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Abstract

Extreme value theory finds wide applications in areas such as environmental sci-

ence, financial strategy of risk management and biomedical data processing. In this

thesis, we present two spatial extreme value studies related to weather and climate

events observed in space and in time, one of which motivates a novel methodology

in constructing continuous spatial process for extreme values. Motivated by finding

multiscale spatial dependence in extreme climate studies, we offer a new Bayesian

analysis tool for learning about both large scale spatial dependence and microscale

dependence. The last chapter presents a novel application of space-time models to

synoptic climatology.

The first investigation is a development of hierarchical modeling approach for ex-

plaining a collection of spatially-referenced time series of extreme values. We assume

that the observations follow Generalized Extreme Value(GEV) distributions whose

locations and scales are jointly spatially dependent where the dependence is captured

using multivariate Markov random field models specified through coregionalization.

There are various ways to provide appropriate specifications; we consider four choices.

The models can be fitted using a Markov Chain Monte Carlo (MCMC) algorithm to

enable inference for parameters and to provide spatio-temporal predictions. We fit

the models to a set of gridded interpolated precipitation data collected over a 50 year

period for the Cape Floristic Region in South Africa, summarizing results for what

appears to be the best choice of model.

In chapter 3, we extend the hierarchical modeling approach for explaining a col-

lection of point-referenced time series of extreme values. Annual maxima are still

assumed to follow GEV distributions, with parameters µ, σ, and ξ specified in the

latent stage to reflect underlying spatio-temporal structure. Here, we relax the con-
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ditionally independence assumption previously imposed in the first stage hierarchical

models for annual maxima. Instead, a continuous spatial process model is proposed

to account for spatial dependence which is unexplained by the latent spatio-temporal

specifications for the GEV parameters. In addition, we offer an approach to make spa-

tial interpolation for extreme values based on this hierarchical models with smoothed

residuals across space. A simulation study is illustrated to investigate the model

fitting behavior.

Motivated by the findings in extreme climate studies, which is, large scale spatial

variations and small scale spatial variations coexist in some extreme climate phenom-

ena, we present a Bayesian spatial modeling approach to make inference of both large

scale and small scale spatial dependence in a general spatial setting. In particular,

we focus on the investigation of microscale spatial dependence, which is defined as

the dependence at distances smaller than the measurement scale of the spatial study.

Since microscale spatial variation study often involves data observed at high reso-

lution, we offer several potential solutions to tackle the computational difficulty of

’large n’ problem.

In the last chapter, the application we focus on is to synoptic climatology where

the goal is to develop an array of atmospheric states to capture a collection of dis-

tinct circulations. In particular, Self Organizing Maps (SOMs) are one of the recently

used techniques in the meteorology community with regard to developing synoptic

weather states. Little discussion about this technique has been found in the statis-

tics literature. We introduce the stochasticity in the form of a space-time process

model aiming to illuminate and interpret its performance in the context of applica-

tion to daily data collection. That is, the observed daily state vectors are viewed as

a time series of multivariate process realizations which we try to understand under

the dimension reduction achieved by the SOM procedure.
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Chapter 1

Introduction

Increasing evidence shows that changes in climate at large regional scales can be attributed

to an anthropogenic forcing (see, e.g., Hegerl et al. (2004), Levitus et al. (2000) and Barnett

et al. (2001)). There is considerable attention in literature to the detection of potential

changes in mean climate indices. Indeed, compared with mean climate, extreme climate

events are likely to have a heavier impact on our whole society. Some extreme cases can

yield natural catastrophes, such as major hurricane, severe drought and flood. It therefore

becomes an important topic to investigate changes in climate extremes and monitor climate

risk.

There are increasing research needs to statistically quantify changes in extreme climate

events as well as the associated uncertainties. One of the primary research needs is to

develop methods (ideally model based) to analyze and quantify the extreme behavior (both

spatial variations and temporal trends). That is, to develop statistical modeling approaches

for treating spatio-temporal dependence of extremes, which is especially useful to quantify

uncertainties associated with model inferences. Another primary goal of extreme value

study is that of prediction. That is, given the observed extreme values, to approximate

the predictive distribution of the unobserved value at an unmonitored location (or for a

future time). Prediction of extreme values is especially useful to be applied in quantitative

risk monitoring of extreme climate events. In addition, prediction for extremes has great

potential to be applied in statistical downscaling techniques for extremes.

The focus of this thesis is on addressing these two major research problems in extreme

value studies. One essential step is to appropriately fit statistical distribution to describe
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the behavior of extremes. At present, the standard approach utilizes extreme value theory,

which has many potential advantages to model, detect or project trends in extremes of

climate. We follow this path to consider a hierarchical modeling approach for explaining a

collection of spatially-referenced time series of extreme values. Block maxima are taken as

an extreme index and assumed to follow the GEV distributions conditional on the param-

eter values. For areal unit extreme values, univariate distributions of extreme values are

extended to higher dimensions using latent multivariate Markov random field models speci-

fied through coregionalization, which allows the interpretation of high dimensional extreme

value analysis including the nature of spatial association and the nature of temporal trend.

For point referenced extreme values, latent spatial Gaussian process models are introduced

to characterize spatial dependence and temporal trend. By relaxing the assumption of con-

ditional independence in the hierarchical models, we extend hierarchical modeling approach

to describe extreme values with a smoothed spatial process, which can be used in spatial

interpolation with extremes.

This chapter makes a brief review of current univariate and multivariate extreme value

theories in 1.1. In the second section of this chapter, we move to a quick review of spatial

models for point-referenced data and areal unit data, making special emphasis on the spatial

Gaussian processes, Markov Random Field models and multivariate spatial models.

1.1 Extreme Value Theory

Univariate extreme value theory has been well established. The aim of this section is

to review the most important results in the classical theory of extremes. Primarily, we

summarize the limit theorem for block maxima in subsection 1.1.1.
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1.1.1 Univariate Extreme Value Theory

Extreme value theory begins with a sequence Y1, Y2 · · · of independent and identically

distributed random variables with distribution function F (y) and, for a given n aims to

find parametric models for Mn = max{Y1, . . . , Yn}.

If the distribution function F (y) is specified, the exact distribution ofMn is immediately

known. In the absence of such specification, extreme value theory seeks sequences {an > 0}

and {bn} such that limn→∞ P

(

Mn − bn
an

≤ y

)

≡ G(y) for a certain distribution function

G.

Definition 1. If there exist constants an > 0, bn ∈ R, such that

lim
n→∞

P

(

Mn − bn
an

≤ y

)

= lim
n→∞

Fn(any + bn) ≡ G(y)

for some non-degenerate distribution function G, then G is said to be a extreme value

distribution and F is said to be in the domain of attraction of G, written F ∈ D(G).

Definition 2. A distribution G is said to be max-stable if, for every n = 2, 3, · · · ,, there

are constants an > 0 and bn such that

lim
n→∞

Gn(any + bn) ≡ G(y)

The connection between the extreme value limit distribution and the max stable distri-

bution is made by the following statement :

Theorem 3. A distribution is max-stable if, and only if, it is a generalized extreme value

distribution.

The detailed proof of the above theorem can be found in Embrechts et al. (1997).

The entire range of possible extreme limit distribution for
Mn − bn

an
is summarized by

the extremal types theorem due to Fisher and Tippett (1928):

3



Theorem 4. If there exist sequences of constants {an > 0} and {bn} such that

Pr{Mn − bn
an

≤ z} → G(y) as n→ ∞

where G is a non-degenerate distribution function, then G has a distribution function of

the form

G(y;µ, σ, ξ) = exp

{

−
[

1 + ξ

(

y − µ

σ

)]−1/ξ
}

(1.1)

defined on the set {y : 1 + ξ(y − µ)/σ > 0}. This is called the generalized extreme value

(GEV) family of distribution. µ ∈ R is the location parameter, σ > 0 is the scale parameter

and ξ ∈ R is the shape parameter. There are three subfamilies which can be expressed under

the umbrella of the GEV: ξ = 0 corresponds to the Gumbel distribution; ξ > 0 corresponds

to the Frechet; and ξ < 0 corresponds to the Weibull distribution.

The GEV distribution is heavy-tailed and its probability density function decreases

at a slow rate when the shape parameter ξ is positive. On the other hand, the GEV

distribution has a bounded upper tail for a negative shape parameter. Formal justification

of the Theorem (4) is detailed in Leadbetter et al. (1983).

A useful parameter of interest in many extreme value studies is the return level zp

associated with return period 1/p. It is derived from the inverse of the GEV cumulative

distribution function given parameter values in GEV distribution functions. Defining xp =

−log(1 − p), we have

zp =



















µ− σ

ξ
[1 − x−ξ

p ] ξ 6= 0

µ− σlog(xp) ξ = 0

(1.2)

Evidently, the return level zp provides the threshold which is exceeded by the extreme value

with probability p. Equivalently, zp can be viewed as a threshold which is such that we

expect an exceedance once every 1/p years.
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The univariate extreme value theory we reviewed so far is obtained based on a sequence

of independent and identically distributed random variables. However, it is usually unreal-

istic to assume independency for the types of real data to which extreme value models are

commonly applied. Coles (2001) discussed a generalization of extreme value theory from a

sequence of independent random variables to a stationary series.

Theorem 5. Let X1, X2, · · · be a stationary process and X∗
1 ,X

∗
2 , · · · be a sequence of

independent variables with the same marginal distribution. Define Mn = max{X1, · · · ,Xn}

and M∗
n = max{X∗

1 , · · · ,X∗
n}. Under suitable regularity conditions,

{(M∗
n − bn)/an ≤ z} → G1(z) (1.3)

as n → ∞ for normalizing sequences {an > 0} and {bn}, where G1 is a non-degenerate

distribution function, if and only if

{(Mn − bn)/an ≤ z} → G2(z), (1.4)

where

G2 = Gθ
1(z) (1.5)

for a constant 0 < θ ≤ 1.

This theorem implies that maxima of a stationary series converge to the GEV distri-

bution. And the effect of dependence in the stationary series is reflected in the association

of their limit distribution G2 to the limit distribution G1 which is arisen from the corre-

sponding independent series.

This theorem essentially relaxes the concern of applying the GEV family as a model for

block maxima of stationary series, provided that the range of dependence in the stationary

series is not too long and the block size is appropriately selected. On one hand, the GEV
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distribution is an asymptotic distribution which we use to approximate for maxima of

long, finite sequences. The approximation quality is relying on the ‘effective’ length of

observations. Therefore, typically, longer range of dependence requires a larger block size

to ensure the validity of using GEV family as a limit distribution for block maxima. On the

other hand, larger blocks generate fewer block maxima, leading to less sufficient information

in extreme value modeling. Ideally, the choice of blocks should balance the trade-off between

inference power and asymptotic behavior of the limit distribution.

1.1.2 Multivariate Extreme Value Theory

In this subsection, we extend the review from the univariate extreme value theory to the

multivariate case. We will give an overview of the various characterizations for multivariate

extremes. Again, the focus is on the block maxima.

Asymptotic Characterization

Assume that the extreme process is observed at a finite number of locations (s1, · · · , sp). Let

Xi, i = 1, 2, · · · be iid replicates of a random vector X = (X(s1), · · · ,X(sp)))
T . Suppose

the distribution of Xi is given by F (x) = Pr(Xi(s1) ≤ x1, · · · ,Xi(sp) ≤ xp) for i = 1, 2, · · · .

Let Mn = (
∨

i=1,··· ,nXi(s1), · · · ,
∨

i=1,··· ,nXi(sp)) denote the vector of pointwise maxima,

where
∨

denotes max.

Definition 6. If there exist normalizing sequences an > 0, bn such that

lim
n→∞

Pr(
Mn − bn

an
≤ x) = lim

n→∞
Fn(anx + bn) ≡ G(x)

for some non-degenerate distribution G, the distribution G is called a D-dimensional mul-

tivariate max-stable distribution. and F is said to be in the domain of attraction of G,

which we write F ∈ D(G).
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These distributions have received considerable attentions in literature (de Haan (1985),

Pickands (1981), Resnick (1987) and Resnick (2007)). There are two important facts about

the extreme value distribution theory. First, if we fix some j ∈ {1, · · · p} and define xj′ = ∞

for j′ 6= j, then

Pr(
Mnj − bnj

anj
≤ x) −→ G(∞,∞, · · · , xj , · · · ,∞)

Therefore, each marginal distribution of multivariate extremes follows one of those three

types of GEV distribution family described in theorem (4). Second, for any given monotone

increasing functions {gj , j = 1, · · · , p}, max{gj(Xi,j), · · · , gj(Xn,j)} = gj(max{X1,j , · · · ,Xn,j}).

It is therefore convenient to derive the joint distribution of maxima over {gj(Xj)} from

the joint distribution of Mn. One convenient fact about the GEV distribution is that if

X ∼ GEV (µ, σ, ξ), then X∗ = (1+σ
x− µ

ξ
)−1/ξ follows unit Fréchet distribution, with dis-

tribution function exp(−x−1) for x > 0. Without loss of generality, it is common to restrict

the marginal distribution of multivariate extremes to be a standard Fréchet distribution in

multivariate extreme distribution studies.

The limiting distribution for component-wise maxima can be written in Pickand’s rep-

resentation: G(x) = exp{−V (x)}, where function V (x) is called the exponent measure.

Define Sp = {(x1, · · · , xp) : x1 ≥ 0, · · · , xp ≥ 0,
∑p

i=1 xi = 1}. Then using the radial-

spectral decomposition, we can write :

V (x) =

∫

Sp

max(
w1

x1
, · · · , wp

xp
)dH(w), (1.6)

and H is a spectral measure on the p-dimensional unit simplex Sp. Again, for any j ∈

{1, · · · , p}, V (∞,∞, · · · , j, · · · ,∞) =
∫

Sp
max(

w1

x1
, · · · , wp

xp
)dH(w) =

1

xj

∫

Sp
wjdH(w). To

ensure the marginal distributions are standard Fréchet distributions, H(w) has to satisfy

∫

Sp
wjdH(w) = 1 for each j from 1 to p.

In fact, any spectral measure H satisfying the above constraint can yield a valid mul-
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tivariate max-stable distribution defined in Definition (6). Therefore, there is no finite

parametric model to characterize the entire family of the multivariate max-stable distribu-

tion. Nevertheless, several parametric subfamilies have been suggested for lower dimension

extreme values, with special emphasis on bivariate case (see the review in Kotz and Nadara-

jah (2000)). Gumbel and Goldstein (1964) proposed the logistic type multivariate extreme

value distribution. The exponent measure function under their model takes the following

form:

V (x) = (

p
∑

j=1

x−r
j )1/r (1.7)

where r ≥ 1. Here, r is a parameter characterizing the dependence between components.

r = 1 corresponds the independent case and r → ∞ when x1, · · · , xp are complete depen-

dent. The drawback of this logistic type multivariate extreme value distribution is that

the dependence structure is only characterized by a single parameter r. As a result, This

method is not flexible enough to capture general dependence structures for large dimen-

sion extremes (e.g., p > 2). Tawn (1988) extended the logistic model by introducing the

asymmetric logistic extreme value distribution which has more parameters characterizing

dependence among extreme values.

V (x) =
∑

c∈C

{
∑

i∈c

(
θi,c

xi
)rc}1/rc , (1.8)

where C is the class of non-empty subsets of {1, · · · , d}, rc ≥ 1, θi,c = 0 if i * c, θi,c ≥ 0,

∑

c∈C θi,c = 1 for each i. Now, we introduce the third commonly used parametric multi-

variate extreme distribution, called negative logistic ( Joe (1999)). Its exponent function

has the the following form:

V (x) =
∑ 1

xj
+

∑

c∈C:|c|≥2

(−1)|c|{
∑

i∈c

(
θi,c

xi
)rc}1/rc , (1.9)

rc ≤ 0, θi,c = 0 if i /∈ c, θi,c ≤ 0,
∑

c∈C(−1)|c|θi,c ≤ 1 for each i. However, both the negative

8



logistic model and the asymmetric logistic model are not good candidates to model high

dimensional extremes because of the over-parametrization.

There are some research in which efforts are concentrated on defining the spectral

density h directly. For example, Coles and Tawn (1991) showed that the tiled Dirichelet

density provides a valid spectral density for the multivariate extreme distribution. Suppose

h∗ is an arbitrary positive function on Sp with mj =
∫

Sp
ujh

∗(u)u. < ∞, then define

h(w) = (
∑

mkwk)
−(p+1)

∏p
j=1mjh

∗(
m1w1

∑

mkwk
, · · · , mdwd

∑

mkwk
). h is the density of positive

measure H satisfying
∫

Sp
ujdH(u) = 1.

As a special case of this, they considered Dirichlet density h∗(u) ∼ Dir(α) where

α = (α1, · · · , αp), which leads to

h(w) =

p
∏

j=1

αj

Γ(αj)

Γ(
∑

αj + 1)
∑

αjw
p+1
j

p
∏

j=1

(
αjwj

∑

αkwk
)αj−1 (1.10)

Coles (1993) showed that the Dirichlet model is preferable to the logistic and negative

logistic models in a simulated spatial rainfall extremes study. However, a disadvantage of

this model is that the integral in equation (1.6) is typically difficult to evaluate. Cooley

et al. (2008) constructed a new spectral density which they call the pairwise beta model.

hp(w;α, β) = Kp(α)
∑

1≤i<j≤p hi,j(wi, wj ;α, βi,j), where

hi,j(wi, wj ;α, βi,j) = (wi + wj)
(p−1)(α−1)(1 − (wi + wj))

α−1 ×
Γ(2βi,j)

(Γ(βi,j))2
(

wi

wi + wj
)βi,j−1(

wj

wi + wj
)βi,j−1

Kp(α) is a normalizing constant such that
∫

Sp
wihp(w;α, β)dw = 1.

Dependence Measures for the Multivariate Extremes

Several dependence measures have been proposed to quantify the magnitude of dependence

for a multivariate max-stable distribution (see, e.g., Joe (1997), Coles et al. (1999) and
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Cooley et al. (2006)). First, it is noteworthy that the commonly used correlation coeffi-

cient is not a proper candidate to describe extreme dependence. The reason is that the

moments of the GEV distribution do not exist under certain cases. For example, the first

moment of the GEV distribution is not finite provided that the shape parameter ξ > 1.

Alternative dependence measures to correlation coefficient include Kendall’s τ , Spearman’s

ρ and Schweizer and Wolff’s σ (see, e.g., Nelsen (2006)). The above three measures share a

common difference from the correlation coefficient in that they are all invariant under any

strictly monotone transformation functions. Consider a bivariate random variable (X,Y ).

The definitions of Kendall’s τ , Spearman’s ρ and Schweizer and Wolff’s σ are given as

below:

τX,Y = 4

∫∫

F (x, y)dF (x, y) − 1

Spearman’s ρ

ρX,Y = 12

∫∫

(F (x, y) − F (x)F (y))dF (x)dF (y)

Schweizer and Wolff’s σ

σX,Y = 12

∫∫

|F (x, y) − F (x)F (y)|dF (x)dF (y)

Moreover, several dependence metrics have been developed from the bivariate extreme

value distribution theory. The most commonly used one is called the extremal coefficient

(Smith (1990) and Schlather and Tawn (2003)). Again, suppose (X,Y ) is a bivariate

random vector with standard Fréchet marginal distributions, and the joint distribution of

(X,Y ) is F (x, y) = exp{−V (x, y)}. Then the extremal coefficient is defined as φ = V (1, 1).

Pr(X < r, Y < r) = exp{−V (r, r)} = (exp(−r−1))V (1,1) = (Pr(X < r))V (1,1)

The pairwise extremal coefficient can be interpreted as the effective number of independent

random variables for the bivariate random variables. Hence φ ∈ [1, 2]. And if (X,Y ) are
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independent, then φ = 2. If (X,Y ) are complete dependent, φ = 1. Higher-order extremal

coefficients are defined in the similar way as in the bivariate case (see, Schlather and Tawn

(2003)).

1.2 Brief Review of Spatial Statistics

Spatial data sets are conventionally classified into one of the three basic types: (1) point-

referenced data (also referred to geocoded or geostatistical data) where Y (s) is a random

vector at a location s ∈ Rr, where s varies continuously over a fixed region D ∈ Rr; (2) areal

data, where D is a fixed subset which is partitioned into a finite number of areal units (zip

codes, counties, etc.); (3) point pattern data, where the spatial domain D is random. In

subsection 1.2.1 and subsection 1.2.2 we review some basic models for the point-referenced

data and the areal unit data respectively. In subsection 1.2.3, we turn our attention to the

problem of multivariate spatial modeling. In particular, we focus on the description of the

so called coregionalization approach which is extensively applied in the multivariate spatial

process models.

1.2.1 Gaussian Processes and Covariance Functions

The Gaussian spatial process model is the most common model for the point-referenced data

(see, e.g., Banerjee et al. (2004)). Assume a response variable Y (s) observed at a generic

location s ∈ D ⊆ R2 along with a p×1 vector of spatially referenced predictors x(s). Then,

model-based geostatistical data analysis typically proceeds from spatial regression models

such as,

Y (s) = xT (s)β + w (s) + ǫ (s) . (1.11)

The residual from the regression is partitioned into a spatial process, w(s), capturing
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spatial association, and an independent process, ǫ(s), also known as the nugget effect,

modelling measurement error or micro-scale variation (see, e.g., Chiles and Delfiner (1999)).

The w(s) are often referred to as spatial random effects, providing local adjustment (with

structured dependence) to the mean, interpreted as capturing the effect of unmeasured or

unobserved covariates with spatial pattern.

We assume observations Y = (Y (s1), ..., Y (sn))T from n locations and treat the data

as a partial realization of a spatial process, modelled through w(s). The most common

specification for w(s) ∼ GP (0, C(·, ·)) is a Gaussian Process, which is a stochastic process

specified by its mean and covariance function C(si, sj), which is defined for pairs of sites si

and sj . Sometimes we specify C(s, s′) = σ2ρ(s, s′;θ) where ρ(·;θ) is a correlation function

and θ includes parameters quantifying rate of correlation decay and smoothness of realiza-

tions though this limits us to constant process variance. In any event, ǫ(s)
iid∼ N(0, τ2) for

every location s.

For a given collection of sites in S = {s1, . . . , sn} the data likelihood is given by Y ∼

N(Xβ,ΣY), with ΣY = C(θ) + τ2In, where X = [xT (si)]
n
i=1 is a matrix of regressors and

C(θ) = [C(si, sj;θ)]
n
i,j=1 is the spatial covariance matrix corresponding to w(s). A valid

covariance function must be positive definite, i.e.,
∑n

i=1

∑n
j=1 = aiajC(si, sj) for every n

and every collection {s1, · · · , sn} and every vector a.

The process Y is said to be a strong stationary spatial process if for any n ≥ 1, any

h ∈ Rr and any set of sites {s1, · · · , sn}, the distribution of Y = (Y(s1), · · · ,Y(sn)) is the

same as that of (Y(s1 +h), · · · ,Y(sn +h)). The process Y is said to be a weak stationary

spatial process if µ(s) = µ and Cov(Y(s),Y(s + h)) = C(h) for any h ∈ Rr. Clearly, for

the Gaussian process, weak stationarity implies strong stationarity.

The process is said to be isotropic if the covariance function C(s, s
′

) = C(‖s−s
′‖), where

‖s − s
′‖ denotes the Euclidean distance between s and s

′

. We call a process homogeneous
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if the process is intrinsically stationary and isotropic. A homogeneous process implies that

the covariance relationship between the values of the process at any two locations can be

characterized by a covariance function C(‖h‖) which only depends on the length (e.g.,

Euclidean length) of the separation vector h.

Many stationary, isotropic covariance function have been proposed and widely accepted

in practice because of their simplicity, interpretability (see Banerjee et al. (2004) for a

review). Denoting ‖h‖ by a scalar t. Below, we briefly review four simple but important

parametric forms: the exponential covariance function, the Gaussian covariance function,

Spherical and the Matérn covariance function.

• Spherical

C(t) =



































0 if t ≥ φ

σ2(1 − 3t/(2φ) + (t/φ)3/2) if 0 < t ≤ φ

σ2 + τ2 otherwise

(1.12)

The spherical covariance function offers clear interpretations of the nugget parameter

τ2, scale parameter σ and range parameters φ.

• Exponential covariance function:

C(t) =



















σ2 exp(−t/φ) if t > 0

σ2 + τ2 otherwise

(1.13)

Exponential covariance function also has a range parameter φ which controls the

spread of the spatial correlation and is called the effective spatial range (i.e., −log(0.05)φ

is the distance at which the correlation drops to 0.05).
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• Gaussian

C(t) =



















σ2 exp(−t2/φ2) if t > 0

σ2 + τ2 otherwise

(1.14)

The Gaussian covariance function yields a very smooth realizations of the spatial

process, i.e., mean square dericatives of all orders exist.

• Matérn

C(t) =



















σ2

2υ−1Γ(υ)
(2
√
υt/φ)υKυ(2

√
υt/φ) if t > 0

σ2 + τ2 otherwise

(1.15)

Parameter υ is called the smoothness parameter. Not surprisingly, it is a param-

eter controlling the smoothness of the realized random field. φ is a spatial range

parameter. The function Γ(�) is the usual gamma function and Kυ is the modified

Bessel function of order υ. Matérn family is perhaps the most widely used covariance

function because it flexibly encompasses several class of valid covariance function,

including the exponential covariance function (υ = 1/2) and the Gaussian covariance

function (υ → ∞)

1.2.2 The CAR model

Conditonal Autoregressive (CAR) model is a common method in dealing with univariate

areal data. Recall the univariate CAR model (see Besag (1974) and Banerjee et al. (2004)).

Suppose V = (V1, V2, ..., Vn)
′

is a vector of spatial random effects which is defined at areal

sites from 1 to n. The joint distribution of V are defined through the conditional gaussian

specifications at each sites as follows. Vi|Vj , j 6= i ∼ N(ρ
∑

j wi,j/wi+Vj, 1/wi+) The joint

distribution of vector V can be expressed as V ∼ N(0, (Dw−ρW )−1) where DW is diagonal

with (DW )i,i = Wi,+, which is the summation of the entries in the ith row of W .
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The matrix W is referred to as a proximity matrix with entries wi,j which defines

neighborhood information in space. Usually, the entries of W are normalized to reflect

weights in the strength of association among units. For example, W is commonly pre-

specified as binary, i.e., wi,j = 1 if i and j share some common boundary, otherwise wi,j = 0.

ρ is a so called propriety parameter, which could be viewed as a proportion of Vi to

the weighted average of its neighbors
∑

j ρwi,jVj/wi+. ρ = 1 corresponds to an improper

CAR model. ρ = 0 corresponds to the case of independence among V1, V2, ..., Vn. The

introduction of ρ in CAR model is to ensure the existence of the precision matrix Σ−1
v =

(Dw − ρW )−1. In hierarchical model settings, CAR model is often employed as a prior,

which might still yield proper posterior. Therefore, ρ is set to be 1 in our model. For

further discussion, see Banerjee et al. (2004).

1.2.3 Coregionalized Models

When we have multivariate spatial data over the same region which have dependence among

each other as well as spatial dependence between sites, multivariate spatial model is then

desired. There are many statistical investigations of this problem in the literature (see

Banerjee et al. (2004)). The crucial objective is to seek flexible, interpretable and compu-

tationally tractable models to describe the multivariate spatial data. And the key to the

solution usually relies on the way of constructing a valid cross-covariance matrix associated

with the multivariate spatial data. Let Y(s) denote a p × 1 vector of random variables at

location s. The cross-covariance is defined as a p × p matrix C(s, s
′

) ≡ cov(Y(s),Y(s
′

)).

A cross-covariance matrix is called valid if for any number of and choices of locations,

the resulting np × np covariance matrix for Y is positive definite. There has been some

approaches to construct a valid cross-covariance matrix, including separability, coregional-

ization, moving averages, and convolution. In this subsection, we primarily focus on the
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review of the coregionalization approach.

This approach is through the linear model of coregionalization ( Wackernagel (2003),

Matheron (1982), Gelfand and Vounatsou (2003) and Jin et al. (2005)), which is a con-

structive way to model multivariate spatial variables jointly by specifying their conditional

distributions and marginal distributions.

Let Ui = (Ui,1, Ui,2, ..., Ui,n)
′

denotes the spatial component i in the study region, for

i = 1, 2, ..., p, where p is the number of co-regional spatial components. By introducing a

transformation lower triangular matrix A with elements ai,j , we now could model depen-

dent spatial components (U1,U2, ...,Up) as:























U1,i

U2,i

...

Up,i























= A























V1,i

V2,i

...

Vp,i























Denote Vj = (Vj,1, Vj,2, Vj,n), for j = 1, ..., p. For each Vj, we could separately use

univariate CAR models for the areal unit data and use Gaussian process model for the

point-referenced data.

Take the multivariate CAR models as an example. The joint distribution of (U1,U2, ...,Up)

are constructed as:

(U1,U2, ...,Up)
′ ∼ N(0, (A ⊗ In×n)Γ−1(A⊗ In×n)

′

) (1.16)

where Γ =























Dw − ρW 0 · · · 0

0 Dw − ρW · · · 0

...
. . .

. . .
...

0 · · · · · · Dw − ρW























Benefits of working with the conditional form of the model are certainly computational and

possibly mechanistic or interpretive.
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1.2.4 Predictive Process

Both estimation and prediction of Model 1.11 require evaluating the Gaussian likelihood

using either Bayesian analysis or Maximum likelihood approach. For n observations Y =

(Y (s1), ..., Y (sn))T Y ∼ N(Xβ,ΣY) , with ΣY = C(θ) + τ2In, where X = [xT (si)]
n
i=1 is

a matrix of regressors and C(θ) = [C(si, sj;θ)]
n
i,j=1. Evidently, evaluating the likelihood

involves the inversion of n × n matrix Σy, which is computationally expensive for big n,

even more so with repeated evaluation as needed in MCMC algorithms.

Recently, Banerjee et al. (2007) proposed a class of models based upon a predictive

process that operates on a specified lower-dimensional subspace by projecting the original

or parent process. The lower-dimensional subspace needs to be chosen by the user by

selecting a set of “knots” S∗ = {s∗1, . . . , s∗m}, which may or may not form a subset of the

entire collection of observed locations S (see Finley and Gelfand (2008, submitted) for

a discussion on knots selection). The predictive process w̃(s) is defined as the “kriging”

interpolator

w̃(s) = E[w(s)|w∗] = cT (s;θ)C∗−1(θ)w∗, (1.17)

where w∗ = [w(s∗i )]
m
i=1 ∼ MVN(0, C∗(θ)) comprises the parent process realization over

the knots in S∗, C∗(θ) = [C(s∗i , s
∗
j ;θ)]

m
i,j=1 is the corresponding m×m covariance matrix,

and c(s;θ) = [C(s, s∗j ;θ)]
m
j=1.

The predictive process w̃(s) ∼ GP (0, C̃(·)) defined in (1.17) has nonstationary covari-

ance function,

C̃(s, s′;θ) = cT (s;θ)C∗−1(θ)c(s′,θ), (1.18)

and is completely specified by the parent covariance function. Realizations of this predictive

process are given by w̃ = [w̃(si)]
n
i=1 ∼ MVN(0, cT (θ)C∗−1(θ)c(θ)), where cT (θ) is the

n×m matrix whose i-th row is given by cT (si;θ). The attractive theoretical properties of
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the predictive process including its role as an optimal approximator have been discussed in

Banerjee et al. (2007).

The predictive process in (1.17) immediately extends to multivariate Gaussian pro-

cess settings. For a q × 1 multivariate Gaussian parent process, w(s), the corresponding

predictive process is

w̃(s) = Cov(w(s),w∗)V ar−1(w∗)w∗ = CT (s;θ)C∗−1(θ)w∗, (1.19)

where Γw(s, s′) = Cov(w(s),w(s′)) = [Cov(wl(s), wm(s′))]ql,m=1 is the cross-covariance

matrix (see, e.g., Banerjee et al. (2004)), CT (s;θ) = [Γw(s, s∗1;θ), . . . ,Γw(s, s∗m;θ)] is q×mq

and C∗(θ) = [Γw(s∗i , s
∗
j ;θ)]

m
i,j=1 is the mq × mq dispersion matrix of w∗ = [w(s∗i )]

m
i=1.

Equation (1.19) shows w̃(s) is a zero mean q × 1 multivariate predictive process with

cross-covariance matrix given by Γw̃(s, s′) = CT (s;θ)C∗−1(θ)C(s′;θ). This is especially

important for the applications with multivariate spatial observations, where each location

s yields observations on q dependent variables given by a q × 1 vector Y(s) = [Yl(s)]
q
l=1.

For each Yl(s), we also observe a pl × 1 vector of regressors xl(s). Thus, for each location

we have q univariate spatial regression equations which can be combined into the following

multivariate regression model:

Y(s) = XT (s)β + w(s) + ǫ(s), (1.20)

where XT (s) is a q× p matrix (p =
∑q

l=1 pl) having a block diagonal structure with its l-th

diagonal being the 1 × pl vector xT
l (s). Note that β = (β1, . . . ,βp)

T is a p × 1 vector of

regression coefficients with βl being the pl×1 vector of regression coefficients corresponding

to xT
l (s). Likelihood evaluation from (1.20) that involves nq × nq matrices can be reduced

to mq ×mq matrices by simply replacing w(s) in (1.20) by w̃(s).

Further computational gains in computing C∗−1(θ) can be achieved by adopting “core-

gionalization” methods (Wackernagel (2003), Gelfand et al. (2004b) and Banerjee et al.
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(2007)) that model Γw(s, s′) = A(s)Diag[ρl(s, s
′;θ)]ql=1A

T (s′), where each ρl(s, s
′;φ) is a

univariate correlation function satisfying ρl(s, s
′;φ) → 1 as s → s′. Note that Γw(s, s) =

A(s)AT (s), hence A(s) = Γ
1/2
w (s, s) can be taken as any square-root of Γw(s, s). Often

we assume A(s) = A and assign an inverse-Wishart prior on AAT with A a compu-

tationally efficient square-root (e.g., Cholesky or spectral). It now easily follows that

C∗(θ) = (Im ⊗ A)Σ∗(θ)(Im ⊗ AT ), where Σ∗(θ) is an mq × mq matrix partitioned into

q × q blocks, whose (i, j)-th block is the diagonal matrix Diag[ρl(s
∗
i , s

∗
j ;θ)]

q
l=1. This yields

a sparse structure and can be computed efficiently using specialized sparse matrix algo-

rithms. Alternatively, we can write Σ∗ as an orthogonally transformed matrix of m × m

block diagonal matrix, P T [⊕q
l=1[ρl(s

∗
i , s

∗
j ; θl)]

m
i,j=1]P , where ⊕ is the block diagonal operator

and P is a permutation (hence orthogonal) matrix. Since P−1 = P T , we need to invert q

m×m symmetric correlation matrices rather than a single qm× qm matrix. Constructing

the nq ×mq matrix Σ̃ = [Diag[ρl(si, s
∗
j )]

q
l=1]

n,m
i,j=1, we further have

V ar(w̃) = CT (θ)C∗−1(θ)C(θ) = (In ⊗A)Σ̃(θ)Σ∗−1(θ)Σ̃T (θ)(Im ⊗AT ), (1.21)

where the Kronecker structures and sparse matrices render easier computations.
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Chapter 2

Hierarchical Modeling for Extreme Values
Observed over Space and Time

2.1 Introduction

Extreme value analysis finds wide application in areas such as environmental science (e.g.,

Lou Thompson et al. (2001)), financial strategy of risk management (e.g., Dahan and

Mendelson (2001)) and biomedical data processing (Roberts (2000)). In this article, we

focus on climate extremes, in particular on precipitation events. Our underlying driver is

the challenging ecological problem of trying to characterize the effect of changes in climates

on the distribution and abundance of species. Particularly, for plants, it is suggested that

extreme climate events, such as drought, heavy rainfall and very high or low temperatures,

might be significant factors in explaining plant performance. In fact, it is plausible that

trends in climate extremes are more informative with regard to survival, growth, reproduc-

tivity, etc., than trends in the mean climate.

The motivating data set here is derived from precipitation surfaces in the Cape Floristic

Region (CFR) in South Africa. Figure 2.1 shows a map of the CFR in South Africa.

The CFR is the smallest but, arguably, the richest of the world’s six floristic kingdoms

encompassing a region of roughly 90,000 km2 in southwestern South Africa. The region

is highly diverse and endemic across spatial scales; it includes about 9000 plant species,

69% of which are found nowhere else. The daily precipitation surfaces we employ arise

via interpolation to grid cells at 10km resolution based on records reported by up to 3000

stations across South Africa during the period from 1950-1999. Figure 2.2 displays the
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derived surface of annual maxima of daily rainfalls for 1332 grid cells in 1999. In fact, we

have fifty such surfaces dating back to 1950. The high resolution grid-aggregated rainfalls

are derived from a conditional interpolation technique of Hewitson and Crane (2005) which

is especially tailored for precipitation data. The technique uses a distance-decay weighting

function, modified by the station-specific relation of a station to its surrounding areas. It

is widely used in the meteorology community and we make no attempt here to evaluate its

performance; rather, we take the output as our rainfall data.

It is generally accepted that there are, primarily, two distinct patterns generating pre-

cipitation in the CFR. There are fronts from the Atlantic Ocean affecting the western part

of the region with, typically, more hitting the southwest (Capetown and vicinity), fewer

hitting the northwest. There tends to be greater interannual variability in the northwest

with most of the rainfall occurring in the two to three winter months. Similarly, most of

the rainfall around Capetown occurs in the winter months. As we move east, rainfall tends

to arise from Indian Ocean storms and humidity which can come at any time but are more

likely in the summer. Finally, in the northeastern part of the region, spring and fall rain

occurs and there is little seasonality in the rainfall. Figure 2.3a shows the week of maximum

precipitation over all locations and all years, which indicates great spatial and interannual

variability in the extreme rainfall occurrence. Figure 2.3b shows this for the western part

of the CFR and Figure 2.3c for the eastern part. They support the foregoing description;

maximum rainfall is not confined to a specific part of the year. Finally, the climate for a

grid cell is expected to depend on altitude so we introduce elevation as a covariate in the

modeling. However, we find little effect on precipitation (but would anticipate a stronger

effect if we were studying temperature surfaces).

By now there is an enormous literature on the modeling of extremes. At present,

the standard approach utilizes Generalized Extreme Value (GEV) distribution families.
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Alternatively, daily precipitation exceedances for a given threshold are modelled with Gen-

eralized Pareto Distribution (GPD). The book by Coles (2001) provides an introduction

and bibliography through 2000. More recent work in the area of rainfall extremes includes

DURMAN et al. (2001), Kharin and Zwiers (2005), Huerta and Sansó (2007) and Cooley

et al. (2007).

The contribution of this Chapter is to develop models for rainfall that reflect dependence

in space and in time. In particular, the GEV is characterized by a location, a scale and

a shape parameter. Conceptually, these could all vary in space and time and they could

be mutually dependent. Through exploratory data analysis we clarify the nature of this

variation and then introduce it appropriately into a hierarchical model. In fact, we offer

several such models, fitting them and comparing them. We present interpretation of the

data analysis including the nature of spatial association and the nature of trend at grid cell

resolution over the fifty year period from 1950-1999. In fact, we also hold out the last year

of data to implement forecasting with validation studied through the hold out data. As a

result, we extend the recent work of Cooley et al. (2007) to introduce a dynamic aspect,

in particular, to model the location spatio-temporally, to introduce spatial dependence

between scale and location and, through Markov random fields, to handle a considerably

larger data set.

The format of the Chapter is as follows. In Section 2.2 we present exploratory analysis to

enable us to connect the grid level models in space and time. In Section 2.3 we offer various

hierarchical Bayesian models which provide appropriate connections based on the inference

about latent parameter structure in Section 2.2. Model implementation, employing MCMC

methods and model comparison for the annual rainfall data in the CFR are illustrated in

Section 2.4. In Section 2.5 we conclude with a brief summary and suggestions for future

work.
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2.2 Exploratory analysis

As reviewed in the introduction Chapter, The GEV distribution is viewed as an approximate

distribution to model the maximum of a sufficiently long sequence of random variables.

G(y;µ, σ, ξ) = exp

{

−
[

1 + ξ

(

y − µ

σ

)]−1/ξ
}

(2.1)

for y : 1 + ξ(y − µ)/σ > 0. In (1), µ ∈ R is the location parameter, σ > 0 is the scale

parameter and ξ ∈ R is the shape parameter.

Here, we will assign daily precipitation into annual blocks and then assume the maxima

are conditionally independent (but not identically distributed) across years given their

respective, parametrically modelled, µ, σ and ξ. That is, each maximum is assumed to

follow its own GEV with (µ, σ, ξ).

A further remark is appropriate here. The annual blocks provide roughly 365 daily

precipitation measurements. Many regions in the CFR are essentially deserts, resulting in

a very high proportion of “zeroes”. (In some grid cells we see 90% zeroes.) However, it can

be claimed that the GEV is still an appropriate model for the maximum in this case. The

argument is merely to envision the daily observations as Yt = Y ∗
t 1(Y ∗

t > 0) where Y ∗
t has

support R1. Then, if maxY ∗
t is assumed to follow a GEV, since maxYt = maxY ∗

t with very

high probability, we can use a GEV model for maxYt.

We introduce the GEV distribution as a first stage model for annual precipitation

maxima, specifying µ, σ, and ξ at the second stage to reflect underlying spatio-temporal

structure. In particular, let Yi,t denote the annual maximum of daily rainfall at location i

in year t. We assume the Yi,t follow a GEV distribution with parameters µi,t, σi,t and ξi,t,

respectively. Again, we assume the Yi,t are conditionally independent given their µ’s, σ’s

and ξ’s. Attention focuses on specification of the model for µi,t, σi,t and ξi,t.

To facilitate modeling the µi,t, σi,t and ξi,t, we conduct some exploratory analysis with
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two objectives - learning about temporal trend in these parameters and learning about

spatial dependence in these parameters. First, it is known that estimation of ξ is challenging

in GEV models (Cooley et al., 2007) and it is unlikely that we will be able to reliably discern

space-time pattern in a set of ξi,t. Furthermore, model fitting with spatially or temporally

structured ξi,t will be very difficult. So, we assume ξ is unknown but constant and focus

on learning about µi,t and σi,t.

Next, we illuminate the need for spatial modeling. At each grid cell, we fitted MLE’s for

µi and σi, treating the 50 measurements in time as independent, using the S-Plus package

ismev (Coles, 2001). We then computed customary residuals and studied the dependence in

these residuals between pairs of adjacent grid cells. Since these residuals are roughly from a

GEV(0, 1, ξ), moments need not exist so it is not appropriate to compute product moment

correlations. Instead we computed Spearman rank correlations. In fact, there are a very

large number of pairs of adjacent grid cells, hence a very large number of correlations that

can be computed. We created a histogram of these correlations (which is not presented in

the interest of space) finding that the median of these correlations is roughly .6. Evidently

there is strong residual spatial dependence, justifying the spatial random effects models we

develop in Section 2.3.

Returning to µi,t and σi,t, we initially consider the forms

µi,t = µi + αi,µt (2.2)

log(σi,t) = log(σi) + αi,σt (2.3)

In (3) and (4), µi and logσi can be viewed as baselines at grid cell i. The αi,µ and αi,σ denote

the site-level trend coefficients for the location and scale parameters. (Nonzero) slopes

inform about temporal dependence and the intercepts inform about spatial dependence. In

exploratory mode, we assume independence across sites and obtain maximum likelihood

estimators for these parameters along with ξ, modifying open source code for the S-Plus
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package ismev (Coles (2001)).

In Figure 2.4 we provide two maps showing the µi and logσi. We clearly see evidence of

spatial pattern in both, leading us to model the locations and scales with spatial structure.

In fact, using the grid cells themselves with, say usual first order neighbor proximity, we

can run Moran’s I and Geary’s C randomization tests for spatial association(Banerjee et

al., 2004) for the µi and the logσi. For the µi we obtain I = 0.82 (p < 0.01) and C = 0.14

(p < 0.01). For the logσi we obtain I = 0.74 (p < 0.01) and C = 0.23 (p < 0.01). So in

both cases, there seems to be evidence of significant spatial dependence. The implication is

that extreme rainfall distributions are anticipated to be similar for sites near to each other

(though nothing in this analysis says that the day of occurrence of an extreme rainfall at

one site coincides with the day of extreme rainfall at an adjacent site).

There is also evidence of temporal trend in the location parameters; roughly 95% of

the interval estimates for αi,µ are significant. There is much weaker evidence of temporal

trend in the scale parameters; far fewer of the αi,σ are significant. Moreover, fitting models

with both space and time specification in the scale parameters is difficult and, in any event,

we view our modeling as primarily illustrative. Therefore, in the formal space time models

proposed in Section 2.3, we assume there is temporal dependence for the µ’s but not for the

σ’s. Of course, analogous versions of models A - D below could be offered for the logσ’s.

We might anticipate dependence between µi and logσi, i.e., often the scale varies with

the center. If so, we would employ a bivariate spatial model. The scatter plot in Figure

2.5 for each pair of µi and logσi shows evidence of high correlation between these two

parameters, indeed suggesting the need for modeling dependence between them. In Section

2.3 we build formal multivariate spatial models to account for the findings above.
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2.3 Formal hierarchical space time models

Let Yi,t denote the annual maximum precipitation at grid cell i at time t with conditionally

independent first stage specification given by yi,t|(µi,t, σi,t, ξi,t) ∼ GEV (µi,t, σi,t, ξi,t). The

conditional independence assumption is interpreted as interest in smoothing the precipita-

tion surfaces around which the interpolated data is centered rather than smoothing the data

surface itself. As a formal assumption, it is defendable in time since the annual maxima at

a site likely occur with sufficient time between them to be assumed independent. In space,

we would expect small scale dependence in the data at a given time. However, as noted

in the Introduction, our observations are assigned to grid cells at 10 km resolution. The

exploratory analysis in the previous section motivates modeling residual spatial dependence

at this scale. However, with areal unit data at such scale, we have no tools to learn about

finer scale dependence.

Following Section 2.2, we assume ξi,t = ξ for all i and t, and σi,t = σi for all t, where

σi will be modelled using spatial random effects. Modeling interest therefore focuses on

the µi,t. But, in addition, we want the µi,t and σi to be co-varying at the same site. This

requires the introduction of an association model for a collection of spatially co-varying

parameters over a collection of grid cells. Gelfand and Vounatsou (2003) and Jin et al.

(2005) developed models for multivariate spatial random effects with areal data. We also do

this but adopt the coregionalization method (Gelfand et al. (2004b)) as discussed below to

offer a constructive specification of the joint distribution through transformation of simpler

conditional and marginal models. The gridding in the precipitation data suggests the use

of conditionally autoregressive (CAR) models; they also greatly reduce the computational

burden in fitting our high hierarchical models.
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2.3.1 Modeling the µi,t

As a result, we propose the specification, p(µi,t|β,Wi,t, τ
2) = N(X

′

iβ + Wi,t, τ
2). Again,

µi,t is the location parameters at location i at year t, i = 1, 2, ..., S and t = 1, 2, ..., T . Xi

is the site-specific vector of potential explanatory variables for extreme rainfall, such as

geographic coordinates using a trend surface, altitude of the sites and local temperature,

with the corresponding coefficient vector β. Wi,t is a spatial-temporal random effect.

Possibilities for modeling Wi,t include:

• An additive form:

– Model A: Wi,t = ψi + δt, δt = φδt−1 + ωt, where ωt ∼ N(0,W 2
0 ) i.i.d

• A linear temporal component with spatial random effects:

– Model B: Wi,t = ψi + ρ(t− t0)

– Model C: Wi,t = ψi + (ρ+ ρi)(t− t0)

• A multiplicative form in space and time:

– Model D: Wi,t = ψiδt, δt = φδt−1 + ωt, where ωt ∼ N(0,W 2
0 ) i.i.d

The additive form in Model A might appear to over-simplify spatial temporal structure.

However, the data may not be rich enough to find space-time interaction in the µi,t. Model B

and Model C provide evaluations of temporal trends in terms of global and local assessments

respectively. The coefficient ρ + ρi in Model C represents the spatial trend in location

parameters, where ρ could be interpreted as the global change level in the CFR per year.

Finally, Model D provides a multiplicative representation of Wi,t, similar in spirit to the

recent work of Huerta and Sansó (2007). Models A and D yield special cases of a dynamic

linear model (West and Harrison (1997)). More general versions can be built in the Wi,t,
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e.g., Wi,t = φWi,t−1 + ηi,t where the ηi,t are modeled as independent over t but dependent

across i. (See, e.g., Banerjee et al. (2004), Chapter 8 in this regard.) We do not follow this

path here since, from Section 2.2, we want to model the dependence between location and

scale parameters in the GEV model. In models A, B, and D, we do this by specifying logσi

and ψi to be dependent. In model C, we specify logσi, ψi and ρi to be dependent.

The nugget term τ2ǫi,t is introduced for computational convenience. By fixing a small

value for variance τ2 we enjoy the benefit of a Gaussian framework in sampling the param-

eters in the second stage specification with conditionally independent µi,t. Of course, the

Yi,t’s continue to be conditionally independent as above. Details of the sampling schemes

for MCMC model fitting are provided in the Appendix.

Again, we will have grid cell level scale parameters, σi. Following the findings of Section

2.2, we need to jointly model logσi and the ψi (regardless of which of the above models we

choose). This is the topic of the next subsection.

2.3.2 The Coregionalized CAR model

Recall the univariate CAR model (Besag (1974)), frequently used to model spatial ran-

dom effects (Banerjee et al. (2004)). Suppose V = (V1, V2, ..., VS)
′

is a vector of spatial

random effects which is defined at areal sites from 1 to S. The joint distribution of

V is defined through conditional Gaussian specifications at each site, p(Vi|Vj , j 6= i) =

N(
∑

j wi,j/wi+Vj, λ/wi+) where λ is a scale parameter. The CAR is an improper distribu-

tion. We use the usual neighbor-based proximities, wi,j = 1 if i and j share any common

boundary, wi,j = 0 otherwise.

When we have multivariate spatial random effects over the same region that have de-

pendence among themselves as well as spatial dependence across sites, a multivariate CAR

model is then desired. Gelfand and Vounatsou (2003) and Jin et al. (2005) developed mod-
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els for multivariate areal data by extending multivariate CAR ideas building on the work

of Mardia (1988). Here, we propose a coregionalization model in the spirit of Gelfand et al.

(2004b).

Let Ui = (U1,i, U2,i, ..., UP,i)
′

denote the P × 1 vector of spatial random effects for

the study region. Introducing a lower triangular transformation matrix A with elements

ai,j , let Ui = AVi, where Vi = (V1,i, V2,i, ..., VP,i)
′

. Denote V j = (Vj,1, Vj,2, ..., Vj,S), for

j = 1, ..., P . For the V j , we assume independent univariate CAR models as we mentioned

above. The CAR models can have scale parameter 1 because the entries in A provide the

scaling. We further assume that proximity matrix W remains constant for the P univariate

CAR models. Also, each V j has an improper distribution, hence the distribution of the U j

is improper. However, as with customary univariate CAR priors, we introduce centering

(on the fly, i.e., after each model-fitting iteration, Besag et al. (1995)). This converts the

improper CAR specification to a proper one while still enabling us to take advantage of

the convenient full conditional distributions associated with the CAR model. Now, with

proper priors, we are ensured that the posterior will be proper.

We work with the log transformation of σi, i.e, σi = σ0expλi. λi is now centered at 0.

The coregionalization CAR model is used for λi along with ψ in Model A, B and D, i.e.,

(λi, ψi)
′

= A(V1,i, V2,i)
′

, where A =







a11 0

a12 a22






and V1 and V2 are two independent

univariate CAR models.

For Model C, ρi in the temporal linear component is spatially varying. So here we

extend the multivariate CAR model to incorporate three spatial components, leading to

(λi, ψi, ρi)
′

= A(V1,i, V2,i, V3,i)
′

, where now A is a 3 × 3 lower triangular matrix.
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2.3.3 Bayesian implementation

Posterior inference for the model parameters is implemented by model fitting with Gibbs

samplers (Gelfand and Smith (1990)) and Metropolis Hasting updating (Gelman (2004)).

Details of the full conditional distribution for each parameter are given in the Appendix.

In our model, a vague normal prior is assigned to the shape parameter, ξ. We assign

inverse gamma priors for positive value σ0. Coefficients β and ρ have normal priors cen-

tered at the exploratory estimates with large variances. In Model A and Model D, we

follow the dynamic linear model prior setting to update δ1, δ2, ..., δT , φ and W0. For the

coregionalization matrix A, we assign truncated normal priors with positive value support

for the diagonal entries, and normal priors for the other entries. Altogether, our priors

are very weak suggesting little concern with regard to sensitivity analysis. However, we

did implement some sensitivity study, primarily on the various prior uncertainties, which

confirmed this. Details are available from the authors.

Under the conditional independence assumptions in the first stage settings, µi,t are

sampled independently for each pair of (i, t). Given µi,t, we can directly sample β, ρ, V2

and off-diagonal entries in A by adopting conjugate normal priors. Parameters without

closed form full conditional distributions are updated using Metropolis-Hastings. ξ, µi,t

and V1 are sampled by the random walk Metropolis-Hastings with Gaussian proposals.

The proposal distributions for σ0 and diagonal entries in A are truncated normals centered

at the current samples.

2.4 Model comparison and results

Again, the data set consists of annual maximum records at 1078 grid cells from 1950 to

1999. We fit the four hierarchical space time models with latitude/longitude and elevation
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at the cell centroid entering linearly as covariates. Models are fitted using two parallel

chains. Model D takes the longest to run, completing roughly 3 iterations per minute using

R code with dual 2.8 GHz Xeon CPUs and 12GB memory. We ran 10000 iterations to

collect posterior samples after a burn in period of 2000 iterations, thinning using every fifth

iteration. Trace plots of parameters indicate good convergence of the respective marginal

distributions.

In the models proposed in Section 4, temporal evolution in the extreme rainfalls is taken

into account in the model for Wi,t. More precisely, each of the models enables prediction

for any grid cell for any year. Annual maximum rainfalls in year T + 1 could be simply

obtained by updating samples from:

f(YT+1|Y1, ...,YT ,X) =

∫

f(YT+1|θ,X)f(θ|Y1, ...,YT ,X)dθ (2.4)

In fact, we held out the annual maximum rainfalls in 1999 for validation purposes, in order

to compare models in terms of predictive performance. Posterior medians are adopted as

the point estimates of the predicted annual maxima in 1999 because of the skewness of the

predictive distribution for YT+1. We check the predictive performance by computing the

averaged absolute predictive errors (AAPE) for each model. Given the true value of Yi,1999

in the hold out data set, AAPE is computed by:

ˆAAPE =
1

S

S
∑

i=1

|Ŷi,1999 − Yi,1999| (2.5)

where Ŷi,1999 is the median of the posterior samples {Ŷ (b)
i,1999} for b = 1, 2, ..., B with the

averaged absolute deviance (AAD) from the Ŷi,1999 estimated by:

ˆAAD =
1

BS

B
∑

b=1

S
∑

i=1

|Ŷ (b)
i,1999 − Ŷi,1999| (2.6)

A second model comparison is to study, for each model, the proportion of the true annual

maximum rainfalls in 1999 which lie in the associated estimated 95% credible intervals,
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denoted by r̂, is computed as in Table 2.1. A third model selection criterion which is

easily calculated from the posterior samples is the deviance information criterion (DIC)

(Spiegelhalter et al. (2002)).

Table 2.1 summarizes the DIC score, r̂, AAPE and the associated AAD for each pre-

dictive posterior samples by each models. Model A wins among the four models under the

DIC criterion. However, Model C has the lowest prediction error in terms of AAPE and

AAD and is second in DIC. In addition, the r̂ for Model C is quite close to 0.95, as desired.

As a result, we summarize results based on Model C.

Table 5.5 provides the posterior means for the parameters and the corresponding 95%

credible intervals under Model C. The resulting estimates for the coefficients βlat, βlon and

βelev in the regression part are insignificant; over the CFR we find no linear trend in these

variables in explaining extreme rainfalls. This finding agrees with the results in Coles and

Tawn (1996) for a different rainfall study. The posterior mean of the ξ takes value of

0.122 with 95% credible interval (0.112, 0.129), indicating the GEV distributions of annual

maximum rainfalls in CFR have heavy upper tails. The estimate of ρ in Table 5.5 is nearly

significant and suggests that, over the whole CFR, annual maximum rainfall is increasing,

on average, by 0.015mm per year over the past 50 years.

Model C allows for a further examination of the site-level trends. Figure 2.6 displays

the posterior means of the site-level trends and the σi’s. The magnitudes of the estimates

are represented through the grey scale plot and suggest spatial pattern in the ρi’s and the

σi’s. Specifically, despite an overall tendency towards increasing extreme rainfalls in the

CFR, some small areas show tendency towards decreasing extreme rainfalls.

Return levels for the occurrence of extreme events are of practical interest in climate

studies. Given posterior samples of µi,t, σi and ξ under the model, posterior samples of

return levels with return period 25 years are derived by equation 1.2. A map of estimated
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z1/25 in 1998 is presented in Figure 2.7a. Figure 2.7b compares return level z1/25,1998 and

z1/25,1950 obtained from Model C. Though, under our models, the return levels change

with time (so they are not useful as actual expected return times), it is informative to

see how they vary over time. We see slight temporal changes in z1/25 over the past 50

years. In the southwestern part of the CFR, return levels z1/25 decreased at least 2% from

1950 to 1998, suggesting a decrease in the intensity of heavy rainfalls in CFR over the

past 50 years. In contrast, more than half of the regions in CFR have increasing return

levels z1/25, suggesting the shift of the distributions of annual maxima rainfall towards

larger heavy rainfalls. Finally, the posterior samples provide a natural way to evaluate the

corresponding uncertainty of return level estimates as shown in Figure 2.8. The lower and

upper .025 quantiles vary considerably over the region and the lengths of the associated

interval estimates do as well.

2.5 Discussion and future work

We have presented flexible hierarchical models for the dynamic and spatial change in annual

maximum rainfalls collected at more than 1300 areal regions over 50 years. Our hierarchical

models are based on the GEV distribution to describe the asymptotic behavior of maxima

taken from a time series of daily records. We consider space and time-varying location

parameters in the GEV distributions. In addition, we assume spatially varying scale pa-

rameters. A coregionalized CAR model is then introduced to capture the underlying spatial

dependence between these parameters at site level. Inference for the space-time return level

becomes straightforward under the MCMC model fitting approach.

Various extensions for this work are possible. Besides annual maxima of rainfalls, we

have interest in similar modeling for annual temperature extremes. A further, and more

demanding, challenge will take us to bivariate space-time modeling for precipitation and
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temperature extremes (see, e.g., Heffernan and Tawn (2004)).

In this model, the interpolation technique which yields the gridded data is not a point

to point interpolation, but rather generates grid cell area integrals. The interpolation

technique fits a surface to best estimate the area integral and, thus, inherently suppresses

the peaks. Therefore, it is expected that interpolation of extremes will underestimate true

extremes over the same area, i.e., the maximum of an average is at most the average of

maximums. It is an open challenge to account for this effect in modeling interpolated

extreme values.

Appendix

Monte Carlo Sampling Procedure

The hierarchical models we proposed are implemented by MCMC algorithm. We draw

samples of parameters from their full conditional distribution respectively. We illustrate

the MCMC sampling procedures for Model A and C below.

Let β = (β0, βlat, βlon), δ = (δ1, δ2..., δT ), µ = (µ1,1, µ1,2..., µ1,T , µ2,1, ..., µS,T )
′

, µt =

(µ1,t, µ2,t..., µS,t)
′, ψ = (ψ1, ψ2, ..., ψT ), δ = (δ1, δ2, ..., δT )′, t = (1, 2, ..., T )′ ,X = (X1,X2...,XS)

′

,

Xi = (1, Lati, Loni, Elevi)
′

, W = (W1,1,W1,2...,W1,T ,W2,1, ...,WS,T )
′

. Let g(·) be the

probability density function of the GEV distribution. Let N(·) denotes the probability

density function of normal distribution. Below we use θ− generically to denote parameters

other than the target parameter.

MCMC for the implementation of Model A

• Updating µ: Sample µi,t independently via Metropolis-Hasting algorithm for each
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i and t.

f(µi,t|θ−) ∝ g(Yi,t;µi,t, σi, ξ)N(µi,t;X
′

iβ +Wi,t, τ
2)

• Updating ξ: The Metropolis-Hastings step can be applied to sampling ξ based on

its full conditional distribution.

f(ξ|θ−) ∝
S

∏

i=1

T
∏

t=1

g(Yi,t;µi,t, σi, ξ)N(ξ;µ0
ξ , σ

0
ξ
2
)

• Updating β: Sample β directly from the full conditional distribution, which is

f(β|θ−) ∝
S

∏

i=1

T
∏

t=1

N(µi,t;X
′

iβ +Wi,t, τ
2)N(β;µ0

β ,Σ
0
β)

∼ N(Bb,B)

where B−1 = XTX + Σ0
β, b = XT (µ−W ) + Σ0

βµ
0
β

• Updating σ0: Sample σ0 from its full conditional distribution

f(σ0|θ−) ∝
S

∏

i=1

T
∏

t=1

g(Yi,t;µi,t, σ0exp(a11V1,i), ξ)IG(σ0; 2, β
0
σ0

)

Update σ = σ0exp(a11V1)

• Updating matrix A:

A is a 2 × 2 lower triangular matrix. Sample a11 via Metropolis-Hastings step. a12

and a22 are updated from their posterior normal distributions by adopting normal

priors.

f(a11|θ−) ∝
S

∏

i=1

T
∏

t=1

g(Yi,t;µi,t, σ0exp(a11V1,i), ξ)N+(a11;µ
0
11, σ

0
11

2
)

f(a12|θ−) ∝
S

∏

i=1

T
∏

t=1

N(µi,t;X
′

iβ + a12V1,i + a22V2,i + δt, τ
2)N(a12;µ

0
12, σ

0
12

2
)

f(a22|θ−) ∝
S

∏

i=1

T
∏

t=1

N(µi,t;X
′

iβ + a12V1,i + a22V2,i + δt, τ
2)N+(a22;µ

0
22, σ

0
22

2
)
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• Updating δ:

Conditional on µi,t, β and ψ, µt −Xβ − ψ = δt1 + ǫt; ǫt ∼ N(0, τ2I), δt = φδt−1 +

ωt;ω ∼ N(0,W0). This is a specific dynamic linear modelDLM(Y ;F,G, V,W ) (West

and Harrison (1997); Huerta and Sansó (2007)) with known observation covariance

matrix τ2I. Sample the state vector δ using the Forward Filtering Backward Sam-

pling algorithm(FFBS). Forward in time, sequentially sample δt from δt|(Y1, ..., Yt,W0, φ)

for t = 1, 2, ..., T . Backwards in time, smooth the samples of δt by updating

δt|(δt+1, (y1, ..., yT ),W0, φ) for each time step. The evolution variance W0 can be

directly sampled from an Inverse-Wishart distribution if we adopt IG(a0
W0
, β0

W0
) as

priors forW0, i.e., f(W0|θ−) ∝ IG(a0
W0

+
T

2
, βW 0

0
+

∑T
t=1(δt − φδt−1)

2

2
), where δ0 = 0.

Finally, sample φ from its conditional distribution where we use normal conjugate

prior, i.e., f(φ|δ,W0) ∝
∑T

t=2N(δt;φδt−1,W0)N(φ;µ0
φ, σ

0
φ
2
)

• Updating V1 by Metropolis-Hastings step: The conditional distribution for V1,i is :

f(V1,i|V1,j, j 6= i, V2,i,θ−) ∝
T

∏

t=1

g(Yi,t;µi,t, σ0exp(a11V1,i), ξ)f(V1,i;µv1i
, σ2

v1i
)

• Updating V2: The full conditional distribution for V2 is a Gaussian. For each

i=1,2,...,S, update V2,i directly from

f(V2,i|V2,j , j 6= i, V1,i,θ−) ∝ N(µi,t;X
′

iβ + a12V1,ia22V2,i + δt, τ
2)N(

∑

j

wijV2,j/wi,+, wi,+)

Finally, Update Wi,t = ψi + δt.

MCMC for Model C: Follow the procedures of implementing Model (A) to update µ, ξ,

β and σ0.

• Updating ρ: Sample ρ from its full conditional distribution

f(ρ|θ−) ∝
S

∏

i=1

t
∏

t=1

N(µi,t;X
′

iβ + ψi + (ρ+ ρi)(t− t0), τ
2)N(ρ;µ0

ρ, σ
0
ρ
2
)

Update δ = ρ(t− t0)
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• Updating A: For Model (C), A is a 3 × 3 lower triangular matrix. Sample a11 via

Metropolis-Hasting step. a12, a22, a13, a23 and a33 are updated from their posterior

normal distributions by adopting conjugate normal priors.

f(a11|θ−) ∝
S

∏

i=1

T
∏

t=1

g(Yi,t;µi,t, σ0exp(a11V1,i), ξ)N+(a11;µ
0
11, σ

0
11

2
)

f(a12|θ−) ∝
S

∏

i=1

T
∏

t=1

N(µi,t;X
′

iβ + a12V1,i + a22V2,i + δi,t, τ
2)N(a12;µ

0
12, σ

0
12

2
)

f(a22|θ−) ∝
S

∏

i=1

T
∏

t=1

N(µi,t;X
′

iβ + a12V1,i + a22V2,i + δi,t, τ
2)N+(a22;µ

0
22, σ

0
22

2
)

f(a13|θ−) ∝
S

∏

i=1

T
∏

t=1

N(µi,t;X
′

iβ + ψi + (ρ+ ρi)(t− t0), τ
2)N(a13;µ

0
13, σ

0
13

2
)

f(a23|θ−) ∝
S

∏

i=1

T
∏

t=1

N(µi,t;X
′

iβ + ψi + (ρ+ ρi)(t− t0), τ
2)N(a23;µ

0
23, σ

0
23

2
)

f(a33|θ−) ∝
S

∏

i=1

T
∏

t=1

N(µi,t;X
′

iβ + ψi + (ρ+ ρi)(t− t0), τ
2)N+(a33;µ

0
33, σ

0
33

2
)

• For i = 1, 2, ..., S and t = 1, 2, ..., T , update ψi = a12V1,i + a22V2,i, ρi = a13V1,i +

a23V2,i + a33V3,i, σi = σ0exp(a11V1,i), Wi,t = ψi + (ρ+ ρi)(t− t0).

• Updating V1,V2,V3: Update V1 by Metropolis-Hastings step. The conditional

distribution for V1,i is

f(V1,i|V1,j , j 6= i, V2,i,θ−) ∝
T

∏

t=1

g(Yi,t;µi,t, σ0exp(a11V1,i), ξ)N(V1,i;µv1i
, σ2

v1i
)

The full conditional distribution for V2 is a Gaussian distribution. For each i=1,2,...,S,

update V2,i directly from

f(V2,i|V2,j , j 6= i, V1,i, V3,i,θ−) ∝
S

∏

i=1

T
∏

t=1

N(µi,t;X
′

iβ + a12V1,i + a22V2,i

+(ρ+ a13V1,i + a23V2,i + a33V3,i)(t− t0), τ
2)N(

S
∑

j=1

wi,jV2,j/wi,+, wi,+)

The full conditional distribution for V3 is a Gaussian distribution. For each i=1,2,...,S,
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D̄ pD DIC AAPE AAD r̂

Model A 638212 7614 645826 84.5 110.3 0.985

Model B 639835 7332 647167 83.7 104.5 0.944

Model C 638845 7814 646659 77.9 103.3 0.945

Model D 653321 7802 661123 81.7 118.5 0.966

Table 2.1: DIC, AAPE and r̂ for Models (A) - (D).

updating V3,i directly from :

f(V3,i|V3,j , j 6= i, V1,i, V2,i,θ−) ∝
S

∏

i=1

T
∏

t=1

N(µi,t;X
′

iβ + a12V1,i + a22V2,i

+(ρ+ a13V1,i + a23V2,i + a33V3,i)(t− t0), τ
2)N(

S
∑

j=1

wi,jV3,j/wi,+, wi,+)

• Follow the updating procedures described in Model (A) to sample the other param-

eters.

38



Mean 95% CI

β0 249.4 (236.7, 255.2)

βlat -1.64e-03 (-0.054, 0.044)

βlon 2.03e-03 (-0.015, 0.017)

βelev -1.23e-05 (-0.001, 0.001)

σ0 90.15 (88.42, 92.23)

ξ 0.122 (0.112, 0.129)

ρ 0.150 (-0.06, 0.623)

Table 2.2: Posterior sample means of parameters and the corresponding 95% credible

intervals for Model (C). βlat, βlon and βelev are the coefficients of longitude, latitude

and elevation; ξ is the shape parameter of GEV distribution; σ0 is the center of

spatially-varying scale parameters; ρ is the global trend in location parameters for

Model (C).
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Figure 2.1: Map of Cape Floristic Region in South Africa [Image from R. Cowling

and D. Richardson, 1995. Fynbos. Fernwood Press].
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Figure 2.2: Image plot of the rainfall maxima over the gridded CFR in 1999.
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Figure 2.3: (a): Histogram of weeks when annual rainfall maxima occurred in CFR;

(b): Histogram of weeks when annual rainfall maxima occurred in western CFR; (c):

Histogram of weeks when annual rainfall maxima occurred in eastern CFR.
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Figure 2.4: MLE’s of the µi and logσi for the exploratory models.
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Figure 2.5: Scatter plot of the estimated µi and logσi for the exploratory models.
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Figure 2.6: Posterior sample means of scale parameters and local trends obtained

from Model C.
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Figure 2.7: (a): Posterior sample means of the 1/25 return levels in 1998; (b):

Posterior ratio of return level z1/25 in 1998 over z1/25 in 1950 obtained from Model C.
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Figure 2.8: (a): The lower and upper .025 quantiles of the 1/25 return levels in

1998 obtained from Model C; (b): The lengths of 95% credible intervals of the 1/25

return levels in 1998 obtained from Model C.
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Chapter 3

A Continuous Spatial Process of Extreme
Values

3.1 Introduction

In chapter 2, we proposed a hierarchical modeling approach for explaining a collection of

areal unit time series of extreme values. We assume that the observations follow Gener-

alized Extreme Value(GEV) distributions whose locations and scales are jointly spatially

dependent where the dependence is captured using multivariate Markov random field mod-

els specified through coregionalization. We fit the models to a set of gridded interpolated

precipitation data collected over a 50 year period for the Cape Floristic Region in South

Africa.

In this chapter, we continue to work on climate extremes with special interests in

modeling of extreme temperatures at weather station level. Like heavy rainfalls, high tem-

peratures is suggested to be one of the significant factors to explain plant performance,

especially mortality, growth and reproductivity. Various indices of extreme temperatures

are certainly available to use, such as the total number of days whose daily high temper-

atures are above certain threshold, or the number of consecutive days whose daily high

temperatures are above certain threshold. We chose the annual maximum daily highest

temperature as an index of extreme high temperatures for its clear interpretation and

straightforward distribution theory .

In specific, the motivating data are annual maxima of daily highest temperatures de-

rived from daily temperature records reported by 750 weather stations over South Africa
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over the period from 1950 to 2000. Figure 3.1 displays the annual maxima of daily highest

temperatures for 750 weather stations in 1999. We aim to understand two major scientific

problems regarding the observed point-referenced time series of extreme values. The first

problem of interest is the characterization of the spatial-temporal variations in the observed

high temperatures. For example, we are interested to know changes in extreme temper-

atures in this region over the study period as well as the spatial scale at which extreme

temperature operates across the CFR. As regard to spatial scale, it is not uncommon to

find extreme climate events driven by multi spatial scale forcing, say, large regional forcing

and small scale local forcing. Therefore, it is of interest to characterize spatial dependence

for extreme values with multiple spatial scales. The second problem of interest is to predict

the annual maxima of daily highest temperatures over those unmonitored locations in the

CFR hence to help assess the risk of having extreme temperatures over the study region.

The second problem is often known as the spatial interpolation for extreme values.

By now modeling of spatial extremes has received considerable attentions in the lit-

erature. Many existing approaches have been developed following the path of utilizing

Extreme Value distribution theory (see Introduction 1.1). Some recent work focusing on

spatial (or spatial temporal) characterization of extreme values include Kharin and Zwiers

(2005), Cooley et al. (2007) and Sang and Gelfand (2008). One of the challenging issues in

spatial extreme value modeling lies in the need for multivariate extreme value techniques

in high dimensions. In contrast, most of the multivariate extreme value theory developed

up to date only work well for low dimensional extreme values.

Most recently, several papers discuss statistical approaches regarding the problem of

spatial interpolation for extreme values (Cooley et al. (2008) and Buishand and Zhou

(2007)). In specific, given observed extreme values, the goal is to approximate the pre-

dictive distribution of the unobserved value at an unmonitored location (or a future time).
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Prediction of extreme values is especially useful in quantitative risk monitoring of extreme

climate events. Moreover, prediction methods in extreme climate studies have the potential

to be applied in statistical downscaling techniques for extremes. One conventional approach

is to build statistical models for the original spatial data without taking block maxima, and

then interpolate spatial surface at each time unit. Extreme value surface is derive by taking

time block maximum of the interpolated sequence at each location. In fact, this seemingly

straightforward interpolation method usually smoothes away true maxima at unknown lo-

cations and underestimates the true extreme values. Therefore, we decide to work with the

point-referenced annual maxima directly, and consider statistical model-based interpolation

technique to obtain the interpolated extreme surface.

In chapter 2, we proposed a hierarchical modeling in which annual maxima follow the

GEV distributions independently conditional on the parameters µ’s, σ’s, and ξ’s. Those

parameters are specified in the latent stage to reflect underlying spatio-temporal structure.

For the point-referenced block maxima, we can use Gaussian processes in the latent pa-

rameter specifications where as in Chap 2 we used CAR’s. However, there are some issues

in directly applying this approach for interpolation of extreme values. In specific, we will

obtain a nonsmooth predictive surface with conditional independence assumption in the

hierarchical model even if the underlying parameters are specified using smooth processes.

This is an undesired restriction especially when we work with smooth response data. In

addition, the proposed hierarchical model in Chapter 2 could only characterize large scale

spatial dependence in the latent parameter specifications. But in practice, there may still

remain unexplained small scale spatial dependence in the extreme data. Therefore, direct

use of the hierarchical model could lead to biased interpolation due to the failure in char-

acterizing dependence information at a small scale. A detailed discussion on this issue can

be found in 3.2.1.
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The contribution of this paper is to extend the hierarchical modeling approach developed

in Chapter 2 for explaining a collection of point-referenced time series of extreme values.

Following Chapter 2, we assume annual maxima (see, Sang and Gelfand (2008) ) follow GEV

distributions, with parameters µ, σ, and ξ specified in the latent stage to reflect underlying

spatio-temporal structure. We relax the conditional independence assumption previously

imposed on the first stage hierarchical models for annual maxima conditional on µ, σ, and

ξ. Instead, we propose a continuous spatial process model for extreme values to account

for spatial dependence which is unexplained by the latent spatio-temporal specifications for

GEV parameters. In addition, we present a way to apply this smoothed spatial process

model to the problem of spatial interpolation for extreme values. A simulation study is

illustrated to investigate the model fitting behavior.

The format of the chapter is as follows. In Section 3.2 we briefly discuss limitations

and possible extensions of the hierarchical modeling approach for spatial extreme values

we developed in chapter 2 . We subsequently review some existing theories on continuous

spatial process for extreme values in this Section. In Section 3.3, we construct a new

continuous spatial process for extreme values through the transformed Gaussian process

and discuss its statistical properties from different perspectives. In Section 3.4 we employ

this new continuous spatial process for extreme values in the Bayesian hierarchical modeling

framework in which we specify latent spatial temporal structures for the GEV parameters

to explain large scale spatial dependence and assume a continuous spatial process to explain

spatial dependence of extremes at fine scale. Model implementation is illustrated in Section

3.4.2 with special focus on the MCMC method. In section 3.5, we illustrates the proposed

methods with a simulated dataset. Finally, Section 3.6 concludes with a brief discussion

including future work.
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3.2 Review on modeling for spatial extremes

There have been a few literature focusing on the statistical characterization of dependence

structures of extreme values observed in space. In Section 3.2.1, we review a hierarchical

modeling approach (Sang and Gelfand (2008)) for explaining a set of gridded interpolated

precipitation time series of extreme values. The primary focus of that paper is to explain

the extreme climate change and the spatial pattern associated with spatially referenced

heavy rainfalls. In section 3.2.2, we review a paper by de Haan and Pereira (2006) in which

the primary goal is that of spatial prediction for extreme rainfall event. The way they

model spatial extreme values is through an introduction of a new stationary max-stable

process, which they called the moving maximum process.

3.2.1 Hierarchical modeling approach for spatial extremes

In Chapter 2, we introduced the GEV distribution as a first stage model for annual maxima

(see, Sang and Gelfand (2008)), specifying µ, σ, and ξ at the second stage to reflect under-

lying spatio-temporal structure. In particular, we let Yi,t denote the annual maximum of

daily rainfall at location i in year t. Then we assumed the Yi,t follow a GEV distribution

with parameters µi,t, σi,t and ξi,t, respectively. We assumed the Yi,t are conditionally in-

dependent given their µ’s, σ’s and ξ’s. Attention had been focused on specification of the

model for µi,t, σi,t and ξi,t.

We now turn our attention to the modeling of annual maxima observed at point level.

Let Y (s, t) denote the annual maximum of daily highest temperature at location s in year

t. With annual maxima as the response data. It is natural to keep the assumption that

Y (s, t) follows a GEV distribution with parameters µ(s, t), σ(s, t) and ξ(s, t), respectively.

Following Chapter 2, we would specify the latent stage models for µ’s, σ’s and ξ’s. If we

follow the method described in Chapter 2, assumption of conditional independence has to
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be imposed in the first stage for the response data. However, in practice, one might question

the plausibility of this conditional independence assumption. Assumption of independence

in time may be plausible since taking a year as block size for taking maximum may lead to

roughly weakly independent annual maximum observations at a particular site. However,

in space, despite the fact that large scale spatial dependence may have been accounted

for in the latent parameter specifications, there may still remain unexplained small scale

spatial dependence in the extreme data. In chapter 2, since we only have areal unit data at

10km scale, modeled as areal unit data since that is the interpretation of the interpolation.

We do not have tools to study finer scale dependence. In this chapter, we are studying

the point-referenced annual maximum temperatures, which is likely to involve small scale

dependence in space.

There is another issue associated with this conditional independence assumption if

we consider to apply it on spatial interpolation of extreme values. Conditional on the

parameters in GEV distribution, suppose we assume Y (s, t) independently follows a GEV

distribution as follows:

Y (s, t)|(µ(s, t), σ(s, t), ξ(s, t)) ∼ GEV (µ(s, t), σ(s, t), ξ(s, t))

Given a new site s0 and year t, we are interested in knowing the posterior distribution

of Y (s0, t) conditional on all the observed annual maxima. The predictive distribution of

Y (s0, t) is given by:

(Y (s0, t)|Y) ∼
∫

P (Y (s0, t)|µ(s0, t), σ(s0, t), ξ(s, t)) (3.1)

P ((µ(s0, t), σ(s0, t), ξ(s, t))|µ,σ, ξ,Ω) (3.2)

P (µ,σ, ξ,Ω|Y)dµdσdξdΩ (3.3)

where (µ,σ, ξ) = ({µ(s, t)}, {σ(s, t)}, {ξ(s, t)}, s = 1, · · · , n; t = 1, · · · , T ), Ω denotes all

the other parameters except for µ,σ, ξ in the model. Equation (3.3) suggests that Y (s0, t)
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should be sampled from its predictive distribution by composition. We first obtain the pos-

terior samples (µ(s0, t), σ(s0, t), ξ(s0, t)) conditional on the posterior draws of µ,σ, ξ,Ω. In

the next step, Y (s0, t) are drawn independently given samples of (µ(s0, t), σ(s0, t), ξ(s0, t)).

Assuming continuous spatial-temporal processes for the latent parameters µ, σ and

ξ, we could obtain smooth surface for each model parameter. However, as suggested in

(3.3), the conditional independence assumption imposed in the first stage will result in

a nonsmooth response surface even with smooth surfaces for the GEV parameters. In

practice, many climate events such as temperature are suggested to be smooth across space.

We elaborate the above argument by expressing the model in a different form. Consider-

ing the marginal transformation of the GEV distribution, the first stage of the hierarchical

model in Chapter 2 can be written as:

Y (s, t) = µ(s, t) +
σ(s, t)

ξ(s, t)
(z(s, t)ξ(s,t) − 1) (3.4)

where z(s, t) follows a standard Fréchet distribution, i.e., GEV (−1, 1, 1) (see the details in

1.1.2). We may view z(s, t) as the ’standardized residual’ in the first stage GEV model. It is

noteworthy that the conditional independence assumption we made previously is equivalent

to making the i.i.d assumption for each z(s, t), i.e.,

z(s, t) ∼ standard Fréchet i.i.d (3.5)

Again, (3.5) clearly reveals that even if the surface for each model parameter is smooth, we

will obtain a nonsmooth predictive surface with conditional independence assumption in

the hierarchical model. In this regard, we would like to remedy the hierarchical modeling

approach by relaxing the conditional independence assumption in some fashion.
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3.2.2 A continuous process for spatial extremes: moving

maximum process

de Haan and Pereira (2006) proposed a stationary max-stable process as a model of the

dependence structure in two dimensional spatial problems. They have applied this max-

stable process to predict the distributions of extreme rainfalls across Netherland.

They started with independent replicated of a stochastic process with continuous sample

paths {xn(t)}t∈R for n = 1, 2, · · · . Suppose that this process is in the domain of attraction

of a max-stable process, that is, there are sequences of continuous functions an > 0 and

bn such that as n→ ∞, {max1≤i≤nXi(t) − bn(t)

an(t)
} → {η̃(t)}t∈R in C-space. Then the limit

process η̃(t)t∈R
is a max-stable process (see 1.1.2 for definitions). Without loss of generality,

they worked with simple max-stable process whose marginal distribution functions are all

standard Fréchet.

The proposed max stable process is described as follows:

Definition 7. : A mapping Φ from L+
1 (the non-negative integrable functions on R) to L+

1

is called a piston if for h ∈ L+
1 ,

Φ(h(t)) = r(t)h(H(t))

with H is a one-to-one measurable mapping from R to R and r is a positive measurable

function, such that for every h ∈ L+
1 ,

∫

R

Φ(h(t))dt =

∫

R

h(t)dt (3.6)

Theorem 8. Let {(Zi, Ti)} be a realization of a Poisson process on (0,+∞]×R with mean

measure (dr/r2) × dλ (λ is the Lebesgue measure). If the stochastic process {η(s)}s∈R is

simple max-stable, strictly stationary and continuous a.s., then there is a function h ∈ L+
1
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with
∫

R
h(t)dt = 1 and a continuous group of pistons {Φs}s∈R (continuous, i.e. Φsn

(h(t)) →

Φs(h(t)) as sn → s for almost all t ∈ R with

∫

R

sups∈IΦs(h(t))dt <∞

for each compact interval I, such that

{η(s)}s∈R = {maxi≥1ZiΦs(h(Ti))}s∈R

They proved that, conversely, every stochastic process of the form exhibited at the right

hand side of the above equation with the stated conditions is simple max-stable, strictly

stationary and a.s. continuous.

A special case is obtained by setting Φs(h(t)) := h(t − s), where h is a continuous

probability density. Examples have been discussed in (de Haan and Pereira (2006)). Ex-

amples for h include normal density, double exponential and t-density. Following the simple

max-stable process defined in (??), de Haan and Pereira (2006) derived an explicit form

of the bivariate distribution function for any two realizations of the process at given two

points. In climate study, however, the number of observed locations is typically hundreds

or more. Unfortunately, the integration in the distribution function of realizations of their

proposed spatial process is intractable hence places major obstacle for us to derive the

likelihood function for high-dimensional (n > 2) realizations. Recall the review on mul-

tivariate extreme value theory in 1.1.2. We find most of the multivariate extreme value

theory developed up to date are only applicable to low dimensional problems. For exam-

ple, logistic type of multivariate extreme value distribution (see Coles and Tawn (1991))

has a too restrictive parametric form to capture general dependence structures for large

dimension extremes. Some nonparametric models such as the tilted Dirichlet model (Coles

(1993)) require integration over the spectral function, which is typically infeasible especially

for high dimensions.
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3.3 A smooth spatial process for extreme values

In this section, we provide an alternative simple and intuitive continuous spatial process of

extreme values through the transformation of a Gaussian process. Again, without loss of

generality, we restrict ourselves to discussing the standard spatial process of extreme values

with Fréchet marginal distributions.

3.3.1 Copulas with multivariate extreme value distributions

Before formally introducing the transformed Gaussian process, we begin with an intro-

duction of a constructed multivariate extreme value distribution family using Gaussian

copulas. In fact, the development of transformed Gaussian process is largely motivated by

the Gaussian copulas idea.

As discussed in the preceding section, the main difficulty of the multivariate extreme

value distribution lies in the lack of an efficient way to describe dependence structures for

high dimensional extreme variables. A good news is that the univariate extreme value

distribution theory has been well studied, which enables us to concentrate on the depen-

dence in extreme values. We now seek to find a strategy to effectively reflect dependence

structures in a multivariate distribution for high dimensional extremes in some fashion.

One available way to construct the multivariate distributions is through copulas, which

have received increasing attentions and applications in the past two decades. (see, Nelsen

(2006) for a review). We will briefly describe some fundamental definitions and theorems

about copulas below.

Definition 9. A p-dimensional copula is the distribution function of a random vector in

Rp defined on the p-dimensional unit cube [0, 1]p and with uniform marginal distribution.

An equivalent definition is: C : [0, 1]p → [0, 1] is an p-dimensional copula if:
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• C (u) = 0 whenever u ∈ [0, 1]p has at least one component equal to 0;

• C (u) = ui whenever u ∈ [0, 1]p has all the components equal to 1 except the i-th one,

which is equal to ui;

• For all (a1, · · · , ap), (b1, · · · , bp) ∈ [0, 1]p with ai < bi, we have

2
∑

i1=1

· · ·
2

∑

ip=1

(−1)i1+···+ipC(u1,i1 , · · · , up,ip) ≥ 0 (3.7)

where uj,1 = aj and uj,2 = bj for all j ∈ {1, · · · , p}

Sklar (1959) proved a fundamental theorem which provides the representation of any

given multivariate distribution using copulas.

Theorem 10. Let H be a p-dimensional distribution function with margins F1, · · · , Fp.

Then there exists a copula C such that for all x ∈ R̄p, where R̄p = R ∪ {±∞}, such that

H(x1, · · · , xp) = C(F1(x1), · · · , Fp(y)) (3.8)

If the marginal distributions are all continuous, then the copula function C is unique.

Otherwise, the copula C is unique on the range of values of the marginal distributions.

Conversely, for a copula C and continuous margins F1, · · · , Fp, the function H define by

(3.8) is a p-dimensional distribution function with margins F1, · · · , Fp.

There are some commonly used parametric copulas. One example is the Gaussian

Copula, which is constructed from Gaussian distribution via Sklar’s theorem. Consider

a bivariate random vector distributed as standard bivariate Gaussian distribution with

correlation ρ. The Gaussian copula function is as follows: Cρ(u, v) = Φρ

(

Φ−1(u),Φ−1(v)
)

where the u, v ∈ [0, 1], Φ denotes the standard normal cumulative distribution function

and Φρ denotes the cumulative distribution function of the standard bivariate Gaussian

distribution with correlation ρ. Differentiating this yields cρ(u, v) =
φρ(Φ

−1
X (u),Φ−1

Y (v))

φ(Φ−1(u))φ(Φ−1(v))
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where φρ(x, y) =
1

2π
√

1 − ρ2
exp

(

− 1

2(1 − ρ2)

[

x2 + y2 − 2ρxy
]

)

is the density function

for the bivariate normal variate with correlation coefficient ρ, φ is the density of the N(0, 1)

distribution (the marginal density).

Let CN denote the Gaussian copula. Consider a bivariate random vector (X,Y ) with

marginal GEV distributions Gx and Gy. Following theorem (3.8), it is easy to construct a

bivariate extreme value distribution with the Gaussian copula with the following distribu-

tion function G(x, y) = CN (Gx(x), Gy(y))). Let (X,Y ) = (G−1
x Φ(X

′

), G−1
y Φ(Y

′

)) , where

G−1
x and G−1

y are the inverse marginal distribution functions for X and Y . Then the dis-

tribution function of (X,Y ) is given by H(X,Y ) = CN (Φ(X
′

),Φ(Y
′

)). And the marginal

distributions of X and Y remain to be Gx and Gy.

Now we can study the dependence structures defined through the Gaussian copula. As

we discussed in the Introduction 1.1.2, several dependence metrics are available to measure

the bivariate dependence. Since the constructed bivariate extreme value distribution has

an explicit form, it is convenient to compute those proposed dependence measures. In

specific, for a given bivariate Gaussian Copula with correlation coefficient {ρ ≥ 0}, we can

analytically solve the extremal coefficient for the constructed bivariate extreme distribution

G(x, y; ρ). Remembering that the extremal coefficient is defined as φ = Pr(X < 1, Y < 1)

(see, 1.1.2), we obtain

φ = Pr(X < 1, Y < 1, ρ) (3.9)

= Φρ(Φ
−1Gx(1),Φ−1Gy(1); ρ) (3.10)

where Φρ is the cumulative distribution function for a standard bivariate Gaussian distri-

bution with correlation coefficient ρ and Φ−1 is the inverse CDF of N(0, 1). Let H(ρ) =

Φρ(X
′

< Φ−1Gx(1), Y
′

< Φ−1Gy(1)); ρ). In Figure 3.3 we plot the extremal coefficients of

the constructed bivariate extreme distribution with standard Fréchet marginals for a set of

{ρi ≥ 0}. It is not surprising to find a strictly monotone decreasing relationship between φ
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and ρ. When ρ = 1, φ = 0 which corresponds the complete dependence case. When ρ = 0,

φ = 1 corresponding to the independence between X and Y .

3.3.2 Transformed Gaussian processes

Consider a standard spatial Gaussian process z∗(s) with mean centered at 0 and variance

at 1. We constructed a transformed Gaussian process based on z∗(s) as follows:

z(s) = G−1Φ(z∗(s)) (3.11)

where Φ is the distribution function of a standard normal distribution, and G is the distri-

bution function of a standard Fréchet distribution.

Suppose we observe extreme values at a set of sites {s1, · · · , sn}. The realizations of

z∗(s) at {s1, · · · , sn} follow a multivariate normal distribution which is determined by the

given covariance function of z∗(s). Denote z = (G−1Φ(z∗(s1)), · · · , G−1Φ(z∗(sn))) and

z∗ = (z∗(s1), · · · , z∗(sn)).

Given the correlation function ρ(s, s
′

;θ) of the standard Gaussian process z∗(s), we can

derive the Gaussian copula Cz∗ for the distribution function of z∗ as follows:

Cz∗(u1, · · · , un) = Fz∗(Φ
−1(u1), · · · ,Φ−1(un)) (3.12)

where (u1, · · · , un) ∈ [0, 1]n and F is the multivariate distribution function of MVN(0,Σ)

with Σ = [ρ(si, sj ;θ)]
n
i,j=1.

Let F (z) denote the multivariate distribution of z, then

F (z) = Cz∗(Φ
−1G(z1), · · · ,Φ−1G(zn)), where z = (z1, · · · , zn) ∈ Rn. It can be proved that

the marginal GEV distributions for each z(si) with joint distribution F (z) is still a standard

Fréchet, i.e., GEV(−1, 1, 1). In this regard, we construct a multivariate GEV distribution

in which the marginal distribution of each variable follows a standard Fréchet distribution

and the dependence structure is completely determined by the Gaussian copula Cz∗ .

60



(3.11) clearly reveals that the Gaussian process z∗(s) introduces the spatial dependence

into our model. In fact, the transformed Gaussian process we proposed in (3.11) is essen-

tially a one to one monotone mapping from a Gaussian process to an extreme value process.

There has been a rich amount of effort focusing on the development of Gaussian spatial

process models (see Banerjee et al. (2004)). We can conveniently embed the transformed

Gaussian process into various existing Gaussian spatial processes models, hence share sev-

eral advantages of working under Gaussian framework. For example, we can immediately

derive several nice statistical properties of the transformed Gaussian process as follows:

• Joint, marginal and conditional distributions of extreme values z are all immedi-

ately obtained from the standard distribution theory once the mean and covariance

structure of Gaussian processes have been specified.

• There are plentiful candidates of covariance structures established for Gaussian spa-

tial processes, which provide a large pool for us to flexibly specify dependence struc-

tures for spatial extreme observations.

• Many established efficient computational algorithms could be utilized by transforming

back to Gaussian processes.

• Transformation in (3.11) retains the stationarity property. If the Gaussian process

z∗(s) is a stationary spatial process with a valid covariance function ρ(s − s
′

,θ),

then z∗(s) is also strongly stationary, which implies that z(s) is a strongly stationary

process, i.e., the distribution of (z(s1), · · · , z(sn)) is the same as that of (z(s1 +

h), · · · , z(sn + h)) for any h ∈ R2. And all the dependence metrics described in

Section 1.1.2, including Kendall’s τ , Spearman’s ρ, Schweizer and Wolff’s σ and the

extremal coefficient, only depend on s − s
′

. To illustrate, we derive the extremal
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coefficient between z(s) and z(s
′

) as follows:

φ(z(s), z(s
′

)) = Φρ(Φ
−1G(1),Φ−1G(1); ρ(s − s

′

,θ)) (3.13)

where Φρ is the bivariate normal distribution function with mean 0 and variance-

covariance matrix







1 ρ(s − s
′

,θ)

ρ(s − s
′

,θ) 1






.

• Most importantly, the transformed Gaussian approach is not limited to the appli-

cation on extreme value analysis. In theory, for any Non-Gaussian spatial response

data set which are assumed to have marginal distribution function G (or more gen-

erally, {Gs} at each location s), G−1Φ(s) described in (3.11) provides a valid spatial

process with a consistent marginal distribution with the one we initially assumed for

the given response data. Therefore, we could envision a general extension of this

method to a broad range of Non-Gaussian spatial context besides extreme values.

However, in some cases, function G may involve a complicated form (e.g., intractable

integration) such that G−1 is intractable and difficult to evaluate, which could yield

the failure of using (3.11).

Despite of those appealing properties of transformed Gaussian approach we list above,

we should admit that this copula-based approach suffers from a number of drawbacks. First,

the multivariate extreme value process developed using transformed Gaussian is adopted

as an asymptotic model for spatial maxima. But the dependence of multivariate extremes

in our model is constructed in a way that has little connection with the asymptotic prop-

erties of standard multivariate extreme value theory (see 1.1.2). The second aspect is that

after marginal transformations, the constructed multivariate extreme value distribution is

essentially determined by the specified covariance function of the Gaussian process, which

is not able to reasonably explain dependence properties for a general class of multivariate

extremes. In specific, the transformed Gaussian process could only characterize higher or-
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der dependence through the bivariate dependence specifications, which is not necessarily

the case for multivariate extremes.

3.4 Bayesian modeling approach for spatial extreme

values

In Section 3.3, we construct a continuous process for spatial extremes with standard Fréchet

marginal distributions. However, in practice, the marginal behaviors for spatial extreme

values are typically unknown to us and in need of modeling as well. In this section, we

aim to develop a hierarchical modeling approach in which spatial dependence in extreme

values is captured through latent parameter specification as well as the transformed Gaus-

sian processes modeling for ’standardized residuals’. We offer a MCMC approach for the

implementation of the proposed hierarchical models in the end of this section.

3.4.1 A hierarchical modeling approach

We introduce the GEV distribution as a first stage model for annual maxima at point level.

Notice that Y (s, t) denotes the annual maxima at location s at time t. The first stage of

the hierarchial model is written as follows:

Y (s, t) = µ(s, t) +
σ(s, t)

ξ(s, t)
(z(s, t)ξ(s,t) − 1) (3.14)

For the second stage model, model specifications for µi,t, σi,t and ξi,t have to be taken

into careful consideration. In chapter 2, we first conducted some exploratory analysis

to learn about temporal trend in these parameters and learn about spatial dependence

in these parameters. We then followed those exploratory results as guidelines in making

formal model specifications. Here, we can follow the similar path to conduct some type of
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exploratory analysis and obtain GEV parameter estimations based on independent GEV

models (see 2.2). We find that the annual maximum temperatures at weather station exhibit

similar spatial temporal pattern in GEV parameters as we observed in the annual maximum

rainfall data. In specific, we assume there is spatial temporal dependence for the µ’s and σ’s,

the temporal dependence for the µ’s but not for the σ’s, ξ is unknown but constant across

the study region. Following those assumptions, we illustrate some examples of modeling

specifications at the second stage explaining extreme values observed at point level. First,

we can propose the specification p(µ(s, t)|β,W (s, t), τ2) = N(X(s)
′

β +W (s, t), τ2). X(s)

is the site-specific vector of potential explanatory variables. Here, we are using Gaussian

processes and assuming W (s, t) is a spatial-temporal random effect where as in Chap 2 we

used CAR’s.

• An additive form:

– Model A: W (s, t) = ψ(s) + δt, δt = φδt−1 + ωt, where ωt ∼ N(0,W 2
0 ) i.i.d

• A linear temporal component with spatial random effects:

– Model B: W (s, t) = ψ(s) + ρ(t− t0)

– Model C: W (s, t) = ψ(s) + (ρ+ ρ(s))(t− t0)

• A multiplicative form in space and time:

– Model D: W (s, t) = ψ(s)δt, δt = φδt−1 + ωt, where ωt ∼ N(0,W 2
0 ) i.i.d

ψ(s) can be interpreted as the spatial component in the location parameter, commonly

modelled as Gaussian process. ρ(s) can be interpreted as the site level trends in the location

parameters, and usually modelled as Gaussian process as well. And δt can be interpreted the

temporal component. See Chapter 2 for the detail interpretations about these 5 proposed

specification.
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For the weather station extreme data, we could also check the association between

the estimated location parameters and the estimated scale parameters in the exploratory

data analysis. For the annual maxima of temperatures in the CFR, we found the corre-

lation is not as strong as that of annual maxima of rainfalls in the CFR. We may treat

the locations and the scales to be independent Gaussian processes. But in a general con-

text, if we observe the existence of dependence between the location parameter and the

scale parameters, we will need to jointly model logσ(s) and the ψ(s). We could borrow

the concept of coregionalization once again in the same fashion as we model multivariate

spatial areal data. Let U(s) = (U1(s), U2(s), ..., Up(s))
′

denote the P × 1 vector of spa-

tial random effects for the study region. Introducing a lower triangular transformation

matrix A with elements ai,j , let U(s) = AV (s), where V (s) = (V1(s), V2(s), ..., Vp(s))
′

.

For the Vj(s), we assume independent spatial Gaussian process models with a specified

covariance function C. The scale parameter in covariance function C is set to be 1

since the entries in A already provide the scaling. Take Model (1) as an example, let

log(σ(s)) = σ0 exp(λ(s)). the coregionalization spatial Gaussian model is used to jointly

model λ(s) and ψ(s). (λ(s), ψ(s))
′

= A(V1(s), V2(s))
′

, where A =







a11 0

a12 a22






where

V1(s) and V2(s) are two independent Gaussian process models.

Next, we model the ’standardized residuals’ in (3.14) using the transformed Gaussian

process model:

z(s, t) = G−1Φ(z∗(s, t)) (3.15)

In the spirit of Section 3.3, z∗(s, t) is modelled using a spatiotemporal Gaussian process from

a rich class of specifications. There has been considerable research work on the specifications

of spatial temporal Gaussian process (see Gelfand et al. (2004a) and Banerjee et al. (2004)).

As an illustration, we consider the following specification for z∗(s, t). For any given year t
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in {1, · · · , T}, let z∗t (s) ∼ GP (0, C(·,θ)) in which the covariance scale is 1. Moreover, we

assume z∗t (s) and z∗
t′
(s) are two independent Gaussian processes when t 6= t

′

. It is plausible

to make this assumption of temporal independence since annual block size may be long

enough to yield independent annual maximum observations.

Under this hierarchical modeling settings, the marginal distribution of the annual maxi-

mum observations at a particular site is still GEV (µs,t, σs, ξ). By introducing Model (3.15),

we are able to learn the dependence structures in the residuals. And, more importantly,

if the underlying parameters in GEV are specified using continuous processes and the ex-

planatory variables are also continuous in space, the hierarchical modeling we proposed

leads to a smooth predictive surface of extreme values which is desired for many extreme

climate events with smooth surfaces.

Given a new location s0 at year t, the posterior predictive distribution of Y (s0, t) con-

ditional on all the observed annual maxima is given by:

(Y (s0, t)|Y) ∼
∫

P (Y (s0, t)|µ(s0, t), σ(s0), ξ, z
∗
t (s0)) (3.16)

P ((µ(s0, t), σ(s0), z
∗
t (s0))|µ,σ, ξ, z∗,Ω,X(s0)) (3.17)

P (µ,σ, ξ, z∗,Ω|Y,X,X(s0))dµdσdξdz
∗dΩ (3.18)

where (µ,σ) = ({µ(s, t), s = 1, · · · , n; t = 1, · · · , T}, {σ(s), s = 1, · · · , n}, z∗ = {z∗(s, t), s =

1, · · · , n; t = 1, · · · , T}, Ω denotes all the other parameters except for µ,σ, ξ, z∗ in the

model. Under Bayesian modeling framework, we could draw the posterior samples from

the predictive distribution for Y (s0, t) by composition. We first draw posterior samples

of (µ,σ, ξ, z∗,Ω) using MCMC algorithms. Next, conditional on the posterior draws of

µ,σ, ξ, z∗,Ω, we then draw samples of (µ(s0, t), σ(s0)), z
∗
t (s0)). Recall the conventional

prediction procedure in Gaussian processes (see Banerjee et al. (2004)). Explicit forms of

conditional posterior distributions for (µ(s0, t), σ(s0) and z∗t (s0) help us to draw samples

straightforwardly within the Gaussian framework. The final step of spatial interpolation
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now becomes straightforward: Y (s0, t) = µ(s0, t) +
σ(s)

ξ
(z(s0, t)

ξ − 1).

3.4.2 Bayesian implementation

Given the complexity of the model, we employ MCMC methods, the most popular Bayesian

computing tools, to implement the proposed models in (3.4.1). We begin with prior spec-

ifications for the parameters. Customarily, we set β ∼ MVN(µβ,Σβ). In our model, a

vague normal prior is assigned to the shape parameter, ξ. We assign inverse gamma priors

for positive value σ0. Also recall that transformation matrix A itself is unknown and needs

to be stochastically specified. We model AAT with an Inverse-Wishart prior. In general the

spatial range parameters are weakly identifiable and prior specifications become somewhat

delicate. Reasonably informative priors are needed for satisfactory MCMC behavior and

the priors for the range parameters are set relative to the size of their domains. Notewor-

thy, spatial random effects exist at least in both the location parameters and transformed

standardized residuals, without any constraints, which may cause some idenfiability issues

regarding the inference about these spatial ranges. Therefore, we impose a restriction as

follows: φµ > φz, where φµ and φz are the spatial range parameters in the location param-

eter model, the scale parameter model and the standardized residuals model respectively.

In practice, it is plausible to assume that large scale behavior of a particular extreme phe-

nomenon is captured by the location parameters. And small scale dependence in space is

captured by the residuals.

Posterior inference for the model parameters is completed using Gibbs samplers (Gelfand

and Smith (1990)) and Metropolis Hasting updating (Gelman (2004)).

Given µ(s, t), we directly sample β, ρ, V2 and off-diagonal entries in A by adopting

conjugate normal priors. Parameters without closed form full conditional distributions are

updated using Metropolis-Hastings. ξ is sampled by the random walk Metropolis-Hastings
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with Gaussian proposals. The proposal distributions for σ0 and diagonal entries in A

are truncated normals centered at the current samples. The conditional distribution of the

latent spatial component {λ} and {z} follow a high dimensional non-Gaussian distribution,

which is computationally challenging and extremely inefficient to follow the metropolis

hasting path because of the correlations among individual spatial variables for {λ(s)} and

{z(s)}. In the subsequent subsection, we introduce a gradient based algorithm to help the

mixing of MCMC for drawing sample from those two high-dimensional latent variables.

Bayesian posterior computation is easy if we only focus on the Gaussian process model

because the integration of the Gaussian process out of the model has a nice analytical solu-

tion (see, Banerjee et al. (2004)). However, in our situation, Gaussian processes models are

embedded in the latent stage of the hierarchical model which has non-Gaussian first stage

model. As a result, implementation of extreme value models in (3.14) essentially requires

sampling values for the latent Gaussian random effects, which, unfortunately, cannot be

integrated out of the model analytically. And the large number of spatial observations

inevitably leads to high dimensional and highly correlated realizations of the latent Gaus-

sian process, which typically yields poor convergence and slow mixing of MCMC when we

sample from those latent Gaussian random effects.

Here, we can employ a version of the predictive process model described in Banerjee

et al. (2007) (see Introduction 1.2.4 as well) to reduce the dimension. The latent Gaussian

processes in the hierarchical models are now replaced with their induced predictive processes

correspondingly. Briefly, we consider a set of “knots” S∗ = {s∗1, . . . , s∗m} which forms a

subset of the study region in 2 dimensional space. Take z∗t (s) as an example, the Gaussian

process with covariance function Cz(s, s
′

;θz) would yield ż∗t = [z∗t (s
∗
i )]

m
i=1 as its realizations

over S∗. Then the induced predictive process model is defined as:

z̃∗t (s) = cT
z (s;θz)C

∗−1
z (θz)ż

∗
t , (3.19)
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where c∗z(s;θz) = [Cz(s, s
∗
j ;θz)]

m
j=1. and C∗

z (θ) = [Cz(s, s
∗
j ;θ)]i=1,··· ,m;j=1,··· ,m. In fact,

we only need to work with ż∗t which is in a relatively low dimension determined by the

number of knots, say, 100. Therefore, predictive processes models can effectively reduce

computational burdens of drawing samples from latent Gaussian random effects.

However, it is still a computationally challenging task to sample from a high dimensional

(say, dimension > 50) latent Gaussian random effects model. Here, we employ a gradient

information based algorithm hoping to help the mixing of MCMC. The algorithm is called

Metropolis-adjusted Langevin Algorithm (MALA), also known as Langevin-Hastings, which

uses the gradient of the posterior distribution in making proposal distributions (Christensen

and Waagepetersen (2002); Robert and Casella (2004)). We take the MALA sampling

method for ż∗t as an example to illustrate this algorithm.

Conditional on the other parameters, the posterior conditional distribution of ż∗t (s1), · · · , ż∗t (sm)

is given by:

π(ż∗t |Y, Ω̄,θz) = f(Y |ż∗t , Ω̄)G(ż∗t |θz) (3.20)

where Ω̄ denotes all the other parameters except for ż∗t , f(Y |ż∗t , Ω̄,θz) is the likelihood

function of ż∗t and G(ż∗t |θz) is the Gaussian process prior for ż∗t .

In the MCMC algorithm, at iteration k, conditional on the samples we obtained for

ż
∗(k−1)
t and Ω̄(k−1) at the previous step. The Langevin proposal distribution for ż∗ is

ż∗ ∼ N(ż∗(k−1) +
vż∗

2
▽ (ż∗), v2

ż∗I) (3.21)

where

▽(ż∗) =
∂

∂ż∗
lg Π(ż∗|Y, Ω̄,θz) (3.22)

vż∗ is the proposal variance which controls the acceptance ratio. There are some studies

to allow for an adjustable vż∗ along with sample iterations.
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The Hasting ratio is given by:

exp(− 1

2v2
ż∗

(ż∗(k−1) − (ż∗ +
v2

2
▽ (ż∗)))T (ż∗(k−1) − (ż∗ +

v2

2
▽ (ż∗))))

exp(− 1

2v2
ż∗

(ż∗ − (ż∗(k−1) +
v2

2
▽ (ż∗(k−1))))T (ż∗ − (ż∗(k−1) +

v2

2
▽ (ż∗(k−1)))))

(3.23)

One drawback of this derivative-based method is that one cannot always obtain a closed

form for the derivative of the process values. See (Christensen et al. (2003) and Stramer

and Tweedie (1999)) for more discussions on this issue.

3.5 A simulation study of GEV model for spatio-

temporal point-referenced data

In this section we present a simulation study designed to examine the performance of the

transformed Gaussian process model relative to the non-smoothed spatial GEV models.

For simplicity, we do not consider extremes in both space and time. We only work on

spatial extreme values in this study. Nevertheless, the spirit of this simulation design and

model fitting can be generalized to the case of spatial-temporal extremes. The set up of the

study is as follows. A set of 1200 locations is sampled over a [0, 10] × [0, 10] rectangle, in

which 300 points are sampled uniformly and 900 points are sampled at a regular lattice as

shown in Figure 3.4. Let Y = (Y (s1), · · · , Y (sn)) denote a response vector, where n = 85.

Y is obtained from the following GEV model:

y(s) = µ(s) +
σ

ξ
(z(s)ξ − 1) (3.24)

µ(s) = X(s)β + wµ(s) (3.25)

z(s) = G−1Φ(z∗(s)) (3.26)

where µ(s) is the location parameter at location s, σ is the scale parameter and ξ is

the shape parameter. We admit here that the assumptions of having an constant σ and
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constant ξ over space may not be plausible in real data analysis. Nevertheless, the major

aim of doing this simulation is to study the dependence structures in GEV ’residuals’.

Moreover, model fitting with spatially structured σ(s) or ξ(s) may not be feasible here.

Therefore, margins of the simulated extreme values are specified with Fréchet distributions

with constant scale parameters and shape parameters over the study domain. µ(s) is

partitioned into a covariate term and spatial random effects wµ(s). X(s) are the explanatory

covariates at location s with β as its corresponding coefficient. Realizations of wµ(s) are

obtained from a Gaussian process with exponential covariance function σ2
µρ(φµ) with range

parameter φµ = 4 and scale parameter σµ = 1. We set β = 10, ξ = 0.5,σ = 3. In

this illustrative simulation, we only include a constant intercept in the covariate part, i.e.,

X(s) = 1. z(s) is sampled from a transformed standard Gaussian process. Marginally,

z(s, t) ∼ GEV (−1, 1, 1). Let z∗ = (z∗1 , ..., z
∗
n). z∗ is generated as realizations of a Gaussian

process with exponential correlation function ρ(φz) and standard spatial scale parameter at

observed location set {s1, · · · , sn}, where φz = 1.4 is the range parameter in the residuals.

z(s) is then immediately obtained using (3.11). The simulated surface of Y (s) is shown in

Figure 3.5.

We hold out 900 locations at regular lattice for validation purpose and fit Model (3.26)

using the rest of the simulated extreme value at those 300 uniformly sampled locations. We

also fit the following model using the same data set to make comparison with (3.26):

y(s) = µ(s) +
σ

ξ
(z(s)ξ − 1) (3.27)

µ(s) = Xβ + wµ(s) (3.28)

z(s) ∼ GEV (−1, 1, 1) i.i.d (3.29)

The model settings in Model (3.29) are similar with those of (3.29) in terms of the specifi-

cations for {µ(s)}, σ and ξ. The only difference lies in the distinct modeling approaches for

the standardized residuals {z(s)}. In Model (3.29), {z(s)} is assumed to be independent
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among different sites. The reason of making comparisons between Model (3.26) and (3.29)

is to investigate whether the spatial signals in the standardized residuals can be successfully

detected by fitting the Model with smoothed residuals, or in contrast, the spatial signals in

the standardized residuals are difficult to be detected and hence mistreated as noises.

Prior distributions are assigned to model parameters to complete the Bayesian specifi-

cation. We briefly list the prior specifications for a selected list of parameters and hyper-

parameters.

π(ξ) ∼ N(µ0
ξ , v

0
ξ )

π(σ0) ∼ IG(2, b)

π(β) ∼ N(µ0
β, σ

0
β)

π(σ2
µ) ∼ IG(2, bµ)

Assuming exponential covariance functions for w(s) and z(s) in the hierarchical model,

we seek to make inference of the range parameters φz and φµ respectively. We assume a

uniform prior for φµ at [0, 5.8]. Conditional on φµ, the prior distribution for φz is assumed

to be U [0, φµ] which reflects our belief on the ratio of the spatial scale in z∗(s) relative

to the spatial scale in wµ(s). Because of computational concern, we discretize the prior

distribution for each of them, i.e., φµ and φz only take values on finite discrete sets with

equal weights, respectively.

Posterior inference for the model parameters is implemented by model fitting with Gibbs

samplers and Metropolis Hasting. In (3.25), we introduce i.i.d white noise ǫ(s) ∼ N(0, τ2)

for computational convenience. By fixing a small value for variance τ2 we enjoy the benefit

of a Gaussian framework in sampling the parameters in the second stage specification with

conditionally independent µs. Conditional on {µ(s)} for each s and some other parameter,

the posterior conditional distributions for β, ρ and {wµ(s)} are all Gaussian distributions
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when we adopt conjugate Gaussian priors. σ and ξ have to be drawn from their conditional

distributions via Metropolis Hasting steps respectively. z∗ is the most difficult random

vector to make inference via MCMC. We adopt the gradient-based MALA method to draw

samples from its posterior multivariate non-Gaussian distribution. For each model, we ran

2000000 iterations to collect posterior samples after a burn in period of 100000 iterations,

thinning using every fifth iteration. Trace plots of parameters indicate good convergence of

the respective marginal distributions. The long length of burn in period is mainly caused

by the slow mixing of z∗. As a result of that, the smoothed GEV model (3.26) required

longer time to complete the MCMC sampling than the non smoothed GEV model (3.29).

The subsequent results focus on the parameter estimates. Table 3.1 displays the pos-

terior means for the parameters and the corresponding 95% credible intervals under Model

(3.26) and Model (3.29) respectively. All 95% credible intervals cover the true parameter

values for the Model we simulated from. In particular, the point estimation for φz = 1.5064

and φµ = 2.6658. We display the histograms of the posterior samples of φz and φµ in

Figure 3.6. In Model (3.29), we only have spatial random effects which are specified in the

location parameters. The point estimation of φµ under this model is 2.8069. Figure 3.7

shows the histogram of φµ we obtain by Model (3.29).

Recalling that 900 locations were held out for validation purpose, we now judge the

performance of these models based on: Deviance Information Criterion (DIC) (Spiegelhalter

et al. (2002)); ability to recover the true parameter values; prediction of a holdout set of 900

locations. In specific, adopting the posterior medians as the point estimates of predicted

maxima at new locations, we plot the predicted values for all hold out sites in Figure 3.8.

In addition, we check the performance of prediction by computing the averaged absolute

predictive errors (AAPE) of each model. Given the true value of Ys in hold out data set,
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AAPE is given by:

ˆAAPE =
1

900

900
∑

i=1

|Ŷ (s) − Y (s)| (3.30)

Where Ŷ (s) is the median of the posterior samples (Ŷ (s)(t)) from its posterior predictive

distribution.

Table 3.2 provides the DIC model fit statistics for Model (3.26) and Model (3.29). The

first column, labeled DIC, provides a relative measure of goodness of model fit, with lower

values indicating better fit (see., e.g., Spiegelhalter et al. (2002) for a full explanation of

the criterion). Model (3.26) has a slightly smaller DIC than Model (3.29), which indicates

the better fit using model with smoothed residuals. And the prediction performance for

Model (3.26) behaves better than of Model (3.29) based on the AAPE score. Notice that

extreme values with positive shape parameters are heavy tailed. We display the predictive

median surface for the extreme values as well as the associated surface for the lengths of

the 95% predictive intervals in Figure 3.8 for (3.26) and (3.29), respectively. Encouragingly,

the predictive surface for the extreme values based on Model (3.26) reasonably recovers the

true surface for the simulated extreme values. It also successfully captures the local spatial

patterns in the simulated extreme values. In contrast, the predictive median surface we

obtained from Model (3.29) could only reflect a large scale spatial dependence and fails to

capture the local peaks. In addition, Model (3.29), on average, has a larger length of 95%

predictive interval compared with Model (3.26).

3.6 Discussion

We have presented a continuous spatial process of extreme values, which we call the trans-

formation of a Gaussian process. The joint distribution function of realizations of the

transformed Gaussian process at any given set of locations can be expressed explicitly. We
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apply the proposed transformed Gaussian processes in the hierarchical models for explain-

ing the dynamic and spatial change in annual maximum observations. The first stage of

our hierarchical models follows GEV distribution to describe the asymptotic distributions

of maxima taken from a time series of daily records. The second stage of our hierarchical

models specifies variations in time and large scale dependence in space for the parameters

in the GEV distributions. We model the ”residuals” in the GEV models using the trans-

formed Gaussian processes to capture the small scale dependence in space. In addition, we

offer an approach to make spatial interpolation for extreme values based on this hierarchical

models with smoothed residuals across space.

Various future extensions for this work are possible. Besides simulation studies, we are

aiming to apply this modeling approach to our motivating dataset, annual temperature

extremes in the CFR. We also have interests to using this approach as spatial interpolation

tool to produce risk maps of extreme values. For example, the risk of having annual

maximum of daily highest temperatures greater than 40◦. Furthermore, it is important

to develop some easily implemented diagnostic tools in the exploratory stage of extreme

value analysis, which could help us to detect multiscale spatial patterns in extreme values.

Finally, we are seeking to find computationally more efficient algorithm to implement these

complex hierarchical models with high dimensional non-Gaussian first stage models.
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Model 3.26 (Smoothed residuals) Model 3.29 (Non-smoothed residuals)

True Mean 95% CI Mean 95% CI

β 10 9.7684 (9.1094, 10.4622) 9.7146 (9.3444 10.5167)

σ0 3 3.0229 (2.6740, 3.3006) 2.9209 (2.7218, 3.1725)

ξ 0.5 0.4253 (0.3522, 0.5493) 0.4162 (0.3619, 0.5331)

φµ 4 2.6658 (0.4, 5.6) 2.8069 (0.4, 5.6)

φz 1.4 1.5074 (0.2, 3.6)

Table 3.1: Posterior sample means of parameters and the corresponding 95% credible

intervals for Model (3.26) and Model (3.29). β is the intercept.σ is the scale parameter

of GEV and ξ is the shape parameter of GEV; φµ is the spatial range parameter in

the location parameters and φz is the spatial range parameter in the GEV residuals

DIC AAPE r̂

Smoothed GEV 322.27 2.6474 0.951

Nonsmoothed GEV 325.24 3.8549 0.956

Table 3.2: Performance of Model (3.26) and Model (3.29) using averaged absolute

predictive errors (AAPE), the deviance information criterion (DIC), and the empirical

coverage probability r̂.
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Figure 3.8: From left to right, top to bottom: (a) The predictive median surface

for extreme values using Model (3.26) (smoothed residuals); (b) The lengths of the
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median surface for extreme values using Model (3.29) (non-smoothed residuals); (b)
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Chapter 4

Bayesian Analysis of Multiscale Spatial
Dependence

4.1 Introduction

Spatial statistical models are gaining increasing amount of interests in the past few decades

partly thanks to the recent advances in Geographical Information Systems (GIS) and Global

Positioning Systems (GPS). Given a collection of large spatial dataset and the corresponding

accurate geocoding of locations, researchers and resource analysts are typically interested

in modeling how variables are associated both within and across locations. Specific interest

lies in learning the spatial structures which usually correspond to physical features of the

environment or to intrinsic characteristics of environmental processes and phenomena.

One of the important aspects of spatial statistical models is to detect and identify spa-

tial scales. The concept of spatial scale is fundamental to geography (see e.g., Marceau and

Hay (1999), Atkinson and Tate (2000) Dungan et al. (2002) and Quattrochi and Goodchild

(1997)). It has been broadly applied in geographic study, but, with various meanings. Bian

(1997) summarized the definition of scale from four perspectives. The first connotation

is that of traditional cartographic scale or map scale; The second connotation is that of

geographic scale, referring to the spatial extent of a study region. For instance, the de-

velopment of ozone surfaces for the Atlanta metropolitan area and the North American

continent would be considered small and large geographical scale studies, respectively. The

third connotation of scale is measurement scale, referring to the sampling interval used in

a study. In the case of regular lattice measurements, it often refers to data resolution. In
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the case of point measurements, it is often to refer to the mean distance to the nearest

neighbors for each point or the minimum distance to the nearest neighbors for each point.

And the fourth connotation is operational scale, referring to the spatial extent at which a

particular phenomenon operates in the environment. For instance, a phenomenon is called

to have a fine operational scale if its surface is dominated by fine scale variations. And

operational scale and spatial complexity are usually inversely related.

Considerable amount of attentions in statistical literature have been focused on the

inference of operational scales by building models to examine the collected spatial measure-

ments (see, e.g.,Cressie (1993) and Banerjee et al. (2004)). One commonly used strategy

is to represent operational scale in the parameterization of process models. For example,

a range parameter is defined in the commonly used exponential covariance function (or

exponential covariance variogram) used in point-level spatial Gaussian process specifica-

tions. The range is intended to quantify the effective operational range associated with a

particular spatial dataset.

In reality, statistical inference for the observational scale of a particular environmental

phenomenon is considered to rely on the measurement scale in the geographical study (Cao

and Lam (1997)). For example, to study the abundance pattern of invasive species from one

county to its neighboring counties, it is suggested that one should monitor the population

change of invasive species at a county level. One may possibly observe different abundance

patterns working at different spatial scales. Like the abundance pattern for invasive species,

in reality, many environmental processes and patterns varies with scale (Quattrochi and

Goodchild (1997)). And those geographical phenomena are regarded as scale-dependent.

Depending on the observation scale, scale-dependent processes that appear homogeneous

at a fine scale may become heterogeneous at a large scale, and parameters and factors that

are important at one scale may become trivial at another. However, in practice, the geo-
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graphical data are often collected only at a single pre-specified measurement scale which

is subject to observer’s choice. Based on the collected single measurement scale spatial

dataset, most existing statistical methods only assume a spatial model with a single op-

erational scale. Those methods may lead to two important issues regarding the learning

of true operational scale of the spatial phenomenon. The first issue is that if the spatial

phenomena are scale dependent, say, with a spatial pattern at a state level along with a

spatial pattern at a county level, a single scale spatial model will fail to capture the two

distinct spatial patterns. There have been little research work on studying multiscale spa-

tial dependence (see, e.g.,Banerjee and Finley (2007)). The second issue is that if a single

scale of dependence operates, the measurement scale of the study may not be fine enough

to discover the actual operational scale of the geographical phenomenon (e.g, when the op-

eration scale is significantly smaller than the measurement scale), then a single scale spatial

model may not be able to capture any useful spatial signals. In particular, this second issue

is sometimes referred to as the microscale problem in statistical literature (see, e.g., Cressie

(1993)). Cressie (1993) provided a definition of the micro scale variation in the context

of stationary spatial process: an intrinsically stationary process is called microscale varia-

tion if its variogram range exists and is smaller than the minimum interlocation distances.

Little work has been done to address these two issues. In fact, Cressie (1993) addressed

that: ” In the absence of information beyond the n data and their spatial locations, the

behavior of the microscale component in the decomposition is, by definition, unobtainable.

But knowing this behavior is important (for both predictions and mean squared prediction

errors) when a predictor location s0 is close to an observation location si.” However, the

definition of microscale spatial process given by Cressie actually encourages a Bayesian

approach in which priors on microscale spatial range could be appropriately specified to

reflect its association with the observational scale as well as practitioners’ opinions.
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The contribution of this paper is to propose a spatial point process model that aims to

account for both the large scale spatial dependence and the fine scale spatial dependence

given the spatial dataset collected at a single measurement scale. We offer an Bayesian

method to detect and distinguish the multi-scale spatial dependence structures by effec-

tively incorporating weak prior information for each of the spatial scales, which connects

the notion of coarse and fine scale dependence relative to the scale at which data are col-

lected. In particular, our model is able to tackle the problem associated with miscroscale

spatial dependence when the given measurement scale in the spatial data is larger than the

true micro spatial scale. Moreover, spatial study with multiscale spatial dependence often

involves large number of observations. The reason is that, by definition, the scale at which

data are collected should not be too coarse relative to the fine spatial operational scale,

which often suggests spatial study at a relatively high resolution. Otherwise, local spatial

variations may be indistinguishable from noise. In addition, spatial data with coarse scale

of dependence are typically collected at a relatively large global geographical scale. We

will also provide several solutions to the computational problems involved in fitting these

spatial models.

The remainder of this Chapter evolves as follows. Section 4.2 reviews the conventional

spatial point-referenced process, and then introduces our proposed spatial point-referenced

process with coarse scale and fine scale spatial components. Section 4.3 describes the

computational strategies to deal with coarse scale and fine scale structures. Section 4.5

illustrates the proposed methods with a simulated dataset. Finally, Section 4.6 concludes

with a brief discussion including future work.
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4.2 Hierarchical modeling for multi-scale spatial

data

In the introduction section, we provide a brief review of the univariate spatial Gaussian

processes. Assume we observe a response or dependent variable Y (s) at a generic location

s ∈ D ⊆ R2 along with a p× 1 vector of spatially referenced predictors x(s). Then, model-

based geostatistical data analysis typically proceeds from spatial regression models such

as,

Y (s) = xT (s)β + w (s) + ǫ (s) . (4.1)

The residual from the regression is partitioned into a spatial process, w(s), capturing spatial

association, and an independent process, ǫ(s), also known as the nugget effect, modelling

measurement error(see, e.g., Chiles and Delfiner (1999)). The w(s) are often referred to

as spatial random effects, providing local adjustment (with structured dependence) to the

mean, interpreted as capturing the effect of unmeasured or unobserved covariates with

spatial pattern. The most common specification for w(s) ∼ GP (0, C(·, ·)) is a zero-centered

Gaussian Process determined by a valid covariance function C(si, sj) defined for pairs of

sites si and sj. Sometimes we specify C(s, s′) = σ2ρ(s, s′;θ) where ρ(.;θ) is a correlation

function and θ includes parameters quantifying rate of correlation range and smoothness

of realizations though this limits us to constant process variance. ǫ(s) is often assumed to

follow a normal distribution with variance τ2 i.i.d for every location s. In practice, it is a

simple but reasonable assumption to model measurement errors.

In some situations, ǫ(s) is viewed as microscale variability. As defined in the intro-

duction, this refers to the variability at distances smaller than the smallest interlocation

distance in the data. Therefore, ǫ(s) is a spatial process which has a very fine operational

scale compared with its measurement scale (see, Cressie (1993)). And the spatial depen-
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dence of ǫ(s) decays extremely rapidly. Clearly, the N(0, τ2) assumption for ǫ(s) in (4.1)

suggests lack of inference power to discern between measurement error and micro-scale

variation. However, not much work have been done to investigate the micro-scale spatial

variability.

For a given spatial dataset which can be explained by several unmeasured or unobserved

covariates with spatial patterns at different scales, we seek to develop modeling approach

which could capture and distinguish each of these spatial patterns. To illustrate, we consider

a spatial Gaussian model with spatial variations with spatial dependence at two different

scales, simply called ”coarse scale variation” and ”fine scale variation”.

Y (s) = xT (s)β +wcoarse (s) + wfine (s) + ǫ (s) . (4.2)

The residual from the regression is now partitioned into three components: a coarse scale

spatial process, wcoarse(s), capturing coarse spatial association; a fine scale spatial process,

wfine(s), capturing fine spatial association, and an independent or pure error process, ǫ(s),

modelling measurement errors. Again, wcoarse(s) can be interpreted as the unobserved

covariates with large operational scale spatial pattern. And wfine(s) can be interpreted as

a surrogate for the unobserved covariates with fine operational scale spatial pattern.

We consider wsum(s) = wcoarse(s) + wfine(s), which is viewed as the overall spatial

variation at all scales. Then for any two locations s and s
′

, the covariance w(s) and w(s
′

)

is given as follows:

Csum(s, s
′

) = Ccoarse(s, s
′

) + Cfine(s, s
′

) (4.3)

First, suppose we model wcoarse(s) and wfine(s) through isotropic stationary Gaussian

process models. Assume wcoarse(s) is a zero-centered Gaussian Process with covariance

function Ccoarse(s, s
′) and wfine(s) is a zero-centered Gaussian Process with covariance

function Cfine(s, s
′). And we assume wfine(s) and wcoarse(s) are independent. In appli-
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cations, we often specify C(s, s′) = σ2ρ(s, s′;θ) where ρ(�;θ) is a correlation function and

θ usually includes a decay and a smoothness parameters. Common choices for correlation

functions include exponential, Gaussian, spherical and Matérn (see, introduction 1.2.1) cor-

relation functions, all of which induce valid stationary isotropic Gaussian processes. The

covariance function of wsum(s) is then given by:

Csum(s, s
′

) = σ2
coarseρcoarse(‖s − s′‖;θcoarse) + σ2

fineρfine(‖s − s′‖;θfine) (4.4)

Take the exponential correlation function as an example, Figure 4.1 is presented to com-

pare the overall spatial correlation function of w(s) with the coarse scale spatial correlation

function and the fine scale correlation function. For simplicity, we assume σcoarse = σfine,

φcoarse = 10 and φfine = 1. Therefore, (ρcoarse + ρfine)/2 is the correlation function for

wsum(s). Clearly, when distance between two sites is large, the spatial correlation is pri-

marily determined by the coarse scale spatial process. When distance between two sites is

small, the single coarse scale spatial correlation function fails to capture the overall corre-

lation pattern because of the existence of the fine scale spatial correlation. In many spatial

statistical models, the fine scale pattern is often overshadowed and ignored because of the

existence of coarse scale spatial variation.

Suppose we are working with the isotropic Gaussian process models. Parameters of

interests in Model (4.2) are the range parameters φcoarse and φfine as well as the spa-

tial scale parameters for the coarse scale variation and the fine scale variation. Maximum

likelihood methods are one of the conventional ways to make inference for the model pa-

rameters. For a given collection of sites in S = {s1, . . . , sn} the data likelihood is given by

Y ∼ N(Xβ,ΣY), with ΣY = Csum(θ) + τ2In, where X = [xT (si)]
n
i=1 is a matrix of re-

gressors and Csum(θ) = [Ccoarse(si, sj;θcoarse)]
n
i,j=1 + [Cfine(si, sj ;θfine)]

n
i,j=1 is the spatial

covariance matrix associated with wsum(s). However, there are some identifiability prob-

lems with the parameter estimations in the covariance function. Even if we consider the
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single spatial process model, the range parameter and the scale parameter are weakly iden-

tified in the likelihood. Zhang (2004) shows that in model-based geostatistics with Gaussian

observations, one cannot distinguish between two Matérn correlation functions with proba-

bility 1 no matter how much sample data are observed in fixed region. Consequently, not all

parameters are consistently estimable. Noticing the exchangeability between (σfine, φfine)

and (σcoarse, φcoarse) indicated by equation (4.3). The parameters in coarse scale covari-

ance and the parameters in fine scale covariance function are not identifiable without any

imposed constraints.

We follow a Bayesian inference path, which is another commonly used method to make

interference of the model parameters. We introduce hierarchical models, and assign prior

(hyperprior) distributions to the model parameters (hyperparameters) and inference pro-

ceeds by sampling from the posterior distribution of the parameters (see, e.g., Banerjee

et al. (2004)). A nice advantage of using Bayesian inference is that we can incorporate

the prior knowledge about the spatial scales when into model settings. Again, suppose we

are working with the isotropic Gaussian process models. Taking exponential correlation

function as an example, the fact that coarse scale range parameter φcoarse is undoubtedly

greater than the fine scale range parameter φfine gives us some natural guidance about the

prior assumption for φcoarse and φfine. In specific, one possibility is to assume

φcoarse = Kφfine (4.5)

where K is a ratio in [c1, c2] reflecting the modeler’s (or practitioner’s) prior belief on the

difference between coarse operational scale (coarse spatial range) and fine operational scale

(fine spatial range) for a particular geographical phenomenon of interests. c1 should be set

greater than 1 in order to ensure φcoarse > φfine. The constraint in (4.5) actually offers a

reparameterization in Model (4.2). That is, we can replace the parameters (φcoarse, φfine)

with the new parameters (K,φcoarse). Following this reparameterization, we assign prior
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distributions on φcoarse and K, e.g., K ∼ U(c1, c2), φcoarse ∼ U(0,maxi,j(di,j)/2). Given

posterior samples on K and φcoarse, inference of φfine is immediately obtained by simply

computing φcoarse/K.

Prediction at an arbitrary site s0 is straightforward under Bayesian inference frame-

work. Generically denoting the set of all model parameters by θ, model estimation com-

putes [Ω|Y]. We seek to find the predictive distribution [Y (s0)|Y] at a new site s0. This

predictive distribution can be sampled by composition, drawing Y (l)(s0) ∼ [Y (s0)|Ω(l),Y]

for each Ω(l), l = 1, . . . , L, where Ω(l) is the lth posterior samples. This is especially con-

venient for Gaussian likelihoods (such as (4.1)) with Csum(θ) = σ2
coarseρcoarse(s, s

′;θ) +

σ2
fineρfine(s, s

′;θ) since [Y (s0)|Ω(l),Y] is itself Gaussian with

E[Y (s0)|Ω,Y] = xT (s0)β + hT (s0)
(

Csum(θ) + τ2In
)−1

(Y−Xβ) and (4.6)

V ar[Y (s0)|Ω,Y] =
(

σ2
coarse + σ2

fine − hT (s0)
(

Csum(θ) + τ2In
)−1

h(s0)
)

+ τ2. (4.7)

where h(s0) = [Csum(s0, si;θ)]
N
i=1

We should remark that so far discussions on coarse/fine scale spatial processes model

in this paper have been focusing on isotropic stationary Gaussian processes. In fact, the

idea of employing Bayesian inference to reflect prior information on multi scale spatial

dependence could be flexibly extended to a general spatial context. In fact, despite the

fact that many spatial models do not necessarily have a clear notion of ’range parameter’

as we see in isotropic stationary covariance functions, spatial scales are often reflected in

those spatial models in some fashion. For example, below we will introduce two knots

based spatial processes which are non-stationary to tackle computational problems with

large spatial dataset. But as an illustration, we will also briefly explain how to reflect prior

information in those cases.
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4.3 Computations in coarse/fine spatial process

model

In practice, the fine scale dependence problems receive attention when the data collection

is at very high resolution so that it becomes feasible to investigate the scale of dependence.

In addition, spatial data with coarse scale of dependence are typically collected at a rela-

tively large global geographical scale. Therefore, geostatistical studies with multiple scales

of dependence typically involve large data sets. Suppose we have a set of locations of size

n, such fitting involves evaluation of the Gaussian likelihood with the n × n matrix Σ−1
y .

Markov chain Monte Carlo methods we described above is an effective approach for fitting

such models when n is not large (say, n < 1000). But when n is large, matrix computation

complexity increases as O(n3) in the number of locations n. Within an MCMC imple-

mentation, these computations occur at every iteration of the MCMC algorithm, rendering

computational infeasibility for large datasets. This problem has been referred to as the “big

n problem” in the spatial statistics literature. Below, we offer three approaches to tackle

this problem: the predictive processes (Banerjee et al. (2007)) and kernel convolution(see,

e.g.,Higdon (2002)), covariance tapering (Kaufman (2006)). In particular, we discuss the

effect of operational scale on our choices among those different strategies for dealing with

large ’n’ spatial models.

4.3.1 ”Large n” problem in coarse scale spatial processes

The predictive processes method (see Banerjee et al. (2007)) and the kernel convolution

method adopt the similar path in that both of these two methods replace the original process

w(s) with an approximation w̃(s) that represents the realizations in a lower-dimensional

subspace. Below, we briefly introduce these two methods and show how to employ them
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into our models with coarse and fine scale spatial variations.

First, we briefly summarize the kernel mixing method as below. Kernel mixing method

was mainly developed in Higdon (1998) Higdon et al. (1999) and Higdon (2002). It provides

an attractive approach of introducing nonstationary spatial association while retaining clear

interpretation and permitting analytic calculation. A particular kernel mixing model is in

the form of a finite sum approximation. Consider a set of “knots” S∗ = {s∗1, . . . , s∗m} which

forms a subset of the study region in 2 dimensional space. Define

w(s) =

M
∑

m=1

k(s − s∗m)z(s∗m) (4.8)

Assume z(s∗m) has a standard normal distribution i.i.d for each m from 1 to M . It directly

follows that:

V ar(w(s)) = σ2
M
∑

m=1

k2(s − s∗m) (4.9)

Cov(w(s), w(s
′

)) = σ2
M
∑

m=1

k(s − s∗m)k(s
′ − s∗m) (4.10)

It is noteworthy that Equation (4.10) clearly indicates the nonstationarity property con-

structed for w(s).

An attractive feature of this finite sum approximation of a kernel mixing model is

dimension reduction. As shown in (4.8), the set of {z(s∗m)},m = 1, · · · ,M serve as latent

base variables, typically with the total number of points being smaller than the sample size

n. Using this kernel mixing model (4.10), we can represent every given random variable w(s)

as a linear combination of the set {z(s∗m)},m = 1, · · · ,M . Let K = [ki,m, i = 1, · · · , n;m =

1, · · · ,M ], where ki,m = k(si, s
∗
m). In the case of a white noise assumption for each z(s∗m),

the variance-covariance function of {w(s), s = s1, · · · , sn} can be written as Σ = KTK.

This suggests that no matter how large n is, we are essentially breaking a n× n matrix Σ

down to a product of n×M matrix K and its transpose.
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This kernel mixing modeling approach can be embedded into our Model (4.2) easily.

First we select a set of knots {z(s∗m)},m = 1, · · · ,M which covers the study domain. Then

we model coarse operational scale spatial component as follows: wcoarse(s) =
∑M

m=1 k(s −

s∗m)z(s∗m).

Predictive process model is another approximated process w̃(s) that represents the real-

izations of w(s) in a lower-dimensional subspace. Banerjee et al. (2007) develop predictive

process models for spatial and spatio-temporal data. The idea is that every spatial (or

spatio-temporal) process could induces a predictive process, which projects the underlying

original process onto a subspace generated by a set of realizations of the original process

at a specified set of locations. We consider a set of “knots” S∗ = {s∗1, . . . , s∗m} which

forms a subset of the study region in 2 dimensional space. The bivariate Gaussian process

above would yield w∗ = [w(s∗i )]
m
i=1 ∼ MVN(0, C∗(θ)) as its realizations over S∗, where

C∗(θ) = [C(s∗i , s
∗
j ;θ)]

m
i,j=1 is the corresponding m ×m covariance matrix. The predictive

process model is defined as

w̃(s) = E[w(s)|w∗] = cT (s;θ)C∗−1(θ)w∗, (4.11)

where c(s;θ) = [C(s, s∗j ;θ)]
m
j=1. In fact, w̃(s) is a Gaussian Process with covariance function

C̃(s, s′;θ) = c∗T (s;θ)C∗−1(θ)c∗(s′,θ) where c∗(s;θ) = [C(s0, s
∗
j ;θ)]

m
j=1. The realization

of w̃(s) on any collection of sites are the interpolated predictions conditional upon the

realization of w(s) over S∗. To work with this process we only need to work with w∗
1, w∗

2

and the associated pair of m×m correlation matrices.

This predictive process approach provides a nice alternative to model the coarse oper-

ational scale spatial component. Given a selected set of knots {z(s∗m)},m = 1, · · · ,M , we

model coarse operational scale spatial component following , i.e., wcoarse(s) = cT (s;θ)C∗−1(θ)w∗.

As knot-based methods, the performance of the kernel mixing method and the predictive

processes method are highly relying on knots selection. For spatial process with relatively
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large scale compared with the measurement scale, both of these two methods only require

a small number of knots to effectively represent the realizations of the original processes

in a lower-dimensional subspace hence achieve efficient computations. Therefore, we could

employ either one of them to model the coarse scale dependence in (4.2). In particular, the

predictive process method can accommodate a wide range of spatial stochastic processes

(see Banerjee et al. (2007) for details), which provides great flexibility to characterize the

dependence structures at coarse scale.

However, for spatial process with relatively fine scale, both of these two methods now

require a relatively denser set of knots in order to preserve more complete information

about the fine scale spatial pattern. For the predictive processes, assuming for the mo-

ment we work on the regular lattice based knots, Banerjee et al. (2007) admitted that the

performance of the approximation depends on the size of the range relative to the spac-

ing of the grid for the knots. Their study shows that the approximation is weak at short

distances, and is even worse for processes with short observational spatial ranges. In this

regard, the predictive process with a limited number of knots will not be able to make

inference of dependence for pairs of sites that are very close (relative to the spacing of the

grid) to each other. Therefore, when there is fine scale spatial variation, a dense set of

knots has to be employed to ensure the good behavior of the predictive process. In this

regard, this knot based method will lose all its computational advantage when modeling

fine scale spatial variation since it essentially involves the intense matrix computations in

a high dimension determined by the knot size. Return to the kernel mixing method which

is also a knot-based method dimension reduction method, we realize a denser set of knots

is also required to preserve more complete information about the fine scale spatial pattern,

which inevitably increase the computational burden mainly due to high dimensional matrix

product. But an encouraging news is that the basis variables {z(s∗m)},m = 1, · · · ,M are
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mutually independent, which could still help us to avoid high dimensional matrix inversion

for likelihood evaluation in large ’n’ problem. Therefore, the kernel mixing method may

still be applicable to modeling the fine operational scale spatial component wfine(s).

Prior settings for spatial scales in those two non-stationary spatial processes are straight-

forward. As discussed above, the choice of knots itself reflects the modeler’s prior belief

on the spatial range in the given spatial dataset. Typically, denser set of knots have to

be placed in order to explore finer scale spatial dependence. Besides that, for the kernel

mixing method, we have a kernel function K often involving a parameter θ which controls

the spatial range. Therefore, we might be able to place restriction on priors for θ’s at

different scales. In the predictive process method, there is an original process which may

also contain some parameters controlling the spatial range. We could set priors for them

in the similar spirit as we discussed before.

4.3.2 ”Large n” in fine scale spatial processes

In section 4.3.1, we have concluded that dimension reduction based approaches such as

kernel mixing method and the predictive processes method may not be optimal choices

to model the fine operational scale spatial component. In this section, we consider two

possible approaches to tackle the large n problem in the presence of fine scale spatial

variations. Return to the spherical covariance function described in the introduction 1.2.1.

This particular covariance function has the following form:

C(t) =



































0 if t ≥ 1/φ

σ2(1 − 3t/2φ + (t/φ)3/2) if 0 < t ≤ 1/φ

σ2 + τ2 otherwise

(4.12)

where t denotes the distance between any two locations. The spherical covariance function

offers clear interpretations of the nugget parameter τ2, scale parameter σ and range param-
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eters φ. In particular, it is natural to set an upper bound for the range parameters φ, which

is typically a small value for the fine operational scale spatial process. Therefore, assum-

ing a spherical covariance function, the variance covariance matrix Σ of w(s) with a small

range is a sparse matrix. There are some efficient computations to compute the inverse of

a sparse matrix and the determinant of it. Therefore, it may facilitate the computation by

assuming a spherical covariance function for wfine(s) in Model (4.2). However, the obvious

drawback of using the spherical covariance function is that we would be restricted to work

on this particular covariance structure, which is not flexible enough to cover more general

covariance structures.

Kaufman (2006) proposed a covariance tapering method which provides two sparse

approximations for the covariance matrices. Her method starts with the Matérn class of

covariance functions denoted as K0(x; θ), which is clearly a more general and flexible spatial

covariance structures than the spherical covariance. Then she considers a tapering function

Ktaper(x; γ), an isotropic correlation function which is identically zero whenever x ≥ γ. γ

can be viewed as the effective range for the spatial phenomenon being studied. The tapered

covariance function is defined as

Ka(x; θ, γ)Ktaper(x; γ), x > 0 (4.13)

From (4.13), we can derive that the tapered covariance matrix is denoted as Σ(θ)◦T (γ),

where T (γ)i,j = Ktaper(‖si − sj‖). The ’◦’ notation refers to the element-wise matrix

product, also called the Schur product. The tapered covariance matrix is still a valid

covariance matrix since the Schur product of two covariance matrices is still a positive

definite matrix. By assigning γ a small value, we can constrain the range of the spatial

process to be small as desired. Again, the resulting covariance matrices is sparse, hence

can be manipulated using efficient sparse matrix algorithms. Therefore, the covariance

tapering method provides us an computational efficient yet flexible way to model the fine
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scale spatial component wfine(s) in Model (4.2).

Finally, considering the limited range that fine scale dependence could operate and

hence the limited information about the fine scale dependence, we think it is needed and

reasonable to assume that the spatial process is isotropic stationary at fine scale in order to

effectively learn the fine scale dependence. But large scale spatial dependence can certainly

be specified in a more flexible way since it is not necessary to have a stationary spatial

dependence structure at large scale.

4.4 Generalization to non-Gaussian spatial pro-

cesses and spatio-temporal processes

In this section, we consider the potential generalization of coarse/fine scale spatial process

model to cases where we work with Non-Gaussian spatial processes and spatio-temporal

processes.

Many existing Non-Gaussian spatial processes typically follow the path to make use of

generalized linear models in the context of spatial data. (see, e.g., Diggle et al. (1998),

Kammann and Wand (2003) and in Banerjee et al. (2004)). Commonly used non-Gaussian

first stage settings include: (i) binary response at locations, modeled using logit or probit

regression, and (ii) count data at locations modeled using Poisson regression. The basic

idea is to make the assumption that the mean of response Y (s) is linear on a transformed

scale, i.e., η(s) ≡ g(E(Y (s))) = xT (s)β + w (s) where g(·) is a suitable link function, and

w (s) is a spatial (Gaussian) process.

We have another path to follow for any given Non-Gaussian continuous process which

has an explicit form of inverse marginal distribution function, denoted as G−1. The idea is

to make the assumption that the Non-Gaussian process , denoted as v(s), is a transformed
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Gaussian process w(s), i.e. v(s) = G−1Φ(w(s)), where Φ is the marginal distribution

function of w(s).

With the Gaussian first stage, we can replace the single spatial random effects w (s)

with wcoarse(s) + wfine(s) in the context of multi scale spatial associations. With say a

binary or Poisson first stage to model the Non-Gaussian response data which exhibit spa-

tial dependence at different scales, we could now replace w (s) in the latent stage with

wcoarse(s) + wfine(s), where wcoarse(s) and wfine(s) are typically two independent spatial

Gaussian processes. With a Non-Gaussian continuous process with inverse marginal distri-

bution G−1, we could also assume v(s) = G−1Φ(wcoarse(s) +wfine(s)). In some situations,

we might flexibly combine these two approach. We will explain this by reviewing the

smoothed GEV model in Chapter 3.

In Chapter 3, we essentially consider a hybrid version of those two non-Gaussian model-

ing strategies. We model the extreme value spatial process through a hierarchical modeling

which has the GEV first stage model. We have discussed the multi spatial dependence struc-

tures exhibited in some extreme climate events (e.g., annual maxima of rainfalls and annual

maxima of temperatures). Following the discussion, we have generalized the single scale

spatial process model to the model which accounts for spatial dependence at two scales.

The Gaussian spatial process wcoarse(s) with large spatial range is built in the latent stage

model for the location parameters in GEV, aiming to capture the large scale spatial pattern

in extreme climates. The fine scale dependence is introduced through the transformation

of a Gaussian process wfine
fine(s) with small scale range, i.e.,σ ∗ (G( − 1)Φ(wfine(s))).

Again, those methods we employ to tackle large ’n’ problems in Gaussian version are

still applicable to modeling the latent fine scale spatial process and coarse scale spatial

process.

We could also extend the Gaussian version of model (4.2) to various spatio-temporal
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contexts in which multiscale spatial dependence structures operate. A general formulation

of spatio-temporal process model is

Y (s, t) = x(s, t)β + w(s, t) + ǫ(s, t) (4.14)

for s ∈ D and t ∈ [0, T ]. In (4.14) x(s, t) are local space-time covariate vectors, β is an

associated coefficient vector and ǫ’s are pure error terms.

In many cases, we only observe discretized time, say, t = 1, 2, ...T . Now, we would

rewrite the response as Yt(s) and the random effects as wt(s). Now, we would rewrite the

response as Yt(s) and the random effects as wt(s). wt(s) now arises as a time series of

spatial processes. Use of coarse/fine scale spatial processes model for wt(s), i.e., assuming

wt(s) = wcoarse,t(s) + wfine,t(s), enables us to investigate coarse and fine scale spatial

dependence in a dynamic manner.

For continuous data, we replaced the spatial random effects, w(s), with space-time

random effects, w(s, t) which come from a Gaussian process with valid covariance function

cov(w(s, t), w(s′, t′)) ≡ C(s, s′; t, t′). There have been some literature regarding valid space-

time covariance functions (Banerjee et al. (2004)). In particular, a frequently used choice

is the separable form:

cov(w(s, t), w(s′, t′)) = C1(s, s
′;θ1)C2(t, t

′;θ2) (4.15)

where C1 is a valid two-dimensional covariance function and C2 is a valid one-dimensional

covariance function. We may assume the separated spatial covariance function C1 should

characterize both coarse and fine spatial dependence, i.e. C1(s, s
′;θ1) = Ccoarse(s, s

′;θcoarse)+

Cfine(s, s
′;θfine). Furthermore, if investigation of long term temporal dependence and

short term temporal dependence is of research interest, we could analogously assume

C2(t, t
′

;θ1) = Clong(t, t
′

;θlong)+Cshort(t, t
′

;θshort). Bayesian analysis of coarse/fine spatial

dependence and long/short temporal dependence can be proceeded in a similar fashion as
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discussed in the preceding sections

4.5 Simulation examples of prediction approxima-

tion

In this section, we simulated a response vector Y(s) for each of 10000 irregularly scattered

locations over a [0, 10] × [0, 10] rectangle using Model (4.2). The covariate variables X

are randomly generated from [0, 1] and the covariance coefficient β = (1, 1, 1)
′

. Spatial

association was assumed to follow the exponential correlation function, with fine scale

range φfine and coarse scale range φcoarse. For simplicity, assume the scale parameters

for both coarse and fine scale spatial random effect are 1, i.e., σcoarse = σfine = 1. And

true fine scale range parameter is set to be φfine = 0.24/3, and the true coarse scale range

parameter is set to be φcoarse = 1.

Our focus is on the fine scale spatial dependence, in which the true operational scale

is smaller than the measurement scale. Notice that the minimum interlocation distance is

defined as a measure for the measurement scale for the spatial process we simulated, and

the operational scale is characterized by the range parameter of the covariance function we

assumed for the spatial random effects. Therefore, we keep 1000 points by thinning out the

original data such that the minimum interlocation distance for the set of remaining sites is

close to 0.25.

Given these data, we considered two spatial models to fit them. The first model is

Y(s) = X(s)Tβ +Wcoarse(s) +Wfine(s) + ǫ(s) (4.16)

Wfine(s) and Wcoarse(s) are modeled as spatial gaussian processes with exponential covari-

ance functions.
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The second model we consider is a single spatial point process model as follows:

Y(s) = X(s)Tβ + wsingle(s) + ǫ(s) (4.17)

where wsingle(s) is a Gaussian process with exponential covariance function and ǫ(s) is

nugget with variance τ2. The idea of making comparison between Model (4.2) and Model

(4.17) is to see if data can distinguish the fine scale dependence from the pure errors.

Prior distributions are assigned to model parameters to complete the Bayesian speci-

fication. A normal prior with large variance was assigned to each intercept parameter β.

The coarse scale spatial range parameter in the exponential correlation function φcoarse was

assumed to have U(0.08, 3) as prior distribution. And K, the ratio of the coarse scale range

to the fine scale range, was assigned a flat prior in (1,∞]. For each model, we ran 10000 it-

erations to collect posterior samples after a burn in period of 5000 iterations, thinning using

every fifth iteration. Trace plots of parameters indicate good convergence of the respective

marginal distributions. We saved the remaining 1,000 samples from each chain for posterior

inference. We compare the performance of these models based on the following criteria:

Deviance Information Criterion (DIC) (Spiegelhalter et al. (2002)); estimation accuracy of

the true parameter values; prediction of a holdout set of 9, 000 locations.

Table 4.1 and Table 4.2 display the parameter estimates under Model (4.16) and Model

(4.17) respectively. In Figure 4.2, we plot histograms of the effective ranges based on the

posterior samples for 3φcoarse and 3φfine under Model 4.2. Similarly, Figure 4.3 shows the

histogram of the posterior samples for 3φsingle under Model 4.3. As shown in these two

figures, the estimated mean of the effective range 3φsingle = 2.5, which is between that of

3φcoarse = 3 and that of 3φfine = 0.25. Noteworthy, the histogram of 3φfine in Figure

4.2 clearly suggests that the fine scale range parameter is different from 0. This finding

provide evidence that Model 4.2 is able to distinguish micro scale spatial variations from

measurement errors when it is present and we have enough data.
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Table 4.3 provides the DIC model fit statistics for Model (4.16) and Model (4.17). The

first column, labelled DIC, provides a relative measure of goodness of model fit, with lower

values indicating better fit (see., e.g., Spiegelhalter et al. (2002) for a full explanation of the

criterion). Model (4.16) clearly has a smaller DIC score than Model (4.17), which indicates

the better fit using model with coarse and fine scale components. The subsequent results

focus on the parameter estimates and prediction performance for these two models. We

now turn our attention to prediction of the holdout set. We compare models in terms of

prediction performance at hold out set. For each location s0 in the hold out set, samples

of Y (s0) are drawn from the posterior predictive distribution. Posterior means are adopted

as the point estimates of the predicted positions for each new location. The root mean

square predictive errors (RMSPE) are computed to assess the predictive performance for

each model. Model (4.16) also wins over Model 4.17 based on RMSPE. The third column

of Table 4.3, called the coverage probability labelled r̂, is the proportion of times the true

observations lie in their associated 95% predictive interval under each model.

4.6 Discussion

Little work has been done to study the so called microscale spatial process. In this paper,

we bring up this problem from a statistical point of view. We have presented flexible

spatial point-level process models to account for both coarse and fine scale spatial patterns.

In particular, we follow the Bayesian inference approach to take advantage of the prior

information about the spatial operational scales, which effectively help us to detect both

coarse and fine operational scales appeared within some spatial data. Various methods

have also been introduced to efficiently reduce the computational cost associated with the

modeling of spatial data set with large number of locations.

Various extensions for this work are possible. We have discussed a few possibilities in
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Parameter True Value Posterior Mean Lower CI (0.025%) Upper CI (0.975%)

β0 1 0.9786 -0.0308 1.8556

β1 -1 -0.8888 -1.3924 -0.4297

β2 1 0.7231 0.2358 1.1801

σ2 1 0.9249 0.7625 1.1035

Table 4.1: Parameter estimations obtained by Large/Small scale model

Parameter True Value Posterior Mean Lower CI (0.025%) Upper CI (0.975%)

β0 1 1.0447 0.7195 1.3191

β1 -1 -0.7982 -1.0888 -0.5435

β2 1 0.6419 0.3939 0.9434

σ2 1 1.1234 0.6422 1.7629

τ2 0.02 0.5277 0.0591 1.2555

Table 4.2: Parameter estimations obtained by single process model

Section 4.4. With non-Gaussian models in the first stage settings, we can embed Model 4.2

in the latent stage to study the coarse and fine spatial variations for non-Gaussian response

spatial data. We can also extend Model 4.2 to various spatio-temporal contexts in which

Model 4.2 can be introduced to study micro spatial temporal scales.
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DIC RMSPE r̂

Large/Small scale 1091.1 0.8699 0.956

Single scale 1219.4 0.9097 0.934

Table 4.3: Performance of Model 4.2 and Model 4.17 using root mean square pre-

dictive errors (RMSPE), the deviance infromation criterion (DIC), and the empirical

coverage probability r̂.
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Figure 4.1: Exponential correlation functions at different scales.
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Chapter 5

Interpreting Self Organizing Maps
Through Space-time Data Models.

5.1 Introduction

Self organizing maps (SOM’s) are a technique that has been used with high dimensional

data vectors to develop an archetypal set of states (nodes) that span, in some sense, the

high dimensional space. First developed by Kohonen (1995), the technique has subsequently

found application to automatic speech recognition, analysis of electrical signals from the

brain, data visualization, and meteorology. See, e.g., Ferrandez et al. (1997), Tamayo et al.

(1999), Kaski (1997) and Crane and Hewitson (2003), respectively.

The SOM approach is essentially a neural network model that implements a nonlinear

projection from a high-dimensional input space to a low-dimensional array of neurons.

In the process, it also becomes a clustering technique, assigning to any vector in the high

dimensional data space the node/neuron (reference vector) to which it is closest (using, say,

Euclidean distance) in the data space. The number of nodes is thus equal to the number

of clusters. However, the primary use for the SOM is as a representation technique, i.e.,

finding a set of nodes which representatively span the high dimensional space. These nodes

are typically displayed using maps to enable visualization of the continuum of the data

space. Hence, the approach should not be viewed as an “optimal” clustering technique; in

particular, in application it is expected to produce roughly equal cluster sizes.

A SOM algorithm is usually implemented in three stages. First, a specified number of

nodes is selected and the values of the components for each node are initialized, typically
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selecting random values. Second, iterative training is performed where the nodes are ad-

justed in response to a set of training vectors so that the nodes approximately minimized

an integrated distance criterion. The last stage of the SOM technique is visualization where

each node’s reference vector is projected in some fashion to a lower dimensional space and

plotted as a map (perhaps several maps). Customary projection creates a set of neurons in

two-dimensional space which arise as a deformation of a regular lattice. For a given train-

ing set, the frequency of occurrence of each node can be calculated as well as the average

error at each node, the latter interpreted as a measure of coherence around the node. With

regard to implementation, the number of nodes is arbitrary. However, presumably more

nodes are needed to capture a more variable high dimensional space or a greater level of

detail in distinguishing nodes.

In any event, it is not our contribution here to criticize the SOM approach or to compare

it with other clustering procedures. Rather, in practice, the procedure is implemented in

a purely algorithmic manner, ignoring any spatial or temporal structure which may be

anticipated in the training set. Our contribution is to attempt to incorporate structural

dependence, through the introduction of stochasticity in the form of a space-time process

model. As a result, we hope to illuminate and interpret the performance of the SOM

procedure in the context of application to daily data collection. That is, the observed daily

state vectors are viewed as a time series of multivariate spatial process realizations. Working

with the original high dimensional data renders formal modeling infeasible. Instead, we

try to achieve this understanding through the dimension reduction achieved by the SOM

procedure.

The application we focus on here is to synoptic climatology as introduced by Hewitson

and Crane (2002) where the goal is to develop an array of atmospheric states to cap-

ture a collection of distinct circulations. There has been some literatures on estimating
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synoptic states with the purpose of downscaling climate models. For example, Hughes

et al. (1999) and Bellone et al. (2000) propose nonhomogeneous hidden Markov models

(NHMM) which relates precipitation occurrences and amounts at multiple rain gauge sta-

tions to broad-scale atmospheric circulation patterns. Specifically, let Rt = {R1
t , ..., R

n
t }

be a multivariate random vector giving rainfall amounts at a network of n sites, let St be

the hidden (latent) synoptic weather state at time t and Xt the vector of atmospheric

measures at time t. The NHMM is defined by two modeling stages: (1) a rain fall

occurrence process: P (Rt|S1:T ,Rt−1,X1:T ) = P (Rt|St); and (2) a state process model:

P (St|S1:t−1,X1:T ) = P (St|St−1,Xt). In particular, both papers assume that occurrences

and precipitation amounts at each rain gauge are conditionally independent given the cur-

rent weather state, i.e., all the spatial dependence between rain gauges is induced by the

synoptic weather state.

In this Chapter, we work with daily weather data observed in the form of 11 variables

measured for each of 77 grid cells yielding an 847 × 1 vector for each day. We have such

daily vectors for a period of 31 years (11,315 days). Twelve SOM nodes have been obtained

by the meteorologists to represent the space of these data vectors. Fuller detail is provided

in Section 5.3. We also note that a broader view of the use for a SOM in climatology is for

inference at longer than daily time scales.

The format of the Chapter is as follows. In Section 5.2 we provide a brief review of

the SOM theory and implementation. In Section 5.3 we detail of the motivating dataset

and some exploratory data analysis. In Section 5.4 we present a collection of models to

investigate. Section 5.5 addresses model fitting issues while Section 5.6 considers model

selection and results. Section 5.7 offers some summary discussion.
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5.2 A Review of SOM theory and implementation

A self-organizing map (SOM) is a neural network model and algorithm that implements a

nonlinear projection from a high-dimensional space of input vectors to a low-dimensional

array of neurons. That is, input vectors are assigned to nodes (or neurons). Nodes have

two positions, one in the high-dimensional space, say in a subset of Rd, one in the low-

dimensional visualization space, typically taken to be a deformation of a regular lattice in

two-dimensional space. For a given set of nodes {w1,w2, ...,wM} in the high-dimensional

space, an array index taking values in {j = 1, 2, ...,M} is defined, for each x ∈ Rd, as

c(x, {wm}) = j if d(x,wj) = minmd(x,wm) for some distance d (usually Euclidean). The

theoretical objective of the SOM is to minimize, over all choices of {wm,m = 1, 2, ...,M},
∫

g(d(x,wc(x,{wm})))p(x)dx where g(·) is a monotone function and p(x)is the density func-

tion for the random input vectors in Rd. Solution to this vector quantization problem

is generally intractable. We note that if we confine x to a bounded rectangular subset

of Rd and if p(x) is assumed uniform over this subset then, at the optimal {wm}, c will

be equally likely to take on each of its M possible values. Hence, with a sample of x’s

from this uniform distribution, we expect equal numbers of the x’s to be assigned to each

of the index values, i.e., to each of the nodes. A special version which seeks to minimize

∫
∑

m h(wc(x,{wm}),wm)g(d(x,wm))p(x)dx is customarily used. It lacks a closed form solu-

tion but an approximate solution can be obtained iteratively using stochastic approximation

(see ?)) as we describe below.

We now offer a bit more detail on the nature of a SOM algorithm. In practice, the SOM

procedure consists of three stages. Let {xi ∈ Rd}, i = 1, 2, · · · , n denote the input training

vectors. In our case, d = 847 reflecting the daily 847-element climate records from 1970

to 2000. SOMs seek to “optimally” place a specified number of nodes, M , again denoted

by wm ∈ Rd,m = 1, 2, ...,M . In the SOMs literature (and, as the default in the publicly
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available software package cited below) the suggested number of nodes is 5
√
n. 1 We

describe two versions of the iterative training algorithm procedure of the SOM technique

as follows:

• Initialization stage: given M , the node vectors are initialized with random values.

• Iterative training(Version 1):

– At step t, randomly choose an input vector x(t) from the training set {xi} for

i = 1, · · · , n.

– Compute the distance (e.g., Euclidean) between x(t) and each of the node vec-

tors wm. Identify the winning node wc(x(t)) whose node vector is most similar

to the input vector, i.e., ‖wc(x(t)) − x(t)‖ ≤ ‖wm − x(t)‖ for m ∈ {1, 2, ...,M}.

– Every node has its vector adjusted according to the following equation:

w
(t+1)
m = w

(t)
m + α(t)K(m, c(x(t))(x(t) − w

(t)
m ), where K(m, c(x(t)) is called the

neighborhood function, and α(t) is called learning rate which is usually a de-

creasing function of step t. One example of K(m, c(x(t)) is the Gaussian kernel

K(m, c(x(t)) = exp − {‖w(t)
m − wc(x(t))‖2/2σ2}. A simpler choice is a so-called

‘bubble’ function, i.e., a uniform over the neighborhood (Voronoi tessellation)

of wc(x(t)), zero elsewhere.

Usually, the SOM training is performed in two phases. In the first phase,

relatively large initial learning rate is used in the first phase and small learning

rate is used in the second phase. This updating suggests that nodes close to

the winner node as well as the winner itself, update their vectors closer to x(t)

1In our application, with n ≈ 10, 000 this would suggest roughly M=500 nodes. However, climatol-

ogists categorize far fewer types of circulation patterns; for our South African data, they conclude

that M = 12 is adequate.
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in the input data space. Vectors associated with far away output nodes do not

change significantly.

– Repeat the above steps until the nodes converge. (Convergence is vaguely de-

fined and is usually taken as the default in the software.)

• Iterative training(Version 2):

– At step t, for each input vector xi for i = 1, ..., n, compute the distance (e.g.,

Euclidean) between xi and each of the node vectors w
(t)
m . Identify the winning

node c(i) whose node vector is most similar to the input vector, i.e., |w(t)
c(i)−xi| ≤

|w(t)
m − xi| for m ∈ {1, 2, ...,M}.

– Every node has its vector adjusted according to the following equation:

w
(t+1)
m =

∑

i=1:n hm,c(i)(t)xi
∑

i=1:n hm,c(i)(t)
, where hm,c(i)(t) is the neighborhood function

around the winning node c(i). One example is hm,c(i)(t) = α(t)K(m, c(i))(t),

where, again, K(m, c(i)) is the Gaussian neighborhood kernel K(m, c(i)) =

exp − {||w(t)
m − w

(t)
c(i)||2/2σ2}. Here, α(t) is called the learning rate and is usu-

ally a decreasing function of step t.

Again, the SOM training is performed in two phases. In the first phase, rel-

atively large initial learning rate is used in the first phase and small learning

rate is used in the second phase. In this updating, the contribution (weight)

of a particular training vector to each node only depends the distance between

the corresponding winning node of this training vector and each of the other

nodes. hm,c(i) can be viewed as a smoothing function such that nodes close to

the winner node as well as the winner itself update their vectors closer to the

training vector in the input data space.

– Repeat the above steps until the nodes converge.
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• The final stage seeks to achieve visualization. When the number of nodes is large,

visualization is most easily presented in two dimensions beginning with either a rect-

angular or hexagonal lattice of nodes. The iterative updating of the nodes eventually

leads to a distortion of the lattice. (See Figure 5.4 and related discussion below.)

An approach which is incorporated into the standard SOMs software (cited below)

is the Sammon mapping scheme (Sammon, 1969). Note that the goal here is “clus-

tering” components of the vectors to achieve a two dimensional representation, not

clustering of the training vectors. In order to equalize the contributions of each of the

components in the high-dimensional vectors with regard to classification, centering

and scaling is recommended as pre-processing of the data. Returning to the Sammon

projection method, the basic idea is to arrange all the nodes on a 2-dimensional plane

in such a way, that the distances between the nodes in a 2-dimensional space resemble

the distances in the original vector space as defined by some metric as faithfully as

possible. Given the distance matrix D with element d(i, j) being the distance between

node i and node j according to some metric (e.g., Euclidean distance), our goal is to

find Om in R2 for each node m for m = 1, · · · ,M to minimize an error function E de-

fined by the following cost function: E =
1

∑∑

j>i di,j

∑

i

∑

j>i

(di,j − ‖Oi − Oj‖)2
di,j

.

Note that the O’s need a ‘center’ to locate them. Also, the projections can be im-

plemented at each iteration to see stability, hence convergence, as well as to assess

interpretation.

A software package for implementing SOMs is available (http://www.cis.hut.fi/research/som-

research). For more detailed explanation of the SOM procedure see the references and

guidelines at this publicly available software website.

As a final comment on visualization, in our application below,
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5.3 The dataset and some exploratory data anal-

ysis

The weather in a local region is conditional on the nature of the synoptic state of the

atmosphere. Relating the synoptic scale characteristics to local scale responses requires

the reduction of a large number of variables into a smaller set of data that still, in some

sense, represent the original data. This goal motivated the use of the SOM technology.

In this application, we use daily multivariate weather data over a specified time period to

produce generalized weather circulations. These are then easily visualized as an array of

archetypal synoptic circulations that span the continuum of the data. In so doing, daily

synoptic atmospheric data are categorized into a prescribed number of archetypal synoptic

(circulation) modes characteristic of a specified time period. South African weather systems

have been categorized into six to eight main ”types” of circulation (Tyson and Preston-

Whyte (2000)). On testing various SOM sizes, a 12-node SOM was selected which was

deemed to adequately represent all the expected synoptic types.

The SOM was trained using gridded (2.5◦ × 2.5◦), daily mean atmospheric fields con-

structed from six-hourly National Center for Environmental Prediction / National Center

for Atmospheric Research (NCEP/NCAR) global reanalysis data (see Kalnay et al. (1996)).

Data were extracted for a domain with 11 × 7 grid cells over southern Africa whose latitu-

dinal and longitudinal extent (25◦S to 40◦S; 10◦E to 34.5◦E) captures synoptic circulation

patterns from the sub-tropics to the mid-latitudes. The following 11 variables were chosen

as training data: mean sea level pressure, 500 hectopascal (hPa) geopotential height level,

relative and specific humidities at the surface and at 700hPa, daily maximum temperature

at the surface, U- and V- wind components at the surface and at 700hPa. Each of these

variables was first standardized using the mean and the standard deviation of its corre-
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sponding 11 × 7 cell time series. These standardized variables were then used to create an

847-element vector (11 × 11 × 7) which described the daily atmospheric state. The time

period from 1970 to 2000 was used which resulted in 11,315 daily records that were used

to train the SOM.(The eight extra days in the included leap years were not included in

the analysis for computational purposes but these would not significantly alter the results.)

Each climate variable fields were standardized to preserve the local gradients in each field.

The twelve resulting SOM nodes are labelled with their locations in two-dimensional

space in Figure 5.1. This figure is intended to suggest that nodes near to each other are

associated with somewhat similar synoptic states and that transition in SOM nodes is most

likely to be to a neighboring node.

To clarify the visualization, the SOM of sea level pressure (SLP) is presented in Figure

5.2. It is used to assess the characteristic surface circulation associated with each node as

it most clearly demonstrates the general synoptic circulation as well as associated regional

weather patterns. The SOM of maximum temperatures is also presented (Figure 5.3) to

assess temperature patterns associated with each node.

Elaborating further, we briefly detail the features of the synoptic types captured by

the 12 SOM nodes. The majority (80 %) of summer days map to nodes 5, 6, 8 and 9 and

to a lesser degree nodes 3 and 12. These nodes are associated with characteristic summer

circulation features. On the right hand side of the SOM, a sub-tropical low pressure system

is situated over the northern part of the domain which bring rainfall to the interior of the

country. In nodes 8, 9, and 12 a high pressure system is located at relatively high latitudes

to the south of the domain which push frontal system southward and result in dry summers

over the western parts of the country and introduce moisture to the eastern and central

parts. In node 5, a linkage between the tropical low and mid-latitude circulation forms a

tropical-temperate trough which results in rainfall over a large part of the interior of the
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country. Highest maximum temperatures reach their greatest southerly extent and broadest

spatial distribution over the region in these nodes. The majority of winter days (over 70%)

map to nodes on the left side of the SOM (nodes 1,4,7,10). To the south of the country,

these nodes are associated with the west-east progression of mid-latitude cyclones (cold

fronts) across the south of the country which bring rainfall to the south and south-western

parts of the country and very cold temperatures, especially over the interior. Over the

interior of the country, the sub-tropical low has moved northward and is replaced by a high

pressure system which dominates the circulation resulting in cold, dry conditions. In nodes

7 and 10 a high pressure system brings cold, polar air into the country once the cold front

has moved past. Highest maximum temperatures are situated at much lower latitudes in

these nodes and cooler maxima evident over much of the region. A typical winter synoptic

sequence would be a progression from node 1 to node 4 to node 7 to node 10 over the period

of about 2-3 days. Most spring days map to nodes 3, 10, 11, 12 and most autumn days map

to nodes 1, 3 and 12. These nodes represent both summer and winter circulations expected

in a transitional season.

Undertaking some preliminary exploratory data analysis, a first investigation is to ex-

plore the frequencies of occurrence of each node, hence of the synoptic climate systems.

Table 5.1(left) provides a histogram showing the frequencies of daily observations mapped

to each node over the entire study period, from which we observe fairly evenly distributed

percentage frequency of occurrence for each synoptic node and no particular archetype is

found dominant over the study period. This is an anticipated result of the SOM algorithm

as clarified in Section 5.2. As a crude look to infer temporal behavior of the synoptic climate

states, Table 5.1(right) compares the histogram of frequency of occurrence during 1970 to

1979 along with that during 1990 to 1999. Some evidence of temporal shifting in the dis-

tribution of incidences over the study area is seen. For example, node 1, which represents
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strong low-pressure systems, occurs more frequently during 1990 to 1999 compared with

the 1970’s. Table 5.2(left) shows the frequency distribution of occurrence for each node in

the summer season (December, January, February). It is clear that the climate archetype

which corresponds to nodes 5, 6, 8, and 9 dominates during summer period. As shown in

Table 5.2(right), the dominant climate archetypes transfer to another type of circulation in

winter (June, July, August). Now, we see high frequency of SOM nodes 1, 4, 7, and 10. We

may also use SOM arrays to examine short term (e.g., daily) temporal evolution of synoptic

events. The frequencies of daily transitions from each node to other nodes are calculated

and shown in Table 5.3, which reveals a somewhat clockwise cyclic evolution (with regard

to Figure 5.1) of the weather systems. For example, SOM node group 9 displays preferential

transition to group 6 while SOM node group 6 tends to most prefer transition to group

3. In Section 5.4, we elaborate this analysis by introducing formal time series modeling to

interpret the SOM arrays.

5.4 SOM modeling

5.4.1 Dimension reduction

The daily climate reference data consist of an 847 × 1 vector for each day within a 31-

year period, which raises methodological and computational challenges when we attempt

to interpret them in high dimension. In fact, since the 847 × 1 vector arises as an 11

dimensional vector at each of 77 grid units, it is clear that we are monitoring a multivariate

space-time data process. We do not seek to model this process directly, a very challenging

task to develop and, likely, infeasible to fit. Rather, we seek to understand this process in

terms of the SOM nodes that have been created. We will take advantage of the dimension

reduction provided by the SOM procedure to, instead, model the induced collection of

118



two-dimensional locations across time. As we remarked earlier, the SOM algorithm ignores

time and space in creating the nodes. By introducing a space-time process model, we

seek to enhance behavioral interpretation for the set of SOM nodes. The result of the

SOM algorithm yields, in our case, twelve nodes, each with an associated two-dimensional

location (Figure 5.1). We now seek to “project” the 11, 315 daily state vectors onto this

space of locations. Many schemes are available to accomplish this; there is no “best” one.

We choose to map daily high dimensional reference data onto 2-dimensional surface using

high dimensional pairwise distances along with the 2-dim coordinates of the SOM nodes.

For each daily state vector, the Euclidean distances between it and each of the nodes are

calculated in high dimensional space. Then, for each daily vector, nodes are ranked by

their distances to the vector. We next introduce a greedy space searching technique that

maps each daily vector onto a 2-dimensional surface. To be specific, a 2-dimensional point

within a finite bounded region is selected as the projection if the ranks of the Euclidean

distances in two dimensions to each node using this point agree with the ranks between

the vector and the nodes in high dimensional space. Evidently, there may be no point in

2-dimensional space which satisfies this condition so we seek agreement in ranking starting

from smallest distance. Also, for a given high-dimensional point, such mapping may yield

multiple mapped positions that provide the same extent of agreement in terms of rank

distance agreement . In that situation, we averaged the coordinates of the multiple positions

to ensure the uniqueness of the mapped position. Such an algorithm is easy to code and

easily handles 11, 315 points in 847 dimensional space. In Section 5.4.2, we primarily focus

on modeling the 2-dimensional coordinates derived using this method. Other projection

approaches utilizing alternative, possibly global, optimization criteria are certainly available

though they may be difficult to implement. However, the modeling approach we develop

in Section 5.4.2 can be applied to the results of any projection strategy.
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5.4.2 Modeling specifications

The projection method described in Section 5.4.1 is performed on the daily referenced data

from 1970-2000 to yield 2- dimensional mapped coordinates which are plotted in Figure 5.4

along with the coordinates of the SOM nodes. We can see that the two dimensional space is

naturally partitioned into 12 tessellations, each attached to a SOM node. Of course, Figure

5.4 gives no information regarding the temporal sequence of the points.

However, let st = (xt, yt)
′

denote the coordinates in 2-dims for day t, t = 1, ..., T .

Before beginning the time series analysis, it is natural to examine the autocorrelation in

this bivariate time series. We ran a standard vector autoregression software package for

lags 1 up to 50. The plot (not shown in the interest of space) finds an adjusted AIC value

of 7.88 for the AR(1) model, 7.81 for the AR(2) model and reaches its minimum at 7.76 for

the AR(24) model. So, while there may be some evidence of longer range dependence in

the series, the relative decrease in the model choice criterion is very small; AR(1) models

may be good enough. Moreover, with interest in studying transition probabilities, in the

sequel we work exclusively with AR(1) specifications. Under 12 nodes this still yields 144

transition probabilities. For the AR(2), we arrive at 1728 transition probabilities, too many

to estimate well and to display.

We start the analysis with a bivariate random walk Gaussian model

st+1 = st + ǫt+1

where ǫt follows a bivariate Gaussian distribution centered at 0 with a 2 × 2 covariance

matrix Σ. Under this model, the conditional Gaussian probability density functions of

the coordinates at each time step are completely determined by the coordinates at the

previous time step along with the covariance matrices. For us, the bivariate random walk

model plays the role of a straw man. If the SOM nodes effectively capture synoptic weather

states, there should be some structure to the daily transitions in the st’s. In other words,
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the algorithm yielding the SOM nodes is applied to spatially-referenced explanatory climate

variables observed over time and therefore we would expect behavior with a more mech-

anistic description than purely random movement of the daily states in 2-dimensions. In

this regard, denote Y
′

= (s2, ..., sT ), X
′

= (s1, ..., sT−1). Then, the conditional maximum

likelihood estimator (MLE) of Σ is:

Σ = (Y −X)
′

(Y −X)/(T − 1).

A very general form of bivariate time series model is the following:

st+1 = A(st, t)st + η(st, t) + ǫt+1 (5.1)

where A(st, t) is a 2 × 2 unknown matrix containing autoregression coefficients that are

allowed to vary in space and time, the values of which are specified by location and time at

the preceding step. η(st, t) enters (5.1) as an adjustment to the autoregressive component

and can also be specified as a function of the preceding location and time. Again, error

terms ǫ2, ..., ǫT are independently identically distributed N(0,Σ) representing unstructured

noise or pure error in the model. The model in (5.1) provides a very flexible specification

in the form of a locally affine transition model. In fact, it is also very challenging to fit. We

are convinced that, even with more than 11, 000 days of data, the data can not support or

identify such a general model; we can not achieve a well-behaved MCMC fitting algorithm.

Hence, we turn to some model simplifications. We begin with specifications on A(st, t)

• The first is a constant transformation matrix model A(st, t) = A yielding

st+1 = Ast + ǫt+1 (5.2)

This is a simple case of vector autoregressive (VAR) models, which have been widely

used in multiple time series analysis (see, e.g., Sims (1972) and Enders (2003)).

• We next consider a spatially-varying transformation matrix. It is most convenient

to assign a distinct transformation matrix to each of the tessellations induced by
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the SOM nodes as described above. Let Al be the transformation matrix when

st ∈ Λl, where Λl is tessellation l, for l = 1, 2, ..., L. Let Zl be a binary indicator,

i.e., Zl(st) = 1 if st ∈ Λl, and 0 otherwise. Then,

A(st, t) =

L
∑

l=1

AlZl(st) (5.3)

This specification allows us to study regional change in the linear transformation.

• One of the important questions we seek to address in our climate study is whether

there is a change in circulation patterns. That is, we assume the same collection of

synoptic states continues to operate over time. However, temporal change would be

manifested by a change in incidence rates of the states and thus would be modeled

using time varying transition matrices. Let Bm be the transformation matrix when

t ∈ Γm, where Γm are disjoint time blocks, i.e., ∪M
m=1Γm = {1, ..., T}. Let Vm(t) = 1

if t ∈ Γm, and 0 otherwise. Now,

A(st, t) =
M
∑

m=1

BmVm(t) (5.4)

Expression (5.4) enables us to study temporally varying linear transformation over

suitable time scales, e.g., months, quarters or years.

• A spatially and temporally varying structure can be extended from the specifications

described above in the form:

A(st, t) =
∑

l,m

Dm,lZl(st)Vm(t) (5.5)

Special cases of (5.5) include separable forms in space and time, e.g., Dm,l = BmAl or

Dm,l = AlBm. The former provides spatial transition followed by temporal transition,

the latter vice versa.

The modeling in (5.3), (5.4), and (5.5) works at aggregated spatial and temporal scale.

Similarly, we could add spatially and temporally aggregated intercepts. In particular, we
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could introduce η(st, t) = η, η(st, t) =
∑L

l=1 ηlZl(st), or η(st, t) =
∑M

m=1 ηmVm(t). How-

ever, we view the role of the η(st, t)’s as introducing point level refinement to aggregated

level affine transformations. We do so by introducing a bivariate spatial Gaussian real-

ization intended to provide spatially dependent adjustments to the linear transformation

specification. The adjustment at time t is η(st) yielding the model

st+1 = A(st, t)st + η(st) + ǫt+1 (5.6)

We propose a coregionalization model for the bivariate Gaussian process realization in the

spirit of Gelfand et al. (2004b). Let w(s) = (w1(s), w2(s))
′

, where w1(s) and w2(s) are

uncorrelated spatial processes each with zero mean and unit variance. Coregionalization

constructs a bivariate spatial process by linear transformation of these two independent

univariate processes, i.e., η(s) = (η1(s), η2(s))
′

= Q(w1(s), w2(s))
′

, where Q is a 2 × 2

unknown coregionalization matrix and can be taken as lower triangular without loss of

generality, i.e., Q =







q11 0

q12 q22






. An unusual aspect of the employment of this bivari-

ate specification is that it provides a spatial surface to smooth all locations in the region

while the observations are, in fact, a time series of locations. In other words, this bivari-

ate spatial process is created for observed locations at multiple time points rather than

multiple locations observed at the same time. The process realization reflects the spatial

variation unexplained by the autoregressive component, regardless of the specific times of

the observations.

The model in (5.6) is now completely specified. However, recall that we work with

11, 315 days hence 11, 315 locations in total. The joint distribution of the collection of

11, 315 η(s)’s introduces an 11, 315 × 11, 315 covariance matrix. To handle this dimension,

we employ a version of the predictive process model described in Banerjee et al. (2007).

Briefly, we consider a set of “knots” S∗ = {s∗1, . . . , s∗m} which forms a subset of the study
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region in 2 dimensional space. The bivariate Gaussian process above would yield w∗ =

[w(s∗i )]
m
i=1 ∼ MVN(0, C∗(θ)) as its realizations over S∗, where C∗(θ) = [C(s∗i , s

∗
j ;θ)]

m
i,j=1

is the corresponding m×m covariance matrix. The predictive process model is defined as

w̃(s) = E[w(s)|w∗] = cT (s;θ)C∗−1(θ)w∗, (5.7)

where c(s;θ) = [C(s, s∗j ;θ)]
m
j=1. In fact, w̃(s) is a Gaussian Process with covariance function

C̃(s, s′;θ) = c∗T (s;θ)C∗−1(θ)c∗(s′,θ) where c∗(s;θ) = [C(s0, s
∗
j ;θ)]

m
j=1. The realization

of w̃(s) on any collection of sites are the interpolated predictions conditional upon the

realization of w(s) over S∗. To work with this process we only need to work with w∗
1, w∗

2

and the associated pair of m×m correlation matrices.

5.5 Model fitting issues

VAR models are well-discussed in the literature (see, e.g., Lütkepohl (1993) and Zivot

and Wang (2006)). Analysis within the Bayesian paradigm is presented in, e.g., Sims and

Zha (1998), Sun and Ni (2004). We employ MCMC to fit the various submodels of (5.6)

described in the previous section. In fact, we first discuss the computational issues in

fitting the proposed models without spatial adjustment. Then we turn to issues in fitting

the models with such adjustment.

5.5.1 Fitting models without spatial adjustment

For those proposed models without spatial adjustment, we illustrate the MCMC fitting

procedure for model: st+1 =
∑L

l=1 AlZl(st)st + ǫt+1.

Denote Z(st) = (Z1(st), ..., ZL(st)), xt = (Z(st)
⊗

s
′

t), Y
′

= (s2, ..., sT ),X
′

= (x1, ...,xT−1),

ǫ
′

= (ǫ2, ..., ǫT ), Φ
′

= (A
′

1, ....,A
′

L). Here Y and ǫ are (T−1)×2 matrices, Φ is a 2L×2 ma-

trix of unknown transformation parameters, xt is a 1×2L row vector andX is a (T−1)×2L
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matrix of observations. Then the VAR model can be written as

Y = XΦ + ǫ

The MLE’s of Φ and Σ are obtained by maximizing:

L(Φ,Σ) =
1

|Σ|(T−1)/2
exp{−1

2

T−1
∑

t=1

(st+1 − xtΦ)Σ−1(st+1 − xtΦ)
′}

=
1

|Σ|(T−1)/2
etr{−1

2
(Y − XΦ)Σ−1(Y − XΦ)

′}

We obtain MLE’s of Φ and Σ as Φ̂M = (X
′

X)−1X
′

Y and Σ̂M = (Y − XΦ̂M )
′

(Y −

XΦ̂M )/(T − 1).

Bayesian model fitting is completed by assigning prior distributions on the unknown

parameters of interest. Denote φ = vec(Φ), we assign φ with a flat prior. We consider a

noninformative Jeffreys prior for Σ, which, in our case, is π(Σ) ∝ 1

|Σ|3/2
.

Given Σ, we can directly sample φ from its conditional distribution given by

π(φ|Σ,Y) ∼ MVN(vec(Φ̂M ),Σ
⊗

(X
′

X)−1). Conditional on φ, Σ is updated using an

Inverse Wishart ((T − 1)Σ̂(Φ̂M ), T − 2L).

5.5.2 Fitting models with spatial adjustment

For the models with spatial adjustment, for convenience, we adopt an exponential correla-

tion function for each of the two parent processes, hence bringing in two decay parameters

θ1 and θ2.
2 A uniform prior is assigned for each of θ1 and θ2 and updated using Metropolis

steps. For the coregionalization matrix Q, we assign truncated normal priors with positive

support for the diagonal entries, and a normal prior for the off-diagonal entry. The entries

in Q are updated from normal distributions conditional on the other parameters. Samples

2We would not anticipate sensitivity in the bivariate predicted η surfaces to the choice of correlation

function.
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of W
∗(b)
1 and W

∗(b)
2 are generated in blocks from their multivariate normal posterior distri-

butions, which in turn yields samples of w̃(s)(b) = cT (s;θ(b))C∗−1(θ(b))w∗(b). Substantial

gains in computational efficiency are achieved by working with W∗ at a relatively small

number of knots.

Each of the proposed models enables one day ahead prediction, i.e., the posterior predic-

tive distribution of location at time t+1 given location say s̃ at time t. This is implemented

by composition; a posterior draw of the parameters in whatever version of (5.6) we fit, set-

ting st = s̃, enables a predictive draw for the location at time t + 1. Posterior samples,

s̃(b) enable a density estimate for the transition distribution at any time and given any

location. In addition, these models enable inference about the “transition distance” and

the “transition angle” in 2-dimensional space.

In fact, again using posterior predictive samples, these models allow us to induce infer-

ence for categorical analysis at tessellation level. The probability of transitioning from s̃ to

tessellation l can be straightforwardly estimated as well as the 12 × 12 transition matrix

from SOM node to SOM node (we omit details). This model-based estimate can be com-

pared with the empirical estimate presented in Section 5.3 (Figure 5.3). Evidently, we can

learn about the movement of the daily state vectors at any spatial scale in 2-dimensions.

Working at the scale of the tessellations enables us to inform about circulation among

synoptic weather states defined by the SOM nodes.

5.6 Model comparison and model results

Given the various possible model specifications detailed in Section 5.4, our first analysis

goal would appear to be model comparison. We consider three criteria. First, we compare

models in terms of one step ahead prediction performance. For each observation st at t,
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samples of st+1 are drawn from the posterior predictive distribution as described above.

Posterior means are adopted as the point estimates of the predicted positions for each of

t = 2 to t = T . The root mean square predictive errors (RMSPE) are computed to assess

the predictive performance for each model

ˆRMSPE =

√

√

√

√

1

T − 1

T
∑

i=2

||ŝt − st||2 (5.8)

where ŝt is the mean of the posterior samples {ŝ(b)
t } for b = 1, 2, ..., B.

A second comparison among models is to study the proportion of times the true locations

lie in their associated 95% predictive interval under each model. This coverage proportion is

denoted by r̂. A third model selection criterion which is easily calculated from the posterior

samples is the deviance information criterion (DIC) (Spiegelhalter et al. (2002)). DIC is a

generalization of the AIC and BIC criteria and is defined as DIC = pD + D̄ where pD is a

penalty for dimension and D̄ is a goodness of fit measure. Smaller values of DIC correspond

to preferred models.

Table 5.4 summarizes the RMSPE, DIC score, and r̂ for a collection of models as

indicated. (When time is included it is either blocked quarterly or annually. Based upon

model fitting to more than 11, 000 data points and using a large number of posterior samples

(10,000), we are comfortable with the number of significant digits provided. First, all of

the proposed autoregressive models are apparently superior to the random walk model

in terms of predictive performance and DIC scores. Second, disappointingly, the models

including spatial adjustment show no evidence of improving performance on data fitting and

prediction; there appears to be little spatial dependence left in the autoregression residuals.

Further disappointment emerges in the similarity of performance of these models; we can

do better than a random walk model but can not find any interesting spatial or temporal

structure.

We offer several thoughts in this regard. Perhaps the projection to a two dimensional
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space which yields our bivariate time series has removed the interesting structure. In par-

ticular, the spatially varying covariate information associated with the 11 climate variables

was used to create the projected locations in two dimensions; it is not available to ex-

plain the bivariate time series. Moreover, the spatial dependence that is induced in the

two-dimensional space may have little to do with the spatial structure in the original 11

space-time processes. Finally, climatologists would assert that the SOM which was created

is not intended for short term weather prediction; in capturing climate states, the SOM

might be more appropriate for assessing regional climate change over a longer temporal

scale (see Section 5.6). So, while our modeling goal here was to learn about spatial and

temporal structure in the created SOM (and, what follows below indicates that there is

still a story to tell), to learn about the space time structure in the original daily data a

different dimension-reduction strategy might be more appropriate.

In any event, Model (9), which has transformation matrix A specified as tessellation

and year, has the lowest prediction error in terms of RMSPE.3 In addition, the r̂ for

Model (9) is quite close to 0.95, as desired. As a result, we summarize results based on

Model (9). Table 5.5 provides the posterior means for several parameters of interest and

the corresponding 95% credible intervals under Model (9). We notice that estimates for the

elements in Σ take large values, suggesting substantial unexplained variances in the SOM

array. Again, this reflects our lack of covariate information but also comments upon the

utility of SOM’s for one-step ahead prediction of weather states.

Following the discussion in Section 5.5, we provide some illustrations of the induced

categorical analysis at the scale of the tessellations. Table 5.6 displays the estimated fre-

quency of transition angle for each of the 12 tessellations in the year 2000 and clearly

demonstrates the cyclic nature of weather systems in the study region. For example, SOM

3We might speculate that annual blocking captures an El Nino effect.
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node group 12 prefers trajectory pathways towards SOM node group 11. Figure 5.5 shows

the histograms of transition distance for each of the 12 tessellations in the year 2000, which

suggests possible regional heterogeneity in the distribution of transition distance. In fact,

synoptic weather in South Africa may display node-specific magnitude in volatility. For

instance, SOM node group 2 which is expected in a transitional season, on average, tends

to have higher transition distances than SOM node group 5 associated with characteristic

summer circulation features. And this phenomenon might reveal high climate volatility

associated with SOM node group 2 and relatively low climate volatility associated with

SOM node group 5. Model (9) enables us to make inference of the transition matrices as

well as the corresponding estimated errors year by year. The estimated transition matrix

and the associated standard error are shown in Table 5.7 and Table 5.8 for the year 2000,

which again support the findings on the clockwise cyclic evolution of the weather systems.

The trajectories of transition probabilities can be aligned in each row for 31 consecutive

years, from which we can examine the temporal behavior of the transition probabilities in

synoptic climate states. As a illustration, Figure 5.6 plots the trajectories of three selected

transition probabilities. For the general synoptic state associated with SOM node 1, the

persistence probability reached above .35 in 1986 and then dropped below .15 in the sub-

sequent year. The transition probability from SOM node group 11 to SOM node group 12

roughly remained at a stationary level during the 1970’s then dramatically fell below .15 in

1983. It appears to be evolving with a more volatile trajectory since the late 1980’s, finally

reaching a peak which is above .35 in 2000.

5.7 Discussion

The use of SOM’s has made considerable in roads in the meteorology community with

regard to developing synoptic weather states to describe the collection of available weather
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patterns across a region. Since the SOM technology represents high dimensional vectors in

two dimensional space, we considered vector AR models to try to better understand the

temporal evolution of SOM nodes. We have demonstrated that, while these SOM’s may

adequately span the high dimensional space of daily weather data vectors, they reveal little

interesting spatial or temporal structure with regard to forecasting weather states.

Finally, we offer a potentially useful remark. The inability of the SOM to predict short

term temporal evolution of these states does not imply that the SOM will not be useful for

projection of future climate. If we assume that the SOM nodes describe regional weather

well and that the same weather states continue to operate in the future, we may be able

to forecast climate change in the form of a less uniform incidence of the different states

than we currently see (Tables 5.1 and 5.2). Then, characterization of the SOM nodes as in

Section 5.2 along with extraction of further node level descriptive features such as chance

of rainfall, rainfall range, average temperature and temperature extremes will inform about

the nature of the change. Such an investigation requires regional climate models at suitable

spatial resolution that provide scenarios at the daily time scale and is beyond the scope of

the current work.

130



−10 −5 0 5 10
−15

−10

−5

0

5

10

SOM Nodes in 2−dim

 1

 2
 3

 4
 5

 6

 7
 8

 9

10 11

12

Figure 5.1: Projected locations of SOM nodes in 2 dimensional space.
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Figure 5.2: Sea level pressure associated with each node.
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Figure 5.3: Maximum temperature surface associated with each node.
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Figure 5.4: Mapped coordinates in the 2-dimensional space for each of the 11,315

days.
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Figure 5.5: Histograms of transition distances for each SOM group.
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Figure 5.6: Transition probabilities from 1970-2000.
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1070(10) 859(11) 1017(12)

989(7) 920(8) 910(9)

935(4) 869(5) 857(6)

1043(1) 776(2) 1070(3)

(340, 335)(10) (320, 263)(11) (336, 319)(12)

(291, 327)(7) (308, 274)(8) (341, 269)(9)

(291, 285)(4) (278, 274)(5) (290, 296)(6)

(283, 347)(1) (242, 273)(2) (330, 388)(3)

Table 5.1: (left): Frequency of occurrence of each node over the entire study pe-

riod, e.g., 935(4) indicates that the total number of occurrences of node 4 is 935;

(right): Frequency of occurrence of each node during 1970-1979 and 1990-1999, e.g.,

(291, 285)(4) indicates that the number of occurrence of node 4 during 1970-1979 is

291, and that number is 285 during 1990-1999.

63(10) 149(11) 256(12)

86(7) 389(8) 416(9)

71(4) 402(5) 401(6)

56(1) 189(2) 312(3)

503(10) 198(11) 159(12)

463(7) 81(8) 56(9)

494(4) 59(5) 42(6)

530(1) 143(2) 124(3)

Table 5.2: (left) Frequency of occurrence of each node during summer; (right) Fre-

quency of occurrence of each node during winter.
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Table 5.3: Empirical transition probabilities. Each 4 by 3 sub-table in the following

4 by 3 array shows a set of transition probabilities. The array and sub-tables are

arranged in the same way as in Table 5.1.

0.244 0.180 0.107

0.144 0.064 0.032

0.091 0.035 0.018

0.043 0.024 0.019

0.051 0.148 0.278

0.036 0.097 0.134

0.024 0.063 0.058

0.015 0.027 0.069

0.007 0.025 0.246

0.008 0.029 0.204

0.002 0.026 0.184

0.009 0.045 0.216

0.166 0.104 0.045

0.227 0.080 0.022

0.190 0.038 0.013

0.079 0.022 0.013

0.040 0.071 0.114

0.043 0.201 0.170

0.035 0.136 0.086

0.033 0.038 0.034

0.002 0.012 0.076

0.005 0.042 0.211

0.016 0.120 0.254

0.015 0.066 0.180

0.163 0.071 0.020

0.207 0.066 0.007

0.224 0.034 0.003

0.174 0.016 0.014

0.045 0.077 0.059

0.061 0.183 0.086

0.089 0.166 0.072

0.087 0.047 0.028

0.008 0.028 0.064

0.013 0.056 0.074

0.021 0.135 0.183

0.049 0.133 0.236

0.212 0.043 0.007

0.186 0.039 0.007

0.170 0.012 0.004

0.283 0.025 0.013

0.106 0.088 0.026

0.072 0.107 0.017

0.086 0.115 0.012

0.228 0.116 0.028

0.050 0.061 0.041

0.018 0.040 0.018

0.030 0.081 0.039

0.093 0.259 0.269
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Model Specification RMSPE DIC (×105) r̂

Model 0: st+1 = st + ǫ 11.419 1.6403 0.929

Model 1: st+1 = Ast + ǫ 9.226 1.5353 0.944

Model 2: st+1 = A(tessellation)st + ǫ 9.125 1.5317 0.943

Model 3: st+1 = A(tessellation)st + η(quarter) + ǫ 8.943 1.5238 0.939

Model 4: st+1 = A(quarter)st + ǫ 9.215 1.5337 0.942

Model 5: st+1 = A(quarter)st + η + ǫ 9.205 1.5337 0.941

Model 6: st+1 = A(quarter)st + η(year) + ǫ 9.190 1.5297 0.947

Model 7: st+1 = A(quarter∗)st + ǫ 9.088 1.5378 0.948

Model 8: st+1 = A(year)st + ǫ 9.224 1.5361 0.944

Model 9: st+1 = A(tessellation, year)st + ǫ 8.777 1.5407 0.956

Model 10: st+1 = A(tessellation, quarter)st + ǫ 8.920 1.5247 0.940

Model 11: st+1 = Ast + η(spatial) + ǫ 9.214 1.5421 0.934

Table 5.4: Performance of several VAR models using root mean square predictive

errors (RMSPE), the deviance infromation criterion (DIC), and the empirical cov-

erage probability r̂. A(tessellation) denotes regionally varying A as described in

(5.3), A(year) denotes annually varying A as described in (5.4), η(quarter) denotes

quarterly varying A which is constant as year within each quarter. η(quarter∗) de-

notes quarterly varying A which is also changing as year, A(tessellation, quarter)

denotes A as described in (5.5) and η(spatial) denotes spatially varying adjustment

as described in (5.6).
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Mean 0.025% 0.975% SE

a11 0.604 0.151 1.033 0.237

a12 0.168 −0.220 0.618 0.226

a21 −0.199 −0.739 0.409 0.286

a22 −0.028 −0.678 0.503 0.289

Σ11 40.394 39.212 41.457 0.566

Σ12 17.572 16.544 18.648 0.531

Σ22 68.441 66.429 70.297 0.961

Table 5.5: Posterior means and 95% credible intervals of Atessellation1,year2000 and Σ.
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Starting tessellation −450
99K 450 450

99K 1350 1350
99K 2250 2250

99K 3150

1 0.145 0.722 0.074 0.059

2 0.047 0.765 0.147 0.041

3 0.015 0.458 0.459 0.067

4 0.383 0.357 0.070 0.190

5 0.218 0.474 0.137 0.171

6 0.071 0.277 0.344 0.308

7 0.302 0.248 0.109 0.341

8 0.335 0.189 0.095 0.381

9 0.091 0.142 0.268 0.500

10 0.391 0.092 0.033 0.484

11 0.412 0.179 0.062 0.348

12 0.068 0.031 0.107 0.795

Table 5.6: Estimated frequency of transition angle from each tessellation towards

each of the four directions for the year 1999.
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Table 5.7: Estimated mean of the transition matrix in 2000. Each 4 by 3 sub-table

in the following 4 by 3 array shows a set of transition probabilities. The array and

sub-tables are arranged in the same way as in Table 5.1.

0.144 0.169 0.150

0.081 0.100 0.081

0.059 0.074 0.048

0.030 0.037 0.026

0.042 0.205 0.458

0.017 0.060 0.104

0.011 0.035 0.040

0.004 0.011 0.013

0.003 0.022 0.162

0.003 0.036 0.231

0.005 0.048 0.249

0.004 0.041 0.194

0.177 0.108 0.040

0.161 0.087 0.025

0.148 0.073 0.016

0.103 0.049 0.012

0.027 0.085 0.159

0.031 0.100 0.146

0.035 0.107 0.119

0.029 0.077 0.085

0.008 0.035 0.106

0.012 0.063 0.161

0.017 0.091 0.194

0.019 0.094 0.200

0.139 0.106 0.041

0.132 0.095 0.031

0.133 0.092 0.024

0.107 0.076 0.023

0.057 0.128 0.130

0.055 0.119 0.094

0.057 0.115 0.070

0.043 0.081 0.052

0.008 0.027 0.060

0.013 0.053 0.112

0.019 0.086 0.177

0.024 0.124 0.297

0.187 0.064 0.013

0.197 0.055 0.008

0.203 0.050 0.006

0.168 0.042 0.005

0.089 0.082 0.041

0.116 0.091 0.033

0.145 0.097 0.026

0.165 0.091 0.024

0.014 0.024 0.025

0.028 0.054 0.053

0.049 0.103 0.098

0.085 0.227 0.240
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0.034 0.036 0.043

0.017 0.014 0.020

0.016 0.016 0.018

0.013 0.015 0.014

0.028 0.064 0.098

0.010 0.018 0.034

0.007 0.014 0.019

0.004 0.007 0.009

0.002 0.009 0.037

0.002 0.010 0.026

0.003 0.012 0.023

0.003 0.013 0.040

0.036 0.024 0.014

0.019 0.012 0.009

0.022 0.013 0.007

0.026 0.014 0.006

0.009 0.021 0.040

0.009 0.015 0.023

0.009 0.016 0.023

0.009 0.019 0.025

0.004 0.011 0.030

0.005 0.012 0.025

0.006 0.014 0.023

0.007 0.024 0.043

0.038 0.030 0.017

0.024 0.016 0.013

0.027 0.017 0.011

0.037 0.026 0.014

0.019 0.029 0.036

0.014 0.013 0.021

0.015 0.016 0.017

0.013 0.019 0.016

0.004 0.008 0.017

0.005 0.011 0.023

0.006 0.014 0.025

0.008 0.026 0.045

0.047 0.021 0.006

0.022 0.013 0.004

0.025 0.013 0.003

0.047 0.015 0.003

0.033 0.024 0.017

0.026 0.016 0.013

0.025 0.018 0.010

0.051 0.029 0.011

0.008 0.010 0.010

0.010 0.011 0.015

0.013 0.013 0.020

0.024 0.036 0.037

Table 5.8: Estimated mean of the standard errors of the transition matrix in 2000.
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