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Abstract

The modelling and analysis of complex stochastic systems with increasingly large

data sets, state-spaces and parameters provides major stimulus to research in Baye-

sian nonparametric methods and Bayesian computation. This dissertation presents

advances in both nonparametric modelling and statistical computation stimulated

by challenging problems of analysis in complex spatio-temporal systems and core

computational issues in model fitting and model assessment. The first part of the

thesis, represented by chapters 2 to 4, concerns novel, nonparametric Bayesian

mixture models for spatial point processes, with advances in modelling, compu-

tation and applications in biological contexts. Chapter 2 describes and develops

models for spatial point processes in which the point outcomes are latent, where

indirect observations related to the point outcomes are available, and in which the

underlying spatial intensity functions are typically highly heterogenous. Spatial

intensities of inhomogeneous Poisson processes are represented via flexible non-

parametric Bayesian mixture models. Computational approaches are presented for

this new class of spatial point process mixtures and extended to the context of

unobserved point process outcomes. Two examples drawn from a central, moti-

vating context, that of immunofluorescence histology analysis in biological stud-

ies generating high-resolution imaging data, demonstrate the modelling approach

and computational methodology. Chapters 3 and 4 extend this framework to de-

fine a class of flexible Bayesian nonparametric models for inhomogeneous spatio-

temporal point processes, adding dynamic models for underlying intensity patterns.

Dependent Dirichlet process mixture models are introduced as core components of

this new time-varying spatial model. Utilizing such nonparametric mixture models

for the spatial process intensity functions allows the introduction of time varia-
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tion via dynamic, state-space models for parameters characterizing the intensities.

Bayesian inference and model-fitting is addressed via novel particle filtering ideas

and methods. Illustrative simulation examples include studies in problems of ex-

tended target tracking and substantive data analysis in cell fluorescent microscopic

imaging tracking problems.

The second part of the thesis, consisting of chapters 5 and chapter 6, concerns

advances in computational methods for some core and generic Bayesian inferential

problems. Chapter 5 develops a novel approach to estimation of upper and lower

bounds for marginal likelihoods in Bayesian modelling using refinements of ex-

isting variational methods. Traditional variational approaches only provide lower

bound estimation; this new lower/upper bound analysis is able to provide accurate

and tight bounds in many problems, so facilitates more reliable computation for

Bayesian model comparison while also providing a way to assess adequacy of vari-

ational densities as approximations to exact, intractable posteriors. The advances

also include demonstration of the significant improvements that may be achieved

in marginal likelihood estimation by marginalizing some parameters in the model.

A distinct contribution to Bayesian computation is covered in Chapter 6. This con-

cerns a generic framework for designing adaptive MCMC algorithms, emphasizing

the adaptive Metropolized independence sampler and an effective adaptation strat-

egy using a family of mixture distribution proposals. This work is coupled with

development of a novel adaptive approach to computation in nonparametric mod-

elling with large data sets; here a sequential learning approach is defined that it-

eratively utilizes smaller data subsets. Under the general framework of importance

sampling based marginal likelihood computation, the proposed adaptive Monte

Carlo method and sequential learning approach can facilitate improved accuracy

in marginal likelihood computation. The approaches are exemplified in studies of
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both synthetic data examples, and in a real data analysis arising in astro-statistics.

Finally, chapter 7 summarizes the dissertation and discusses possible extensions

of the specific modelling and computational innovations, as well as potential future

work.
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Chapter 1

Introduction

Traditionally, statistical methods for spatial point process assume perfect knowledge

of the outcome of the point process. However, in certain situations, the outcome

of the spatial point process may not be observed directly, but is measured by some

imperfect proxy. For example, in immunological studies of fluorescent intensity

images of lymphatic tissue, the observed measurements are fluorescent intensities

generated from tagged cell-surface proteins, which indirectly generates noisy ob-

servation of cell locations for as many as tens of thousands of cells in the context of

background noise. In such situations, inference on the underlying intensity func-

tion will depend on accounting for the uncertainty surrounding the outcome of

the point process, including the number of realized points as well as their spatial

locations. The first part of this dissertation discusses models that address these

issues and develops computational Bayesian methods for model fitting and analy-

sis. A flexible Dirichlet process (DP) normal mixture model is used to characterize

the highly heterogenous spatial intensity function. Computational approaches are

presented for spatial DP mixture and extended to the context of unobserved out-

comes. Two examples of immunofluorescence histology data analysis demonstrate

the models and computational methodology.

Beyond static spatial point processes, dynamic (or time-varying) spatial point

processes have recently gained increasing attention for describing various appli-

cation problems in areas such as multi-target tracking and cell fluorescent micro-

scopic imaging tracking. In these situations, the spatial point pattern may change

dramatically over time, thus it is not straightforward to apply the previous mod-
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elling approach. While traditional Dirichlet Process models focus on problems with

exchangeable samples from one unknown distribution, there is growing interest in

extending the Dirichlet Process to accommodate multiple dependent distributions,

and this provides an opportunity to extend the static point process models to the dy-

namic setting. In chapter 3, dependent Dirichlet process mixture models are intro-

duced for complex dynamic systems. By following the previous work on dependent

DP mixture modelling (MacEachern, 1999, 2001; Caron et al., 2007), countably in-

finite mixtures of Gaussian distributions are introduced to represent the unknown

density at each time point, while time dependencies are introduced by dynamic lin-

ear models for underlying parameters. These methods can be conceived as exten-

sions of the Dirichlet process mixture model (Escobar and West, 1995) to collections

of distributions evolving in discrete time. Since dependence is built into the mixing

distribution by allowing parameters to evolve dynamically via state-space models,

these models can also be regarded as extensions of the Gaussian Dynamic Linear

Models (DLMs) (West and Harrison, 1997). For sequential Bayesian inference on

these dynamic models, I propose a novel sequential Monte Carlo method, the Rao-

Blackwellized particle filter (RBPF). In RBPF, we apply sequential Monte Carlo on

the underlying allocation variable for observed data points. Given these allocation

variables, we use dynamic models for the parameters of each mixture component,

enabling us to process closed form updates for these parameters. Using a simula-

tion study of distribution autoregressive models, we demonstrate the effectiveness

of the proposed approach in accommodating multiple dependent distributions.

Chapter 4 builds on the innovations in Chapter 3 to define a flexible Bayesian

nonparametric modelling for inhomogeneous spatio-temporal processes. This in-

volves nonparametric spatial process mixture models of intensity functions in which

time variation is introduced via dynamic models for underlying parameters. These
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models characterize smooth dynamics in time in what may be quite complicated

spatial patterns of spatial inhomogeneity in intensity functions. The framework is

based on a new time-varying Dirichlet process partition scheme, and physically at-

tractive time propagation models for parameters of nonparametric mixture models

for intensities. Bayesian inference and model fitting is addressed, involving novel

particle filtering ideas and methods. Illustrative simulation examples in extended

target tracking, and substantive data analysis in applications in cell fluorescent mi-

croscopic imaging tracking demonstrate analysis with these models.

This dissertation also address some generic computation methods in Bayesian

inference, particularly for large data set. Chapter 5 discuss a novel approach of

marginal likelihood approximation. As is well known, marginal likelihood is the es-

sential quantity in Bayesian model selection, representing the evidence of a model.

However, evaluating marginal likelihoods often involves intractable integration and

needs to rely on numerical integration and approximation. Mean-field variational

methods has been extensively studied by machine learning and Bayesian learning

communities for deterministic approximation of marginal distributions (MacKay,

1995; Jordan et al., 1999; Beal and Ghahramani, 2003; Beal, 2003). Apparently,

performing model selection merely based on the lower bounds of log marginal like-

lihoods can be inappropriate as the approximation error is not quantitatively lim-

ited. We provide an upper as well as lower bound for the log marginal likelihood

and propose a method based on posterior samples to minimize the upper bound.

We also show a quasi-lower bound can be obtained with trivial computation based

on the result of optimal upper bound. We demonstrate that by marginalizing some

parameters in the model, we can significantly reduce the “discrepancy” between the

bounds of log marginal likelihood. However, when some parameters are marginal-

ized, traditional variational method are not feasible. To address this, we present a
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method that directly uses a Monte Carlo Stochastic Approximation (MCSA) algo-

rithm to maximize the lower bound, and prove the convergence to the true local

maximum lower bound under commonly applicable assumptions.

Chapter 6 consists of three sub-topics which are motivated by posterior sam-

pling for complex distributions and Bayesian inference for large data set problems:

1) adaptive Markov chains have seen renewed interest in recent years due in part

to the emergence of certain theoretical guarantees (Haario et al., 2001; Roberts

and Rosenthal, 2007). With adaptive MCMC algorithms, the entire sample history

of process is used to tune parameters of the proposal density during simulation

in order to obtain faster convergence or more efficient estimation. I first present a

generic framework to design adaptive MCMC algorithms, emphasizing the adaptive

Metropolized independence sampler and effective adaptation strategy using a fam-

ily of mixture distribution proposals. 2) Motivated by the need for flexible proposal

forms in adaptive Monte Carlo methods and effective approach to fitting nonpara-

metric models for large data set, a sequential learning approach for DP mixture

model is proposed. This method utilizes only a small subset of the whole data

set to update the associated parameters in the mixture distribution iteratively, and

gradually approach the optimal DP mixture which minimizing the KL-divergence

between the unknown target distribution which generates the data set and the

DP mixture distribution. 3) Motivated by the need for effective marginal likeli-

hood computation in complicated Bayesian models (e.g. the velocity-shift model

in Bayesian exoplanet searches (Crooks et al., 2007; Bullard, 2009)), the proposed

adaptive Monte Carlo method and sequential learning approach are incorporated

in the framework of importance sampling, based marginal likelihood computation.

More specifically, the adaptive MCMC method is used to draw samples from the

target distribution while a truncated DP (TDP) mixture model is tuned by the pro-
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posed sequential learning approach utilizing these samples. The well tuned TDP

mixture model serves as the importance function for marginal likelihood compu-

tation. Both synthetic example and real world application in Bayesian exoplanet

searches are presented to demonstrate the performance of proposal methods.

A summary of the dissertation, possible extensions and future work are dis-

cussed in Chapter 7.
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Chapter 2

Spatial Mixture Modelling for Unobserved
Point Processes

We discuss Bayesian modelling and computational methods in analysis of indirectly

observed spatial point processes. The context involves noisy measurements on an

underlying point process that provide indirect and noisy data on locations of point

outcomes. We are interested in problems in which the spatial intensity function may

be highly heterogenous, and so is modelled via flexible nonparametric Bayesian

mixture models. Analysis aims to estimate the underlying intensity function and

the abundance of realized but unobserved points. Our motivating applications in-

volve immunological studies of multiple fluorescent intensity images in sections of

lymphatic tissue where the point processes represent geographical configurations

of cells. We are interested in estimating intensity functions and cell abundance for

each of a series of such data sets to facilitate comparisons of outcomes at differ-

ent times and with respect to differing experimental conditions. The analysis is

heavily computational, utilizing recently introduced MCMC approaches for spatial

point process mixtures and extending them to the broader new context here of un-

observed outcomes. Further, our example applications are problems in which the

individual objects of interest are not simply points, but rather small groups of pix-

els; this implies a need to work at an aggregate pixel region level and we develop

the resulting novel methodology for this. Two examples with immunofluorescence

histology data demonstrate the models and computational methodology.
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2.1 Introduction

Parametric and nonparametric approaches to spatial point process modelling have

been well-studied in recent years (Diggle, 2003; Moller and Waagepetersen, 2004),

with increased use of mixtures and convolutional methods for modelling hetero-

geneity in intensity functions (Wolpert and Ickstadt, 1998). Recently, Kottas and

Sanso (2007) proposed the use of the Dirichlet process as a random mixing dis-

tribution for mixture-based methods. The full computational machinery of non-

parametric Bayesian models has thus been brought to bear on this class of infer-

ence problems for point processes. Traditionally, all such methods assume perfect

knowledge of the outcome of the point process. However, in situations such as

that described below, the outcome of the spatial point process cannot be observed

directly but is measured by some imperfect proxy. In such situations, inference

on the underlying intensity function will depend on accounting for the uncertainty

surrounding the outcome of the point process, the latter including the number of

realized points as well as their spatial locations. Our work here defines models

that address these issues and develops computational Bayesian methods for model

fitting and analysis.

Our motivating applications are immunological studies of multiple fluorescent

intensity images of lymphatic tissue. Observed measurements are fluorescent in-

tensities generated from tagged cell-surface proteins; this generates indirect, noisy

observation of cell locations for as many as tens of thousands of cells in the context

of background noise. The spatial configurations of cells across the 2 or 3-d tissue

region is typically hugely heterogenous, so requiring flexible models for underlying

intensities. In any one experiment (of many) a series of images may reflect cellu-

lar distributions at different times and/or as a response to different interventions

and treatments. For each, we aim to characterize the underlying intensity functions
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and overall level of abundance of cell types in order to facilitate comparisons across

multiple images.

2.2 Latent Spatial Mixture Models

Our general statistical framework jointly models the intensity function of a spatially

inhomogeneous Poisson process and the uncertain outcome of the point process.

Modelling of the intensity function is similar to that of Kottas and Sanso (2007),

but here relying on a Dirichlet process mixture model of multivariate normal densi-

ties (rather than beta densities). Incidences of the point process are modelled via a

modification of the basic model to represent data on a pixelated grid across image

space, and this couples with a generalized linear model for linking noisy measure-

ments (e.g. fluorescence levels, available at the gridded level) to incidences of the

point process (e.g. presence of cells).

2.2.1 Basic Spatial Point Process Model

A spatial point process over a finite region 𝑆 ⊂ ℝ
𝑑 (here, 𝑑 = 2) generates re-

alizations 𝑥1:𝑁 = {𝑥1, . . . , 𝑥𝑁} of 𝑁 ≥ 0 points 𝑥𝑖 ∈ 𝑆. We regard 𝑥1:𝑁 as the

outcome of an inhomogeneous Poisson process with intensity function 𝜆(𝑥) ≥ 0

(𝑥 ∈ 𝑆), integrable over 𝑆. That is: (a) for any region 𝑠 ⊆ 𝑆, the number of points

𝑛(𝑠) = #{𝑖 = 1 : 𝑁 ∣ 𝑥𝑖 ∈ 𝑠} is Poisson with mean Λ(𝑠) =
∫
𝑥∈𝑠 𝜆(𝑥)𝑑𝑥; and (b) condi-

tional on 𝜆(⋅), 𝑛(𝑠) ⊥⊥ 𝑛(𝑟) for any disjoint subsets 𝑠, 𝑟 ⊂ 𝑆 (Daley and Vere-Jones,

2003; Diggle, 2003).

Bayesian analysis of observed data 𝑥1:𝑁 arising from a spatial inhomogeneous

Poisson process requires first specifying a prior probability model for the intensity

function 𝜆(⋅), and then conducting posterior inference on 𝜆(⋅) in light of the realized

outcomes 𝑥1:𝑁 . As in Kottas and Sanso (2007), define the overall intensity scale
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parameter 𝛾 =
∫
𝑥∈𝑆 𝜆(𝑥)𝑑𝑥 and the probability density (over 𝑥 ∈ 𝑆) 𝑓(𝑥) = 𝜆(𝑥)/𝛾.

Then the likelihood function resulting from observed data 𝑥1:𝑁 can be expressed as

𝑝(𝑥1:𝑁 ∣𝛾, 𝑓) ∝ exp(−𝛾)𝛾𝑁

𝑁∏
𝑖=1

𝑓(𝑥𝑖) (2.1)

as a function of (𝛾, 𝑓). The degree to which underlying spatial heterogeneity can be

represented in 𝜆(⋅) is therefore linked to the modelling assumptions surrounding

𝑓(⋅).

2.2.2 Dirichlet Process Mixture Models

To provide flexibility in characterizing spatial heterogeneity in the intensity func-

tion we employ the Dirichlet process mixture framework in which the normalized

intensity function 𝑓(𝑥) is the density of a random mixture of 𝑑−dimensional nor-

mal distributions. This follows Kottas and Sanso (2007) who develop models using

mixtures of betas rather than normals. Since we are working on problems with

very heterogeneous intensity functions in 2 and 3-𝑑, and with sample sizes 𝑁 that

(though unknown) are large, we very much need the flexibility offered by mixtures

of multivariate normals coupled with their relative analytic and computational ben-

efits; we simply truncate and ignore the form of fitted and simulated models outside

the finite region 𝑆.

A key observation of Kottas and Sanso (2007) was to note that the likelihood

function of equation (2.1) depends on 𝑓(⋅) only through the term
∏𝑁

𝑖=1 𝑓(𝑥𝑖) and

is precisely the likelihood that would arise from simple random sampling from 𝑓(⋅)
generating data 𝑥1:𝑁 . Thus, for computational purposes, we can then use the stan-

dard methods of posterior computation based on any assumed model for 𝑓(⋅). Use

of Dirichlet process mixtures is one example.
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In brief, 𝑓(⋅) is taken as the density of a distribution arising from the following

hierarchical model for independent, 𝑑−dimensional variates 𝑥𝑖, each with its own

parameter 𝜃𝑖 = (𝜇𝑖,Σ𝑖), a mean vector and variance matrix, respectively. Then the

model for 𝑓(⋅) is

(𝑥𝑖∣𝜃𝑖) ∼ 𝑁(𝑥𝑖∣𝜇𝑖,Σ𝑖), (𝜃𝑖∣𝐺) ∼ 𝐺, (𝐺∣𝛼,𝐺0) ∼ 𝐷𝑃 (𝛼,𝐺0) (2.2)

using standard notation. Here 𝐺(⋅) is an uncertain distribution function, 𝐺0(⋅) is the

prior mean of 𝐺(⋅) and 𝛼 > 0 the total mass, or precision of the DP. For conditional

conjugacy, it is convenient and common to take the prior as normal-inverse Wishart.

The implied distribution corresponding to the density 𝑓(𝑥) is a discrete mixture of

a countably infinite number of normals. The model notation and structural de-

tails are standard and used widely in applied Bayesian inference; key foundational

modelling and computational aspects are available in, for example, MacEachern

(1994), West et al. (1994), Escobar and West (1995, 1998), MacEachern (1998)

and MacEachern and Mueller (1998) and in a broader context in the more recent

review paper of Mueller and Quintana (2004). Details that are key to computation

are noted below in Section 2.3 and the Appendix A.

2.2.3 Discrete Pixel Region Model

In the immunological application as in other studies in spatial modelling, the data

arises in terms of images of the region 𝑆 within which the individual objects of

interest are not simply points, but rather small groups of pixels. This, coupled with

the fact that the objects (here, cells) are in any case not directly observed, implies

a need to work at an aggregate pixel region level. This can be quite general but,

for purposes here, we focus on rectangular pixel regions; in the immunological

imaging study, for example, we work at the level of 3×3 pixel regions (in 2−𝑑) and

each region is either occupied by a cell, or not.
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Generally, in 𝑑−dimensions suppose the overall imaged region 𝑆 = [−𝑠, 𝑠]𝑑, for

some 𝑠 > 0, and that the level of resolution is 𝑎 pixels in each dimension. 𝑆 is then

a rectangular grid of 𝑎𝑑 pixel regions; label these by interior points 𝑥𝑖, (𝑖 = 1 : 𝑎
𝑑),

and set 𝒳 = {𝑥𝑖 : 𝑖 = 1 : 𝑎𝑑}. Assuming 𝑎 to be large and withΔ = (2𝑠/𝑎)𝑑, we have

approximate intensity Δ𝛾𝑓(𝑥𝑖) for pixel region 𝑖 and
∑

𝑥∈𝒳 Δ𝑓(𝑥) ≈ ∫
𝑥∈𝑆 𝑓(𝑥)𝑑𝑥 =

1.

Now, for any realization of the point process, each pixel region will be either

occupied by an object or not. Define binary variates 𝑦(𝑥) = 1/0 to represent pres-

ence/absence of an object (e.g., a cell) in the pixel region with index point 𝑥 ∈ 𝒳 .

Then observing the occurrence of objects at a subset of 𝑁 regions is equivalent to

observing binary data 𝑦(𝑥) for all 𝑥 ∈ 𝒳 with 𝑦(𝑥) = 1 at just the 𝑁 regions with

objects. Suppose the 𝑁 regions are indexed by 𝑥1:𝑁 ∈ 𝒳 , and write 𝑌 for the full

set of 𝑎𝑑 binaries. It then follows that the likelihood of equation (2.1) is equivalent

to

𝑝(𝑌 ∣𝛾, 𝑓) ∝
∏
𝑥∈𝒳
{Δ𝛾𝑓(𝑥)}𝑦(𝑥) exp{−𝛾Δ𝑓(𝑥)} (2.3)

and

𝑝(𝑌 ∣𝛾, 𝑓) ∝ exp(−𝛾)Δ𝑁𝛾𝑁

𝑁∏
𝑖=1

𝑓(𝑥𝑖). (2.4)

This provides the ability to work at the discretized, pixel region level appropriately,

and simply modifies the likelihood with the additional Δ term. Most importantly

also, this discrete pixel region version also enables easy development for contexts

in which the locations 𝑥1:𝑁 are not observed directly but are measured with noise,

since equation (2.3) delivers a likelihood function for uncertain locations and num-

ber of objects 𝑥1:𝑁 along with (𝛾, 𝑓).
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2.2.4 Unobserved Spatial Inhomogeneous Poisson Process

Consider now contexts in which the locations 𝑥𝑖, and their number 𝑁, are uncertain.

The example of fluorescent intensity images of lymphatic tissue is a key motivation

and raises broader modelling questions. There, the specific locations of biological

cells are not observed, but reflected in terms of fluorescence generated from la-

belled cell surface proteins. Under the discrete pixel region formulation, we can

incorporate uncertainty about 𝑥1:𝑁 using equation (2.3), as follows.

Suppose we have observations 𝑧(𝑥) at each location 𝑥 ∈ 𝒳 generated by the

measurement process. That is, the measurements represent single pixel region lo-

cations with no overlap or interaction. It is practicable to assume that the measure-

ment error distribution depends on 𝑥 only through presence or absence of objects,

i.e., on the 𝑦(𝑥) binary indicators, and will usually involve uncertain parameters

here denoted by 𝛿. That is, a measurement error model is defined by two den-

sity functions 𝑝(𝑧∣𝑥, 𝛿) = 𝑝(𝑧∣𝑦(𝑥), 𝛿) for 𝑦(𝑥) = 1/0, where 𝑝(𝑧∣𝑦 = 0, 𝛿) represents

background noise in the absence of an object at a specific location, and 𝑝(𝑧∣𝑦 = 1, 𝛿)
represents noise in the presence of a signal.

We can now combine 𝑝(𝑌 ∣𝛾, 𝑓) of equation (2.3) as the prior for all 𝑦(𝑥) with

the implied likelihood components 𝑝(𝑧(𝑥)∣𝑦(𝑥), 𝛿), based on recorded data 𝑍 =

{𝑧(𝑥) : 𝑥 ∈ 𝒳}. In terms of posterior odds on 𝑦(𝑥) = 1 versus 𝑦(𝑥) = 0, this yields

conditionally independent posteriors with

𝑂𝑑𝑑𝑠(𝑦(𝑥) = 1∣𝑍, 𝛾, 𝑓) = 𝑟(𝑧(𝑥))𝛾Δ𝑓(𝑥) (2.5)

where 𝑟(𝑧(𝑥)) = 𝑝(𝑧(𝑥)∣𝑦(𝑥) = 1, 𝛿)/𝑝(𝑧(𝑥)∣𝑦(𝑥) = 0, 𝛿) for all 𝑥 ∈ 𝒳 .

In the immunological imaging study, appropriate noise models are truncated

normals and the posterior odds ratios are trivially evaluated. This is important as

we can then embed imputation of 𝑌 in the overall MCMC computations.
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2.3 Posterior Inference And Sampling Strategies

The overall posterior inference goals are to explore and summarize aspects of the

implied joint posterior for all uncertain quantities based on a complete model spec-

ification that now includes independent priors on 𝛾, 𝛼 and any of the hyperpa-

rameters 𝛿 we may wish to treat as uncertain. In summary, this is the posterior

𝑝(𝑌, 𝑓, 𝛾, 𝛼, 𝛿 ∣ 𝑍).

2.3.1 Overall MCMC Framework

The MCMC computational algorithm visits the following components in turn. Each

of the imputation steps here draws new variates from the conditional distribution

given all other conditioning quantities. In each, only those conditioning quantities

that matter are included in the notation.

Sampling the normalized intensity function 𝑓(𝑥), its parameters and 𝛼

Each MCMC iterate generates a realized density that is a mixture of a finite number

of 𝑑−dimensional normals, 𝑓(𝑥) ≡ 𝑓(𝑥∣Θ) =∑𝑘
𝑗=1 𝑤𝑗𝑁(𝑥∣𝜇∗

𝑗 ,Σ
∗
𝑗), with parameters

Θ = {𝑤1:𝑘, 𝜇
∗
1:𝑘,Σ

∗
1:𝑘} changing at each MCMC step, being generated via a two-step

process discussed in Section 2.3.2 and the Appendix A. This step also resamples the

Dirichlet precision 𝛼. Given Θ, the density 𝑓(⋅∣Θ) can be evaluated at the finite set

of points 𝑥 ∈ 𝒳 for further use.

At each iterate, the Θ parameters are drawn from an implicit conditional poste-

rior 𝑝(Θ∣𝑁, 𝑥1:𝑁) where the number of imaged objects, 𝑁, and their location indices

𝑥1:𝑁 , are set at current values. As the MCMC progresses these values are resampled

as the analysis explores the joint posterior that now also includes uncertainty about

(𝑁, 𝑥1:𝑁).
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Sampling spatial object location indicators 𝑌

Equation (2.5) leads to resampling of new values of 𝑌 as independent binaries

𝑦(𝑥) at each 𝑥 ∈ 𝒳 , based on implied probabilities 𝑃𝑟(𝑦(𝑥) = 1∣𝑧(𝑥), 𝛾, 𝑓, 𝛿). This

generates a complete set of binaries from which those values 𝑦(𝑥) = 1 identify the

new sample size 𝑁 and pixel region locations 𝑥1:𝑁 . Notice that one by-product is

samples from the posterior for 𝑁, i.e., the ability to make inferences about the un-

certain number of underlying objects as well as their locations. This step explicitly

requires the evaluation 𝑓(𝑥) ≡ 𝑓(𝑥∣Θ), the mixture of normals based on the most

recently sampled Θ.

Sampling the overall scale of intensity 𝛾

The form of equation (2.4) makes it clear that a gamma prior is conjugate to the

conditional likelihood, leading to a gamma distribution 𝑝(𝛾∣𝑁).

Sampling hyperparameters 𝛿 of the measurement error model

Under a prior 𝑝(𝛿), these parameters may be generated using some form of Gibbs

or Metropolis-Hastings component strategy based on the implied conditional

𝑝(𝛿∣𝑍, 𝑌 ) ∝ 𝑝(𝛿)
∏
𝑥∈𝒳

𝑝(𝑧(𝑥)∣𝑦(𝑥), 𝛿).

For example, normal measurement errors would involve normal mean and variance

parameters in 𝛿, one pair for each of the signal and noise error models; in such

a case, conditionally conjugate priors would aid in this computational step. In

our immunological studies appropriate error models are truncated normals, which

introduces a need for Metropolis-Hastings for sampling 𝛿 as described in section

2.4.2 and the examples.
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2.3.2 Simulation in DP Mixtures

Under the DP model of equation (2.2), 𝐺 is discrete. This results in any realized

set of 𝑁 parameters 𝜃1:𝑁 = (𝜇1:𝑁 ,Σ1:𝑁 ) being configured into some 𝑘 ≤ 𝑁 distinct

values (𝜇∗
1:𝑘,Σ

∗
1:𝑘). The DP generates configuration indicators 𝑐1:𝑁 such that 𝑐𝑖 = 𝑗

indicates (𝜇𝑖,Σ𝑖) = (𝜇
∗
𝑗 ,Σ

∗
𝑗). The original MCMC approaches to generating posterior

samples in DP mixtures (MacEachern, 1994; West et al., 1994; Escobar and West,

1995, 1998; MacEachern, 1998; MacEachern and Mueller, 1998) utilize this theory

to generate samples from the full joint posterior of 𝑘, (𝜇∗
1:𝑘,Σ

∗
1:𝑘) and 𝑐1:𝑁 . Most

effective among these approaches are the collapsed or configuration samplers for

DP mixture models originating from MacEachern (1994). More recent approaches

are based on the innovative strategy using the blocked Gibbs sampler (Ishwaran

and James, 2001) that explicitly includes simulation from approximations to the

conditional posteriors for the underlying mixing distribution 𝐺(⋅) itself.

In many problems with small or moderate sample sizes 𝑁 , and when 𝑓(⋅) is

well-behaved to the extent that it may be well-approximated by a small mixture of

normals, there is little to choose between the configuration and blocked samplers

in terms of either computational or statistical efficiencies. However, as 𝑁 increases,

and also with densities 𝑓(⋅) of greater complexity that therefore require larger num-

bers 𝑘 of mixture components for adequate representation, the blocked sampler

dominates. Configuration sampling iteratively resamples each configuration indi-

cator conditional on the rest; this one-at-a-time update degrades computational ef-

ficiency as 𝑁 increase, and difficulties in moving in configuration space induced by

the tight conditioning degrade mixing of the MCMC, and hence statistical efficiency.

In contrast, the blocked sampling strategy breaks this configuration conditioning at

each iterate, resampling the full set of configuration indicators jointly.

In our immunological applications, 𝑁 is in the thousands or tens of thousands,
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and intensity surfaces can be very heterogeneous, so the blocked sampling strategy

is really demanded for efficiency reasons. In fact, the approach is almost mandated

in the context of measurement error; as we have seen, values of the normalized

intensity 𝑓(𝑥) itself are key components of the overall analysis, arising in the con-

ditional posteriors for the latent spatial object location indicators 𝑌 in equation

(2.5). To evaluate values of the density 𝑓(⋅) requires inference on the underlying

mixing distribution 𝐺(⋅) itself, and this is provided by the blocked sampling strat-

egy. Kottas and Sanso (2007) use this strategy, pointing out that it is needed to

generate posterior inferences on aspects of 𝑓(⋅) in any case; our new framework

with latent spatial process outcomes, large 𝑁 and heterogeneous intensity patterns

very strongly reinforces this choice.

The block sampler involves three linked steps: sampling of the set of config-

uration indicators 𝑐1:𝑁 , sampling of parameters that define an approximation to

the mixing distribution 𝐺(⋅), and sampling of sets of normal model means and

variance matrices. A key element is the truncated approximation to the so-called

stick-breaking representation of 𝐺 (Sethuraman, 1994) that effectively defines a

finite mixture model with a specified upper bound 𝑘 on the number of components

(Ishwaran and James, 2001). Importantly, then, this approach actually introduces

a theoretical approximation to the full DP mixture model through this truncation.

The practical relevance of the truncation is limited, however, particularly when

dealing with problems with large numbers of components. Moreover, the result-

ing truncated version can in any case be viewed as a directly specified alternative

model in its own right, rather than as an approximation to the DP mixture. The

MCMC strategy we use follows that of Kottas and Sanso (2007), with some changes

in detail related to the resampling steps for parameters, and is briefly outlined in

Appendix A.
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2.4 Immunofluorescence Histology Image Analysis

2.4.1 Context

The motivating application for this work arises in immunological studies in mice

where multiple images provide data on the spatial configuration of many immune

cells in a specific, localized region of lymphatic or spleen tissues. A single exper-

iment views an image as the response to stimulus via injection of a vaccine, the

overall context being exploration of responses under candidate vaccine designs.

Comparisons involve replicate images from different mice – possibly at different

times and under differing treatments – with careful matching and registration of

the tissue region across mice. Observed measurements are fluorescent intensities

generated from tagged cell-surface proteins that characterize a specific cell type.

The pixel region model adopts a very small, 3 × 3 region of pixels as the level of

resolution for modelling; this is small enough to be consistent with each region 𝑥

being either occupied by a single cell (𝑦(𝑥) = 1) or being unoccupied. Interest lies

in characterizing the spatial intensity functions underlying observed data in each

image, and feeding the statistical summaries and characterizations into visual and

numerical comparisons. For the current paper, we simply explore aspects of the

analyses of two example images, focussing on statistical aspects.

2.4.2 Measurement Error Models

Based on exploration of past data and experimentation with different measurement

error models, a simple truncated lognormal model for the measurement of the

fluorescence intensity appears to be adequate. That is, if 𝑧 = 𝑧(𝑦(𝑥)) represents

measured fluorescence at pixel region 𝑥, then 𝑝(𝑧∣𝑦, 𝛿) is defined by

(log(𝑧)∣𝑦, 𝛿) ∼ 𝑁(𝑚𝑦, 𝑣𝑦)𝐼(log(𝑧) < ℎ), (𝑦 = 0, 1),
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where (𝑚0, 𝑣0) relates to the background noise and (𝑚1, 𝑣1) to the distribution of

signal fluorescence – i.e., the distribution conditional on the pixel region being oc-

cupied by a cell. Then 𝛿 = (𝑚0,𝑚1, 𝑣0, 𝑣1). Here ℎ = log(255), the truncation being

inherent to the digital fluorescent image generation process; log(𝑧) is recorded on

a scale of (0, ℎ) with values greater than ℎ being truncated.

As described in Section 2.3.1, the overall MCMC can be extended to include a

component representing uncertainty about 𝛿. Under the truncated normal model

for (𝑧∣𝛿), this can be done with standard priors, although it raises a need for a

Metropolis strategy due to the truncation effects. We adopt independent normal-

inverse gamma priors; for each of 𝑦 = 0, 1 independently, (𝑚𝑦∣𝑣𝑦) ∼ 𝑁(𝑚𝑦∣𝑚̄𝑦, 𝑡𝑣𝑦)

and 𝑣−1
𝑦 ∼ 𝐺𝑎(𝑐/2, 𝑐𝑣𝑦/2) based on specified prior estimates 𝑚̄𝑦, 𝑣𝑦 of 𝑚𝑦, 𝑣𝑦, re-

spectively. These values are chosen to reflect known scales of (log) fluorescence

and background. Specified values of the hyper-parameters 𝑡, 𝑐 are used to define

relatively precise priors while allowing for adaptation to the data in each new im-

age data analysis. In the examples here, 𝑚̄0 = 3.5, 𝑚̄1 = 4.5, 𝑡 = 10, 𝑣0 = 0.1,

𝑣1 = 0.1 and 𝑐 = 10. We explore aspects of model fit and adequacy in the following

discussion.

Conditional on the current 𝑌 and data 𝑍, the (𝑚0, 𝑣1) and (𝑚1, 𝑣1) are con-

ditionally independent. Each of the two conditional posteriors is the product of

two terms: updated inverse-gamma based on the full set of 𝑁(log(𝑧)∣𝑚𝑦, 𝑣𝑦) non-

truncated terms in the conditional likelihood functions, and the term involving

products of cumulative normal distribution function values derived from trunca-

tion. The first terms provide suitable Metropolis proposals for the full conditional

posteriors, with the contribution to the conditional likelihoods from the truncation

normalization providing the terms in the acceptance ratio. Due to the fact that only

a relatively small fraction of the data is truncated in these images (almost none,
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generally, for background levels, and in the region of up to 15% for signal) with

much of the data lying well below the limit, these constructed proposal distribu-

tions are typically close to the target conditional posterior and the resulting sampler

very effective.

2.4.3 Image Data B220

Figure 2.1a is the original image of the intensity of emission from the fluorescent

dye AF350 conjugated to an antibody that binds to B220, a molecule expressed on

the surface of B lymphocytes, in a section of a lymph node excised and sectioned

24 hours after subcutaneous alum injection. Figure 2.1b shows the corresponding

heat map of intensity levels, which after logging provide the raw numeric data 𝑍;

histograms of the fluorescence and logged values 𝑍 are shown in Figure 2.2. The

image indicates typical heterogeneity of spatial distributions of a very large number

of cells. On the resolution analyzed, we have 180 × 180 pixel regions, each 3 × 3
pixels representing the locations of individual cells (if present). We take the image

region 𝑆 as [−5, 5]2 so Δ = 1/324.

We use priors as follows. First 𝛼 ∼ 𝐺𝑎(1, 1) and 𝛾 ∼ 𝐺𝑎(1, 0.001) for the two

scalar model parameters. The base prior 𝐺0(𝜇,Σ) is 𝑁(𝜇∣0, 𝑡0Σ)𝐼𝑊 (Σ∣𝑠0, 𝑆0) where

𝑡0 > 0, 𝑠0 > 0 is the prior degree-of-freedom and 𝐸(Σ) = 𝑆0/(𝑠0 − 2) when 𝑠0 > 2.

Analysis here adopts 𝑡0 = 50, 𝑠0 = 2 and 𝑆0 = 0.4𝐼, based on the specified scale

of the image region 𝑆 = [−5, 5]2 and the expectation of needing a large number

of widely dispersed and relatively concentrated normal components to represent a

very heterogeneous intensity surface. Further, the truncation of the mixture model

uses 𝑘 = 250 as the upper bound on the number of components.
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Figure 2.1: Data image on cell experiment B220 on day 1; (a) shows an image of the
original data with fluorescent green tag, and (b) shows the scale of the corresponding
intensity data.

0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

z

2.5 3 3.5 4 4.5 5 5.5 6
0

0.02

0.04

0.06

log(z)

Figure 2.2: Data from B220, day 1: intensities (upper) and log intensities 𝑍 (lower).
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Some aspects of the analysis with a final 5000 MCMC iterations after burn-in

are graphically summarized in the figures. Additional visual confirmation of the

relevance of the truncated normal measurement error model is illustrated in Figure

2.3, showing normal qqplots of the 𝑍 data partitioned into noise and signal sam-

ples based on the current indicators 𝑌 at one randomly chosen step on the MCMC

analysis. Repeat draws show similar forms. Looking at these graphs for a series of

MCMC steps is useful in confirming the stability of the apparent adequacy of the

truncated normal model, as reflected in the qqplots across multiple realizations of

the signal/noise allocation of the pixel regions. Evidently, the raw data displayed

in the lower frame of Figure 2.2 shows the signal/noise structure, but without

conditioning on signal/noise assignments it is difficult to develop direct graphical

or numerical assessments of the normality assumption; repeat exploration across

a series of MCMC samples aids measurably in this exploratory model assessment

exercise.
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Figure 2.3: Based on a single, randomly selected draw from the MCMC in analysis of
B220, day 1, the data are partitioned into noise (𝑦 = 0) and signal (𝑦 = 1) and the two
corresponding samples of log intensities 𝑍 are displayed as normal qqplots: (a) noise,
and (b) signal. This provides useful, visual insight into the utility and relevance of the
truncated noise measurement error model and represents a nice dissection of the full data
in the histogram of Figure 2.2.

Additional snapshots of one of the MCMC iterates are graphed as follows. Figure
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Figure 2.4: Image plot of 𝑃𝑟(𝑦(𝑥) = 1∣𝑍) at one randomly chosen step of the MCMC in
analysis of B220, day 1.

2.4 shows an image of one posterior sample of 𝑃𝑟(𝑦(𝑥) = 1∣𝑍) over all 𝑥 ∈ 𝒳 ,

and Figure 2.5 (upper frame) identifies the corresponding current sampled mixture

components overlaid on the data.

The supplemental material on the web site http://stat.duke.edu/people/

theses/JiC.html contains a series of these “snapshot” figures in a movie, which

gives a nice overview of the uncertainty across MCMC steps. Some regions are

more stable/less variable than others, and this comes through best by viewing a

series of samples through the MCMC. Viewing such figures aids in understanding

and illustrating aspects of the model, and comparison of such MCMC snapshots

with the real data in Figure 2.1 is illuminating. In terms of posterior estimates,

averaging over MCMC iterates produces relevant summaries. For example, Figure

2.5 (lower frame) shows an image of the posterior mean intensity estimate based

on averaging Monte Carlo samples 𝑓(𝑥∣Θ) over the MCMC steps. In essence and

up to a constant, this also represents the Monte Carlo posterior mean of the prob-

abilities in Figure 2.4. Comparisons with Figure 2.1 begin to indicate the ability of

the model to reflect the complexity of the data configuration, and with large num-
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bers of heterogeneous mixture components adapt to very variable patterns in the

underlying spatial intensity.

Monitoring of various parameters aids in assessment of convergence, again at

the usual informal level. Rapid stabilization of trajectories of key single parameters,

including 𝛼, 𝛾,𝑁 and 𝛿 among others, is typically observed, and that is exemplified

in Figures 2.6, 2.7 and 2.8. Good mixing is evident in these and other marginal

trajectory plots.

From the applied perspective, the samples for 𝑁 provide summary approximate

posterior inferences on the underlying numbers of occupied pixel regions, i.e. our

proxy for the number of cells, as one characteristic of this data set. Figure 2.8b

indicates that 𝑁 very likely lies in the range 8, 500 − 8, 700 for B220 on day 1,

corresponding to 26-28% coverage of the image.

For a brief visual comparison, a second image of data illustrates the ability of

the model analysis to reflect a diversity of patterns of complexity in image intensi-

ties. This comes from data captured from tissue in the same experiment, using the

same dye-antibody combination, but now after an additional 10 days. Comparisons

between selected posterior summaries between day 1 and day 11 clearly indicate

that the distribution of the fluorescently labelled cells has changed significantly be-

tween day 1 and day 11. For example, the number of the fluorescent labelled cells

has apparently also reduced significantly in the later stages; Figure 2.9 suggests 𝑁

likely lies in the range 8, 700 − 9, 200 for B220 on day 11, so that the coverage of

the overall image region is slightly increased relative to day 1. Further, there are

multiple regions with higher intensities on day 1 that dissipate later on, and the

overall intensity becomes fragmented; see the images for day 11 in Figure 2.10 in

comparison to those at day 1.
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Figure 2.5: Upper frame: Scatter plot of the current sampled locations of cells 𝑌 at one
MCMC step in analysis of B220 on day 1, overlaid with contours representing the location,
scale and shape of the corresponding posterior sample of the normal mixture components
underlying the intensity function. The contours are drawn at one standard deviation from
the means in each of the major and minor axes directions. Lower frame: Image plot of the
posterior estimate of the normalized intensity function 𝑓(𝑥) in analysis of B220 on day 1,
based on averages of the sampled surfaces over MCMC steps.
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Figure 2.6: MCMC outputs in analysis of B220, day 1: Trajectories of (a) the Dirichlet
process precision parameter 𝛼, and (b) the number of realized, non-empty components in
the mixture model.
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Figure 2.7: Trajectories of MCMC samples of measurement error model parameters in
analysis of day 1 data.
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Figure 2.8: Experiment B220, day 1: Plots to show the number of “cells” in the image.
(a) Trajectory of sampled 𝑁 values in the MCMC, (b) the resulting histogram.
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Figure 2.9: Experiment B220, day 11: Plots to show the number of “cells” in the image.
(a) Trajectory of sampled 𝑁 values in the MCMC, (b) the resulting histogram.
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Figure 2.10: B220 on day 11. Upper frame: Image of the original data with fluorescent
green tag. Lower frame: Image plot of the posterior estimate of the normalized intensity
function.

2.5 Additional Comments

Our applied studies involve large (though unknown) numbers of point occurrences

and intensity mixture models with relatively large numbers of mixture model com-

ponents to represent potentially complex patterns of variation over the spatial re-

gion. Coupled with the need for practically relevant measurement error models

to link between observed, noisy data and the underlying latent spatial process of

biological relevance, this represents a challenging computational as well as mod-

elling problem context. Our examples shown here, and experiences with other data

sets, indicate the relevance and utility of the model developed. The use of flexible,
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nonparametric Bayesian mixture models of intensity functions, pioneered by Kottas

and Sanso (2007) and extended here, is central and key in engendering adaptabil-

ity to wildly heterogeneous intensity patterns coupled with robustness and in-built

parsimony. The use of effective MCMC samplers is key, and the blocked sampler

for Dirichlet process mixture models is attractive from that viewpoint, but also re-

ally necessary as our overlaid measurement error structure demands that we have

direct, albeit approximate evaluation of the underlying density-intensity function

with the MCMC that generates from conditional posteriors of the underlying latent

spatial process. In many spatial point process modelling contexts, lack of complete,

direct observation on point outcomes is common, and our new methodology pro-

vides examples of how the overall analysis framework can be extended to allow for

that. Our immunological context generates data sets for which truncated normal

models of fluorescence, under both signal and noise at a point location, are ade-

quate, and our experience suggests that we can robustly include learning on mea-

surement error models within the overall analysis. Other contexts may, of course,

require alternative measurement error model choices, but the general strategy will

apply.

Our use of mixtures of normals for the spatial intensity builds on the well-known

framework of normal mixtures and their ability to represent even very highly ir-

regular surfaces. Kottas and Sanso (2007) used mixtures of bivariate betas. The

choice of parametric form of the mixands, or “kernels”, is to some extent arbitrary,

and the use of mixtures of betas is mathematically elegant when the spatial region

is a specified rectangle. Normal mixtures do offer advantages, however. In mod-

elling terms, the restricted range of correlations and shapes that bivariate betas are

able to represent limits their flexibility. To represent an irregular intensity as accu-

rately as a mixture of normals then requires more beta mixture components. We
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have explored this in studies with simulated data and confirmed a need for 4 or

5 times the number of beta than normal components in some examples. This im-

poses greater computational burden and decreased flexibility. Looking ahead to 3-

dimensional, and possibly higher-dimensional extensions, normal mixtures clearly

generalize trivially, in both modelling and computational implementation senses.

Further, due to the lack of conditional conjugacy for parameters of the bivariate

betas within clusters, the MCMC analysis is complicated. Kottas and Sanso (2007)

use a traditional Dirichlet process mixture Gibbs sampler with Metropolis-Hasting

(MH) steps for sets of beta parameters. Beyond the difficulties in specifying effi-

cient MH proposals, and subsequent inefficiencies, the standard, Polya urn-based

Gibbs sampler for these mixtures is inherently slow mixing and this is increasingly

problematic with larger sample sizes and numbers of mixture components, such

as in our examples. These issues make the MCMC sampler for beta mixtures very

slow compared to approaches based on block sampling and that can analytically in-

tegrate over parameters, exploiting conditional conjugacy, as in the normal mixture

models. In head-to-head comparisons with the data sets here, we find computations

in the normal model to be roughly 20 times faster per iterate than using the beta

model algorithm.

Current and potential future areas for consideration include refined computa-

tional strategies to increase computational efficiency and enable at least partial

parallel implementation to take advantage of both multi-threading and cluster com-

putation. New statistical directions might include consideration of local spatial de-

pendencies in the 0/1 outcomes process, and also potential dependencies at the

observational level due to fluorescence scatter across neighboring pixel regions.

Potential refinements of prior specifications over the normal variance matrix pa-

rameters may also be of interest; for example, mixtures of priors favoring very
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different scales of variances in the Σ𝑗 may allow us to more adequately represent

very heterogenous images. In the applied context of immunofluorescent images

arising in studies of vaccine design, current case studies are focused in part on the

context-specific questions of making comparisons between models fitted to two or

more images. Further studies are currently exploring extensions of the current ap-

proach to deal with problems in which several cells of distinct biological types are

marked by fluorescent tags with distinct emission spectra; interest then lies in si-

multaneously estimating two or more underlying spatial intensity functions for the

separate cell types, with a need for dealing with the uncertainties about cell type at

any one pixel region location due to frequency interference in recorded intensities.

Some of the potential further studies mentioned here has been reported in a recent

work (Manolopoulou et al., 2009).

Supplementary material and code

The web page http://ftp.stat.duke.edu/WorkingPapers/08-25.html provides

freely available Matlab code that implements the method described here. This

includes support functions and the examples from this paper as templates for other

more general models. The site also provides additional information on aspects

of posterior uncertainty and predictive fit in the day-1 example. These include

contour and image plots of successive samples of the DP mixture-based intensity

surface through a series of MCMC iterations, and associated plots of the changes

in the implied MCMC-based posterior mean estimate of the intensity function as it

is updated through a series of MCMC iterations. Additional supplementary plots

show pixel probabilities representing presence/absence of cell-based fluorescence

as they vary over a series of MCMC iterations, accompanied by sampled spatial

point patterns – i.e., locations of cells – corresponding to the above probabilities as
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the MCMC progresses.

In terms of computational benchmarks (circa February 2009), for each one of

the examples presented here each iterate of the MCMC algorithm presented takes

roughly 2-3 seconds when running on a 2.80 GHz Intel Pentium 4 laptop with 1024

MB memory. Further research will investigate multicore and multiscale implemen-

tations that will speed up analyses substantially. The current MCMC is of the order

of 20 times faster than alternatives using more traditional Polya urn configuration

MCMC samplers.
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Chapter 3

Dependent DP Mixture Model and SMC
Sampling

In this chapter, dependent Dirichlet process mixture models are introduced for ap-

plication in complex dynamic systems. Following the previous work on dependent

DP mixture modelling (MacEachern, 1999, 2001; Muller et al., 2004; Pennell and

Dunson, 2006; Dunson et al., 2007; Caron et al., 2007), we utilize a stick-breaking

dependent DP mixture model and introduce dependence between mixture distribu-

tions on component parameters. MCMC methods for dependent DP mixture models

are well studied in the previous literature. However, for application in dynamic sys-

tems, sequential Bayesian inference are always required, particularly when interest

in prediction for real-time systems. I present a Rao-Blackwellized particle filter

(RBPF) for sequential Bayesian inference in dependent DP mixtures. In RBPF, I

process sequential Monte Carlo only on mixture component allocation variables for

observed data points. Given these allocation variables, I use dynamic models for

parameters of the mixture components, enabling closed form updates for these vari-

ables. I demonstrate the model and computational approach in a synthetic problem

of sequential time-varying density estimation.

3.1 Introduction

Traditional time series analysis is constrained by parametric assumptions for evolu-

tion and measurement noise distributions. Even though flexible or non-parametric

modelling can be introduced for the evolution process, inferences are often re-
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stricted to the moments of the assumed distributions, and thus changes may be

overlooked by the model if it can not be captured by those moments. Moreover,

in many situations, the measurements are distributions, which can present multi-

modality and other heterogeneous features. For example, in dynamic topic mod-

elling, the number of clusters and the weights/locations of these clusters of topics

may change over time (Caron et al., 2007; Srebro and Roweis, 2005); in multiple

extended target tracking, observations can be viewed as a spatial point process with

a underling highly spatial inhomogeneous intensity function (Gilholm et al., 2005;

Singh et al., 2009); in genetic epidemiology studies the interest is the evolution of

the distribution of DNA damage over time (Rodriguez and ter Horst, 2008).

This chapter develops flexible modelling for estimation and prediction of den-

sities that evolve in discrete time. Dependent Dirichlet process mixture models

in time varying settings are introduced along with computationally efficient algo-

rithms. Following the previous work on dependent DP mixture modelling (MacEach-

ern, 1999, 2001; Muller et al., 2004; Pennell and Dunson, 2006; Dunson et al.,

2007; Caron et al., 2007), countably infinite mixtures of Gaussian distributions

are employed to represent the unknown density at each time point, and time-to-

time dependencies are defined on mixture component weights and locations using

dynamic linear models. These methods can be treated as extensions of the Dirich-

let process mixture model (Escobar and West, 1995) to collections of distributions

evolving in discrete time. Since dependence is built into the mixing distribution

by allowing parameters to evolve dynamically, the models we present can also be

regarded as extensions of the Gaussian Dynamic Linear Models (DLMs) of West and

Harrison (1997).

For application in dynamic systems, sequential Bayesian inference is always re-

quired, particularly when interest lies in prediction in real-time systems. As the
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analytical update for such complex dynamic system is not feasible, we have to turn

to sequential Monte Carlo approaches. However, due to the complexity of depen-

dent DP mixtures, a generic SMC method will suffer from degeneracy problems. To

address this, I present a novel sequential Monte Carlo method, Rao-Blackwellized

particle filter (RBPF), for the sequential Bayesian inference in dependent DP mix-

tures. In RBPF, mixture component allocation variables for observed data points

follow a nonlinear dynamic system and are updated by sequential Monte Carlo.

Then, given these allocation variables, we can obtain dynamic linear models for

associated parameters to enable us to process closed-form updates for these param-

eters. Simulation studies on a synthetic problem of sequential time-varying density

estimation demonstrate the performance of the proposed model and computational

approach.

3.2 Dependent Dirichlet Process Mixture Models

Most of the applications of Dirichlet Process models focus on problems with ex-

changeable samples from one unknown distribution. However, in many situations,

we cannot assume that the distribution of the observations is fixed; instead, it

evolves over time. For example, in a clustering application, the number of clus-

ters and the locations of these clusters may change over time. More specifically, let

𝑡 = 1, 2, ..., 𝑇 denote a discrete-time index and assume that we receive 𝑁𝑡 observa-

tions at each time 𝑡, denoted by x𝑡 = 𝑥1:𝑁𝑡,𝑡, which are independent and identically

distributed (iid) samples from

𝑓𝑡(⋅) =
∫
Θ

𝑝(⋅∣𝜃)𝐺𝑡(𝑑𝜃) (3.1)
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where 𝑝(⋅∣𝜃) is the mixed pdf and 𝐺𝑡 is the mixing distribution which itself is dis-

tributed according to a Dirichlet Process

𝐺𝑡 ∼ 𝐷𝑃 (𝛼,𝐺0) (3.2)

where 𝐺0 is the base probability measure, and 𝛼 > 0 is the total mass, or precision

of the DP.

Developing dependent Dirichlet process mixture models, particularly for time-

evolving data, has recently been the focus of significant interest, and researchers

have proposed various approaches directed toward specific applications. Most use

the stick-breaking representation (Sethuraman, 1994) to introduce dependencies,

stimulated by the dependent Dirichlet process framework proposed by MacEachern

(1998, 1999, 2001). Under the stick-breaking representation, one can represent

a realization of a Dirichlet process by two infinite dimensional vectors of weights

and clusters locations, and introduce the dependency either on the weights (Grifin

and Steel, 2006) or on the clusters locations in (DeIorio et al., 2004; Gelfand et al.,

2005). An early example is the order-based dependent DP (Grifin and Steel, 2006),

in which the model is time-reversible but is not Markovian, and it requires one to

specify how the mixture weights change over time. Alternatively, convex combi-

nations of independent Dirichlet processes can be used for modelling collections

of dependent random measures. The dependency is then introduced through the

weight coefficients (Muller et al., 2004; Pennell and Dunson, 2006; Dunson et al.,

2007; Dunson and Park, 2008), which leads to an easy way of constructing a MCMC

sampling strategy. Alternative approaches are based on the Polya urn-type (Fergu-

son, 1973) representation of Dirichlet processes, (Walker and Muliere, 2003; Zhu

et al., 2005; Caron et al., 2007), implemented by changing the number and loca-

tions of clusters over time.

In the following, I present two dependent DP mixtures for time-varying data.
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The first one utilizes the Polya Urn scheme, inspired by the work of Caron et al.

(2007). The second one is based on the stick-breaking representation, related to

(Grifin and Steel, 2006).

3.2.1 Polya Urn Scheme-based Dependent DP Mixture

Under the Polya Urn-type representation of the Dirichlet process (Ferguson, 1973),

we introduce a vector of configuration variable c = 𝑐1:𝑁 which follows the model,

𝑝(𝑐𝑖 = 𝑐∣𝑐1, ..., 𝑐𝑖−1) =

{ 𝑛𝑖,𝑐

𝑖−1+𝛼
∃𝑗 ∈ {1, ..., 𝑖− 1}, 𝑐𝑗 = 𝑐

𝛼
𝑖−1+𝛼

for 𝑗 = 1, ..., 𝑖− 1, 𝑐𝑗 ∕= 𝑐
(3.3)

where 𝑛𝑖,𝑐 is the number of 𝑐𝑗 for 𝑗 < 𝑖 that are equal to 𝑐. Time dependence on

configuration variables ct can be introduced by the Generalized Polya Urn random

partition model proposed in (Caron et al., 2007). The idea is that at each time step

𝑡, first delete randomly a subset of the configuration variables which survived the

previous 𝑡 − 1 deletion steps and then sample new configuration variables corre-

sponding to the 𝑁𝑡 observations 𝑥1:𝑁𝑡,𝑡. More specifically, take the same notation

from Caron et al. (2007): c𝑡−1
1:𝑡−1 (resp. c𝑡1:𝑡−1) denotes the subset of c1:𝑡−1 corre-

sponding to variables having survived in the deletion steps from time 1 to 𝑡 − 1
(resp. from time 1 to 𝑡); 𝐾1:𝑡−1 denotes the number of clusters from time 1 to 𝑡− 1;
m𝑡−1

𝑡−1 (resp. m𝑡
𝑡−1) denotes the number of data points in each cluster associated to

c𝑡−1
1:𝑡−1 (resp. c𝑡1:𝑡−1); ℐ(m𝑡

𝑡) indicates the non-zero entries of m𝑡
𝑡. In the initialization

stage, generalized Polya Urn scheme proceeds the same as traditional Polya Urn

scheme (Ferguson, 1973; Escobar and West, 1995). At 𝑡 ≥ 2, the generalized Polya

Urn scheme proceeds as follows,

∙ Delete each configuration variable in c𝑡−1
1:𝑡−1 with probability 1− 𝜌 (0 ≤ 𝜌 ≤ 1)

to obtain c𝑡1:𝑡−1 (hence m𝑡
𝑡−1) and set m𝑡

𝑡 =m𝑡
𝑡−1, 𝐾𝑡 = 𝐾𝑡−1.
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∙ For 𝑖 = 1, ..., 𝑁𝑡

– with probability
𝑚𝑡

𝑘,𝑡∑
𝑘 𝑚

𝑡
𝑘,𝑡+𝛼

, 𝑘 ∈ ℐ(m𝑡
𝑡), set 𝑐𝑡𝑖,𝑡 = 𝑘, 𝑚𝑡

𝑘,𝑡 = 𝑚𝑡
𝑘,𝑡 + 1,

– with probability 𝛼∑
𝑘 𝑚

𝑡
𝑘,𝑡+𝛼

, set 𝐾𝑡 = 𝐾𝑡 + 1, 𝑐
𝑡
𝑖,𝑡 = 𝐾𝑡, 𝑚

𝑡
𝑘,𝑡 = 1.

According to Caron et al. (2007), the sequences {c𝑡1:𝑡}, {c𝑡1:𝑡−1}, {m𝑡
1:𝑡} and

{m𝑡
1:𝑡−1} are Markovian. The 𝐺𝑡 constructed from this generalized Polya Urn scheme

is asymptotically a second order stationary process.

Time Propagation Models for Random Partition

The Generalized Polya Urn scheme reviewed above introduces the time depen-

dence for Dirichlet process through the evolution of variate m𝑡
1:𝑡, but it can not

be expressed in explicit formula. To simplify the Generalized Polya Urn scheme, a

discount factor 𝛿 is utilized for 𝑚𝑘,𝑡, the number of data points in each cluster, and

enables a simple process to introduce dependence on adjacent Dirichlet processes.

Specifically, m𝑡∣𝑡−1 = 𝛿m𝑡−1 (0 < 𝛿 ≤ 1) and with 𝑚𝑘,𝑡∣𝑡−1 = 0 if 𝑚𝑘,𝑡∣𝑡−1 < 1 to

prevent 𝑚𝑘,𝑡∣𝑡−1 become smaller than 1. By introducing the discount factor, we can

reduce the number of data points in each cluster. Thus when using m𝑡 to build

the random partition, we can reduce the correlation between 𝐺𝑡 and 𝐺𝑡−1. Given

the prior information contained in m𝑡∣𝑡−1, we assign the allocation variables of data

𝑥1:𝑁𝑡 via the generalized Polya Urn: m𝑡 =m𝑡∣𝑡−1, for 𝑖 = 1, ..., 𝑁𝑡,

∙ with probability 𝑚𝑘,𝑡/
∑

𝑘 𝑚𝑘,𝑡 + 𝛼, 𝑘 ∈ ℐ(m𝑡), set 𝑐𝑖,𝑡 = 𝑘, 𝑚𝑘,𝑡 = 𝑚𝑘,𝑡 + 1,

∙ with probability 𝛼/
∑

𝑘 𝑚𝑘,𝑡 + 𝛼, set 𝐾𝑡 = 𝐾𝑡 + 1, 𝑐𝑖,𝑡 = 𝐾𝑡, 𝑚𝑘,𝑡 = 1.
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Time Propagation Models for Cluster Means

We assume Dynamic Linear Models (DLMs) for the propagation of the mean 𝜇𝑘,𝑡 of

each cluster 𝑘 over time 𝑡 and utilize some of the standard notation in West and

Harrison (1997). The DLMs for each cluster mean is defined by a DLM quadruple

{𝐻𝑡, 𝐸𝑡, 𝑉𝑘,𝑡,𝑊𝑘,𝑡}

Here, 𝑡 is the time indicator whereas 𝑘 indexes each cluster (𝑘 = 1, ..., 𝐾𝑡). All quan-

tities in the quadruple are assumed to be known. Each cluster mean propagation

model can be written as:

𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 : 𝑦𝑘,𝑡 = 𝐻𝑡𝜇𝑘,𝑡 + 𝜀𝑘,𝑡, 𝜀𝑘,𝑡 ∼ 𝑁(0, 𝑉𝑘,𝑡Σ𝑘,𝑡) (3.4)

𝐸𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 : 𝜇𝑘,𝑡 = 𝐸𝑡𝜇𝑘,𝑡−1 + 𝜖𝑘,𝑡, 𝜖𝑘,𝑡 ∼ 𝑁(0,𝑊𝑘,𝑡Σ𝑘,𝑡−1) (3.5)

𝑃𝑟𝑖𝑜𝑟 : 𝜇𝑘,0 ∼ 𝑁(0, 𝜏Σ𝑘,0), Σ𝑘,0 ∼ 𝐼𝑊 (⋅∣𝑑0, 𝑆0) (3.6)

where observation 𝑦𝑘,𝑡 is the sufficient statistics for cluster mean: given the realiza-

tion of the allocation variable c𝑡 for all data points, the data is assigned to groups

indexed by 𝑘. For a group with index 𝑘, denote 𝑦𝑘,𝑡 = {𝑥𝑖,𝑡 : 𝑐𝑖,𝑡 = 𝑘}, 𝑛𝑘,𝑡 = #{𝑦𝑘,𝑡},
thus 𝑦𝑘,𝑡 =

∑𝑛𝑘,𝑡

𝑖=1 𝑦
(𝑖)
𝑘,𝑡/𝑛𝑘,𝑡 is the sufficient statistics for cluster mean. For simplicity,

the system noise and observation noise are set proportional to cluster variance Σ𝑘,𝑡

and Σ𝑘,𝑡−1 with scale 𝑉𝑘,𝑡 and 𝑊𝑘,𝑡 respectively. More specially, 𝑉𝑘,𝑡 = 1/𝑛𝑘,𝑡 and

𝑊𝑘,𝑡 can be set equivalent to 𝜏 . Moreover, some standard conditional indepen-

dence assumptions are necessary: given all parameters the random innovations 𝑣𝑘,𝑡

and 𝜖𝑘,𝑡 are independent across time and mutually independent. Given the previous

posterior of 𝜇𝑘,𝑡, 𝑁(⋅∣𝜈𝑘,𝑡−1, 𝑅𝑘,𝑡−1Σ𝑘,𝑡−1), and assuming we can obtain the observa-

tion 𝑦𝑘,𝑡, the sufficient statistics of each cluster mean, we can process sequential

inference for the posterior of 𝜇𝑘,𝑡, 𝑁(⋅∣𝜈𝑘,𝑡, 𝑅𝑘,𝑡Σ𝑘,𝑡), via the following equations:
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Predict:

𝜈𝑘,𝑡∣𝑡−1 = 𝐸𝑘,𝑡𝜈𝑘,𝑡−1 (3.7a)

𝑅𝑘,𝑡∣𝑡−1 = 𝐸𝑘,𝑡𝑅𝑘,𝑡−1𝐸
𝑇
𝑘,𝑡 +𝑊𝑘,𝑡 (3.7b)

Update:

𝜈𝑘,𝑡 =

{
𝜈𝑘,𝑡∣𝑡−1 + 𝐴𝑘,𝑡𝑒𝑘,𝑡, if 𝑛𝑘,𝑡 > 0
0, if 𝑛𝑘,𝑡 = 0

(3.8a)

𝑅𝑘,𝑡 =

{
𝑅𝑘,𝑡∣𝑡−1 − 𝐴𝑘,𝑡𝑄𝑘,𝑡𝐴

𝑇
𝑘,𝑡, if 𝑛𝑘,𝑡 > 0

𝜏, if 𝑛𝑘,𝑡 = 0
(3.8b)

𝐴𝑘,𝑡 = 𝑅𝑘,𝑡∣𝑡−1𝐻𝑘,𝑡𝑄
−1
𝑘,𝑡 (3.8c)

𝑒𝑘,𝑡 = 𝑦𝑘,𝑡 − 𝑦𝑘,𝑡 (3.8d)

𝑦𝑘,𝑡 = 𝐻𝑘,𝑡𝜈𝑘,𝑡∣𝑡−1 (3.8e)

𝑄𝑘,𝑡 = 𝐻𝑘,𝑡𝑅𝑘,𝑡∣𝑡−1𝐻
𝑇
𝑘,𝑡 + 𝑉𝑘,𝑡 (3.8f)

Time Propagation Models for Covariances

Models of Σ𝑘,𝑡 varying stochastically over time have been studied thoroughly in

time series (West and Harrison, 1997; Quintana and West, 1987). Here we use the

“locally smooth”, discount factor-based stochastic model (West and Harrison, 1997;

Carvalho and West, 2007). The model involves constructing a Markov process

in which transition distributions 𝑝(Σ𝑘,𝑡∣Σ𝑘,𝑡−1) are defined based on matrix-Beta

random innovations applied to elements of the Bartlett decomposition of Σ𝑘,𝑡−1 .

Here we briefly address the basic ideas and operational results. Based on a specified

discount factor 𝜌, (0 < 𝜌 ≤ 1), the matrix Beta-Bartlett stochastic evolution model

has the following key implications and features: Beginning at time 𝑡 − 1 with the

current posterior Σ𝑘,𝑡−1 ∼ 𝐼𝑊 (⋅∣𝑑𝑘,𝑡−1, 𝑆𝑘,𝑡−1), the stochastic evolution of Σ𝑘,𝑡−1 to
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Σ𝑘,𝑡 implies the time 𝑡 prior

Σ𝑘,𝑡 ∼ 𝐼𝑊 (⋅∣𝜌𝑑𝑘,𝑡−1, 𝜌𝑆𝑘,𝑡−1). (3.9)

The time-evolution maintains the inverse-Wishart form for the prior of Σ𝑘,𝑡, while

increasing the spread of the HIW distribution by reducing the degrees-of-freedom

and maintaining the location at 𝑆𝑘,𝑡−1/𝑑𝑘,𝑡−1. Moreover, given the prior distribution

for Σ𝑘,0, namely

Σ𝑘,0 ∼ 𝐼𝑊 (⋅∣𝑑0, 𝑆0), (3.10)

and the data points allocated to each cluster at time step 𝑡, then we can infer the

posterior for Σ𝑘,𝑡 via,

Σ𝑘,𝑡 ∼ 𝐼𝑊 (⋅∣𝑑𝑘,𝑡, 𝑆𝑘,𝑡) (3.11a)

𝑑𝑘,𝑡 =

{
𝜌𝑑𝑘,𝑡−1 + 𝑛𝑘,𝑡, if 𝑛𝑘,𝑡 > 0
𝑑0, if 𝑛𝑘,𝑡 = 0

(3.11b)

𝑆𝑘,𝑡 =

{
𝜌𝑆𝑘,𝑡−1 + Ω, if 𝑛𝑘,𝑡 > 0

𝑆0, if 𝑛𝑘,𝑡 = 0
(3.11c)

where Ω =
∑𝑛𝑘

𝑖=1

(
𝑦
(𝑖)
𝑘,𝑡 − 𝑦𝑘,𝑡

)
(𝑦

(𝑖)
𝑘,𝑡 − 𝑦𝑘,𝑡)

𝑇 +
𝑅𝑘,𝑡∣𝑡−1𝑛𝑘

𝑅𝑘,𝑡∣𝑡−1+𝑛𝑘
(𝜈𝑘,𝑡∣𝑡−1− 𝑦𝑘,𝑡)(𝜈𝑘,𝑡∣𝑡−1− 𝑦𝑘,𝑡)

𝑇 ,

with 𝜈𝑘,𝑡∣𝑡−1 and 𝑅𝑘,𝑡∣𝑡−1 defined in equations (3.7a) and (3.7b).

3.2.2 Stick Breaking Scheme-based Dependent DP Mixture

The Stick Breaking scheme-based dependent Dirichlet process proposed in MacEach-

ern (1999) is constructed by replacing the base measure underlying Sethuraman’s

stick-breaking by a stochastic process 𝜂(𝑡) : 𝑡 ∈ 𝑇 ; that is,

𝐺𝑡(⋅) =
∞∑
𝑘=1

𝜋𝑘(𝑡)𝛿𝜂𝑘(𝑡)(⋅)
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where 𝜂𝑘(𝑡), for 𝑘 = 1, ..., are i.i.d. samples from a stochastic process 𝜂(𝑡) and

𝜋𝑘(𝑡) = 𝑉𝑘(𝑡)
𝑘−1∏
𝑗=1

(1 − 𝑉𝑗(𝑡)) with 𝑉𝑘(𝑡) also i.i.d. samples from another stochastic

process 𝑉 (𝑡), 𝑉 (𝑡) ∼ 𝐵𝑒𝑡𝑎(1, 𝛼(𝑡)) for all 𝑡 ∈ 𝑇 . The resulting DDP defines a

distribution on a series of random distributions indexed by 𝑡 ∈ 𝑇 , with every 𝐺𝑡

being marginally a Dirichlet process.

Here we consider mixture of normal distributions by a discrete-time dependent

truncated DP, in which we set the maximum number of components as 𝐾. Besides,

in our context, we introduce a discount factor 𝛿 for parameters in the stochastic

process of 𝑉𝑘,𝑡, and let 𝑉𝑘,𝑡 ∼ 𝐵𝑒𝑡𝑎(𝛿𝜅𝑘,𝑡−1, 𝛿𝛽𝑘,𝑡−1). Then 𝜋𝑘,𝑡 can be evaluated by

𝜋𝑘,𝑡 = 𝑉𝑘,𝑡

𝑘−1∏
𝑗=1

(1 − 𝑉𝑗,𝑡). The allocation variable c𝑡 can be sampled from its prior,

multinomial distribution 𝑀𝑛(⋅∣𝜋1,𝑡, ..., 𝜋𝐾,𝑡). Now, given the realization of the allo-

cation variable c𝑡 for all data points, the sufficient statistics for cluster mean 𝑦𝑘,𝑡 can

be figured out easily as addressed in section 3.2.1. In summary, the overall model

can be expressed as follows:

𝐺𝑡 =
𝐾∑
𝑘=1

𝜋𝑘,𝑡𝛿(𝜇𝑘,𝑡,Σ𝑘,𝑡) (3.12a)

𝜋𝑘,𝑡 = 𝑉𝑘,𝑡

𝑘−1∏
𝑗=1

(1− 𝑉𝑗,𝑡) (3.12b)

𝑉𝑘,𝑡 ∼ 𝐵𝑒𝑡𝑎(⋅∣𝛿𝜅𝑘,𝑡−1, 𝛿𝛽𝑘,𝑡−1) (3.12c)

𝑐𝑖,𝑡 ∼ 𝑀𝑛(⋅∣𝜋1,𝑡, ..., 𝜋𝐾,𝑡) (3.12d)

𝑦𝑘,𝑡 = 𝐻𝑡𝜇𝑘,𝑡 + 𝜀𝑘,𝑡, 𝜀𝑘,𝑡 ∼ 𝑁(0, 𝑉𝑘,𝑡Σ𝑘,𝑡) (3.12e)

𝜇𝑘,𝑡 = 𝐸𝑡𝜇𝑘,𝑡−1 + 𝜖𝑘,𝑡, 𝜖𝑘,𝑡 ∼ 𝑁(0,𝑊𝑘,𝑡Σ𝑘,𝑡−1) (3.12f)

Σ𝑘,𝑡 ∼ 𝐼𝑊 (⋅∣𝜌𝑑𝑘,𝑡−1, 𝜌𝑆𝑘,𝑡−1) (3.12g)

41



with the priors

𝑉𝑘,0 ∼ 𝐵𝑒𝑡𝑎(1, 𝛼) (3.13a)

𝜇𝑘,0 ∼ 𝑁(0, 𝜏Σ𝑘,0) (3.13b)

Σ𝑘,0 ∼ 𝐼𝑊 (⋅∣𝑑0, 𝑆0) (3.13c)

3.3 Sampling Methods

In the previous literature (MacEachern, 1999, 2001; Muller et al., 2004; Pennell

and Dunson, 2006; Dunson et al., 2007; Caron et al., 2007; Rodriguez and ter

Horst, 2008), MCMC methods have been widely used for posterior sampling in

dependent DP mixture models. However, for applications in dynamic systems, se-

quential Bayesian inference is preferable, as analytical updates for such complex

dynamic system are not feasible.

SMC for DP mixture models was studied in (Liu, 1996; MacEachern et al.,

1999), in which they use collapsed Gibbs sampling method to propose the allo-

cation variable c𝑡 for each particle and propagate only the allocation variables.

Recently Fearnhead (2004) and Fearnhead and Meligkotsidou (2007) gave further

explorations of particle filtering technique for mixtures with unknown numbers of

components, and provide some efficient resampling strategies. A key point in the

above SMC sampling approaches for DP mixtures is that they all marginalized out

the associated parameters of each cluster i.e. means and covariances, using SMC

to propagate and update only for the allocation variable c.

SMC methods for posterior sampling in dependent DP mixtures were first stud-

ied by Caron et al. (2007). However, in their algorithm the cluster means and co-

variances are proposed and propagated together with the allocation variables. As

a result, the SMC algorithm only achieves very low effective sample size (ESS). To
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overcome this disadvantage, I present a Rao-Blackwellized particle filter (RBPF) for

Bayesian inference of dependent DP mixtures. In RBPF, I apply sequential Monte

Carlo only to the allocation variables, while having access to closed-form updates

for the mixture component parameters. The Rao-Blackwellisation technique en-

ables the algorithm to achieve high ESS and therefore improves the efficiency of

posterior estimation.

3.3.1 Rao-Blackwellized Particle Filter

Polya Urn scheme-based dependent DP mixture

The unknown parameters of interest are (c𝑡, 𝜇𝑘,𝑡,Σ𝑘,𝑡) in the dependent DP mix-

ture model with Polya Urn representation. As in Caron et al. (2007), we can treat

all these parameters as the hidden state variable of a particle, and directly apply

the sequential importance sampling and resampling process. The drawback of this

generic particle filtering is that we can only achieve an extremely low effective sam-

ple size. To overcome such problems, we utilize the Rao-Blackwellized technique

to facilitate sequential inference. The idea of the Rao-Blackwellized particle filter

is to process particle filter for non-linear/non-Gaussian systems while using exact

Bayesian inference for linear Gaussian systems via Kalman filter. In our context, the

variate c𝑡 follows a non-linear/non-Gaussian model while {𝜇𝑘,𝑡,Σ𝑘,𝑡} follow linear

systems. The RBPF processes particle filter for c𝑡∣ (𝜇𝑘,𝑡−1,Σ𝑘,𝑡−1) and then closed-

form updates for (𝜇𝑘,𝑡,Σ𝑘,𝑡) ∣c𝑡.
As discussed in section 3.2.1 , exact Bayesian inference for {𝜇𝑘,𝑡,Σ𝑘,𝑡} consists

of two steps: Predict and Update, which can be expressed as follows.
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Predict:

𝜈𝑘,𝑡∣𝑡−1 = 𝐸𝑘,𝑡𝜈𝑘,𝑡−1 (3.14a)

𝑅𝑘,𝑡∣𝑡−1 = 𝐸𝑘,𝑡𝑅𝑘,𝑡−1𝐸
𝑇
𝑘,𝑡 +𝑊𝑘,𝑡 (3.14b)

𝑑𝑘,𝑡∣𝑡−1 = 𝜌𝑑𝑘,𝑡−1 (3.14c)

𝑆𝑘,𝑡∣𝑡−1 = 𝜌𝑆𝑘,𝑡−1 (3.14d)

Update:

𝜈𝑘,𝑡 =

{
𝑎𝑘,𝑡 + 𝐴𝑘,𝑡𝑒𝑘,𝑡, if 𝑛𝑘,𝑡 > 0
0, if 𝑛𝑘,𝑡 = 0

(3.15a)

𝑅𝑘,𝑡 =

{
𝑅𝑘,𝑡∣𝑡−1 − 𝐴𝑘,𝑡𝑄𝑘,𝑡𝐴

𝑇
𝑘,𝑡, if 𝑛𝑘,𝑡 > 0

𝜏, if 𝑛𝑘,𝑡 = 0
(3.15b)

𝑑𝑘,𝑡 =

{
𝑑𝑘,𝑡∣𝑡−1 + 𝑛𝑘,𝑡, if 𝑛𝑘,𝑡 > 0
𝑑0, if 𝑛𝑘,𝑡 = 0

(3.15c)

𝑆𝑘,𝑡 =

{
𝑆𝑘,𝑡∣𝑡−1 + Ω, if 𝑛𝑘,𝑡 > 0

𝑆0, if 𝑛𝑘,𝑡 = 0
(3.15d)

𝐴𝑘,𝑡 = 𝑅𝑘,𝑡∣𝑡−1𝐻𝑘,𝑡𝑄
−1
𝑘,𝑡 (3.15e)

𝑒𝑘,𝑡 = 𝑦𝑘,𝑡 − 𝑦𝑘,𝑡 (3.15f)

𝑦𝑘,𝑡 = 𝐻𝑘,𝑡𝑎𝑘,𝑡 (3.15g)

𝑄𝑘,𝑡 = 𝐻𝑘,𝑡𝑅𝑘,𝑡∣𝑡−1𝐻
𝑇
𝑘,𝑡 + 𝑉𝑘,𝑡 (3.15h)

Ω =

𝑛𝑘∑
𝑖=1

(
𝑦
(𝑖)
𝑘,𝑡 − 𝑦𝑘,𝑡

)
(𝑦

(𝑖)
𝑘,𝑡 − 𝑦𝑘,𝑡)

𝑇 (3.15i)

+
𝑅𝑘,𝑡∣𝑡−1𝑛𝑘

𝑅𝑘,𝑡∣𝑡−1 + 𝑛𝑘

(𝜈𝑘,𝑡∣𝑡−1 − 𝑦𝑘,𝑡)(𝜈𝑘,𝑡∣𝑡−1 − 𝑦𝑘,𝑡)
𝑇 (3.15j)

The RBPF for Polya Urn scheme-based dependent DP mixture model can now

be summarized as follows.
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Algorithm 3.1: Rao-Blackwellized particle filter for Polya Urn scheme-based

dependent DP mixture

∙ At 𝑡 = 1, for each particle 𝑗 = 1, ..., 𝐽 , set a predefined value for 𝐾
(𝑗)
0 and ini-

tialize
{
𝜇
(𝑗)
𝑘,0,Σ

(𝑗)
𝑘,0, 𝜈

(𝑗)
𝑘,0, 𝑅

(𝑗)
𝑘,0, 𝑑

(𝑗)
𝑘,0, 𝑆

(𝑗)
𝑘,0

}𝐾(𝑗)
0

𝑘=1
. Obtain allocation variables c

(𝑗)
1 by

generic Collapsed Gibbs sampling ( Escobar and West, 1995, and Appendix

A). Evaluate
{
𝜈
(𝑗)
𝑘,1, 𝑅

(𝑗)
𝑘,1, 𝑑

(𝑗)
𝑘,1, 𝑆

(𝑗)
𝑘,1

}𝐾(𝑗)
1

𝑘=1
via (3.14) and (3.15) and draw poste-

rior sample
{
𝜇
(𝑗)
𝑘,1,Σ

(𝑗)
𝑘,1

}𝐾(𝑗)
1

𝑘=1
.

∙ For 𝑡 > 1:

– For each particle 𝑗 = 1, ..., 𝐽 ,

∗ Update the number of data points in each cluster 𝑚
(𝑗)
𝑘,𝑡∣𝑡−1 via m

(𝑗)
𝑡∣𝑡−1 =

𝛿m
(𝑗)
𝑡−1.

∗ Predict: evaluate Ψ(𝑗)
𝑡∣𝑡−1 =

{
𝜈
(𝑗)
𝑘,𝑡∣𝑡−1, 𝑅

(𝑗)
𝑘,𝑡∣𝑡−1, 𝑑

(𝑗)
𝑘,𝑡∣𝑡−1, 𝑆

(𝑗)
𝑘,𝑡∣𝑡−1

}𝐾(𝑗)
𝑡−1

𝑘=1
via

equation (3.14).

∗ Sample c
(𝑗)
𝑡 ∼ 𝑞(⋅∣m(𝑗)

𝑡∣𝑡−1,Ψ
(𝑗)
𝑡∣𝑡−1,x𝑡) via collapsed Gibbs sampling, and

evaluate m(𝑗)
𝑡 and 𝜋

(𝑗)
𝑘,𝑡 .

∗ Update: evaluateΨ(𝑗)
𝑡 =

{
𝜈
(𝑗)
𝑘,𝑡 , 𝑅

(𝑗)
𝑘,𝑡 , 𝑑

(𝑗)
𝑘,𝑡, 𝑆

(𝑗)
𝑘,𝑡

}𝐾(𝑗)
𝑡

𝑘=1
via equation (3.15).

∗ Draw posterior sample
{
𝜇
(𝑗)
𝑘,𝑡,Σ

(𝑗)
𝑘,𝑡

}𝐾(𝑗)
𝑡

𝑘=1
given Ψ(𝑗)

𝑡 .

– Compute the importance weights

𝑤
(𝑗)
𝑡 ∝ 𝑤

(𝑗)
𝑡−1

𝑝(x𝑡∣c(𝑗)𝑡 )𝑝(c
(𝑗)
𝑡 ∣m(𝑗)

𝑡∣𝑡−1)

𝑞(c
(𝑗)
𝑡 ∣m(𝑗)

𝑡∣𝑡−1,Ψ
(𝑗)
𝑡∣𝑡−1,x𝑡)

,
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with
∑𝑁

𝑗=1 𝑤
(𝑗)
𝑡 = 1.

– Resample when ESS is less than a predefined threshold.

Stick Breaking scheme-based dependence DP mixture

The unknown parameters of interest are (𝑉𝑘,𝑡, 𝜇𝑘,𝑡,Σ𝑘,𝑡) in the stick breaking. As

discussed in section 3.2.1 and 3.2.2, given the allocation c𝑡 for each data point

x𝑡, exact Bayesian inference for (𝑉𝑘,𝑡, 𝜇𝑘,𝑡,Σ𝑘,𝑡) consists of two steps, Predict and

Update, which can be expressed as:

Predict:

𝜅𝑘,𝑡∣𝑡−1 = 𝛿𝜅𝑘,𝑡−1 (3.16a)

𝛽𝑘,𝑡∣𝑡−1 = 𝛿𝛽𝑘,𝑡−1 (3.16b)

𝜈𝑘,𝑡∣𝑡−1 = 𝐸𝑘,𝑡𝜈𝑘,𝑡−1 (3.16c)

𝑅𝑘,𝑡∣𝑡−1 = 𝐸𝑘,𝑡𝑅𝑘,𝑡−1𝐸
𝑇
𝑘,𝑡 +𝑊𝑘,𝑡 (3.16d)

𝑑𝑘,𝑡∣𝑡−1 = 𝜌𝑑𝑘,𝑡−1 (3.16e)

𝑆𝑘,𝑡∣𝑡−1 = 𝜌𝑆𝑘,𝑡−1 (3.16f)

46



Update:

𝜅𝑘,𝑡 =

{
𝜅𝑘,𝑡∣𝑡−1 + 𝑛𝑘,𝑡, if 𝑛𝑘,𝑡 > 0
1, if 𝑛𝑘,𝑡 = 0

(3.17a)

𝛽𝑘,𝑡 =

{
𝛽𝑘,𝑡∣𝑡−1 +

∑𝐾
𝑟=𝑘+1 𝑛𝑟,𝑡, if 𝑛𝑘,𝑡 > 0

𝛼, if 𝑛𝑘,𝑡 = 0
(3.17b)

𝜈𝑘,𝑡 =

{
𝜈𝑘,𝑡∣𝑡−1 + 𝐴𝑘,𝑡𝑒𝑘,𝑡, if 𝑛𝑘,𝑡 > 0
0, if 𝑛𝑘,𝑡 = 0

(3.17c)

𝑅𝑘,𝑡 =

{
𝑅𝑘,𝑡∣𝑡−1 − 𝐴𝑘,𝑡𝑄𝑘,𝑡𝐴

𝑇
𝑘,𝑡, if 𝑛𝑘,𝑡 > 0

𝜏, if 𝑛𝑘,𝑡 = 0
(3.17d)

𝑑𝑘,𝑡 =

{
𝑑𝑘,𝑡∣𝑡−1 + 𝑛𝑘,𝑡, if 𝑛𝑘,𝑡 > 0
𝑑0, if 𝑛𝑘,𝑡 = 0

(3.17e)

𝑆𝑘,𝑡 =

{
𝑆𝑘,𝑡∣𝑡−1 + Ω, if 𝑛𝑘,𝑡 > 0

𝑆0, if 𝑛𝑘,𝑡 = 0
(3.17f)

𝐴𝑘,𝑡 = 𝑅𝑘,𝑡∣𝑡−1𝐻𝑘,𝑡𝑄
−1
𝑘,𝑡 (3.17g)

𝑒𝑘,𝑡 = 𝑦𝑘,𝑡 − 𝑦𝑘,𝑡 (3.17h)

𝑦𝑘,𝑡 = 𝐻𝑘,𝑡𝑎𝑘,𝑡 (3.17i)

𝑄𝑘,𝑡 = 𝐻𝑘,𝑡𝑅𝑘,𝑡∣𝑡−1𝐻
𝑇
𝑘,𝑡 + 𝑉𝑘,𝑡 (3.17j)

Ω =

𝑛𝑘∑
𝑖=1

(
𝑦
(𝑖)
𝑘,𝑡 − 𝑦𝑘,𝑡

)
(𝑦

(𝑖)
𝑘,𝑡 − 𝑦𝑘,𝑡)

𝑇 (3.17k)

+
𝑅𝑘,𝑡∣𝑡−1𝑛𝑘

𝑅𝑘,𝑡∣𝑡−1 + 𝑛𝑘

(𝜈𝑘,𝑡∣𝑡−1 − 𝑦𝑘,𝑡)(𝜈𝑘,𝑡∣𝑡−1 − 𝑦𝑘,𝑡)
𝑇 (3.17l)

Given the previous analysis, the RBPF for Stick Breaking scheme-based depen-

dent DP mixture model can be summarized as follows.

Algorithm 3.2: Rao-Blackwellized particle filter for stick breaking

scheme-based dependent DP mixture
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∙ At 𝑡 = 1, for each particle 𝑗 = 1, ..., 𝐽 , set the truncated values of 𝐾 for TDP

mixture and initialize
{
𝑉

(𝑗)
𝑘,0 , 𝜇

(𝑗)
𝑘,0,Σ

(𝑗)
𝑘,0, 𝜅

(𝑗)
𝑘,0, 𝛽

(𝑗)
𝑘,0𝜈

(𝑗)
𝑘,0, 𝑅

(𝑗)
𝑘,0, 𝑑

(𝑗)
𝑘,0, 𝑆

(𝑗)
𝑘,0

}𝐾
𝑘=1

. Obtain

allocation variable c
(𝑗)
1 by generic blocked Gibbs sampling (Ishwaran and

James, 2001, and Appendix A). Evaluate
{
𝜅
(𝑗)
𝑘,1, 𝛽

(𝑗)
𝑘,1, 𝜈

(𝑗)
𝑘,1, 𝑅

(𝑗)
𝑘,1, 𝑑

(𝑗)
𝑘,1, 𝑆

(𝑗)
𝑘,1

}𝐾
𝑘=1

via

(3.16) and (3.17), draw posterior sample
{
𝑉

(𝑗)
𝑘,1 , 𝜇

(𝑗)
𝑘,1,Σ

(𝑗)
𝑘,1

}𝐾
𝑘=1

, and evaluate{
𝜋
(𝑗)
𝑘,1

}𝐾
𝑘=1

.

∙ For 𝑡 > 1:

– For each particle 𝑗 = 1, ..., 𝐽 ,

∗ Predict: evaluateΨ(𝑗)
𝑡∣𝑡−1 = {𝜅(𝑗)

𝑘,𝑡∣𝑡−1, 𝛽
(𝑗)
𝑘,𝑡∣𝑡−1, 𝜈

(𝑗)
𝑘,𝑡∣𝑡−1, 𝑅

(𝑗)
𝑘,𝑡∣𝑡−1, 𝑑

(𝑗)
𝑘,𝑡∣𝑡−1, 𝑆

(𝑗)
𝑘,𝑡∣𝑡−1}𝐾𝑘=1

via equation (3.16), and evaluate
{
𝜋
(𝑗)
𝑘,𝑡∣𝑡−1

}𝐾
𝑘=1

.

∗ Sample c
(𝑗)
𝑡 ∼ 𝑞(⋅∣𝜋(𝑗)

𝑡∣𝑡−1,Ψ
(𝑗)
𝑡∣𝑡−1,x𝑡) via blocked Gibbs sampling.

∗ Update: evaluate Ψ(𝑗)
𝑡 =

{
𝜅
(𝑗)
𝑘,𝑡, 𝛽

(𝑗)
𝑘,𝑡 , 𝜈

(𝑗)
𝑘,𝑡 , 𝑅

(𝑗)
𝑘,𝑡 , 𝑑

(𝑗)
𝑘,𝑡, 𝑆

(𝑗)
𝑘,𝑡

}𝐾
𝑘=1

via equa-

tion (3.17).

∗ Draw posterior sample
{
𝑉

(𝑗)
𝑘,𝑡 , 𝜇

(𝑗)
𝑘,𝑡,Σ

(𝑗)
𝑘,𝑡

}𝐾
𝑘=1

given Ψ(𝑗)
𝑡 , and evaluate{

𝜋
(𝑗)
𝑘,𝑡

}𝐾
𝑘=1

.

– Compute the importance weights

𝑤
(𝑗)
𝑡 ∝ 𝑤

(𝑗)
𝑡−1

𝑝(x𝑡∣c(𝑗)𝑡 )𝑝(c
(𝑗)
𝑡 ∣𝜋(𝑗)

𝑡∣𝑡−1)

𝑞(c
(𝑗)
𝑡 ∣𝜋(𝑗)

𝑡∣𝑡−1,Ψ
(𝑗)
𝑡∣𝑡−1,x𝑡)

,

with
∑𝑁

𝑗=1 𝑤
(𝑗)
𝑡 = 1.

– Resample when ESS is less than a predefined threshold.
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3.3.2 Density Estimation

This section discuss the smoothing and predictive density estimation related to the

above particle filtering for dependent DP mixtures. One primary goal of our analysis

is to obtain density estimates which facilitate borrowing information across time

and predict the shape of the density at future periods.

After the RBPF has been performed through the entire dataset, we get an ap-

proximate representation of 𝑓𝑡(⋅∣x1:𝑡) for each time step 𝑡 ∈ 1, ..., 𝑇 , consisting of

weighted particles {(𝝅𝑡,𝝁𝑡,Σ𝑡)
(𝑗), 𝑤

(𝑗)
𝑡 ; 𝑗 = 1, 2, ..., 𝐽}. Filtered density estimation is

given by

𝑓𝑡(⋅∣x1:𝑡) = 𝐸

[∫
𝑁(⋅∣𝜇𝑡,Σ𝑡)𝐺𝑡(𝑑𝜇𝑡, 𝑑Σ𝑡)∣x1:𝑡

]
(3.18)

=

∫
𝑁(⋅∣𝜇𝑡,Σ𝑡)𝐸 [𝐺𝑡(𝑑𝜇𝑡, 𝑑Σ𝑡)∣x1:𝑡] (3.19)

Hence, given the weighted samples {(𝝅𝑡,𝝁𝑡,Σ𝑡)
(𝑗), 𝑤

(𝑗)
𝑡 ; 𝑗 = 1, 2, ..., 𝐽}, the poste-

rior estimate of 𝑓(⋅) is

𝑓(⋅) ≈
𝐽∑

𝑗=1

𝑤
(𝑗)
𝑡

𝐾
(𝑗)
𝑡∑

𝑘=1

𝜋
(𝑗)
𝑘,𝑡𝑁(⋅∣𝜇(𝑗)

𝑘,𝑡,Σ
(𝑗)
𝑘,𝑡) (3.20)

Also, 𝑘-step ahead density prediction, 𝑓𝑡+𝑘(⋅∣x1:𝑡), can be obtained in a similar way.

3.4 Simulation study

This section presents a simulation study where we compare the performance of our

dynamic density estimation model against some regular methods: kernel density
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estimation and finite mixture via EM algorithm. The example is similar to examples

studied in Caron et al. (2007) and Rodriguez and ter Horst (2008). The true model

used to simulate the data corresponds to a sequence of 500 distributions, {𝑓𝑡(⋅)}500𝑡=1,

specified as

𝑓𝑡(𝑥) = 𝜖𝑡𝑁(𝑥∣ − 2, .25) + (1− 𝜖𝑡)𝑁(𝑥∣𝜙𝑡, .25), (3.21)

where 𝜖𝑡 = 0.2 + 0.001𝑡 for 𝑡 = 1, ..., 500 and 𝜙𝑡 = 0.99𝜙𝑡−1 (𝑡 = 1, ..., 500) with

𝜙1 = 2. Figure 3.1a shows the time-varying distributions 𝑓𝑡(⋅). For each simulation,

we generate 20 observations from 𝑓𝑡(⋅) illustrated in Figure 3.1b. The small sample

sizes introduce a complication to the density estimation process, and allow us to

demonstrate 1) the advantages of borrowing information across time, and 2) that

traditional estimation such as kernel density estimation and finite mixture via EM

algorithm can be highly unreliable for small sample sizes.

In this study, we examine the stick breaking scheme-based dependent DP mix-

ture and the RBPF algorithm for this model. Hyperparameters in the dependent DP

mixture as well as control parameters in the RBPF algorithm are set as shown in

Table 3.1. After the RBPF is applied on the synthetic data, we obtain the weighted

samples {(𝝅𝑡,𝝁𝑡,Σ𝑡)
(𝑗), 𝑤

(𝑗)
𝑡 ; 𝑗 = 1, 2, ..., 𝐽}. The effective sample size shown in

Figure 3.3 implies the efficiency of the proposed particle filtering. As discussed in

Section 3.3.2, the {𝑓𝑡(⋅)}500𝑡=1 can be estimated via

𝑓𝑡(⋅) =
𝑁∑
𝑗=1

𝑤̃
(𝑗)
𝑡

𝐾
(𝑗)
𝑡∑

𝑘=1

𝜋
(𝑗)
𝑘,𝑡𝐽(⋅∣𝜇(𝑗)

𝑘,𝑡,Σ
(𝑗)
𝑘,𝑡) (3.22)

This sequence of posterior estimates is shown in Figure 3.2. Comparing with the

shape of the true distribution 𝑓𝑡(⋅), our method can rebuild the distribution well.

To quantify the estimation error, we record the KL-divergence between true density

functions and their estimates over each iteration; see Figure 3.2. For compari-

son, we show the KL-divergence between 𝑓𝑡(⋅) and two other regular methods: (a)
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Parameter Value
𝐾 10
𝜏 10
𝑑0 1
𝑆0 I
𝐽 100

Table 3.1: Parameter setting in dependent DP mixture model and RBPF filtering algo-
rithm.

kernel density estimation shown in Figure 3.5a, (b) finite mixture (with two com-

ponents) estimated by EM algorithm shown in Figure 3.5b. These estimates are

highly unreliable compared to our method.

Figure 3.6 displays the posterior medians of the numbers of non-zero weights in

the sequence of mixture components. This approximates the true values well and

implies our proposed approach is reliable in rebuilding key aspects of the unknown

distribution. Moreover, the combined parameter and state filtering approach pro-

posed in Liu and West (2001) can be easily incorporated into our algorithm for

parameter learning for the DP total mass parameter 𝛼, or parameters of the DLMs

such as 𝐸𝑡, 𝐻𝑡, etc. In this study, we fixed the associated parameters in DLMs, and

applied parameter learning only for 𝛼. Figure 3.7 shows the result of the parameter

learning for 𝛼, which approaches a reasonable value 0.8 (experimental number of

DP components 𝑘 ≈ 𝛼 log(𝑁𝑡), Escobar and West, 1995).

To further demonstrate performance of our proposed method, a movie is created

to show 𝑓𝑡(⋅) over time, 𝑓𝑡(⋅) and histograms of the observed data. The movie is

available at http://stat.duke.edu/people/theses/JiC.html. The last frame of

the movie is shown in Figure 3.8.
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Figure 3.1: Synthetic data: (a) the true densities used to generate the data; (b) plots of
synthetic data per iteration.
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Figure 3.2: Posterior density estimates using RBPF.
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Figure 3.3: Effective sample size of Rao-Blackwellized particle filter (mean: 54.5, std:
18.4).
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Figure 3.4: Plot of the KL-divergence between true density functions and RBPF-based
posterior estimates.
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Figure 3.5: Plot of the KL-divergence between true density functions and two regular
estimates: (a) kernel density estimation, (b) finite mixture estimated by EM algorithm.
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Figure 3.6: Plot of posterior median of the number of non-zero weights of mixture com-
ponents.
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Figure 3.7: Trajectories of posterior quantiles (2.5%, 25%, 50%, 75%, 97.5%) of the
posteriors for 𝛼.
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Figure 3.8: Last frame of the movie of estimates of densities 𝑓𝑡(⋅): true distribution shown
by red dashed curve, posterior estimate shown by blue curve, observed data shown by blue
histogram.
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Chapter 4

Bayesian Nonparametric Modelling for
Time-varying Spatial Point Processes

Using the models and methods of Chapter 3 as a basis, we now discuss flexible

Bayesian nonparametric modelling for inhomogeneous spatio-temporal processes.

This involves nonparametric spatial process mixture models of intensity functions,

in which time variation is introduced via dynamic models for underlying param-

eters. These models characterize smooth dynamics in time in what may be quite

complicated spatial patterns of spatial inhomogeneity in intensity functions. The

framework is based on a time-varying dependent Dirichlet process, and physically

attractive time propagation models for parameters of nonparametric mixture mod-

els for intensities. Bayesian inference and model fitting are addressed using novel

particle filtering methods based on Chapter 3. Illustrative simulation examples in

extended target tracking, and substantive data analysis in applications in cell fluo-

rescent microscopic imaging tracking demonstrate analysis with these models.

4.1 Spatial Mixture Modelling for Dynamic Point Pro-
cess

Chapter 2 introduces the mixture modelling for spatial point process, which enable

us to characterize the intensity of a static spatial point process. In order to model

the intensity of dynamic spatial points process, we use the model of Chapter 2 at

each time point 𝑡, adding models of Chapter 3 to relate over time.

The model theory and notation of Chapter 2 is now used for each of a sequence
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of time point 𝑡 = 1, 2, ..., 𝑇 . All parameters and data and processes are now ad-

ditionally subscribed by 𝑡. At a particular time frame 𝑡 in a dynamic spatial point

process, we first specify a prior model for the intensity function 𝜆𝑡(⋅), and then

conduct posterior inference on 𝜆𝑡(⋅) in light of the realized outcomes 𝑥1:𝑁,𝑡. As in

Chapter 2, we define the overall intensity scale parameter 𝛾𝑡 =
∫
𝑥𝑡∈𝑆 𝜆𝑡(𝑥)𝑑𝑥 and

the probability density (over 𝑥𝑡 ∈ 𝑆) 𝑓𝑡(𝑥𝑡) = 𝜆𝑡(𝑥𝑡)/𝛾𝑡. Given observed data 𝑥1:𝑁𝑡 ,

the likelihood function can be expressed as

𝑝(𝑥1:𝑁𝑡 ∣𝛾𝑡, 𝑓𝑡) ∝ exp(−𝛾𝑡)𝛾
𝑁𝑡
𝑡

𝑁𝑡∏
𝑖=1

𝑓𝑡(𝑥𝑖,𝑡) (4.1)

as a function of (𝛾𝑡, 𝑓𝑡).

We employ the Dirichlet process mixture framework in which the normalized

intensity function 𝑓𝑡(⋅) is the density of a random mixture of normals, with mixing

distribution distributed according to a Dirichlet Process 𝐺 ∼ 𝐷𝑃 (𝛼,𝐺0)where 𝐺0(⋅)
is the prior mean of 𝐺(⋅) and 𝛼 > 0 the precision of the DP. We use the same (𝛼,𝐺0)

for all times 𝑡.

4.1.1 Dynamic Dirichlet Process Mixture Modelling

In many situations, like multi-target tracking (Gilholm et al., 2005) and cell fluo-

rescent microscopic imaging tracking (Sigal et al., 2006; Gordon et al., 2007; Wang

et al., 2009), the spatial point process is not static but evolves over time. We regards

such process as inhomogeneous spatio temporal point processes (or dynamic/time-

varying spatial point process). An intuitive way for modelling such dynamic spatial

point processes is to introduce time dependence in the intensity function of succus-

sive spatial point processes. However, directly modelling for a series of intensity

functions with high spatial heterogeneity is generically infeasible. The alternative

used here is to build a flexible nonparametric mixture model for the intensity and
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introduce time dependence for underlying parameters in the mixture model, which

therefore enables us to model the dynamics of the intensity function and character-

ize the spatial point process. This directly builds on our work in Chapter 3.

4.1.2 Dependent Dirichlet Process Mixture

We have the following nonparametric mixture model for 𝑓𝑡(⋅) with 𝜙𝑖,𝑡 = (𝜇𝑖,𝑡),Σ𝑖,𝑡,

(𝑥𝑖,𝑡∣𝜙𝑖,𝑡) ∼ 𝑝(𝑥𝑖,𝑡∣𝜙𝑖,𝑡), (𝜙𝑖,𝑡∣𝐺𝑡) ∼ 𝐺𝑡, (𝐺𝑡∣𝛼,𝐺0) ∼ 𝐷𝑃 (𝛼,𝐺0) (4.2)

where 𝐺𝑡 is a discrete-time dependent Dirichlet process as discussed in Chapter

3. We employ the stick breaking scheme-based dependent DP mixture because it

involves the computationally effective approach, blocked Gibbs sampling, which is

significantly faster than the collapsed Gibbs sampling used in the Polya Urn scheme-

based model. The dependent Dirichlet process with stick breaking representation

can be expressed as follows:

𝐺𝑡 =
𝐾∑
𝑘=1

𝜋𝑘,𝑡𝛿(𝜇𝑘,𝑡,Σ𝑘,𝑡) (4.3a)

𝜋𝑘,𝑡 = 𝑉𝑘,𝑡

𝑘−1∏
𝑗=1

(1− 𝑉𝑗,𝑡) (4.3b)

𝑉𝑘,𝑡 ∼ 𝐵𝑒𝑡𝑎(⋅∣𝛿𝜅𝑘,𝑡−1, 𝛿𝛽𝑘,𝑡−1) (4.3c)

𝑐𝑖,𝑡 ∼ 𝑀𝑛(⋅∣𝜋1,𝑡, ..., 𝜋𝐾,𝑡) (4.3d)

𝑦𝑘,𝑡 = 𝐻𝑡𝜇𝑘,𝑡 + 𝜀𝑘,𝑡, 𝜀𝑘,𝑡 ∼ 𝑁(0, 𝑉𝑘,𝑡Σ𝑘,𝑡) (4.3e)

𝜇𝑘,𝑡 = 𝐸𝑡𝜇𝑘,𝑡−1 + 𝜖𝑘,𝑡, 𝜖𝑘,𝑡 ∼ 𝑁(0,𝑊𝑘,𝑡Σ𝑘,𝑡−1) (4.3f)

Σ𝑘,𝑡 ∼ 𝐼𝑊 (⋅∣𝜌𝑑𝑘,𝑡−1, 𝜌𝑆𝑘,𝑡−1) (4.3g)
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with the priors

𝑉𝑘,0 ∼ 𝐵𝑒𝑡𝑎(1, 𝛼) (4.4a)

𝜇𝑘,0 ∼ 𝑁(0, 𝜚Σ𝑘,0) (4.4b)

Σ𝑘,0 ∼ 𝐼𝑊 (⋅∣𝑑0, 𝑆0) (4.4c)

The discount factor-based stochastic model for 𝑉𝑘,𝑡 and cluster covariances Σ𝑘,𝑡

remain the same as discussed in Chapter 3. However, a physically attractive time

propagation model for cluster means is proposed instead of previous naive model

discussed in Chapter 3.

Dynamic Model for Cluster Means

Previous studies (Caron et al., 2007) typically assumed stationary models for 𝜇𝑘,𝑡

to obtain a first-order stationary DPM process. In Chapter 3, we used random walk

models for 𝜇𝑘,𝑡. However, such models are not suitable to represent non-stationary

stochastic process. For example, in multi-target tracking and cell fluorescent micro-

scopic imaging tracking, 𝜇𝑘,𝑡 are utilized to represent the position of maneuvering

targets or cells which may be highly non-linear non-stationary stochastic process.

Here we assume the dynamics of ‘target’ position and its first derivation (aka

‘velocity’), 𝝁𝑘,𝑡 = [𝜇𝑘,𝑡, 𝜇̇𝑘,𝑡]
𝑇 , evolve according to a near constant velocity model

(Bar-Shalom and Fortmann, 1988), a physically attractive dynamic model, as fol-

lows:

𝝁𝑘,𝑡 = 𝐸𝑘,𝑡𝝁𝑘,𝑡−1 +𝐵𝜖𝑘,𝑡 (4.5)

=

[
I𝑑 𝜏I𝑑
0𝑑 I𝑑

] [
𝜇𝑘,𝑡

𝜇̇𝑘,𝑡

]
+

[
𝜏 2/2
𝜏

]
𝜖𝑘,𝑡 (4.6)

where 𝑑 is the dimension of 𝜇𝑘,𝑡, 𝜏 is the time interval between 𝑡 and 𝑡 − 1 and

𝜖𝑘,𝑡 is a zero-mean Gaussian distributed random vector with a covariance matrix
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𝑊𝑘,𝑡Σ𝑘,𝑡−1. Here 𝑊𝑘,𝑡 is set equivalent to 𝜚.

Given the realization of the allocation variable in the DP mixture model, we can

then obtain the observation 𝑦𝑘,𝑡, the sufficient statistics for cluster mean 𝑘, i.e. the

mean of all data points allocated to cluster 𝑘 at time 𝑡. Then the measurement

model for 𝝁𝑘,𝑡 is

𝑦𝑘,𝑡 = 𝐻𝑡𝝁𝑘,𝑡 + 𝜀𝑘,𝑡 (4.7)

=

[
I𝑑 0𝑑
0𝑑 0𝑑

] [
𝜇𝑘,𝑡

𝜇̇𝑘,𝑡

]
+ 𝜀𝑘,𝑡 (4.8)

where 𝜀𝑘,𝑡 ∼ 𝑁(0, 𝑉𝑘,𝑡Σ𝑘,𝑡) with 𝑉𝑘,𝑡 = 1/𝑛𝑘,𝑡.

Assume the posterior of 𝝁𝑘,𝑡 at time 𝑡 − 1 is 𝑁(⋅∣𝜈𝑘,𝑡−1, 𝑅𝑘,𝑡−1

[
Σ𝑘,𝑡−1 0𝑑
0𝑑 Σ𝑘,𝑡−1

]
),

then, we can process sequential inference for the posterior of 𝝁𝑘,𝑡,

𝑁(⋅∣𝜈𝑘,𝑡, 𝑅𝑘,𝑡

[
Σ𝑘,𝑡−1 0𝑑
0𝑑 Σ𝑘,𝑡−1

]
),

via the following equations,

Predict:

𝜈𝑘,𝑡∣𝑡−1 = 𝐸𝑘,𝑡𝜈𝑘,𝑡−1 (4.9a)

𝑅𝑘,𝑡∣𝑡−1 = 𝐸𝑘,𝑡𝑅𝑘,𝑡−1𝐸
𝑇
𝑘,𝑡 +

[
𝜏4

4
𝑊𝑘,𝑡

𝜏2

2
𝑊𝑘,𝑡

𝜏2

2
𝑊𝑘,𝑡 𝜏𝑊𝑘,𝑡

]
(4.9b)

60



Update:

𝜈𝑘,𝑡 =

{
𝜈𝑘,𝑡∣𝑡−1 + 𝐴𝑘,𝑡𝑒𝑘,𝑡, if 𝑛𝑘,𝑡 > 0
02𝑑, if 𝑛𝑘,𝑡 = 0

(4.10a)

𝑅𝑘,𝑡 =

{
𝑅𝑘,𝑡∣𝑡−1 − 𝐴𝑘,𝑡𝑄𝑘,𝑡𝐴

𝑇
𝑘,𝑡, if 𝑛𝑘,𝑡 > 0

𝜚I2𝑑, if 𝑛𝑘,𝑡 = 0
(4.10b)

𝐴𝑘,𝑡 = 𝑅𝑘,𝑡∣𝑡−1𝐻𝑘,𝑡𝑄
−1
𝑘,𝑡 (4.10c)

𝑒𝑘,𝑡 = 𝑦𝑘,𝑡 − 𝑦𝑘,𝑡 (4.10d)

𝑦𝑘,𝑡 = 𝐻𝑘,𝑡𝜈𝑘,𝑡∣𝑡−1 (4.10e)

𝑄𝑘,𝑡 = 𝐻𝑘,𝑡𝑅𝑘,𝑡∣𝑡−1𝐻
𝑇
𝑘,𝑡 + 𝑉𝑘,𝑡 (4.10f)

4.1.3 Likelihood Function for Inhomogeneous Poisson Process

At each time step 𝑡 a set or frame of measurements x𝑡 = {𝑥1,𝑡, ..., 𝑥𝑁𝑡,𝑡} becomes

available. Each of these 𝑁𝑡 measurements originates from one entity (i.e. ‘target’

or cell). The totality of measurements x𝑡 received over the observation region at a

particular time step 𝑡 can be treated as an inhomogeneous (or nonhomogeneous)

Poisson point process with the likelihood function

𝑝(x𝑡∣𝛾, 𝑓𝑡) ∝ exp(−𝛾𝑡)𝛾
𝑁𝑡

𝑁𝑡∏
𝑖=1

𝑓𝑡(𝑥𝑖,𝑡) (4.11)

where 𝛾𝑡 is relevant to the expected total number of measurements received in cur-

rent time frame. The density function 𝑓𝑡(⋅) is modelled by the dependent DP mix-

ture model as discussed above. Moreover, due to the factor that 𝛾𝑡 can be cancelled

in calculating the sample weights in sequential Monte Carlo implementations, thus,

likelihood of the observation is precisely the likelihood that would arise from simple

random sampling from 𝑓𝑡(⋅) generating data 𝑥1:𝑁,𝑡.
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4.2 Sequential Monte Carlo Implementation

Bayesian inference (filtering) for the unknown state parameter Φ = {c𝑡,𝑽𝑡,𝝁𝑡,Σ𝑡}
in the dependent DP mixture model can be expressed as follows:

𝑝(Φ𝑡∣x𝑡−1) =

∫
𝑝(Φ𝑡∣Φ𝑡−1)𝑝(Φ𝑡−1∣x𝑡−1)𝑑Φ𝑡−1 (4.12)

𝑝(Φ𝑡∣x𝑡) ∝ 𝑝(x𝑡∣Φ𝑡)𝑝(Φ𝑡∣x𝑡−1) (4.13)

In general, due to the complexity of the system equation 𝑝(Φ𝑡∣Φ𝑡−1), closed-form

sequential inference for 𝑝(Φ𝑡∣x𝑡) is analytically intractable. We therefore turn to

sequential Monte Carlo (SMC) methods.

4.2.1 Rao-Blackwellized Particle Filter

As discussed in Chapter 3, to overcome the problem of extremely low effective

sample size in sequential Monte carlo for dependent DP mixture, we utilize the

Rao-Blackwellized technique via the two steps as follows:

Predict:

𝜅𝑘,𝑡∣𝑡−1 = 𝛿𝜅𝑘,𝑡−1 (4.14a)

𝛽𝑘,𝑡∣𝑡−1 = 𝛿𝛽𝑘,𝑡−1 (4.14b)

𝜈𝑘,𝑡∣𝑡−1 = 𝐸𝑘,𝑡𝜈𝑘,𝑡−1 (4.14c)

𝑅𝑘,𝑡∣𝑡−1 = 𝐸𝑘,𝑡𝑅𝑘,𝑡−1𝐸
𝑇
𝑘,𝑡 +

[
𝜏4

4
𝑊𝑘,𝑡

𝜏2

2
𝑊𝑘,𝑡

𝜏2

2
𝑊𝑘,𝑡 𝜏𝑊𝑘,𝑡

]
(4.14d)

𝑑𝑘,𝑡∣𝑡−1 = 𝜌𝑑𝑘,𝑡−1 (4.14e)

𝑆𝑘,𝑡∣𝑡−1 = 𝜌𝑆𝑘,𝑡−1 (4.14f)
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Update:

𝜅𝑘,𝑡 =

{
𝜅𝑘,𝑡∣𝑡−1 + 𝑛𝑘,𝑡, if 𝑛𝑘,𝑡 > 0
1, if 𝑛𝑘,𝑡 = 0

(4.15a)

𝛽𝑘,𝑡 =

{
𝛽𝑘,𝑡∣𝑡−1 +

∑𝐾
𝑟=𝑘+1 𝑛𝑟,𝑡, if 𝑛𝑘,𝑡 > 0

𝛼, if 𝑛𝑘,𝑡 = 0
(4.15b)

𝜈𝑘,𝑡 =

{
𝜈𝑘,𝑡∣𝑡−1 + 𝐴𝑘,𝑡𝑒𝑘,𝑡, if 𝑛𝑘,𝑡 > 0
02𝑑, if 𝑛𝑘,𝑡 = 0

(4.15c)

𝑅𝑘,𝑡 =

{
𝑅𝑘,𝑡∣𝑡−1 − 𝐴𝑘,𝑡𝑄𝑘,𝑡𝐴

𝑇
𝑘,𝑡, if 𝑛𝑘,𝑡 > 0

𝜚I2𝑑, if 𝑛𝑘,𝑡 = 0
(4.15d)

𝑑𝑘,𝑡 =

{
𝑑𝑘,𝑡∣𝑡−1 + 𝑛𝑘,𝑡, if 𝑛𝑘,𝑡 > 0
𝑑0, if 𝑛𝑘,𝑡 = 0

(4.15e)

𝑆𝑘,𝑡 =

{
𝑆𝑘,𝑡∣𝑡−1 + Ω, if 𝑛𝑘,𝑡 > 0

𝑆0, if 𝑛𝑘,𝑡 = 0
(4.15f)

𝐴𝑘,𝑡 = 𝑅𝑘,𝑡∣𝑡−1𝐻𝑘,𝑡𝑄
−1
𝑘,𝑡 (4.15g)

𝑒𝑘,𝑡 = 𝑦𝑘,𝑡 − 𝑦𝑘,𝑡 (4.15h)

𝑦𝑘,𝑡 = 𝐻𝑘,𝑡𝜈𝑘,𝑡∣𝑡−1 (4.15i)

𝑄𝑘,𝑡 = 𝐻𝑘,𝑡𝑅𝑘,𝑡∣𝑡−1𝐻
𝑇
𝑘,𝑡 + 𝑉𝑘,𝑡 (4.15j)

Ω =

𝑛𝑘∑
𝑖=1

(
𝑦
(𝑖)
𝑘,𝑡 − 𝑦𝑘,𝑡

)
(𝑦

(𝑖)
𝑘,𝑡 − 𝑦𝑘,𝑡)

𝑇 (4.15k)

+
𝑅𝑘,𝑡∣𝑡−1𝑛𝑘

𝑅𝑘,𝑡∣𝑡−1 + 𝑛𝑘

(𝜈𝑘,𝑡∣𝑡−1 − 𝑦𝑘,𝑡)(𝜈𝑘,𝑡∣𝑡−1 − 𝑦𝑘,𝑡)
𝑇 (4.15l)

Given the previous analysis, the RBPF for dependent DP mixture model for dy-

namic spatial point process application can be summarized as follows.

Algorithm 4.1: Rao-Blackwellized particle filter for dynamic spatial point

process
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∙ At 𝑡 = 1, for each particle 𝑗 = 1, ..., 𝐽 , set the truncated values 𝐾 for TDP mix-

ture and initialize
{
𝑉

(𝑗)
𝑘,0 , 𝜇

(𝑗)
𝑘,0,Σ

(𝑗)
𝑘,0, 𝜅

(𝑗)
𝑘,0, 𝛽

(𝑗)
𝑘,0𝜈

(𝑗)
𝑘,0, 𝑅

(𝑗)
𝑘,0, 𝑑

(𝑗)
𝑘,0, 𝑆

(𝑗)
𝑘,0

}𝐾
𝑘=1

. Obtain al-

location variable c
(𝑗)
1 by blocked Gibbs sampling. Evaluate {𝜅(𝑗)

𝑘,1, 𝛽
(𝑗)
𝑘,1, 𝜈

(𝑗)
𝑘,1, 𝑅

(𝑗)
𝑘,1,

𝑑
(𝑗)
𝑘,1, 𝑆

(𝑗)
𝑘,1}𝐾𝑘=1 via (4.14 and 4.15). Draw posterior sample

{
𝑉

(𝑗)
𝑘,1 , 𝜇

(𝑗)
𝑘,1,Σ

(𝑗)
𝑘,1

}𝐾
𝑘=1

,

and evaluate
{
𝜋
(𝑗)
𝑘,1

}𝐾
𝑘=1

.

∙ For 𝑡 > 1

– For each particle 𝑗 = 1, ..., 𝐽

∗ Predict: evaluate Ψ(𝑗)
𝑡∣𝑡−1 = {𝜅(𝑗)

𝑘,𝑡∣𝑡−1, 𝛽
(𝑗)
𝑘,𝑡∣𝑡−1, 𝜈

(𝑗)
𝑘,𝑡∣𝑡−1, 𝑅

(𝑗)
𝑘,𝑡∣𝑡−1, 𝑑

(𝑗)
𝑘,𝑡∣𝑡−1,

𝑆
(𝑗)
𝑘,𝑡∣𝑡−1}𝐾𝑘=1 via equation (4.14), and evaluate

{
𝜋
(𝑗)
𝑘,𝑡∣𝑡−1

}𝐾
𝑘=1

.

∗ Sample c
(𝑗)
𝑡 ∼ 𝑞(⋅∣𝜋(𝑗)

𝑡∣𝑡−1,Ψ
(𝑗)
𝑡∣𝑡−1,x𝑡) via blocked Gibbs sampling.

∗ Update: evaluate Ψ(𝑗)
𝑡 =

{
𝜅
(𝑗)
𝑘,𝑡, 𝛽

(𝑗)
𝑘,𝑡 , 𝜈

(𝑗)
𝑘,𝑡 , 𝑅

(𝑗)
𝑘,𝑡 , 𝑑

(𝑗)
𝑘,𝑡, 𝑆

(𝑗)
𝑘,𝑡

}𝐾
𝑘=1

via equa-

tion (4.15).

∗ Draw posterior sample
{
𝑉

(𝑗)
𝑘,𝑡 , 𝜇

(𝑗)
𝑘,𝑡,Σ

(𝑗)
𝑘,𝑡

}𝐾
𝑘=1

given Ψ(𝑗)
𝑡 , and evaluate{

𝜋
(𝑗)
𝑘,𝑡

}𝐾
𝑘=1

.

– Compute the importance weights

𝑤
(𝑗)
𝑡 ∝ 𝑤

(𝑗)
𝑡−1

𝑝(x𝑡∣c(𝑗)𝑡 )𝑝(c
(𝑗)
𝑡 ∣𝜋(𝑗)

𝑡∣𝑡−1)

𝑞(c
(𝑗)
𝑡 ∣𝜋(𝑗)

𝑡∣𝑡−1,Ψ
(𝑗)
𝑡∣𝑡−1,x𝑡)

,

with
∑𝑁

𝑗=1 𝑤
(𝑗)
𝑡 = 1.

– Resample when ESS is less than a predefined threshold.

64



4.2.2 Presentation of Estimation Results

We present two approaches to utilize the SMC samples. The first, approximate

posterior mean estimates of the functions 𝑓𝑡(⋅), are of interest in most applications.

The second, MAP sequence estimates may be preferable in tracking applications

when inference on trajectories.

Posterior Mean Estimation

The RBPF gives the output of weighted particles {(𝝅𝑡,𝝁𝑡,Σ𝑡)
(𝑗), 𝑤

(𝑗)
𝑡 ; 𝑗 = 1, 2, ..., 𝐽}

to approximate 𝑝(𝝅𝑡,𝝁𝑡,Σ𝑡∣x1:𝑡) for each time step 𝑡 ∈ 1, ..., 𝑇 . Filtered density

estimation is given by

𝑓𝑡(⋅∣x1:𝑡) = 𝐸

[∫
𝑁(⋅∣𝜇𝑡,Σ𝑡)𝐺𝑡(𝑑𝜇𝑡, 𝑑Σ𝑡)∣x1:𝑡

]
(4.16)

=

∫
𝑁(⋅∣𝜇𝑡,Σ𝑡)𝐸 [𝐺𝑡(𝑑𝜇𝑡, 𝑑Σ𝑡)∣x1:𝑡] . (4.17)

Given {(𝝅𝑡,𝝁𝑡,Σ𝑡)
(𝑗), 𝑤

(𝑗)
𝑡 ; 𝑗 = 1, 2, ..., 𝐽}, the mean estimate for 𝑓(⋅) can be approx-

imated via

𝑓(⋅) ≈
𝐽∑

𝑗=1

𝑤
(𝑗)
𝑡

𝐾
(𝑗)
𝑡∑

𝑘=1

𝜋
(𝑗)
𝑘,𝑡𝑁(⋅∣𝜇(𝑗)

𝑘,𝑡,Σ
(𝑗)
𝑘,𝑡). (4.18)

Also, 𝑘-step ahead density predictions, 𝑓𝑡+𝑘(⋅∣x1:𝑡), can be obtained in a similar way.

Maximum a Posteriori Sequence Estimation

As is well known, the choice of mean, MAP or other estimates is dependent on

the demands of the application and the inherent choice of loss functions, whether

made explicit or not. In tracking applications, the trajectory is always of interest.

If we select only one sample in each time step and link them together then we can

65



evaluate a posterior draw from the trajectory. Here we appeal to the MAP Sequence

Estimation method proposed in Godsill et al. (2001) which can efficiently computes

the optimal trajectory over all combinations of the filtered states. The methods rely

on a particle cloud representation of the filtering distribution which evolves through

time using an SMC method. MAP sequence estimation is then performed using a

classical dynamic programming technique, the Viterbi algorithm (Viterbi, 1967),

applied to the discretised version of the state space (Godsill et al., 2001). Details

of the MAP sequential estimation method is presented in Appendix B.

4.3 Applications

This section discusses some applications of the dynamic spatial point point process

and demonstrates the modelling and algorithm.

4.3.1 Multiple Extended Target Tracking

In classical target tracking problems, it is often assumed that at most a single mea-

surement is received from a point target at each time step. However, in many cases,

high resolution sensors are able to resolve individual features on an extended ob-

ject. A straightforward way to address this problem is to model the target as a set of

point sources, each of which may be the origin of a sensor measurement. In a pre-

vious study of Gilholm et al. (2005), the authors represent the measurements over

the sensor observation region as a spatial non-homogeneous Poisson point process,

where multiple measurements/points may originate from an entity (target). It also

shown that this leads to an exact expression for the overall measurement likeli-

hood that does not involve explicit assignments between the measurements and

the entities. In this work, we treat the multiple extended target tracking problem

as a dynamic spatial point process, and model it by the rigorous Bayesian model
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discussed in the previous section. Generally speaking, the components in the mix-

ture model are used to represent the target. Dynamics in the mixture components

can capture the dynamics of each target, while the nonparametric setting can cap-

ture scenarios like ‘birth’, ‘death’, ‘split’,‘merge’ which are difficult but common in

multi-target tracking.

Illustrative simulation examples

The synthetic data set is generated as follows. At initiation stage, 5 extended targets

are shown in the observation region; each of these targets generates 20 random

points around its location. At time steps 10, 20, 50 one more target emerges in the

observation region which also generates 20 points in consequential time steps. The

overall observations are shown on both 𝑥 and 𝑦 coordinates over time in Figure 4.1.

Hyperparameters in the dynamic DP mixture model as well as control parame-

ters in the RBPF algorithm are set as shown in Table 4.1. After applying the filter-

ing algorithm, we obtain the weighted samples {(𝝅𝑡,𝝁𝑡,Σ𝑡)
(𝑗), 𝑤

(𝑗)
𝑡 ; 𝑗 = 1, 2, ..., 𝐽}.

Using the MAP sequence estimation discussed in Section 4.2.2, we can obtain a

sequence of mixtures {(𝝅𝑡,𝝁𝑡,Σ𝑡)
(𝑗∗)}100𝑡=1, from which we can reconstructed the tra-

jectory of each target by linking the mixture component with the same label in

adjacent time steps. The reconstructed trajectories of the central locations of each

extended target are shown in Figure 4.1. The underling intensity functions are

estimated via

𝑓𝑡(⋅) =
𝑁∑
𝑗=1

𝑤̃
(𝑗)
𝑡

𝐾
(𝑗)
𝑡∑

𝑘=1

𝜋
(𝑗)
𝑘,𝑡𝑁(⋅∣𝜇(𝑗)

𝑘,𝑡,Σ
(𝑗)
𝑘,𝑡). (4.19)

The spatial intensity functions (true values and estimates) in each coordinate are

shown in Figure 4.3. The posterior medians of the numbers of non-zero weights

of mixture components is shown in Figure 4.2. It can be observed that our pro-
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Parameter Value
𝐾 20
𝜌 100
𝑑0 2
𝑆0 I
𝜏 1
𝐽 100

Table 4.1: Parameter setting in dependent DP mixture model and RBPF filtering algo-
rithm.

posed approach efficiently solves the problem of tracking multiple extended targets

simultaneously and modelling the dynamics of the underling intensity function.

To further demonstrate performance of our proposed method, three movies are

created to show 𝑓𝑡(⋅) over time: 1) plot of MAP sequence estimation of target lo-

cation and trajectory; 2) image plot of posterior means of spatial intensities; 3)

3D plot of posterior means of spatial intensities with MAP sequence estimates of

target trajectories. These movies are available at http://stat.duke.edu/people/

theses/JiC.html. The last frame of these movies are shown in Figure 4.4 and 4.5.
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Figure 4.1: Synthetic dynamic spatial point process shown in both 𝑥 and 𝑦 coordinate,
and reconstructed trajectories of each ‘extended target’: red dots represent observations
and blue curves represent target trajectories.
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Figure 4.2: Plot of exact number of targets and posterior median of the number of non-
zero mixture component weights.
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Figure 4.3: Plots of spatial intensity functions in each coordinate: the true spatial intensity
is shown by the red curve, the posterior means of the spatial intensity functions are shown
by blue curves, and the spatial point pattern is shown by red dots. (a) plots in coordinate
𝑥, (b) plots in coordinate 𝑦.

70



−25 −20 −15 −10 −5 0 5 10 15 20 25
−25

−20

−15

−10

−5

0

5

10

15

20

25

x

y

Figure 4.4: Last frame of the movie of target trajectory: target observations are shown
by red dots, MAP sequence estimation of target position is represented by + (mean) and
ellipse (standard deviation), and target trajectories are shown by blue curves.
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(a)

(b)

Figure 4.5: Last frame of the movie of spatial intensity: (a) image plot of the posterior
mean of spatial intensity; (b) 3D plot of the posterior mean of spatial intensity as well as
MAP sequence estimates of target trajectories shown by yellow curve.
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4.3.2 Cell Tracking

Recently, emerging time-lapse microscopy technologies allow detailed data gener-

ation on dynamic cellular processes at the single cell level (Megason and Fraser,

2007; Longo and Hasty, 2006). This technology has been broadly applied to inves-

tigate various biological problems such as biological noise in the dynamics of gene

regulation, competence pathways, cell growth and proliferation (Elowitz et al.,

2002; Raser and O’ Shea, 2004; Rosenfeld et al., 2005; Levine and Davidson, 2005).

In using time-lapse microscopy technologies, we extract sequences of image

frames from the time-lapse movies which can produce sufficiently high temporal

and spatial resolution allowing time courses of gene expression dynamics at the

single-cell level. These time courses are of critical importance in investigating the

dynamics of cellular networks. However, extracting cells as objects in images, and

tracking them in sequential images, is one of central technical challenges for single-

cell fluorescent microscopy studies in systems biology (Megason and Fraser, 2007).

In previous study, several mathematical and statistical models have been proposed

to model such dynamic systems (Kask et al., 1999; Golding et al., 2005; Rosenfeld

et al., 2006), but no rigorous statistical model has been proposed for modelling of

the dynamics of multiple cells from tracking perspective.

In this work, we provide the dynamic spatial DP mixture model for tracking

the cells in fluorescence microscopic image, where we extracted the cells from the

sequence image as dynamic spatial point processes.

Simulation study

Our experiment data is a movie consisting 497 frames of cell fluorescence micro-

scopic images. Since our proposed model has to deal with spatial point process,

we need to generated the spatial point process corresponding to the location of
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cells from each individual image. In previous study (Wang et al., 2009), image seg-

mentation technique has been proposed, which can be applied to extract the pixels

representing the location of cells. However, based on exploration of the experimen-

tation data, we find that a simple likelihood-ratio test on the fluorescence intensity

of image can generate the spatial location of points representing cells, which can

serve as the observation of the spatial point process. Figure 4.6a and 4.6b show

original data of a cell fluorescence microscopic image at last time frame of the

movie and its corresponding spatial point pattern generated by the likelihood-ratio

test (Wang et al., 2008, 2009).

Given the observations, it is straightforward to apply our proposed modelling

and computation approach on the image sequence, to obtain the posterior of dy-

namic spatial intensities. Figure 4.7 show the MAP sequence estimate of the spa-

tial intensity function, while posterior means are shown in Figure 4.8. As can

be seen, the intensity function has high spatial inhomogeneity and can be well

captured by our proposed model. The quantitative analysis of overall intensities

of spatial locations of cells may therefore facilitate understanding of its system

dynamics. Bedsides, tracking of individual cell is also of interest, particularly if

we want to rebuild its lineage tree. To demonstrate the ability of our proposed

method in dealing with individual cell tracking, we generate a movie by linking

the MAP sequence estimation of the intensity function. This movie is available

at http://stat.duke.edu/people/theses/JiC.html, the last frame of which is

shown in Figure 4.9. As can be seen in the movie, each individual cell is captured

by one or a few mixture components. Wit labels of the mixture components, we can

identify and track each cell in adjacent time frame, and link them to reconstruct the

trajectory of each cell as shown in Figure 4.10.
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(a)

(b)

Figure 4.6: Human cell imaging data: (a) original data of cell fluorescence microscopic
image at last time step, (b) spatial point pattern generated by the image segmentation at
last time step.
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Figure 4.7: MAP sequence estimation of the spatial intensity function: red dots are the
realization of spatial point pattern, + and ellipse represent the mean and standard deviation
of mixture components.
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(a)

(b)

Figure 4.8: Posterior mean of the spatial intensity function at last time step: (a) image
plot, (b) 3D plot.
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Figure 4.9: Last frame of the movie of cell tracking in a zoom in area: observed spatial
point process is shown by yellow dots, the MAP sequence estimates of the spatial intensity
function is represented by + (mean) and ellipse (standard deviation). Moreover, to identify
the mixture components, each component is labeled by a number.
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(a)

(b)

Figure 4.10: Reconstructed trajectories of each cell shown in both 𝑥 and 𝑦 coordinate:
red dots represent observations and blue curves represent the reconstructed trajectories.
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Chapter 5

Marginal Likelihood Approximation

We discuss some novel approaches for estimation of the upper and lower bounds

of the log marginal likelihood in certain Bayesian models. Apparently, performing

model selection merely based on only lower bounds of log marginal likelihoods

can be inappropriate as the approximation error is not quantitatively limited. We

provide an upper bound for the log marginal likelihood to couple with a lower

bound and propose a method based on the posterior samples to minimize this up-

per bound. We provide a quasi-lower bound that can be obtained with trivial com-

putation based on the result of optimal upper bound. We also demonstrate that by

marginalizing some parameters in the Bayesian model, we can significantly reduce

the error between the bounds of log marginal likelihood. However, when some pa-

rameters are marginalized, the optimal lower bound cannot be obtained using the

traditional variational methods. To address this, we present a method that directly

uses a Monte Carlo Stochastic Approximation (MCSA) algorithm to maximize the

lower bound, and prove the convergence to the true local maximum lower bound

under commonly satisfied assumptions.

5.1 Introduction

The marginal likelihood is the essential quantity in Bayesian model selection, rep-

resenting the evidence of a model. However, evaluating marginal likelihoods often

involves intractable integration and relies on numerical integration and approxi-

mation. Mean-field variational methods, initially developed in statistical physics

and extensively studied by machine learning and Bayesian learning communities
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for deterministic approximation of marginal distributions (MacKay, 1995; Jordan

et al., 1999; Jaakkola and Jordan, 2000; Humphreys and Titterington, 2000; Ueda

and Ghahramani, 2002; Jordan, 2004; Wang and Titterington, 2004), have been

implemented in the model selection context (Corduneanu and Bishop, 2001; Beal,

2003).

For model 𝑀 and data 𝐷, the marginal likelihood denoted in a general form is

𝑝(𝐷∣𝑀) =
∫
Θ

𝑝(𝜽, 𝐷∣𝑀)d𝜽, (5.1)

with 𝜽 = {𝜃1, . . . , 𝜃𝐾} ∈ Θ representing all the model parameters. In certain cases,

some of the parameters can be analytically integrated out, reducing the dimension

of the integral, and the integration over remaining parameters was the same form.

For any density function 𝑞(𝜽;𝜸) that is parameterized with 𝜸 = {𝛾1, . . . , 𝛾𝐽} ∈ Γ

and has the same support as the posterior density function 𝑝(𝜽∣𝐷,𝑀), Jensen’s

inequality

log 𝑝(𝐷∣𝑀) ≥
∫
Θ

𝑞(𝜽;𝜸) log
𝑝(𝜽, 𝐷∣𝑀)
𝑞(𝜽;𝜸)

d𝜽 (5.2)

provides a lower bound for the log marginal likelihood, which can be maximized

with respect to 𝜸 and serve as an approximation to the log marginal likelihood.

This lower bound optimization corresponds to minimization of the Kullback-Leibler

divergence between the variational density 𝑞(𝜽;𝜸) and model parameter posterior

density 𝑝(𝜽∣𝐷,𝑀).

The current mean-field variational methods use variational density form factor-

ized over hidden variables and model parameters (or construct such settings by

treating certain model parameters as hidden variables), and rely on EM algorithms

to provide solutions to the lower bound optimization (Beal, 2003). Similar to its

application in variational MLE with missing data (Celeux and Diebolt, 1992; De-

lyon et al., 1999), the Stochastic Approximation algorithm based on an iterative
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Monte Carlo procedure can be employed in cases where the expectation step in the

EM algorithm cannot be performed in closed form. Wang and Titterington (2004)

have shown that, for the mean-field variational densities of exponential family, this

optimization converges to the true local maximum lower bound with probability

one.

Apparently, performing model selection merely based on the lower bounds of

log marginal likelihoods can be inappropriate as the approximation error is not

quantitatively limited. Here, we show an upper bound for the log marginal like-

lihood and propose a method based on Markov chain Monte Carlo methods to

minimize this upper bound. This optimization is equivalent to minimization of the

Kullback-Leibler divergence between 𝑝(𝜽∣𝐷,𝑀) and 𝑞(𝜽;𝜸), and, for 𝑞(𝜽;𝜸) of ex-

ponential family, converges to the true global minimum upper bound almost surely

or with probability one.

We also discuss a quasi-lower bound that can be obtained with trivial computa-

tion based on the result of optimal upper bound. We demonstrate that by marginal-

izing some parameter in the Bayesian model, we can significantly reduce the error

between the bounds of log marginal likelihood. We present a method that directly

uses Monte Carlo Stochastic Approximation (MCSA) algorithm to maximize the

lower bound, and prove the convergence to the true local maximum lower bound

with probability one when 𝑞(𝜽;𝜸) takes an exponential family form.

In the following sections, the methodology regarding the upper bound and

lower bound optimization derivation and optimization is described in detail. The

performance of this new method is demonstrated with two examples. The first

example is a Bayesian linear regression model, in which the analytical form of

marginal likelihood is available. In the second example, we investigate our pro-

posed approach on finite Gaussian mixture models. Both simulation examples show
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that our approach can give reasonable bounds for the log marginal likelihood.

5.2 Upper Bound Computation with MCMC

When 𝑞(𝜽;𝜸) = 𝑝(𝜽∣𝐷,𝑀), the inequality in (5.2) turns into equality

log 𝑝(𝐷∣𝑀) =
∫
Θ

𝑝(𝜽∣𝐷,𝑀) log 𝑝(𝐷,𝜽∣𝑀)d𝜽 −
∫
Θ

𝑝(𝜽∣𝐷,𝑀) log 𝑝(𝜽∣𝐷,𝑀)d𝜽.

(5.3)

The second term − ∫
Θ

𝑝(𝜽∣𝐷,𝑀) log 𝑝(𝜽∣𝐷,𝑀)d𝜽 is the mathematical entropy of

𝑝(𝜽∣𝐷,𝑀). According to Gibbs’ inequality, for any 𝑞(𝜽;𝜸),

−
∫
Θ

𝑝(𝜽∣𝐷,𝑀) log 𝑝(𝜽∣𝐷,𝑀)d𝜽 ≤ −
∫
Θ

𝑝(𝜽∣𝐷,𝑀) log 𝑞(𝜽;𝜸)d𝜽. (5.4)

Inserting this into (5.3) leads to an upper bound of log marginal likelihood

𝑈(𝜸) =

∫
Θ

𝑝(𝜽∣𝐷,𝑀) log
𝑝(𝜽, 𝐷∣𝑀)
𝑞(𝜽;𝜸)

d𝜽 ≥ log 𝑝(𝐷∣𝑀). (5.5)

Given a variational proposal distribution 𝑞(𝜽;𝜸), this upper bound is the expecta-

tion of log
𝑝(𝜽, 𝐷∣𝑀)
𝑞(𝜽;𝜸)

with respect to the posterior distribution 𝑝(𝜽∣𝐷,𝑀). Since

𝑝(𝜽∣𝐷,𝑀) does not have an explicit form, the evaluation of this upper bound be-

comes a Monte Carlo integration problem that depends on samples from 𝑝(𝜽∣𝐷,𝑀).

As is well known, these posterior samples of model parameters can be obtained

through an MCMC sampler with target the desired posterior distribution.

It is straightforward to show that to approach the optimal 𝑈(𝜸) is equivalent to

minimizing the Kullback-Leibler divergence between 𝑞(𝜽;𝜸) and 𝑝(𝜽∣𝐷,𝑀),

𝒟 [𝑝∣∣𝑞] ≡
∫
Θ

𝑝(𝜽∣𝐷,𝑀) log
𝑝(𝜽∣𝐷,𝑀)

𝑞(𝜽;𝜸)
d𝜽, (5.6)
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which is actually the error term (or say discrepancy) between 𝑈(𝜸) and log 𝑝(𝐷∣𝑀).
Since we assume that 𝑞(𝜽;𝜸) comes from the exponential family, which is well

known to be log-concave, 𝒟 [𝑝∣∣𝑞], as a linear functional of log 𝑞(𝜽;𝜸) must be con-

vex with respect to 𝜸. Hence, the global minimum can be found by solving the

equations

∂

∂𝛾𝑗
𝒟 [𝑝∣∣𝑞] = −

∫
Θ

𝑝(𝜽∣𝐷,𝑀)

[
∂

∂𝛾𝑗
log 𝑞(𝜽;𝜸)

]
d𝜽 = 0, (5.7)

𝑗 = 1, . . . , 𝐽 .

For 𝑞(𝜽;𝜸) of exponential family form, these equations can be solved analyti-

cally, given the Monte Carlo samples of 𝑝(𝜽∣𝐷,𝑀), {𝜽(𝑖) : 𝑖 = 1, . . . , 𝑁} generated

through MCMC. It is trivial to prove that the estimated solution 𝜸̂𝑈 almost surely

converges to the true solution 𝜸𝑈 if 𝜸̂𝑈 can be analytically expressed. Then with

the estimated optimum 𝜸̂𝑈 , the global minimum upper bound of log marginal like-

lihood 𝑈𝑜 can be estimated by

𝑈̂𝑜 =
1

𝑁

𝑁∑
𝑖=1

log
𝑝(𝜽(𝑖), 𝐷∣𝑀)
𝑞(𝜽(𝑖); 𝜸̂𝑈)

. (5.8)

When 𝑁 → ∞, we can prove the almost sure convergence of 𝑈̂𝑜 to 𝑈𝑜 if 𝜸̂𝑈 can be

analytically expressed.

5.3 Lower Bound Computation

This section shows that optimal lower bound of log marginal likelihood can be ap-

proximated in several ways. Variational Bayesian methods are standard approaches

(Jordan et al., 1999; Ghahramani and Beal, 2001; Beal, 2003; Beal and Ghahra-

mani, 2003; Xing et al., 2003; Blei and Jordan, 2004). Here we present two alter-

native methods for evaluating lower bounds: quasi-lower bounds and MCSA lower

bounds.
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5.3.1 Variational Methods

We briefly introduce variational Bayesian methods, which have been well presented

(Jordan et al., 1999; Ghahramani and Beal, 2001; Blei and Jordan, 2004). Recall

that we are considering a model with parameters 𝜽 and observation 𝐷. The poste-

rior can be written as

𝑝(𝜽∣𝐷,𝑀) = exp{log 𝑝(𝜽, 𝐷∣𝑀)− log 𝑝(𝐷∣𝑀)}. (5.9)

The variational lower bound on the log marginal probability is

𝐿(𝜸) = 𝐸𝑞[log(𝑝(𝐷,𝜽∣𝑀)]− 𝐸𝑞[log 𝑞(𝜽)] ≤ log 𝑝(𝐷∣𝑀). (5.10)

Note that this bound holds for any distribution 𝑞(𝜽).

For the optimization of this bound to be computationally tractable, we assume

a fully-factorized form 𝑞𝜸(𝜽) =
∏𝐽

𝑗=1 𝑞𝜸𝑗
(𝜃𝑗), where 𝜸 = {𝛾1, ..., 𝛾𝐽} are varia-

tional parameters, and each distribution is in the exponential family, i.e. 𝑞𝛾𝑗(𝜃𝑗) =

ℎ(𝜃𝑗) exp{𝛾𝑇
𝑗 𝜃𝑗 − 𝑎(𝛾𝑗)}. By taking the derivative of 𝐿(𝜸) with respect to each 𝛾𝑖,

the optimal 𝛾𝑗 maximizing 𝐿(𝜸) satisfies

𝛾𝑗 = [𝑎
′′(𝛾𝑗)]−1

(
∂

∂𝜈𝑗
𝐸𝑞[log 𝑝(𝜃𝑗∣𝐷, 𝜃−𝑗,𝑀)]− ∂

∂𝛾𝑗
𝐸𝑞[log ℎ(𝜃𝑗)]

)
. (5.11)

A further simplification can be achieved, if 𝑝(𝜃𝑗∣𝐷, 𝜃−𝑗 ,𝑀) is also an exponential

family distribution,

𝑝(𝜃𝑗∣𝐷, 𝜃−𝑗,𝑀) = ℎ(𝜃𝑗) exp{𝑔(𝜃−𝑗, 𝐷,𝑀)𝑇 𝜃𝑗 − 𝑎(𝑔(𝜃−𝑗, 𝐷,𝑀))},

where 𝑔(𝜃−𝑗, 𝐷,𝑀) is the natural parameter for 𝜃𝑗 conditioning on the remaining

other variational parameters and the observations. The maximum of 𝐿(𝜸) is at-

tained at

𝛾𝑗 = 𝐸𝑞[𝑔(𝜃−𝑗, 𝐷,𝑀)]. (5.12)
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Then a coordinate ascent algorithm can be derived, in which we iteratively maxi-

mize the bound with respect to each 𝛾𝑗, holding the other variational parameters

fixed (see Ghahramani and Beal (2001); Blei and Jordan (2004) for details).

5.3.2 Quasi-Lower Bound

As observed, the optimization of upper and lower bounds is equivalent to mini-

mization of 𝒟[𝑝∣∣𝑞] and 𝒟[𝑞∣∣𝑝]. Since the KL-divergence is not a symmetric distance

measure, generally argmin𝒟[𝑝∣∣𝑞] ∕= argmin𝒟[𝑞∣∣𝑝]. However, if the distribution 𝑝 is

unimodal, then 𝜸𝑈 = argmin𝒟[𝑝∣∣𝑞] allows 𝒟[𝑞∣∣𝑝] to approximate its minimum. As

analyzed in Section 5.2, given samples drawn from posterior 𝑝(𝜃∣𝐷,𝑀), it is gener-

ally straightforward to estimate 𝜸̂𝑈 which minimizes the KL-divergence 𝒟[𝑝∣∣𝑞] and

thus enables 𝒟[𝑞∣∣𝑝] to approximate its minimum. So we can use 𝜸̂𝑈 to estimate a

quasi lower bound as follows: draw the Monte Carlo samples {𝜽(𝑖) : 𝑖 = 1, . . . , 𝑁}
from 𝑞(𝜽; 𝜸̂𝑈), then obtain the estimate of the quasi-lower bound using

𝐿̂𝑜 =
1

𝑁

𝑁∑
𝑖=1

log
𝑝(𝜽(𝑖), 𝐷∣𝑀)
𝑞(𝜽(𝑖); 𝜸̂𝑈)

. (5.13)

5.3.3 Lower Bound Optimization by MCSA

As mentioned in Blei and Jordan (2004), if the variational distribution 𝑞𝜸(𝜽) is

not a fully factorized distribution, then the analytical iterative update equation for

variational parameters derived in the variational algorithm may not be applicable.

However, such a scenario is common. For example, a model with only one param-

eter remaining after marginalizing other model parameters. We will show later in

the simulation study that by marginalizing some model parameters, the ‘discrep-

ancy’ between the bounds of log marginal likelihood can be reduced significantly.
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However in such scenarios, the optimal lower bound cannot be obtained using tra-

ditional variational methods. We present an alternative method which uses a Monte

Carlo Stochastic Approximation (MCSA) algorithm to maximize the lower bound

directly. We also prove that the algorithm converges to the true local maximum

lower bound with probability one when 𝑞(𝜽;𝜸) takes an exponential family form.

Given a parameterized variational density 𝑞(𝜽;𝜸), the lower bound of the log

marginal likelihood as a function of 𝜸 can be written as

𝐿(𝜸) =

∫
Θ

𝑞(𝜽;𝜸) log
𝑝(𝜽, 𝐷∣𝑀)
𝑞(𝜽;𝜸)

d𝜽. (5.14)

By taking the derivative of 𝐿(𝜸), the optimum 𝜸𝐿 that maximizes 𝐿(𝜸) is the solu-

tion of the system of equations,

𝑑𝐿(𝜸)

𝑑𝜸
= −

∫
Θ

𝑞(𝜽;𝜸)

[
1 + log

𝑞(𝜽;𝜸)

𝑝(𝜽, 𝐷∣𝑀)
]

𝑑

𝑑𝛾
log 𝑞(𝜽;𝜸)𝑑𝜽 = 0. (5.15)

Define ℎ(𝜽;𝜸) =

[
1 + log

𝑞(𝜽;𝜸)

𝑝(𝜽, 𝐷∣𝑀)
]

𝑑

𝑑𝛾
log 𝑞(𝜽;𝜸). As can be seen, these equa-

tions are non-linear and cannot be solved analytically. To numerically find the

solution, we present a Monte Carlo Stochastic Approximation (MCSA) algorithm.

Stochastic Approximation (SA) (Robbins and Monro, 1951; Kushner and Yin,

1997) is a class of algorithms for finding the roots of possibly non-linear equation

𝑓 (𝑥) = 0, in the situation where only noisy measurements of 𝑓 (𝑥) are available.

Robbins-Monro algorithm (Robbins and Monro, 1951), the simplest form of SA, is

a recursive process as

𝑥(𝑡+1) = 𝑥(𝑡) + 𝑠(𝑡+1)𝜁(𝑡+1) (5.16)

with some initial 𝑥(0). Here
{
𝑠(𝑡), 𝑡 ≥ 1} is a sequence of stepsizes which satisfies

standard conditions:
∑∞

𝑡=1 𝑠
(𝑡) = ∞ and

∑∞
𝑡=1

[
𝑠(𝑡)
]2

< ∞. For any 𝑡 ≥ 1. 𝜁(𝑡) is a
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noisy measurement of 𝑓 (𝑥), i.e.

𝜁(𝑡) = 𝑓 (𝑥) + 𝜉(𝑡), (5.17)

where
{
𝜉(𝑡), 𝑡 ≥ 1} is the noise sequence.

In our case, 𝑥 is 𝜸 and function 𝑓(𝜸) =
∫
Θ

ℎ(𝜽;𝜸)𝑑𝜽. Assume we have Monte

Carlo samples {𝜽(𝑖) : 𝑖 = 1, . . . , 𝑁} from the distribution 𝑞(𝜽;𝜸). Then 𝑓(𝜸) can be

evaluated by its Monte Carlo estimate

𝜁 (𝜸) = − 1
𝑁

𝑁∑
𝑖=1

{[
1 + log

𝑞(𝜽(𝑖);𝜸)

𝑝(𝜽(𝑖), 𝐷∣𝑀)
]

𝑑

𝑑𝜸
log 𝑞(𝜽(𝑖);𝜸)

}
. (5.18)

The Central Limit Theorem,

𝜉 (𝜸) = [𝜁 (𝜸)− 𝑓 (𝜸)]→ 𝑁

(
0,

𝜎2

𝑁

)
, as 𝑛→∞ (5.19)

implies that 𝜉 (𝜸) is Gaussian noise, with mean zero and variance 𝜎2

𝑁
with 𝜎2 =

1
𝑁−1

∑𝑁
𝑖=1

(
ℎ(𝜽(𝑖);𝜸)− 𝜁(𝜸)

)
(Robert and Casella, 2004).

Using Robbins-Monro algorithm, we can estimate 𝜸 iteratively via

𝜸(𝑡+1) = 𝜸(𝑡) + 𝑠(𝑡+1)𝜁
(
𝜸(𝑡)
)
. (5.20)

Then using the estimate 𝜸̂𝐿 produced through above iterative procedure and the

Monte Carlo samples {𝜽(𝑖) : 𝑖 = 1, . . . , 𝑁} from 𝑞(𝜽; 𝜸̂𝐿), we obtain the estimate of

the optimal lower bound conditional on the kernel form of the variational density

function,

𝐿̂𝑜 =
1

𝑁

𝑁∑
𝑖=1

log
𝑝(𝜽(𝑖), 𝐷∣𝑀)
𝑞(𝜽(𝑖); 𝜸̂𝐿)

. (5.21)

When the number of iterative steps in the stochastic approximation tends to infinity,

this estimated lower bound converges to the true maximum lower bound 𝐿𝑜 with

probability one. The proof of this conclusion is presented in Appendix D.
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5.4 Applications

The proposed log marginal likelihood approximation approaches can be applied

to a wide range of Bayesian models. In this section, we present two examples to

demonstrate the performance of our proposed methods. The first model is a generic

Bayesian linear regression; by using a conjugate prior setting, we can derive the

analytical form of log marginal likelihood, which can help us understanding the

performance of its upper and lower bounds. The second one is a mixture model

for with a large number of data point, which does not have a tractable analytical

log marginal likelihood. We estimated the log marginal likelihood by the standard

approach proposed in Chib (1995) and compared with various upper and lower

bounds.

5.4.1 Bayesian Linear Regression

Assume we have the predictors 𝑋 = (x1, ...,x𝑛)
𝑇 , and response variables 𝑦 =

(𝑦1, ..., 𝑦𝑛)
𝑇 . The linear regression model can be written as

𝑦𝑖 ∼ 𝑁
(
𝛽𝑥𝑖, 𝜎

2
)

(5.22a)

𝛽 ∼ 𝑁
(
0, 𝜏𝜎2I

)
(5.22b)

𝜎2 ∼ 𝐼𝐺 (ℎ0, 𝑘0) (5.22c)

where hyperparameters 𝜏 , ℎ0, and 𝑘0 are assumed to be fixed and known. Due to

the conjugate setting, the marginal likelihood has a closed form,

𝑝(𝑦∣𝑋, 𝜏, ℎ0, 𝑘0) =

∫ ∫
𝑝(𝑦∣𝑋, 𝛽, 𝜎2)𝑝(𝛽∣𝜏𝜎2𝐼)𝑝(𝜎2∣ℎ0, 𝑘0)𝑑𝛽𝑑𝜎

2 (5.23a)

= (2𝜋)−
𝑛
2 ∣𝐶∣− 1

2𝑘ℎ0
0

Γ
(
𝑛
2
+ ℎ0

)
Γ(ℎ0)

(
𝑦𝑇𝐶−1𝑦

2
+ 𝑘0

)−𝑛
2
+ℎ0

(5.23b)

where 𝐶 = 𝐼𝑛𝑛 + 𝜏𝑋𝑋𝑇 .
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Moreover, if we marginalize out 𝛽 in the model, we have

𝑝(𝑦∣𝑋, 𝜎2, 𝜏) =

∫
𝑝(𝑦∣𝑋, 𝛽, 𝜎2)𝑝(𝛽∣𝜏𝜎2𝐼)𝑑𝛽 (5.24a)

= (2𝜋)−
𝑛
2 ∣𝐵∣− 1

2 exp(−1
2
𝑦𝑇𝐵−1𝑦) (5.24b)

where 𝐵 = 𝜎2𝐼𝑛𝑛 + 𝜏𝜎2𝑋𝑋𝑇 .

In order to draw posterior samples from this Bayesian linear model, we turn to

Gibbs sampling, in which the conditional posteriors are,

𝛽 ∼ 𝑁
(
(𝜏−1I+𝑋𝑇𝑋)−1𝑋𝑇𝑦, 𝜎2(𝜏−1𝐼 +𝑋𝑇𝑋)−1

)
(5.25)

𝜎2 ∼ 𝐼𝐺

(
𝑛+ 𝑝

2
+ ℎ0,

(𝑦 −𝑋𝛽)𝑇 (𝑦 −𝑋𝛽)

2
+

𝛽𝑇𝛽

2
𝜏−1 + 𝑘0

)
. (5.26)

We study the order selection in a polynomial regression, in which for order 𝑞,

the predictors are x = [1, 𝑥, 𝑥2, ..., 𝑥𝑞]𝑇 . The data is synthetic with 𝑞 = 3, 𝑛 = 20

and know variance 𝜎2 = 10. The hyperparameters are set as 𝜏 = 0.1, ℎ0 = 1, and

𝑘0 = 1.

Seven quantities will be studied for the log marginal likelihood estimation for

the Bayesian polynomial regression model:

𝑀𝐿: 𝑀𝐿 is the exact log marginal likelihood, which can be calculated by equation

(5.23) given the data (𝑋, 𝑦) and the model hyperparameters.

𝑈1: 𝑈1 is the estimate of the upper bound of log marginal likelihood by marginal-

izing out coefficients 𝛽 in the model. Thus we set the variational distribution

as 𝑞(𝜽;𝜸) = 𝐼𝐺(𝜎2∣ℎ, 𝑘). After obtaining posterior samples {(𝛽, 𝜎2)(𝑖) : 𝑖 =

1, . . . , 𝑁} generated through Gibbs sampling, optimal variational parameters

ℎ𝑈 and 𝑘𝑈 can be estimated by (5.7). Thus, the upper bound can be evaluated

using equation (5.8) with 𝑝(𝜽(𝑖), 𝐷∣𝑀) = 𝑝(𝑦∣𝑋, 𝜎2(𝑖), 𝜏)𝐼𝐺(𝜎2(𝑖)∣ℎ0, 𝑘0).
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𝑈2: 𝑈2 is the estimate of the upper bound of log marginal likelihood with re-

spect to the full parameterized model defined as (5.22), in which we set the

variational distribution as 𝑞(𝜽;𝜸) = 𝑁(𝛽∣𝜇,Ω)𝐼𝐺(𝜎2∣ℎ, 𝑘). After obtaining

posterior samples {(𝛽, 𝜎2)(𝑖) : 𝑖 = 1, . . . , 𝑁} generated through Gibbs sam-

pling, optimal variational parameters 𝜇𝑈 ,Ω𝑈 , ℎ𝑈 , and 𝑘𝑈 can be estimated

using (5.7). Thus, the upper bound can be evaluated by equation (5.8), in

which 𝑝(𝜽(𝑖), 𝐷∣𝑀) = 𝑝(𝑦∣𝑋, 𝛽(𝑖), 𝜎2(𝑖))𝑁(𝛽(𝑖)∣0, 𝜏𝜎2I)𝐼𝐺(𝜎2(𝑖)∣ℎ0, 𝑘0).

𝐿1: 𝐿1 is the estimate of the lower bound of log marginal likelihood for the model

marginalizing out coefficients 𝛽 by the MCSA method proposed in Section

5.3.3. The variational distribution is 𝑞(𝜽;𝜸) = 𝐼𝐺(𝜎2∣ℎ, 𝑘), where parame-

ters ℎ𝐿 and ℎ𝐿 are estimated by the MCSA algorithm. Samples {𝜎2(𝑖) : 𝑖 =

1, . . . , 𝑁} are drawn from 𝐼𝐺(𝜎2∣ℎ𝐿, 𝑘𝐿), and then used to estimate the quasi-

lower bound using equation (5.21), in which 𝑝(𝜽(𝑖), 𝐷∣𝑀) = 𝑝(𝑦∣𝑋, 𝜎2(𝑖), 𝜏)

𝐼𝐺(𝜎2(𝑖)∣ℎ0, 𝑘0).

𝐿2: 𝐿2 is the estimate of the quasi-lower bound of log marginal likelihood by

marginalizing out coefficients 𝛽 in the model. The variational distribution is

𝑞(𝜽;𝜸) = 𝐼𝐺(𝜎2∣ℎ, 𝑘), where the parameter ℎ𝐿 and ℎ𝐿 are set the same as ℎ𝑈

and 𝑘𝑈 . Samples {𝜎2(𝑖) : 𝑖 = 1, . . . , 𝑁} are drawn from 𝐼𝐺(𝜎2∣ℎ𝐿, 𝑘𝐿), and

then used to estimate the quasi lower bound using equation (5.21), in which

𝑝(𝜽(𝑖), 𝐷∣𝑀) = 𝑝(𝑦∣𝑋, 𝜎2(𝑖), 𝜏)𝐼𝐺(𝜎2(𝑖)∣ℎ0, 𝑘0).

𝐿3: 𝐿3 is the estimate of the quasi-lower bound of log marginal likelihood with

respect to the full parameterized model defined as (5.22), in which we set

the variational distribution as 𝑞(𝜽;𝜸) = 𝑁(𝛽∣𝜇,Ω)𝐼𝐺(𝜎2∣ℎ, 𝑘), where the pa-

rameter 𝜇𝐿, 𝜎2
𝐿, ℎ𝐿 and ℎ𝐿 are set the same as 𝜇𝑈 , 𝜎2

𝑈 , ℎ𝑈 and 𝑘𝑈 . Sam-

ples {(𝛽, 𝜎2)(𝑖) : 𝑖 = 1, . . . , 𝑁} are drawn from 𝑁(𝛽∣𝜇𝐿,Ω𝐿)𝐼𝐺(𝜎
2∣ℎ𝐿, 𝑘𝐿), and
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then used to estimate the quasi-lower bound using equation (5.21), in which

𝑝(𝜽(𝑖), 𝐷∣𝑀) = 𝑝(𝑦∣𝑋, 𝛽(𝑖), 𝜎2(𝑖))𝑁(𝛽(𝑖)∣0, 𝜏𝜎2I)𝐼𝐺(𝜎2(𝑖)∣ℎ0, 𝑘0).

𝐿4: 𝐿4 is the estimate of the lower bound of log marginal likelihood of using varia-

tional method. The variational distribution is 𝑞(𝜽;𝜸) = 𝑁(𝛽∣𝜇,Ω)𝐼𝐺(𝜎2∣ℎ, 𝑘),
where the optimal parameter 𝜇𝐿, 𝜎2

𝐿, ℎ𝐿 and ℎ𝐿 are estimated by the varia-

tional method, i.e. the coordinate ascent algorithm presented in Appendix C.

Samples {(𝛽, 𝜎2)(𝑖) : 𝑖 = 1, . . . , 𝑁} are drawn from 𝑁(𝛽∣𝜇𝐿,Ω𝐿)𝐼𝐺(𝜎
2∣ℎ𝐿, 𝑘𝐿),

and then used to estimate the lower bound using equation (5.21), in which

𝑝(𝜽(𝑖), 𝐷∣𝑀) = 𝑝(𝑦∣𝑋, 𝛽(𝑖), 𝜎2(𝑖))𝑁(𝛽(𝑖)∣0, 𝜏𝜎2I)𝐼𝐺(𝜎2(𝑖)∣ℎ0, 𝑘0).

We show the synthetic data is approximated by polynomials of varying orders

in Figure 5.1. We run the process of computing the values of these seven quantities

100 time, and show their means and standard deviations in Table 5.1. From the

comparison, we find 𝑈1 has better performance than 𝑈2, and 𝐿1, 𝐿2 have better

performance than 𝐿3 𝐿4, which means that by marginalizing out some parameter

in the Bayesian linear model, we can significantly reduce the errors between the

exactly value of log marginal likelihood and its upper/lower bounds. Moreover,

due to the restrictive assumption in using variational method, it cannot deal with

models with only one parameter (i.e. the case we marginalize out 𝛽 in the Bayesian

linear regression). Moreover, the curves of the means of 𝑈1 and 𝐿1 in Figure 5.2

show that the preferable order is 𝑞 = 3, which is the ‘true’ model in our context.

5.4.2 Mixture Model

Mixture models are widely used conventional tools for modelling complex probabil-

ity distributions, and consist of a linear combination of some number 𝐾 of simpler,

component distributions. We focus on the marginal likelihood approximation in
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Figure 5.1: Synthetic data approximated by polynomials of varying orders.
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Figure 5.2: Plot of the analytic value of the log marginal likelihood of the Bayesian linear
model with varying number of order 𝑞, and means of upper bound (𝑈1), lower bound (𝐿1)
and quasi-lower bound (𝐿2) of the log marginal likelihood for 100 Monte Carlo runs.
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𝑈2 𝑈1 ML 𝐿1 𝐿2 𝐿3 𝐿4

1
−84.9591
(±0.0045)

−85.0046
(±0.0012) −85.0068 −85.0074

(±0.0006)
−85.0089
(±0.0008)

−85.0521
(±0.0049)

−85.0475
(±0.0028)

2
−73.8644
(±0.0067)

−73.9329
(±0.0015) −73.9374 −73.9395

(±0.0010)
−73.9414
(±0.0011)

−74.0038
(±0.0052)

−73.9974
(±0.0032)

3
−70.3021
(±0.0079)

−70.3933
(±0.0021) −70.4009 −70.4054

(±0.0012)
−70.4077
(±0.0013)

−70.4871
(±0.0060)

−70.4791
(±0.0039)

4
−72.6467
(±0.0093)

−72.7603
(±0.0027) −72.772 −72.7792

(±0.0016)
−72.7825
(±0.0020)

−72.8781
(±0.0065)

−72.8676
(±0.0040)

5
−77.9364
(±0.00105)

−78.0741
(±0.0029) −78.1043 −78.1013

(±0.0016)
−78.1045
(±0.0018)

−78.2152
(±0.0078)

−78.2040
(±0.0042)

6
−80.5663
(±0.00127)

−80.7266
(±0.0039) −80.7477 −80.7622

(±0.0020)
−80.7656
(±0.0020)

−80.8920
(±0.0085)

−80.8781
(±0.0048)

Table 5.1: Analytic values of the log marginal likelihood of the Bayesian linear model and
Monte Carlo estimation of various lower and upper bounds: mean and standard deviation.

multivariate normal mixture distributions. By introducing a latent variable, also

known as allocation variable 𝑧, we can interpret the normal mixture as follows:

𝑥𝑖 ∼ 𝑁 (𝜇𝑧𝑖 ,Σ𝑧𝑖) (5.27)

𝑧𝑖 ∼ 𝑀𝑛 (1, 𝑞0,1, ..., 𝑞0,𝐾) (5.28)

𝜇𝑘 ∼ 𝑁
(
0, 𝜏−1

0 Σ𝑘

)
(5.29)

Σ𝑘 ∼ 𝐼𝑊 (𝑑0, 𝑆0) (5.30)

Given the realization of the allocation variables 𝑧, the data is assigned across the

𝐾 components. For a component with index 𝑘, define 𝑦𝑘 = {𝑥𝑖 : 𝑧𝑖 = 𝑘} and 𝑛𝑘 =

#{𝑦𝑘}. Then the likelihood can be expressed as 𝑝(𝑦𝑘∣𝜇𝑘,Σ𝑘) =
∏𝑛𝑘

𝑙=1 𝑁(𝑦𝑙,𝑘∣𝜇𝑘,Σ𝑘)

where 𝑙 is used to index the data points in component 𝑘. By marginalizing out the

cluster mean 𝜇𝑘 of component 𝑘, the likelihood becomes

𝑝(𝑦𝑘∣Σ𝑘, 𝜏0) =

∫
𝑝(𝑦𝑘∣𝜇𝑘,Σ𝑘)𝑝(𝜇𝑘∣0, 𝜏−1

0 Σ𝑘)𝑑𝜇𝑘 (5.31)

=

(
𝜏0

𝜏0+𝑛𝑘

) 𝑝
2

(2𝜋)
𝑛𝑘𝑝

2 ∣Σ𝑘∣
𝑛𝑘
2

exp

[
−Tr(𝑄0Σ

−1
𝑘 ) +

𝜏0𝑛𝑘

𝜏0+𝑛𝑘
𝑦𝑇Σ−1

𝑘 𝑦

2

]
(5.32)
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where 𝑄0 =
∑𝑛𝑘

𝑖=1(𝑦
(𝑖)
𝑘 − 𝑦𝑘)(𝑦

(𝑖)
𝑘 − 𝑦𝑘)

𝑇 .

After marginalizing out both cluster mean 𝜇𝑘 and variance Σ𝑘, the likelihood

becomes

𝑝(𝑦𝑘∣𝜏0, 𝑑0, 𝑆0) =

∫ ∫
𝑝(𝑦𝑘∣𝜇𝑘,Σ𝑘)𝑝(𝜇𝑘∣0, 𝜏−1

0 Σ𝑘)𝑝(Σ𝑘∣𝑑0, 𝑆0)𝑑𝜇𝑘𝑑Σ𝑘 (5.33)

=

(
𝜏0

𝜏0+𝑛𝑘

) 𝑝
2

(𝜋)
𝑛𝑘𝑝

2

Γ𝑝
(
𝑑0+𝑛𝑘

2

)
Γ𝑝
(
𝑑0
2

) ∣𝑆0∣
𝑑0
2(

𝑆0 +𝑄0 +
𝜏0𝑛𝑘

𝜏0+𝑛𝑘
𝑦𝑘𝑦𝑘𝑇

) 𝑑0+𝑛𝑘
2

(5.34)

Under a conditionally conjugate set up, Gibbs sampling can be used to drawn

posterior samples using the following conditional posteriors:

𝑧𝑖 = 𝑀𝑛(1, 𝑤𝑖,1, ...𝑤𝑖,𝐾) (5.35a)

𝜇𝑘 ∼ 𝑁(⋅∣𝑚𝑘, 𝜏
−1
𝑘 Σ𝑘) (5.35b)

Σ𝑘 ∼ 𝐼𝑊 (⋅∣𝑑𝑘, 𝑆𝑘) (5.35c)

where

𝑤𝑖,𝑘 ∝ 𝑞0,𝑘𝑁(𝑥𝑖∣𝜇𝑘,Σ𝑘) (5.36a)

𝑚𝑘 =

{
(𝜏0 + 𝑛𝑘)

−1(𝑚0𝜏0 + 𝑛𝑘𝑦𝑘), if 𝑛𝑘 > 0
𝑚0, if 𝑛𝑘 = 0

(5.36b)

𝜏𝑘 =

{
𝜏0 + 𝑛𝑘, if 𝑛𝑘 > 0
𝜏0, if 𝑛𝑘 = 0

(5.36c)

𝑑𝑘 =

{
𝑑0 + 𝑛𝑘, if 𝑛𝑘 > 0
𝑑0, if 𝑛𝑘 = 0

(5.36d)

𝑆𝑘 =

{
𝑆0 +𝑄0 +

𝑛𝑘𝜏0
(𝑛𝑘+𝜏0)

(𝑚0 − 𝑦𝑘) (𝑚0 − 𝑦𝑘)
𝑇 , if 𝑛𝑘 > 0

𝑆0, if 𝑛𝑘 = 0
(5.36e)

Seven quantities will be studied for the log marginal likelihood estimation for

the normal mixture model,

95



𝑈1: 𝑈1 is the estimate of the upper bound of the log marginal likelihood for

normal mixture model with 𝜇𝑘 and Σ𝑘 being marginalized out. Only the al-

location variable 𝑧 remains and the variational distribution is set as 𝑞(𝜽;𝜸) =∏𝑛
𝑖=1 𝑀𝑛(𝑧𝑖∣1, 𝑤𝑖,1, ...𝑤𝑖,𝐾). After obtaining posterior samples {𝑧(𝑗)1:𝑛}𝑀𝑗=1 using

Gibbs sampling addressed in (5.35), we estimate the optimal parameters

𝑤𝑈
1:𝑛,1:𝐾 in the variational distribution using equation (5.7). Thus, the up-

per bound can be evaluated using equation (5.8), in which 𝑝(𝜽(𝑗), 𝐷∣𝑀) =∏𝐾
𝑘=1 𝑝(𝑦

(𝑗)
𝑘 ∣𝜏0, 𝑑0, 𝑆0)

∏𝑛
𝑖=1 𝑀𝑛(𝑧

(𝑗)
𝑖 ∣1, 𝑞0,1, ..., 𝑞0,𝐾).

𝑈2: 𝑈2 is the estimate of the upper bound of the log marginal likelihood for

normal mixture model with 𝜇𝑘 being marginalized out. The variational dis-

tribution is set as 𝑞(𝜽;𝜸) =
∏𝐾

𝑘=1 𝐼𝑊 (Σ𝑘∣𝜅𝑘,Ψ𝑘)
∏𝑛

𝑖=1 𝑀𝑛(𝑧𝑖∣1, 𝑤𝑖,1, ...𝑤𝑖,𝐾).

After obtaining posterior samples {𝑧(𝑗)1:𝑛,Σ
(𝑗)
1:𝐾}𝑀𝑗=1 using Gibbs sampling ad-

dressed in (5.35), we estimate the parameters 𝑤𝑈
1:𝑛,1:𝐾 , 𝜅𝑈

1:𝐾 and Ψ𝑈
1:𝐾 in the

variational distribution using equation (5.7). Thus, the upper bound can be

evaluated using equation (5.8), in which 𝑝(𝜽(𝑗), 𝐷∣𝑀) = ∏𝐾
𝑘=1 𝑝(𝑦

(𝑗)
𝑘 ∣Σ(𝑗)

𝑘 , 𝜏0)∏𝐾
𝑘=1 𝐼𝑊 (Σ

(𝑗)
𝑘 ∣𝑑0, 𝑆0)

∏𝑛
𝑖=1 𝑀𝑛(𝑧

(𝑗)
𝑖 ∣1, 𝑞0,1, ..., 𝑞0,𝐾).

𝑈3: 𝑈3 is the estimate of the upper bound of the log marginal likelihood for the

full parameterized model. The variational distribution is set as 𝑞(𝜽;𝜸) =∏𝐾
𝑘=1 𝑁(𝜇𝑘∣𝜈𝑘,Ω𝑘)

∏𝐾
𝑘=1 𝐼𝑊 (Σ𝑘∣𝜅𝑘,Ψ𝑘)

∏𝑛
𝑖=1 𝑀𝑛(𝑧𝑖∣1, 𝑤𝑖,1, ...𝑤𝑖,𝐾). After ob-

taining posterior samples {𝑧(𝑗)1:𝑛, 𝜇
(𝑗)
1:𝐾 ,Σ

(𝑗)
1:𝐾}𝑀𝑗=1 using Gibbs sampling addressed

in (5.35), we estimate the parameters 𝑤𝑈
1:𝑛,1:𝐾 , 𝜈𝑈1:𝐾 , Ω𝑈

1:𝐾 , 𝜅𝑈
1:𝐾 and Ψ𝑈

1:𝐾 in the

variational distribution by using equation (5.7). Thus, the upper bound can

be evaluated by equation (5.8), in which 𝑝(𝜽(𝑗), 𝐷∣𝑀) =∏𝐾
𝑘=1 𝑝(𝑦

(𝑗)
𝑘 ∣𝜇(𝑗)

𝑘 ,Σ
(𝑗)
𝑘 )∏𝐾

𝑘=1 𝑁(𝜇
(𝑗)
𝑘 ∣0, 𝜏−1

0 Σ
(𝑗)
𝑘 )
∏𝐾

𝑘=1 𝐼𝑊 (Σ
(𝑗)
𝑘 ∣𝑑0, 𝑆0)

∏𝑛
𝑖=1 𝑀𝑛(𝑧

(𝑗)
𝑖 ∣1, 𝑞0,1, ..., 𝑞0,𝐾).

𝐿1: 𝐿1 is the estimate of the quasi-lower bound of the log marginal likelihood
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with 𝜇𝑘 and Σ𝑘 being marginalized out. The variational distribution is set

as 𝑞(𝜽;𝜸) =
∏𝑛

𝑖=1 𝑀𝑛(𝑧𝑖∣1, 𝑤𝑖,1, ...𝑤𝑖,𝐾). Parameters 𝑤𝐿
1:𝑛,1:𝐾 in the variational

distribution take the same values as 𝑤𝑈
1:𝑛,1:𝐾 . Samples {𝑧(𝑗)1:𝑛}𝑀𝑗=1 are drawn

from
∏𝑛

𝑖=1 𝑀𝑛(𝑧𝑖∣1, 𝑤𝐿
𝑖,1, ..., 𝑤

𝐿
1,𝐾) and then the quasi-lower bound can be es-

timated by equation (5.21) in which 𝑝(𝜽(𝑗), 𝐷∣𝑀) = ∏𝐾
𝑘=1 𝑝(𝑦

(𝑗)
𝑘 ∣𝜏0, 𝑑0, 𝑆0)∏𝑛

𝑖=1 𝑀𝑛(𝑧
(𝑗)
𝑖 ∣1, 𝑞0,1, ..., 𝑞0,𝐾).

𝐿2: 𝐿2 is the estimate of the quasi-lower bound of the log marginal likelihood

with 𝜇𝑘 being marginalized out. The variational distribution is set as 𝑞(𝜽;𝜸) =∏𝐾
𝑘=1 𝐼𝑊 (Σ𝑘∣𝜅𝑘,Ψ𝑘)

∏𝑛
𝑖=1 𝑀𝑛(𝑧𝑖∣1, 𝑤𝑖,1, ...𝑤𝑖,𝐾). Parameters 𝑤𝐿

1:𝑛,1:𝐾 , 𝜅𝐿
1:𝐾 and

Ψ𝐿
1:𝐾 in the variational distribution take the same values as 𝑤𝑈

1:𝑛,1:𝐾 , 𝜅𝑈
1:𝐾 and

Ψ𝑈
1:𝐾 respectively. Samples {𝑧(𝑗)1:𝑛,Σ

(𝑗)
1:𝐾}𝑀𝑗=1 are drawn from

∏𝐾
𝑘=1 𝐼𝑊 (Σ𝑘∣𝜅𝐿

𝑘 ,Ψ
𝐿
𝑘 )∏𝑛

𝑖=1 𝑀𝑛(𝑧𝑖∣1, 𝑤𝐿
𝑖,1, ..., 𝑤

𝐿
𝑖,𝐾), and then the quasi-lower bound can be estimated

by equation (5.21), with 𝑝(𝜽(𝑗), 𝐷∣𝑀) =
∏𝐾

𝑘=1 𝑝(𝑦
(𝑗)
𝑘 ∣Σ(𝑗)

𝑘 , 𝜏0)
∏𝐾

𝑘=1 𝐼𝑊 (Σ
(𝑗)
𝑘 ∣𝑑0, 𝑆0)∏𝑛

𝑖=1 𝑀𝑛(𝑧
(𝑗)
𝑖 ∣1, 𝑞0,1, ..., 𝑞0,𝐾).

𝐿3: 𝐿3 is the estimate of quasi-lower bound of log marginal likelihood for the

fully parameterized model. The variational distribution is set as 𝑞(𝜽;𝜸) =∏𝐾
𝑘=1 𝑁(𝜇𝑘∣𝜈𝑘,Ω𝑘)

∏𝐾
𝑘=1 𝐼𝑊 (Σ𝑘∣𝜅𝑘,Ψ𝑘)

∏𝑛
𝑖=1 𝑀𝑛(𝑧𝑖∣1, 𝑤𝑖,1, ...𝑤𝑖,𝐾). Parameters

𝑤𝐿
1:𝑛,1:𝐾 , 𝜈𝐿1:𝐾 , Ω𝐿

1:𝐾 , 𝜅𝐿
1:𝐾 and Ψ𝐿

1:𝐾 in the variational distribution take the same

values as 𝑤𝑈
1:𝑛,1:𝐾 , 𝜈𝑈1:𝐾 , Ω𝑈

1:𝐾 , 𝜅𝑈
1:𝐾 and Ψ𝑈

1:𝐾 respectively. Samples {𝑧(𝑗)1:𝑛, 𝜇
(𝑗)
1:𝐾 ,

Σ
(𝑗)
1:𝐾}𝑀𝑗=1 are drawn from

∏𝐾
𝑘=1𝑁(𝜇𝑘∣𝜈𝐿𝑘 ,Ω𝐿

𝑘 )
∏𝐾

𝑘=1 𝐼𝑊 (Σ𝑘∣𝜅𝐿𝑘 ,Ψ𝐿
𝑘 )
∏𝑛

𝑖=1𝑀𝑛(𝑧𝑖∣1, 𝑤𝐿
𝑖,1:𝐾),

and then the quasi-lower bound can be estimated by equation (5.21), with

𝑝(𝜽(𝑗), 𝐷∣𝑀) =
∏𝐾

𝑘=1 𝑝(𝑦
(𝑗)
𝑘 ∣𝜇(𝑗)𝑘 ,Σ

(𝑗)
𝑘 )
∏𝐾

𝑘=1𝑁(𝜇
(𝑗)
𝑘 ∣0, 𝜏−1

0 Σ
(𝑗)
𝑘 )
∏𝐾

𝑘=1 𝐼𝑊 (Σ
(𝑗)
𝑘 ∣𝑑0, 𝑆0)∏𝑛

𝑖=1𝑀𝑛(𝑧
(𝑗)
𝑖 ∣1, 𝑞0,1, ..., 𝑞0,𝐾) .

𝐿4: 𝐿4 is the estimate of lower bound of log marginal likelihood using the vari-
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ational method. Variational methods for normal mixture models have been

studied in Corduneanu and Bishop (2001) and Wang and Titterington (2004).

The variational distribution is 𝑞(𝜽;𝜸) =
∏𝐾

𝑘=1 𝑁(𝜇𝑘∣𝜈𝑘,Ω𝑘)
∏𝐾

𝑘=1 𝐼𝑊 (Σ𝑘∣𝜅𝑘,Ψ𝑘)∏𝑛
𝑖=1 𝑀𝑛(𝑧𝑖∣1, 𝑤𝑖,1, ...𝑤𝑖,𝐾). Optimal parameters 𝑤𝐿

1:𝑛,1:𝐾 , 𝜈𝐿1:𝐾 , Ω𝐿
1:𝐾 , 𝜅𝐿

1:𝐾 and

Ψ𝐿
1:𝐾 can be estimated by variational method i.e. the coordinate ascent algo-

rithm presented in Appendix C. Samples {𝑧(𝑗)1:𝑛, 𝜇
(𝑗)
1:𝐾 ,Σ

(𝑗)
1:𝐾}𝑀𝑗=1 are drawn from∏𝐾

𝑘=1 𝑁(𝜇𝑘∣𝜈𝐿𝑘 ,Ω𝐿
𝑘 )
∏𝐾

𝑘=1 𝐼𝑊 (Σ𝑘∣𝜅𝐿
𝑘 ,Ψ

𝐿
𝑘 )
∏𝑛

𝑖=1 𝑀𝑛(𝑧𝑖∣1, 𝑤𝐿
𝑖,1, ..., 𝑤

𝐿
𝑖,𝐾), and then

the lower bound can be estimated by equation (5.21), with 𝑝(𝜽(𝑗), 𝐷∣𝑀) the

same as in 𝐿3.

We investigate our proposed approach on a synthetic data set which has been

studied in Corduneanu and Bishop (2001): 600 data points generated from a mix-

ture of five bivariate normals with means: [0, 0], [3,−3], [3, 3], [−3, 3], [−3,−3] and

covariances: [1, 0; 0, 1], [1, 0.5; 0.5, 1], [1,−0.5;−0.5, 1], [1, 0.5; 0.5, 1], [1,−0.5;−0.5, 1].
The synthetic data are shown in Figure 5.3. We run the process of computing the

values of these seven quantities 20 time, and show their means and standard de-

viations in Table 5.2. From the comparison, we find 𝑈1 (𝐿1) has better perfor-

mance than 𝑈2 (𝐿2) while 𝑈2 (𝐿2) performs better than 𝑈3(𝐿3), which means that

by marginalizing out some parameter in the model, can significantly reduce the

spread between the upper/lower bounds. Moreover, as the variational method can

only be applied to the full parameterized mixture model, it cannot achieve perfor-

mance as good as either 𝐿1 or 𝐿2; as shown in Figure 5.4 it has a big ‘gap’ to 𝐿1,

which implies that the lower bound given by the variational method could be far

from the exact value of log likelihood. Moreover, the curves of the means of 𝑈1, 𝐿1

in Figure 5.4 show that the preferable order is 𝐾 = 5, which is the ‘true’ model in

our context.
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Figure 5.3: 600 data points sampled from the mixture of 5 bivariate Gaussians.
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Figure 5.4: Plot of the lower bound 𝐿1, and upper bound 𝐿2 of the log marginal likelihood
of the mixture model with varying number of components. For comparison, the lower
bound 𝐿4 estimated by the variational method is also shown in the plot.
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𝑈3 𝑈2 𝑈1 𝐿1 𝐿2 𝐿3 𝐿4

k=2
−2895.4
(±22.6)

−2895.7
(±21.6)

−2901.9
(±25.5)

−2908.9
(±27.5)

−2909.4
(±27.7)

−2911.2
(±27.5)

−2910.2
(±27.3)

k=3
−2836.7
(±80.6)

−2848.3
(±38.8)

−2859.8
(±21.1)

−2863.4
(±14.3)

−2877.0
(±15.4)

−2884.8
(±26.9)

−2884.2
(±24.8)

k=4
−2781.6
(±21.8)

−2782.3
(±21.9)

−2784.1
(±21.1)

−2785.1
(±21.4)

−2786.3
(±22.5)

−2786.9
(±22.6)

−2787.2
(±22.6)

k=5
−2683.0
(±0.15)

−2683.8
(±0.23)

−2686.0
(±0.09)

−2687.2
(±0.06)

−2688.6
(±0.08)

−2689.2
(±0.07)

−2689.2
(±0.08)

k=6
−2777.1
(±1.73)

−2779.5
(±1.93)

−2782.5
(±1.57)

−2785.4
(±1.20)

−2788.2
(±1.12)

−2821.6
(±4.05)

−2822.2
(±4.58)

k=7
−2857.4
(±2.44)

−2860.5
(±2.39)

−2863.7
(±2.31)

−2869.4
(±1.77)

−2873.4
(±1.60)

−2946.0
(±9.48)

−2945.7
(±8.68)

k=8
−2925.7
(±2.88)

−2931.3
(±3.42)

−2934.4
(±3.31)

−2941.2
(±2.12)

−2946.5
(±1.95)

−3059.7
(±8.18)

−3058.5
(±8.41)

k=9
−2982.6
(±8.01)

−2990.9
(±8.92)

−2993.7
(±7.23)

−3002.7
(±4.23)

−3010.9
(±3.98)

−3153.5
(±17.8)

−3151.9
(±17.1)

k=10
−3038.9
(±3.10)

−3049.0
(±4.14)

−3052.3
(±3.98)

−3060.5
(±2.19)

−3067.6
(±1.89)

−3246.1
(±10.5)

−3243.8
(±10.4)

Table 5.2: Monte Carlo estimation of various lower and upper bounds of the log marginal
likelihood of mixture model: mean and standard deviation over repeat simulations.

5.5 Discussion

Our variational method provides both lower and upper bounds of log marginal like-

lihoods that are optimized under a certain variational density form. These bounds

not only facilitate more reliable model selection but also provide a way to see the

advantage of the variational density as an approximation to the posterior density of

model parameters. It is also worth noting that our proposed method is more gen-

eral in terms of the variational density form, since in the MCSA optimization for the

lower bound, the variational density does not need to take a factorized form. This

is important when either only one parameter remains after marginalized out other

model parameters or the model parameters left in the integration are so dependent

on each other that the factorized variational density is a poor approximation to the

posterior density of these parameters.

Additionally, the coexistence of the upper and lower bounds can relax the re-
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quirement to find exact optimal bounds. Apparently, a single bound strongly relies

on the optimization because its distance to the true value of log marginal likeli-

hood itself is not bounded. The requirement of reducing this distance is imposed

on the bound optimization algorithms and makes marginal likelihood computation

difficult when it involves in tremendously large number of model parameters. In

particular, the lower bound optimization that depends on EM or MCSA is more

stressed by dimensionality, and convergence can be unbearably slow.

Such stress can be reduced when the bounds on both sides are available. On

one hand, if the distance between these two bounds is small enough to distinguish

different models, their optima are not necessary. One the other hand, since we use

the same variational density form 𝑞(𝜽;𝜸) (though this is not necessary otherwise)

for both bounds, if one of the bounds is easier to be optimized, the corresponding

optimum variational density can be applied to compute the other bound, which

may not be optimized but may be good enough for the purpose of model selection.

This is due to the fact that the tightness of the bounds is essentially determined by

how good an approximation 𝑞(𝜽;𝜸) is to 𝑝(𝜽∣𝐷,𝑀). In such a context, the upper

bound shows peculiar advantage because of the better convergence property of

MCMC method compared to MCSA. Moreover, simulation studies also verify that

the upper bound and the quasi-lower bound whose variational parameters take

the same optimal values are close to each other and facilitate more reliable model

selection.

Furthermore, simulation studies show that by marginalizing out some parame-

ters in the model, the ‘discrepancy’ between bounds of the log marginal likelihood

and its exact value can be significantly reduced. The marginalization not only re-

duces the dimension of the parameter space, which enables us to approximate the

posterior more easily, but can also reduce the correlation between model parame-
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ters. Since we always use separated variational distributions for each of the model

parameters to approximate the posterior of correlated model parameters, the KL-

divergence between the posterior and variational distributions cannot approach

zero no matter how we tune the associated parameters in the variational distribu-

tions, resulting in the ‘discrepancy’ between bounds of log marginal likelihood and

its exact value. Due to the above factors, the marginalization technique used in our

upper/lower bounds approximation method enable us to reduce this ‘discrepancy’.
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Chapter 6

Adaptive Monte Carlo Methods, Sequential
Learning and Marginal Likelihood
Computation

In this chapter, adaptive Monte Carlo sampling methods are introduced aimed at

obtaining faster convergence rates and more efficient estimation. Adaptive Markov

chains have seen renewed interest in recent years due in part to the emergence of

certain theoretical guarantees (Haario et al., 2001; Roberts and Rosenthal, 2007).

With adaptive MCMC algorithms, the entire sample history of a process is used

to tune parameters of the proposal density during simulation. We present a gen-

eral framework to design adaptive MCMC algorithms, emphasizing the adaptive

Metropolized independence sampler (AMIS). To handle multimodality, we develop

a simple but effective adaptation strategy using a family of mixture distribution

proposals.

Motivated by the demand for flexible proposal forms in adaptive Monte Carlo

methods and the need for effective approaches to fitting nonparametric model for

large data sets, we propose a sequential learning method for truncated DP mixture

(TDP) models, which utilizes only a small subset of the whole data set to update

the associated parameters in the TDP mixture distribution iteratively, and gradually

approach the optimal TDP mixture in the sense of minimizing the KL-divergence be-

tween the unknown target distribution generating the data and the TDP mixture

distribution. This sequential learning approach can be incorporated into the adap-

tive SMC sampler to enhance the flexibility of the proposal distribution. Simulation

studies are provided to demonstrate the efficiency of our proposed methods.
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One of our primary goal in this study is to use adaptive Monte Carlo methods

to improve the estimation of the marginal likelihood in Bayesian inference. We

present the adaptive Monte Carlo based marginal likelihood computation method.

The adaptive MCMC method is used to draw samples from the target distribution,

while a TDP mixture model is tuned by the proposed sequential learning approach

utilizing these samples. Finally, the well tuned TDP mixture model serves as the

importance function for marginal likelihood computation. Both synthetic exam-

ple and a real world application in Bayesian Exoplanet Searches are presented to

demonstrate the performance of the proposed method.

6.1 Adaptive Markov Chain Monte Carlo

Markov chain Monte Carlo methods are widely used to sample from analytically

intractable probability distributions arising in statistics (Gilks et al., 1996; Robert

and Casella, 2004). The efficiency of MCMC methods is of significant practical im-

portance, and loosely speaking is determined by the convergence rate of the chain

and asymptotic variance of ergodic averages, both of which are controlled by the

spectral gap of the Markov kernel. Thus the efficiency of MCMC algorithms can de-

pend significantly on the design of the Markov transition kernel; see e.g. (Hastings,

1970; Gelman et al., 1996; Mira, 2001; Roberts and Rosenthal, 2001). However

choice of effective kernels and their associated tuning parameters is often difficult

in precisely those problems where MCMC is most needed: high dimensional prob-

lems where we know little a priori about the shape of the (potentially multimodal)

target posterior distribution.

Due to the difficulty of obtaining rapidly mixing Markov chains for simulating

complicated target distributions, adaptive MCMC algorithms have been proposed

which use the previous history of the chain to automatically tune or “learn” the pro-
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posal distribution parameters during simulation, with the goal of obtaining faster

convergence or more efficient estimation (Gelfand and Sahu, 1994; Gilks et al.,

1998). In adaptive MCMC, the proposal distribution is continually or periodically

modified with the aim of improving efficiency. Although this idea is intuitively ap-

pealing, such algorithms generally fail to yield Markov chains, making design of

adaptive MC schemes with theoretical convergence guarantees more challenging.

Gilks et al. (1998) and Brockwell and Kadane (2005) approach this via regenera-

tion times, at which the kernel may be modified while producing independent tours

each generating correct ergodic averages. More recently, Haario et al. (2001) give

an ergodic theorem for an adaptive Metropolis scheme based on the Robbins-Munro

stochastic approximation algorithm (Robbins and Monro, 1951), and this result

has led to significant renewed interest in adaptive algorithms and theory (Andrieu

et al., 2005; Andrieu and Moulines, 2006; Erland, 2003; Roberts and Rosenthal,

2007). Recently, Roberts and Rosenthal (2007) provided a simple elegant proof

and concise set of conditions under which ergodic theorems can be obtained. One

such condition requires that the magnitude of adaptation is continually decreasing

in such a way that convergence of the chain to the target distribution in the limit is

guaranteed; this kind of algorithm is referred as diminishing adaptation by Erland

(2003). The other is a bounded convergence condition, which essentially guarantees

that all transition kernels considered have bounded convergence time.

In this work, we describe a general approach to the design of adaptive MCMC

algorithms which utilizes a mixture distribution for the proposal kernel, and adapts

the parameters of this proposal distribution to minimize Kullback-Leibler diver-

gence from the target distribution. We illustrate our approach using a Metropolized

independence sampler (MIS) (Hastings, 1970; Tierney, 1994), a special case of the

Metropolis algorithm where the proposal is independent of the current state. (The
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method described here utilizes the stochastic approximation approach of Ji (2006).

Andrieu and Moulines (2006) have proposed a closely related method for adapt-

ing MIS mixtures using KL divergence, although to our knowledge it has not been

applied to the variable selection problems studied here.)

6.1.1 Adaptive Metropolized Independence Sampler

Performance of MIS samplers is strongly dependent on the proposal distribution

selected. Our adaptation strategy tunes the parametrized proposal distribution

to approximate the target distribution in the sense of minimizing Kullback-Leibler

(KL)-divergence. Thus for independence proposal density 𝑞(𝑥;𝜓) with parameters

𝜓, and target distribution 𝜋(𝑥), we wish to find the optimal parameters 𝜓∗ which

minimize 𝒟 [𝜋(𝑥) ∥ 𝑞(𝑥;𝜓)] = 𝔼𝜋

[
log 𝜋(𝑥)

𝑞(𝑥;𝜓)

]
. Then 𝜓∗ is obtained as a root of the

derivative of 𝒟[𝜋(𝑥) ∥ 𝑞(𝑥;𝜓)]:

ℎ(𝜓) = −
∫

𝜋(𝑥)

𝑞(𝑥;𝜓)

∂

∂𝜓
𝑞(𝑥;𝜓) = 0 (6.1)

where we assume the integrand is continuous. Exact solution of the integral equa-

tion (6.7) is generally intractable, as ℎ(𝜓) involves an integral with respect to the

target distribution 𝜋(𝑥) which cannot be calculated directly. However, denoting

𝑓(𝑥, 𝜓) = ∂
∂𝜓
[log 𝜋(𝑥)

𝑞(𝑥;𝜓)
] and assuming 𝑓(𝑥, 𝜓) ∈ 𝐿2(𝜋), we can approximate ℎ(𝜓) by

Monte Carlo integration:

ℎ(𝜓) ≈ 1

𝐾

𝐾∑
𝑘=1

𝑓(𝑋(𝑘), 𝜓),

where 𝑋(𝑘) ∼ 𝜋(𝑥).

When 𝑞(𝑥;𝜓) is in the exponential family, so 𝑞(𝑥;𝜓) = 𝑐(𝑥) exp (𝑡(𝑥)′𝜓 − 𝐴(𝜓))

in canonical form with natural parameter 𝜓, we obtain
∫
𝜋(𝑥)𝑡(𝑥) = ∂

∂𝜓
𝐴(𝜓), which
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says that we should match the expected sufficient statistics under 𝜋 to the moments

of 𝑞. However 𝐸𝜋(𝑡(𝑥)) is an integral of the general form we are constructing the

MCMC algorithm to calculate in the first place, and thus assumed to be analyti-

cally intractable. Instead, we adaptively match the moments of 𝑞 to a Monte Carlo

approximation of 𝐸𝜋(𝑡(𝑥)) based on the current sample history.

Let ℎ̂(𝑋(1:𝐾);𝜓) denote the estimate of ℎ(𝜓) based on the previous sample path

𝑋(1:𝑘) from 𝜋(𝑥), which can be therefore viewed as a noisy ‘observation’ of ℎ(𝜓). A

common approach to obtaining roots of ℎ(𝜓) = 0 when only noisy evaluations of

ℎ(𝜓) is the Stochastic Approximation (SA) algorithm (Robbins and Monro, 1951;

Kushner and Yin, 1997). Stochastic approximation is an iterative algorithm ex-

pressed as

𝜓𝑛+1 = 𝜓𝑛 + 𝑟𝑛+1(ℎ(𝜓𝑛) + 𝜉𝑛+1)

= 𝜓𝑛 + 𝑟𝑛+1 ℎ̂(𝑋
(1:𝐾)
𝑛 ;𝜓𝑛), (6.2)

where 𝑋
(1:𝐾)
𝑛 ∼ 𝜋(𝑥) are samples generated by Metropolis MCMC with proposal

distribution 𝑞(𝑥;𝜓𝑛), {𝜉𝑛} is a sequence of ‘noise’ (where the Monte Carlo estimate

ℎ̂(𝑋
(1:𝐾)
𝑛 ;𝜓𝑛) can be interpreted as ℎ(𝜓𝑛)+𝜉𝑛), and {𝑟𝑛} is a sequence of decreasing

step-sizes satisfying
∑

𝑛 𝑟𝑛 =∞ and
∑

𝑛 𝑟2𝑛 <∞ .

In our case, SA can be viewed as performing an iterative gradient descent, with

Monte Carlo approximation of the gradient at each iteration. It is easily verified that

when 𝑞 is an exponential family distribution 𝒟[𝜋(𝑥) ∥ 𝑞(𝑥;𝜓)] is convex. Then the

sequence {𝜓𝑛} defined by equation (6.8) converges to the unique root of equation

(6.7) under mild conditions on {𝜉𝑛} and {𝑟𝑛} (Andrieu et al., 2005). However An-

drieu and Moulines (2006) also show that an adaptive proposal 𝑞(𝑥;𝜓) for MIS with

𝜓 unrestricted does not guarantee convergence of the algorithm. A straightforward

solution due to Haario et al. (2001) is to use an additional fixed mixture compo-

nent 𝑞(𝑥; 𝜁) which is not modified during the adaptive updating; in what follows
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we take 𝑞(𝑥; 𝜁) = 𝑁(𝑥; 𝜇̃, Σ̃) for some fixed (𝜇̃, Σ̃). As a simple illustrative example,

choosing the adaptive proposal distributions 𝑞(𝑥;𝜓) to be normal 𝑁(𝑥;𝜇,Σ) with

parameters 𝜓 = (𝜇,Σ) yields the following algorithm:

Algorithm 6.1: Adaptive Metropolized Independence Sampler

∙ Initialization: Choose 𝜓0 = (𝜇0,Σ0) and set 𝑛 = 0.

∙ Iteration 𝑛+ 1:

1. Simulate 𝐾 samples 𝑋
(1:𝐾)
𝑛+1 by MIS wrt 𝜋(𝑥) with proposal distribution

𝑞𝑛 = 𝜆𝑁(𝑥; 𝜇̃, Σ̃) + (1− 𝜆)𝑁(𝑥;𝜇𝑛,Σ𝑛)

2. Update the parameters of the adaptive proposal by

𝜇𝑛+1 = 𝜇𝑛 + 𝑟𝑛+1

[
1

𝐾

𝐾∑
𝑘=1

(
𝑋

(𝑘)
𝑛+1 − 𝜇𝑛

)]

Σ𝑛+1 = Σ𝑛 + 𝑟𝑛+1

[
1

𝐾

𝐾∑
𝑘=1

(
𝑋

(𝑘)
𝑛+1 − 𝜇𝑛

)(
𝑋

(𝑘)
𝑛+1 − 𝜇𝑛

)𝑇
− Σ𝑛

]

where 𝑟𝑛+1 is the step-size of the SA algorithm.

The covariance update of Step 2 is similar to that of (Haario et al., 2001), but as

we use an independence proposal rather than a random walk proposal the mean is

also approximated. The above adaptive MCMC algorithm satisfies the diminishing

adaptation condition of Roberts and Rosenthal (2007) as long as the step-size se-

quence 𝑟𝑛 → 0, and the bounded convergence is satisfied for 𝜆 > 0, ensuring asymp-

totic convergence and a weak law of large numbers for this algorithm (Roberts and

Rosenthal, 2007).
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6.1.2 Adaptive MIS with Mixture Proposal Distribution

When the adaptive Metropolized independence sampler given above is applied to

sample from a multimodal target distribution, it will generally perform poorly due

to the difficulty in approximating the posterior with a unimodal 𝑞 distribution.

An alternative is to take 𝑞 to be a mixture distribution, and adapt the mixture

component parameters to approximate the multimodal target distribution by min-

imizing KL-divergence. This results in an adaptive proposal of the form 𝑞(𝑥) =

𝜆𝑁(𝑥; 𝜇̃, Σ̃) + (1 − 𝜆)
∑𝑀

𝑚=1 𝑤𝑚𝑁(𝑥;𝜇𝑚,Σ𝑚), where 𝜓 = (𝑤1:𝑀 , 𝜇1:𝑀 ,Σ1:𝑀 ) are the

parameters to be adapted, and 𝑀 is the number of mixture components. 𝑀 can be

set to a relatively large number to ensure that the proposal can adequately cover

multiple modes. Then Ji (2006) derived the adaptation strategy:

Algorithm 6.2: Adaptive MCMC with Mixture Distribution Proposal

∙ Initialization: Choose (𝑤0, 𝜇0,Σ0) = {𝑤𝑖,0, 𝜇𝑖,0,Σ𝑖,0; 𝑖 = 1, 2, . . . ,𝑀}, and set

𝑛← 0.

∙ Iteration 𝑛+ 1:

1. Simulate a new state 𝑋𝑛+1 by MIS wrt 𝜋(𝑥) with proposal distribution

𝑞𝑛(𝑥) = 𝜆 𝑞0(𝑥; 𝜇̃, Σ̃) + (1− 𝜆) 𝑞(𝑥;𝑤𝑛, 𝜇𝑛,Σ𝑛)

2. Update the parameters 𝑤𝑛+1 (or {𝑤𝑖,𝑛+1}) by

𝑤𝑖,𝑛+1 = 𝑤𝑖,𝑛 + 𝑟𝑖,𝑛+1(𝑂𝑖(𝑋𝑛+1)− 1) (6.3)

𝑤𝑖,𝑛+1 = 𝑤𝑖,𝑛+1/

𝑀∑
𝑖=1

𝑤𝑖,𝑛+1 (6.4)
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3. Update the parameters (𝜇𝑛+1,Σ𝑛+1) (or {𝜇𝑖,𝑛+1,Σ𝑖,𝑛+1}) by

𝜇𝑖,𝑛+1 = 𝜇𝑖,𝑛 + 𝛼𝑖,𝑛+1 (𝑋𝑛+1 − 𝜇𝑖,𝑛) (6.5)

Σ𝑖,𝑛+1 = Σ𝑖,𝑛 + 𝛼𝑖,𝑛+1

[
(𝑋𝑛+1 − 𝜇𝑖,𝑛) (𝑋𝑛+1 − 𝜇𝑖,𝑛)

𝑇 − Σ𝑖,𝑛

]
(6.6)

where

𝑂𝑖(𝑋𝑛+1) =
𝑁(𝑋𝑛+1;𝜇𝑖,𝑛,Σ𝑖,𝑛)∑𝑀

𝑚=1 𝑤𝑚,𝑛𝑁(𝑋𝑛+1;𝜇𝑚,𝑛,Σ𝑚,𝑛)

and 𝛼𝑖,𝑛+1 = 𝑟𝑖,𝑛+1𝑤𝑚,𝑛𝑂𝑖(𝑋𝑛+1).

For notational simplicity (6.3-6.6) show using a single sample 𝑋(𝑛+1) for up-

dating parameters, although as discussed previously using 𝐾 > 1 samples samples

𝑋
(1:𝐾)
𝑛+1 will enable the SA algorithm converge more smoothly.

6.1.3 Extensions

For the Bayesian variable selection problem, we use a family of proposals con-

taining both a point mass component and a Gaussian mixture family. Under our

adaptation strategy, the mixing weight of the point mass component adapts to ap-

proximate the posterior inclusion probability of its associated variable, while the

Gaussian mixture distribution approximates the non-zero component of the coef-

ficient’s posterior distribution. This mixture proposal enables the efficient mixing

between models with and without the variable included, and the resulting sam-

pling scheme performs parameter estimation and variable selection simultaneously

(Ji and Schmidler, 2008).

When performing Bayesian variable selection using priors of the form (1 −
𝑝)𝛿0(⋅) + 𝑝𝒩 (⋅∣0, 𝜎), the resulting conditional posterior is a mixture of point mass
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and an normal-likelihood product. When this conditional distribution is not avail-

able in closed form (e.g. due to nonlinearity or non-conjugacy), sampling from

the posterior via MCMC can be difficult. In particular, random-walk Metropolis can

converge very slowly due to multimodality, and an MIS sampler will perform poorly

unless the proposal distribution can be chosen in advance to closely approximates

the target distribution. However, the adaptive mixture MIS algorithm described

in the previous section can successfully handle both of these difficulties. We need

simply to modify the family of proposal mixture distributions to include both point

mass and normal components:

𝑞(𝑥) = 𝜆𝑁(𝑥; 𝜇̃, Σ̃) + (1− 𝜆)
[
𝑤0𝛿(𝑥) +

𝑀∑
𝑚=1

𝑤𝑚𝑁(𝜇𝑚,Σ𝑚)
]
,

where the parameters 𝜓 = (𝑤0:𝑀 , 𝜇1:𝑀 ,Σ1:𝑀 ) can be tuned using an adaptive scheme

similar to that of the previous section.

6.1.4 Example

We present a simple concrete example to illustrate the performance of our adaptive

MIS with point mass mixture proposal. Suppose we consider inclusion or exclusion

of a single parameter, with posterior posterior distribution given by point mass

mixture

𝜋(𝑥) = 0.3𝛿(𝑥) + 0.7𝑁(𝑥; 5, 1).

We apply the adaptive MIS Algorithm 3 to sample from this target distribution

𝜋(𝑥). We set 𝑀 = 1, making the proposal distribution of the form 𝑤1𝛿+𝑤2𝑁(𝜇, 𝜎).

Therefore for this illustrative example, 𝑞 and 𝜋 are of the same parametric (𝑤1, 𝜇, 𝜎)

family, and it is expected that 𝑞 will converge to 𝜋.

Figures 6.1- 6.2 show results on this simple example, using initial parameter
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Figure 6.1: Trace plots of proposal distribution parameters. Under the adaptive MIS
algorithm described in text, proposal parameters converge under to their optimal values:
𝑤 = [0.3, 0.7], 𝜇∗ = 5, 𝜎∗ = 1.

values 𝑤1 = 0.5, 𝑤2 = 0.5, 𝜇 = 0, and 𝜎 = 10, and SA step-size 𝑟𝑛 = 0.1/𝑛. Fig-

ures 6.1 shows traces of proposal distribution parameters (𝑤1, 𝑤2, 𝜇, 𝜎), where it

can be seen that all parameters converge to their respective optimal values 𝑤∗
1 =

0.3, 𝑤∗
2 = 0.7, 𝜇

∗ = 5, and 𝜎∗ = 1, and therefore the proposal distribution converges

to the target distribution. Figure 6.2 compares the performance of this adaptive

scheme with a non-adaptive Metropolized independence sampler using fixed pro-

posal 0.5𝛿 + 0.5𝑁(0, 100), via posterior histograms and autocorrelation plots. The

adaptive algorithm is seen to perform significantly better.
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Figure 6.2: Autocorrelation and posterior histogram for toy example obtained from (a)
MIS algorithm with fixed proposal distribution, versus (b) adaptive MIS algorithm with
point mass mixture proposal.

6.2 Sequential Learning for DP Mixtures

In this section, we discuss some sequential learning methods for DP mixture. One

motivating example arises from the adaptive Monte Carlo methods discussed in

last section. When the adaptive Metropolized independence sampler given above is

applied, in order to sample from a multimodal target distribution, it will generally

perform poorly due to the difficulty of approximating the posterior with a unimodal

𝑞 distribution. An intuitive idea is to take 𝑞 to be a mixture distribution, and adapt

the mixture component parameters to approximate the multimodal target distri-

bution by minimizing the KL-divergence (Ji, 2006). This results in an adaptive

proposal of the form 𝑞(𝑥) = 𝜆𝑁(𝑥; 𝜇̃, Σ̃) + (1 − 𝜆)
∑𝑀

𝑚=1 𝑤𝑚𝑁(𝑥;𝜇𝑚,Σ𝑚), where

𝜓 = (𝑤1:𝑀 , 𝜇1:𝑀 ,Σ1:𝑀 ) are the parameters to be adapted, and 𝑀 is the number of

mixture components. Although 𝑀 can be set to a relatively large number to ensure

that the proposal can adequately cover multiple modes, a nonparametric proposal

is more elegant since it can provide more flexibility. As a result, we require methods

to sequentially tune the nonparametric proposal distribution by learning from the

history information of samples.
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Another motivating application arises from fitting a nonparametric model like

DP mixture model for large data set, for example in flow cytometry study (Chan

et al., 2008), where the number of data points may range from thousands to mil-

lions. Therefore, using conventional approaches such as MCMC, or variational

methods on such data set requires an extremely long time. However, by using a

subset of the data and sequentially learning the nonparametric model to fit the

distribution of the full data set, we can significantly reduce the computation time.

Specifically, assume a set of data 𝑋 = [𝑥1, ..., 𝑥𝑁 ] subjected to an unknown

distribution 𝜋(⋅). Our goal is to fit a nonparametric model for the full data set 𝑋 or

tune the nonparametric distribution to approximate 𝜋(⋅) in a sequential fashion: at

each iteration we choose 𝑋𝑡, a subset of 𝑋 selected either randomly or by design,

then update the nonparametric distribution by learning from 𝑋𝑡.

Inspired by the adaptive MCMC with mixture proposal (Ji, 2006; Ji and Schmi-

dler, 2008) as well as stochastic approximation version of EM (Celeux and Diebolt,

1992; Delyon et al., 1999), a sequential learning approach for fitting a DP mixture

model is proposed in this work. The idea is to minimize the KL-divergence be-

tween 𝜋(⋅) and a nonparametric DP mixture distribution. Owing to the advantage

of truncated DP mixtures, we can obtain a closed form update formula to iteratively

update the parameters of the truncated DP mixtures.

6.2.1 Stochastic Approximation for DP Mixtures

The idea of the stochastic approximation for sequential learning for DP mixtures

comes from the adaptation strategy that tends to minimize the KL-divergence be-

tween the distribution of interest and the proposal in mixture fashion in adaptive

MCMC methods (Ji, 2006; Ji and Schmidler, 2008). More specifically, the adap-

tive proposal is in the form of 𝑞(𝑥) = 𝜆𝑁(𝑥; 𝜇̃, Σ̃) + (1− 𝜆)
∑𝑀

𝑚=1 𝑤𝑚𝑁(𝑥;𝜇𝑚,Σ𝑚),
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where 𝜓 = (𝑤1:𝑀 , 𝜇1:𝑀 ,Σ1:𝑀 ) are the parameters to be adapted, and 𝑀 is the pre-

defined number of mixture components. We propose a stochastic approximation

based sequential leaning approach to tune parameters (𝑤1:𝑀 , 𝜇1:𝑀 ,Σ1:𝑀) by grad-

ually learning from samples of the unknown distribution 𝜋(⋅), enabling 𝑞(⋅) to ap-

proximate 𝜋(⋅) in the sense of minimizing the KL-divergence 𝒟[𝜋(⋅)∣𝑞(⋅)].
The idea of our sequential learning approach is to tune the nonparametric pro-

posal distribution, expressed as a truncated DP mixture, in order to approximate

the target distribution in the sense of minimizing KL-divergence. Thus for proposal

density 𝑞(𝑥;𝜓) with parameters 𝜓, and target distribution 𝜋(𝑥), we wish to find the

optimal parameters 𝜓∗ which minimize 𝒟 [𝜋(𝑥) ∥ 𝑞(𝑥;𝜓)] = 𝔼𝜋

[
log 𝜋(𝑥)

𝑞(𝑥;𝜓)

]
. Then 𝜓∗

is obtained as a root of the derivative of 𝒟[𝜋(𝑥) ∥ 𝑞(𝑥;𝜓)]:

ℎ(𝜓) = −
∫

𝜋(𝑥)

𝑞(𝑥;𝜓)

∂

∂𝜓
𝑞(𝑥;𝜓) = 0. (6.7)

Exact solution of the integral equation (6.7) is generally intractable, as ℎ(𝜓) in-

volves an integral with respect to the target distribution 𝜋(𝑥) which is usually a

complex distribution and cannot be calculated directly. However, since we can ob-

tain samples 𝑋1:𝑇 from 𝜋(𝑥) at each time index 𝑡, denoting 𝑓(𝑥, 𝜓) = ∂
∂𝜓
[log 𝜋(𝑥)

𝑞(𝑥;𝜓)
]

and assuming 𝑓(𝑥, 𝜓) ∈ 𝐿2(𝜋), we can approximate ℎ(𝜓) by Monte Carlo integra-

tion:

ℎ(𝜓) ≈ 1

𝑀

𝑀∑
𝑘=1

𝑓(𝑥
(𝑘)
𝑡 , 𝜓)

where 𝑋𝑡 = {𝑥(𝑘)
𝑡 : 𝑥

(𝑘)
𝑡 ∼ 𝜋(𝑥)}.

Let ℎ̂(𝑥(1:𝐾);𝜓) denote the estimate of ℎ(𝜓) based on 𝑥
(1:𝑘)
𝑡 sampled from 𝜋(𝑥),

which can be therefore viewed as a noisy ‘observation’ of ℎ(𝜓). One available ap-

proach to obtaining roots of ℎ(𝜓) = 0 when only noisy evaluations of ℎ(𝜓) is the

Stochastic Approximation (SA) algorithm (Robbins and Monro, 1951; Kushner and
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Yin, 1997). The SA algorithm iteratively updates 𝜓 to approximate its optimal val-

ues by the following formula,

𝜓𝑡+1 = 𝜓𝑡 + 𝑟𝑡+1(ℎ(𝜓𝑡) + 𝜉𝑡+1)

= 𝜓𝑡 + 𝑟𝑡+1 ℎ̂(𝑥
(1:𝐾)
𝑡 ;𝜓𝑡) (6.8)

where 𝑥
(1:𝐾)
𝑡 ∼ 𝜋(𝑥) is our observed data, {𝜉𝑡} is a sequence of ‘noise’ (thus the

Monte Carlo estimate ℎ̂(𝑥
(1:𝐾)
𝑡 ;𝜓𝑡) can be interpreted as ℎ(𝜓𝑡) + 𝜉𝑡), and {𝑟𝑡} is a

sequence of decreasing step-sizes satisfying
∑

𝑡 𝑟𝑡 =∞ and
∑

𝑡 𝑟
2
𝑡 <∞ .

We assumed that 𝑞(𝑥;𝜓) is a truncated DP normal mixture, which can be ex-

pressed as, 𝑞(𝑥;𝜓) =
𝐾∑
𝑘=1

𝑤𝑘𝑁(⋅∣𝜇∗
𝑘,Σ

∗
𝑘), where 𝑤𝑘 = 𝑉𝑘

𝑘−1∏
𝑗=1

(1−𝑉𝑗). Let 𝜓 denote the

set (𝑉𝑘, 𝜇
∗
𝑘,Σ

∗
𝑘). The the partial derivative of 𝒟[𝜋(𝑥) ∥ 𝑞(𝑥;𝜓)] with respect to 𝑉𝑘, 𝜇∗

𝑘

and Σ∗
𝑘 can be derived as follows (refer to Appendix E for details of derivation),

ℎ𝑉𝑘
(𝑥;𝜓) =

∫
𝜋(𝑥)

−∑𝐾
𝑙=𝑘+1 𝑉𝑙

∏
𝑗≤𝑙−1,𝑗 ∕=𝑘

(1− 𝑉𝑗)𝑞(𝑥∣𝜇𝑙,Σ𝑙) +
𝑘−1∏
𝑗=1

(1− 𝑉𝑗)𝑞(𝑥∣𝜇𝑘,Σ𝑘)

𝐾∑
𝑚=1

𝑤𝑚𝑞(𝑥∣𝜇𝑚,Σ𝑚)

𝑑𝑥

(6.9)

𝐻𝜇𝑘
(𝑥;𝜓) ∝

∫
𝜋(𝑥)

𝑤𝑘𝑞(𝑥;𝜇𝑘,Σ𝑘)∑𝐾
𝑚=1 𝑤𝑚𝑞(𝑥;𝜇𝑚,Σ𝑚)

× (𝑥− 𝜇𝑘) 𝑑𝑥 (6.10)

𝐻Σ𝑘
(𝑥;𝜓) ∝

∫
𝜋(𝑥)

𝑤𝑘𝑞(𝑥;𝜇𝑘,Σ𝑘)∑𝐾
𝑚=1 𝑤𝑚𝑞(𝑥;𝜇𝑚,Σ𝑚)

×
(
(𝑥− 𝜇𝑘) (𝑥− 𝜇𝑘)

𝑇 − Σ𝑘

)
𝑑Σ (6.11)

Given the observations 𝑋𝑡 = {𝑥(𝑖)
𝑡 }𝑁𝑡

𝑖=1 from 𝜋(𝑥), the Monte Carlo approximation of

these partial derivatives are

𝐻𝑉𝑘
(𝑋𝑡;𝜓) =

1

𝑁𝑡

𝑁𝑡∑
𝑖=1

−∑𝐾
𝑙=𝑘+1 𝑉𝑙

∏
𝑗≤𝑙−1,𝑗 ∕=𝑘

(1− 𝑉𝑗)𝑞(𝑥(𝑖)𝑡 ∣𝜇𝑙,Σ𝑙) +
𝑘−1∏
𝑗=1

(1− 𝑉𝑗)𝑞(𝑥(𝑖)𝑡 ∣𝜇𝑘,Σ𝑘)

𝐾∑
𝑚=1

𝑤𝑚𝑞(𝑥
(𝑖)
𝑡 ∣𝜇𝑚,Σ𝑚)

(6.12)
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𝐻𝜇𝑘
(𝑥;𝜓) ∝ 1

𝑁𝑡

𝑁𝑡∑
𝑖=1

𝑤𝑘𝑞(𝑥
(𝑖)
𝑡 ;𝜇𝑘,Σ𝑘)∑𝐾

𝑚=1𝑤𝑚𝑞(𝑥
(𝑖)
𝑡 ;𝜇𝑚,Σ𝑚)

×
(
𝑥
(𝑖)
𝑡 − 𝜇𝑘

)
(6.13)

𝐻Σ𝑘
(𝑥;𝜓) ∝ 1

𝑁𝑡

𝑁𝑡∑
𝑖=1

𝑤𝑘𝑞(𝑥
(𝑖)
𝑡 ;𝜇𝑘,Σ𝑘)∑𝐾

𝑚=1𝑤𝑚𝑞(𝑥
(𝑖)
𝑡 ;𝜇𝑚,Σ𝑚)

×
((
𝑥
(𝑖)
𝑡 − 𝜇𝑘

)(
𝑥
(𝑖)
𝑡 − 𝜇𝑘

)𝑇 − Σ𝑘

)
(6.14)

Therefore, we can iteratively update 𝑉𝑘, 𝜇𝑘 and Σ𝑘 using the Stochastic Approx-

imation approach, and yielding the following algorithm:

Algorithm 6.3: Sequential Learning for DP Mixtures

∙ Initialization: Choose 𝜓0 = (𝑉0, 𝜇0,Σ0) and set 𝑡 = 1.

∙ For 𝑡 > 1, update the 𝑉𝑘,𝑡, 𝑤𝑘,𝑡, 𝜇𝑘,𝑡 and Σ𝑘,𝑡 (for 𝑘 = 1, ..., 𝐾) as follows,

𝑉𝑘,𝑡+1 = 𝑉𝑘,𝑡 + 𝑟𝑘,𝑛+1𝐻𝑉𝑘
(𝑋𝑡;𝜓𝑡) (6.15a)

𝑤𝑘,𝑡+1 = 𝑉𝑘,𝑡+1

𝑘−1∏
𝑗=1

(1− 𝑉𝑗,𝑡+1) (6.15b)

𝜇𝑘,𝑡+1 = 𝜇𝑘,𝑡 +
𝑟′𝑘,𝑡+1

𝑁𝑡

𝑁𝑡∑
𝑖=1

𝛼
(𝑖)
𝑘,𝑡+1

(
𝑥
(𝑖)
𝑡 − 𝜇𝑘,𝑡

)
(6.15c)

Σ𝑘,𝑡+1 = Σ𝑘,𝑡 +
𝑟′𝑘,𝑡+1

𝑁𝑡

𝑁𝑡∑
𝑖=1

𝛼
(𝑖)
𝑘,𝑡+1

(
(𝑥

(𝑖)
𝑡 − 𝜇𝑘,𝑡)(𝑥(𝑖)𝑡 − 𝜇𝑘,𝑡)𝑇 − Σ𝑘,𝑡

)
(6.15d)

where

𝐻𝑉𝑘
(𝑋𝑡;𝜓𝑡) =

1

𝑁𝑡

𝑁𝑡∑

𝑖=1

−∑𝐾
𝑙=𝑘+1 𝑉𝑙

∏
𝑗≤𝑙−1,𝑗 ∕=𝑘

(1− 𝑉𝑗)𝑞(𝑥
(𝑖)
𝑡 ∣𝜇𝑙,𝑡,Σ𝑙,𝑡) +

𝑘−1∏
𝑗=1

(1− 𝑉𝑗)𝑞(𝑥
(𝑖)
𝑡 ∣𝜇𝑘,𝑡,Σ𝑘,𝑡)

𝐾∑
𝑚=1

𝑤𝑚,𝑡𝑞(𝑥
(𝑖)
𝑡 ∣𝜇𝑚,𝑡,Σ𝑚,𝑡)

,

𝛼
(𝑖)
𝑘,𝑡+1 =

𝑤𝑘,𝑡𝑞(𝑥
(𝑖)
𝑡 ;𝜇𝑘,𝑡,Σ𝑘,𝑡)∑𝐾

𝑚=1 𝑤𝑚,𝑡𝑞(𝑥
(𝑖)
𝑡 ;𝜇𝑚,𝑡,Σ𝑚,𝑡)

, 𝑟𝑘,𝑛+1 and 𝑟′𝑘,𝑡+1 are the step-size in the stochas-

tic approximation algorithm.

117



As the iterative steps in the stochastic approximation go to infinity, the estimated

𝑉𝑡, 𝑤𝑡, 𝜇𝑡 and Σ𝑡 converge to the optimal set minimizing the 𝒟 [𝜋(𝑥) ∥ 𝑞(𝑥;𝜓)] with

probability one. The proof of this result is straightforward using the same deriva-

tion shown in Appendix D.

Example

We demonstrate the behavior of the proposed sequential learning algorithm by ap-

plying it to a synthetic data set (shown in Figure 6.3): 5000 data points generated

from a mixture of four bivariate normals with weights: [0.3, 0.4, 0.29, 0.01], means:

[−1.75, 0], [0, 0], [2, 1], [5, 5] and covariances: [0.6, 0.5; 0.5, 0.6], [0.4,−0.25;−0.25, 0.4],
[0.25, 0.15; 0.15, 2], [0.3, 0.2; 0.2, 0.25]. In our sequential learning context, we assume

that at each iteration the observation is a subset of 500 data points uniformly se-

lected from these 5000 data points.

We wish to fit a TDP mixture model for this data set. The SA based sequential

learning algorithm for a TDP mixture model is initialized as follows: the maxi-

mum number of components is set as 𝐾 = 20, means of normal components 𝜇𝑘

(for 𝑘 = 1, ..., 𝐾) are randomly initialized in range [−10, 10] × [−10, 10], the co-

variance of normal components are set as Σ𝑘 = 2I (for 𝑘 = 1, ..., 𝐾), and set

𝑉𝑘 = 1/(𝐾 − 𝑘 + 1). The step-size in the SA algorithm is set as 𝑟𝑘,𝑡 = 1/(𝑡 + 50)

and 𝑟′𝑘,𝑡 = 10/(𝑡 + 50). The algorithm runs as described in Algorithm 6.3 until sat-

isfies some termination condition such as a prespecified total number of iterations,

or monitoring iterative changes of the log likelihood. In our simulation study, we

simply set the termination condition as a total number of 200 iterations. The out-

put of the sequential learning algorithm is 𝑤𝑘, 𝜇𝑘, Σ𝑘 for (𝑘 = 1, ..., 𝐾 ′), where 𝐾 ′

is the number of components with non-zero weight. We shows the fitted mixture
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model in the final iteration with the data in Figure 6.3. The KL-divergence between

the ‘true’ target distribution and our fitted TDP mixture is monitored and shown

in Figure 6.4. Moreover, in Figure 6.5 we show the log likelihood of TDP mixture

model at each iteration comparing with the log likelihood of finite mixture model

computed by EM algorithm. Finally in Figure 6.6 we show the number of mixture

components with non-zero weights per iterations.

The simulation study shows that the proposed sequential learning algorithm

can iteratively tune a TDP mixture model to fit the data. The proposed algorithm

affords at least two advantages as we expected: 1) it can deal with TDP mixture

model, which can provide more flexibility in modelling than a mixture model with

a fixed component number; 2) instead of learning from the whole data set, at each

iteration, it requires only a subset of the data, reducing the computation costs.

Moreover, as can be observed, the data set contains a small group of approx-

imately 50 data points, which may lead to a difficulty in fitting a mixture for it.

For example, when we use the EM algorithm to tune a normal mixture with fixed

number of components for this data set, if the prespecified number of mixture com-

ponents is small, the small group may easily be neglected by the fitting algorithm

due to poor initialization; while if the number of mixture components is very large,

the mixture model tends to over fit the data. However, in our proposed sequential

learning algorithm, we tune the parameters in a TDP mixture based on previous

estimation of these parameters and the current observation, therefore even when

the number of data points in its group is small we can still ‘remember’ the mixture

component corresponding to it. This property may be helpful in exploring rare sub-

types in a large data set, which is of interest in flow cytometry data study (Chan

et al., 2008).
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Figure 6.3: Synthetic data points are shown in red dots. The final fitted TDP mixture are
presented with + representing the mean of normal component and ellipse representing one
standard deviation.
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Figure 6.4: The KL-divergence between the true target distribution and the estimated
TDP normal mixture model per iteration.
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Figure 6.6: Plot of the number of mixture components with non-zero weights per itera-
tion.
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6.3 Marginal Likelihood Computation

As discussed in Chapter 5, marginal likelihood, also known as ‘Evidence’, is a

key quantity for Bayesian model evaluation, comparison and selection. Comput-

ing marginal likelihood is an integration problem which is generally prohibitive

in most applications because of the intractability of the likelihood function. Nu-

merous methods haven been proposed based on various Monte Carlo integration

approaches (Newton and Raftery, 1994; Gelfand and Dey, 1994; Chib, 1995; Meng

and Wong, 1996; Robert and Casella, 2004; Crooks et al., 2007; Lefebvre et al.,

2009), among which importance sampling is one of the most straightforward ap-

proaches. In importance sampling, an easy-to-use probability density is designed,

called the importance function 𝑔(𝜃), such that given a set of random samples from

it {𝜃(𝑖)}𝑁𝑖=1, the marginal likelihood can be approximated by

𝑝(𝐷∣𝑀) ≃ 1

𝑁

𝑁∑
𝑖=1

𝐿(𝐷∣𝜃(𝑖),𝑀)𝑝(𝜃(𝑖)∣𝑀)
𝑔(𝜃(𝑖))

. (6.16)

The terms 𝐿(𝐷∣𝜃(𝑖),𝑀)𝑝(𝜃(𝑖)∣𝑀)

𝑔(𝜃(𝑖))
in (6.16) are often referred to as the importance “weights”,

denoted 𝑤𝑖(𝜃
(𝑖)).

6.3.1 Marginal Likelihood Computation by Adaptive Importance

Sampling

It is a well known fact that the efficiency of importance samplers largely depends

on how closely the importance function resembles the shape of the target distri-

bution, 𝜋(𝜃∣𝐷,𝑀) ∝ 𝐿(𝐷∣𝜃,𝑀)𝑝(𝜃∣𝑀). According to the analysis in Crooks et al.

(2007), if the importance function has thinner tails than the target distribution,

the estimate of (6.16) will tend to be unstable since the weights can be arbitrarily

large; meanwhile if the importance function has fatter tails, then lots of samples
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𝜃(𝑖) will be wasted on the area where the target distribution has very small values,

resulting to a biased estimate. The best case is an importance function with slightly

heavier tails than the target. In a previous study (Crooks et al., 2007), several

improved importance sampling approaches were proposed, base on different crite-

ria to tune the importance function to mimic the target distribution. It has been

verified that the importance function which minimizes the KL-divergence between

the posterior distribution and importance function shows the best performance in

marginal likelihood computation (Crooks et al., 2007).

Here, a nonparametric importance function is proposed instead of a traditional

parametric importance function to mimic the target distribution, which is supported

to provide more flexibility. The process consist of two parts: first, use certain

Monte Carlo approach to sample from the posterior efficiently, meanwhile using

a sequential learning approach for the nonparametric importance function by iter-

atively learning from the posterior samples; after the importance function has been

well tuned, we draw a large set of samples and evaluate the marginal likelihood

through equation (6.16). The approach is named as adaptive importance sampling

for marginal likelihood computation, which is summarized as follows,

∙ Sampling and adaptation:

– Sampling: sample {𝜃(𝑖)}𝑁𝑖=1 from the posterior distribution 𝑝(𝜃∣𝐷,𝑀).

– Sequential learning: use a sequential learning approach proposed in 6.2

to adapt the importance function 𝑔(𝜃∣𝜓) to approximate 𝑝(𝜃∣𝐷,𝑀).

∙ ML computation: sampling {𝜃(𝑗)}𝑁𝑗=1 from 𝑔(𝜃∣𝜓∗) and evaluate

𝑝(𝐷∣𝑀) ≃ 1

𝑁

𝑁∑
𝑗=1

𝐿(𝐷∣𝜃(𝑖),𝑀)𝑝(𝜃(𝑗)∣𝑀)
𝑔(𝜃(𝑗)∣𝜓∗)

(6.17)
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where 𝜓∗ denotes the result from sequential learning, i.e. 𝜓𝑇 in the stochastic

approximation for the TDP mixture when 𝑇 is sufficient large.

Note that if the adaptive MCMC discussed in Section 6.1 is used to sample from

𝑝(𝜃∣𝐷,𝑀), then the sequential learning process can be embedded into the sam-

pling process: after we obtain a block of samples from the posterior using adaptive

MCMC, we iteratively update the nonparametric importance function by learning

from this data set. Moreover, for sure, we may also use the nonparametric impor-

tance function as the adaptive proposal in adaptive MCMC. However, as shown in

Andrieu and Moulines (2006), an adaptive proposal 𝑞(𝑥;𝜓) (even in nonparametric

form) for MIS with 𝜓 unrestricted does not guarantee convergence of the algorithm.

A straightforward solution is to use an additional fixed mixture component 𝑞(𝑥; 𝜁)

which is not modified during the adaptive updating, as discussed in Section 6.1.

6.3.2 Simulation Study

We demonstrate the proposed approach on a target function 𝜋(⋅), which is a outer

product of seven univariate distributions, with the marginal likelihood exactly equal

to 1. These seven distributions are:

1. 3
5
𝐺𝑎(10 + 𝑥∣2, 3) + 2

5
𝐺𝑎(10− 𝑥∣2, 5)

2. 3
4
𝑠𝑘𝑁(𝑥∣3, 1, 5) + 1

4
𝑠𝑘𝑁(𝑥∣ − 3, 3,−6)

3. 𝑇 (𝑥∣0, 9, 4)

4. 1
2
𝐵𝑒(𝑥+ 3∣3, 3) + 1

2
𝑁(𝑥∣0, 1)

5. 1
2
𝜖(𝑥∣1) + 1

2
𝜖(−𝑥∣1)

6. 𝑠𝑘𝑁(𝑥∣0, 8,−3)
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7. 1
8
𝑁(𝑥∣ − 10, 0.1) + 1

4
𝑁(𝑥∣0, 0.15) + 5

8
𝑁(𝑥∣7, 0.2)

where 𝐺𝑎(⋅∣𝛼, 𝛽) denotes the gamma distribution, 𝑁(⋅∣𝜇, 𝜎) denotes the normal dis-

tribution, 𝑠𝑘𝑁(⋅∣𝜇, 𝜎, 𝛼) denotes the skew-normal distribution, 𝑇 (⋅∣𝜇, 𝜎, 𝑑𝑓) denotes

the student-T distribution, 𝐵𝑒(⋅∣𝛼, 𝛽) denotes the beta distribution, and 𝜖(⋅∣𝜆) de-

notes the exponential distribution. From the definition, we can see that dimension 2

has two modes bracketing a deep ravine, dimension 4 has one low, broad mode that

overlaps a second sharper mode, and dimension 7 has three distinct, well-separated

modes. Only dimension 5 is symmetric.

For the posterior sampling, adaptive MCMC with a mixture distribution proposal

discussed in Section 6.1.2 is applied, in which we use a mixture of 5 univariate nor-

mal distributions for each of the 7 dimensions. At each iteration, we sample 200

samples from the posterior and use these samples to update the proposal distri-

bution as well as the nonparametric importance function which is a truncated DP

mixture of 7 dimensional multivariate normal distribution with truncated compo-

nents number 𝐾 = 40, each with a mean uniformly chosen from the parameter

space and a covariance matrix of 4I.

After about 250 iterations, we observed that the changes in the importance func-

tion becomes tiny, through monitoring the KL-divergence between the true target

distribution 𝜋(⋅) and the estimated importance function shown in Figure 6.8. To

show the efficiency of our proposed algorithm, we compare the true target distri-

bution, the kernel density estimation of samples drawn by adaptive MCMC algo-

rithm and the fitted TDP normal mixture importance function in univariate style in

Figure 6.7. As can be observed, the drawn samples can effectively represent the tar-

get distribution, while the fitted TDP normal mixture importance function matches

the true target distribution well. Both of these two factors enable us to achieve a

good performance in IS based marginal likelihood estimation. Moreover, the poste-
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rior samples obtained by using the adaptive Metropolis independence sampler are

shown in Figure 6.9, as well as the fitted TDP normal mixture importance function.

After the importance function has been well tuned, we draw 100, 000 samples from

the importance function and evaluate the marginal likelihood via equation (6.16).

For comparison, we also implement the adaptive importance sampling (AIS)

studied in Cappé et al. (2008), in which the importance function is adapted through

a EM algorithm by utilizing samples form importance sampling with previous tuned

importance function. The initial IS density 𝑞0 is chosen similarly as the setting in

sequential learning algorithm: a mixture of 40 Gaussian components, each with

a mean uniformly chosen from the parameter space and a covariance matrix of

4 × I. The number of samples for each IS iteration is 𝑁 = 100, 000, while the total

iteration times are set equally to be 50.

We summarize the comparison simulation results as follows: the ESS for the

IS marginal likelihood estimator is 56723 in our proposal algorithm, compared

with 1265.5 in the AIS algorithm; scatter plots shown in Figure 6.9 (resp. Fig-

ure 6.10) are used to present the bivariate posterior of the model parameters. The

marginal likelihood evaluated by our algorithm is 0.9988 ± 0.0036 compared with

0.6257± 0.024 by AIS algorithm. Moreover, our algorithm require drawing 600, 000

samples compared with 5000, 000 for the AIS algorithm, showing an advantage in

computational cost.
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each dimension is shown by the red dashed dot curve; kernel density estimation of samples
drawn by the adaptive MCMC algorithm is shown by the solid blue curve; a well tuned
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Figure 6.9: Scatter plot of samples obtained using the adaptive Metropolis independence
sampling. The final fitted TDP mixture is presented in a bivariate style, with + representing
the mean of normal component and ellipse representing the standard deviation, as well as
in univariate style by the blue curve.
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Figure 6.10: Scatter plot of samples obtained using the AIS algorithm. The fitted mixture
by EM algorithm is presented in a bivariate style, with + representing the mean of normal
component and ellipse representing the standard deviation, as well as in univariate style
by the blue curve.
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6.4 Application in Bayesian Exoplanet Searches

Extra-solar planet (Exoplanet) science was motivated by the famous Fermis paradox

“where is everybody? where are they?” Webb (2002) and is of great importance to

help us understand the origin and evolution of the Solar System. In this section, we

use the advanced Bayesian computational method proposed in Section 6.3 to draw

inferences on the number of planet, if any exist, based on the radial velocity (RV)

data set observed by astronomers.

6.4.1 The Velocity-shift Model

The velocity-shift model has been described in detail in Crooks et al. (2007) and

Bullard (2009). Here we give a brief introduction. The astronomers data are 𝑦𝑖 ≜

{𝑡𝑖, 𝑣𝑖, 𝜎𝑖}, 𝑖 ∈ 1, . . . , 𝑜, where 𝑡𝑖 indexes the time of the 𝑖th observation, 𝑣𝑖 is the

observed velocity at time 𝑡𝑖, and 𝜎𝑖 is estimated error of the velocity observation.

Moreover, we assume a source of (presumably) Gaussian error from “stellar jitter”,

the random fluctuations in the luminosity of a star. The observed velocities will be

related to the orbital parameters through

𝑣𝑖 ∼ 𝒩
(
𝐶 +△𝑉 (𝑡𝑖∣𝜙), 𝜎2

𝑖 + 𝑠2
)
, (6.18)

where 𝐶 is the constant center-of-mass velocity of a star relative to Earth, △𝑉 (𝑡𝑖∣𝜙)
is a function to be defined below, 𝜙 represents a set of orbital parameters, and 𝑠2 is

the “stellar jitter” variance. The set of parameters {𝐶, 𝑠2, 𝜙} is denoted by 𝜃.

The No-planets Model: M0

If no planets orbiting a star, then the function △𝑉 is zero for all values of 𝑡:

𝑉𝑖(𝑡) = 0, ∀𝑡 ∈ ℝ (6.19)
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In this case, only two elements in 𝜃 need to be estimated: 𝐶 and 𝑠2. So the no-

planet model is

𝑣𝑖 ∼ 𝒩
(
𝐶, 𝜎2

𝑖 + 𝑠2
)
. (6.20)

The Single Planet Model: M1

If a single planet orbiting a star, then 𝜙 will contain five components: 𝜙 = (𝐾,𝑃, 𝑒, 𝜔,

𝑀0), where 𝐾 ≥ 0 is the velocity semi-amplitude, 𝑃 > 0 is the orbital period,

0 ≤ 𝑒 ≤ 1 denotes eccentricity, 0 ≤ 𝜔 ≤ 2𝜋 argument of periastron and 0 ≤𝑀0 ≤ 2𝜋
denotes the mean anomaly at time 𝑡 = 0. Given these parameters, the velocity shift

at time 𝑡 is then just

△𝑉 (𝑡∣𝜙) = 𝐾[cos(𝜔 + 𝑇 (𝑡)) + 𝑒 cos(𝜔)], (6.21)

where 𝑇 (𝑡) is the “true anomaly at time 𝑡” and can be given by

𝑇 (𝑡) = 2 arctan

[
tan(

𝐸(𝑡)

2
)

√
1 + 𝑒

1− 𝑒

]
, (6.22)

where 𝐸(𝑡), called the “eccentric anomaly at time 𝑡”, is the solution of the transcen-

dental equation

𝐸(𝑡)− 𝑒 sin(𝐸(𝑡)) = mod
(
2𝜋

𝑃
𝑡+𝑀0, 2𝜋

)
. (6.23)

Priors on Parameters

We describe prior distributions of parameters in the velocity-shift model. These

priors were recommended by Ford and Gregory (2006) based on both mathematical

convenience and their approximate realism.

A: No-planet model
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For the no-planet model shown in (6.20), we choose independent prior for 𝐶

and 𝑠,

𝜋𝐶(𝐶) =

⎧⎨⎩
1

𝐶𝑚𝑎𝑥 − 𝐶𝑚𝑖𝑛

, for 𝐶𝑚𝑖𝑛 ≤ 𝐶 ≤ 𝐶𝑚𝑎𝑥

0, otherwise,

(6.24)

and

𝜋𝑠(𝑠) =

⎧⎨⎩
1

log
(
1 + 𝑠𝑚𝑎𝑥

𝑠0

) ⋅ 1

𝑠0 + 𝑠
, for 0 < 𝑠 ≤ 𝑠𝑚𝑎𝑥

0, otherwise.

(6.25)

Thus, the complete prior is given by:

𝜋0(𝐶, 𝑠) =
1

𝐶𝑚𝑎𝑥 − 𝐶𝑚𝑖𝑛

⋅ 1

log
(
1 + 𝑠𝑚𝑎𝑥

𝑠0

) ⋅ 1

𝑠0 + 𝑠
, (6.26)

and where 𝐶𝑚𝑖𝑛 ≤ 𝐶 ≤ 𝐶𝑚𝑎𝑥, 0 < 𝑠 ≤ 𝑠𝑚𝑎𝑥.

B: Single planet model

For analysis of model parameters, such as posterior sampling, it is convenient to

work in a parameter space where the parameters are not so highly correlated as

they are in the space defined by (𝐶,𝐾, 𝑃, 𝑒, 𝜔,𝑀0, 𝑠) in the single planet model. It

is also convenient to have the posterior in a shape like Gaussian distribution. For

these reasons, some useful transformation of variables are given (Bullard, 2009),

∙ Translate 𝑡𝑖 (essentially reparameterizing 𝑀0) so that 𝑡 = 0 occurs in the mid-

dle of all observations: we place it at the weighted mean of the observation

times, with the weights being inversely proportional to the measurement er-

rors. This transformation reduces correlations between 𝑀0 and 𝑃 .
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∙ Use Poincar é variables 𝑥 ≡ 𝑒 cos𝜔 and 𝑦 ≡ 𝑒 sin𝜔 instead of 𝑒 and 𝜔 to reduce

correlations between 𝑀0 and 𝜔. This transformation is particularly important

for low eccentricity orbits.

∙ Use 𝑧 ≡ (𝜔 +𝑀0)mod2𝜋 instead of 𝑀0 to reduce correlations between these

two parameters when 𝑒≪ 1.

Besides, it is useful to work in 𝑃̇ ≡ log𝑃 rather than in 𝑃 , in 𝐾̇ ≡ log𝐾 rather

than in 𝐾, and in 𝑠̇ ≡ log 𝑠 rather than in 𝑠.

In this transformed space, the prior given for the one-planet model with a full

Keplerian orbit can be expressed as,

𝜋1(𝐶, 𝐾̇, 𝑃̇ , 𝑥, 𝑦, 𝑧, 𝑠̇) = 𝜅1 ⋅ exp 𝐾̇ ⋅ 1

1 + exp 𝐾̇
𝐾0

⋅ 1√
𝑥2 + 𝑦2

⋅ exp 𝑠̇ ⋅ 1

1 + exp 𝑠̇
𝑠0

, (6.27)

where

𝜅1 =
1

𝐶𝑚𝑎𝑥 − 𝐶𝑚𝑖𝑛

⋅ 1

log
(
1 + 𝐾𝑚𝑎𝑥

𝐾0

) ⋅ 1
𝐾0

⋅ 1

log
(
𝑃𝑚𝑎𝑥

𝑃𝑚𝑖𝑛

) ⋅ ( 1
2𝜋

)2

⋅ 1

log
(
1 + 𝑠𝑚𝑎𝑥

𝑠0

) ⋅ 1
𝑠0

,

(6.28)

where 𝐶𝑚𝑖𝑛 ≤ 𝐶 ≤ 𝐶𝑚𝑎𝑥, 𝐾̇ ≤ log(𝐾𝑚𝑎𝑥), log(𝑃𝑚𝑖𝑛) ≤ 𝑃̇ ≤ log(𝑃𝑚𝑎𝑥), 𝑥2 + 𝑦2 < 1,

0 ≤ 𝑧 ≤ 2𝜋, and 𝑠̇ ≤ log(𝑠𝑚𝑎𝑥).

C: Values of the constants

132



The choices of constants are partially based on physical realities, ( e.g. an orbit

which is too small will engender the planet getting consumed by the star),

𝑃min ≡ 1 day (6.29a)

𝑃𝑚𝑎𝑥 ≡ 1000 years (6.29b)

𝐾0 ≡ 1 ms−1 (6.29c)

𝐾𝑚𝑎𝑥 ≡ 2128 ms−1 (6.29d)

𝐶𝑚𝑖𝑛 ≡ −𝐾𝑚𝑎𝑥 (6.29e)

𝐶𝑚𝑎𝑥 ≡ 𝐾𝑚𝑎𝑥 (6.29f)

𝑠0 ≡ 1 ms−1 (6.29g)

𝑠𝑚𝑎𝑥 ≡ 𝐾𝑚𝑎𝑥 (6.29h)

6.4.2 Marginal Likelihoods

It is of great interest for astronomers to schedule telescope time in order to maxi-

mize the probability of a significant observation such as determining the total num-

ber of planets in the system or detecting at least one planet. From a statistician

viewpoint, finding the number of planets in a system is a model selection problem.

Under Bayesian model selection, we need to calculate of marginal likelihoods of

two or more models in order to calculate Bayes factors such as

𝐵𝐹 (𝑀𝑝1 ,𝑀𝑝1) =
𝑚(𝑥∣𝑀𝑝1)

𝑚(𝑥∣𝑀𝑝2)
, (6.30)

where 𝑚(𝑥∣𝑀𝑝) is the marginal likelihood of the model with 𝑝 planets, which can

be evaluated by integrating over the parameter space

𝑝(𝑥∣𝑀𝑝) =

∫
𝐿(𝑥∣𝜃𝑝,𝑀𝑝)𝑝(𝜃𝑝∣𝑀𝑝)𝑑𝜃𝑝, (6.31)
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and where 𝜃𝑝 is a vector describing the parameters for the model 𝑀𝑝. Here 𝑝(𝜃𝑝∣𝑀𝑝)

is the prior density of the parameters and 𝐿(𝑥∣𝜃𝑝,𝑀𝑝) is the likelihood function.

Consequentially, exoplanet detection requires calculation of marginal likelihoods

for each possible number of planets, which is not trivial for non-zero planet mod-

els 𝑀𝑖, 𝑖 > 0. Even for one-planet model 𝑀1, there are three factors that are in-

tertwined to make the computation of 𝑝(𝑥∣𝑀1) particularly challenging (Bullard,

2009): (a) multimodality in the likelihood function 𝐿(𝑥∣𝜃1,𝑀1); (b) multidimen-

sionality in the 𝑀1 parameter space; (c) high nonlinearity in the single planet model

𝑀1.

Estimating Marginal Likelihoods by Adaptive Importance Sampling

The marginal likelihood computation in Bayesian exoplanet search discussed in the

section above can be well solved by the adaptive marginal likelihood computation

method proposed in Section 6.1.1. In the sampling and adaptation part, adaptive

MCMC with mixture distribution proposal is applied to sample from the posterior

𝑝(𝜃∣𝑥,𝐷𝑝) ∝ 𝐿(𝑥∣𝜃𝑝,𝑀𝑝)𝑝(𝜃𝑝∣𝑀𝑝). At each adaption iteration, the posterior samples

are used to update the proposal distribution as well as the nonparametric impor-

tance function which is a truncated DP mixture of 2 + 5𝑝 dimensional multivariate

normal distribution. After the algorithm runs sufficient long and the changes of

nonparametric importance function become negligible, we draw a large set of sam-

ples from the tuned importance function and evaluate the marginal likelihood via

equation (6.16).

Adaptive MCMC Sampling

We now focus on the adaptive MCMC for posterior sampling in the Bayesian exo-

planet search model. We can use a proposal distribution in the form of a mixture
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of univariate normal distributions for each of the 2+ 5𝑝 dimensions. However, by a

simple exploration, we find that the orbital period, variate 𝑃 , has extremely small

variance and has strong correlation to other variants. Supposing that the distribu-

tion of 𝑃 has two well separated modes, which is a quite general assumption, it is

straightforward to verify that the two modes of 𝑃 yield very different set of values

for the remaining variants. Thus, if we update the 2 + 5𝑝 variants one by one by a

Metropolis-within-Gibbs algorithm (no matter how well we can tune the proposal),

when 𝑃 jumps from one mode to another, it will result in extremely low acceptance

probabilities since the other 2 + 5𝑝 − 1 variants do not support this new 𝑃 to fit

our model. Therefore it is challenging to explore the space of 𝑃 , particular when

𝑃 is multi-modes. On the other hand, we can use a proposal distribution in the

form of mixture of 2 + 5𝑝 dimensional multivariate normal distributions. In that

case, however, a large number of mixture components is required in order to cover

the high dimensional space, resulting a heavy computation burden and difficulty in

adapting the proposal.

Here we proposed a novel adaptive MCMC framework for posterior sampling

in case where variants may be highly correlated. The adaptive proposal for variate

𝑃 is a mixture of univariate normal distribution, while for other variants, denoted

by 𝜃𝑑, the proposal is a mixture of bivariate normal distributions to model 𝑃 and

𝜃𝑑 jointly. A new sample is drawn as follows: first draw a new sample from the

proposal distribution of 𝑃 , then given the new value of 𝑃 (𝑛𝑒𝑤) sample a new value

for each 𝜃𝑑 from the conditional distribution 𝑝(𝜃𝑑∣𝑃 (𝑛𝑒𝑤)), which can be obtained

easily by the following scheme: given that we have obtained a mixture for joint

distribution of (𝑦, 𝑥), means that

(
𝑦
𝑥

)
∼

𝑘∑
𝑗=1

𝜋𝑗𝑁

(
𝜇𝑗𝑦

𝜇𝑗𝑥
,

(
Σ𝑗𝑥 𝑅′

𝑗

𝑅𝑗 Σ𝑗𝑦

))
.
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Then the conditional distribution 𝑝(𝑦∣𝑥) has the following closed form expression

𝑝(𝑦∣𝑥) =
𝑘∑

𝑗=1

𝜋∗
𝑗 (𝑥)𝑁(𝑦∣𝜇𝑗𝑦 +𝑅𝑗Σ

−1
𝑗𝑥 (𝑥− 𝜇𝑗𝑥) ,Σ𝑗𝑥 −𝑅𝑗Σ

−1
𝑗𝑥 𝑅′

𝑗), (6.32)

where 𝜋∗
𝑗 (𝑥) = 𝜋𝑗𝑝𝑗(𝑥)/

∑𝑘
𝑟=1 𝜋𝑟𝑝𝑟(𝑥) is the non-linear weights.

After draw a set of samples from the posterior distribution, these samples are

then used to update the mixture distribution proposal for both 𝑃 and 𝜃𝑑 using the

adaptation strategies introduced in Section 6.1.2.

6.4.3 Simulation Studies

We present a example to demonstrate our proposed adaptive marginal likelihood

computation method on model assessment on exoplanet searches. The example

involves the metal-rich G5IV star HD88133 with radial velocities given in Fischer

et al. (2005). Here we focus on model assessment of two potential models, no-

planet model 𝑀0 and one-planet model 𝑀1.

As presented in Section 6.3.2, we apply the same method for marginal likeli-

hoods computation for both models. Figure 6.11 shows autocorrelation plots for

the sampled parameters in one-planet model 𝑀1, which implies the effectiveness

of our adaptive MIS sampler. Given the posterior samples, we can obtain the esti-

mation of parameters in the radial velocity model. A fitted radial velocity function

is plotted in Figure 6.12, which shows the model fitting observations well. 50, 000

samples are drawn from the tuned TDP mixture for evaluating of marginal likeli-

hood. The effective sample size 12, 810 implies the efficiency of the estimation. We

carry out 50 runs for marginal likelihoods of both models, resulting the following

estimations: No-planet model 𝑀0: 1.6815𝑒− 37(±2.7012𝑒− 39); One-planet Model

𝑀1: 2.8732𝑒−35(±8.1360𝑒−37). The Bayes factor 𝐵𝐹 (𝑀1 :𝑀0) ≈ 171 supports for
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the hypothesis of one-planet model 𝑀1, which is consistent with the underground

true-a planet orbiting HD88133 with a period of 3.41 days (Fischer et al., 2005).
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Figure 6.11: Autocorrelation plots for posterior samples of transformed parameters in
one-planet model 𝑀1.
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Figure 6.12: Phased radial velocities for HD88133 with an orbital period of 3.41 days:
circles and error bars representing the observations of HD88133; the curve representing the
fitted velocity-shift model.

138



Chapter 7

Conclusion and Further Study

7.1 Summary

This dissertation presented the development of Bayesian nonparametric modelling

and associated computational methods in analysis of spatial point processes. The

first scenario studied in this work is indirectly observed spatial point processes,

which involves noisy measurements on an underlying point process that provide

indirect and noisy data on locations of point outcomes. The motivation for this

research arises from the analysis of fluorescent intensity images in sections of lym-

phatic tissue where the point processes represent geographical configurations of

cells. Analysis of fluorescent intensity images has gained increasing interests in re-

cent years. Our applied studies involve large (though unknown) numbers of point

occurrences and intensity mixture models with relatively large numbers of mix-

ture model components representing potentially complex patterns of variation over

the spatial region. The use of flexible, nonparametric Bayesian mixture models of

intensity functions is central and key in engendering adaptability to wildly hetero-

geneous intensity patterns coupled with robustness and in-built parsimony. The use

of effective MCMC samplers is key, and the blocked sampler for Dirichlet process

mixture models is attractive from that viewpoint, but also really necessary as our

overlaid measurement error structure demands that we have direct, albeit approx-

imate evaluation of the underlying density-intensity function with the MCMC that

generates from conditional posteriors of the underlying latent spatial process. In

many spatial point process modelling contexts, lack of complete, direct observation
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on point outcomes is common, and our new methodology provides examples of

how the overall analysis framework can be extended to allow for that.

In the second scenario, we deal with dynamic spatial point processes, which are

motivated by multiple extended target tracking and cell fluorescent microscopic

imaging tracking problems. No satisfactory statistical methodology has been par-

ticularly available for inference in these types of problems. In this work, we develop

the dependent DP mixture model for the time varying setting and provide a novel

computational method for Bayesian inference and model-fitting. Our proposed ap-

proach can be applied to deal with problems where the measurement of objects is

a distribution, which can present multimodality as its features. As a straightfor-

ward extension, the dependent DP mixture modelling is further developed to deal

with dynamic spatial point processes. Utilizing such nonparametric mixture models

for the spatial process intensity functions, we introduce time variation via dynamic

models for underlying parameters. The filtering method developed for dependent

DP mixture can be easily tuned to solve the sequential Bayesian inference in such

scenario. We demonstrated that our proposed dependent DP mixture modelling

outperformed naive modelling without introducing dependence between adjacent

time frames in rebuilding the underling distribution of interest. In extended tar-

get tracking, our proposed approach can give the estimation of not only the target

trajectories but also the intensity driving the point processes, and thus facilitate

a rigorous Bayesian analysis of such tracking problems. Moreover, the proposed

model can be scaled to deal with substantive data analysis in cell fluorescent mi-

croscopic imaging tracking, where the number of targets is significant larger than

cases studied in traditional multi-target tracking.

The second part of this dissertation discusses computation methods in Bayesian

inference. We provides approaches to estimate the upper and lower bounds for log
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marginal likelihood in a Bayesian model. While traditional variational approaches

only provide lower bound estimation, our lower/upper bounds not only facilitate

more reliable model selection but also give a way to show the goodness of the vari-

ational density as an approximation to the posterior density of model parameters.

Moreover, by marginalizing some parameters in the model, the ‘discrepancy’ be-

tween bounds of log marginal likelihood can be significantly reduced. Extensive

simulation studies show the efficiency of our proposed marginal likelihood approx-

imation approach.

Finally, in the last chapter we first presents a generic framework to design adap-

tive MCMC algorithms, emphasizing the adaptive Metropolized independence sam-

pler and effective adaptation strategy using a family of mixture distribution pro-

posals. To fit a nonparametric model for large data sets, a sequential learning

approach for DP mixture model is also proposed, which utilizes only small subsets

of the whole data set to update the associated parameters in mixture distribution

iteratively. Under the general framework of importance sampling based marginal

likelihood computation, the proposed adaptive Monte Carlo method and sequential

learning approach can facilitate the marginal likelihood computation and improve

its performance. The performance of the proposal method is demonstrated on syn-

thetic examples and a real world application in Bayesian Exoplanet Searches.

7.2 Extensions and Further Study

Nonparametric Spatial Mixture Modelling

In current studies, we only discuss the analysis of 2D fluorescent intensity images.

One straightforward extension of the current approach is to deal with 3D fluores-

cent intensity images or even 4D fluorescent intensity images where time is treated
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as a dimension. Using spatial mixture modelling for 4D fluorescence images with

high temporal resolution,

(
𝑦
𝑡

)
∼

𝐾∑
𝑗=1

𝜋𝑗𝑁

(
𝜇𝑗𝑦

𝜇𝑗𝑡
,

(
Σ𝑗𝑡 𝑅′

𝑗

𝑅𝑗 Σ𝑗𝑦

))
,

then the conditional distribution 𝑝(𝑦∣𝑡) is in closed-form as follows:

𝑝(𝑦∣𝑡) =
𝐾∑
𝑗=1

𝜋∗
𝑗 (𝑡)𝑁(𝑦∣𝜇𝑗𝑦 +𝑅𝑗Σ

−1
𝑗𝑡 (𝑥− 𝜇𝑗𝑡) ,Σ𝑗𝑡 −𝑅𝑗Σ

−1
𝑗𝑡 𝑅′

𝑗), (7.1)

where 𝜋∗
𝑗 (𝑡) = 𝜋𝑗𝑝𝑗(𝑡)/

∑𝐾
𝑟=1 𝜋𝑟𝑝𝑟(𝑡) are the non-linear weights. Through such a

model, we can therefore infer the time courses of the directional drift of tagged cell

types in the fluorescence images, which is of great interest of fluorescence imaging

analysis.

This proposed nonparametric spatial mixture modelling suggests a rigorous sta-

tistical treatment for time-varying spatial point processes. The proposed modelling

and inference approach can be developed and investigated on more realistic ex-

amples in multiple extended targets tracking, e.g. observation consisting of signals

and clutters, and real-world problems like high resolution radar tracking and image

tracking.

Marginal Likelihood Approximation

In the current work, the marginal likelihood approximation by lower and upper

bounds method only examined in parametric models. It is of interest to use such

methods for Bayesian model comparison of nonparametric models. For further

study, we are interested in specification of the criterion of nonparametric mod-

els comparison, using our proposed computational tools for nonparametric model

comparison and addressing these in realistic data studies.
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Adaptive Monte Carlo Methods

Population based Monte Carlo methods, e.g. Sequential Monte Carlo (SMC), have

been proposed and widely studied for several decades. While adaptation in single

chain MCMC algorithm has been studied in this work, the possibility exists to com-

bine the population based methods with adaptive strategies. For example, running

a number of parallel chains which can exchange state information with others, the

proposal distribution of each chain can be adaptively tuned in order to explore the

space more efficiently. The information exchange mechanism between chains and

learning strategy of the adaptive proposal should be carefully chosen in order to

guarantee the ergodicity of the chains.

For applications, further study will focus on some non- traditional areas, partic-

ularly optimization problems. Adaptive Monte Carlo approach has demonstrated

great succuss in dealing with complex system optimization in the emerging area of

metamaterials (Liu et al., 2009). In further work, we will extend adaptive Monte

Carlo as standard tools for general optimization problems, particularly utilizing its

ability to deal with uncertainties in many real world optimization problems.

143



Appendix A

Gibbs Sampling for Dirichlet Process Mixture
Model

Collapsed Gibbs sampling

The collapsed Gibbs sampling for Dirichlet process mixtures involves the following

steps:

∙ For 𝑖 ∈ {1, ..., 𝑁} draw a new value for 𝑐𝑖 from the posteriors as defined by,

𝑝(𝑐𝑖 = 𝑗∣𝑥1:𝑁 , c,𝐾, 𝜃∗,𝛼,𝐺0) = 𝑞𝑖,𝑗 ∝
{
𝑛−𝑖,𝑗 ⋅ 𝑝(𝑥𝑖∣𝜃∗𝑗 ), if 𝑗 ∈ {1, ...,𝐾}
𝛼 ⋅ ℎ(𝑥𝑖), if 𝑗 = 0

(A.1)

where 𝑛−𝑖,𝑗 is the number of occurrences of 𝑗 in all indicator variables c except 𝑐𝑖;

𝑝(𝑥𝑖∣𝜃∗𝑗 ) is the likelihood; ℎ(𝑥𝑖) is a weight obtained via ℎ(𝑥𝑖) =
∫
𝑝(𝑥𝑖∣𝜃)𝑑𝐺0(𝜃).

∙ For 𝑘 ∈ {1, ...,𝐾}, independently sample 𝜃∗𝑘 from the relevant component posterior

𝑝(𝜃∗𝑘∣𝑥1:𝑁 , c) ∝
∏

𝑖∈{𝑖:𝑐𝑖=𝑘}
𝒩 (𝑥𝑖∣𝜃∗𝑘)𝐺0(𝜃

∗
𝑘) (A.2)

.

Blocked Gibbs sampling

The block Gibbs sampling for Dirichlet process mixtures involves the following

steps:

∙ Resample configuration indicators 𝑐1:𝑁 from 1 : 𝐾 with probabilities

𝑃𝑟(𝑐𝑖 = 𝑗) ∝ 𝑤𝑗𝑁(𝑥𝑖∣𝜇∗
𝑗 ,Σ

∗
𝑗), (𝑗 = 1 : 𝐾),
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independently over 𝑖 = 1 : 𝑁. This reconfigures the 𝑁 points independently

among the 𝐾 components, and delivers counts 𝑛𝑗 = #{𝑐𝑖 = 𝑗, 𝑖 = 1 : 𝑁} for

𝑗 = 1 : 𝐾. Note that some components may be empty, with 𝑛𝑗 = 0 for some 𝑗.

∙ For 𝑗 ∈ {1, ..., 𝐾}, independently sample new 𝜃∗𝑗 from 𝑝(𝜃∗𝑗 ∣𝑥1:𝑁 , 𝑐1:𝑁 ). The

model has 𝐺0(𝜇,Σ) = 𝑁(𝜇∣0, 𝑡0Σ)𝐼𝑊 (Σ∣𝑠0, 𝑆0) where 𝑡0 > 0, 𝑠0 > 0 is the

prior degree-of-freedom, and 𝐸(Σ) = 𝑆0/(𝑠0 − 2) when 𝑠0 > 2. This leads to

conditional normal-inverse Wishart distributions for each of the 𝑘 parameters.

This straightforward step samples a new set of 𝑘 parameters, including new

draws from 𝐺0(⋅) for cases with 𝑛𝑗 = 0.

∙ For each component 𝑗 = 1 : (𝐾 − 1), compute 𝛼𝑗 = 1 + 𝑛𝑗 and 𝛽𝑗 = 𝛼 +∑𝐾
𝑟=𝑗+1 𝑛𝑟 and then sample independent beta variates 𝑣𝑗 ∼ 𝐵𝑒(𝛼𝑗, 𝛽𝑗); set

𝑣𝐾 = 1. Compute new values of the component probabilities via 𝜋1 = 𝑣1 and

𝜋𝑗 = 𝑣𝑗
∏𝑗−1

𝑟=1(1− 𝑣𝑟) for 𝑗 = 2 : 𝐾.
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Appendix B

MAP sequence estimation

Viterbi Algorithm for MAP sequence estimation (Godsill et al., 2001) can be sum-

marized as follows:

∙ Initialization. For 1 ≤ 𝑗 ≤ 𝐽 ,

𝜑1(𝑗) = log 𝑝(𝜽
(𝑗)
1 , c

(𝑗)
1 ) + log 𝑝(x1∣𝜽(𝑗)

1 , c
(𝑗)
1 ). (B.1)

∙ Recursion. For 2 ≤ 𝑡 ≤ 𝑇 and 1 ≤ 𝑚 ≤ 𝐽 ,

𝜑𝑡(𝑚) = log 𝑝(x𝑡∣𝜽(𝑚)
𝑡 , c

(𝑚)
𝑡 ) + max

𝑗

[
𝜑𝑡−1(𝑗) + log 𝑝(𝜽

(𝑚)
𝑡 , c

(𝑚)
𝑡 ∣𝜽(𝑗)

𝑡−1, c
(𝑗)
𝑡−1)
]
.

(B.2)

𝜓𝑡(𝑚) = argmax
𝑗

[
𝜑𝑡−1(𝑗) + log 𝑝(𝜽

(𝑚)
𝑡 , c

(𝑚)
𝑡 ∣𝜽(𝑗)

𝑡−1, c
(𝑗)
𝑡−1)
]
. (B.3)

∙ Termination. 𝑗
𝑇
= argmax𝑗 𝜑𝑇

(𝑗), 𝜽𝑀𝐴𝑃
𝑇 (𝑇 ) = 𝜽

(𝑗
𝑇
)

𝑇 .

∙ Backtracking. For 𝑡 = 𝑇 − 1, 𝑇 − 2, ..., 1, 𝑗𝑡 = 𝜓𝑡+1(𝑗𝑡+1) and 𝜽𝑀𝐴𝑃
𝑡 (𝑡) = 𝜽

(𝑗𝑡 )
𝑡 .

Note that 𝜽 denotes (𝝅,𝝁,Σ) in the DP mixture model.
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Appendix C

Variational Inference in Exponential Families

This appendix reviews the coordinate ascent algorithm discussed in (Blei and Jor-

dan, 2004). Recall that we are considering a model index 𝑀 , with parameters 𝜽

and observed variables 𝐷. The lower bound on the log marginal likelihood is

log 𝑝(𝐷∣𝑀) ≥ 𝐸𝑞[log(𝑝(𝐷,𝜽∣𝑀)]− 𝐸𝑞[log 𝑞(𝜽)]. (C.1)

This bound holds for any distribution 𝑞(𝜽). To apply the variational method, we

assume a fully-factorized form 𝑞𝜈(𝜽) =
∏𝑁

𝑖=1 𝑞𝜈𝑖(𝜃𝑖) where 𝜈 = {𝜈1, ..., 𝜈𝑁} are vari-

ational parameters and each distribution is in the exponential family (Ghahramani

and Beal, 2001). Here we show a coordinate ascent algorithm in which the bound

is maximized we iteratively with respect to each 𝜈𝑖, holding the other variational

parameters fixed.

Using the chain rule, the low bound 𝐸𝑞[log(𝑝(𝐷,𝜽∣𝑀)]−𝐸𝑞[log 𝑞𝜈(𝜽)] depending

on 𝜈𝑖 is

ℓ𝑖 = 𝐸𝑞[log 𝑝(𝜃𝑖∣𝐷, 𝜃−𝑖,𝑀)]− 𝐸𝑞[log 𝑞𝜈𝑖(𝜃𝑖)]. (C.2)

Given the variational distribution 𝑞𝜈𝑖(𝜃𝑖) is in the exponential family, with form

𝑞𝜈𝑖(𝜃𝑖) = ℎ(𝜃𝑖) exp{𝜈𝑇𝑖 𝜃𝑖− 𝑎(𝜈𝑖)}. To optimize ℓ𝑖, we take the derivative with respect

to 𝜈𝑖, namely

∂

∂𝜈𝑖
ℓ𝑖 =

∂

∂𝜈𝑖
(𝐸𝑞[log 𝑝(𝜃𝑖∣𝐷, 𝜃−𝑖,𝑀)]− 𝐸𝑞[log ℎ(𝜃𝑖)])− 𝜈𝑇𝑖 𝑎

′′(𝜈𝑖). (C.3)

The optimal 𝜈𝑖 satisfies

𝜈𝑖 = [𝑎
′′(𝜈𝑖)]−1

(
∂

∂𝜈𝑖
𝐸𝑞[log 𝑝(𝜃𝑖∣𝐷, 𝜃−𝑖,𝑀)]− ∂

∂𝜈𝑖
𝐸𝑞[log ℎ(𝜃𝑖)]

)
. (C.4)
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The result in Equation (C.4) is general. In many applications of mean field

methods, a further simplification can be achieved if the conditional distribution

log 𝑝(𝜃𝑖∣𝐷, 𝜃−𝑖,𝑀) is an exponential family distribution,

𝑝(𝜃𝑖∣𝐷, 𝜃−𝑖,𝑀) = ℎ(𝜃𝑖) exp{𝑔(𝜃−𝑖, 𝐷,𝑀)𝑇 𝜃𝑖 − 𝑎(𝑔(𝜃−𝑖, 𝐷,𝑀))},

where 𝑔(𝜃−𝑖, 𝐷,𝑀) denotes the natural parameter for 𝜃𝑖 . A simplified expression

of the first derivative of 𝐸𝑞[log 𝑝(𝜃𝑖∣𝐷, 𝜃−𝑖,𝑀)] can be obtained:

∂

∂𝜈𝑖
𝐸𝑞[log 𝑝(𝜃𝑖∣𝐷, 𝜃−𝑖,𝑀)] =

∂

∂𝜈𝑖
𝐸𝑞[log ℎ(𝜃𝑖)] +

∂

∂𝜈𝑖
𝐸𝑞[𝑔(𝜃−𝑖, 𝐷,𝑀)]𝑇𝑎′′(𝜈𝑖).

Using the first derivative in Equation (C.4), the maximum is attained at

𝜈𝑖 = 𝐸𝑞[𝑔(𝜃−𝑖, 𝐷,𝑀)]. (C.5)

A coordinate ascent algorithm based on Equation (C.5) can be defined by iter-

atively updating 𝜈𝑖 for 𝑖 ∈ {1, ..., 𝑁}. Such an algorithm can find a local maximum

of Equation (C.1), under the condition that the right-hand side of Equation (C.2) is

strictly convex (Bertsekas, 1999).
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Appendix D

Proofs of Convergence of MCSA Algorithm

Stochastic Approximation (SA) is a class of algorithms to finding the roots of possi-

bly non-linear equation 𝑓 (𝜸) = 0, in the situation where only noisy measurements

of 𝑓 (𝜸) are available. In its simplest form, the Robbins-Monro algorithm is a recur-

sive process as follows,

𝜸(𝑡+1) = 𝜸(𝑡) + 𝑟(𝑡+1)𝜁(𝑡+1) (D.1)

where
{
𝑟(𝑡), 𝑡 ≥ 1} is a sequence of stepsizes which satisfies standard conditions:∑∞

𝑡=1 𝑟
(𝑡) =∞ and

∑∞
𝑡=1

[
𝑟(𝑡)
]2

<∞ and for any 𝑡 ≥ 1, 𝜁 is a noisy measurement of

𝑓 (𝜸):

𝜁(𝑡+1) = 𝑓 (𝜸) + 𝜉(𝑡+1) (D.2)

where
{
𝜉(𝑡), 𝑡 ≥ 1} is the so called noise sequence.

In our case, we denote ℎ(𝜽;𝜸) =

[
1 + log

𝑞(𝜽(𝑖);𝜸)

𝑝(𝜽(𝑖), 𝐷∣𝑀)
]

𝑑

𝑑𝜸
log 𝑞(𝜽(𝑖);𝜸). As-

sume we have Monte Carlo samples {𝜽(𝑖) : 𝑖 = 1, . . . , 𝑁} from the distribution

𝑞(𝜽;𝜸), then 𝑓(𝜸) in equation (5.15) can be evaluated by its Monte Carlo estimate,

𝜁 (𝜸) = − 1
𝑁

𝑁∑
𝑖=1

ℎ(𝜽(𝑖);𝜸). (D.3)

The Central Limit Theorem,

𝜉 (𝜸) = [𝜁 (𝜸)− 𝑓 (𝜸)]→ 𝑁

(
0,

𝜎2

𝑁

)
, as 𝑛→∞ (D.4)

implies that 𝜉 (𝜸) is Gaussian noise, with mean zero and variance 𝜎2

𝑁
with 𝜎2 =

1
𝑁−1

∑𝑁
𝑖=1

(
ℎ(𝜽(𝑖);𝜸)− 𝜁(𝜸)

)
(Robert and Casella, 2004).
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By using the iterative stochastic approximation method, we can estimate 𝜸 iter-

atively via

𝜸(𝑡+1) = 𝜸(𝑡) + 𝑟(𝑡+1)𝜁
(
𝜸(𝑡)
)
. (D.5)

Here we present a theorem to show that 𝜸(𝑡) → 𝜸𝐿 in probability one as 𝑡→∞.

Theorem 1. Consider the following conditions:

(A1) By the central limit theorem, 𝜉 (𝜸)→ 𝑁
(
0, 𝜎

2

𝑁

)
in distribution and

∫
Θ

ℎ(𝜽;𝜸)2𝑞(𝜽;𝜸)𝑑𝜽 <∞.

(A2) Γ is an open subset of 𝑅𝑛𝜸 . The mean field 𝑓 : Γ→ 𝑅𝑛𝜸 is continuous and there

exists a continuously differentiable function 𝑤 : Γ→ [0,∞) (with the convention

𝑤(𝜸) =∞ when 𝜸 /∈ Γ ) such that:

1. For any 𝑀 > 0, the level set 𝑊𝑀 ≡ {𝜸 ∈ Γ, 𝑤(𝜸) ≤𝑀} ⊂ Γ is compact,

2. The set of stationary point(s) ℒ ≡ {𝜸 ∈ Γ, ⟨∇𝑤(𝜸), 𝑓(𝜸)⟩ = 0} belongs to

the interior of Γ,

3. For any 𝜸 ∈ Γ , ⟨∇𝑤(𝜸), 𝑓(𝜸)⟩ ≤ 0 and the closure of 𝑤(ℒ) has an empty

interior.

(A3) The sequence {𝑟(𝑡), 𝑡 ≥ 1} is non-increasing, positive and

∞∑
𝑡=1

𝑟(𝑡) =∞ and
∞∑
𝑡=1

[
𝑟(𝑡)
]2

<∞. (D.6)

Assume (A1-3). Then,

𝑃
[
lim
𝑡→∞

𝑑
(
𝜸(𝑡),ℒ) = 0] = 1. (D.7)
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Proof: the recursion is expressed as follows

𝜸(𝑡+1) = 𝜸(𝑡) + 𝑟(𝑡+1)𝜁(𝑡+1) = 𝜸(𝑡) + 𝑟(𝑡+1)𝑓 (𝜸) + 𝑟(𝑡+1)𝜉(𝑡+1), (D.8)

where 𝑓 (𝜸) is the function of interest and 𝜉(𝑡+1) is a random perturbation

𝜉(𝑡+1) = 𝑓 (𝜸)− 𝜁(𝑡+1) (D.9)

=

∫
Θ

ℎ(𝜽;𝜸)𝑑𝜽 − 1

𝑁

𝑁∑
𝑖=1

ℎ(𝜽(𝑖);𝜸). (D.10)

Define 𝑀𝑛 =
∑𝑛

𝑡=1 𝑟
(𝑡)𝜉(𝑡). Then

𝐸 [𝑀𝑛+1∣𝑀𝑘, 𝑘 ≤ 𝑛] = 𝐸

[
𝑛+1∑
𝑡=1

𝑟(𝑡)𝜉(𝑡)∣𝑀𝑘, 𝑘 ≤ 𝑛
]

(D.11)

= 𝐸

[
𝑛∑

𝑡=1

𝑟(𝑡)𝜉(𝑡)∣𝑀𝑘, 𝑘 ≤ 𝑛
]
+ 𝐸

[
𝑟(𝑡+1)𝜉(𝑡+1)∣𝑀𝑘, 𝑘 ≤ 𝑛

]
(D.12)

= 𝑀𝑛 + 𝑟(𝑡+1)𝐸
[
𝜉(𝑡+1)

]
. (D.13)

Since 𝜉(𝑡+1) =
∫
Θ
ℎ(𝜽;𝜸)𝑑𝜽− 1

𝑁

∑𝑁
𝑖=1 ℎ(𝜽

(𝑖);𝜸)→ 0, almost sure (a.s.), as 𝑁 →∞,

𝐸 [𝑀𝑛+1∣𝑀𝑘, 𝑘 ≤ 𝑛]→ 𝑀𝑛 a.s. or with probability one. Therefore {𝑀𝑛, 𝑛 ≥ 1} is a

𝐹 -martingale.

Then by the martingale inequality,

𝑃

{
sup

𝑛≥𝑗≥𝑚
∣𝑀𝑗 −𝑀𝑚∣ ≥ 𝜇

}
≤ 𝐸

∣∣∑𝑛−1
𝑖=𝑚 𝑟(𝑖)𝜉(𝑖)

∣∣
𝜇

(D.14)

which implies

lim
𝑚→∞

𝑃

{
sup
𝑗≥𝑚
∣𝑀𝑗 −𝑀𝑚∣ ≥ 𝜇

}
= 0 (D.15)

so that

lim
𝑚→∞

(
sup

𝑚≤𝑗≤𝑚(𝑛,𝑇 )

∥∥∥∥∥
𝑗∑

𝑖=𝑛

𝑟(𝑖)𝜉(𝑖)

∥∥∥∥∥
)
= 0 for all 𝑇 > 0 (D.16)
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where 𝑚(𝑛, 𝑇 ) ≡ max
{
𝑘 : 𝑟(𝑛) + ...+ 𝑟(𝑘) ≤ 𝑇

}
. This condition is called Kushner

and Clark’s condition, which is an important sufficient condition on the noise se-

quence for the convergence of stochastic approximation algorithms. By the theorem

in Kushner and Yin (1997), we can obtain

𝑃
[
lim
𝑡→∞

𝑑
(
𝜸(𝑡),ℒ) = 0] = 1. (D.17)

In case the noise sequence
{
𝜉(𝑡)
}

is Markov state dependent noise,

𝑃
{
𝜉(𝑡+1) ∈ ⋅∣𝜉(𝑖+1),𝜸(𝑖+1), 𝑖 ≤ 𝑡

}
= 𝑃

{
𝜉(𝑡+1) ∈ ⋅∣𝜉(𝑡),𝜸(𝑡)

}
,

we can obtain a similar but more complex proof for the convergence,

𝑃
[
lim
𝑡→∞

𝑑
(
𝜸(𝑡),ℒ) = 0] = 1. (D.18)

Using the estimate 𝜸̂𝐿 produced through the above iterative procedure and the

Monte Carlo samples {𝜽(𝑖) : 𝑖 = 1, . . . , 𝑁} from 𝑞(𝜽; 𝜸̂𝐿), we obtain the estimate of

the optimal lower bound conditional on the kernel form of the variational density

function, namely

𝐿̂(𝜸̂𝐿) =
1

𝑁

𝑁∑
𝑖=1

log
𝑝(𝜽(𝑖), 𝐷∣𝑀)
𝑞(𝜽(𝑖); 𝜸̂𝑈)

, (D.19)

When the iterative steps in the stochastic approximation go to infinity, this esti-

mated lower bound converges to the true maximum lower bound 𝐿(𝜸𝐿) with prob-

ability 1.
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Appendix E

Derivation of Sequential Learning for DP
Mixture Models

The truncated DP mixture proposal distribution is in the form of

𝑞(𝑥;𝜓) =
𝐾∑
𝑘=1

𝑤𝑘𝑞(𝑥∣𝜃𝑘), (E.1)

where 𝑤𝑘 = 𝑉𝑘

∏𝑘−1
𝑗=1(1 − 𝑉𝑗) and (𝑉𝑘, 𝜃𝑘) (also denoted by 𝜓) are the parameters

to be optimized. The KL-divergence between the target distribution 𝜋(𝑥) and the

candidate proposal distribution 𝑞(𝑥;𝜓) is then

𝒟[𝜋(𝑥)∣∣𝑞(𝑥;𝜓)] =
∫

𝜋(𝑥) log
𝜋(𝑥)

𝑞(𝑥;𝜓)
𝑑𝑥. (E.2)

To find the optimal parameter (𝜓∗) that minimizes the KL-divergence𝒟[𝜋(𝑥)∣∣𝑞(𝑥;𝜓)]
or equivalently maximize 𝒟̂(𝜓) = 𝐸𝜋 [log 𝑞(𝑥;𝜓)], we firstly obtain the first-order

partial derivative of 𝒟̂(𝜓) with respect to each 𝑉𝑘 (for 𝑘 = 1, ..., 𝐾 − 1) as follows:

ℎ𝑉𝑘
(𝑥;𝜓) =

∂

∂𝑉𝑘

[∫
𝜋(𝑥) log 𝑞(𝑥;𝜓)𝑑𝑥

]
(E.3)

=

∫
𝜋(𝑥)

∂

∂𝑉𝑘

[
log

𝐾∑
𝑚=1

𝑤𝑚𝑞(𝑥∣𝜃𝑚)

]
𝑑𝑥 (E.4)

=

∫
𝜋(𝑥)

−∑𝐾
𝑙=𝑘+1 𝑉𝑙

∏
𝑗≤𝑙−1,𝑗 ∕=𝑘

(1− 𝑉𝑗)𝑞(𝑥∣𝜃𝑙) +
𝑘−1∏
𝑗=1

(1− 𝑉𝑗)𝑞(𝑥∣𝜃𝑘)
𝐾∑

𝑚=1
𝑤𝑚𝑞(𝑥∣𝜃𝑚)

𝑑𝑥. (E.5)

Note that due to the truncation of the DP mixture, 𝑉𝐾 is always set equal to 1.
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As we have stated, this partial derivative involves an intractable integration w.r.t.

complex 𝜋(𝑥). Instead, we can evaluate estimate based on the sample 𝑋𝑡 = {𝑥(𝑖)
𝑡 }𝑁𝑡

𝑖=1

from 𝜋(𝑥), that is,

𝐻𝑉𝑘
(𝑋𝑡;𝜓) =

1

𝑁𝑡

𝑁𝑡∑
𝑖=1

−∑𝐾
𝑙=𝑘+1 𝑉𝑙

∏
𝑗≤𝑙−1,𝑗 ∕=𝑘

(1− 𝑉𝑗)𝑞(𝑥
(𝑖)
𝑡 ∣𝜃𝑙) +

𝑘−1∏
𝑗=1

(1− 𝑉𝑗)𝑞(𝑥
(𝑖)
𝑡 ∣𝜃𝑘)

𝐾∑
𝑚=1

𝑤𝑚𝑞(𝑥
(𝑖)
𝑡 ∣𝜃𝑚)

.

(E.6)

Therefore, by applying the stochastic approximation technique, we can get the re-

cursive update equation for 𝑉𝑘 as follows:

𝑉𝑘,𝑡+1 = 𝑉𝑘,𝑡 + 𝑟𝑘,𝑛+1𝐻𝑉𝑘
(𝑋𝑡;𝜓𝑡), (E.7)

where

𝐻𝑉𝑘
(𝑋𝑡;𝜓𝑡) =

1

𝑁𝑡

𝑁𝑡∑
𝑖=1

−∑𝐾
𝑙=𝑘+1 𝑉𝑙

∏
𝑗≤𝑙−1,𝑗 ∕=𝑘

(1− 𝑉𝑗)𝑞(𝑥
(𝑖)
𝑡 ∣𝜃𝑙,𝑡) +

𝑘−1∏
𝑗=1

(1− 𝑉𝑗)𝑞(𝑥
(𝑖)
𝑡 ∣𝜃𝑘,𝑡)

𝐾∑
𝑚=1

𝑤𝑚,𝑡𝑞(𝑥
(𝑖)
𝑡 ∣𝜃𝑚,𝑡)

,

(E.8)

and 𝑟𝑘,𝑛+1 is the step-size in the stochastic approximation algorithm. Give the up-

dated 𝑉𝑘,𝑡+1 (for 𝑘 = 1, ..., 𝐾), we can evaluate the 𝑤𝑘,𝑡+1 trivially by 𝑤𝑘,𝑡+1 =

𝑉𝑘,𝑡+1

𝑘−1∏
𝑗=1

(1− 𝑉𝑗,𝑡+1).

In order to estimate the parameter 𝜃 in each of the mixture component, the first-

order partial derivative of 𝒟̂(𝜓) with respect to 𝜃𝑘 (for 𝑘 = 1, ..., 𝐾) is also needed.
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We see that

ℎ𝜃𝑘(𝑥;𝜓) =
∂

∂𝜃𝑘

[∫
𝜋(𝑥) log 𝑞(𝑥;𝜓)𝑑𝑥

]
(E.9)

=

∫
𝜋(𝑥)

∂

∂𝜃𝑘

[
log

𝐾∑
𝑚=1

𝑤𝑚𝑞(𝑥∣𝜃𝑚)
]
𝑑𝑥 (E.10)

=

∫
𝜋(𝑥)

𝑤𝑘
∂

∂𝜃𝑘
𝑞(𝑥; 𝜃𝑘)∑𝐾

𝑚=1 𝑤𝑚𝑞(𝑥; 𝜃𝑚)
𝑑𝑥 (E.11)

=

∫
𝜋(𝑥)

𝑤𝑘𝑞(𝑥; 𝜃𝑘)
1

𝑞(𝑥;𝜃𝑘)
∂

∂𝜃𝑘
𝑞(𝑥; 𝜃𝑘)∑𝐾

𝑚=1 𝑤𝑚𝑞(𝑥; 𝜃𝑚)
(E.12)

=
𝑤𝑘𝑞(𝑥; 𝜃𝑘)∑𝐾

𝑚=1 𝑤𝑚𝑞(𝑥; 𝜃𝑚)

∂

∂𝜃𝑘
log 𝑞(𝑥; 𝜃𝑘). (E.13)

Estimation based on sample 𝑋𝑡 = {𝑥(𝑖)
𝑡 }𝑁𝑡

𝑖=1 is of form

𝐻𝜃𝑘(𝑥;𝜓) =
1

𝑁𝑡

𝑁𝑡∑
𝑖=1

𝑤𝑘𝑞(𝑥
(𝑖)
𝑡 ; 𝜃𝑘)∑𝐾

𝑚=1 𝑤𝑚𝑞(𝑥
(𝑖)
𝑡 ; 𝜃𝑚)

∂

∂𝜃𝑘
log 𝑞(𝑥

(𝑖)
𝑡 ; 𝜃𝑘).

In case that the mixture component 𝑞(𝑥; 𝜃𝑘) is a Gaussian distribution𝒩 (𝑥;𝜇𝑘,Σ𝑘),

where 𝜃𝑘 = (𝜇𝑘,Σ𝑘), 𝐻𝜃𝑘(𝑥;𝜓) becomes

𝐻𝜇𝑘
(𝑥;𝜓) =

1

𝑁𝑡

𝑁𝑡∑
𝑖=1

𝑤𝑘𝑞(𝑥
(𝑖)
𝑡 ; 𝜃𝑘)∑𝐾

𝑚=1 𝑤𝑚𝑞(𝑥
(𝑖)
𝑡 ; 𝜃𝑚)

∂

∂𝜇𝑘

log𝒩 (𝑥(𝑖)
𝑡 ;𝜇𝑘,Σ𝑘) (E.14)

∝ 1

𝑁𝑡

𝑁𝑡∑
𝑖=1

𝑤𝑘𝑞(𝑥
(𝑖)
𝑡 ; 𝜃𝑘)∑𝐾

𝑚=1 𝑤𝑚𝑞(𝑥
(𝑖)
𝑡 ; 𝜃𝑚)

(
𝑥
(𝑖)
𝑡 − 𝜇𝑘

)
, (E.15)

𝐻Σ𝑘
(𝑥;𝜓) =

1

𝑁𝑡

𝑁𝑡∑
𝑖=1

𝑤𝑘𝑞(𝑥
(𝑖)
𝑡 ; 𝜃𝑘)∑𝐾

𝑚=1 𝑤𝑚𝑞(𝑥
(𝑖)
𝑡 ; 𝜃𝑚)

∂

∂Σ𝑘

log𝒩 (𝑥(𝑖)
𝑡 ;𝜇𝑘,Σ𝑘) (E.16)

∝ 1

𝑁𝑡

𝑁𝑡∑
𝑖=1

𝑤𝑘𝑞(𝑥
(𝑖)
𝑡 ; 𝜃𝑘)∑𝐾

𝑚=1 𝑤𝑚𝑞(𝑥
(𝑖)
𝑡 ; 𝜃𝑚)

(
(𝑥

(𝑖)
𝑡 − 𝜇𝑘)(𝑥

(𝑖)
𝑡 − 𝜇𝑘)

𝑇 − Σ𝑘

)
.(E.17)
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Hence, we derive the following recursive update equations for 𝜃𝑘 = (𝜇𝑘,Σ𝑘)

𝜇𝑘,𝑡+1 = 𝜇𝑘,𝑡 + 𝑟′𝑘,𝑡+1

1

𝑁𝑡

𝑁𝑡∑
𝑖=1

𝛼
(𝑖)
𝑘,𝑡+1

(
𝑥
(𝑖)
𝑡 − 𝜇𝑘,𝑡

)
(E.18)

Σ𝑘,𝑡+1 = Σ𝑘,𝑡 + 𝑟′𝑘,𝑡+1

1

𝑁𝑡

𝑁𝑡∑
𝑖=1

𝛼
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𝑘,𝑡+1

(
(𝑥

(𝑖)
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𝑇 − Σ𝑘,𝑡

)
(E.19)

where

𝛼
(𝑖)
𝑘,𝑡+1 =

𝑤𝑘,𝑡𝑞(𝑥
(𝑖)
𝑡 ; 𝜃𝑘,𝑡)∑𝐾

𝑚=1 𝑤𝑚,𝑡𝑞(𝑥
(𝑖)
𝑡 ; 𝜃𝑚,𝑡)

. (E.20)

𝑟′𝑘,𝑡+1 is also the step-size in the stochastic approximation algorithm.
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