5.1: Examples of values of log h(cy, o1) and h(ayg, op) with respect to different
p. h(ag, o) generally increases with p and overflows when p reaches 10°. In such
cases, log h(ap, 1) is a projection of the real value of h(ag, aq).

p log hy(ap, 1) hg(cw, 1)
18 6.6849 800.2307
100 131.6183 1.4491e+57
1000 1.8950e+03 Inf
10000 1.7184e4-03 Inf

5.2 Numerical Integration Methods

5.2.1 Quadrature

Quadrature is the standard, most straightforward numerical integration approach
(Ueberhuber 1997; Davis and Rabinowitz 1984). This approach evaluates the inte-
grand h(6) at a number of pre-determined locations 61, ... W) which usually are
regularly spaced throughout the whole integration interval, then uses the weighted

sum of these evaluation to approximate the integral, namely,

/@ h(0)do ~ Z wih(0))-

There are many rules for assigning weights to the evaluated results at the locations,
such as Trapezoidal rule, Simpson’s rule and Boole’s rule corresponding to the em-
ployment of 2-, 3- and 5-point Newton-Cotes formulas derived from Lagrange inter-
polation. The simplest one is the Trapezoidal rule, by which the evaluation results of
integrand are equally weighted by the spacing interval (except for the first and last
locations). This rule is widely used for its simplicity and accuracy.

A more complicated method is Gaussian quadrature, which optimizes the numer-
ical integration by selecting specific evaluation locations based on certain integration

interval-dependent rules rather than equally spacing the whole integration interval.
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The complication of selecting evaluation locations lowers the desirability of Gaussian
quadrature. Simply decreasing the space between evaluation locations in quadrature
can equally increase the accuracy, while the increased computational cost is not much
more than Guaussian quadrature.

Quadrature is more frequently used for approximating one-dimensional integrals
for its ease and good accuracy in most cases (it is also called cubature in a multiple
integral). However, the number of evaluations increases exponentially with the di-
mension of integral, which leads to tremendous computational cost and a decrease in
approximation accuracy. Thus quadrature is limited in multi-dimensional integrals,
especially when the integrand is not smooth or well diffused. Some more sophisticated
methods, for example, sparse grids (Gerstner and Griebel 1998), have been developed
based on certain techniques of combining one-dimensional quadrature results to solve

multi-dimensional integration problems.

5.2.2 Laplace Approximation

Laplace’s method approximates the marginal likelihood by fitting a normal density
function at the maximum of the joint density h(0) = p(8|D)p(), where D is data,
and computing the volume under the Gaussian curve within the domain of 6 (Tierney

and Kadane 1986). The marginal likelihood estimator is then

p(D) = / B(6)d0 ~ (20)"2[[V21(h)

where d is the dimension of # and § = arg max log (), corresponding to the MAP

estimate of 0, and W = (—H)~' where H is the Hessian matrix of h(6) evaluated at
6. Newton-Raphson’s method is frequently applied to obtain 6. The fundamental

idea of Laplace approximation is using a normal density N (é, ‘if) to approximate the
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posterior density p(f|D), and estimating the marginal likelihood at . This method

is most relevant when the posterior distribution is unimodal.

5.2.3 Monte Carlo Integration

Generally, Monte Carlo integration methods involve the evaluation and averaging of
certain objective functions, which depend on the integrand and specific approaches,
at locations randomly sampled in the domain of integration. Usually a large number
of samples of integration variables are required to attain good accuracy. The compu-
tational cost for sampling makes the Monte Carlo integration methods uncompetitive
with quadrature in one or two dimensional integration. However the convergence rate
is independent of the number of dimensions. Hence, Monte Carlo integration meth-
ods are more often used for the approximation of higher dimensional integration. In
this section, I briefly summarize importance sampling and Metropolis-based numer-
ical estimators without discussion of the specific integral estimation problem in the

PROPA models.

Importance Sampling

The importance sampling method approximates the integral with a weighted sum of
integrand values evaluated at the locations sampled from an importance distribution

g(0), which has an explicit mathematical form, i.e.

) 1 <X h(0)
(D) = N ; g(e(i))’

where 1), ... 0™ ~ ¢(#). The p.d.f. of the importance distribution g(#) must have
a support larger than that of the integrand and be easy to sample. There are no

rigorous criteria for choosing a good g(6) except that the integration is more efficient
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if g(f) has a shape similar to h(6) and g(f) is relatively better diffused than h(0)
(Robert and Casella 2004).

Quantile integration is an extension of importance sampling (Johnson 1992).
Given the importance distribution, the samples of # are quantile interval means of
g(0), i.e.

1
N

=1

>

()
(W)’

p(D) =

Q

where w® satisfies [, (0 —w®)g(6)dd = 0 and [ g(0)dd = 1/N. Compared with
importance sampling, this approach is theoretically more efficient, but much harder

to implement.

The simplest case is sampling from the prior distribution p(é), thus,

N
1 .
(D) = — D],
D) = 5 o p(DI0)
This is generally inadequate because poor similarity between the likelihood, p(D|0),

and the prior leads to high variability in the estimate.

Posterior Sampling Estimator

In the importance sampling method for marginal likelihood estimation, the ideal
importance distribution would be the posterior distribution p(6|D), because the joint
distribution h(#) as a function of 6 is p(f| D) times a normalizing constant. However,
the explicit form of p(#|D) is not available, because the normalizing constant is the
marginal likelihood itself. Importance sampling in such a case can be extended to a
large class of Monte Carlo integration approaches using marginal posterior samples
of each integration variable provided by Metropolis-Hestings sampling or its specific

case, Gibbs sampling when the Markov chains reaches equilibrium. Gamerman and
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Lopes (2006) summarized the existing Monte Carlo marginal likelihood estimators

based on posterior samples. The key approaches are:

e Harmonic mean estimator (Newton and Raftery 1994)

) 1L 1 -

where 1), ... 0N) ~ p(d|D). This estimator is extremely sensitive to small

likelihood values.

e Generalized harmonic mean estimator (Gelfand and Dey 1994)

)

where 01, ... 0™) ~ p(0|D), and g(f) can be any density function on the same

. 1 o g(69)
p(D) = (N ; i(e(l))

support of h(f), but has to be chosen carefully to obtain good accuracy in the
estimation. Clearly, p(D) = p(D), when ¢(0) = p(0|D).

e Newton and Raftery’s estimator (Newton and Raftery 1994)

This estimator uses an iterative scheme,

SN (D6 [5p4(D) + (1 — 6)p(D[eD)]
SV [0 (D) + (1 - 8)p(D]o@)) !

D) =

Y

where 0. 0N ~ 5p(0) + (1 — 6)p(0| D) with 0 < § < 1.

e Laplace-Metropolis estimator (Lewis and Raftery 1997)

(D) = (2m)"2 W2 (0).
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d is the dimension of #. This estimator is the same as traditional Laplace
approximation except that 6 is from the posterior samples of 6 that maximizes

h(#), and ¥ is the MCMC variance of posterior samples.

Bridge sampling estimator (Meng and Wong 1996)

The marginal likelihood is estimated iteratively as

No ~ (i ~ (i A(t— N
NLz 21:21 W() |:N1]Y|-1N2w(z) + N1]YF2N2p(t 1)(D)]

—1
1 N N i N2  A(—
e T [ + e O(D)]

where w® = h(0D)/g(0®) for i = 1,..., Ny, and 0@ = h(D)/g(dD) for
i=1,...,Ny. 6O . 0N) ~ p(g|D), and 0V, ... §™2) ~ ¢(f). The accuracy
of this estimator depends on the distance between the proposal density ¢ and

the posterior density.

Candidate’s estimator (Chib 1995)

A simple and intuitive estimator is

h(9)
p(0|D)’

p(D) =

where p(f]|D) is an approximation density function of the posterior density.
Precise marginal likelihood in principle can be obtained by taking any value of
0 within the support of h(0) if p(6|D) = p(0| D). However, p(f|D) is an approx-
imation. Hence, the value of 6 need to be chosen so that the distance between
p(0|D) and p(f|D) can be minimized. Usually, € is chosen to be the posterior
sample mean or mode, or any value around the mean or mode. The Laplace-
Metropolis estimator can be viewed as a special case of Candidate’s estimator,
where p(0|D) is a normal density whose mean and variance are estimated using

posterior samples of 6.
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5.3 Simulation

In this section, I present a simulation study of marginal likelihood computation for
the PROPA model. The purpose is to demonstrate the effectiveness of PROPA
and the performance of the applicable numerical integration methods, specifically,
quadrature and Laplace approximation. Quadrature requires the evaluation of the
integrand, hence it is limited when p is large. However, I choose this method for
the simulation study because of its simplicity and generally good accuracy. Laplace
approximation is also easy to implement in PROPA. The greatest advantage of this
method is that this estimate has a form allowing log transformation of the integrand.
The main difficulty of importance sampling lies in the choice of the importance den-
sity function, and this is hard when the integrand is a mixture of a large number
of density functions. Figure 5.1 showed that h(ag, ) is not well diffused in the
integration domain and varies widely depending on the data and model. Finding
an appropriate importance density is a hard problem. The same difficulty exists for
the generalized harmonic mean estimator. Some posterior sampling estimators are
limited by the inevitable evaluation of either joint likelihood or likelihood function
because of their summation forms, such as the harmonic mean estimator, Newton and
Raftery’s estimator and bridge sampling estimator. The Laplace-Metropolis estima-
tor is a substitution of Laplace approximation when analytically fitting the normal
density is difficult. To the integration problem in the PROPA models, it is not nec-
essary. Candidate’s estimator also has an appealing form that allows log transform
of joint density during the marginal likelihood approximation. However, determining
the posterior approximation density p(f|D) appears to be hard in the integration
problem in the PROPA models. The usual procedure for determining p(é|D) is to
choose a parameterized density kernel that looks like the empirical posterior distri-

bution of 6, then use the posterior samples to estimate these parameters to get p(6).
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Since the posterior distribution of parameters ag and a; is truncated, it is difficult

to approximate using the posterior samples.

In this simulation study, I use the data set described in Section 4.2. The number
of genes in this simulated data set is p = 18, a small value that allows for exact
evaluation of the joint density function and the marginal likelihood. Seventeen gene
sets are generated and denoted by {As, }s,-1.17, representing pathways { A, }s,=1.17 -
Each gene set A, is composed of the first s4 genes. Figure 5.2 shows the association
probabilities of all the genes and illustrates how the 17 gene sets are constructed.
Again, the prior means of gene pathway membership r4 = 0.8 and rg = 0.1. The
joint density function conditional on each gene set is exhibited as a contour plot
in Figure 5.3. For different gene sets, the joint density is concentrated in different
domains of oy and a;. Generally, the concentration field shifts from the large a; and
small o area to the small a; and large o areas with the increase of s4. This is
decided by the arrangement of 7, in this data set, which is generally in a decreasing

order.

0.91
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Figure 5.2: Association probabilities in the simulated data set. The red dots cor-
respond to the genes in pathway gene set A, and the blue dots correspond to those
not in A (i.e. in B). A;, is the pathway gene set that includes the first s, genes of
the 18. By increasing s from 1 to 17, 17 gene sets are generated.
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Figure 5.3: Contour plots of h(ag,a;) corresponding to 17 pathway gene sets. In
each plot, x-axis is ap; y-axis is a;.

Since p = 18 the exact values of the marginal likelihood given each gene set can be
easily computed by using the analytical form derived in (5.2). The standardized log
marginal likelihood (scaled to [0, 1] by dividing the maximum), as shown in Figure
5.4, increases when s4 = 1 : 5 and reaches the peak at s4 = 4 and 5, giving evidence
that the gene sets containing the first 4 or 5 genes are most likely to be associated
with the phenotype. This is consistent with the original simulation design in that the
first few genes are the signature genes of the hypothetical pathway F. The variation

of log marginal likelihood across the rest of the gene sets can easily be interpreted by
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the fluctuation of the m, across genes.
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Figure 5.4: Standardized log marginal likelihood for each of the 17 pathways in the
simulation.

Figure 5.5 presented the exact log marginal likelihoods of the 17 gene sets and
the corresponding approximate values obtained by using quadrature integration and
Laplace approximation. Among the 17 values, the maximum and minimum of quadra-
ture approximation errors are 0.055 and 3 x 107°. For Laplace approximation, the
minimum error is 0.002; but three approximate values, corresponding to A, A5 and
Ajg, are obviously wrong; the approximate value for A;; is not available due to the
numerical problem. Joint density functions with Ay, A5 and A;¢ are exhibited in
Figure 5.6. The poor accuracy of Laplace approximation may be either due to the
irregularity (nonunimodality) or poor Gaussianality of h(«yg, 1) in the integration do-
main. Particularly, although h(ag, aq) appears to be unimodal in the contour plots,
the subtle irregularity still exists and may cause the algorithm converging to a local
maximum as well as erratic/unstable values of the Hessian at the local Maximum.
Setting different starting points of integration variables usually is the approach to
dealing with the irregularity. However, this depends on observation of the global

maximum of log h(ay, 1), which can be inaccurate and lead to poor approximation.
In summary, quadrature has good performance in approximating the evidence
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when the number of genes in the data set is not large. Laplace approximation is
a fast approach and potentially can deal with data with a large number of genes,
though the performance is not reliable. An approach needs to be developed to work

with large data sets and provide a reliable estimate of marginal likelihood.
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Figure 5.5: Log marginal likelihoods of 17 pathways in the simulation. Red circles
are exact values; blue +’s are estimates with quadrature integration; black x’s are
estimates with Laplace approximation.
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Figure 5.6: h(ap, ;) when sy, = 2, 12 and 16. These are the cases where the
Laplace approximation has the worst accuracy .

65



Chapter 6

Variational Methods

Variational methods provide approximate inference algorithms that yield lower bounds
on marginal probabilities of interest (Jaakkola and Jordan 1997; Jordan et al. 1999).
These type of methods have been intensively studied and applied to Bayesian infer-
ence and model comparison (or selection) problems (Corduneanu and Bishop 2001;
McGrory and Titterington 2007). Specifically, for marginal likelihood computation,
an existing variational approximation method, called variational Bayesian EM by
Beal (2003), uses the Expectation Maximization (EM) algorithm to achieve the op-
timal lower bound of a log marginal likelihood under a posterior independence as-
sumption for model parameters. Model comparisons or hypothesis testing based on

the lower bounds of marginal likelihoods, however, is insufficient and not persuasive.

I propose a new method for log marginal likelihood approximation. This method is
built on the same foundation as existing variational approaches, but uses Monte Carlo
simulation to obtain optimum bounds — both upper and lower — for a log marginal
likelihood. Bound optimizations on the two sides correspond to the two-way mini-
mization of Kullback-Leibler (K-L) divergence between two variational densities and
the joint posterior density of model parameters. The upper bound optimization de-
pends on the posterior samples of parameters generated through an MCMC method,
while the lower bound optimization utilizes Monte Carlo stochastic approximation
approach that appears to be more general compared to variational Bayesian EM.

Simulation studies are performed to show the effectiveness of this method.
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6.1 Approximation with Lower Bounds

The computation of marginal likelihood in PROPA encounters a floating-point over-
flow problem when the number of genes is large. As has been discussed in the previous
section, a desirable solution is to approximate the marginal likelihood with a certain
form in which the quantities causing overflow are put in a log transform. Although not
specifically developed for solving such high-dimensional problems, the Cheeseman-
Stutz (Cheeseman and Stutz 1996) method and the Variational Bayesian EM (Beal
2003) meet such a requirement and provide lower bounds on the log marginal like-
lihood. Both methods have been developed for the settings that contain hidden

variables and depend on the EM algorithm providing solutions.

Cheeseman-Stutz Approximation

Denote the marginal likelihood by p(D|M), where D is the data and M is the model
with parameters 6. For any hidden variables z, the log marginal likelihood can be

approximated as

(D)6, M)
log p(D|M) &~ Leg = lo D, 2| M) )
gp(DIM) =~ L¢g g(ﬁ( | )p(Dle’M)

= log p(D, £|M) + log p(D|6, M) — log p(D, 2|6, M)

where 6 is the a maximum likelihood (ML) or a maximum d posteriori (MAP) es-
timate of @, and 2 is the expectation of z given 6. 6 and % are obtained via the
EM algorithm. This approximation was initially proposed by Cheeseman and Stutz
(1996) and later was noted by Minka (2001) as a lower bound of log marginal likeli-
hood in the context of mixture models. Beal (2003) extended this conclusion to any

model and provided a proof.
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Variational Bayesian EM

The mean-field variational methods were initially developed in statistical physics
and extensively studied by machine learning and Bayesian learning communities for
deterministic approximation of marginal distributions (MacKay 1995; Jordan et al.
1999; Jaakkola and Jordan 2000; Humphreys and Titterington 2000; Corduneanu and
Bishop 2001; Ueda and Ghahramani 2002; Beal and Ghahramani 2003; Jordan 2004;
Wang and Titterington 2004; McGrory and Titterington 2007). Beal (2003) reviewed
and examined these methods for Conjugate-Exponential models. The implementation
of the variational method for the purpose of marginal likelihood approximation was

called Variational Bayesian EM (VBEM).

Consider Jensen’s inequality in the marginal likelihood approximation context,

(D, z,0|M)

p
log p(D|M 2//qz,0 log dzd@,
(DIA) eJz ( ) q(z,0)

where z and 0, as before, are hidden variables and model parameters, respectively,
and ¢(z, 0) is any p.d.f. supported by ® and Z. The inequality sets a lower bound
of log marginal likelihood as an integral in which the joint density function as part of
the integrand is under a log transform. This looks appealing when one thinks about
solving the numerical problem in computing marginal likelihood.

By factorizing the variational density with respect to the hidden variables and
model parameters, i.e. q(z,0) = q.(z)qe(6), VBEM iteratively performs the follow-

ing steps to find the optimum ¢,(z) and gg(0) that maximize this lower bound:

1

¢ (2) = o oxp [/ q((;)(g) logp(D, z|0, M)d6
= e
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and

g6 (0) = Cigp(0|M) exp [/ ¢ (2) logp(D, 2|0, M)dz | .
z

where C, and Cy are normalizing constants. Beal (2003) has shown that this method

can always obtain a tighter lower bound than the Cheeseman-Stutz approximation.

Since optimization in this functional form usually is infeasible, the factors of
the mean-field variational density, ¢.(z) and g(@), need to be assumed in certain
parameterized density function forms that enable computation. The lower bound
optimization is then carried out with respect to the parameters in the assumed density
forms. This iterative algorithm converges to the local maximum lower bound of the

log marginal likelihood.

Upper Bound on Marginal Likelihood

Clearly, performing model comparisons based only on the lower bounds of marginal
likelihoods can be inappropriate as the approximation error is not quantitatively
limited. An ideal approximation in such cases requires an upper bound coupled
with the lower bound to confine the true value of marginal likelihood. One of the
quantities that could serve as an upper bound is the maximum likelihood given that
the optimization process truly finds the global maximum of the likelihood. Obviously,
this upper bound almost always will be very loose and of little help in restricting the
estimate of marginal likelihood. The expectation of the data likelihood under the
posterior distribution of parameters is also an upper bound on the marginal likelihood
(Beal 2003). This is also a poor upper bound because the tightness of this bound
drifts away as sample size increases. In the following section I propose a new, tight

upper bound for log marginal likelihood.
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6.2 Monte Carlo Variational Method

I propose a new variational method providing optimized lower bound and upper
bound for the marginal likelihood. In this method, a Monte Carlo stochastic approx-
imation algorithm is employed as an alternative but more general approach to the
optimization of the lower bound as defined by Jensen’s inequality and optimized with
EM algorithm in VBEM. The upper bound is derived under the variational frame-
work and optimized by using the posterior samples of model parameters obtained
with MCMC methods.

I begin with derivation of the lower bound and upper bound of log marginal
likelihood in the general framework of variational methods, and follow this up with
the description of the bound optimization methods under the assumption of expo-
nential family mean-field variational density forms. Convergence of the optimization
algorithms proposed is discussed. Then this approach is applied to the marginal likeli-
hood approximation in PROPA models, and the performance is studied in simulation

studies.

6.2.1 Lower and Upper Bounding Marginal Likelihood

Denote the marginal likelihood in a general form by

p(D|M) = /@ p(6, DIM)d6,

where D is the data, M is the model, and 8 = {6;,...,0x} € O represents all the
model parameters. In case some of parameters can be analytically integrated out,
the dimension of this integral is reduced. Then the integration over the rest of the

parameters fits in the discussion.

For any density function ¢(@) that has the same support as the posterior distri-
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bution p(@|D, M), by Jensen’s inequality,

logp(D\M)Z/q(H)logMdﬂ, (6.1)

) Q(e)

a lower-bound for the log marginal likelihood can be set up with specific q1,(0), i.e.

p(6, DIM)

22(0) deo.

L—/GC]L(O) log

When ¢, (0) takes an analytical form, this lower bound is simply the expectation of
p(6, D|M)
q.(0)

Now take a step back. The inequality in (6.1) turns into equality only when

log with respect to this density ¢ (0).

the free distribution ¢(0) is the posterior distribution of 6, i.e. ¢(8) = p(6|D, M).

Consider the equality

logp(D|M) = / de

p(6]D, M) log 101D
e p

(0| D, M)

:/@p(0|D,M)logp(0,D|M)d0—/@p(9|D,M)logp(0|D,M)d9.
(6.2)

The second term — [ p(0|D, M)logp(6|D, M)d6 is the mathematical entropy of
p(0|D, M). According to Gibbs inequality, for any probability density ¢y (@) that

has same support as p(6|D, M),

_ / p(61D, M) log p(6]D, M)d0 < — / (81D, M) log qu (8)d6.
® ®
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Plugging this into (6.2) results in an upper bound of log marginal likelihood
U= [ p6ID. M) ogp(6. DIM)AO — [ p(6|D. 1) logav(6)d6
e e

_ (6, D|M)

ae. (63)
p(6, D|M)
qu(0)
with respect to the posterior distribution p(@|D, M). If p(8|D, M) does not have

Clearly, given the form of g;;(0), this upper bound is the expectation of log

an explicit form (this actually is always the case because its normalizing constant
p(D|M) is unknown), the evaluation of this upper bound becomes a Monte Carlo

integration problem that depends on the samples from p(6|D, M).

Now the log marginal likelihood is bounded as
L <logp(D|M) < U.

To optimize the approximation of the log marginal likelihood, one needs to find the
density functions gy (€) and ¢7,(€) that minimize the upper bound and maximize the
lower bound, respectively. Suppose both ¢ (0) and ¢ (0) take parameterized form
q(0;~) with v € I" a vector of tunable parameters. The goal is to find 4y and vz, so
that ¢(0;~y) and ¢(0;~,) minimize the upper bound and maximize the lower bound,
respectively. Then, conditional on the choice of the form of ¢(8;7), the log marginal

likelihood is optimally bounded as
L, <logp(D|M) < U,

where

(6, D|M)

p
UO:/pHD,M log de,
© (6l ) q(6;v)
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and
p(6, D|M)

) (6.4)

Lo=/ q(0;~)log
®

This lower bound optimization is the basic idea of existing variational Bayesian meth-
ods. I name ¢(0;~y) and ¢(0;~.) the upper bound variational density function and

lower bound variational density function, respectively.

Now the computation of log marginal likelihood relies on the availability of three
things: 1) a good form of the variational density function kernel ¢(0;~), 2) an opti-
mization strategy for «, and 3) the samples from posterior distribution p(@|D, M).
The natural way (in fact the only possible way in the context) to generate p(€|D, M)
samples is the MCMC method. I then focus on the construction and optimization of
variational densities.

The choice of the kernel of ¢(@; ) usually is based on the consideration of compu-
tational convenience. The tightness of the bounds are then determined by how good
q(0;~) can be as an approximation to the posterior density p(@|D, M). In particular,

a factorized form for ¢(0;~) is considered based on the mean field theory, i.e.

¢(6;7) = [ ] ax(6r; v0)- (6.5)
i

For nice algebraic properties as well as generality, let g (0y; i) foreach k € {1,..., K}
be a p.d.f. (or p.m.f.) from the exponential family. Here v, = {74 ;};=1.s, Is a vec-
tor of the natural parameters of density qg(0x; ). Within the exponential family,
a natural choice of density kernel for gy (6x; i) is the one that most likely captures
the characteristics of the marginal posterior distribution p(x|D, M). The goodness
of q(0;~) as an approximation to p(@|D, M) then depends on how much fluctuation
the interaction between 0y, (k =1,..., K) and {6; };=1.x ;2 causes in the mean fields.

Now I discuss the optimization of the lower bound and the upper bound separately.

73



6.2.2 MCSA for Lower Bound Optimization

This lower bound optimization shares the same basic idea with the existing mean-field
variational approximation method. Given a variational density function ¢(0;~) as an
approximation to the posterior density p(8|D, M), this lower bound maximization is
equivalent to the minimization of the K-L divergence of p(8|D, M) from ¢(6;~), i.e.
finding

1 = arg mﬁyin {Dxr [qllp]}

where

Drcr lqllp] = /@q(ﬁ’;v) log %d&

anon-negative quantity. This is easy to show. Simply plugging the equality p(0, D|M) =
p(0|D, M)p(D|M) into Jensen’s inequality shown in (6.1) (with ¢(0) substituted with
q(0; ) here) yields

p(0|D, M)p(D|M)

logp(DlM)Z/efJ(O;v)log 10 de
N _ q(0;7)
= logp(D|M) — /@Q(e,’)’) log Mde

= logp(D|M) — Dk, [q]|p]

= L(v),

so that raising L(7y) decreases Dgr [q||p]-

The existing mean-field variational method, as introduced in Section 6.1, uses a
variational density form factorized over hidden variables and model parameters (or
constructs such settings by treating certain model parameters as hidden variables),
and depends on the EM algorithm providing solutions to the lower bound optimiza-

tion. The Monte Carlo EM (MCEM) algorithm has been proposed (in the context
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of maximum likelihood estimation involving missing data) to deal with the cases
that the expectation step in the EM algorithm has no analytic solutions (Celeux and
Diebolt 1992; Chan and Ledolter 1995). In this algorithm, Monte Carlo method is
applied to estimate the expectation. By combining with a stochastic approximation
process, the convergence of this stochastic version of EM was established under mild
conditions (Delyon et al. 1999). This work is the inspiration for a stochastic approx-
imation version of the variational Bayesian method proposed here. The Monte Carlo
method is used to calculate the expectations of the solutions, and optimize the lower
bound iteratively via a stochastic approximation process. The resulting algorithm is
easy to implement, and its convergence can also be guaranteed under conditions that

are applicable to many practical situations.
Refer to (6.4). As a function of the parameter vector «y, the lower bound of log
marginal likelihood is written as

p(6, D|M)

46
q(0;7)

L) = /@ 1(0;7) log

with ¢(8;-) taking a factorized exponential family form presented in (6.5). Let the

first order derivative of L(«y) with respect to v ; equal zero for each k € {1,..., K}

5



and j € {1,..., J}, namely,

AL(~) ) / q(6;7)
= 0:~)log ——— 1/
a’Yk,j (9%,]' ® Q( 7) s p(O, D’M)

[0 q(6;~) > q(6;~) aq(Gw)}
— [ =2 (1og -2 ) 4(0:4) + 1o 46
/2 2y ( 800,010 ) 1O T8 e BRD o,

[01og q(6;7) q(6;~) 0logq(6;~) }
=— | |—2—1"q(0;7) +1o 0;7v)| do

de

[ q(0;7) ] 01og qi(Or; i)
—— | 1410 0:~)deo 6.6
K;_ B | T By 0:) (6.6)

Then the solution of this system of Zszl Ji equations is =y, which maximizes the
lower bound of the log marginal likelihood. Here, stochastic approximation is used

to solve this system of equations.

Stochastic approximation (SA) (Kushner and Yin 2003) is a class of algorithms for
finding the roots of possibly non-linear equation f (x) = 0, in the situation where only
noisy measurements of f (z) are available. The Robbins-Monro algorithm (Robbins

and Monro 1951), the simplest form of SA, is a recursive process
2D = (O (4D (4D
with some initial z(®. Here {s(t),t > 1} is a sequence of step sizes that satisfies

standard conditions: Y ;0 s = oo and >, [s(t)]Q < oo. Forany t > 1, (" is a

noisy measurement of f (z), i.e.

¢ = f (2) +€9,

where {f(t),t > 1} is the so called noise sequence.

In my case, x is v, and the function f(7;;) has an integral form as shown in
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(6.6). Assume Monte Carlo samples {8 },_;.y from distribution ¢(8;~) are available
(these samples are easy to generate when ¢(0;4) is a factorized exponential-family
density). For each k € {1,...,K} and j € {1,...,Ji}, f(7,;) can be evaluated by

its Monte Carlo estimate, namely,

N A .
1 PIGE Do o (010
C(Mg) = {{1+logpq( ) } og g (0 ; Vr) ’

N (6%, D|M) N

i=1
By the central limit theorem

o2
€ On) = 6 Ona) = £ ()l = N (0.5,
which means £ (7;;) is Gaussian noise.

By using the Robbins-Monro algorithm, v = {7 }k=1.x j=1.s, can be estimated

iterati\/e].y via
+1

Then, using the estimate 4 produced through the above iterative procedure
and the Monte Carlo samples {8®},_;.y from ¢(8;4z), one obtains the estimate of
the optimal lower bound conditional on the kernel form of the variational density

function,

. 1 0%, D|M
Ly=—) log p(—H (6.7)

When the iterative steps in the stochastic approximation go to infinity, this estimated
lower bound converges to the true maximum lower bound L, with probability one.

The proof of this conclusion is presented in Shen et al. (2007).
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6.2.3 MCMC for Upper Bound Optimization

The upper bound optimization tunes the variational density parameters ~ so that

U(7) reaches minimum, i.e. finding
v = argmin {U(vy)} .
~el

Minimizing U(y) is equivalent to minimizing U(vy) — log p(D|M). Refering to (6.2)
and (6.3), one has

Ut) ~logp(Dl1) = [

pWWJ@MWWDJ“w—/pMDWW%ﬂ&ﬂM
® ®

p(0|D, M)

de
q(0;7)

~ [ oI, 1og
C]
= Drr [pllq],

the K-L divergence of variational density ¢(@;-) from posterior density p(0|D, M).
Hence, minimizing the upper bound U(7y) is equivalent to minimizing this K-L di-

vergence with respect to -y, i.e. to find

vy = argmin { Dk, [pl|q]} -
~el

Since ¢(0; ) comes from the exponential family, which is well known as being log-
concave, Dy, [p||g] must be convex with respect to v = {7k }r=1.x. Consequently,
the global minimum can be found by setting the partial derivatives equal to zero.
Forall k€ {1,..., K} and j =1,...,Jy, let

0 0
gDyl = - [ ptoi.an) | 52

k,j

log qx (0k; vi) | O
= 0.
For qx(0k;~x) from exponential family, these equations can be solved either ana-
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lytically (when gg(0; i) is Bernoulli, Binomial or Gaussian) or through numerical
methods when the Monte Carlo samples of p(8|D, M) are available. By the Strong
Law of Large Numbers, the estimated solution 4, converges almost surely to the true
solution if 4, ; can be analytically expressed. Then the solutions of all these equa-
tions together form 4y, which converges almost surely to «y that truly minimizes
Dt [p|lq]. Given the MCMC samples of p(8|D, M), {8 };_1.n, the upper bound U,

can be estimated by

U, as consequence converges almost surely to the true globe minimum upper bound

of the log marginal likelihood under the conditions of the variational density form.

6.3 Application to PROPA Models

Here I describe how to approximate the log marginal likelihoods in PROPA models
through lower bound and upper bound optimization using MCVA outlined in the
previous section. This marginal likelihood evaluation solves the central problem in

PROPA and is a good example for the applications of this variational method as well.

6.3.1 Integrand and Parameters

In computation of marginal likelihood, the general principle is to integrate out as
many parameters as possible to reduce the complexity and increase the accuracy of
the last inevitable numerical integration step. The log marginal likelihood has been
presented as a reduced form in (5.1). It is an integral over the parameters o and «;.
Using the mean-field variational method to approximate this integral would involve
approximating the joint posterior density of ay and «; with a variational density

factorized with respect to these two parameters. According to the simulation in
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Chapter 4, ap and «; are continuous variables with truncated gamma-like posterior
densities, increasing the complexity of the variational p.d.f. form and the difficulty
in optimization. Meanwhile, the conditional posterior distributions of ay and oy (as
shown in (4.2) and (4.3)) depend on the sum of 1 — 2, or z,, g € G, suggesting
strong posterior dependency between them. One would expect that the factorized
variational density is a poor approximation to the joint posterior and leads to a
poor approximation of the log marginal likelihood. Therefore, I take another path
leading to a simple and probably more accurate solution of this log marginal likelihood
approximation problem.

Go back to the joint density function in a form with augmentation variables shown
in (4.1). Integrate out {5, }g4eg, oo and v, and leave {z,}4e¢ as integration variables.
Equation (4.1) contains an independent gamma density kernel of oy and «;, so it is

trivial to get

p o\ ] — o, \ I(geA) PN ]\ 1 I(g¢A)
A —TA -
p(H,z|A,]—":A):H[<W_) (1_W> ] [(?B) (1_:) ]
i 9 9 9 9
r r
EUOT0) (1~ (1: 1, M) (1 — (L 1, )
O
. p p p p
with vy = zzlzg, vy = zzl(l—zg), Al = — zzl(zg log 7,), Ao = — z:l(l—zg) log(1—m,),
9= 9= 9= 9=

and ® the gamma cumulative density function. It is implied here that the supports
of ap and oy are upper bounded by a, which is large enough to make ®(a; vy, Ag) = 1

and ®(a;v1, A1) = 1. Then the marginal likelihood is

p(I|A, F = A) =) p(Il,z|A, F = A).

zeZ
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The variational p.m.f. is constructed in a factorized form as

p
a(z:7) = [ [ ¢z (20 w0)- (6.8)
k=1
Since z, for each k € {1,...,p} is a binary random variable, the density kernel of

each factor must be Bernoulli, i.e.

@y (25 ) = Vi (L — ) (6.9)

with parameter v, = Pr(z; = 1).

The reason for choosing this parameterization is that the marginal posterior dis-
tributions of z,, g € G, are more likely to be close to independence in high dimensional
cases. Refer to Chapter 4. In each iteration of sampling in the posterior simulation,
the distributions of a and a; are generally determined by > (1 —2z,) and 3_ ; 2,
which means the fluctuation of a small number of z,’s may not have a large influ-
ence on the conditional distributions of ay and «;. It is even more likely that these
fluctuating z,’s are cancelling out each other’s effect on the distributions of « and
a;. Hence, for any z; (k € G), the fluctuation of z, (¢ € G,g # k), is not likely to
have an impact on zj through ay and «;. Parameters {z,},c¢ may be close to being
independent in the posterior. So ¢, (zx; %) should be a good approximation to the

joint posterior distribution of {z, : g € G}.

6.3.2 Bound Optimization

Refer to equation (6.6). To optimize the lower bound of the log marginal likelihood

here, one needs to solve a system of non-linear equations of p variables {j }r=1.,. For
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all k € {1 : p}, the equation in an explicit form is

5:1 759(1 - Vg)l_zg
p(IL, z|A, F = A)

flw) = |1 +1og

zeZ

(2 — ) =0.

The numerical method described in Section 6.2.2 is used to solve these equations. At
each iterative step ¢, samples of 2, . .., 2, are drawn from the mass function presented

in (6.9), which is parameterized by the ’yy*l), o ,fy,gtfl).

Compared with the lower bound, the upper bound optimization benefits more
from the new setting of the integral. I discuss it in detail as follows.

The goal here is to find the optimum parameters v = {7j}x=1, minimizing the

K-L divergence

D(v) = Zp(z|H,A,.7: = A)log

zeZ

(p(zméé§ - A)>

with ¢(z; ) in the form of (6.8). This corresponds to finding the solution of a set of

D(v)
o8l

0
equations { = 0} . Explicitly, for all k € {1 : p},
k=1:p

oD(v) 0 {

_ = ) _ — 2k _ 1—zg
o o > p(2|IL A, F = A)log (v (1 — ) )}

zeZ

— _m Zp(zﬂ_[,A,]: =A)(zx — &)
_ _mw(zkm,fl,f:fl) — ) =0 (6.10)

Clearly, in the domain [0, 1] the solution is v, = E(z|II, A, F = A), the posterior
mean of z;. This is to say, given a factorized form, the variational p.m.f. has the

minimum K-L divergence from the posterior p.m.f. of z when each factor ¢, (zx) is
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the marginal posterior p.m.f. of z, i.e.
p
q(z) = Hp(zk]H,A,]: =A).
k=1

The MCMC method as described in Chapter 4 provides the marginal posterior
samples of each model parameter when the Markov chain reaches equilibrium. So
the value of 7, that optimizes the log marginal likelihood upper bound can simply
be estimated by the mean of the MCMC samples {z,(j)}i:l:]v, namely,

1

(4)
2y,

Mz

i=1

Then the MCMC samples {2 },_.x from the joint posterior distribution p(z|II, 4, F =

A) are used to estimate the optimal upper bound of log marginal likelihood by

N
1 zD|A, F = A)
v o
~ i ~AZ ~\1
where Gu(z) = [T 45" (1 — k)’ .

6.4 Simulation Studies

To demonstrate the performance of MCVA method, I simulate two data sets and
compute the log marginal likelihoods of a few simulated gene sets in the study.

The first data set has been used in Section 4.2 and 5.3 to study posterior simu-
lation and numerical integration. It contains 18 genes, from which 17 gene sets are
constructed, and uses hyper-parameters r4 = 0.8 and rg = 0.1. For each gene set,

the exact value, quadrature estimate and MCVA optimal bounds of the log marginal
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likelihood are computed and displayed in Figure 6.1(a). The approximation error,
defined as an estimated value minus the true value for each gene set, is presented in
Figure 6.1(b). Quadrature has the best performance. The error plots show that the
variational optimal bounds are indeed the upper and lower bounds of the log marginal
likelihoods. Although their approximation errors are larger than quadrature, these

bounds are good enough to distinguish different gene sets/models in this example.
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Figure 6.1: MCVA simulation study on the 18-gene data set. (a) The exact values,
optimal upper bounds and optimal lower bounds of log marginal likelihoods of 17
gene sets. (b) The approximation errors of upper bounds and lower bounds.

In the second simulated data set, p = 100, and eleven gene sets are produced
precisely as in generating the 17 gene sets for the 18-gene data set, i.e. Ay, =
{1,...,s4} for each s4 € {15,...,25}. The data and gene sets are illustrated in
Figure 6.2. Let the hyper-parameters r4 = 0.9 and rg = 0.05. The optimal bounds
of log marginal likelihoods by MCVA are computed for each gene set and shown in
Figure 6.3(a). It is unrealistic to compute the exact values when p = 100. Quadrature
integration, as shown in the previous example, can produce a good approximation,
and it may still work when p is less than 103. Hence, the values of quadrature

approximation are used for reference. Figure 6.3(b) presents the difference (called
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error here) between each bound and the quadrature estimate as well as the distance
between the upper and lower bounds (the upper bound minus the corresponding
lower bound). The optimal upper bounds have smaller difference from the quadrature
estimates than the optimal lower bounds. The bound distances show the correctness
of the bound estimation. In this simulation, the upper and lower bounds given by
MCVA are sufficient to distinguish the log marginal likelihoods of all the models, and

the resulting PROPA identification of pathways is very accurate.

B .

40 60 80 100
9

Figure 6.2: Association probabilities in the simulated data set with 100 genes. The
red dots correspond to the genes in pathway gene set A, and the blue dots correspond
to those not in A (i.e. in B). A, is the pathway gene set that includes the first s
genes. By increasing s from 15 to 25, eleven gene sets are generated.

In these two simulation studies, both the lower and the upper bound optimization
methods have good performance in terms of accuracy. This double-sided bounding
provides sufficient information to facilitate model comparisons. The lower bound
optimization is especially fast when the dimension of data is relatively low. This ad-
vantage of lower bound optimization is lost with the increase of dimension. When p is
greater than 103, convergence becomes unacceptably slow. To solve the approxima-

tion problem in high-dimensional cases, I use a compromised strategy: lower bounding
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Figure 6.3: MCVA simulation study on the 100-gene data set. (a) The quadrature

estimates, optimal upper bounds and optimal lower bounds of log marginal likelihoods
for eleven gene sets. (b) The distance between the upper bounds and lower bounds.

the log marginal likelihood with a pseudo-optimal lower bound that is obtained by
using (6.7), where ¢(6,~v.) = q(0,~y). When the factorized variational density ¢ is a
good approximation of the joint posterior distribution of 8, the variational densities
corresponding to optimal upper and lower bounding are likely to converge to the
same function. Clearly, the value of the pseudo-optimal lower bound is always less

than the lower bound obtained through MCVA lower bound optimization.

I demonstrate the approximation using this strategy with a real data set and 15
pathway gene sets from a database. The data set contains probabilities of association
between 19,645 genes and the lactic acidosis (a cancer micro-enviormental factor)
status of human mammary epithelial cell cultures (refer to Section 8.1). Figure
6.4(a) presents the optimal upper bounds and pseudo-optimal lower bounds of log
marginal likelihoods for the 15 pathway gene sets. The distance between each pair
of bounds are shown in Figure 6.4(b). As can be seen, the pseudo-optimal lower
bounds are close to the optimal upper bounds, and such bounds are tight enough to

discriminate the evidence for different models.
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Figure 6.4: MCVA study on the real data set with 19,645 genes. (a) The optimal
upper bounds and pseudo-optimal lower bounds of log marginal likelihoods for 15

pathway gene sets. (b) The distance between the upper and lower bounds (upper
bounds minus lower bounds).

6.5 Discussion

The proposed variational method provides both lower and upper bounds of log
marginal likelihoods that are optimized under a certain variational density form.
These two bounds not only facilitate more reliable model comparisons but also give
a way to see the adequacy of the variational density as an approximation to the
posterior density of model parameters. It is also worth noting that this variational
method is generalizable in terms of the variational density form. It is not necessary
to take a factorized form. This is important when the model parameters left in the
integration are so dependent on each other that the factorized variational density is
a poor approximation to the posterior density of these parameters.

Additionally, the co-existence of the upper and lower bounds can relax the require-
ment for optimization. Clearly, a single bound strongly relies on the optimization
because its distance to the true value of log marginal likelihood itself is not bounded.
The requirement of reducing this distance is imposed on the bound optimization al-
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gorithms and makes marginal likelihood computation difficult when it involves a very
large number of model parameters. In particular, the lower bound optimization that
depends on EM or MCSA is more stressed by dimensionality, and convergence can

be unbearably slow.

This stress can be reduced when the bounds on both sides are available. If the
distances between these two bounds are small enough to distinguish different models,
further optimizing them is not necessary. Furthermore, since the same variational
density form ¢(0;4) is used for both bounds (though this is not necessary otherwise),
if one of the bounds is more easily optimized, the corresponding optimum variational
density can be applied to compute the other bound, which may be good enough for the
purpose of model comparisons even though not optimized. This is due to the fact that
the tightness of the bounds is essentially determined by how good an approximation
q(8;7) can be to p(@|D, M). In such a context, the upper bound shows a particular
advantage because of the better convergence property of the MCMC method-based

optimization algorithm compared to MCSA.
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Chapter 7

Breast Cancer ER and ErbB2 Pathway
Annotation

The simulation studies in the previous chapters have demonstrated the effectiveness
of PROPA from the both modeling and computational aspects. In this chapter,
two further “proof-of-principle” examples are presented to illustrate the use of the
PROPA in real biological contexts: pathway annotation for estrogen-receptor (ER)
status and human epidermal growth factor receptor 2 (ErbB2) status in breast can-
cers. These two phenotypes of breast cancers have been intensively studied and are
clinically relevant. Although the development mechanism of these two phenotypes of
cancers are not fully uncovered, many conclusions have been confirmed and well ac-
cepted, thus making them useful to evaluate the performance of PROPA. I annotate
the pathway activities under these two cancer phenotypes to test the effectiveness
of PROPA. The pathway annotation results are compared to those by GSEA, the
most widely used gene set pathway annotation method. When solving the pathway
annotation problem using the Bayesian modeling approach, one concern is the sen-
sitivity of analysis results to the choice of priors (hyper-parameters) while allowing
the model to have the flexibility to incorporate d priori knowledge. Another concern
is the robustness of the model to real data. In the ER example, the influences of
model hyper-parameters and data are addressed. Besides pathway annotation, gene
pathway membership inference is exemplified by the studies in both simulated and

real circumstances based on the ErbB2 over-expression signature.
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7.1 Pathway Annotation Format

The pathway annotation by PROPA is based on the comparison of multiple path-
ways typically from a pathway gene set database. The information sufficiency of
the pathway database gives PROPA the strength to identify the pathways poten-
tially associated with the investigated biological phenotype. I assembled 956 human
molecular signature gene sets from the MSigDB C2 collection provided by Broad
Institute (http://www.broad.mit.edu/gsea/msigdb/) and re-curated them based on

the Entrez human gene database.

In these examples and the application in the following chapter, the absence of
prior knowledge on phenotype-pathway association is assumed, and all the pathways
are given equal prior probabilities. In the summary of a PROPA analysis result, the
approximated log marginal likelihoods of all pathways are plotted in increasing order.
Histograms of the log marginal likelihood upper bounds are presented as well. These
graphics aim to give some ideas of how much the levels of the association between the
“top” pathways and the phenotype are distinguished from the other pathways. Some
quantities representing the evidence of associations are depicted in a summary table
for a number of top pathways. In this table, the top pathways are listed according
to their ranks based on log marginal likelihood variational upper bound. Besides the

rank and name of each pathway, the following quantities are provided as reference:

e Post. Pr: The posterior probability of the pathway as shown in (3.1). The
variational upper bound (refer to logML (UB) as follows) is used to compute

this posterior probability.

e Post. Pr (sub): The posterior probability of the pathway after removing the
dominant pathway(s). In some analysis, some pathways have such high pos-

terior probabilities that the other pathways all appear to have zero posterior
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probability, though they might also be interesting pathways in terms of the
association with the phenotype. The posterior probabilities of the pathways

are recomputed without including the top dominant pathways.
e BF: Bayes factor of the pathway as shown in (3.14).
e BF (sub): Bayes factor of the pathway after removing the dominant pathway(s).
e Size: The number of genes in the pathway gene set from database.

e LogML (UB): The optimal upper bound of log marginal likelihood for the path-

way obtained by using the variational method described in Section 6.3.2;

e LogML (LB): The lower bound of log marginal likelihood for the pathway ob-
tained by using the variational density function corresponding to the optimual

upper bound (refer to Section 6.4);

e UB-LB: The distance between the upper bound and lower bound of log marginal
likelihood for the pathway. When this distance is large, the approximation of
the log marginal likelihood might be poor, and the reliability of association

between this pathway and the phenotype is questionable.

7.2 Breast Tumor ER Pathway Annotation

Estrogen is an important factor in the development and progression of breast car-
cinoma. Estrogen-receptor a (ERa), one of the two forms of estrogen-receptor, is
the primary mediator of estrogenic actions in breast cancer. Upon estrogen binding,
ERa is activated and becomes a transcription activator in mammary cells. Estrogen-
bound ERa can bind to the estrogen response element of the target genes and activate
the transcription, stimulating mammary cell proliferation through the downstream

signaling pathways. It has been shown that over-expression of ERa and estrogen
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binding increase the cell division and DNA synthesis, which elevate the risk for repli-
cation errors and induce breast tumorigenesis. About two-thirds of breast cancers
show over-expression of ER« at the time of diagnosis. Both basic science and clinical
data indicate the value of ER« level as an important predictor of breast cancer prog-
nosis and disease-free survival. In general, ER-positive breast cancer is associated
with more differentiated tumors and favorable prognosis (Deroo and Korach 2006;

Moggs and Orphanieds 2001).

7.2.1 Data and Results Overview

A data set including 153 primary breast tumor samples is used to investigate the
pathway activities associated with ER status (Carvalho et al. 2007). The ER level
of each tumor sample has been measured by immunohistochemical (IHC) staining.
Overall, 95 tumors are ER-positive, and 58 tumors are ER-negative. For each sample,
the cRNA has been derived and hybridized to Affymetrix Human genome U95Av2
microarray to yield genome-wide gene expression data. The gene expression data
and ER status of these tumor samples are analyzed with a regression analysis using
the BFRM software, which yields the posterior probability, as well as the sign of
association (positive or negative) between the gene expression on each probe set and
ER status. The 12,532 probe sets are then collapsed to 8,764 unique genes according
to their corresponding Entrez gene IDs. The association probability histogram of the
8764 genes is presented in Figure 7.1(a). Figure 7.1(b) is the expression heatmap of
1,140 genes with highest association probabilities. These comprise the gene expression
signature — the factor phenotype under study — of the ER status in this breast tumor

set.

The optimal upper bound and non-optimal lower bound of log marginal likelihood

are computed for each of the 956 pathways by using the variational method described
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Figure 7.1: Association probabilities and expression profiles of the genes correlated
with the ER status of breast tumors. (a) Histogram of association probabilities. (b)
Expression profiles of 1,140 genes whose association probabilities are greater than
0.9; the expression level change from low to high corresponds to the color change
from blue to red.

1150

x Lower bound ||
+ Upper bound

1100 *

1050
1000
950 [
900 [
850
800

750} 3

Log Marginal Likelihood

700

650

0 200 400 600 800 700 800 900 1000 1100
Pathway Index Log Marginal Likelihood

(a) (b)

Figure 7.2: Log marginal likelihoods for 956 pathways in breast tumor ER status
pathway annotation. (a) Pathway log marginal likelihood upper bounds (blue +) and
lower bounds (black X); pathways are sorted in a decreasing order of log marginal
likelihood; pathways on the left side of the green and red lines are the top 10 and 25
pathways, respectively. (b) Histogram of the pathway log marginal likelihood upper
bounds; bars on the right side of the green and red lines correspond to the top 10
and 25 pathways, respectively.
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in Section 6.4. These bounds are plotted in Figure 7.2(a), where the pathways are
arranged in a decreasing order of the upper bound. For some pathways, the dis-
tance between the upper bound and the lower bound is too large to give a reliable
approximation for the log marginal likelihood, i.e. the mathematical quantities do
not provide sufficient information for us to judge whether or not these pathways are
associated with the phenotype compared to the others. However, for most of the
top 25 pathways, especially those of interest, the bound distances are small enough
for good estimation of their true log marginal likelihoods. Both Figure 7.2(a) and
(b) show obvious drops of log marginal likelihoods within the top ~20 pathways,
suggesting that the top ~20 pathways are likely to have significant association with
ER status compared to the rest. The first several pathways have larger log marginal

likelihoods and appear to be dominant in this analysis.

7.2.2 Significant Pathways

The top 25 pathways associated with beast tumor ER status are summarized in
Table 7.1, and the association probability histograms of a subset of these gene sets
are presented in Figure 7.3. In each of the plots, the red bars are the association
probability histogram of the genes in the gene set positively correlated with the ER
status, while the blue bars are the association probability histogram of the genes
negatively correlated with ER status.

The first two gene sets are breast tumor ER negative and positive signatures de-
fined by van’t Veer et al. (2002) through the DNA microarray analysis of a set of
primary breast tumors. The association probability histograms of this two gene sets
are shown in Figure 7.3(a) and (b). As can be seen, almost all the genes in Ay, espe-
cially those with high probabilities, are negatively associated with ER status; almost

all the genes in A, especially those with high probabilities, are positively associated
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with ER status. This observation confirms the reliability of the annotation provided
by PROPA. Besides the ER signatures, PROPA has also identified some other path-
way signatures whose linkage to breast tumor ER status have been confirmed by

previous research.

e Breast cancer prognosis signatures
van't Veer et al. (2002) defined a breast cancer prognosis signature correspond-
ing to four gene sets in the database. All of them show up in the top list,
Ag, A1, A1g and Ag;. Ag and Ajo represent the breast cancer prognosis nega-
tive signature, containing genes whose expression are negatively correlated with
breast cancer outcome. These two gene sets have different number of genes due
to different curation. A;g and As; represent the breast cancer prognosis posi-
tive signature, containing genes whose expression are positively correlated with
breast cancer outcome. Clinical research has concluded that patients with ER-
negative tumors generally have worse prognosis than those with ER-positive
tumors (Maynard et al. 1978). As shown in Figure 7.3(c), (e), (h) and (i), this
correlation between these prognosis signature and tumor ER-status are clearly

reflected in the data set and identified by PROPA.

e Undifferentiated cancer signature
The level of cell differentiation, technically quantified as histological grade, is
an important measure in cancer evaluation. Undifferentiated (high-grade) can-
cers, irrespective of any tissue types, often maintain rapid and abnormal cellular
proliferation and invasion, hence are associated with poor prognosis. The undif-
ferentiated cancer transcriptional signature was defined by Rhodes et al. (2004)
and includes the genes higher expressed in the cells of undifferentiated cancers
compared to well-differentiated cancers of different tissues. Compared with
ER-positive breast cancers, ER-negative cancers are more likely to be poorly
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differentiated, and consequently appear to be more aggressive and associated
with poor patient outcomes (Maynard et al. 1978; Pichon et al. 1996). This
provides the rationale to the finding of the undifferentiated cancer signature
(Ag) in the pathway annotation analysis of breast cancer ER phenotype here.
Figure 7.3(d) shows that almost all the signature genes are negatively correlated
with the tumor ER status, i.e. upregulated in the ER-negative tumors in this
data set, supporting this relationship between the breast tumor ER phenotype

and the cancer differentiation phenotype.

Myb pathway signature

The Myb pathway gene set A;5 includes the genes regulated by Myb (A-Myb or
c-Myb) transcription factors in MCF-7 mammary cells, primary lung epithelial
cells or primary lung fibroblasts. Lei et al. (2004) summarized these genes
and showed that the Myb-regulated gene sets in the three different cell types
are nearly non-overlapping; less than half of the genes in the gene set are Myb-
regulated in MCF-7 mammary cells. Importantly, previous work has shown that
estrogen-induced MCF-7 mammary cell proliferation involves the expression
of A-Myb, B-Myb and C-Myb proteins (Hodges et al. 2003), providing the
evidence of association between breast tumor ER status and Myb pathway
activation. As shown in Figure 7.3(g), less than half of the Myb pathway
signature genes have relatively high probabilities of either positive or negative
correlation with ER status, which is concordant with the summary of the gene
set given by Lei et al. (2004). Further verification of this annotation would
requires identifying of the Myb-regulated genes in MCF-7 cells from Ag and

observing the distribution of their ER-association probabilities.
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7.2.3 Comparison with GSEA

This data set is also analyzed with GSEA. Totally, 29 gene sets are significantly en-
riched at nominal p-value less than 0.01, including all the interesting ones described
above except the undifferentiated cancer signature and the Myb pathway signature.
Table 7.1 exibits the NES rank, nominal p-value, FDR g-value and correlation status
with ER reported by GSEA for each of the top 25 PROPA gene sets. In general, those
gene sets clearly relevant to the breast tumor ER status are correctly identified by
both PROPA and GSEA. Some of the other top PROPA gene sets are also identified
by GSEA with relatively low false discovery rate (FDR g-value < 0.25). In conclu-
sion, the pathway annotation results provided by PROPA and GSEA are generally
consistent, showing similar performance of these two methods for the analysis of this

data set in terms of detecting relevant pathways.

The gene sets, which are found in the top list given by PROPA, but not by
GSEA due to the insignificance according to nominal p-value, FDR g-value and NES
rank, tend to be composed of both positively and negatively associated genes. For
example, A4, A5 and Ajg are non-significant according to GSEA. The association
probabilities of genes in Ajs has been shown in the histogram in Figure 7.3(g), and

the histograms of A4 and Ajg are in Figure 7.4(a) and (b).

Although they contain many genes highly associated with ER status, these gene
sets are considered not enriched by GSEA; This is because GSEA performs one-way
tests. A gene set appears to be significant only when a majority of genes are correlated
with the phenotype in the same way. Therefore, GSEA only works properly on gene
sets curated as upregulation and downregulation sets exclusively. PROPA does not
currently use the sign information on the association between each gene and the
phenotype. Instead, it leaves this information to the posterior investigation of the

top gene sets. This is why PROPA detects the gene set representing Myb pathway,
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Figure 7.4: Association probability histograms of two gene sets highly ranked by
PROPA, but not by GSEA. These gene sets contain both positive and negative genes
in terms of correlation with ER status. GSEA cannot identify such gene sets, because
it ranks gene sets by one-way NES.

which is critically biologically related to breast tumor ER regulation. In such cases,
those gene sets exclusively containing upregulated or downregulated genes in certain
contexts (for example, Aj4) may not be of biological interest in terms of the pathway
name they represent.

The ability of PROPA to identify gene sets comprised of both upregulated and
downregulated genes offers advantage when gene sets are complicated and the ex-

pression regulation direction information is not available.

7.2.4 Influence of Hyper-parameters and Data

PROPA hyper-parameters r4 and rg represent the prior means of the true positive
rate and false negative rate of gene pathway membership specified by the reference
gene set A. The specification of r4 and rg depends on d priori knowledge on how
precisely a gene set represents the theoretical pathway in the context being studied.
These two parameters are involved in the evaluation of marginal likelihoods for the
pathways in comparison. In a Bayesian analysis, ideally, the priors should have the
flexibility to incorporate existing knowledge or justified beliefs. Meanwhile, moderate

change of their values should not have dominant effects on the model inference. The
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values of 4 and rp that have been used in the above analysis are 0.7 and 0.005. To
demonstrate the influence of these two hyper-parameters, I replace their values with

0.9 and 0.01 and observe the change of the pathway annotation results.

Association probabilities, the data in PROPA, come from the gene expression
analysis using BFRM (refer to chapter 2 and 3). The sparsity modeling that aims
to minimize the false positive rate in biomarker identification pushes the association
probabilities toward 0 or 1. This forms the basis of the beta mixture modeling of
the association probability for each gene in PROPA. Without d priori knowledge of
pathway activities under the phenotype, PROPA ranks the pathways according to
the data marginal likelihood given the allocation of genes specified by the reference
gene set. Here the robustness of PROPA is tested on the simulated data generated
by manipulating the true association probabilities in the ER example. The simulated
association probability of gene g is generated by 7, = F~'(R(m,)/(p + 1)), where p
is the number of genes, R is the ranking function, and F' is a polynomial cumulative
density function, explicitly, F(x) = %xS — %1’2 + %x In this manipulation, the as-
sociation ranks of all the genes are unchanged, while the distribution of association
probability is much more diffused. The histogram of {r },c¢ is shown in Figure 7.5.

Then the pathways related to ER status are analyzed with PROPA based on these
simulated association probabilities.

I focus on the top 30 pathways in each analysis. The level of log marginal like-
lihood generally is not changed when hyper-parameters change, but drops largely in
the analysis of the simulated data, meaning that the manipulated data poorly fit the
PROPA model in general. In spite of the levels of log marginal likelihoods, these two
analyses show considerable consensus with the original one in terms of the identified
top pathway gene sets. In the top 30 lists, three analyses have fifteen gene sets in

common, including nine ER related significant gene sets that have been discussed
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Figure 7.5: Histogram of the simulated association probabilities in the ER example.

in Section 7.2.2 and shown in Figure 7.3. The ER negative and positive signatures
are still the most significant ones in all analyses. This consensus of results indicates
the robustness of PROPA to the choice of hyper-parameters and data distribution.
Particularly, the analysis of the simulated data implies that the gene-phenotype as-

sociation ranks have a driving effect on the annotation results.

Further observation on the sizes of the top gene sets may help us in understanding
the roles of the hyper-parameters and data in the analyses. Figure 7.6 summarizes
the sizes of the top 30 gene sets in each of the three analyses. As illustrated, in
this example, increasing r4 and rp results in more findings of smaller pathway gene
sets, while diffused data tend to give higher probabilities to large pathway gene sets.
In the original data distribution in Figure 7.1, one can see that a relatively large
number of genes are involved in the breast tumor ER phenotype. Increasing the
value of r4 imposes tighter constrains on a gene set in terms of its accuracy as a
representative of the corresponding pathway. Meanwhile, a larger value of rg allows

for adding more genes in the superficial pathway signatures in the currently exam-
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Figure 7.6: Box plots of the sizes of top 30 ER related pathway gene sets identified
by PROPA in three analyses. 1 is the analysis of the original data with r4 = 0.7 and
rg = 0.005; 2 is the analysis of the original data with r4 = 0.9 and rg = 0.01; 3 is
the analysis of the simulated data with r4 = 0.9 and rg = 0.005.

ined biological context, hence relaxing the size constraint on the gene set from data
likelihood. Therefore, more small gene sets that contain large portions of highly ER-
associated genes are identified under such a setting of hyper-parameters. The effect
of data diffusion is rather obvious. Diffusing the the distribution of gene association
probabilities makes the differences between genes ambiguous. Large gene sets tend
to benefit from this ambiguity, because the flatness of the beta distribution of as-
sociation probability for pathway member genes allows a larger number of genes in
a gene set to have low association probabilities. Hence, while the gene ranks have
a fundamental effect on pathway ranking, the distinct beta mixture distribution of
data is essentially important for PROPA to remove the gene set size effect and ensure

its sensitivity.
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7.3 Breast Tumor ErbB2 Pathway Annotation

ErbB2, also called HER2 or Neu, is in the same transmembrane receptor family as
epidermal growth factor receptor (EGFR or HER1), ErbB3 and ErbB4. Upon epider-
mal growth factor (EGF) binding, these proteins can form homo- or hetero-dimers,
which recruit signaling molecules and activate specific cell growth signaling pathways.
The structure of the ErbB2 protein allows it to interact with the other ErbB fam-
ily members, especially with ErbB3, to form hetero-dimers in the absence of ligand
binding. Such hetero-dimers formed with ErbB2 appear to be remarkably efficient in
signal transduction. The downstream signaling pathways lead to cell proliferation,
differentiation, survival and migration. There is also evidence of ErbB2 translocation
to nucleus regulating the expression of certain pro-oncogenic genes. Additionally,
ErbB2 also plays a role in controlling translation of specific proteins. About 20-25%
of breast cancers have over-expression of ErbB2. This over-expression is primarily
due to gene amplification, which seems to be the major cause of ErbB2 pathway
deregulation in breast cancers (Ménard et al. 2003; Badache and Gongalves 2006).
ErbB2 has been identified as the therapeutic target of ErbB2-positive breast cancer
and clinically treated with Herceptin. Here I use PROPA to detect the pathways
associated with the breast tumor ErbB2 status, then focus on demonstrating gene

pathway membership inference.

7.3.1 Data and Gene Sets

Pathways associated with ErbB2 status are analyzed by using the 146 primary breast
tumor samples from Carvalho et al. (2007) (a subset of the original data set with sam-
ple ErbB2 status available). Among these tumors, 86 are ErbB2-postive, i.e., have
ErbB2 over-expression, while the other 60 are ErbB2-negative. The genome-wide

gene expression profiles are obtained through microarray experiments on Affymetrix
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Human genome U95Av2 chips. The probability and status (positive or negative) of
association between each gene expression and tumor ErbB2 status are obtained from
a regression analysis with BFRM. Figure 7.7(a) is the histogram of the association
probabilities of the 8,764 unique genes. The gene signature of the hypothetical path-
way under study is a relatively small set of genes whose expression profiles are shown

in Figure 7.7(b).

High

Low

Figure 7.7: Association probabilities and expression profiles of the genes correlated
with ErbB2 status of breast tumors. (a) Histogram of association probabilities m;
(b) Expression profiles of 143 genes whose association probabilities are greater than

The 956 human pathway gene sets drawn from the MSigDB do not include path-
way signatures explicitly linked to breast tumor ErbB2 status. To validate the ef-
fectiveness of PROPA, T curate two gene sets from literatures representing ErbB2
associated pathway signatures in breast cancer. The first gene set, called “molecular
portrait” of ErbB2-positive breast tumors for convenience, consists of several genes
that are mainly located at the chromosome 17 and have been identified as a cluster
corresponding to ErbB2 over-expression through gene clustering analyses of breast

tumor microarray data sets (Perou et al. 2000; Sgrlie et al. 2001). The second gene
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Figure 7.8: Log marginal likelihoods for 958 pathways in breast tumor ErbB2 status
pathway annotation. (a) Pathway log marginal likelihood upper bounds (blue +) and
lower bounds (black X); pathways are sorted in a decreasing order of log marginal
likelihoods; the pathways on the left side of the red line are the 6 pathways with the
largest marginal likelihoods. (b) Histogram of the pathway log marginal likelihood
upper bounds; the bars on the right side of the red line correspond to the top 6
pathways.

set is curated from the ErbB2 gene expression signature defined by Bertucci et al.
(2004). It includes the genes that differentially expressed in tumors and cell lines
with vs. without over-expression of ErbB2 protein. Notably, among the 24 genes,
three are negatively correlated with ErbB2 status. Although many positive correlated
genes in the signature gene set locate in chromosome 17, only two of them (ErbB2

and GRBT) overlap with those in the molecular portrait gene set.

7.3.2 Pathway Annotation

Figure 7.8(a) shows the optimal upper bound and corresponding lower bound of log
marginal likelihood for each pathway. The pathways are arranged in a decreasing
order of log marginal likelihood upper bounds. Figure 7.8(b) is the histogram of

the upper bounds. The first five or six pathways may be of particular interest,
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because the log marginal likelihoods drop slowly after them. As mentioned above,
the regression analysis indicates that only a very small set of genes appear to be
strongly associated with this ErbB2 status in this breast tumor samples, suggesting
either the pathway activities related to ErbB2 over-expression are weakly reflected
on the transcriptional level, or the heterogeneity of tumors within the two categories
defined by ErbB2 status makes the related changes of gene expression too subtle
to be detected. The distribution of the evidence (or posterior probabilities) for the
pathways under test, as shown in Figure 7.8, corroborates with this observation on
the overall gene-phenotype association, and implies that only a few pathways are

prominently associated with the breast tumor ErbB2 status.

Table 7.2 contains the summary of the top six pathways in terms of association
with ErbB2 status of the 146 breast tumor samples. PROPA identifies the two
ErbB2 signatures as the top one and four in the whole list of 958 pathway signatures.
In Figure 7.9(a) and (c), the association probabilities of genes in the two sets are
categorized by the sign of the correlation. Concordantly, all the genes except one
in the ErbB2 portrait gene set are positively correlated with ErbB2 status, while
the three negative signature genes in the ErbB2 signature gene set fall right in the
negative correlation category.

Additionally, almost all the genes in the third pathway gene set have positive cor-
relation with the ErbB2 status. This gene set contains genes upregulated in multiple
myeloma cells treated with pro-proliferative cytokine IL-6 (Croonquist et al. 2003).
Most of these IL-6 upregulated genes are involved in cell cycle progression; ErbB2 has
been known for triggering cell G1/S transition by activating Ras/Erk signaling cas-
cade through Shc/Grb-2 recruitment, and consequently increasing cell proliferation
(Badache and Gongalves 2006; Ricci et al. 1995). This effect between IL-6 treatment

on myeloma cells and ErbB2 over-expression on breast tumor cell may provide the
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rationale for this pathway phenotype association.

A1: ERBB2 overexpression cluster genes A3: CROONQUIST IL6 STARVE UP
1 + + H+H+ 1+ A +
-1 -1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
(a) (b)
A4: ERBB2 gene expression signature
1H+H+ # + + ++H
+ Postive
Negative

0 02 04 06 08 1
©)
Figure 7.9: Association probability plots of the ErbB2-related pathway gene sets
identified by PROPA. In each plot, x-axis is probability, and y-axis has two states, -1
and 1, representing negative and positive correlation with ErbB2, respectively. For
each gene set, the association probabilities of the genes positively correlated with

tumor ErbB2 status are in red, while those of the genes negatively correlated with
tumor ErbB2 status is in blue.

The same data set and pathway genes sets are analyzed by GSEA. According to
GSEA report, none of the 958 gene sets are enriched in the ErbB2 cancer pheno-
type with FDR g-value less than 25%. If thresholded with p-value 0.01, four gene
sets are significantly downregulated in ErbB2-postive tumors, but no gene sets are
significantly upregulated. Table 7.3 gives the GSEA summary of the gene sets with
highest NES. The two gene sets that have been specifically curated and added to
the database are identified by GSEA in top upregulated gene set list (top four and
six). However, neither of them can be considered with strong significance. In this
example, compared with GSEA, PROPA presents better sensitivity and specificity

when transcriptional evidence of phenotype-pathway association are relatively weak.
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7.3.3 Pathway Membership Inference

Here I demonstrate gene pathway membership inference in PROPA focused on refin-
ing the ErbB2 molecular portrait gene set. The pathway represented by this gene set
has strongest association with breast tumor ErbB2 status among the 958 pathways
from the database. According to the description of the context, this pathway signa-
ture should only include the genes located in the chromosomal region where ErbB2
gene is, and amplified together with ErbB2 on DNA on the transcription level. T il-
lustrate gene pathway membership inference with a simulation followed by discussion

of refining this gene set in its real biological context.

Simulation Study

The ErbB2 molecular portrait gene set, as described in the previous section, has nine
genes including ErbB2, the key signature gene whose amplification is the substan-
tial factor activating the cancer signaling cascades in ErbB2-positive breast tumors.
PROPA has identified this gene set from over 900 gene sets in the database in path-
way annotation analysis of breast tumor ErbB2 status. I choose this gene set as an
example, slightly manipulate the members of the set and observe how PROPA infers
gene pathway membership.

Denote the ErbB2 portrait gene set by A;. Generate a new gene set Ay by
excluding the ErbB2 gene from A; and adding another gene g,., which is randomly
chosen from the full gene list G and has small association probability. In the data
set, ErbB2 and ¢, have association probability 0.94 and 0.11, respectively. Run
PROPA on these two gene sets. This predefined membership swap between ErbB2
and g, results in a four to five points drop of the log marginal likelihood, which
does not change the rank of this pathway signature in the whole list. For each gene

g € G, the Bayesian estimate of its pathway membership probability B;‘ is obtained
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from the posterior mean of p, in (4.6), and the pathway membership Bayes factor
BF,c 4 is indicated in (4.7) and (4.8). The pathway membership evidence in nats,
defined as log(BF,c4), is plotted in Figure 7.10(a) and (b) for gene sets A; and
A,, respectively. Similarly, the pathway membership evidence in decibans (dBs),
defined as 10log,o(BF,c4), is plotted in Figure 7.11. The genes in the gene set
are represented by stars, while the genes not in the gene set are dots. Genes are
sorted with respect to their association probabilities. The yellow curve is generated
through polynomial curve fitting to the dots and somehow shows the expected values

of pathway membership evidence given 7, for g ¢ A, (x =1 or 2).

In each scatter plot, the genes located above the horizontal zero line have evidence
greater than 0, suggesting these genes might be the members of the true pathway;
vice versa for the genes below the line. Within a category (in A, or not in A,),
stronger belief goes to those genes far away from the zero line. Such a scatter plot
gives us a summary of gene pathway membership inference results. The blue dots
with large positive membership evidence values correspond to the genes that are
likely to be true pathway members but are missed by the pathway gene set defining
process (false negatives); the red stars with large negative membership evidence values
represent the genes that may have been incorrectly defined as pathway members (false
positives).

The ErbB2 gene, which is a member of gene set A; but not a member of A,, is
shown as a green star in Figure 7.10(a) and Figure 7.11(a), and as a green dot in
Figure 7.10(b) and Figure 7.11(b); inversely, gene g, is shown as a green dot in Figure
7.10(a) and Figure 7.11(a), and a green star in Figure 7.10(b) and Figure 7.11(b).
Under both models (corresponding to A; and A,), ErbB2 has pathway membership
evidence near 20 dBs, very strongly suggesting that ErbB2 is a true member of the

ErbB2 portrait signature; on the contrary, g, has substantially large negative evidence
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values in both cases confirming that it is not a member of this pathway signature.

Refining the ErbB2 “Portrait”

As discussed in Section 4.2, the pathway membership of a gene is largely driven by
its association probability. Nevertheless, this relation is pathway specific and inferred
through the posterior simulation. The monotonically increasing yellow curve in Fig-
ure 7.10(a) or 7.11(a) displays the positive association between posterior pathway
membership probability and association probability. In real applications of PROPA,
one is interested in a pathway with relatively high posterior probability of associa-
tion with the investigated phenotype. Pathway membership inference provides the
basis for decision-making on whether certain genes potentially are the members of
this pathway. Given the biological context in which the pathway is defined, pathway
membership inference can help to refine the pathway gene sets by highlighting those

false positive and false negative genes.

Table 7.4 gives the information as well as the pathway membership inference sum-
mary on the genes in the ErbB2 molecular portrait gene set A;. Six genes located in
the chromosomal regions 17q11-q12 and 17q21 have relatively high probabilities of
positive association with breast tumor ErbB2 status. The posterior pathway member-
ship probabilities of these genes are also high enough to confirm their membership.
The other three genes with relatively low association probabilities are inferred by
PROPA as false positive genes. Their posterior pathway membership probabilities
are zero. Notably, gene MMP15 is located at 16q13-q21. It was included in the
ErbB2 portrait gene set by a gene clustering analysis based on microarray data. I

conclude that MMP15 should not be a true member of this ErbB2 pathway.

Table 7.5 lists the genes not in the ErbB2 portrait gene set that have posterior

pathway membership probabilities greater than 0.5. As can be seen, these genes
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have association probabilities higher than 0.97. Several genes (G6PC, ERAL1, OMG,
RPL19, CRKRS) are located in the regions 17q11-q12 and 1721, and have positive
correlation with ErbB2 status. Their pathway membership evidence are greater than
8 nats (greater than 34 dBs), decisive evidence for these genes being false negatives,

i.e. members of the true ErbB2 portrait signature.

This example has presented how PROPA identifies those false positive and false
negative genes in terms of pathway membership. Naturally, the interpretation based
on the knowledge of individual genes and the understanding of the pathway is essen-
tially important in this process. If the pathway signature is defined in a biological
context different from the one being studied, which is usually the case in reality,
such inference may also convey the difference of biological processes in the two con-
texts. Those genes in Table 7.5 other than those identified as false negatives can be
interpreted as being involved in the biological processes beyond the ErbB2 chromoso-
mal region amplification, for example, the downstream signaling pathway members.
These genes may also be the members of other significant pathways. For example,
RPL19 is in the ErbB2 gene expression signature, and OIP5 is in the IL-6 up-regulated

gene signature.

From another point of view, this gene pathway membership inference is poten-
tially useful for identifying potential cancer biomarkers. In most cases, a biological
phenotype under investigation involves complex biological processes; this is reflected
in the pathway annotation as several distinct biological pathways may appear to be of
interest. It is not surprising that some genes with high probability would be suggested
as members of many of these pathways with or without considering the precise biolog-
ical contexts. Without interaction information among signature genes, such results
in a larger sense do not conflict with the understanding of biological pathways, the

artificial dissections of the underlying dynamic gene regulatory network. These path-
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ways are modules in the whole network and linked through gene regulation activities
that have or have not been discovered or indicated in the database. In such cases,
a key function of pathway membership inference is to identify potential biomarkers
of the biological phenotype based on the prior knowledge on pathway gene sets and
beliefs in the pathway activities under the phenotype. Hence, those genes inferred as

false negatives are of particular interest.
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Figure 7.10: Gene pathway membership probability inference for ErbB2 molecular
portrait: scatter plots of membership evidence in nats (log(BFﬁg)) vs. association
probability 7, for each gene g € §G. Dots and stars correspond to genes in and not
in pathway signature gene set A; (j = 1 or 2), respectively. The genes not in A;
and with large positive evidence values, corresponding to the blue dots in the upper
right corner, potentially are true members of the theoretical pathway A, i.e. false
negatives; the genes in A; (red stars) with large but negative evidence potentially are
not true members of A, i.e. false positives. (a) A; is the original ErbB2 expression
signature gene set; the green star represents ErbB2 gene, while the gene dot represents
the randomly picked gene g,. (b) Ay shares the same set of genes with A; except
that the gene set-membership of ErbB2 and gene g, are exchanged; the green dot
represents ErbB2 gene, while the gene star is g,.
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Figure 7.11: Gene pathway membership probability inference for ErbB2 molecu-
lar portrait: scatter plots of membership evidence in decibans (10log;o(BFp;)) vs.

association probabitlity m, for each gene g € G.
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Chapter 8

Analysis of Lactic Acidosis Response in
Breast Tumors

In this chapter, the application of PROPA in decomposing the complexity of the
mechanisms of cancer development is demonstrated with a study of cellular response

to lactic acidosis in breast cancers.

One characteristic of solid tumor micro-environment is the high production of
lactate and extracellular acidity, called lactic acidosis. This physiological change
with the other common traits of malignant extracellular environment — oxygen de-
pletion (hypoxia) and nutrient deprivation — is initially caused by insufficient and
inappropriate vascular supply, and poor tissue perfusion in solid tumor micromilieu
due to unregulated proliferation and rapid growth of cells (Vaupel et al. 1989; Vaupel
2004). When tissue oxygenation is inadequate, cells obtain energy through anaerobic
glucose metabolism (glycolysis) and produce lactic acid. Therefore, hypoxia is com-
monly thought to be the primary cause of lactic acidosis. It has been demonstrated
that hypoxia indeed promotes tumor cell glycolysis by upregulating genes encoding
glucose transporters and glycolytic enzymes (Ebert et al. 1996; Elson et al. 2000).
However, even in the presence of oxygen, tumor cells still rely on glycolysis for en-
ergy production, a phenomenon known as aerobic glycolysis or the “Warburg effect”

(Warburg 1956).

Many studies have shown that tumor glycolytic phenotype may be achieved
through oncogenic activation or stabilization of transcription factors such as HIF-
1 through mechanisms other than hypoxia (Kim and Dang 2006). Several oncogenes

and tumor suppressors involved in cell respiration circuits may directly contribute to
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the acquisition of a tumor cell glycolytic phenotype. The AKT oncogene is able to
enhance glucose uptake over cell membrane and trigger intracellular glucose trapping
and phosphorylation leading to enhanced glycolytic flux. The MYC transcription
factor, which is widely activated in human cancers, can activate glycolytic enzyme
genes and cause mtDNA mutations that in turn cause enhanced glycolysis and aerobic
respiration dysfunction of mitochondria. Expression loss of the p53 tumor suppressor
may inactivate the aerobic respiratory chain and cause the switch of cellular respi-
ration to glycolysis. Besides the direct oncogenic activation, HIF-1 stabilization is a
factor significantly contributing to aerobic glycolysis. The transcription factor HIF-
1 can activate glycolytic enzyme genes as well as PDK1, which in turn inactivates
the mitochondrial pyruvate dehydrogenase (PDH) and inhibits mitochondrial func-
tion and aerobic respiration. HIF-1, a heterodimer of HIF-1a and HIF-13, cannot
be formed in normal cells under nonhypoxic conditions because of the sensitivity of
HIF-1a to oxygen. However, in some human tumor cells HIF-1 can be stabilized in
the presence of adequate oxygen when certain oncogenic events occur, such as the

activation of RAS and SRC, and the repression of VHL, SDH and FH.

Gatenby and Gillies (2004) proposed that the tumor glycolytic phenotype is a
result of active selection processes and must confer a significant growth advantage
necessary for evolution of invasive human cancers. Through somatic evolution, tumor
cell populations manage to survive in lactic acidosis environment and become resis-
tant to acid-induced toxicity. Furthermore, through upregulation of glycolysis, tumor
cells worsen the extracellular environment by increasing the acidity to a toxic level
for normal populations; the consequent destruction of adjacent normal issues and
degradation of the extracellular matrix facilitate tumor cell invasion and angiogene-
sis. This suggests increasing glycolysis and resistance to extracellular lactic acidosis

of tumor cells is a malignant phenotype associated with cancer aggressiveness and
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a driving force for the evolution to invasiveness of primary cancers as well, which
may further be crucial in cancer metastasis. Studies of lactic acidosis through in
vivo measurement of acidity and lactate in a variety of human cancers have provided
evidence for such association (Walenta et al. 2000; Brizel et al. 2001). Hence, under-
standing the fundamental cellular response to lactic acidosis in tumors may facilitate
cancer risk prediction and lead to novel cancer therapies to improve patients out-
comes. However, compared with that on glycolytic phenotype induction, the existing

knowledge on tumor lactic acidosis response is rather limited.

The primary goal of the study of Chen et al. (2007) is to analyze the cellular
response to lactic acidosis in human breast cancers using genome-wide gene expression
data. This study has two steps. The first is to observe gene expression variation in
normal mammary cells induced by in vitro exposure in a condition of lactic acidosis.
This gene expression variation characterizes mammary cell transcriptional response
to lactic acidosis in general. This may give us opportunities to examine the existence
of association between lactic acidosis and breast cancer phenotypes. This approach
is based on the premise that normal and tumor cells from same type of tissue may
have common traits of behavior on certain levels. Similar approaches have previously
been used to study the association of cellular wound healing and hypoxia response
with tumor progression (Chang et al. 2004; Chi et al. 2006; Bild et al. 2006). The
second step is to evaluate the molecular mechanisms and prognostic roles of cellular
response to lactic acidosis in breast cancers in vivo. To determine the lactic acidosis
response phenotype of breast cancers, a general molecular signature of this phenotype
is defined from cultured cell in vitro study on normal mammary cells and used to
impute the response level of a heterogeneous set of breast tumor samples (Lucas et al.
2007; Chen et al. 2007). Using evolutionary factor analysis and probabilistic pathway

annotation, this aim to deconvolute molecular mechanisms of breast tumor lactic
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acidosis response and detect possible connectivities with other clinical phenotypes of
breast cancers. Figure 8.1 shows a overall workflow diagram of this analysis. The

detail is described in the following sections.

8.1 HMEC Lactic Acidosis Response Annotation

To characterize the transcriptional response of mammary cells to lactic acidosis, Chen
et al. (2007) cultured human mammary epithelial cells (HMECs) in lactic acidosis
environment (25mM lactic acid, pH = 6.7), then measured global gene expression
of each of the treated and control samples with Affymetrix GeneChip U133 plus 2.0
array, which contains more than 54,000 probe sets corresponding to about 20,000
unique genes. The microarray data set attained from this experiment includes 12
HMEC samples — six controls and six lactic acidosis samples. A one-way ANOVA
with BFRM generates the posterior probability of association with lactic acidosis
status 7 as well as the posterior mean of loading [, for each gene g (refer to equation
(2.4)). The posterior association probabilities of the whole gene list appear in the
histogram in Figure 8.2(a). A gene expression signature of HMEC lactic acidosis
response can be defined as a gene set comprising about 200 genes with association
probabilities near 1 and highest absolute loadings on lactic acidosis covariate (Lucas
et al. 2007). A preliminary functional annotation of these signature genes using the
Gene Oncology tool GATHER (Chang and Nevins 2006) show that lactic acidosis
induces genes involved in G-protein coupled receptor signaling, antigen processing
and presentation and cellular catabolism, and represses genes involved in cell cycle,

RNA metabolism and RNA processing.

Pathway annotation is then applied to further reveal the biological processes un-
derlying mammary cell lactic acidosis response. I use PROPA to compare the phe-

notype association of 965 pathway gene sets that include 956 human pathway gene
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Figure 8.1: Workflow diagram of the analysis of cellular response to lactic acidosis
in breast tumors
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sets from the MSigDB database and nine oncogenic pathway signature gene sets.
Five of these oncogenic pathway signatures, corresponding to the activation of RAS,
MYC, E2F3, SRC and (-catenin, are curated from the paper by Bild et al. (2006).
The other four, corresponding to the activation of AKT, P110, E2F1 and P63, are
curated from unpublished data sets. The log marginal likelihoods are distributed as
Figure 8.2(b). I only focus on the top 12 pathways summarized in Table 8.1. These
top pathways link to cell proliferation and cancer phenotypes, giving abundant ev-
idence to the nature of lactic acidosis as a potential signal and predictor of cancer

development, and are reviewed as follows:

5000 T T T T 400

4500 350t
4000
300
3500

3000 2507

2500 1 200

2000 150}
1500
100
1000

500 50f

0 0.2 0.4 0.6 0.8 1 13 132 134 136  1.38 1.4 1.42
Tg Log Marginal Likelihood x10*

(a) (b)

Figure 8.2: Distributions of association probabilities and pathway log marginal
likelihoods in HMEC transcriptional response analysis. (a) Histogram of association
probabilities. (b) Histogram of pathway log marginal likelihood upper bounds; the
bars on the right side of the red line correspond to the top 12 pathways.

e Pathways linked to other traits of cancer micro-environment
Gene set A; includes the human genes downregulated in response to glutamine
deprivation. Glutamine is the principal energy, carbon, and nitrogen source for
mammalian cells. Peng et al. (2002) used murine CTLL-2 T lymphocytes to
generate transcription profiles in response to glutamine deprivation, and the hu-
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man homologs of the perturbed genes were collected in a gene set to impute the
human cell transcriptional response to the same intervention. The histogram of
association probabilities in Figure 8.3(a) shows that most of the genes downreg-
ulated by glutamine deprivation are also downregulated in HMECs exposed in
lactic acidosis environment. Some genes (corresponding to the red bars) appear
to be upregulated by lactic acidosis. However, a majority of them have large
uncertainty in their association with lactic acidosis. The downregulation gene
set in response to leucine deprivation (A7), which was generated in a similar ex-
periment by Peng et al. (2002), and largely overlaps with glutamine deprivation
downregulated gene set, is also in the top pathway list. This reveals that the
cells perceive lactic acidosis as an energy deficient status. Gene set A4 was gen-
erated by Manalo et al. (2005) from the examination of gene profile variation
in human pulmonary endothelial cells exposed in hypoxia or with hypoxia-
inducible factor 1 (HIF-1a) activated. It contains the downregulated genes
under either conditions. The activation of the genes involved in nutrient de-
privation and hypoxia signaling pathways under the condition of lactic acidosis
is consistent with the fact that nutrient starvation, hypoxia and lactic acidosis

are commonly coexisting/interacting conditions in tumor micro-environment.

Pathways linked to cancer progression

PROPA identifies that lactic acidosis can shut down transcription of the genes
whose activation are associated with cancer progression. Several gene signatures
directly characterize wound healing, or are linked to certain biological processes
during wound healing. Wound healing is a program initiated by extravasated
blood coagulation and involving a complex pathway activities to restore tissue
integrity, including immune cell recruitment, fibroblast and epithelial cell prolif-

eration, cell migration and angiogenesis induction. The presence of deregulated
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wound healing resembles cancer invasion and metastasis, and is predictive of

breast, lung and gastric cancer metastasis (Chang et al. 2004).

Ay and Ag contain genes periodically expressed (cell-cycle dependent) and con-
sistently upregulated (not cell-cycle dependent), respectively, following expo-
sure to serum in human fibroblasts from a variety of anatomic sites; A3 contains
the genes commonly upregulated in these fibroblasts under serum stimulation.
A fibroblast is a type of cell that synthesizes and maintains the extracellular
matrix of many animal tissues and plays a critical role in wound healing. These
gene sets characterizes the underlying transcriptional activities of wound heal-
ing. Genes in A; were found upregulated in myeloma cells when supplemented
with IL-6. Gene set A5 has a relatively large overlap with A; (Croonquist et al.
2003). IL-6 is one of the key cytokines increasing endothelial cell proliferation
and strongly associated with tumor angiogenesis (Kishimoto 1989), a hallmark
of cancers that correlates with the risk of metastasis, recurrence and progression
in a variety of cancers such as lung, breast, espophagus and prostate cancers.
Ao contains genes with higher expression in less mature T cells than in more
mature T cells. The biological functions of these genes are mainly linked to
cell cycle regulation, cell cycle progression, mitosis, DNA replication, recombi-
nation or repair (Lee et al. 2004). The association between this gene set and
cell lactic acidosis response implicates the impact of lactic acidosis on immune
cells, which regulate angiogenesis, tissue homeostasis and wound healing. A
majority of the genes in these sets are downregulated in HMECs as response to
lactic acidosis (as shown in Figure 8.1(b), (c), (e), (h), (j) and (1)), indicatiing
that lactic acidosis may have a general inhibiting effect on the wound healing

program in cells.

e Pathways linked to cancer prognosis
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Three cancer prognosis signatures are found linked to lactic acidosis response in
HMECs. Ag includes genes identified by Rhodes et al. (2004) that are commonly
upregulated in undifferentiated cancer (correlating with poor prognosis) relative
to well-differentiated cancer (correlating with good prognosis). A;; includes
genes expressed higher in breast cancers with poor outcomes than in those
with good outcomes (van’t Veer et al. 2002). Ay includes genes upregulated
in gastric cancer cell lines resistant to doxorubicin, a chemotherapeutic agents,
compared to chemosensitive cell lines (Kang et al. 2004). Upregulation of these
sets of genes is related to aggressiveness in a variety of cancers. Here, these
genes appear to be generally downregulated in HMECs in presence of lactic

acidosis (Figure 8.3 (f), (i) and (k)).

In conclusion, from the transcriptional response to lactic acidosis in HMECs,
the pathway annotation by PROPA has identified pathways relevant to the common
biological processes and traits of cancer development, such as energy metabolism
modulation, progression through collaborative interactions between diverse cell types,
and clinical outcomes. The association between these pathways and cell lactic acidosis
response strongly suggests the molecular mechanism by which lactic acidosis, as an
important feature of tumor micro-enviroment, modulates cellular behaviors and links
with cancer phenotypes. The annotation results also show that the genes in these
pathways, which have been found induced during the biological processes involved
in cancer development, are mostly downregulated in HMECs under the condition of
lactic acidosis. This implies the function of lactic acidosis as a direct environmental
factor that suppresses cell malignant proliferation and growth, thereby potentially
leads to favorable clinical outcomes of cancers. Surprisingly, among the top significant
pathway gene sets identified in this analysis, no biologically interpretable pathways

contain large number of genes upregulated by lactic acidosis in this experiment. In
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other words, the genes with high probabilities of being positively correlated with
lactic acidosis status do not appear in any top pathway gene sets that can lead to
reasonable biological interpretation. The most plausible reason is that the pathway
gene sets included in the database do not yet adequately represent the range of

biological processes involved in the cellular response to lactic acidosis.

8.1.1 Pathway Signature of HMEC Lactic Acidosis Response

Twelve gene sets were generated based on the 12 top pathways identified in this
annotation analysis of HMEC response to lactic acidosis. Each of these gene sets
contains the true positive genes in the original pathway gene set inferred by PROPA
during the pathway annotation, and represents the intersection between the annotat-
ing pathway signature and HMEC lactic acidosis response signature. For example,
gene set A; in the HMEC data pathway annotation result, as shown in Table 8.1, is
named “PENG GLUTAMINE DN” and represents the genes downregulated in the
cells under glutamine deprivation. I refine this gene set by selecting the genes with

pathway membership evidence greater than 20dB, i.e. the refined gene set
AHMEC,l = {g g€ Al, 10 lOglo BFg€A1 > 20},

where BFc4, is the Bayes factor of pathway membership computed as (4.7). 1
name the pathway represented by this refined gene set Agppc1 as “HMEC LA DN:
PENG GLUTAMINE DN”. This represents a certain sub-module of transcriptional
activity in cell glutamine deprivation response that is linked to HMEC lactic acidosis
response. In the same way, the pathways are defined on the other corresponding
refined gene sets. These new pathway gene sets, listed in Table 8.2, compose a
“pathway signature” for the lactic acidosis response of HMECs. The member genes

of each pathway in this signature, as have been shown in the last section, are generally
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downregulated by lactic acidosis.

8.2 Lactic Acidosis Response Analysis of In Vivo

Gene Expression Programs of Breast Tumors

8.2.1 Signature Dissection and Enhancement

The breast tumor data set from Miller et al. (2005) are used to dissect the in vivo
lactic acidosis response. This data set includes 251 primary invasive breast tumor
samples. The expression profiles of more than 44,000 probe sets, corresponding to
~18,000 unique genes, have been measured with the Affymetrix GeneChip U133 set

arrays.

Lucas et al. (2007) used the 200 signature genes of HMEC lactic acidosis re-
sponse as seeds for BFRM in a setting of evolutionary factor analysis over the Miller
expression data set. This analysis decomposes the lactic acidosis response signature
into a number of factors according to the latent expression patterns of the signature
genes, and recruits new genes from the full gene list to enhance the expression signal
in each factor and bring in new factors. Through such iteration, ten latent factors
linked to lactic acidosis response of the breast tumor samples were extracted from
gene expression profiles. These represent ten factor-phenotypes for PROPA analysis.
Meanwhile, the posterior probability of association between each gene and each factor
was estimated. Based on the regression of gene signature predefined in the HMEC
lactic acidosis data analysis, each tumor sample achieves a score of lactic acidosis
response. Among the ten factors derived from the lactic acidosis signature, some
are highly related to the lactic acidosis response variation across the tumor samples,
while the others are more likely to be subtler phenotypes linked to lactic acidosis

response identified through the evolutionary factor analysis.
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To demonstrate the application of PROPA in such type of analysis, I focus on
five factors and use PROPA to identify the pathway activities under each of them.
To be consistent with the description given by Lucas et al. (2007), I maintain their
original indices: factor 3, factor 2, factor 7, factor 9 and factor 6. In addition to the
956 gene sets from MSigDB and the nine curated oncogenic pathway signature gene
sets, the 12 signature pathways of HMEC lactic acidosis response, as listed in Table

8.2, are added in this annotation analysis.

8.2.2 Factor Pathway Annotation

Here I exhibit some interesting moleculer phenotypes of breast cancers identified by
PROPA that are potentially related to lactic acidosis cellular response. To show the
identification of each factor, I present the top 30 pathways ranked by PROPA without
using any cut-offs. In contrast to the earlier analyses, the goal of this annotation
analysis for each specific latent factor is to inversely identify a tumor factor phenotype

rather than explore the pathway activity under a known phenotype.

Sometimes, the biological themes represented by a factor are not easily recogniz-
able due to the limitation of sample size. Each tumor sample is a combination of
numerous entangled molecular phenotypes. Although dissecting this complexity is
exactly the purpose of the analysis, the tumor sample size is almost always limited.
One or two hundred sample is not large when dealing with the complexity of tu-
mor progression. Some strong/well distinguishable phenotypes, such as ER status in
breast cancers, are easier to detect, but some others are vague. One needs to examine
the top pathway gene sets, and see whether they are enriched for a certain biological
theme. In this sense, the phenotype identification relies on the evaluation of pathway

sets enrichment.
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Factor 3: Inverse lactic acidosis response factor

Table 8.3 lists the top 30 pathway gene sets associated with factor 3. As can be seen,
among the top pathways, HMEC lactic acidosis response signature pathways are
highly enriched. Totally eight of the 12 show up in the top 30 pathway list, while six
of them are in top eight. Figure 8.4 presents the association probability histograms of
each top pathway gene sets. The member genes of each signature pathways, as shown
in the previous section, are downregulated in HMECs in presence of lactic acidosis.
Here these genes concordantly have positive correlation with factor 3. Hence, factor 3
is believed to inversely represent the lactic acidosis response phenotype of the tumor

samples.

A set of gene sets in this top list — A5, A1g, A1g, Aog and Asg — are related to the
activation of the p21 pathway, either independent or dependent on the p53 tumor
supressor gene (Wu et al. 2002). p21 has been reported as a cell cycle regulator that
can mediate the p53-dependent cell cycle G1 and G2/M phase arrest and apoptosis
of tumor cells in response to stress stimuli. The expression of p21 gene is tightly
controlled by protein p53. The genes included in these gene sets are downregulated
following transduction of p21 in ovarian cancer cells, but in general are positively
correlated with factor 3. It may implies a positive correlation between tumor lactic

acidosis response and cell apoptosis.

Factor 2: ER/good prognosis factor

Figure 8.5 shows the association probability distributions of the pathway gene sets
that are most associated with factor 2 (Table 8.4) and can be biologically interpreted.
Several pathway gene sets predefined by van’t Veer et al. (2002) are identified. These
gene sets have been mentioned in Section 7.2 in pathway annotation for breast tumor

ER phenotype, the status of which is highly associated with breast cancer outcomes.
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The top two gene sets A; and Ay contain genes lower-expressed and higher-expressed,
respectively, in ER positive tumors vs. ER negative tumors. A;; and Az contain
genes lower-expressed and higher-expressed, respectively, in breast tumors with vs.
without BRCA1 mutants, which are highly associated with ER phenotype. The
expression of genes in A4 and As; are negatively and positively correlated with
breast cancer good prognosis, respectively. Another prognosis-related gene set A7
defined by Rhodes et al. (2004) contains genes higher-expressed in undifferentiated
cancers vs. well-differentiated cancers. The significant association with these gene
sets gives substantial evidence that factor 2 is positively linked to breast tumor ER

phenotype and good prognosis.

Some oncogenic pathway gene sets are identified being associated with factor 2,
including Ras, pl110-a, E2F3, Myc and (-catenin pathways. Although Ras muta-
tions are infrequent in breast cancers (less than 5%), considerable evidence suggests
that Ras pathways are deregulated in breast cancer cells (Clark and Der 1995). It
has been reported that gene Ha-ras, the normal prototype of Ras, is over-expressed
in 50% breast cancers, contributing to tumorigenesis. Pethe and Shekhar (1999)
have shown evidence of the existence of estrogen-mediated Ha-ras upregulation in
breast tumor cells. pl10-a (or PI3K) activity has been reported to be associated
with the activation of ER pathway in breast cancers (Fry 2001; Baldi et al. 1986;
Simoncini et al. 2000; Ahmad et al. 1999; Razandi M 2000; Campbell et al. 2001).
Myc pathway controls cell proliferation and cell fate decisions. Sears et al. (2000)
have demonstrated that Ras can enhance the accumulation of Myc activity by stabi-
lizing a normally short-lived Myc protein. Leone et al. (2001) have shown that the
Myec transcription factor induces transcription of the E2F3 gene, a member of E2F
transcription factor family, whose activities are an essential component of the Myc

pathway. The concurrence of these oncogenic pathways in the ER factor may be due
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to such interactions. Further examination of the correlation (positive or negative)
between these oncogenic pathway genes and the factor will give the confirmation of

whether these pathways are activated or inactivated in the factor.

The identification of this factor links tumor lactic acidosis response to ER status,
cancer prognosis as well as oncogenic pathways. It has been mentioned that onco-
genic pathways may play a role in tumor glycolytic phenotype formation, and it is
also possible that tumor cells response to lactic acidosis through evolution includ-
ing oncogenic mutation. These oncogenic mutation then affect the ER pathway. Of
course, it is also possible that lactic acidosis directly perturbs the ER pathway, which

can be a testable biological hypothesis.

Factor 7 and factor 9: Immune function factors

Factor 7 and factor 9 are enriched for immune function pathway gene sets (Table
8.5 & 8.6, Figure 8.6 & 8.7). For example, the top gene set in both factors contains
immune function genes relevant to cancer development (Brentani et al. 2003); Az in
factor 7 is a collection of genes whose upregulation are associated with transplanted
kidney rejection (Flechner et al. 2004); Ag in factor 7 or A4 in factor 9 contains
cytolytic effector genes induced during antigen activation of CD8+ T cells (Goldrath
et al. 2004). A majority of pathway gene sets in these two factors are related to
immune activities in many different contexts. Generally, the over-expression of the
genes in those immune activation pathways are negatively correlated with factor 7
and factor 9, suggesting that these two factors reflect inhibitory immune function

status of the tumor samples.

The identification of the factors related to immune function inhibition implies the
connection between tumor lactic acidosis response and immune activity perturbation,

a key process in cancer development. A recent study by Fischer et al. (2007) has
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provided evidence for the inhibitory effect of lactic acid on tumor-reactive T cell
proliferation and cytokine production. The cytotoxtic/immune activity of T cells rely
on glycolysis and efficient secretion of lactic acid. The increase of extracellular lactic
acid concentration diminishes the pH gradient between cytoplasmic and extracellular
environment and blocks lactic export in T cells, thereby results in impaired immune

function.

Factor 6: TGF-5 induced EMT factor

Factor 6 is enriched for pathways related to epithelial-to-mesenchymal transitions
(EMTs), especially, transforming growth factor-3 (TGF-f3) pathways (Table 8.7, Fig-
ure 8.8). EMT is a process involved in wound healing whereby fully differentiated
epithelial cells undergo transition to a mesenchymal phenotype giving rise to fibrob-
lasts and myofibroblasts (Vincent-Salomon and Thiery 2003). TGF-£ is a family of
multifunctional cytokines that plays an important role in the regulation of epithe-
lial cell growth, differentiation and apoptosis. Evidence show that TGF-# inhibits
epithelial cell growth in early stage of breast tumorigenesis, and induces EMT in
a later stage of carcinogenesis (Knabbe et al. 1987; Colletta et al. 1991; Dannecker
et al. 1996; Rodriguez et al. 2002; Zavadil et al. 2004). Ay is a upregulated signature
gene set of EMT in tumor regression (Jechlinger et al. 2003). Aj, A4, Ayo, A11, Ass
and Asy together include genes induced by TGF-f in skin fibroblasts (Verrecchia
et al. 2001). These gene signatures in general are positively correlated with factor 6,
suggesting that factor 6 may correspond to TGF-3 induced EMT phenotype in tu-
mors. The factor analysis thus links together the tumor lactic acidosis response and
TGF-5/EMT phenotype, a connection which has not been made before. It provides
a foundation for a novel and testable hypothesis that lactic acidosis has an effect
on breast tumor EMT through changing the expression of TGF-3. Moreover, it is

important to note that hypoxia has been shown to induce TGF-( (Falanga et al.
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2002), trigger the EMT (Manotham et al. 2004), and link to poor clinical outcomes
(Chi et al. 2006). Hence, the regulation effect of lactic acidosis on TGF-3 and EMT,
if can be validated, may consequently provides an explanation for its link with cancer

prognosis.

8.2.3 Summary

This tumor analysis takes advantage of the heterogeneity in a large set of tumor
samples to dissect the pathway activities involved in cancerous cellular response to a
biological intervention. Each factor derived from this analysis represents a molecular
phenotype that may be relevant to the intervention. PROPA plays a central role
in identifying these molecular phenotypes. In this lactic acidosis response dissection
example, it is found that lactic acidosis may be a signal to breast cancer ER, immune,
and TGF-£ induced EMT pathways. The ER pathway is a prominent phenotype of
breast cancers that involves complex pathway activities. This analysis connects the
ER pathway activation with some oncogenic pathway through the lactic acidosis
response signature. The detection of immune function pathway provides evidence
for the role of lactic acidosis in immune cell function perturbation during cancer
development. A more intriguing finding of the TGF-3 induced EMT pathway forms
a more concrete hypothesis that can be tested through experimental investigation.
This study demonstrates how to define a “pathway signature” for a phenotype
through gene set refinement, and how to use this pathway signature to identify the
molecular phenotype represented by a derived factor. A pathway signature is a set
of pathway gene sets. If one believes each biological phenotype can be represented
by a specific set of pathways, then a unknown molecular phenotype can be identified
through the evaluation of pathway set enrichment. Inspired by pathway annotation,

I call this approach phenotype annotation. PROPA ranks all the pathways in the

141



database according to their posterior probabilities of association with a factor. By
using a non-parametric method similar to those for gene set-based pathway anno-
tation, one can compute the enrichment of the pathway set representing a known
phenotype, thereby identifying the unknown phenotype and its association with the
known phenotypes. Although not quantitively, this approach has been used to iden-
tify the latent phenotypes in the tumor samples.

This application also demonstrates how PROPA works with BFRM to dissect the
complexity of tumor phenotype in tumorigenesis studies. PROPA is based on likeli-
hood evaluation, and can directly compare the phenotype association of all pathways
based on gene-phenotype association. In contrast, GSEA is limited in such applica-
tions — it depends on sample permutation to generate null distribution and so loses
power when sample size is small. This limitation is shown in the pathway annotation
for the HMEC lactic acidosis response. The sample size is 12, hence, the annotation
output is generally informative. Moreover, GSEA is not applicable in the multiple

regression setting in the tumor lactic acidosis response decomposition by BFRM.
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Chapter 9

Concluding Remarks and Future
Directions

This dissertation presents a methodology for studying cancer signaling pathways us-
ing genome-wide gene expression profiles. The major contribution is innovative statis-
tical modeling and computational methodology for the pathway annotation problem
from a Bayesian perspective. This is the first time that understanding of data and
knowledge from the biological perspective has been incorporated into formal sta-
tistical modeling of the uncertainty in pathway analysis. The development of this
methodology involves advanced high-dimensional computation for biological model-
ing. Analysis of the models uses MCMC methods and novel variational methods
for statistical computation. My work generates innovation in these areas of statisti-
cal methodology as well as in the cancer genomics applications. The application of
probabilistic pathway annotation is demonstrated in a series of examples and stud-
ies, including a study of the cellular response to a cancerous micro-environment.
The work represents a successful combination of advanced statistical modeling and
computation with modern cancer biology research.

The method is currently used in many other ongoing cancer genomics research
projects, one of which focuses on oncogenic signature dissection in different type of
tumors and cancer cell lines. Although it is developed and discussed in the context
of cancer research, this method can be applied to any other biological studies based
on genome-wide gene expression profiling data.

Technically, the methodology developed in this dissertation can be extended in

terms of statistical modeling, biological applications as well as statistical computa-
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tion.

Model extension

One of the key idea in PROPA is the modeling of knowledge uncertainty. In the
current model, all the gene sets presumably have the same accuracy (false positive
and false negative rate) as the representation of corresponding pathways. In fact, the
existing pathway gene set databases contain heterogeneous noise, either due to the
experimental and statistical defining procedures or the database curation processes.
This generally reduces the reliability of analysis with any pathway annotation meth-
ods. Apparently, improving database quality will solve this problem. An alternative
solution may be derived from my method through the modeling of the uncertainty
related to the pathway gene set databases. The corresponding model refinement in-
volves the modeling of the prior gene pathway membership probabilities 3, (refer to
Section 3.3).

In the current model, the 3, d priori depend on the hyper-parameter r,, which
have two states, r4 and rg, determined by the relationship between g and A. The
most straightforward extension is to allow more states of r, to incorporate additional
information on the relationship between genes and true pathway A. As a simple and
practical example, two gene sets A; and A, in a database — either defined via different
experiments or generated by different statistical procedures — represent the same
pathway A. This uncertainty in knowledge can simply be modeled by introducing an

extra states of r,. Explicitly,
(Bglg € Av,g € Ay, F = A) ~ Be(8y;7a),
(Bolg & Ar,g & As, F = A) ~ Be(Gy;78),
(Bglg € A1,g & Az, F = A) ~ Be(fy:70),

(5g|g ¢ A17g S A27f - A) ~ Be(ﬁg;’f‘c),
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where r¢ is the prior mean of 3, for g in one of Ay and Ay, and r4 > r¢ > rpg,
representing deterministic @ priori belief in gene pathway membership according to
the voting by these two reference gene sets. Such an extension does not increase the
complexity of the PROPA model. The computational methods for model inference

and comparison remain the same.

More sophisticated extensions would involve specifying priors of r, that incorpo-
rate general uncertainty and the factors affecting the thinking about the accuracy of
reference gene sets. A direct extension is to give 7, the priors in some general forms,
such as beta distributions, that allow 7, to vary in specific ranges. Furthermore, if the
influencing factors can be identified, the 4, can be modeled with priors parameterized
with these factors. The size of a reference gene set, which can be associated with
the biological characteristics of the true pathway as well as the defining process, may
be a potential factor to consider. Importantly, the posterior estimates of r, in such
extended models can be instrumental in refining the understanding of the database
and facilitate further analyses through a Bayesian procedure. However, such model
refinement will involve more complicated and intensive computation that requires
further study and methodology development.

There are also some methodological issues related to the specification of model
priors across the pathway spaces that have only been partially studied in my work.
So far I have been treating all the pathways represented by corresponding reference
gene sets as d priori equally possible to be associated with a phenotype. How to
link this prior specification to biological thinking about pathways and databases is
worth further research efforts and will shed light on the statistical modeling for other

similar type of knowledge-based analysis approaches and application contexts.
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Gene set refinement

One of the major components of my pathway annotation methodology is the infer-
ence on gene pathway membership. In Chapter 2, I have discussed the significance
of this membership inference for the studies of cancer signaling pathways, further
demonstrated with the breast tumor ErbB2 pathway analysis in Chapter 7 and lactic
acidosis response pathway dissection analysis in Chapter 8. This inference gener-
ates a formal statistical refining process for pathway gene sets that aims to increase
pathway specificity, identify new biomarkers or correct defining errors in gene sets.
With such a refining process, pathway annotation can be applied reciprocally as an
in silico approach to defining new context-specific pathway gene sets. Such gene sets,
combining the original and current biological contexts, are more informative, and can

be added into pathway databases to facilitate future studies.

Phenotype annotation

An important application area of pathway annotation is to identify the biological
themes related to substructures of an experimental phenotype. This application is
essential to the analyses of the gene expression data sets containing heterogeneous
cancer phenotypes. Such data sets are enriched in information on cancer devel-
opmental mechanisms and usually depend on unsupervised learning approaches to
decompose the phenotype complexity. A major component of this type of study
is the identification of the molecular phenotypes emerging from the decomposition.
Chapter 8 has demonstrated this phenotype identification analysis using the pathway
annotation approach combined with BFRM. In this example, I identified some bio-
logical processes or cancer phenotypes in the latent factors of gene expression profiles
by observing the annotation pathways. As has been mentioned, it is potentially valu-

able to formalize this phenotype annotation with a quantitative “pathway enrichment
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analysis”. My pathway annotation method has already formed a foundation for this
analysis by ranking the pathways from the database according to their uncertainty of
association with the unidentified molecular phenotype. This ranked list of pathways
can easily be used to test the enrichment of pathway sets that represent certain bio-
logical themes. The current difficulty lies in the lack of such pathway sets databases.
The preliminary study in Chapter 8 presented the possibility of this approach. In-
tensive research is needed to address the pathway sets definition problem to bring

this analysis approach into reality.

Application of Monte Carlo variational method

The Monte Carlo variational method developed in this dissertation successfully solves
the computational problem in probabilistic pathway annotation. The innovative
double-sided bounding technique improves the approximation of marginal likelihoods
in Bayesian model comparisons. Intriguingly, this new method is generally applica-
ble in models analyzed using MCMC. Particularly, the framework of this approach
demonstrated in PROPA can be directly generalized for estimation of marginal like-
lihoods in the finite mixture models. This type of statistical models are frequently
employed in analysis of many types of biological data, such as gene expression, flow
cytometry data, mass spectrum and biological images, showing considerable promise

and utility of this new variational method in computational biology.

Software

PROPA is implemented in MATLAB. The major functional modules include path-
way gene set database curation, pre-processing of gene-phenotype association prob-
abilities, pathway annotation, gene set refinement and result presentation. Future

work will involve the development of a software package in C++, integrating these
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functional modules, and providing a higher-speed, user-friendly, and web-available

analysis platform for use of the method by the research community.
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