
Bayesian Modeling and Adaptive Monte Carlo with

Geophysics Applications

by

Jianyu Wang

Department of Statistical Science
Duke University

Date:
Approved:

Robert Wolpert, Co-Supervisor

Scott Schmidler, Co-Supervisor

Jim Berger

Elaine Spiller

Dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in the Department of Statistical Science

in the Graduate School of Duke University
2013



Abstract

Bayesian Modeling and Adaptive Monte Carlo with

Geophysics Applications

by

Jianyu Wang

Department of Statistical Science
Duke University

Date:
Approved:

Robert Wolpert, Co-Supervisor

Scott Schmidler, Co-Supervisor

Jim Berger

Elaine Spiller

An abstract of a dissertation submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in the Department of Statistical Science

in the Graduate School of Duke University
2013



Copyright © 2013 by Jianyu Wang
All rights reserved except the rights granted by the Creative Commons

Attribution-Noncommercial Licence

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/


Abstract

The first part of the thesis focuses on the development of Bayesian modeling moti-

vated by geophysics applications. In Chapter 2, we model the frequency of pyroclas-

tic flows collected from the Soufriére Hills volcano. Multiple change points within

the dataset reveal several limitations of existing methods in literature. We propose

Bayesian hierarchical models (BBH) by introducing an extra level of hierarchy with

hyper parameters, adding a penalty term to constrain close consecutive rates, and

using a mixture prior distribution to more accurately match certain circumstances

in reality. We end the chapter with a description of the prediction procedure, which

is the biggest advantage of the BBH in comparison with other existing methods. In

Chapter 3, we develop new statistical techniques to model and relate three complex

processes and datasets: the process of extrusion of magma into the lava dome, the

growth of the dome as measured by its height, and the rockfalls as an indication of

the dome’s instability. First, we study the dynamic Negative Binomial branching

process and use it to model the rockfalls. Moreover, a generalized regression model

is proposed to regress daily rockfall numbers on the extrusion rate and dome height.

Furthermore, we solve an inverse problem from the regression model and predict

extrusion rate based on rockfalls and dome height.

The other focus of the thesis is adaptive Markov chain Monte Carlo (MCMC)

method. In Chapter 4, we improve upon the Wang-Landau (WL) algorithm. The

WL algorithm is an adaptive sampling scheme that modifies the target distribution
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to enable the chain to visit low-density regions of the state space. However, the ap-

proach relies heavily on a partition of the state space that is left to the user to specify.

As a result, the implementation and the use of the algorithm are time-consuming

and less automatic. We propose an automatic, adaptive partitioning scheme which

continually refines the initial partition as needed during sampling. We show that this

overcomes the limitations of the input user-specified partition, making the algorithm

significantly more automatic and user-friendly while also making the performance

dramatically more reliable and robust. In Chapter 5, we consider the convergence and

autocorrelation aspects of MCMC. We propose an Exploration/Exploitation (XX)

approach to constructing adaptive MCMC algorithms, which combines adaptation

schemes of distinct types. The exploration piece uses adaptation strategies aiming

at exploring new regions of the target distribution and thus improving the rate of

convergence to equilibrium. The exploitation piece involves an adaptation compo-

nent which decreases autocorrelation for sampling among regions already discovered.

We demonstrate that the combined XX algorithm significantly outperforms either

original algorithm on difficult multimodal sampling problems.
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1

Introduction

This thesis focuses primarily on Bayesian statistical methods. In particular, the

research includes two independent pieces: Bayesian statistical modeling for non-

stationary Markov processes and adaptive Markov chain Monte Carlo (MCMC) al-

gorithms for efficient sampling. In Chapters 2 and 3, the focus of research is on

Bayesian analysis of point processes in the geoscience application. Whereas the mo-

tivation and application of the methodology is associated with volcanic data, the

theoretical framework of the problems is non-stationary Markov processes and the

resulting methodology has broad applications. In Chapters 4 and 5, we develop an

adaptive MCMC algorithm which has advantage in both exploration and exploitation

of the state space.

1.1 Bayesian hierarchical modeling for change points in a point pro-
cess

The point process data we analyze is a time series of pyroclastic flows from Soufrière

Hills volcano. The scientific question is to determine the probability of the occurrence

of certain catastrophic events at any time and any place on the island. We develop
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statistical tools to assess and predict the risk associated with geophysical hazards

such as volcanic pyroclastic flows. A particular goal is to study how these risks vary

in space and time, and of how uncertain they are. The focus in the first part of my

dissertation work is on Bayesian inference of stochastic processes with jumps.

A feature that makes the problem difficult to do well is that the process is very

non-stationary—multiple change points in the process. We have been developing a

change point model to reflect this non-stationarity, and have been using advanced

statistical methods, Reversible jump Markov Chain Monte Carlo, to help support

predictions that reflect all the uncertain aspects of the model and data. For prac-

tical purposes, We introduce a flexible penalized mixture prior distribution and

subsequently apply Monte Carlo integration method to deal with difficulty in the

calculation of normalizing constants.

We apply this Bayesian hierarchical modeling to investigate the changes in the

eruption frequency of the volcano and predict the probability of future catastrophic

events. The overall results of the real data show that the estimates coincide with

significant geological changes of the volcano.

The methodology is developed in the context of a specific problem of pyroclastic

flows, but it is applicable more broadly to problems in the analysis of other time-

varying point data and quantification of other geohazards, risk, and etc.

1.2 Non-stationary Markov process with heavy-tailed distributions

Under the same context, We also analyze small, easy-to-detect volcanic events such

as rockfalls. Furthermore, we discover the relationship between rockfalls and dome

information, dome height and the extrusion rate (which cannot be directly observed).

Hence, we are able to solve an inverse problem: To predict the dome’s extrusion rate

from observed rockfall numbers and dome height.

We propose to model the rockfall counts as a non-stationary correlated negative
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binomial process for the following three reasons: (1) The distribution of the daily

number of rockfalls has a much heavier tail than Poisson distribution. (2) Rockfall

counts vary significantly at some time. (3) Rockfall counts for two consecutive days

are usually highly correlated. Since the non-stationarity of the process can be re-

flected in different parameters of the marginal negative binomial distributions, we

apply Bayes factor to compare three possible models. My dissertation research in-

cludes challenging problems involved in these models such as inference and simulation

methods.

We develop a Bayesian generalized regression model for this non-stationary Markov

process, based on the suggestion from the geologist in our research group that it is

probable that the rockfall activities follow an underlying physical process induced

by lava domes. Building a joint model for these processes is not only important for

understanding the geophysical process, but also help develop methods to predict or

estimate important geophysical quantities like the extrusion rate, key for predict-

ing pyroclastic flows, from easy-to-measure features like dome height and rockfalls.

Furthermore, considering an inverse problem, we establish a change point model to

predict the extrusion rate based on rockfalls and dome height.

In application, our work supports important decision processes by developing new

statistical techniques to model and relate three complex processes and data sets: the

process of extrusion of magma into the lava dome that is the cause of pyroclastic

flows, the growth of the dome as measured by its height, and the rockfalls which are

small rock avalanches off the dome that are an indication of the dome’s instability.

1.3 Hybrid strategies for adaptive Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods are widely used in Bayesian statis-

tics to sample from complex distributions. However, straightforward construction

of MCMC chains such as Gibbs sampling or Metropolis-Hastings often requires sig-
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nificant hand-tuning and mixes impractically slowly when the target distribution is

high-dimensional, complicated, or multimodal. Many adaptive MCMC (AMCMC)

schemes have been developed to address these issues. Recent theory suggests that

adaptive schemes can be classified into two distinct types: those which aid explo-

ration of the target distribution, and those which improve mixing among previously

visited regions of the state space.

The contribution of my dissertation work to this area is a hybrid strategy—an

Exploration/Exploitation (XX) approach—to constructing adaptive MCMC algo-

rithms, which combines adaptation schemes of distinct types. One piece, the “explo-

ration” piece, uses adaptation strategies aimed at exploring new regions of the target

distribution and thus improving the rate of convergence to equilibrium. The other

piece, the “exploitation” piece, involves an adaptation component which decreases

autocorrelation for sampling among regions which are already discovered. This hy-

brid combination is relatively simple, yet provides the best of both worlds. As an

example of this approach, we develop an XX algorithm that combines an adaptive

Metropolized independence sampler (AMIS) as the exploitation component, with

the generalized Wang-Landau (GWL) algorithm as the exploration component. We

show that, for multimodal target distributions, both WL and AMIS algorithms re-

quire general purpose modifications.

WL algorithm partitions the state-space into subsets according to energy (log-

density), and adaptively estimates marginal probabilities of sets, in order to reweight

the target distribution on each component to achieve uniform sampling across sets.

However, the performance relies heavily on the predefined energy partition of the

state space which is left to the user to specify and may fail even for simple low-

dimensional bimodal distributions. We have shown that this is due to fundamental

restrictions on convergence imposed by the width of energy bins, and maximum

energy height, specified by the initial partition. To overcome the limitations, we
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develop an automatic, adaptive partitioning scheme which continually refines the

initial partition as needed during sampling, making the algorithm significantly more

automatic and user-friendly while also making the performance dramatically more

reliable and robust for exactly those multimodal problems which WL/GWL sampling

is designed to address.

Another type of adaptive MCMC approaches have been developed in which the

transition kernel of the chains is sequentially modified over time based on the current

sample history. Although they improve autocorrelation for chains, it is shown that

they fail to improve convergence rates for multimodal distributions. AMIS belongs to

this type. In combining the AMIS algorithm with the WL algorithm to form the XX

algorithm, it reveals a previously unobserved breakdown of the AMIS algorithm on

multimodal distributions. This weakness lies in the stochastic approximation (SA)

formulation of AMIS. In particular, the sequential updating scheme of the AMIS

mixture proposal does not accommodate very well large changes in the target distri-

bution observed late in the sampling, which limits the ability to take full advantage

of the information provided by the exploration chain in the context of the XX algo-

rithm. In addition, the user-defined value of M , the number of mixture components

in the proposal distribution, is arbitrary and it is desirable to ensure the algorithm

is not handicapped by choosing M too low.

Our modifications of the algorithm allow user to address this easily, by starting

with M small and adding one or more additional components whenever a new mode

or region is identified. Note that we need not determine the optimal number of com-

ponents, a notoriously difficult problem, but simply add components as needed to

ensure M is sufficiently large. In addition, XX algorithm exhibits the complemen-

tary strengths of both methods: the ability of the Wang-Landau algorithm to cross

arbitrary energy barriers, and the ability of the AMIS algorithm to dramatically re-

duce autocorrelation, and hence significantly outperforms either original algorithm
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on difficult multimodal sampling problems.
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2

Bayesian Hierarchical Modeling for Change Points
in a Point Process

2.1 Introduction

Point processes are a class of random processes whose realizations consist of sets

of isolated points in some space, such as the real line (often representing time) or

the plane (representing geographical locations). Point processes are well studied and

powerful tools for modeling spatial data (Daley, 1988; Diggle, 2003). It has also been

applied to a variety of disciplines such as forestry (Penttinen and Stoyan, 2000), plant

ecology (Law et al., 2009), epidemiology (Gatrell et al., 1996), seismology (Ogata,

1999), astronomy (Scargle and Babu, 2003), telecommunications (Eden et al., 2004),

economics (Engle and Lunde, 2003), and others.

In this chapter, we use point process to analyze a particular volcanic dataset

collected from Soufriére Hills volcano. The Soufriére Hills volcano is a complex

stratovolcano located on the island of Montserrat, a British overseas territory. After

a long period of dormancy, the volcano became active in 1995, and has continued to

erupt ever since. It is well known that the most common and devastating result of an
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explosive volcanic eruption is a pyroclastic flow (PF), which is a fast-moving current

of hot gas and rock that can reach velocity as great as 450 mph moving away from the

volcano (USGS, http://pubs.usgs.gov/gip/msh/pyroclastic.html). Pyroclastic flows

normally travel downhill or spread laterally under gravity. Their speed depends upon

the density of the current, the volcanic output rate, and the gradient of the slope.

Pyroclastic flows can be extremely disastrous and fatal due to their high temperature

and mobility. Because of the existing volcanic dome and the associated potential for

pyroclastic activity, it is too dangerous to live in many parts of the island and the

financial burden of relocating all the residents is too high to take. To this end, a

group of geologists, statisticians, mathematicians, and physicists initiated a research

project to construct the hazard map of the island (see Figure 2.1), i.e., to determine

the probability of the occurrence of certain catastrophic events at any spatial location

and any time instance. The goal of this chapter is to model the frequency of large

pyroclastic flows with runout greater than 500 meters, under our assumption that

the system is stationary.

The organization of the chapter is as follows. Section 2.2 describes the composi-

tion of the dataset. A visualization of the dataset indicates the existence of multiple

change points in this process. Section 2.3 applies two existing approaches to analyze

the dataset, namely, Bayesian Binary Segmentation (BBS) (Young and Kuo, 2001)

and Reversible Jump Markov Chain Monte Carlo (RJMCMC) (Green, 1995). Sec-

tion 2.4 proposes the Bayesian Hierarchical (BH) model to address the limitations of

the BBS and RJMCMC approaches on this dataset. Section 2.5 describes procedures

to make predictions from the Bayesian hierarchical model.

2.2 Pyroclastic flow data

Following a three-year period of heightened volcano-seismic activity beneath the is-

land, the onset of phreatic volcanic activity started in July 1995 at the Soufriére Hills
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Figure 2.1: The island of Montserrat. Adapted with permission from Calder et al.
2002.

volcano, Montserrat on 18 July 1995. Phreatic explosions gave way to continuous

eruption of juvenile andesitic magma in the form of a lava dome on or around 15

November 1995 (Young et al., 1998). The dataset to be analyzed in this chapter

contains a list of dates between March 27, 1996 and July 28, 2008 when pyroclastic

flows greater than 500 meters runout occurred. There were 868 such events in a

time period of 4507 days. The cumulative count of pyroclastic flows is depicted in

Figure 2.2, in which each point represents an event. If there are multiple events in a

short time period, the dots are connected as a line with a steep slope. Otherwise, the

dots are scattered. It is easy to identify different rates of increase during the course

of observation. Hence, we would like to make inference and prediction on the change

points of the dataset. There are several existing methods in the literature to deal

with (multiple) change points (Andrews, 1993; Bai, 1997; Raftery and Akman, 1986;

Chib, 1998; Brodsky and Darkhovsky, 1993; Green, 1995). In the next section, we

first consider Bayesian Binary Segmentation approach for some preliminary analysis

of the dataset.
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Figure 2.2: The cumulative counts of pyroclastic flows with greater than 500 meters
runout between years 1996 and 2008.

2.3 Existing models for multiple change points

2.3.1 Bayesian binary segmentation

In this subsection, we apply the Bayesian binary segmentation (BBS) method (Young

and Kuo, 2001) to perform some preliminary analysis of the dataset. The BBS

method describes a series of model selection procedures, with the advantage of

easy implementation. Specifically, in each step, one assumes two models: A no-

changepoint model H0 versus a single-changepoint model H1. If the Bayes factor

ppH1 | dataq

ppH0 | dataq
ą 1,

model H1 is selected and then change points and rates are estimated accordingly.

We apply the BBS method to the given dataset and show the estimated change

points and rates in Figure 2.3. Though easy to implement, the results reveal two

major drawbacks of the BBS method. First, prior information is only used to as-

sign equal prior probability to the two models— it offers no way to include prior
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information about the frequency of change points or the magnitude of the changes.

Second, the method uses a very coarse grain threshold in detecting change point and

the algorithm can be very greedy. Notice that in each step, model H1 is selected

and one more change point is detected if the Bayes factor exceeds one. However,

with our dataset, we find that in many steps, the Bayes factor is very close to one.

Without procedures to discriminate the subtle difference, the BBS method detects

an unreasonably large number of changepoints.
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Figure 2.3: Estimated change points and rates of the pyroclastic flow dataset
obtained by Bayesian binary segmentation method.

2.3.2 Reversible jump Markov chain Monte Carlo

The Reversible Jump Markov Chain Monte Carlo (RJMCMC) algorithm was devel-

oped by Peter Green in his attempt to analyze and detect multiple change points in

the rate of coal mining disasters (Green, 1995).

When events occur continuously and independently, it is natural to model them

as an inhomogeneous Poisson process. Green chose to model the coal mining events
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as a Poisson process with a step rate function λptq as illustrated in Figure 2.4. In the

plot, L is the length (in days) of the entire time period, s1, s2, . . . , sk are the times

of change points, and k is the number of change points. The function λptq remains

constant in the period between two successive change points, and then steps up or

down. Therefore, the parameters in the model include: 1) the number of change

points k; 2) the position of change points ~s “ ts1, . . . , sku, and 3) the expected

number of events that occur per day tλju
k`1
j“1 . In the following, we denote the whole

set of parameters by Θ:

Θ “ pk, s1, . . . , sk, λ1, . . . , λk`1q.

Notice that the number of change points k is itself a parameter. As a result, the

dimension of the parameter space is unknown and regular Markov chain Monte

Carlo (MCMC) is not applicable to this case.

0 Ls1 s2 ¨ ¨ ¨ sj ¨ ¨ ¨sj`1 sk

λ1

λ2

λj`1

λk`1

Figure 2.4: An illustration of a Poisson process with a step rate function.

The most common choices of prior distributions for parameters representing

counts (like k) and positive-valued parameters (like tλju are the Poisson and Gamma

distributions, respectively. To make the change points more spread out, Green mod-

eled them as the even-numbered order statistics of 2k`1 uniformly distributed points

for ~s. Specifically, the prior distributions are summarized as follows:

1. k „ PoipLδ0q, where δ0 is the fixed frequency of rate change per day. Then Lδ0

is the prior expected number of change points in the whole time period r0, Ls.

2. Positions of the change points are the even numbered order statistics of 2k` 1
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points uniformly distributed on r0, Ls, to discourages very short periods be-

tween successive change points. Thus:

πps1, s2, . . . , sk | kq “
p2k ` 1q!

L2k`1

k`1
ź

i“1

psi ´ si´1q1t0ăs1ă¨¨¨ăskăLu,

where s0 “ 0 and sk`1 “ L.

3. tλ1, λ2, . . . , λk`1 | ku
idd
„ Gammapα, βq.

The likelihood function is given by

`pτ1, τ2, . . . , τN | k, s1, . . . , sk, λ1, . . . , λk`1q “

k`1
ź

i“1

λnii e
´λipsi´si´1q,

where τ1, τ2, . . . , τN denote the dates of N events, and ni is the number of events in

the time interval psi´1, sis.

In each RJMCMC step, one of four types of moves might be implemented. They

are rate change, position change, birth and death, each proposed with a specified

probability. Suppose that there are k change points in the previous iteration (2k` 2

parameters); then “rate change” is to choose any of the k ` 1 rates and propose a

change by applying Gibbs sampling method (Gelfand and Smith, 1990; Casella and

George, 1992). Similarly, “position change” is to modify the position of one change

points and is achieved by Metropolis-Hastings algorithm (Metropolis et al., 1953;

Hastings, 1970). A “birth” move is to add a new change point and subsequently two

more new rates, while a “death” move is the reverse of the birth move— the removal

of a change point and merger of the periods that had preceded and followed it.

Both birth and death can be implemented as Metropolis-Hastings steps. Figures 2.5

and 2.6 describe the change of the parameter sets before and after the two moves,

respectively.
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0 Ls1 s2 ¨ ¨ ¨ sj ¨ ¨ ¨sj`1 sk

λj`1

0 Ls1 s2 ¨ ¨ ¨ sj ¨ ¨ ¨sj`1 sk

λj`1

ˆ

s˚

0 Ls1 s2 ¨ ¨ ¨ sj ¨ ¨ ¨sj`1 sj`2 sk`1

λj`1 λj`2

Figure 2.5: Illustration of Birth Move. A new change point s˚ is proposed between
the original change points sj and sj`1. Two new rates are proposed before and after
s˚.

0 Ls1 s2 ¨ ¨ ¨ sj ¨ ¨ ¨sj`1 sj`2 sk

λj`1 λj`2

0 Ls1 s2 ¨ ¨ ¨ sj ¨ ¨ ¨sj`2 sk

λj`1 λj`2

ˆ
sj`1

0 Ls1 s2 ¨ ¨ ¨ sj ¨ ¨ ¨sj`2 sk

λj`1

Figure 2.6: Illustration of Death Move. A change point sj`1 is removed and there
is a single rate between sj and sj`2.

We apply the reversible jump MCMC method to the pyroclastic flow data. The

probability distribution for the rate change, position change, birth move and death

move are chosen to be pR “ 1{6, pP “ 1{6, pB “ 1{3, and pD “ 1{3. Birth

and death moves are attempted more frequently because the acceptance rates for

these two moves are usually low. Green chose α “ 1 and β “ 200 for the Gamma

distribution as the prior of rates to achieve a prior mean α{β close to the empirical

mean of 192disasters{40907 days. Our data set features N “ 868 events in L “ 4507

days, and accordingly we set α “ 1 and β “ 5 in our study. We run chains of

length 100,000 steps, and show posterior results summarized from 8,000 samples (first
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thinning for every 10 original MCMC samples, and then use a burn-in period 2,000).

Table 2.1 shows the relationship between the posterior mode of k—the number of

change points—and prior means. As Lδ increases, so does the posterior mode of k.

The sensitivity of the posterior result is easy to identify. Additionally, the fixed prior

parameters are not suitable for the next step of our analysis, prediction.

Table 2.1: Posterior modes of the number of change points for different priors.
prior mean (Lδ) 5 10 15 20

posterior mode (k) 12 14 15 18

2.4 Bayesian hierarchical model

In this section, we discuss several strategies to improve upon the existing BBS and

RJMCMC methods.

2.4.1 Hierarchical model with objective priors

The first improvement is to introduce a second level of hierarchy with hyper-parameters.

This means, δ, α and β are not fixed parameters. Instead, they are assigned objective

hyper-prior distributions:

δ „ πpδq9 1{
?
δ1r0,1s,

pk | δq „ PoipLδq,

α „ πpαq91 on p0,8q

β „ πpβq91 on p0,8q.

We constrain δ to the range r0, 1s, at most one change-point per day on average. It

follows that the prior mean for k will be in the range of r0, Ls. Despite the improper

priors for α and β, the posterior will be proper unless k “ 0, i.e., unless there is no

change point. Because we believe the frequency of large pyroclastic flows is changing
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with the dynamic activities of the volcano, we find the model with k “ 0 to be

untenable and set its likelihood to zero, ensuring posterior propriety.

Next, since Green’s even-order-statistics prior for ~s made little difference in the

results for pyroclastic flow data, for the convenience of prediction, we instead modeled

~s as the ordered statistics of uniformly variables on r0, Ls, to make tsju the events

in a homogeneous Poisson process:

ps1, . . . , sk | kq „ Unifp0, Lq.

Prior distributions for the rates remain the same. To accommodate the intro-

duction of three more parameters, two more moves are also required. By conjugacy,

Gibbs sampling suffices to update δ and β, while a Metropolis-Hastings step is ap-

plied to update α.

We first apply this model to a simulated time series of pyroclastic flows. The

simulation included k “ 9 change points, with N “ 2111 events in L “ 4500 days.

We apply the proposed hierarchical model to the simulated data and show posterior

results summarized from 1,000 MCMC samples (100,000 original samples, thinning 50

and then burn-in period 1,000). Figure 2.7a shows the posterior distribution of k, the

number of change points, and the it shows in the histogram that the posterior mode

of k is 14, although the true value is 9. Figure 2.7b depicts both the true positions of

the change points in the simulated pyroclastic flow data and the posterior samples

of change point positions. The plot on the top of the figure shows the cumulative

counts of simulated pyroclastic flows (in black) and where changes of frequency occur

in our design (red vertical dashed lines). The plot in the bottom of the figure shows

a collection of posterior samples of change point positions. In each line horizontally,

the black dots indicate the change point positions for one of those iterations with

posterior number of change points equal to 14 (posterior mode). When dots form a

vertical line at certain positions, it implies that the sampler recognizes those positions
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as change points with a large degree of certainty. In contrast, those scattered points

imply some positions might be considered as change points but yet the sampler is

not very certain about that. Those vertical lines happen to match the positions

of the real change points. Figure 2.7c displays posterior mean rate and its 90%

credible intervals together with the real rates. We can see that the posterior means

are extremely close to the true values.

The overall results of change point detection and rate estimation are good. How-

ever, we can observe from the figures that the hyper-prior distributions still resulted

in an excessive number of change points. And from the posterior samples, we also

plot the posterior rate from one single MCMC sample with a relatively large poste-

rior number of change points in Figure 2.8. It turns out that some adjacent rates

are quite close to each other in value. This is not favorable because we would like to

detect obvious changes in the eruption frequency, although neither the prior nor the

likelihood embodies this preference by penalizing tiny changes.

2.4.2 Penalized prior distribution

In our second improvement, we modify the prior for rates by adding a penalty term

to the Gamma density to constrain on close consecutive rates:

πpλ1, . . . , λk`1 | k, α, βq “
1

C
pα,β,φq
k

k`1
ź

i“1

pλiq
α´1e´βλi

k
ź

i“1

| λi`1 ´ λi |
φ,

where the nonnegative parameter φ controls the degree of penalty. If any one of the

adjacent pair of rates are close, the density decreases. The larger φ is, the greater

the penalty. This new prior leads to one extra difficulty: the normalizing constant

C
pα,β,φq
k , a pk ` 1q-dimensional integral that depends on parameters k, α, β and φ,

cannot be expressed in closed form except for a few special cases. For instance, when
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(a) Posterior distribution of the number of change points.

(b) True positions of the change points in the simulated pyroclastic flow and the posterior
change point positions.

(c) Posterior mean rate and its 90% credible intervals with the real rates.

Figure 2.7: Results of simulation study I.
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Figure 2.8: A single MCMC sample with a relatively large posterior number of
change points.

φ “ 2, the normalizing constant has the following form:

C
pα,β,φ“2q
k “

ż

pλ1 ¨ ¨ ¨λk`1q
α´1 e´βpλ1`¨¨¨`λk`1qpλ2´λ1q

2
¨ ¨ ¨ pλk`1´λkq

2 d λ1 ¨ ¨ ¨ d λk`1,

which can be solved recursively:

4Ck`1 “
Γpα ` 2q

βα`2
Ck ´ 2

Γpα ` 1q

βα`1
Ak `

Γpαq

βα
Bk,

Ak “
Γpα ` 3q

βα`3
Ck´1 ´ 2

Γpα ` 2q

βα`2
Ak´1 `

Γpα ` 1q

βα`1
Bk´1,

Bk “
Γpα ` 4q

βα`4
Ck´1 ´ 2

Γpα ` 3q

βα`3
Ak´1 `

Γpα ` 2q

βα`2
Bk´1,

with initial values:

A1 “
ΓpαqΓpα ` 3q ´ Γpα ` 1qΓpα ` 2q

β2α`3
,

B1 “
Γ2pα ` 2q ´ 2Γpα ` 1qΓpα ` 3q ` ΓpαqΓpα ` 4q

β2α`4
,

C0 “
Γpαq

βα
and C1 “

2rΓpαqΓpα ` 2q ´ Γpα ` 1qs2

β2α`2
.
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However, for φ ă 2, we can only compute the normalizing constant approximately,

for example, by applying Monte Carlo integration. In this case, the normalizing

constant takes the form:

C
pα,β,φq
k “

ż

pλ1 ¨ ¨ ¨λk`1q
α´1 e´βpλ1`¨¨¨`λk`1q | λ2´λ1 |

φ
¨ ¨ ¨ | λk`1´λk |

φ d λ1 ¨ ¨ ¨ d λk`1.

By changing variables, we may take β “ 1 (and compute C
pα,1,φq
k ) without loss of

generality, since we can then retrieve:

C
pα,β,φq
k “

C
pα,1,φq
k

βpα`φqpk`1q´φ
,

and evaluate the ratio of successive normalizing constants

C
pα,β,φq
k

C
pα,β,φq
k`1

“
C
pα,1,φq
k

C
pα,1,φq
k`1

βα`φ.

The latter will be needed in the computation of acceptance probability, particularly

prior ratios.

A routine Monte Carlo importance sampling scheme is to draw λ
pmq
i

iid
„ Gammapα, 1q,

for i “ 1, . . . , k ` 1 and m “ 1, . . . ,M , and estimate the normalizing constant by

pC
pα,1,φq
k “

1

M

M
ÿ

m“1

Γpαqk`1
| λ

pmq
2 ´ λ

pmq
1 |

φ
¨ ¨ ¨ | λ

pmq
k`1 ´ λ

pmq
k |

φ,

and the ratio by

{

C
pα,1,φq
k´1

C
pα,1,φq
k

“
pC
pα,1,φq
k´1

pC
pα,1,φq
k

,

By the law of large numbers, the sample average of N replications of these es-

timates should converge to the quantities of interest. However, the performance of

the approximation is not satisfactory. While the numerical results of the recursive
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algorithm show convergence of the normalizing constants ratio for φ “ 2, there is

obvious oscillation in the results obtained by the regular Monte Carlo integration

method, which gets more visible for larger φ. The reason for the poor performance

of the Monte Carlo integration is that the normalizing constant is a k`1 dimensional

integral, and as k increases, the variance for the Monte Carlo estimate becomes larger

and larger, and thus the estimates for the normalzing constant (and ratios) are not

reliable.

We now propose a new Monte Carlo integration method using a dimension re-

duction strategy. Specifically, denote

fpλ1, . . . , λk`1q “ pλ1 ¨ ¨ ¨λk`1q
α´1e´pλ1`¨¨¨`λk`1q | λ2 ´ λ1 |

φ
¨ ¨ ¨ | λk`1 ´ λk |

φ,

and

d λpk`1q
“ d λ1 ¨ ¨ ¨ d λk`1.

Then the normalizing constants ratio is:

C
pα,1,φq
k`1

C
pα,1,φq
k

“

ş

fpλ1, . . . , λk`1qλ
α´1
k`2e

´λk`2 | λk`2 ´ λk`1 |
φ d λpk`1qd λk`2

ş

fpλ1, . . . , λk`1qd λpk`1q

“

ż

f˚pλ1, . . . , λk`1qλ
α´1
k`2e

´λk`2 | λk`2 ´ λk`1 |
φ d λpk`1qd λk`2.

Now the ratio of two k`1 dimensional integrals becomes a one-dimensional inte-

gral, which greatly reduces the potential variance. One estimate of the normalizing

constants ratio is obtained by

{

C
pα,1,φq
k`1

C
pα,1,φq
k

“
1

M

M
ÿ

m“1

Γpαq | λ
pmq
k`2 ´ λ

pmq
k`1 |

φ,

where tλ
pmq
k`2u

M
m“1 are independently drawn from Gammapα, 1q and tλ

pmq
k`1u

M
m“1 are

samples from the marginal distribution f˚pλk`1q.
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We can draw samples tλ
pmq
k`1u

M
m“1 from the joint distribution fpλ1, . . . , λk`1q us-

ing one-step-at-a-time-Gibbs-Metropolis. At the mth iteration, we update each

λj twice in a cycle. The procedure has two steps. First, update λ
pm´1q
j for each

j “ 1, 2, . . . , k ` 1, by proposing a new sample λ˚j from Gamma(α,1) and accepting

it with probability

min

#

1,
fpλ

pmq
1 , . . . , λ

pmq
j´1, λ

˚
j , λ

pm´1q
j`1 , . . . , λ

pm´1q
k`1 q

fpλ
pmq
1 , . . . , λ

pmq
j´1, λ

pm´1q
j , λ

pm´1q
j`1 , . . . , λ

pm´1q
k`1 q

+

.

Second, for each j “ k, . . . , 1, propose λ˚j from Gamma(α,1) and accept it with

probability

min

#

1,
fpλ

pmq
1 , . . . , λ

pmq
j´1, λ

˚
j , λ

pmq
j`1, . . . , λ

pmq
k`1q

fpλ
pmq
1 , . . . , λ

pmq
j´1, λ

pmq
j , λ

pmq
j`1, . . . , λ

pmq
k`1q

+

.

Figure 2.9 plots
{C
pα,1,φq
k`1

C
pα,1,φq
k

for α “ 1 and β “ 1 particularly, at a set of k values for

each of three φ values. When φ “ 2, we can compare the numerical approximation

with the exact results. All three curves show convergence when k increases.

In the remaining of this section, we study the simulated pyroclastic flow data using

the new prior distribution for rates and choose prior distributions for α according to

φ values. The prior distributions for other parameters are unchanged. For φ “ 0.5,

the normalizing constants ratios are estimated by Monte Carlo integration. They

are pre-calculated before MCMC runs to avoid time-consuming inline computation.

We assign a discrete uniform prior distribution for α:

πpαq “ Unif t0.1, 0.2, 0.3, . . . , 2.9, 3.0u,

for computational efficiency.

In Figure 2.10a, the histogram shows that the posterior mode of k is 12, still larger

than the true value 9 but smaller than that in the previous simulation study. This
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Figure 2.9: Normalizing constants ratio for specific α and β values, and three φ
values, computed with Monte Carlo method and recursive method.

is due to the penalty term as it adds the constraint to close values of adjacent rates.

Figures 2.10b and 2.10c demonstrate posterior results for the change point positions

and rates, which match the true values pretty well and has smaller discrepancies

than the one in Section 2.4.1.

The normalizing constants ratio can be calculated exactly and quickly for the

case φ “ 2, by recursion. As a result, we can continue using the objective prior for

α: πpαq91 on p0,8q. The posterior distribution shown in Figure 2.11a indicates

that the posterior mode of the number of change points is 9, exactly the true value.

In addition, the MCMC draws of the change point positions plotted in Figure 2.11b

find the all the true positions correctly, yet with certain degree of uncertainty at

some places shown by wiggles along the lines. In addition, the posterior mean rate
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(b) Poster distribution of s.

(c) Posterior mean rate.

Figure 2.10: Results of simulation study II, under the penalty prior for rates with
φ “ 0.5.
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shown in Figure 2.11c is still a good estimate compared to the true rates.

The simulation study demonstrates good performance of the reversible jump

MCMC sampler with a penalized prior on rates and positive penalty φ, in terms of

correctly identifying the true number and positions of the change points and closely

estimating the rates as well. Therefore, we end this section by applying the above

method to the real pyroclastic flow dataset. Figures 2.12a–2.12c show the posterior

results. The histogram for k indicates a range from 9 to 14 with the mode at 11,

and the posterior samples of change point positions mostly form into 11 lines. The

relatively straight lines imply absolute changes while those wiggling lines imply some

uncertainty.

2.4.3 Mixture prior distribution

Our volcanologist collaborators report that the rates can be exactly zero when the

lava dome stops erupting and enters an inactive/dormant period. However, in our

previous analysis, we have assumed that rates are always positive. To improve our

model in this aspect, we would like to add a point mass at zero to the rates in the

prior distribution. We first introduce latent variables tziu
k`1
i“1 indicating whether rate

λi is positive and define

λi “ ziλ
˚
i ` p1´ ziq1t0u, i “ 1, . . . , k ` 1.

That is, λi is positive when zi “ 1 and zero when zi “ 0. We assign independent

Bernoulli distribution with success probability p to each zi, and a hyper-prior dis-

tribution Beta(1,1) (or equivalently Unif(0,1)) to p. The joint prior distribution of
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(b) Poster distribution of s.
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Figure 2.11: Results of simulation study II, under the penalty prior for rates with
φ “ 2.
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Figure 2.12: Real data analysis, under the penalty prior for rates with φ “ 2.

27



p, λ˚1 , . . . , λ
˚
k`1, z1, . . . , zk`1 conditional on k, α, β, and φ is:

πpp, z1, . . . , zk`1, λ
˚
1 , . . . , λ

˚
k`1 | k, α, β, φq

“
1

C
pα,β,φq
k

πppqπpz1, . . . , zk`1 | p, kq
k`1
ź

i“1

pλ˚i q
α´1e´βλ

˚
i

k
ź

i“1

| zi`1λ
˚
i`1 ´ ziλ

˚
i |

φ

“
1

C
pα,β,φq
k

«

k`1
ź

i“1

pzip1´ pq1´zi

ff

¨

«

k`1
ź

i“1

pλ˚i q
α´1e´βλ

˚
i

ff

¨

«

k
ź

i“1

| zi`1λ
˚
i`1 ´ ziλ

˚
i |

φ

ff

,

where C
pα,β,φq
k is the normalizing constant. In this case, the normalizing constant or

its ratio is too complicated to calculate analytically, and therefore is approximated by

Monte Carlo integration methods. With routine Monte Carlo importance sampling,

the normalizing constants ratio tends to fluctuate more dramatically for larger k

(k ą 15) or smaller α (α ă 1) values. However, with the new method presented

in the previous section, the results are much more stable. Figure 2.13 show the

estimates of the normalizing constant ratio for α “ 0.5, 1, β “ 1 and φ “ 0.5, 1, 2 at

different k values.

In the following, we apply the mixture prior distribution with φ “ 2 to the sim-

ulated dataset and present the posterior results in Figure 2.14. The posterior mode

of k, posterior samples of tsju and posterior mean of tλju are very good estimates

of the corresponding parameters. A new plot shown in Figure 2.14b demonstrates

the posterior probability of the rate being exactly zero at each time point. Since the

sampler identifies the change points at correct moments, it also finds the large gap

in the simulated dataset where the rate was simulated as zero. Similarly, we apply

the new mixture prior distribution to the real data. Figures 2.15–2.18 plot all the

posterior estimates of the parameters. We observe there is one event (even though

it is not an outcome of the eruption) in the long gap and thus the posterior proba-

bility of the rate being zero during that time period is zero. To compare, we run the

sampler to the real pyroclastic flow data without that point and plot the posterior
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Figure 2.13: Mixture prior: normalizing constant ratio for different φ and α values.

probability again in Figure 2.19. Now, the sampler gives a much high probability on

that interval that the rate equals zero.

2.5 Prediction

Compared with Bayesian binary segmentation and the original reversible jump MCMC,

the biggest advantage of the Bayesian hierarchical model is that it enables predic-

tions based on what we have observed and the parameters we have estimated that

accurately reflect all sources of uncertainty. In fact, in each RJMCMC replication,

upon obtaining instantiations of all parameters:

pΘ “ pδ̂, p̂, α̂, β̂, k̂, ŝ1, . . . , ŝk, λ̂1, . . . , λ̂k`1q,
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(a) Posterior distribution of k. (b) Posterior probability of zero rate.

(c) Poster distribution of s.

(d) Posterior mean rate.

Figure 2.14: Simulation study III, under the penalty prior for rates with φ “ 2.
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Figure 2.15: Real data analysis: Posterior distribution of k, under the mixture
prior for rates with φ “ 2.

as illustrated in Figure 2.20, we can predict future events tτiuiąN according to pre-

dictive change points ts̃jująk̂ and predictive rates tλ̃jująk̂`1 shown in Figure 2.21.

Specifically, the prediction procedure can be described in four steps:

First, predict future change points trsju for j ě k`1. As prsj`1´rsj | pΘq „ Exppδ̂q,

one generates ∆sj
iid
„ Exppδ̂q, and sets rsj`1 “ rsj `∆sj with s̃k “ ŝk.

Second, predict future rates trλju for j ě k` 2 by acceptance-rejection sampling.

Particularly, sample z̃ from Berpp̂q. If z̃ “ 0, set λ̃j “ 0; otherwise, the predictive
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Figure 2.16: Real data analysis: Posterior distribution of s, under the mixture
prior for rates with φ “ 2.

density of λ̃j given the current values of other parameters is:

fprλjq “
1

C
pα̂,β̂,φq
1

rλα̂´1
j e´β̂

rλj | rλj ´ pλj´1 |
φ .

Let g denote a mixture of Gamma distributions ρGammapα̂, β̂q`p1´ρqGammapα̂`

φ, β̂q and sample λ̂j from g.

Figure 2.17: Real data analysis: Posterior mean rate, under the mixture prior for
rates with φ “ 2.
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Figure 2.18: Real data analysis: Posterior probability or zero rate, under the
mixture prior for rates with φ “ 2.

Figure 2.19: Real data analysis: Posterior probability, under the mixture prior for
rates with φ “ 2. (remove the point in the long gap in the pyroclastic flow data)

0 Lŝ1ŝ2 ¨ ¨ ¨ ŝj ¨ ¨ ¨ŝj`1 ŝk

λ̂1

λ̂2 λ̂j`1
λ̂k`1

Figure 2.20: An illustration of estimates of change points and rates.
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Figure 2.21: An illustration of predicted change points and rates.

Accept the new sample with probability f{Mg, with M is the upper limit of f{g.

In order to make the acceptance probability as large as possible, the optimal value

for ρ is

ρ “
Γpα̂qβ̂φpλφj´1

Γpα̂qβ̂φpλφj´1 ` Γpα̂ ` φq
.

Third, predict future events between ŝj and ŝj`1 by generating ∆τn
iid
„ Exppλ̂j`1q

and set τ̃n`1 “ τ̃n`∆tn. Figure 2.22 shows two sample prediction results. In each of

them, the future events are plotted after the observed pyroclastic flows, and future

rates are also plotted after the last estimated rate.

Fourth, compute the predictive probability from tτ̃N`1, τ̃N`2, . . .u after RJMCMC

runs. Figure 2.23 presents the probability that at least one large pyroclastic flow will

occur in the following 10,000 days (about three years). The curve increases to nearly

one in about half a year.

2.6 Conclusion and discussion

In summary, we try to detect multiple change points in the pyroclastic flow dataset.

The methods improve upon the RJMCMC method by using special prior distri-

butions to meet particular requirements. Although they induce some difficulty in

calculating normalizing constants, the penalized prior is very flexible and the mix-

ture prior is of practical significance. These improvements can be easily adopted in

other natural hazard datasets. There are a few ways to extend the work, such as

risk assessment, incorporating the predictive probability of pyroclastic flows into the
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Figure 2.22: Two sample predictions: Predictive future rates and pyroclastic flow
events.

drawing of hazard map, and relate different volcanic data to explore and establish

regression between them.
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Figure 2.23: Predictive probability of occurrence of pyroclastic events in the future.

36



3

Generalized Regression with a Non-Stationary
Markov Process

3.1 Introduction

In Chapter 2, we studied the frequency of pyroclastic flows to predict the probability

that a catastrophic event will occur in a certain period of time. In this chapter, we

will develop new statistical techniques to model and relate three complex processes

and data sets: the process of extrusion of magma into the lava dome which is the

cause of pyroclastic flows, the growth of the dome as measured by its height, and

the rockfalls which are small rock avalanches off the dome that are an indication of

the dome’s instability.

Building a joint model for these processes is not only important for understanding

the geophysical process, but also to develop methods to predict or estimate important

geophysical quantities such as the extrusion rate – key for predicting pyroclastic flows

– from easy-to-measure features such as dome height and rockfall frequency.
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Figure 3.1: Daily rockfall counts from December 1995 to June 2007.

3.2 Rockfall data and an initial Negative Binomial model

A rockfall is simply a quantity of rock falling down a cliff or slope. We will be

considering rockfalls running down a side of the volcanic dome, and often continuing

a modest distance down the mountain. These rockfalls arise from instability in the

dome, arising from magma extrusion, weathering (especially rain and temperature

changes), and ground tremors.

In this section, we model the distribution of rockfalls. The daily number of

rockfalls observed over an approximately 12 year period (12/12/1995–06/13/2007)

is plotted as a time series in Figure 3.1. It can be seen that rockfall counts vary

significantly over time. The range of the data is from 0 to 212, indicating that

the distribution of the daily rockfall count has a much heavier tail than a Poisson

distribution; this is clearly seen from Figure 3.2. Another natural possibility to be

considered is the Negative Binomial distribution.

The Negative Binomial distribution, denoted by NBpα, pq, is a discrete probability

distribution of the number of successes in a sequence of Bernouli trials before a
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Figure 3.2: QQ plot of the rockfall data versus a Poisson distribution.

specified number of failures occur. The probability mass function is

P rX “ ks “
Γpα ` kq

Γpαq
pαqk, q “ 1´ p,

where k P t0, 1, 2, . . .u is the number of successes, α ą 0 is the number of failures until

the experiment is stopped, and q is the success probability in each experiment. It is

possible to extend the Negative Binomial distribution to the case where α is a positive

real number. In addition, it is often convenient to reparameterize to β “ p{q P p0,8q,
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Figure 3.3: Comparing the empirical distribution of rockfall data to its maximium
likelihood fit to a Negative Binomial distribution NB(α,p).

so that pαqk becomes βαp1 ` βq´α´k; then the Negative Binomial distribution will

be denoted NBpα, βq. The mean of NBpα, βq is α{β and the variance is αp1`βq{β2.

We show, in Figure 3.3, the empirical distribution of rockfall counts together with

a Negative Binomial distribution fit to the data using maximum likelihood estimates,

α̂ “ 0.443 and p̂ “ 0.013. In the plot on the right, the y-axis of probability is on a

logit scale in order to examine the tail more closely. We can see that there are fewer

than expected days in which the rockfall counts are quite high, say over 175, which

seems to indicate a lack of fit. However, this may well be due to missing data. For

instance, 175 rockfalls in one day would mean an average of only 8.2 minutes between

rockfalls, and probably much shorter periods between some successive rockfalls, so

that different rockfall events could become lumped together. Another possible source

of missing data is that activity leading to much more than 175 events might be high

enough to have some part of the activity recorded as a small pyroclastic flow.

Figure 3.4 shows a QQ plot and the autocorrelation plot corresponding to the
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Figure 3.4: QQ plot and autocorrelation plot comparing the rockfall data with the
maximum likelihood Negative Binomial fit.

maximum likelihood Negative Binomial fit. This tells the same story as the distribu-

tion plots, reaffirming that the fit to the negative binomial distribution is quite good

for rockfall counts less than 150, yet has an obviously heavier tail than the empirical

distribution of rockfalls. In addition to the possibility of having missing data, the

autocorrelation plot shows another likely source of the problem: the daily rockfalls

seem to be strongly correlated. Hence we turn to a more involved correlated model

of rockfall counts.

3.3 Negative Binomial branching process

The principal causes of rockfalls include geology and climate factors, both of which

would suggest correlations between days. For instance, a rainy period might lead

to a number of high-rockfall days, as might periods of geological instability due to

earthquakes. Also, rockfall counts can be expected to differ according to the size of

the dome. Hence, we will introduce an AR(1)-like process to model the rockfall data
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instead of considering them as a sample independently drawn from the population.

A Negative Binomial branching process Yt is a stationary, Markov, time-reversible

process with the marginal distribution NB(α, p) and one-step correlation Corr(Yt,Yt`1)

= ρ = e´λ. There has not been much work on inference about this process since

its intial introduction (Edwards and Gurland, 1961), until a good way to evaluate

the likelihood function for an observed dataset y “ ty0, . . . , yT u of values of some

random variables tY0, . . . , YT u was recently proposed (Wolpert and Brown, 2011).

One indirect way is to use data augmentation, which is a recursive update scheme

from Yt´1 to Yt. This approach is useful in simulating a Negative Binomial branching

process as well as generating the likelihood function for this process. For 1 ď t ď T ,

the augmentation scheme is as follows:

Y0 „ NB pα, pq ,

ξt „ Bi

ˆ

yt´1,
ρp

1´ ρ` pρ

˙

, ζt „ NB

ˆ

α ` ξt,
ρ

1´ ρ` pρ

˙

,

Yt “ ξt ` ζt.

To calculate the full likelihood, we first obtain conditional probabilities using data

augmentation,

Pijpα, p, ρq “ PrYt “ j | Yt´1 “ is

“

i^j
ÿ

ξ“0

ˆ

i

ξ

˙

pρrqξp1´ ρrqi´ξ
Γpα ` jq

Γpα ` ξqpj ´ ξq!
rα`ξp1´ rqj´ξ,

where r “
ρ

1´ ρ` pρ
, and then factorize the full likelihood as a series of products
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of conditional probabilities:

PrY “ y|α, p, ρs “
Γpα ` y1q

Γpαqy1!
pαqy1

ź

1ătďn

Pyt´1,ytpα, p, ρq

“
Γpα ` y1q

Γpαqy1!
pαp1´ pqy1 ¨

ź

1ătďn

Γpα ` ytq

Γpαqyt!
¨
pαp1´ ρqyt`yt´1p1´ pqyt

p1´ ρ` ρpqα`yt`yt´1

¨

yj^yt´1
ÿ

ξ“0

yt´1!Γpαqyt!

pyt´1 ´ ξq!Γpα ` ξqpyt ´ ξq!ξ!

ˆ

ρ

p1´ ρq2
p2

p1´ pq

˙ξ

“
Γpα ` y1q

Γpαqy1!
pαp1´ pqy1 ¨

ź

1ătďn

Γpα ` ytq

Γpαqyt!
¨
pαp1´ ρqyt`yt´1p1´ pqyt

p1´ ρ` ρpqα`yt`yt´1

¨ 2F1

ˆ

´yt´1,´yt;α;
ρ

p1´ ρq2
p2

p1´ pq

˙

,

where 2F1pa, b; c; zq is Gauss’ hypergeometric function. This leads to a closed form

expression for the full likelihood.

3.4 Nonstationarity and model selection

3.4.1 Nonstationary models

Examination of Figure 3.1 suggests another problem: that the process is not station-

ary. Indeed, the rockfall activity is strongly related to volcanic activity which has

“on” and “off” periods and the degree of rockfall activity tends to be very different

in each. Even the “on” periods may be very different from each other and the “off”

period very different from each other, because of differences in geological features

(such as dome height) or climate features during the period.

This nonstationarity will be addressed by utilizing different Negative Binomial

Branching models in each rockfall period, i.e., allowing different choices of the three

parameters α, p (or β) and ρ. Unfortunately, allowing all three parameters to vary

makes the model too complex to work with (especially to address the generalized

regression application to be considered later) and also might well overfit the data.
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Hence we will search for a lower dimensional parameter-varying model.

In order to gain some insight into possibly appropriate parameter-varying nega-

tive binomial branching models for the rockfall data, we first conduct an exploratory

study, in which the dataset is divided into 20 time segments, each of will be fit sepa-

rately to a negative binomial branching model. In Figure 3.5, the red dotted lines are

plotted at the change points chosen to divide the rockfall data into the 20 regions.

These change points were chosen based on the observation that, in each of the 20

regions, the marginal distribution of the rockfall counts seem to be the same at each

time point.

Figure 3.5: Rockfall data with the 20 regions to be fitted separately to a negative
binomial branching model.

First, to see if we are on the right track by fitting separate models to regions,

we first consider fitting simple negative binomial models to each region. Figure 3.4

presents the Q-Q plots of the fits, in each of the 20 regions, of the rockfall data to the

maximum likelihood negative binomial model for that region. Generally speaking,

the fits are better, especially in the tail regions, so this is a move in a good direction.

We know that it is still not correct, however, in that in does not account for the clear
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Figure 3.6: QQ-plots of the data fits to separate negative binomial models for each
of the 20 regions.

dependence in the data, even within a given region. Hence we turn to utilization of

utilization of negative binomial branching models with changing parameters.

Let bNBpαi, βi, ρiq denote the model in each region i P t1, 2, . . . , 20u. Table 3.1

lists the corresponding parameter maximum likelihood estimates for each region.

Our goal is to try to find a lower dimensional structure in these values that seems

reasonably stable across regions; we can then use the resulting lower dimensional

parameter-varying negative binomial branching model as our final model for rockfalls.

Table 3.1: Maximum likelihood estimates of Negative Binomial Branching model
parameters for each of the 20 regions.

Region 1 2 3 4 5 6 7 8 9 10
αmle 1.16 2.25 1.21 0.98 1.54 0.98 0.93 0.80 1.21 4.10
βmle 0.17 0.05 0.03 0.04 0.03 0.02 0.09 0.02 0.03 0.12
ρmle 0.67 0.79 0.81 0.78 0.80 0.80 0.75 0.92 0.89 0.54

Region 11 12 13 14 15 16 17 18 19 20
αmle 6.50 1.77 1.29 0.31 0.76 1.04 2.02 1.49 1.30 1.22
βmle 0.06 0.03 0.95 0.06 0.02 0.02 0.69 0.45 0.03 0.04
ρmle 0.72 0.91 0.95 0.47 0.33 0.87 0.85 0.82 0.90 0.46

45



To compare the variability between data sets with different units or widely dif-

ferent means, it is common to use the coefficient of variation. The coefficient of

variation (CV) is defined as the ratio of the standard deviation to the mean:

cv “
σ

µ
.

It shows the extent of variability in relation to mean of the population. The coeffi-

cient of variation has been commonly used in renewal theory, queueing theory, and

reliability theory. In these fields, the exponential distribution is often more important

than the normal distribution. The standard deviation of an exponential distribution

is equal to its mean, so its coefficient of variation is equal to 1. Therefore, in these

applied probability fields, distributions with CV ă 1 are considered low-variance,

while those with CV ą 1 are considered high-variance.

The empirical coefficients of variation (i.e, the sample standard deviation divided

by the sample mean) for each of the three lists of MLEs in Table 3.1 are:

cvpα
mle
q “ 0.84, cvpβ

mle
q “ 1.7, cvpρ

mle
q “ 0.23.

This suggests that the bNB parameters α and β are more variable than ρ, and sug-

gests the possibility of assuming that ρ is constant across regions. This is especially

plausible when realizing that only regions 14, 15 and 20 had values that significantly

differed from the others, and these were regions of very low rockfall activity so that

the likelihoods were relatively flat in these regions; the resulting mle’s are thus not

particularly reliable. So we will, henceforth, assume a constant (but unknown) ρ in

the negative binomial branching process.

A further possible simplification is to find a one dimensional function of α and β

that is constant. We will consider three such models:

• Model 1: β is constant.
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• Model 2: α is constant.

• Model 3: Cαβ “ αβ is constant; this is a compromise between Model 1 and

Model 2.

Note that, for each model (and assuming constant ρ) there is still one degree of

freedom left in choice of the negative binomial branching models for each region. For

analysis, it is convenient to reparameterize so that this free parameter is the mean of

the negative binomial branching model in that region, namely µi “ αi{βi. Hence the

three models to be considered have the following unknown parameters (generalizing

to the scenario of k change points):

• M1 : θ1 “ tµ1, . . . , µk`1, β, ρu.

• M2 : θ2 “ tµ1, . . . , µk`1, α, ρu.

• M3 : θ3 “ tµ1, . . . , µk`1, Cαβ, ρu.

These three models are not nested, but the number of parameters is the same: k`3.

Each model has a distinct parameter, and the other k ` 2 parameters are same,

simplifying the model selection problem

3.4.2 Prior distributions and likelihood

It is reasonable to assign equal probabilities to the three models: π1pM1q “ π2pM2q “

π3pM3q “ 1{3. Furthermore, we will use a prior distribution for µ “ tµ1, . . . , µk`1u

and ρ under which µ and ρ are independent. This independence makes sense because

our prior information about these two parameters arises from different sources. The

level of µ largely depends on the volcanic activity, while the correlation is more

related to climate or other geological factors. Since µ and ρ appear in all three
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models, we can assign improper priors for µ and a uniform prior for ρ:

πjpµiq9
1

µi
, j “ 1, 2, 3, i “ 1, . . . , k ` 1,

πjpρq “ 1, j “ 1, 2, 3.

For the distinct parameters in the three models, β in M1, α in M2 and Cαβ in

M3, it is difficult to specify compatible priors, as the parameters have very difference

effects on the likelihood. We will instead simply present the marginal likelihoods as

a function of these parameters, evaluated at a number of values.

In each of the twenty regions, the process is assumed to be stationary, so the

likelihood function discussed in Section 3.3 applies. One first needs to reparameterize

each likelihood according to the selected model – e.g., for Model 1, just replace α

and p in bNB(α, p, ρ) by p “
β

1` β
and α “ µβ); we will abuse notation and write

the ensuing model as bNB(µ, β, ρ).

3.4.3 Marginal likelihoods

Model selection will be done by looking at the marginal likelihoods corresponding

to each model (at various values of the fixed parameters). One obtains the marginal

likelihoods simply by multiplying the (reparameterized) likelihoods by the priors

in the previous section, and integrating out over the parameters. It is shown in

Appendix C that these marginal likelihoods are finite. The expressions for these

integrals, at fixed values of the distinct parameters (denoted by α˚, β˚ and C˚αβq, are

as follows:
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m1pxqβ˚ “

ż

Lpx | µ1, . . . , µk`1, β “ β˚, ρqπ1pµ1, . . . , µk`1, ρq dµ1 ¨ ¨ ¨ dµk`1 dρ

“

ż

«

k`1
ź

i“1

NBpx | µi, ρ, β “ β˚q

ff

π1pρqπ1pµ1q ¨ ¨ ¨ π1pµk`1q dµ1 ¨ ¨ ¨ dµk`1 dρ

“

ż

ρ

k`1
ź

i“1

„
ż

µ

NBpx | µi, ρ, β “ β˚qπ1pµiq dµi



π1pρq dρ,

m2pxqα˚ “

ż

Lpx | µ1, . . . , µk`1, α “ α˚, ρqπ2pµ1, . . . , µk`1, ρq dµ1 ¨ ¨ ¨ dµk`1 dρ

“

ż

ρ

k`1
ź

i“1

„
ż

µ

NBpx | µi, ρ, α “ α˚qπ2pµiq dµi



π2pρq dρ,

m3pxqC˚αβ “

ż

Lpx | µ2, . . . , µk`1, Cαβ “ C˚αβ, ρqπ3pµ1, . . . , µk`1, ρq dµ2 ¨ ¨ ¨ dµk`1 dρ

“

ż

ρ

k`1
ź

i“1

„
ż

µ

NBpx | µi, ρ, Cαβ “ C˚αβqπ3pµiq dµi



π3pρq dρ,

where NBpx | µi, ρi, ¨q is the likelihood function with data in the i-th region.

3.4.4 Approximating the integrals

The marginal likelihood functions for the different models can be approximated in

similar ways, as the integrals have similar forms. In the following, we will present

the computation of m1pxqβ˚ step by step using Laplace’s method (Laplace, 1974).

(a) In each of the 20 regions, there are hundreds of data, which makes the integrals
ż

µi

NBpx | µi, ρ, β “ β˚qπ1pµiq dµi pi “ 1, . . . , 20qq very small. When we then

numerically integrate ρ, the integrand is essentially zero in statistical software,

such as R. Hence, we compute a similar integral:

Ci “ log

ż 8

0

ż 8

0

ż 8

0

NBpx | µi, λ, βqπpµiqπpλqπpβq dβ dλ dµi,

49



for each region and take the constant factor C˚ out for computational efficiency

and accuracy. This results in the following decomposition of m1pxqβ˚ :

m1pxqβ˚ “

ż

ρ

k`1
ź

i“1

„
ż

µi

NBpx | µi, ρ, β “ β˚qπ1pµiq dµi



π1pρq dρ

“

ż

ρ

exp

#

k`1
ÿ

i“1

log

ż

µi

NBpx | µi, ρ, β “ β˚qπ1pµiq dµi

+

π1pρq dρ

“ exp

˜

k`1
ÿ

i“1

Ci

¸

¨

ż

ρ

exp

#

k`1
ÿ

i“1

ˆ

log

ż

µi

NBpx | µi, ρ, β “ β˚qπ1pµiq dµi ´ Ci

˙

+

π1pρq dρ

“ C˚ ¨

ż

ρ

hpρ | xqπ1pρq dρ,

where C˚ “ exp

˜

k`1
ÿ

i“1

Ci

¸

and

hpρ | xq “ exp

#

k`1
ÿ

i“1

ˆ

log

ż

µi

NBpx | µi, ρ, β “ β˚qπ1pµiq dµi ´ Ci

˙

+

.

(b) Compute log

ż

µi

NBpx | µi, ρ, β “ β˚qπ1pµiq dµi and Ci using Laplace’s method.

To compute Ci, i “ 1, . . . , k ` 1, we first extend the range of the integration

out to infinity by changes of variables:

ż 8

0

ż 8

0

ż 8

0

NBpx | µi, λ, βqπpµiqπpλqπpβq dβ dλ dµi

“

ż 8

´8

ż 8

´8

ż 8

´8

NBpx | elµi , elλ, elβqelµielβelλπpelµiqπpelλqπpelβq dlβ dlλ dlµi,

where lµi “ logpµq, lβ “ logpβq, lλ “ logpλq.
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We can either use diffuse proper priors as

µi „ LNpmµ, σ
2
µq, β „ LNpmβ, σ

2
βq, λ „ LNpmλ, σ

2
λq,

with mµ “ mβ “ mλ “ 0, σµ “ σβ “ σλ “ 10, which simplies the integral as

ż

R3

NBpx | elµi , elλ, elβqNplµi | mµ, σ
2
µqNplλ | mλ, σ

2
λqNplβ | mβ, σ

2
βq dlβ dlλ dlµi;

or assign the same prior distributions to µ and λ as those for the models, and

a Gamma prior for β:

πpµiq9
1

µi
, β „ Gammapµβ, σ

2
βq, λ „ Expp1q,

with µβ “ 0.1, σ2
β “ 0.06 which were picked based on the information about

MLEs. The results of Ci pi “ 1, . . . , 20q under different prior distributions are

listed in Table 3.2. It is straightforward to observe that all the values are small

and the pairs for different priors do not differ much.

The approximation method for the integrals log

ż

µi

NBpx | µi, λ, β “ β˚qπ1pµiq dµi

and
ş

ρ
hpρ | xqπ1pρq dρ is similar to the above approach.

3.4.5 Comparing the marginal likelihoods of the three proposed models

Tables 3.3-3.5, give the marginal likelihood of each model for various values of the

distinct parameter of each model. Figure 3.7 compares the logarithm of the marginal

likelihoods of the three models. From the results, it is clear that Model 3 has by far

the largest marginal likelihood, and hence will be the model we ultimately use for

the rockfalls.

3.5 Correlated Negative Binomial regression

The ongoing eruption of the Soufrière Hills Volcano (SHV) on Montserrat involves

lava extrusion, lava dome growth, dome collapses and pyroclastic flows. In order
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Table 3.2: Values of Ci in 20 regions.
i Log-normal prior Improper and Gamma priors
1 ´410.380 ´404.196
2 ´335.670 ´329.761
3 ´371.635 ´365.881
4 ´760.451 ´754.536
5 ´773.843 ´768.029
6 ´683.103 ´677.324
7 ´2020.034 ´2014.012
8 ´1834.424 ´1829.475
9 ´686.898 ´681.649
10 ´414.066 ´407.609
11 ´826.006 ´819.822
12 ´1314.771 ´1309.678
13 ´589.162 ´584.661
14 ´569.854 ´564.060
15 ´219.510 ´213.358
16 ´993.481 ´988.038
17 ´757.127 ´751.512
18 ´201.939 ´196.182
19 ´213.454 ´208.212
20 ´127.998 ´122.592

Table 3.3: Marginal likelihood for Model 1.
β˚ m1pxq{e

´13990.59

0.010 2.950ˆ10´52

0.020 7.923ˆ10´50

0.030 1.458ˆ10´46

0.035 3.635ˆ10´46

0.040 2.441ˆ10´46

0.045 1.338ˆ10´47

0.046 7.893ˆ10´48

0.048 6.517ˆ10´49

0.050 5.194ˆ10´50
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Table 3.4: Marginal likelihood for Model 2.
α˚ m2pxq{e

´13990.59

0.20 4.842ˆ10´95

0.30 1.022ˆ10´68

0.40 1.657ˆ10´53

0.50 1.270ˆ10´44

0.60 4.878ˆ10´40

0.65 5.597ˆ10´39

0.70 1.412ˆ10´38

0.75 8.648ˆ10´39

0.80 1.861ˆ10´39

0.90 4.018ˆ10´42

1.00 3.138ˆ10´46

Table 3.5: Marginal likelihood for Model 3.
C˚αβ m3pxq{e

´13990.59

0.010 1.344ˆ10´16

0.020 1.249ˆ10´08

0.025 3.016ˆ10´07

0.026 4.299ˆ10´07

0.028 7.373ˆ10´07

0.030 9.047ˆ10´07

0.032 9.470ˆ10´07

0.034 7.780ˆ10´07

0.035 6.157ˆ10´07

0.040 1.417ˆ10´07

0.045 1.322ˆ10´08

0.050 5.854ˆ10´10

0.070 1.651ˆ10´17

0.090 2.415ˆ10´27

to effectively assess future volcanic hazards at SHV, particularly pyroclastic flows,

monitoring extrusion rates is essential. However, extruded lava cannot be observed

directly, but can only be estimated.

For the most part, extruded lava translates directly into increase of the volume

of the lava dome. It is often difficult, however, to determine the volume of the

dome, whereas dome height is straightforward to obtain. Increased lava extrusion
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Figure 3.7: Log of the marginal likelihoods for the three models.

also seems to translate into increased instability of the dome, and, hence, increased

numbers of rockfalls. Thus, if we could determine the relationship between, extrusion

rate, dome height and daily rockfall counts, we would be able to solve the inverse

problem of predicting extrusion rate based on observed rockfalls and dome height.

In this section, we develop a generalized linear regression model relating these three

variables.

Our outcome variable will be the number of rockfalls, Yt, on day t. The mea-

surement error model we utilize for rockfalls is Model 3 from the previous section,

namely the non-stationary Negative Binomial branching process with varying pa-

rameters, which was denoted bNBpµt, Cαβ, ρq with µt “ αt{βt being the mean of the

process. The true mean µptq is expected to relate to the extrusion rate and dome

height, and we utilize log-linear regression to model this relationship.

Luckily, estimates of the extrusion rate are available to assist in developing the

regression model. The extrusion rate is the total dense rock equivalent (DRE) volume

of extruded andesite magma. The total cumulative lava extrusion is calculated as
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Figure 3.8: Time series of four volcanic data processes.

the sum of the change in the lava dome volume, pyroclastic flow deposit (the volume

of which was estimated from field measurements) and ash fall deposit volumes, all

converted to DRE. The average extrusion rate for every 10 day period was calculated.

Figure 3.8 illustrates four processes, the volume of pyroclastic flows in Mm3,

rockfall counts aggregated for every 10 days (for comparison), average extrusion rate

in m3{s, and elevation of the dome in meters above sea level. For dome height, the

dataset contains observations for 86 days and we use linear interpolation for other

dates The red regions indicate the days when the dome height was above 950 meters

and, simultaneously, the extrusion rate was higher than 4.5m3{s; such days were

considered particularly “dangerous” periods, since the dome was not stable. The

general trends of these three processes are in accordance with each other. The dates

when large pyroclastic flows (of volume greater than 9Mm3) occurred are highlighted

by blue dotted lines, and correspond to those major lava dome collapses.
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3.5.1 Model

Let tytu
T
t“1 denote the time series of total rockfall counts for every 10 days, and

assume it follows a non-stationary branching Negative Binomial process with a mean

process tµtu, and two constant parameters Cαβ “ αtβt and ρ. In addition, we assume

that the mean process depends on the independent variables through the log link

function. The correlated negative binomial regression model is formulated as below:

yt „ bNBpµt, Cαβ, λq, t “ 1, . . . , T,

logpµtq “ γ0 ` γ1 ˆ xt1 ` γ2 ˆ xt2,

where Corrrys, yts “ e´λ|s´t| “ ρ|s´t|, x1 “ logpExtrusion Rate` 1q, and x2 “

logpDome Height/average(Dome Height)q.

The use of the log linear model is because there should be some power relationship

between rockfalls and the dome height and extrusion rate, but it is not at all clear

what powers. Adding 1 to the extrusion rate before taking the log simply ensures

that zeroes remain zero. In order to make the covariates comparable in values, we

first standardize the data by dividing the average dome height; this is primarily to

hopefully reduce correlation in the MCMC analysis that will ultimately be needed

for the inverse problem.

3.5.2 Prior distribution and likelihood function

The only effect that the non-stationarity has on the likelihood expression of the

stationary Negative Binomial branching process is that the appreance of α and/or β

is replaced by αt and/or βt. The likelihood function for bNB(α,p, ρ) has the following

form, and using the connection between different parametrization: p “
β

1` β
, α “

a

Cαβµ, β “

c

Cαβ
µ

, we can obtain the likelihood function for bNB(µ, Cαβ, ρ):
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PrY “ y | α,p, ρs “ ppy1q
ź

1ăjďT

ppyj|yj´1q

“
Γpα1 ` y1q

Γpα1qy1!
pα1

1 p1´ p1q
y1 ¨

ź

1ăjďn

Γpαj ` yjq

Γpαjqyj!
¨
p
αj
j p1´ ρq

yj`yj´1p1´ pjq
yj

p1´ ρ` ρpjqαj`yj`yj´1

¨

yj^yj´1
ÿ

ξ“0

yj´1!Γpαjqyj!

pyj´1 ´ ξq!Γpαj ` ξqpyj ´ ξq!ξ!

ˆ

ρ

p1´ ρq2
p2
j

p1´ pjq

˙ξ

“
Γpα1 ` y1q

Γpα1qy1!
pα1
j p1´ pjq

y1 ¨
ź

1ăjďT

Γpαj ` yjq

Γpαjqyj!
¨
p
αj
j p1´ ρq

yj`yj´1p1´ pjq
yj

p1´ ρ` ρpjqαj`yj`yj´1

¨ 2F1p´yj´1,´yj;αj;
ρ

p1´ ρq2
p2
j

p1´ pjq
q,

where 2F1pa, b; c; zq is Gauss’ hypergeometric function.

Finding good objective priors for the parameters γ, ρ and Cαβ is very difficult so

the following vague proper priors will be used, together with sensitivity studies:

γi „ Np0, σ2
q, i “ 0, 1, 2

ρ „ Unifp0, 1q;

Cαβ „ Gammapa, bq.

The sensitivity analysis involved choices of several sets of prior hyperparameters,

such as 103 and 106 for σ2, and p10´5, 10´4q and p10´6, 10´6q for pa, bq (so that the

prior mean and variance of Cαβ are 0.1 and 103, 1 and 106 respectively); the results

did not show much difference.

Under the proper prior distributions, it is straightforward to check the posterior

distributions are also proper, using an analysis similar to Appendix C.

3.5.3 Simulated data

In this section, we develop simulation methods needed for dealing with the dynamic

negative binomial branching process. In the process of studying the process, we
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first developed a simulation method for bNBpαt, β, ρq, where parameter α is varying

while the other parameters β and ρ remain constant. Refer to Appendix A for

details. Although this process is not applied in our analysis to the regression model,

the methodology can be very useful in other relevant research areas.

To find a simulation method for the dynamic branching negative binomial process

in which both α and β are changing over the time, we turn to another interpretation

of the process bNBpα, β, ρq. The process can be viewed as a linear birth/death

process with immigration rates:

b “
λ

β
(Birth rate),

d “
λ

p
“ λ` b (Death rate),

i “ λ
α

β
“ λµ (Immigration rate),

where p “
β

1` β
.

An integer-valued Markov process tXtu can be constructed as a step function

with initial values t0 “ 0 and X0 “ x0, and for n ě 0:

tτnu
iid
„ Expp1q,

tn`1 “ tn `
τn

i` xnpb` dq
,

Xn`1 “ xn`1,

xn`1 “

#

xn ´ 1 with probability xnd
i`xnpb`dq

,

xn ` 1 otherwise.

When the mean process µt is a specified non-constant function with derivative

µ1t, with constant λt “ λ and αtβt “ Cαβ, the above construction will need some

modification. First of all,
αt
βt

is not equal to µt, but they have the following relation:
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αt “
a

Cαβ

"

µt `
µ1t
λ

*1{2

, βt “
a

Cαβ

"

µt `
µ1t
λ

*´1{2

,

or equivalently,

it “ λµt ` µ
1
t, bt “

d

λit
Cαβ

, dt “ λ` bt.

In this case, an integer-valued Markov process tXtu can be constructed as a step

function with initial values t0 “ 0 and X0 “ x0, and for n ě 0:

tτnu
iid
„ Expp1q,

tn`1 “ inf

"

t ą tn :

ż t

tn

ris ` pbs ` dsqxns ds ą τn

*

,

Xn`1 “ xn`1, tn ď t ă tn`1,

xn`1 “

#

xn ´ 1 with probability
xndtn`1

itn`1`xnpbtn`1`dtn`1 q
,

xn ` 1 otherwise.

When rockfall counts drop quickly, such that it “ λµt`µ
1
t ă 0, it’s not reasonable

to impose the modeling condition that the autocorrelation stays constant. To deal

with this, let

λt “ maxpλ,´2µ1t{µtq

to ensure it “ λµt ` µ
1
t is always positive.

3.5.4 Simulation study

Before using the generalized regression model on the real data, we would like to

conduct an experiment on a simulated dataset and see how the model works. We

simulate rockfall data according to the correlated negative binomial regression model

using the simulation method for the dynamic branching negative binomial process.
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In order to generate a dataset that has some features similar to the real rockfall

data, we incorporate some information of the real extrusion rate and dome height

into the regression covariates. Let

x2 “ logpDome Height/average(Dome Height)q

denote dome height data, where “Dome height” is the red curve plotted in Figure 3.8.

However, for x1, we use a step function of extrusion rate instead of the real data, as

illustrated by the blue lines in Figure 3.9. This assumption is reasonable because,

in reality, the large jumps of the extrusion rate indicate different phases of dome

growth and, because the extrusion rates in the data were only inferred, the smaller

fluctuations in the extrusion data are unlikely to be accurate.
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Figure 3.9: Step extrusion rate assumed in simulation.

In Figure 3.9, the black curve represents the “real” calculated extrusion rate, from

which we recognize several obvious change points indicated by the dashed vertical

lines. In each of segments, we take the average of the extrustion rate data as the

extrusion rate in our simulation study, plotted in blue. In the regression, let x1 “
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Figure 3.10: Simulation parameters pµt, Cαβ, ρq and simulated rockfall counts yt.

logpExtrusion rate` 1qand consequently, we can generate the mean process by

logpµtq “ γ0 ` γ1 ˆ xt1 ` γ2 ˆ xt2,

where we assume γ “ p3, 0.7, 2.5q. Then a dataset of 416 rockfall counts can be

simulated as a dynamic negative binomial branching process, shown in Figure 3.10:

yt „ bNBpµt, Cαβ, ρq, t “ 1, . . . , T “ 416,

where we assume Cαβ “ 0.1, ρ “ 0.8.

In the next section, we will show the simulation results. However, in the first

place, we would like to test our new simulation method for the dynamic negative

binomial branching process. Using the same set of simulation covariates/parameters

px1,x2,γ, Cαβ, ρq, we generate 200 samples of tytu
T
t“1. We intend to examine the

approximate marginal distributions, estimated sample lag-1 autocorrelation, as well

as the estimated mean process. The simulation results are shown in Figures 3.11,

3.12 and 3.13.
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Figure 3.11: Simulation autocorrelation parameter ρ and estimated sample auto-
correlation.

Black circles and red diamonds in Figure 3.11 represent lag-1 sample autocorrela-

tion ρ̂t and the true simulation parameter ρt “ ρ at each time point t, t “ 1, . . . , T “

416 respectively. It can be seen that most of the black circles gather around the true

value at 0.8; however, at some points, the sample autocorrelation is much lower than

0.8, which can be explained by either abrupt increases (highlighted by red dashed

vertical lines) or abrupt decreases (highlighted by blue dashed vertical lines) in the

simulation parameter µt.

In each plot of Figure 3.12, the red curve is the “true” marginal distribution–

negative binomial distribution with parameters listed under the histogram at a cer-

tain time point t. The histogram represents an approximation of the marginal neg-

ative binomial distribution with parameters estimated by the maximum likelihood

method and denoted in the legend. Generally speaking, the histograms and the

curves are good matches.

Figure 3.13 shows three kinds of processes. The red diamonds plot the mean
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Figure 3.12: Approximate marginal distributions estimated from 200 samples at
12 random time points.

Figure 3.13: Simulation parameter–mean process µt.

63



process µt used to generate rockfall counts. The black circles are mean values esti-

mated from the 200 sets of rockfall counts. The other colorful lines each represent

one realization randomly selected from the 200 samples. It is straightforward to ob-

serve that the estimated mean process follows the true simulation parameter pretty

closely, which together with the above two figures, indicate that our new simulation

method for dynamic branching negative binomial processes works well.

3.5.5 Correlated Negative Binomial regression and posterior distributions

Now we proceed to the inference of the correlated negative binomial regression. To

start with, let’s take a look at the posterior distributions for the simulated dataset.

Figures 3.14–3.18 present the posterior analysis of the simulation parameters γ,

Cαβ, ρ and µt. In the first three figures, the traceplots, autocorrelation functions

and histograms (all in black) show trajectories, autocorrelations of a series of time

lags of the original 100,000 MCMC samples, and approximate marginal densities of

400 MCMC samples after burnin (20,000) and thinning (200); the red dashed lines

represent the true values of the parameters in the simulation; and the red dotted

lines plot the prior distributions of one of the three parameters γ, Cαβ or ρ.

All the posterior samples look fine, in the sense that the MCMC samples are close

to the true simulation parameter values and the autocorrelation of the decays to 0

within lag 200. At first sight from Figure 3.16, it seems that the posterior samples

of ρ differ significantly from the true simulation value 0.8; however, according to the

way we deal with λt when abrupt drops occur in our simulation method, together

with Figure 3.11, it actually makes prefect sense that the lag-1 autocorrelation is

lower than the true value.

Figure 3.17 illustrates the posterior mean (black solid line) and the 90% credible

intervals (blue dashed lines) for the mean process µt and compares it with the true

simulation parameter plotted in green solid line and simulated rockfall counts in red.
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Figure 3.14: Simulation Study: Traceplots, autocorrelation function, and posterior
marginal distributions for γ “ tγ0, γ1, γ2u.

The real coverage indicates the proportion of simulated data covered by the credible

intervals and the result is satisfactory.

Figure 3.18 shows the correlation between posterior samples of the parameters.

There is an obvious linear correlation between γ0 and γ1, because the regression

covariate x1 was not centralized.

Figures 3.19–3.23 present similar results to those above for the real data on rock-

fall counts, dome height and extrusion rate, except that no true values of these

parameters can be plotted in the figures to compare with the posterior samples.

3.6 Inverse problem: inference on the extrusion rate

Tracking extrusion rate is central both to science and to prediction of volcanic haz-

ards, yet it cannot be measured directly. The ultimate goal of this study was to

find a method to estimate extrusion rate from the easily measured variables of dome

height and rockfall counts; this is an inverse problem.
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Figure 3.15: Simulation Study: Traceplots, autocorrelation function, and posterior
marginal distributions for Cαβ.

Figure 3.16: Simulation Study: Traceplots, autocorrelation function, and posterior
marginal distributions for ρ.
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Figure 3.17: Simulation Study: Posterior mean and credible intervals compared
with true simulation parameter and data.

Figure 3.18: Simulation Study: pairwise correlation between posterior samples.
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Figure 3.19: Real data: Traceplot, autocorrelation and posterior distribution for
γ.

Figure 3.20: Real data: Traceplot, autocorrelation and posterior distribution for
Cαβ “ αtβt.
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Figure 3.21: Real data: Traceplot, autocorrelation and posterior distribution for
ρ.

Figure 3.22: Real data: Posterior mean of the process and its 90% credible interval.
Red line plots the real rockfall counts. Black line is the estimated mean process.
Dashed lines represent 90% credible intervals; they in fact cover 92.30769% of the
real data.
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Figure 3.23: Real data: Pairwise correlation of posterior samples.

As in the previous regression model, we denote the extrusion rate by x1. Under

the assumption of the correlated negative binomial regression model, the extrusion

rate of day t can be viewed as a function of the dome height and number of rockfalls

of the same day, together with the posterior estimates of model parameters: γ, Cαβ

and ρ.

The inverse problem is formulated as follows:

xt1 “ fpxt2, yt, pγ0, pγ1, pγ2,yCαβ, ρ̂q, where f is an unknown function, t “ 1, . . . , T.

1. The likelihood function is the same function as used for the negative binomial

regression model, while for the inverse problem, only the extrusion rate process

will be considered as a “parameter”, and all other information as “data”.

Lpx1 | y,x2, pγ0, pγ1, pγ2,yCαβ, pρq

“

T
ź

t“1

bNBpyt | expp pγo ` pγ1 ˆ xt1 ` pγ2 ˆ xt2q,yCαβ, pρq,
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where pγ “ p pγ0, pγ1, pγ2q, yCαβ and pρ are posterior modes from the correlated

negative binomial regression in the previous section.

2. Prior distribution for f .

We assume f is a step function. Figure 3.24 shows k ` 1 piecewise constant

values taiu over disjoint intervals tsi´1, siu, where i “ 1, . . . , k`1, s0 “ 0, sk`1 “

T. Similar to what we did in Chapter 2, we assume that the number of change

points follows a Poisson distribution with mean Tδ and add a second level of

hierarchy to the parameter δ; the positions of the k change points are the order

statistics uniformly distributed on r0, T s. We assume uninformative proper

prior distribution for taiu
k
i“1 rather than improper hyperprior distributions,

because the posterior distribution is too complicated for propriety checking. In

our model, the taiu
k
i“1 are are assumed to be positive, although in reality they

can be zero, so we assign a Gamma density (see Figure 3.25) which has certain

mass around zero while being flat at other values.

t

f

0 Ts1 s2 ¨ ¨ ¨ sj ¨ ¨ ¨sj`1 sk

a1

a2

aj`1

ak`1

Figure 3.24: Illustration of a step function f .

The priors are listed as below:

δ „ πpδq9 1{
?
δ1r0,1s,

pk | δq „ PoipTδq,

ps1, . . . , sk|kq „ Unifp0, T q,

pa1, a2, . . . , ak`1|k, αa, βaq
iid
„ Gamma pαa “ 0.5, βa “ 0.2q.
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Figure 3.25: Gamma prior for taiu
k
i“1.

3.6.1 Simulation results

Firstly, we apply the above method to our simulated dataset. Figures 3.26–3.28

respectively illustrate the posterior distribution of the number of change points, k,

posterior samples of positions of change points, s, and posterior mean and credible

intervals for the rates. As shown in Figure 3.9 or the top plot in Figure 3.27, while

we assumed there were 8 change points in the time series of extrusion rate in the

simulation, it seems from the posterior results that the sampler found the big changes

but missed the 3rd-6th change points, which represent two changes occurring on short
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intervals. However, the estimated extrusion rate is pretty close to the one used in

the simulation, as can be seen in Figure 3.28.

Figure 3.26: Simulation Study: Posterior distribution of k, the number of change
points.

3.6.2 Real data

When the method was applied to the real data, we obtained posterior results having

similar features to the simulation study. For the extrusion rate, the sampler identified

only a few significant change points, whereas the extrusion rate data had many more

change points. (But, again, that data was itself only inferred data, and not reality.)
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Figure 3.27: Simulation Study: Posterior samples of s, positions of change points.

Figure 3.28: Simulation Study: Posterior estimate and credible intervals of the step
function of extrusion rate, compared with the true extrusion rate used in simulation.
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As shown in Figure 3.29, the posterior mode of the number of change points is 6.

In Figure 3.30, the posterior samples of s form vertical lines at times when there is

an obvious change in the extrusion rate and the change lasts for a relatively long

period of time. The estimated extrusion rate presented in Figure 3.31 does not

match the real data as well as in the simulation study, especially around January

2007. However, this can be explained by the discrepancy between µ̂ and the true

parameter value around January 2007 in Figure 3.22, which implies a lack of fit in

that time period, and thus bad estimates plugged into the model for the inverse

problem. (In this time period, there were high extrusion rates and dome heights, yet

low rockfalls – see Figure 3.8 – something that implies there is some missing science

in the model.) Nevertheless, the lack of fit in the regression does not indicate that

our correlated Negative Binomial regression model itself is not working well.
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Figure 3.29: Real data analysis: Posterior distribution of k, the number of change
points.
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Figure 3.30: Real data analysis: Posterior samples of s, positions of change points.

Figure 3.31: Real data analysis: Posterior estimate and credible intervals of the
extrusion rate, compared with the real extrusion rate.
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4

Adaptive Energy Partitioning for Generalized
Wang-Landau Sampling

4.1 Introduction

Generating samples from a complex distribution which is known up to a normalizing

constant is a ubiquitous and often challenging problem in Bayesian computation.

Markov Chain Monte Carlo (MCMC) methods are commonly used for this purpose.

But they often fail when the target distribution is multimodal, getting trapped in

local modes.

The Wang-Landau (WL) algorithm (Wang and Landau, 2001) is an adaptive

sampling scheme that modifies the target distribution to enable the chain to visit

low-density regions of the state space. While the original algorithm was developed for

discrete state space arising in statistical physics, its impressive performance has led

to extensions for general state space arising in Bayesian statistical inference, referred

to as generalized Wang-Landau (GWL) algorithm in this chapter. For example,

Liang (2005) applies a stochastic approximation approach, and Atchade and Liu

(2010) provide convergence results under regularity conditions. Both studies focus
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on the choice of a step size sequence discussed later in Section 4.2, but rely heavily

on user-specified partition of the state space. This makes implementation and use of

the algorithm more time-consuming and less automatic, and will drastically affects

the performance of the algorithm.

In this chapter, we develop an automatic, adaptive partitioning scheme which

continually refines the initial partition as needed during sampling. By doing so, we

overcome the limitations of the user-specified input partition, making the algorithm

significantly more automatic and user-friendly. The performance of the algorithm

also becomes more reliable and robust for exactly those multimodal problems which

WL/GWL sampling is designed to address.

4.2 The Wang-Landau and generalized Wang-Landau algorithms

We first briefly review the Wang-Landau (WL) algorithm. Let πpxq be a distribution

defined over a finite state space X and known up to a constant c,

πpxq “ hpxq{c, x P X .

Let Epxq “ ´ logphpxqq denote the “energy” function and tE1, . . . , Edu be the set

of real numbers containing all possible values of Epxq. Define φi be the number of

states that are mapped to Ei under E,

φi “ φpEiq “ |tx : Epxq “ Eiu|

and φ “ pφ1, . . . , φdq be the density of the states. The goal of the WL algorithm is to

estimate φ, achieved by incrementally estimating φ and at the same time using the

estimates to modify the target distribution to be uniform over the allowed energy

range (a “flat histogram”), enabling the crossing of energy barriers.

Let φ̂i denote the working estimate of φi. A run of the WL algorithm begins with

initial estimates

φ̂1 “ ¨ ¨ ¨ “ φ̂d “ 1.
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In each subsequent iteration, a sample x˚ is simulated by a single Metropolis update

with invariant distribution

ˆπpxq91{ ˆφpEpxqq

and set

φ̂i “ φ̂iδ
1pEpx˚q“Eiq, 1 ď i ď d,

where δ ą 1 is a modification factor and 1p¨q is the indicator function. The algorithm

iterates until a flat histogram has been produced in the energy space. Once the

histogram is flat, the algorithm reduces the initial values φ̂ and δ according to a

predefined scheme and restarts. The simulation stops when δ is very close to 1, say

logpδq ď 10´8.

Notice that many sampling problems of interest in statistics and statistical mechanics

involve continuous state spaces. In the following, we describe an extension of the

Wang-Landau algorithm to the generate state spaces (Atchade and Liu, 2010).

Let pX ,B, λq be a countably generated measure space, where λ is a σ-finite mea-

sure. Let πpdxq9πpxqλpdxq be a probability measure on X , pXiq1ďiďd be a partition

of X along the energy function ´ log πpxq, and φpiq “ πpXiq.

The generalized Wang-Landau (GWL) algorithm attempts to simultaneously es-

timate the marginal probabilities tφpiqu and sample from the modified target distri-

bution obtained by reweighing each element inversely proportional to its marginal

probability, in order to spend equal time in each component (see Algorithm 4.2.1).

Algorithm 4.2.1 (Generalized Wang-Landau). Let tγnu be a decreasing sequence

of positive numbers (e.g. t1{nu). Given X0 P X , find the partition element I0 to

which X0 belongs. Set a0 “ 0, κ “ 0, ε P p0, 1q, and φ0 P Rd such that φ0piq ą 0,

i “ 1, . . . , d. At each iteration n ě 0, given Xn P X , In P t1, . . . , du, φn P Rd, an and

κ:
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1. Sample Xn`1 from a transition kernel Pφ with invariant distribution

πφn9
d
ÿ

i“1

πpxq

φnpiq
1Xipxq

2. For i “ 1, . . . , d, set φn`1piq “ φnpiq
`

1` γan1tIn`1“iu

˘

.

3. If maxi |vκ,n`1piq ´ 1{d| ď ε{d, then set κ “ n`1 and an`1 “ an`1, otherwise

set an`1 “ an, where vk,npiq “
1

n´ κ

n
ÿ

j“k`1

1tIj“iu.

Atchade and Liu (2010) points out that the performance of the GWL algorithm

depends on the choice of the partition into subspaces. Kou et al. (2006) recommends

a reasonable heuristic by fixing the lowest and second highest energy levels and

assigning the other energy levels by a geometric progression (equivalent to making

logpEiq evenly spaced). That is, partition X into d component tXiu
d
i“1

Xi “ tx P X : Ei´1 ď Epxq ď Eiu,

where

E0 “ Emin, E1 “ E0re, . . . , Ed´1 “ E0r
d´1
e “ Emax, Ed “ 8,

for some geometric rate re, typically computed after choosing Emin, Emax and d.

It is worth mentioning that the convergence behavior of WL and GWL algorithms

can strongly depend on the choice of the partition. We illustrate this using a simple

bimodal target distribution, a mixture of two normal distributions in two dimensions

(Figure 4.2a)

πpxq “
1

2
rNpx; p´5,´5q, Iq `Npx; p5, 5q, Iqs “ hpxq{2. (4.1)

As hpxq ď 1` e´100, the energy function Epxq satisfy

Epxq “ ´ logphpxqq ě ´ logp1` e´100
q
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and it can be used to set Emin of the initial energy partition. Moreover, fix

Emax “ ´ logp10´10
q

by a rough estimate of the lowest density value. For this problem, a user might

reasonably suspect that few energy levels are need, say d “ 4. Set γn “ 1{n and

ε “ 0.3 as recommended by Atchade and Liu (2010). The random walk proposal has

step size 1 and the simulation is started from one of the two modes, p5, 5q.

Figure 4.1: Sample path of GWL algorithm on two-component normal mixture
distribution (4.1) with modes at p´5,´5q and p5, 5q for 20, 000 iterations. The chain
never escapes the mode in which it was initialized, failing to cross the energy barrier
to the other mode.

Figure 4.1 shows the resulting sample history, with observed samples falling into

each distinct partition element assigned a different color. We see that the chain visits

only three of the four subspaces, and remains trapped in the mode in which it was

initialized.

To see why this occurs, Figure 4.2c shows the energy partition along with the

known unnormalized density hpxq for a slice through the state space along the axis
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between modes (shown in black in Figure 4.2a). Colors below the x-axis in Fig-

ure 4.2c indicate the locations of the partition elements corresponding to the rings in

Figure 4.1. Figure 4.2b shows the density along this axis, within the third energy bin.

The GWL sampler aims to sample energy bins uniformly, but the weights applied to

achieve this are constant within a given energy bin. As a result, the sampler visits

points within the bin according to the unmodified target distribution πpxq restricted

to the energy interval. From Figure 4.2b we immediately see the problem: the den-

sity decays exponentially in E, so if |Ei`1 ´ Ei| is large relative to the scale of the

Metropolis proposal kernel, the chain will visit the ith bin but spend exponentially

small time in the region where a move to the pi ` 1q-st bin can be proposed. As a

result, even when the φpiq’s are estimated perfectly, the conductance of the chain

will be exponentially low in the ratio σ{|Li|, where σ is the proposal variance and Li

is the length of the set Xi along the axis between modes.

The failure of the GWL algorithm to cross over the energy barrier to other modes

is particularly troublesome since that is precisely the problem the algorithm is de-

signed to address.

4.3 Adaptive energy partitioning

The strong dependence of convergence behavior of WL and GWL algorithms on the

choice of energy partition parameters limits the general utility of these methods.

Here we describe a fully automatic algorithm for adaptively updating the energy

levels during the course of the algorithm, which allows the algorithm to overcome

the limitation of the initially-specified partition. The resulting behavior is therefore

user-independent. In the rest of the chapter, we refer to this algorithm as Adaptive

Energy Generalized Wang-Landau (AE-GWL) algorithm.

Algorithm 4.3.1. Add to Algorithm 4.2.1:
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(a) Density for normal mixture (4.1).
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(b) Closer view of the target density over
the region X3 Ă X specified by energy
bin 3. The density concentrates strongly
on the right-hand side.
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(c) Energy partition obtained by geometric progression, shown along axis between modes.
Colored regions show locations of two-dimensional rings given by energy partition, with
length indicating the corresponding ring width.

Figure 4.2: Density and energy rings for the bimodal distribution example.
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1. Initialization by a geometric progression:

E0 “ inf
x
Epxq, E1 “ maxtE0re, 1u, E2 “ E1re,

. . . , Ed´1 “ E1r
d´2
e , Ed “ 8

2. Every nsplit iterations, if

| logpφ̂iq ´ logpφ̂i`1q| ě Eth

for energy threshold Eth and some i, subdivide the ith energy ring as follows:

E0, E1, . . . , Ei, E
˚
i`1 “

a

Ei`1Ei, Ei`1, . . . , Ed´1, Ed.

(When E0 “ 0 and E1 “ 1, the first energy ring can also be split in a similar

way by adding E˚1 “ E2
1{E2, which makes E˚1 {E1 “ E1{E2.)

Note that we again use geometric progression in splitting the energy bins.

We re-apply the GWL algorithm in combination with the adaptive energy level

refinement to the bimodal problem. The GWL algorithm uses the same initial pa-

rameters as those in Figure 4.1. Parameters Eth and nsplit are chosen to be 5 and

nIter{100, respectively. The new results are shown in Figure 4.3. We see that the

chain easily crosses the energy barrier and discovers the other mode in less than

10, 000 iterations. At the end of 20, 000 iterations, the energy levels have been re-

fined from the initial value of four to 13.

Notice that the rough estimate of Emax “ ´ logp10´10q turns out to work well for

the bimodal example. In general, it is typically difficult to obtain a good estimate for

a more complex problem. If the barrier is higher than expected, updating only the

internal energy levels can fail to address this, which is another potential limitation

of the user-specified partition. To see this, we instead choose Emax “ ´ logp10´3q

for the bimodal example. Figure 4.4 presents the sample history of the chain in this
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Figure 4.3: Sample path of adaptive energy partitioning GWL algorithm applied
to the bimodal target distribution. Automatic refinement of the energy partition
enables the chain to escape from energy bin 3 and successfully cross the barrier to
the other mode in less than 10, 000 iterations.

case. Although the initial d “ 4 energy rings have been split into five rings, indicating

that the internal energy levels are split when necessary, the chain nevertheless fails

to escape the mode in which it is initialized. Figure 4.5 shows why this occurs.

It is now clear that the performance of the WL algorithm also depends on the

choice of Emax. In order to make the algorithm more robust to the initial specification

of Emax, we modify the algorithm to take an arbitrary initial value and update it

adaptively.

Algorithm 4.3.2. Add to Algorithm 4.3.1:

3. Every nsplit iterations, also update the second highest energy level:

E0, E1, E2, . . . , Ed´1, E
˚
d´1 “

E2
d´1

Ed´2

, Ed “ 8.

Here we again use geometric progression to split the energy bin.
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Figure 4.4: Sample path of GWL for the bimodal example using Emax “

´ logp10´3q. Although adaptive energy partitioning is applied to the internal en-
ergy levels, the chain still gets trapped due to under-estimation of maximum energy
Emax.

Figure 4.6 shows the results of applying the fully adaptive AE-GWL algorithm,

which updates both internal and maximal energy levels. Emax is initially set to be

´ logp10´3q, but this poor estimate is quickly overcome (compare Figures 4.3 and 4.6),

and the energy barrier is crossed before 10, 000 iterations.

Note that in complex examples Emax can grow quite large, and the chain may

spend increasing time in irrelevant regions of the state space, searching for yet another

mode beyond ever higher energy barriers. Although this is not problematic, it may

represent an efficiency issue for Monte Carlo integration with the resulting sample

path (see Section 4.4), and it may be desirable to set some upper limit. (This

is not the same as attempting to estimate Emax in the initialization of the energy

partition. Instead, it gives a maximum barrier height beyond which the user is willing

to assume no such barriers exist in the problem, as the algorithm will not attempt

to cross regions of lower density.)

Notice that the target distributions in the above discussion are continuous. For
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(a) Similar to Figure 4.2, but showing energy bins partitioned by the geometric progression
determined by Emax “ ´ logp10´3q. Bin 4 is too wide compared with the random walk
scale 1, making it difficult for the chain to escape to the left.
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(b) Closer view of the target density over the subregions X3, X 13, and X4, where energy bin
31 is split from the initial energy bin 3. Comparing with Figure 4.4 and Figure 4.5a, we
see that although internal energy partitioning enables the chain to arrive in energy bin 4
from bin 3 through new bin 31, the chain remains unable to cross the energy barrier at 0
to discover the second mode, as bin 4 is too wide and suffers the same exponential decay
of density as described previously.

Figure 4.5: Energy partition for the bimodal example using larger Emax.
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Figure 4.6: Sample path of AE-GWL algorithm on the bimodal example by using
Emax “ ´ logp10´3q initially. The chain escapes from the initial mode p5, 5q, crossing
the energy barriers to the other mode in less than 10, 000 iterations. Nine additional
energy rings (colors) can be seen which were added by automatic partition refinement,
enabling the crossing.

discrete problems, it can be impossible to enter some energy bins when no such

states exist. To address this, we can add one more additional step to the algorithm

for problems with discrete states. The step considers removal of unnecessary energy

levels and will be used in the Ising model discussed in Section 4.5.

Algorithm 4.3.3. Add to Algorithm 4.3.2:

4. For every nremove iterations, update the energy partition by checking for unnec-

essary energy levels: if φi´1 and φi`1 are both positive, while φi “ 0, remove

energy level Ei and modify d and φ accordingly.

Up to this point, the geometric mean is used for determining the location of the

new energy bin boundaries. However, this is not the only possible choice. In the

remaining of this section, we will consider the conditions under which various choices

may be optimal, and explore robustness to the choice of the splitting rule.
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Consider the partition along the axis between two modes, as in Figure 4.2. Sup-

pose the boundaries of the ith energy bin are X pEiq and X pEi`1q, and that the

marginal density πpxq or hpxq decays over the interval from X pEiq to X pEi`1q. Let

Li “ X pEi`1q ´X pEiq denote the width of the bin, and suppose we have decided to

split this bin. We wish to choose a split such that the sum the expected stopping

times in the two new energy bins is as small as possible. Denoting by τ
piq˚
Aη

and

τ
pi`1q˚
Aη

the expected stopping times in the two new energy bins formed by adding

a new energy level E˚i`1, we wish to choose E˚i`1 such that τ “ τ
piq˚
Aη

` τ
pi`1q˚
Aη

is

minimized.

Let Li˚ “ X pE˚i`1q´X pEiq and Lpi`1q˚ “ X pEi`1q´X pE˚i`1q be the new widths.

Since Li˚ ` Lpi`1q˚ “ Li and τ
pjq˚
Aη

« C1C
Lj˚{η
2 for some constants C1 and C2, τ

achieves the minimum when Li˚ “ Lpi`1q˚, and the optimal E˚i`1 is obtained by

solving

2X pE˚i`1q “ X pEiq ` X pEi`1q.

Not surprisingly, this depends on the form of the target density. If πpxq9 e´x, we

have X pEiq “ Ei, so E˚i`1 “ pEi ` Ei`1q{2 is just the arithmetic average. For the

bimodal example used in this chapter, we have πpxq9 e´x
2{2, then X pEiq “

?
2Ei,

giving

E˚i`1 “
1

2

ˆ

Ei ` Ei`1

2
`
a

EiEi`1

˙

,

an equal combination of the arithmetic and geometric means. When πpxq9 e´e
x
, we

get X pEiq “ logpEiq and E˚i`1 “
?
EiEi`1, suggesting that the geometric splitting

rule is optimal when the density decays faster than a polynomial in x.

We perform simulations using the bimodal target distribution to explore robust-

ness to suboptimal choices of splitting rule. Each test used the same random seed

and ran three chains each for one splitting rule. In all simulations, the initial energy
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levels were set up by d “ 4 and Emax “ ´ logp10´3q. Both internal energy levels and

Ed´1 were divided as needed.

We have shown that splitting energy bins is necessary in order to make the chain

cross the energy barriers. However, the frequency of checking and splitting (deter-

mined by parameters nsplit and threshold value Eth) does not really matter much to

the final result in terms of whether it can cross and reach the other modes, especially

for long chains. In some cases, more (extra) splits might speed up crossing. There-

fore, in our simulations, we not only compare splitting rules for the same parameters,

but also against different threshold values across the rules to see which rule-threshold

combination works more robust and efficient.

Figure 4.7 compares three rules for two threshold values. The three rules are

arithmetic mean, average of arithmetic and geometric mean, and geometric mean,

respectively. The two threshold values are 50 and 5 for Eth. We ran 30 simulations for

each of the three rules with the same parameter nsplit “ 200 and plot the histograms

of the number of iterations it took for the chain, starting from one mode, to reach

the other mode.

We have particularly ran more simulations to compare the first (arithmetic mean)

and third (geometric mean) rules for the setting nsplit “ 200 and Eth “ 5. The results

of 100 simulations for each rule were summarized with histograms in Figure 4.8.

4.4 Computing expectations

Since the output samples X1, X2, . . . Xn from the WL chain are drawn from a non-

stationary sequence of distributions obtained by reweighing densities over subspaces,

we cannot use direct sample averages to approximate expectations under the target

distribution. The following procedures are applied to obtain an approximation of

the target. One of the main theoretical results in (Atchade and Liu, 2010) is to show
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Figure 4.7: Comparison of crossing time for three splitting rules: arithmetic mean,
average of arithmetic and geometric means, and geometric means. Histograms in the
first two rows from the top, first three columns from the left summarize the results for
six different rule-parameter combinations. The overlapped histograms in the third
row from the top, and the forth column from the left were plotted to compare the
histograms in the same row (column).

Figure 4.8: Comparison of crossing time for the first (arithmetic mean) and third
(geometric mean) rules with 100 simulations.
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that, for measurable functions f and any i P t1, . . . , du we have

1

ni

n
ÿ

k“1

fpXkq1XipXkq ÝÑ

ż

Xi
fpxq

πpdxq

φpiq
, as nÑ 8,

for any i P t1, . . . , du, where ni “
řn
k“1 1XipXkq. However, in practice we find the

rate of convergence of this estimator to be quite slow, perhaps unsurprisingly given

the plug-in estimates in the denominator of the density. We address this by instead

using an importance resampling scheme, as follows:

1. Use all samples X1, . . . , Xn to form a kernel density estimate f̂ .

2. Apply importance resampling by resampling xi, i “ 1, . . . ,m from X1, . . . , Xn

with weights wi “
hpxiq

f̂pxiq
.

The procedure is straightforward, and turns the GWL samples into samples from the

target distribution of interest (Figure 4.9). Figure 4.10 compares the estimate for

EπpXq in the first energy level obtained from the Atchade-Liu result with our impor-

tance resampling estimate, in terms of absolute error from the true value. Although

the error in Atchade and Liu’s method converges to 0 in the limit, our importance

resampling approach converges significantly faster, essentially immediately after the

chain crosses the energy barrier.

4.5 Results

We demonstrate the performance the AE-GWL algorithm on several multimodal

target distribution examples.

4.5.1 Mixture distributions

We begins with a tridmodal mixture distribution

πpxq “
1

3

“

Npx; p´3,´3qT , Iq `Npx; p7, 7qT , Iq `Npx; p5,´5qT , Iq
‰

,
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Figure 4.9: Histogram of 2, 000 samples obtained by importance resampling pro-
cedure applied to 10, 000 iteration AE-GWL sampling run. Red dotted line: true
density. Resampling effectively produces samples with the target distribution of
interest.
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Figure 4.10: Absolute errors of the estimated EπpXq in the first energy level ac-
cording to Atchade-Liu estimator (green) compared with our importance resampling
scheme (blue). Convergence to zero is significantly faster for importance resampling.
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which represents a rougher energy landscape in two dimensions than the two com-

ponent mixture used earlier. Figure 4.11 shows the performance of the AE-GWL

algorithm on this target distribution, including the sample path of the chain (Fig-

ure 4.11a) and estimated marginal densities (Figure 4.11b). Both barriers are suc-

cessfully crossed.

Figure 4.12 shows the performance on a bimodal distribution in three dimensions

πpxq “
1

2

“

Npx; p´4,´4,´4qT , Iq `Npx; p4, 4, 4qT , Iq
‰

.

Again, the barrier is easily crossed and the marginal densities well-approximated.

4.5.2 Ising model

We next consider a two-dimensional Ising model (or spatial autologistic model) on

an Lˆ L 2D square lattice:

πpxq9hpxq “ exp

#

α
ÿ

xi ` θ
ÿ

i„j

1txi“xju

+

, xi P t0, 1u, α ą 0, θ P t5,´5u.

For θ ą 0, we can initialize all energy levels to be negative since hpxq is positive.

In addition, we can immediately set Emin “ ´αL
2´2θLpL´1q and Emax “ ´αtL2{2u.

Let F1 and F0 represent the set of states where the fraction of 1’s is greater than or

less than 0.5, respectively. Then

ř

xPF1
πpxq

ř

xPF0
πpxq

“

ř

xPF1
hpxq

ř

xPF0
hpxq

“

ř

xPF1
exp

!

α
ř

xi ` θ
ř

i„j 1txi“xju

)

ř

xPF0
exp

!

α
ř

xi ` θ
ř

i„j 1txi“xju

)

«

ř

xi“1,@i exp
!

α
ř

xi ` θ
ř

i„j 1txi“xju

)

ř

xi“0,@i exp
!

α
ř

xi ` θ
ř

i„j 1txi“xju

) “
exp tαL2 ` 2θLpL´ 1qu

exp t2θLpL´ 1qu
“ eαL

2

,

where the approximation is due to the fact that the density of the states of all 1’s and

0’s dominates the other terms in the denominator and numerator. (The proportions
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(a) Sample path at 20, 000 iterations
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(b) Density estimate for 20, 000 iterations, obtained from 10, 000 importance resamples.
Histograms match the true density (red dotted lines) very accurately.

Figure 4.11: Performance of AE-GWL algorithm on trimodal target distribution.
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Figure 4.12: Three dimensional mixture distribution. Histograms obtained from
30, 000 iterations of AE-GWL algorithm, followed by 10, 000 importance resamples.
Red lines (true density) are well approximated.

of the largest and second largest terms in the sum are expt2θ`αu and expt2θ´αu,

respectively. When θ is large relative to α, say θ “ 5 and α “ 1, the proportions are

large enough for the other terms to be dropped in the summation.)

The above proportion
ř

xPF1
πpxq{

ř

xPF0
πpxq says that even though both states

of all 1’s and all 0’s are local modes, there is a significant preference on the states

with more 1’s than 0’s, especially when L is large.

Taking d “ 20, we set the initial energy levels by

E0 “ Emin, . . . , Ei`1 “ Ei ` r
i`1
e , . . . , Ed “ Emax,

so that the differences between adjacent energies follow a geometric progression.

We initialize the chain in the state of all 0’s. Figure 4.13a presents results of AE-

WL algorithm with updating energy levels for α “ 1, L P t10, 15, 20, 30u. The

chains escape the initial mode, cross the energy barrier and reach the other mode

successfully.

For θ ă 0, the energy levels can be both positive and negative. We set Emin “
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´αrL2{2s and Emax “ 2θLpL´1q. To initialize the energy levels, we can combine the

strategies used in the previous examples for cases where all energy levels are positive

or negative. We initialize the chain in one of the checkerboard state and compute

1{L2 of the Hamming distance from the initial state. Figure 4.13b shows the AE-WL

chains reaches the other checkerboard for L P t10, 15, 20, 30u.

4.5.3 Bayesian analysis of mixture exponential regression model

Suppose that

yi „

#

Exprθ1pxiqs with probability α “ 0.3,

Exprθ2pxiqs with probability 1´ α “ 0.7,

where θjpxiq “ exppβTj xiq for j P t1, 2u, β1 “ p1, 2q
T , β2 “ p4, 5q

T , and xi “ p1, uiq
T

for i “ 1, . . . , n, with ui’s independently drawn from Unifp0, 2q. We wish to infer

parameters α, β1 and β2 based on observed data txi, yiu
n
i“1. The likelihood is of the

form:

LpY |α,β1,β2q9

n
ź

i“1

„

α

θ1pxiq
exp

ˆ

´
yi

θ1pxiq

˙

`
1´ α

θ2pxiq
exp

ˆ

´
yi

θ2pxiq

˙

.

If we assign prior distributions π0pαq “Betap1, 1q, π0pβjq “Np0, σ2Iq for j “ 1, 2

and σ “ 10, then the posterior distribution πpα,β1,β2|Y q exhibits strong bimodality

due to a “label switching” problem. It therefore provides an excellent model of a

multimodal posterior distribution on which a GWL algorithm would naturally be

applied. The energy then takes the form:

Epα,β1,β2q “ ´ logpπpα,β1,β2|Y qq “ ´`pY |α,β1,β2q `
1

2σ2

2
ÿ

k“1

2
ÿ

j“1

β2
kj ` C,

where function ` is the log likelihood function. We set up d “ 10 initial energy levels,

determined by a geometric progression between E0 “ 1700 and Ed´1 “ 2000, and
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(a) Traceplots of the fraction of 1’s p}X}2{L2q for θ “ 5.

(b) Traceplots of 1{L2 Hamming distance for θ “ ´5. Each trajectory shows the AE-GWL
chain successfully escape from the initial mode and reaches the other mode.

Figure 4.13: AE-GWL for Ising model on L ˆ L 2D lattice, where α “ 1 and
L P t10, 15, 20, 30u.
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applied the GWL and AE-GWL algorithms to this problem. The AE-GWL limit

for Emax was set at 5000. Figure 4.14 compares the results. We see that without

updating energy levels, the GWL chain fails to discover the symmetric mode, leading

to a significantly incorrect posterior distribution and biased parameter estimates. In

contrast, AE-GWL chain moves easily between the two modes to generate the correct

posterior distribution.

4.6 Discussion

In this chapter, we propose an adaptive energy partitioning scheme for the generalized

Wang-Landau algorithm. The GWL algorithm provides an interesting approach to

crossing energy barriers for sampling multimodal Bayesian posterior distributions

general spaces; however, we have shown that its performance depends greatly on the

predefined energy partitions and may fail even for simple low-dimensional bimodal

distributions. We have also shown that this is due to fundamental restrictions on

convergence imposed by the width of energy bins, and maximum energy height,

specified by the initial partition. We have introduced an automatic, adaptive energy

partitioning scheme that addresses these issues and performs well across a variety of

examples in a fully automatic and user-independent way.

A remaining question for further research involves the effect of the choice of Eth—

the threshold for deciding whether to subdivide energy bins—on the efficiency of the

algorithm. In all the examples studied in this chapter, taking a default constant

constant Eth “ 5 worked well. However, if Eth is set too large one would expect

longer time required between splits, and an adaptive selection of Eth may lead to

further speedups. We are currently exploring such possibilities.
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(a) The GWL chain gets trapped in the initial mode and never discovers the other half of
the posterior distribution.

(b) The AE-GWL chain escapes the initial mode and generates samples from the correct
posterior.

Figure 4.14: Posterior distributions and parameter traceplots for the mixture ex-
ponential regression model.
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5

Adaptive Markov Chain Monte Carlo: An
Exploration/Exploitation Approach

5.1 Introduction

In adaptive MCMC, the transition kernel of the chain is sequentially modified over

time based on the current sample history. Common approaches include tuning

proposal kernels for random-walk Metropolis chains and proposal distributions for

Metropolized independence samplers (MIS) (Andrieu and Thoms, 2008; ?). For in-

stance, Ji and Schmidler (2013) provide a general approach to design MIS kernels by

online minimization of the Kullback-Leibler divergence between the target distribu-

tion and proposal distributions, and show dramatic improvements in autocorrelation

for Bayesian regression and variable selection problems. The recent equi-energy sam-

pler (EES) (Kou et al., 2006) can similarly be viewed as building a (nonparametric)

adaptive proposal for parallel tempering.

Recently, Schmidler and Woodard (2013) have shown that wide classes of adap-

tive MCMC algorithms including those mentioned above, fail to qualitatively improve

convergence rates for multimodal distributions. Rather, they improve autocorrela-
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tion for chains once equilibrium has reached. Other recent developments in MCMC

algorithms can be viewed as a completely different type of adaptation. For ex-

ample Atchade and Liu (2010) and Liang (2005) describe a continuous state-space

generalization of the Wang-Landau algorithm of statistical physics. This algorithm

(described in Section 5.2) partitions the state-space into subsets X “ Ydi“1Xi ac-

cording to energy (log-density), and adaptively estimates marginal probabilities of

sets, in order to reweigh the target distribution πpxq on each component to achieve

uniform sampling across sets. Such approaches can be viewed as adaptive MCMC

where the target distribution itself is adaptively modified, rather than the proposal.

This is of great interest to us as it offers the possibility of circumventing/escaping

the limitations identified by Schmidler and Woodard (2013).

In this chapter, we propose an “Exploration/Exploitation” (XX) approach to

constructing adaptive MCMC algorithms, which combines adaptation schemes of

distinct types. One piece, the “exploration” piece, uses adaptation strategies aimed

exploring new regions of the target distribution and thus improving the rate of con-

vergence to equilibrium. The second piece, the “exploitation” piece, involves an

adaption component which decreases autocorrelation for sampling among regions

already discovered. This hybrid combination is relatively simple, yet provides the

best of both worlds. As an example of this approach, we develop an XX algorithm

that combines an Adaptive Metropolized Independence Sampler (AMIS) as the ex-

ploitation component, with the generalized Wang-Landau (GWL) algorithm with the

adaptive energy level partition scheme (Chapter 4) as the exploration component.

We show that, for multimodal target distributions, the AMIS algorithm requires gen-

eral purpose modifications, which we provide. We demonstrate that the combined

XX algorithm significantly outperforms either component algorithm on difficult mul-

timodal sampling problems.

The organization of the chapter is the following. Section 5.2 briefly summarizes
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the AMIS algorithm used in the XX algorithm. Section 5.3 describes how to apply

the AMIS algorithm in combination with the WL algorithm from Chapter 4 in the

framework of XX. One particular simulation example reveals the limitation of the

AMIS, which is addressed with several improvements in Section 5.4. We apply the

revised AMIS algorithm and WL algorithm to a mixture regression problem and a

neural network examples to demonstrate the performance of our improvements. We

conclude this chapter in Section 5.6.

5.2 Adaptive Metropolized independence samplers

Adaptive Metropolized Independence Samplers (AMIS) have been developed in par-

allel by several authors (Andrieu and Thoms, 2008; Ji and Schmidler, 2013; Craiu

et al., 2009). The general theme is the adaptive construction of a Metropolized Inde-

pendence Sampler (MIS) proposal distribution to fit the current sample history, with

the proposal distribution converging to an approximation of the target distribution

in the limit. In this section, we summarize some relevant results of an AMIS scheme

with mixture proposal distribution developed by Ji and Schmidler (2013), for the

completeness of discussions in the rest of this chapter.

Let πpxq and qpxq denote the target distribution and the proposal distribution

in an AMIS scheme, respectively. When πpxq is multimodal, using an unimodal

qpxq generally performs poorly, due to difficulty in approximating the posterior. An

alternative approach is to consider qpxq as a mixture distribution of the form:

qpxq “ λq0px; ψ̃q ` p1´ λq
M
ÿ

m“1

wmqmpx;ψmq,

where notation qpx;ψq denotes an proposal density with parameter ψ, λ and ψ̃

are fixed, and wm and ψm are updated from previous samples using an stochastic

approximation optimization. When qpx;ψq is a normal distribution Npx;µ,Σq, the
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adaptive strategy is as follows:

Algorithm 5.2.1 (AMIS with mixture proposal distribution). For component m,

denote the values of wm, µm, and Σm in the nth iteration by wm,n, µm,n, and Σm,n,

respectively. Let pwn,µn,Σnq “ twm,n, µm,n,Σm,nu
M
m“1. Initialize pw1,µ1,Σ1q. At

iteration n` 1:

1. Draw a new sample Xn`1 by MIS with respect to the proposal distribution

qnpxq “ λNpx; µ̃, Σ̃q ` p1´ λq
M
ÿ

m“1

wm,nNpx;µm,n,Σm,nq.

2. Update the parameters pwn`1,µn`1,Σn`1q by

wi,n`1 “ wi,n ` rn`1

“

OipXn`1q ´ Ō
‰

,

µi,n`1 “ µi,n ` αi,n`1pXn`1 ´ µi,nq,

Σi,n`1 “ Σi,n ` αi,n`1

“

pXn`1 ´ µi,nqpXn`1 ´ µi,nq
T
´ Σi,n

‰

,

where αi,n`1 “ rn`1wi,nOipXn`1q,

OipXn`1q “
NpXn`1;µi,n,Σi,nq

řM
m“1wm,nNpXn`1;µm,n,Σm,nq

, Ō “
1

M

M
ÿ

m“1

OmpXn`1q,

and rn`1 is the step-size of the stochastic approximation algorithm (Robbins

and Monro, 1951; Kushner and Yin, 1997).

For sufficiently large M , qpxq can adapt to approximate πpxq arbitrarily well, and

therefore in the limit the AMIS chain will behave like independent sampling from π.

In practice, the choice of M has been heuristic. In Section 5.4, we give a new, simple

and effective approach for automatic determination of M .

Lastly, we comment here that in Algorithm 5.2.1, we have
ř

mwm “ 1 but not

wm ě 0. Rather than add slack variables to satisfy the Karush-Kuhn-Tucker condi-

tions, one can project back onto the unit simplex if the weights become negative, as
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common in stochastic approximation. In the context of this chapter, for computa-

tional reasons, we define a lower bound for the weights, denoted by wlb, and set it to

be 0.01.

5.3 An exploration/exploitation algorithm for adaptive Markov chain
Monte Carlo

Schmidler and Woodard (2013) suggest limitations of the AMIS method and related.

Also, Wang-Landau (WL) algorithm has limitations in autocorrelation. These sug-

gest combining the two. A natural approach is to consider a transition of the two,

e.g., K “ αKAMIS`p1´αqKWL. However, Schmidler (2012) shows that such kernels

suffer from significant limitations or behave poorly for multimodal target distribu-

tions, despite the presence of the WL component. Instead, we propose an alternative

way to combine these two algorithms in the hope that it will help the adaptive MIS

to explore new regions in the state space. We refer to this algorithm as AMIS+WL,

or XX.

Algorithm 5.3.1 (XX). Start with two chains, XWL and XAMIS, separately.

1. Every Nc iterations, update the proposal distribution for XAMIS using samples

from XWL in two steps. First, obtain Nwl samples from all previous samples

of XWL by importance sampling method. Second, update wm, µm and Σm with

these Nwl samples.

2. Run two chains independently at other iterations.

To present the performance of this algorithm, we consider a simple trimodal

target distribution obtained by a mixture of normal distributions:

πpxq “
1

3

“

Npx; p´8,´8qT , Iq `Npx; p8, 8qT , Iq `Npx; p20,´20qT , Iq
‰

.
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Table 5.1: Parameters for AMIS, WL, and XX algorithms for trimodal target distri-
bution.

Algorithm Parameters

AMIS
λ “ 0.01, µ̃ “ p0, 0qqT , Σ̃ “ 2I, M “ 10

wi,1 “ 1{M , µi,1 „ N2p0, 2Iq, Σi,1 “ I, rn “ 1{n

WL
d “ 10, γn “ 1{n, ε “ 0.3, Eth “ 5, nsplit “ nIter{100

upper bound on updting the highest energy level is 130

XX Nwl “ 100, Nc “ nIter{100

This artificial distribution can be representative of many multimodal target distribu-

tions arising in Bayesian statistics, where posterior modes will be well approximated

locally normality for adequate data sample sizes. We tested the AMIS, WL, and XX

algorithms, with the parameters given in Table 5.1. All simulations were initialized

at the sample point within mode p8, 8q. The AMIS chain remains in the mode where

it was initialized. So did the AMIS component of the AMIS+WL chain, up until the

first introduction of information from WL chain at iteration Nc.

The behaviors of the AMIS and WL chains are depicted in Figures 5.1 and 5.2,

respectively. The first row in Figure 5.1 shows that the AMIS adapted proposal

distribution at several time points. It is clear that the chain never escapes the initial

mode. Unsurprisingly, the resulting marginal density approximations are poor. Fur-

thermore, the autocorrelation plots are highly misleading, emphasizing the dangers

of using single-chain plots for convergence diagnostics. In comparison, the first row

in Figure 5.2 shows the sample path of the WL chain, which eventually crosses each

energy barrier to find all three modes. Colors denote distinct energy partition levels.

We observe that the WL chain starts to cross between the first and the second modes

around iterations 30, 000–40, 000, and from the second to the third modes around

iteration 90, 000. The second row in Figure 5.2 shows that the autocorrelation is

estimated to be very large, and demonstrates the density approximation obtained

using the importance resampling scheme, described in Section 4.4.
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Figure 5.1: Simulation result of the AMIS algorithm for the trimodal target distri-
bution. The contour plots in the first row shows that the mixture proposal of AMIS
chain misses two of the three modes. The second row show the autocorrelation plots
and marginal density approximations summarized from the samples of the AMIS
chain. The density approximation is a poor match to the true marginal distributions
(red curve).

The result of the XX algorithm is shown in Figure 5.3. The first row shows the

evolution of the AMIS mixture proposal distribution when the WL sample informa-

tion is included. In contrast to the standalone AMIS algorithm (Figure 5.1), we see

the development of a new proposal component centered near p0, 0q at approximately

iteration 40, 000, immediately after the discovery of this region by the WL chain.

However, although the WL chain reaches the third mode around 90, 000 iterations,

the adapted AMIS proposal distribution does not reflect this new region, making

the sampled distribution shown on the first two modes. This highlights a failure of

the AMIS algorithm for multimodal target distributions which has not previously

been appreciated, and is discussed in the next section. Notice that this failure of

the AMIS was not observed before, due to its poor exploration ability. Furthermore,

it suggests that in order to achieve the desired performance of the XX algorithm,

the AMIS algorithm must be modified to enable reliable adaptation to multimodal
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Figure 5.2: Simulation result of the WL algorithm for the trimodal target dis-
tribution. The sample path on the first row suggests that the WL chain starts at
mode p8, 8q, and approaches the second mode p´8,´8q around iteration 40, 000, and
reaches the third mode p20,´20q by iteration 90, 000. The second row shows auto-
correlation and marginal density approximation results. The samples approximate
the true marginal distributions well, but the autocorrelation is large with a very slow
decay.

distributions. Section 5.4 describes such an extension, which can be used by itself or

within the context of the XX algorithm.

5.4 Extension of the AMIS algorithm for adaptation to multimodal
distributions

As described above, combining the AMIS algorithm with the WL algorithm to form

the XX algorithm enables the chain to cross between modes which the AMIS al-

gorithm alone is unable to reach. In doing so, it reveals a previously unobserved

breakdown of the AMIS algorithm on multimodal distributions. (Although we de-

scribe this weakness in terms of the stochastic approximation formulation of the

AMIS given by Ji and Schmidler (2013), it applies equally to the alternative (se-

quential EM update-based) AMIS formulation described by Andrieu and Thoms
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Figure 5.3: Simulation result of the XX algorithm for the trimodal target distri-
bution. Contour plots in the first row implies two significant proposal components
representing two of the three modes, missing the third one. The autocorrelation
plots on the second row show quick decay of the autocorrelation as time lag between
samples increases. The marginal density approximations show that the samples are
able to capture two out of the three modes.

(2008), which also uses a decaying update weight). In particular, the sequential up-

dating scheme of the AMIS mixture proposal does not accommodate very well large

changes in the target distribution observed late in the sampling, which limits the

ability to take full advantage of the information provided by the exploration chain

in the context of the XX algorithm. For example, the decreasing step-size sequence

rn (required for convergence in the limit) means that, when the crossing time of WL

is long, updates of proposal parameters are forced to be small and thus react very

slowly. In addition and as a result, parameters may not adjust to approximate the

target distribution accurately.

Consider the trimodal target distribution of the previous section. Figure 5.3

shows the failure of the AMIS algorithm to adapt to the third mode even when

presented with samples from this mode (via the coupling to the WL chain). The

mean of the proposal mixture component which approximates the second mode ap-
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proaches the correct value p´8,´8q between iterations 40, 000 and 90, 000, while the

variance/covariance become larger and larger (since the new resampling sample X˚

from WL chain is close to the second mode at p´8,´8q, but the mean is adapting

slowly as rn now is extremely small, pX˚ ´ µqpX˚ ´ µqT will be a matrix of large

values. And the entries of Σ is increasing because every time it is updated, a posi-

tive value is added). (Figure 5.4). These adaptations occur at a slow rate because,

by the time the second mode is found, the step-size sequence values rn are quite

small. When the WL chain discovers the third mode (approximately iteration 90k),

large covariance of the second mode component along with the small rn prevent the

adaptation of any components to the third mode. While this problem can (might)

be resolved by increasing the initial r0 or slowing the rate of decay for rn (while still

satisfying
ř

n rn “ 8 and
ř

n r
2
n ă 8 to ensure convergence), the appropriate scale

can only be known after all modes have been discovered (and the choices would be

problem-specific); we cannot know in advance if a given rn sequence is adequate. In-

stead, we introduce an algorithmic approach to automatically identify such situations

and “reset” the rn sequence as needed.

We make two modifications to the AMIS algorithm to improve the ability to adapt

to multimodal distributions. The main idea is to recognize when “new” modes or

regions of significant mass have been reached by the sampler, and allow for more

rapid adaptation to resume temporarily. This requires three improvements on the

standard AMIS updating scheme:

1. Identification of new (previously unvisited) modes or regions

2. Resetting step-size decay sequence to resume large adaptations

3. Automatic addition of new mixture components (increasing M) as needed
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Figure 5.4: The dashed contour plot represents the second mode at p´8,´8q, and
the solid contour plot is for the component (closest to that mode) of the mixture
proposal distribution of XX chain. Although this proposal component gets closer to
the second mode, both the mean and covariance are updated slowly due to the small
value of rn when n is large.

5.4.1 Identification of new regions

We begin with a strategy for determining that a sample Xn0 represents a new mode or

region when the quantity Opxq in Algorithm 5.2.1 satisfies the condition OipXn0q ą

Dth for some threshold Dth.

To choose a reasonable value for the threshold Dth, we first notice that

OipXn0q “
1

wi,no´1 `
řM
m“1,m‰iwm,n0´1

NpXn0 ;µm,n0´1,Σm,n0´1q

NpXn0 ;µi,n0´1,Σi,n0´1q

ď
1

wlb
.

Next, OipXn0q depends on what region Xn0 is in and whether the ith proposal

component is significant (the corresponding weight is at least 1{M), which can be

divided into three cases. (1) Xn0 finds a new region, and pµi,n0´1,Σi,n0´1q represents

the negligible proposal component that is closest to this region, then wi,n0´1 “ wlb,

and in the summation, either wm,n0´1 or the fraction is extremely small. Therefore

OipXn0q can get any closer to 1{wlb, depending on how far those found regions are
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away to the new region. (2) Xn0 is in one of the visited regions, and pµi,n0´1,Σi,n0´1q

represents the significant proposal component which is closest to this region, then

wi,n0´1 ě 1{M , so OipXn0q ă M . (3) If Xn0 is in one of the visited regions, but

pµi,n0´1,Σi,n0´1q is not the closest proposal component, then at least one term in

the summation would be larger than 1{M , so OipXn0q ă M . In conclusion, the

threshold value Dth could be any number between M and 1{wlb. For the examples

considered in this chapter, we have M “ 10 and wlb “ 0.01. Therefore, we choose to

set Dth “ 50.

5.4.2 Improvement 1: reset the step-size sequence trnu

We introduced a new strategy for updating parameters of the AMIS algorithm, which

allows the revised algorithm to work much better than the original version. However,

as shown in Figure 5.3, using samples from WL chain to update proposal distribution

of AMIS chain alone is insufficient for the proposal distribution to approximate the

target distribution arbitrarily well. As the step-size sequence decreases, the change in

the parameters gets smaller and smaller, even when there should be some important

updates. This suggests that we should reset the step-size sequence when necessary.

Specifically, when OipXn0q ą Dth, in addition to Algorithm 5.3.1, we also do

rn0 “ rrestart “ 1, rn “
1

n´ n0 `
1

rrestart

, n ą n0. (5.1)

Algorithm 5.4.1. When OipXn0q ą Dth:

1. Update twj, µj,Σju
M
j“1 using the regular formula with importance sampling sam-

ples from WL chain.

2. Modifty the step-size sequence trnu.

We apply Algorithm 5.4.1 to the trimodal target distribution. We see that in

Figure 5.5, the combination chain generates samples from the target distribution
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with relatively low autocorrelation compared to the results obtained from WL chain,

however, the mixture proposal distribution seems not to approach the target distri-

bution as fast and accurate as we want. Although not shown in the contour plot

for iteration 150000, there is in fact one significan proposal component with the

mean close to p20,´20q and a covariance matrix whose entries have large absolute

values. Both of the new significant proposal components (with means at p8,´8q

and p20,´20q respectively) were gradually developed after resetting the r sequence,

which was supposed to result in fast updates in the mixture proposal distribution.

The reason for this is that the new components with means and covariance matri-

ces not close to the true modes and small weights cannot get updated soon after the

combination iteration, as proposed samples are rejected with large probabilities. The

component representing the mode at p´8,´8q has a major update when the third

mode was introduced around iteration 92000, while the third new component needs

several rounds of combination and update with WL chain. Nevertheless, Figure 5.6

describes the weights can adapt and approximate the true values eventually. We can

see around iteration 100000, the step-size sequence needs to be reset for a couple of

times because the weight for the proposal component decreases as the component

parameters are initially very different from the true values yet gradually get updated.

Lastly, Figure 5.7 shows that there are six times when the step-size sequence needs

to be reset, while in fact there are actually only two new regions which cannot be

discovered by the AMIS chain.

From the above simulation results, it seems that restarting the step-size could

help with speeding up the updating of parameters, however now as fast as we want

it to be. The obstacle in the speedy update lies in the updating scheme. Using

WL samples to update proposal parameters in the regular way may cause a huge

covariance matrix for the new dominant component at the iteration when a new

region is detected. By the updating formula, µi can be adapted relatively fast after
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the modification of r. However, if the new sample X is too far away from µi, Σi can

be very large. Hence, we consider another way to improve Algorithm 5.3.1–create

a new proposal component when a new region is discovered instead updating the

existing proposal components.

Figure 5.5: Simulation results of the XX algorithm using revised AMIS (Algo-
rithm 5.4.1) for the trimodal target distribution. The marginal density approxima-
tions agrees with the target distribution, and the low autocorrelation imply that
the mixing is good, even though the proposal distribution does not approximate the
target very well.

5.4.3 Improvement 2: add new proposal components.

Figure 5.4 suggests that rapid adaptation cannot be realized by Algorithm 5.3.1,

since the proposal component was initally far away from the newly discovered mode

and small r cannot help with fast updating. In the previous section, we show results

from the first improved algorithm by resetting step-size sequence and discuss its

advantage and drawbacks. In this section, we propose another algorithm aiming to

overcome the bad initialization.

Algorithm 5.4.2. When OipXn0q ą Dth:
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Figure 5.6: Weight sequence for XX using revised AMIS (Algorithm 5.4.2). Com-
pared with the result in Figure 5.6 for XX using Algorithm 5.4.1, we can see that the
weights for the new dominant components adapt much faster to the true proportions.

Figure 5.7: Step-size sequence for XX using revised AMIS (Algorithm 5.4.1). The
sequence is updated around 40, 000 and 90, 000 iterations when the WL chain reaches
new regions and the resampling samples from it are used to update the parameters
of the AMIS chain.
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1. Add a new component in the mixture proposal distribution and increase the

number of proposal components M by 1.

2. Set the parameters for the new M-th component as below:

wM “ 1{M,µM “ ĘXWL,ΣM “ Q,

where ĘXWL and Q can be the sample mean and covariance matrix estimated

from WL samples, however, these estimates may be really rough when the num-

ber of samples in the new region is small. Hence, an independent sampling al-

gorithm/chain could be used here just for the initialization for the new proposal

component.

3. Update twj, µj,Σju
M
j“1 using the regular formula.

We apply this second revised algorithm to the previous trimodal target distri-

bution. In Figure 5.8, it can be seen that all modes become well-approximated by

components of the proposal mixture distribution, permitting the chain to mix very

quickly as indicated by the low autocorrelation and close agreement of the marginal

density approximations with the true value.

Still, the disadvantage of this improved algorithm lie in the slow updating of

parameters w (Figure 5.9), µ, and Σ. In fact, if we take a closer look at the top

panel of plots in Figure 5.8, and compare the contour plot at iteration 150, 000

to that of the target distribution, the center of the contour around p20,´20q are

a bit off the true means and are actually not updated much since these proposal

components were modified by the sample from WL chain. Therefore, the performance

of Algorithm 5.4.2 depends heavily on the initialization obtained from WL chain.

117



Figure 5.8: Simulation results of the XX algorithm using revised AMIS (Algo-
rithm 5.4.2) for the trimodal target distribution. Both the proposal distribution
and marginal density approximations agree with the target distribution, and the low
autocorrelation imply that the mixing is very good.

Figure 5.9: Weight sequence for XX using revised AMIS (Algorithm 5.4.2). Com-
pared with the result in Figure 5.6 for XX using Algorithm 5.4.1, we can see that
the weights for the new dominant components adapt slowly to the true proportions.
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5.4.4 Improvement 3: reset the step-size sequence trnu and add new proposal com-
ponents

From the simulation results in the previous two sections, we see that each of the

above two improvements has its own advantage and drawback. It is natural to think

about incorporating good aspects from both and make a third improvement.

Algorithm 5.4.3. When OipXn0q ą Dth:

1. Add a new component in the mixture proposal distribution and increase the

number of proposal components M by 1.

2. Set the parameters for the new M-th component as below:

wM “ 1{M,µM “ ĘXWL,ΣM “ Q,

3. Update twj, µj,Σju
M
j“1 using the regular formula.

4. Modify the step-size sequence trnu.

Once again, we apply Algorithm 5.4.3 to the trimodal target distribution. We

see that in Figure 5.10, the mixture proposal distribution approaches to the target

distribution really fast, and thus the combination chain generates samples from the

target distribution with low autocorrelation. Figure 5.11 describes how quickly the

weights can adapt and approximate the true values.

In addition, the user-defined value of M is arbitrary and it is desirable to ensure

the algorithm is not handicapped by choosing M too low. The previous modifications

(both Algorithm 5.4.2 and Algorithm 5.4.3) of the algorithm allow us to address this

easily, by starting with M small and adding one ore more additional components

whenever a new mode or region is identified. Note that we need not determine

the optimal number of components, which is notoriously difficult, but simply add

components as needed to ensure M is sufficiently large.
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Up to this point in the chapter, the value of wlb has been fixed as constant. If

w “ wlb, the component is negligible. If w P pwlb, 1{M s, the component is insignifi-

cant. And when w ą 1{M , the component is significant. If we want to increase M

automatically, the value assigned to wlb cannot be fixed, and must be updated as

well.

Figure 5.10: Simulation results of the XX algorithm using revised AMIS (Algo-
rithm 5.4.2) for the trimodal target distribution. Both the proposal distribution
and marginal density approximations agree with the target distribution, and the low
autocorrelation imply that the mixing is very good.

5.4.5 Parallel exploration chains

An important aspect of the XX algorithm is the independence of the WL chain dy-

namics from the AMIS chain. This enables the algorithm to trivially take advantage

of multiple processors which are increasingly common in statistical computing envi-

ronments. Because the exploration process is the most computationally expensive

module, and the exploration chains are unaffected by the AMIS component of the

XX chain, a natural extension is to run multiple exploration chains in parallel on
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Figure 5.11: Weight sequence for XX using revised AMIS (Algorithm 5.4.2). Com-
pared with the result in Figure 5.6 for XX using Algorithm 5.4.1, we can see that the
weights for the new dominant components adapt much faster to the true proportions.

separate processors. The associated overhead can be hidden very well because the

transfer of samples to updates the AMIS proposal can be performed asynchronously.

This approach is used in the second application in Section 5.5.2 below.

5.5 Applications

5.5.1 Mixture exponential regression

Suppose that

yi „

#

Exprθ1pxiqs with probability α “ 0.3,

Exprθ2pxiqs with probability 1´ α “ 0.7,

where θjpxiq “ exppβTj xiq, j “ 1, 2, β1 “ 1, β2 “ 6, and x is all 1’s. We would like to

make inference on parameters α, β1, and β2 based on txi, yiu
n
i“1. This label switching

problem serves as a good example to test the performance of the performance of XX
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Table 5.2: Parameters for AMIS, WL, and XX algorithms for mixture exponential
regression.

Algorithm Parameters

AMIS

λ “ 0.01, µ̃ “ p2, 2qqT , Σ̃ “ 0.5I, M “ 10

wi,1 “ 1{M , µi,1 „ N2p0, 2Iq, Σi,1 “ 0.25I, rn “ 1{n

Dth “ 50, rrestart “ 1{100

WL d “ 10, γn “ 1{n, ε “ 0.3, Eth “ 5, nsplit “ nIter{10, Emax “ 1500

XX Nc “ nIter{5, Nwl “ 100.

algorithm in a high-dimensional multimodal case. The likelihood function is:

LpY |α, β1, β2q9

n
ź

i“1

„

α

θ1pxiq
exp

ˆ

´
yi

θ1pxiq

˙

`
1´ α

θ2pxiq
exp

ˆ

´
yi

θ2pxiq

˙

.

Assign prior distributions πpαq “ Betap1, 1q, πpβjq “ Np0, σ2q, j “ 1, 2, and σ “

10. Denote the posterior distribution by πpα, β1, β2|Y q, we can express the energy

function as

Epα, β1, β2q “ ´ logpπpα, β1, β2|Y qq9 ´ `pY |α, β1, β2q `
β2

1 ` β
2
2

2σ2
,

where function ` is the log likelihood function.

We apply the XX algorithm to sample from this posterior distribution, and com-

pare the results obtained from the AMIS and WL chains, using the parameters in Ta-

ble 5.2. All three chains were initialized in the same mode at pα, β1, β2q “ p0.3, 1, 6q.

We see in Figure 5.12 that the AMIS algorithm by itself fails to escape from the

initial mode. The WL chain in Figure 5.13 is able to cross over to the second mode,

but the autocorrelation is very strong and the resulting density approximations are

somewhat rough. Figure 5.14 shows the significantly improved convergence and rapid

decay of autocorrelation for the XX algorithm (using revised AMIS Algorithm 5.4.2),

with resulting improvement in the density approximation. Figure 5.15 shows how

the weight sequences are quickly updated.

122



Figure 5.12: Simulation results of the AMIS algorithm for the mixture exponential
regression problem. The AMIS sampler failed to escape from the initial local mode.
Therefore, the low autocorrelations are misleading.

Figure 5.13: Simulation results of the WL algorithm for the mixture exponential
regression problem. The WL chain can cross the energy barrier to reach the other
mode, but samples from this chain are highly correlated, and we can only use the
resampling samples to approximate the target distributions.
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Figure 5.14: Simulation results of the XX algorithm (using revised AMIS Algo-
rithm 5.4.3) for the mixture exponential regression problem. After borrowing infor-
mation from the WL chain around iteration 10, 000, the mixing of the sampler is
very good, and the posterior modes of the parameters agree with the true values in
simulation.

Figure 5.15: Weights sequence of the XX chain (using revised AMIS Algo-
rithm 5.4.3) for the mixture exponential regression problem.
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5.5.2 Bayesian neural network analysis

Nonlinear regression and classification using neural network models is a widely used

tool in machine learning and statistical pattern recognition (Ripley, 1996; Hastie

et al., 2001). Bayesian approaches have notable advantages in the use of priors to

control model complexity and marginalization over posterior uncertainty to improve

predictive performance (Neal, 1997; Lee, 1998; MacKay, 1992, 1995). However, neu-

ral network fitting by optimization is notoriously subject to multiple minima, and

this translates to highly multimodal posterior distributions in a Bayesian context.

Sampling from such posteriors is highly non-trivial and significant research in MCMC

methods has been aimed at this problem (Neal, 1997). Here we show the advantages

of the XX framework on such problems.

Let pyi,xiq, i “ 1, . . . , n, be the observed data from the model

yij “ βj0 `
H
ÿ

h“1

βjhΦjhpγjh0 ` xTi γjhq ` εij,

where εij „ Np0, σ2q, xi P RK is the input variable, yi P RJ is the multivariate

response, and Φptq “ 1{p1 ` e´tq is the logistic function. We simulated a dataset of

size n “ 20 from this model with J “ 1, H “ 2, and K “ 2. The parameters are

θ “ pβ10, β11, β12, γ110, γ120,γ11 “ pγ111, γ112q,γ12 “ pγ121, γ122q, σq.

Input variables were sampled independently from xi1 „ Unifpp´1.932,´0.453q Y

p0.453, 1.932qq and xi2 „ Unifp0.534, 3.142q

Table 5.3: Simulation parameters for the neural network problem.

θ β10 β11 β12 γ110 γ120 γ11 γ12 σ

True 1 2 1 -3 2 (1,2) (-1,1) 0.05

Notice that the logistic function Φptq is pretty flat when |t| ą 5. Hence, for fixed

parameters γ1h0 and γ1h, if different input values xi and xi1 make ti “ γ1h0`xTi γ1h and
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ti1 “ γ1h0 ` xTi1γ1h both greater than 5 or less than -5, then Φptiq and Φpti1q are close

to each other and yi is similar to yi1 as a result. When different x values correspond

to similar y values, there might not be enough information to make inference for the

parameter. Consequently, there might be too many modes in the parameter space. In

the simulation, we set the parameters of θ according to Table 5.3, which are selected

to make Φpγ1h0 ` xTi γ1hq distinct for different xi’s. Particularly, the values for h “ 1

and h “ 2 are drawn in Figures 5.16a and 5.16b, respectively. The resulting dataset

is shown in Figure 5.17.

There are several sources of multimodality in this example. First, the likelihood

function is fairly flat. That is, many values of the likelihood at different parameters

are nearly equal, indicating this likelihood may have many maximum points. An-

other source is an obvious “label switching” problem familiar from mixture modeling:

switching the h parameters of the β’s and γ’s yields the same likelihood. A third

one comes from the anti-symmetry (Φptq “ 1´Φp´tq ) of the logistic function such

that

βj0 ` βj1Φptq “ pβj0 ` βj1q ´ βj1Φp´tq.

For instance, the likelihood for parameter θ “ pβ10, β11, β12, γ110, γ120,γ11,γ12, σq is

the same as that for parameter θ1 “ pβ10 ` β11,´β11, β12,´γ110, γ120,´γ11,γ12, σq.

As a result, we expect at lest eight significant modes in the model by symmetry,

making it an excellent test bed for the XX algorithm when n is sufficiently large to

make crossing between the modes challenging. Table 5.4 shows the locations of these

modes under the true parameter, which should be approximately the locations of the

posterior modes (due to finite value of n).

We assign prior distributions to the parameters as follows: β¨¨
iid
„ Np0, 102q,

γ¨
iid
„ Np0, 102q, and σ2 „ IGp2, 0.5q. As before, we compare the XX algorithm

against the two component algorithms applied individually. The parameters are
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(a) Φp´3` xi1 ` 2xi2q, i “ 1, . . . , 20.

(b) Φp2´ xi1 ` xi2q, i “ 1, . . . , 20.

Figure 5.16: Φpγ1h0 ` xTi γ1hq values for h “ 1 and h “ 2 respctively.

given in Table 5.5. Each algorithm was run for 3e5 iterations, initialized at a point

uniformly drawn from the state space. In this high dimensional example, it takes

a long time for the WL chain to explore the entire state space, and we use the

parallel exploration XX algorithm described in Section 5.4.5, using 15 independent

WL chains in parallel for the exploration component.

For the AMIS algorithm, the mixture proposal distribution shows only one signif-
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Figure 5.17: Simulated dataset for the neural network example.

Table 5.4: One set of the true parameters used in simulating data and seven other
sets of parameters yielding the same likelihood. These points are approximately the
locations of the modes.

θ β10 β11 β12 γ110 γ120 γ11 γ12 σ index

True 1 2 1 -3 2 (1, 2) (-1, 1) 0.05 1

1 1 2 2 -3 (-1, 1) (1, 2) 0.05 2

3 -2 1 3 2 (-1, -2) (-1, 1) 0.05 3

3 1 -2 2 3 (-1, 1) (-1, -2) 0.05 4

2 2 -1 -3 -2 (1, 2) (1, -1) 0.05 5

2 -1 2 -2 -3 (1, -1) (1, 2) 0.05 6

4 -2 -1 3 -2 (-1, -2) (1, -1) 0.05 7

4 -1 -2 -2 3 (1, -1) (-1, -2) 0.05 8
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Table 5.5: Parameters for AMIS, WL, and XX algorithms for the neural network
problem.

Algorithm Parameters

AMIS

λ “ 0.01, µ̃ “ p2, 2qqT , Σ̃ “ 0.5I, M “ 30

wi,1 “ 1{M , µi,1 „ N2p0, 2Iq, Σi,1 “ 0.25I, rn “ 1{n

Dth “ 50, rrestart “ 1{100 , wlb “ 0.001

WL d “ 15, γn “ 1{n, ε “ 0.3, Eth “ 5, nsplit “ nIter{10, Emax “ 3000

XX Nc “ nIter{10, Nwl “ 100, Dth “ 1{p2 ¨ wlbq, adaptive rrestart

icant component throughout the entire run, which depends on the starting point and

µi,1. The parallel WL chains each discover a different set of modes within the simu-

lation length depending on its initial point (see Table 5.6). In contrast, the mixture

proposal distribution for the XX algorithm adapts to capture all eight significant

modes as desired. Marginal posterior distributions of the parameters are shown in

Figure 5.18, with the (approximate) modes of Table 5.4 (known by symmetry ar-

guments) shown in red dashed lines. We see excellent coverage by the sampling.

Bivariate posterior distribution for parameter pairs pβ11, γ120q and pγ111, γ121q are

shown in Figure 5.19, with the expected 8 and 4 modes clearly visible, respectively.

5.6 Discussion

In this chapter, we propose an exploration/exploitation algorithm, referred to as

XX algorithm, to address the convergence and autocorrelation issues in the adaptive

MCMC. The exploration component of the XX algorithm is based on the AMIS

algorithm while the exploitation component is based on the WL algorithm introduced

in Chapter 4. We show that for cases where modes are far apart, combining AMIS and

WL in the framework of XX exhibits clear advantage over either component applied

individually. We also present one example in which combining the original AMIS

with WL is superior to the standalone AMIS, but inferior to WL, caused by a late

escape across the energy boundary of the WL chain. We subsequently suggest several
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Figure 5.18: Marginal distributions of the samples from XX chain for the neural
network example. In each plot, the local modes agree with the numbers shown in
Table 5.4.
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Figure 5.19: Bivariate distributions of pβ11, γ120q, and pγ111, γ121q. We can compare
the locations of the modes with the values shown in Table 5.4.
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Table 5.6: Indices and orders of the modes visited by the 15 WL chains, respectively.
See Table 5.4 for the values in the second and third columns. Each chain found a
different set of modes.

WL chain First mode found Other modes found later

1 5 8

2 7

3 4 8,3

4 8 4,7

5 8 4

6 2 6,1

7 5 6

8 8 3

9 5 6

10 5 2,1

11 6 7,5

12 5

13 3 7,8

14 8 7

15 7 8,3

improvements and demonstrate their performance with several examples. Remaining

work on this topic includes testing the method in much higher dimensions.
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Appendix A

Simulation Method for Non-Stationary Negative
Binomial Branching Process

1. The Data Augmentation method introduced in Section ?? is also a simulation

method for the stationary Negative Binomial Branching process, bNB(α, β, ρ).

However, this simulation method does not work for Xt „ bNB(αt, β, ρ) by just

modifying the subscripts as below, as the marginal distributions of tXtu are

not NB(αt, β) and the correlation is not ρ.

X0 „ NB

ˆ

α0,
β

1` β

˙

Yt „ Bi

ˆ

xt´1,
ρβ

1` β ´ ρ

˙

, ζt „ NB

ˆ

αt ` yt,
β

1` β ´ ρ

˙

Xt “ yt ` ζt, 1 ď t ď T.

2. First, we propose a new strategy to simulate non-stationary negative binomial

processes with varying parameter αt, such that the marginal distributions of

tXtu are NB(αt, β):
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X0 „ NB

ˆ

α0,
β

1` β

˙

p1q If αt “ αt´1 :

Yt „ Bi

ˆ

xt´1,
ρβ

1` β ´ ρ

˙

, ζt „ NB

ˆ

αt ` yt,
β

1` β ´ ρ

˙

, Xt “ yt ` ζt

p2q If αt ą αt´1 :

Yt „ Bi

ˆ

xt´1,
ρβ

1` β ´ ρ

˙

, ζt „ NB

ˆ

αt´1 ` yt,
β

1` β ´ ρ

˙

Xt “ yt ` ζt `X
˚, where X˚

K Xt and X˚
„ NB

ˆ

αt ´ αt´1,
β

1` β

˙

p3q If αt ă αt´1 :

paq p˚ „ Bepαt, αt´1 ´ αtq, X˚
t´1 „ Bipxt´1, p

˚
q

pbq Yt „ Bi

ˆ

x˚t´1,
ρβ

1` β ´ ρ

˙

, ζt „ NB

ˆ

αt ` yt,
β

1` β ´ ρ

˙

, Xt “ yt ` ζt

3. Proof:

(1) If αt “ αt´1, use the same approach as for stationary Negative Binomial

branching process.

(2) If αt ą αt´1, it follows from the property of negative binomial distribu-

tion: “The sum of independent negative-binomially distributed random

variables NB(r1, p) and NB(r2, p) is negative-binomially distributed with

the same p but with “r-value” r1 ` r2”.

(3) If αt ă αt´1, see proof in Appendix B.

4. Calculation of Cor(Xt´1, Xt) for 1 ď t ď T :

(a) If αt “ αt´1, CorpXt´1, Xtq “ ρ same as in the stationary process.
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(b) If αt ą αt´1, according to the new strategy of simulation:

Xt´1 „ NB
´

αt´1,
β

1`β

¯

, µt´1 “
αt´1

β
, σt´1 “

?
αt´1p1`βq

β
,

Xt „ NB
´

αt,
β

1`β

¯

, µt “
αt
β
, σt “

?
αtp1`βq

β
.

Denote Vt “ Yt ` ζt, then

Vt „ NB

ˆ

αt´1,
β

1` β

˙

, CorpXt´1, Vtq “ ρ, Xt´1 K X˚.

ErXt´1Xts

“ErXt´1pVt `X
˚
qs

“ErXt´1Vts ` µt´1 ¨
αt ´ αt´1

β

“ρσ2
t´1 ` µ

2
t´1 ` µt´1pµt ´ µt´1q

“ρσ2
t´1 ` µt´1µt.

So CorpXt´1, Xtq “
ErXt´1Xts ´ µt´1µt

σt´1σt
“ ρ

σt´1

σt
“ ρ

c

αt´1

αt
ă ρ.

(3) If αt ă αt´1, we can look at this as a ‘reverse step’ of (2) to get

CorpXt´1, Xtq “ ρ

c

αt´1

αt
ă ρ.

Alternatively, according to the new strategy of simulation and Appendix

B, we have:

Xt´1 „ NB
´

αt´1,
β

1`β

¯

, X˚
t´1 „ NB

´

αt,
β

1`β

¯

,

X˚˚
t´1 „ NB

´

αt´1 ´ αt,
β

1`β

¯

, Xt „ NB
´

αt,
β

1`β

¯

Xt´1 “ X˚
t´1 `X

˚˚
t´1, X˚˚

t´1 K X˚
t´1,

X˚˚
t´1 K Xt, CorpX˚

t´1, Xtq “ ρ.
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Hence,

ErXt´1Xts

“ErXtpX
˚
t´1 `X

˚˚
t´1qs

“ErXtX
˚
t´1s ` µt ¨

αt´1 ´ αt
β

“ρσ2
t ` µ

2
t ` µtpµt´1 ´ µtq

“ρσ2
t ` µt´1µt.

So CorpXt´1, Xtq “
ErXt´1Xts ´ µt´1µt

σt´1σt
“ ρ

σt
σt´1

“ ρ

c

αt

αt´1
ă ρ.

5. Then, we modify the new strategy to keep ρ constant:

For 1 ď t ď T , let X0 „ NB

ˆ

α0,
β

1` β

˙

and

(1) If αt “ αt´1:

Yt „ Bi

ˆ

xt´1,
ρβ

1` β ´ ρ

˙

, ζt „ NB

ˆ

αt ` yt,
β

1` β ´ ρ

˙

, Xt “ yt`ζt;

(2) If αt ą αt´1:

Yt „ Bi

ˆ

xt´1,
ρ1β

1` β ´ ρ1

˙

, ζt „ NB

ˆ

αt´1 ` yt,
β

1` β ´ ρ1

˙

,

where ρ1 “ ρ

c

αt

αt´1
ą ρ, and

Xt “ yt ` ζt `X
˚, where X˚

„ NB

ˆ

αt ´ αt´1,
β

1` β

˙

;

(3) If αt ă αt´1:

paq p˚ „ Bepαt, αt´1 ´ αtq, X˚
t´1 „ Bipxt´1, p

˚
q
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pbq Yt „ Bi

ˆ

x˚t´1,
ρ1β

1` β ´ ρ1

˙

, ζt „ NB

ˆ

αt ` yt,
β

1` β ´ ρ1

˙

,

where ρ1 “ ρ

c

αt´1

αt
ą ρ, and Xt “ yt ` ζt.

(4) To make sure ρ1 ď 1, tαtu must satisfy 1 ă
αt
αt´1

ď
1

ρ2
or ρ2 ď

αt
αt´1

ă 1.
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Appendix B

Beta-Binomial Distribution

1. The Beta-Binomial distribution is a discrete probability distribution on a finite

support of non-negative integers. It is frequently used when the probability of

success in each of a fixed or known number of Bernoulli trials is either unknown

or random.

If a random variable is drawn from the Beta-Binomial distribution, namely

X „ BBpn, α, βq, then the probability density function is:

fpX “ x | n, α, βq “

˜

n

x

¸

Γpα ` βq

ΓpαqΓpβq

Γpα ` xqΓpβ ` n´ xq

Γpα ` β ` nq
, 0 ď x ď n.

2. Beta-Binomial Distribution can be considered as a compound distribution. To

sample from BB(n, α, β), we can proceed in the following two steps:

p „ Bepα, βq

x „ Bipn, pq.
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Proof:

PrrX “ xs “

ż 1

0

Binpx | n, pq ¨ Betapp | α, βq

“

ż 1

0

˜

n

x

¸

pxqn´x
Γpα ` βq

ΓpαqΓpβq
pα´1qβ´1d p, q “ 1´ p

“

˜

n

x

¸

Γpα ` βq

ΓpαqΓpβq

Γpα ` xqΓpβ ` n´ xq

Γpα ` β ` nq
, 0 ď x ď n.

3. In Appendix A, we want to generate a random variable X˚
t´1, given Xt´1 „

NBpαt´1, pq, such that Xt´1 “ X˚
t´1 `X

˚˚
t´1 and

X˚
t´1 „ NBpαt´1, pq K X˚˚

t´1 „ NBpαt´1 ´ αt, pq, αt ă αt´1.

The conditional pmf of x “ X˚
t´1, given y “ Xt´1, is:

fpx|yq “
fpx, yq

fpyq
“

Γpαt`xq
Γpαtqx!

pαtqx ¨ Γpαt´1´αt`y´xq
Γpαt´1´αtqpy´xq!

pαt´1´αtqy´x

Γpαt´1`yq
Γpαt´1qy!

pαt´1qy

“

˜

y

x

¸

Γpαt´1q

ΓpαtqΓpαt´1 ´ αtq

Γpαt ` xqΓpαt´1 ´ αt ` y ´ xq

Γpαt´1 ` yq

„ BBpn “ y, α “ αt, β “ αt´1 ´ αtq.

Hence, sample

p˚ „ Bepαt, αt´1 ´ αtq, X˚
t´1 „ Bipxt´1, p

˚
q.
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Appendix C

Posterior Distribution

1. Improper prior distributions for µ and uniform prior for ρ:

πpµq9
1

µ
, 0 ă µ ă 8; πpρq “ 1, 0 ď ρ ă 1.

2. Likelihood function:

PrY “ y | α, ρ, ps “ ppy1q
ź

1ăjďn

ppyj | yj´1q

“
Γpα ` y1q

Γpαqy1!
pαp1´ pqy1 ¨

ź

1ăjďn

Γpα ` yjq

Γpαqyj!
¨
pαp1´ ρqyj`yj´1p1´ pqyj

p1´ ρ` ρpqα`yj`yj´1

¨

yj^yj´1
ÿ

ξ“0

yj´1!Γpαqyj!

pyj´1 ´ ξq!Γpα ` ξqpyj ´ ξq!ξ!

ˆ

ρ

p1´ ρq2
p2

p1´ pq

˙ξ

,

where µ “
α

β
, p “

β

1` β
.

3. We want to show that the posteriors distribution

πpµ, ρ | Y “ yq “ πpµqπpρqPrY “ y | α, ρ, ps
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is proper:
ż 1

0

ż 8

0

πpµ, ρ | Y “ yq dµdρ ă 8

4. Divide the µρ-plane up into 9 rectangles and the integral into 6 double integrals

over the corresponding sets:

M1
µ M2

µ
µ

Mρ

1

ρ

0

I1 I2 I3

I4 I5 I6

where M1
µ is a small value close to 0, M2

µ is a large value and Mρ is a value

close to 1.

5.

I2 “

ż Mρ

0

ż M2
µ

M1
µ

πpµ, ρ | Y “ yq dµdρ.

πpµ, ρ | Y “ yq is a continuous function in µ and ρ over the bounded set

r0,Mρs ˆ rM
1
µ,M

2
µs, so the posterior is integrable.

6.

I1 “

ż Mρ

0

ż M1
µ

0

πpµ, ρ | Y “ yq dµdρ

On the set r0,Mρs ˆ p0,M
1
µs, both ρ and

ρ

p1´ ρq2
are bounded. The range of

rockfall data Y is r0, 212s, so all terms only involving tyiu
n
i“1 are all bounded.
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Moreover, the exponents of p, 1 ´ p, 1 ´ ρ and
p

1´ ρ` ρp
, which are all less

than 1, are also bounded by 1. Hence,

πpµ, ρ | Y “ yq

9
1

α
PrY “ y | α, ρ, ps

ďBY,p,ρ
1

α

Γpα ` y1q

Γpαq

ź

1ăjďn

Γpα ` yjq

Γpαq

yj^yj´1
ÿ

ξ“0

Γpαq

Γpα ` ξq

“
BY,p,ρΓpα ` y1q

αΓpαq

$

’

&

’

%

ź

1ăjďn
yj“0

Γpα ` yjq

Γpαq

yj^yj´1
ÿ

ξ“0

Γpαq

Γpα ` ξq

,

/

.

/

-

¨

$

’

&

’

%

ź

1ăjďn
yją0

Γpα ` yjq

Γpαq

yj^yj´1
ÿ

ξ“0

Γpαq

Γpα ` ξq

,

/

.

/

-

“
BY,p,ρΓpα ` y1q

αΓpαq
¨ 1 ¨

$

’

&

’

%

ź

1ăjďn
yją0

Γpα ` yjq

yj^yj´1
ÿ

ξ“0

1

Γpα ` ξq

,

/

.

/

-

“
BY,p,ρΓpα ` y1q

αΓpαq

$

’

&

’

%

ź

1ăjďn
yją0,yj´1ą0

Γpα ` yjq

yj^yj´1
ÿ

ξ“1

1

Γpα ` ξq

,

/

.

/

-

¨

$

’

&

’

%

ź

1ăjďn
yją0,yj´1“0

Γpα ` yjq
1

Γpαq

,

/

.

/

-

(*)

where BY,p,ρ is a bound that depends on data Y , value of p or β and bounds

of ρ.

When µ Ñ 0 or α Ñ 0, Γpαq Ñ 8, αΓpαq Ñ 1, so (*) can be bounded, and

therefore πpµ, ρ | Y “ yq is bounded on the set r0,Mρsˆp0,M
1
µs, which implies
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that the posterior is integrable.

7.

I3 “

ż Mρ

0

ż 8

M2
µ

πpµ, ρ | Y “ yq dµdρ

Similar to I1, on the set r0,Mρs ˆ rM
1
µ,8q, ρ and

ρ

p1´ ρq2
are still bounded.

In addition, all terms involving only tyiu
n
i“1, ρ and/or p are all bounded. Fur-

thermore,

Γpα ` yjq

Γpαq
“ pα ` yj ´ 1qpα ` yj ´ 2q ¨ ¨ ¨α ď αyj for large α.

Hence,

πpµ, ρ | Y “ yq

9
1

α
PrY “ y | α, ρ, ps

ďBY,p,ρα
BY pα

ź

1ăjďn

pα

p1´ ρ` ρpqα

ďBY,p,ρα
BY rα,

where r “

ˆ

p

1´ ρ` ρp

˙n

ă 1, BY,p,ρ is a bound that depends on data Y ,

value of p or β and bounds of ρ and BY is an integer that only depends on Y .

When αÑ 8, apply L’Hôpital’s rule,

lim
αÑ8

αBY rα

1
α2

“ lim
αÑ8

pBY ` 2qαBY `1

´ logprqr´α
“ ¨ ¨ ¨ “ lim

αÑ8

pBY ` 2q!

p´ logprqqBY `2
rα “ 0,

which means that αBY rα converges to 0 faster than
1

α2
. As

ż 8

M1
µ

1

α2
dα ă 8, it

is straitforward to deduce that I3 “

ż Mρ

0

ż 8

M2
µ

πpµ, ρ | Y “ yq dµdρ ă 8.
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8.

I5 “

ż 1

Mρ

ż M2
µ

M1
µ

πpµ, ρ | Y “ yq dµdρ

By making change of variables, we can transform the µρ-plane into αρ-plane:

ż 1

Mρ

ż M2
µ

M1
µ

πpµ, ρ | Y “ yq dµdρ

9

ż 1

Mρ

ż M2
µ

M1
µ

1

µ
PrY “ y | α, ρ, ps dµdρ

“

ż 1

Mρ

ż βM2
µ

βM1
µ

1

α
PrY “ y | α, ρ, ps dαdρ.

Since α is bounded, all terms involving only α, yj and/or p can be bounded.

Additionally, p1 ´ ρ ` ρpqα`yj`yj´1 and ρξ can also be bounded because ρ is

bounded.

1

α
PrY “ y | α, ρ, ps

ďBY,p,α,ρ

ź

1ăjďn

p1´ ρqyj`yj´1

yj^yj´1
ÿ

ξ“0

1

p1´ ρq2ξ

“BY,p,α,ρ

ź

1ăjďn

p1´ ρq2yj^yj´1`|yj´yj´1| ¨
p1´ ρq2 ´ 1

p1´ρq2yj^yj´1

p1´ ρq2 ´ 1

“BY,p,α,ρ

ź

1ăjďn

p1´ ρq|yj´yj´1| ´ p1´ ρq2yj^yj´1`|yj´yj´1|`2

1´ p1´ ρq2
, (#)

where BY,p,α,ρ depends on p, data Y , upper and lower limits of α and ρ.

In the product of (#), for some j, yj “ yj´1, we define 00 “ 1 so that p1 ´

ρq|yj´yj´1| is well defined for all j when ρ Ñ 1. In addition, when ρ Ñ 1, at

least one terms in the product approaches 0, and thus (#) can be bounded by
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a finite number when ρ is in the interval rMρ, 1s. Therefore,

ż 1

Mρ

ż βM2
µ

βM1
µ

1

α
PrY “ y | α, ρ, ps dαdρ ă 8.

9.

I4 “

ż 1

Mρ

ż M1
µ

0

πpµ, ρ | Y “ yq dµdρ

9

ż 1

Mρ

ż M1
µ

0

1

µ
PrY “ y | α, ρ, ps dµdρ

“

ż 1

Mρ

ż βM1
µ

0

1

α
PrY “ y | α, ρ, ps dαdρ

ď

ż 1

Mρ

ż βM1
µ

0

BY,p,ρ
Γpα ` y1q

Γpαq

¨
ź

1ăjďn

Γpα ` yjq

Γpαq
p1´ ρqyj`yj´1

yj^yj´1
ÿ

ξ“0

Γpαq

Γpα ` ξq

ρξ

p1´ ρq2ξ
dαdρ, (=)

where BY,p,ρ is a bound for yj, p
α, p1´pqyj , p1´ρ`ρpqα`yj`yj´1 and

ˆ

p2

1´ p

˙ξ

.

Similar to the arguments for I1 and I5, the integrand of (=) can be bounded

by a finite number, and thus I4 ă 8.

10.

I6 “

ż 1

Mρ

ż 8

M2
µ

πpµ, ρ | Y “ yq dµdρ

9

ż 1

Mρ

ż 8

βM2
µ

1

α
PrY “ y | α, ρ, ps dαdρ

ď

ż 1

Mρ

ż 8

βM2
µ

BY,p,ρ

α

Γpα ` y1q

Γpαq
pα

¨
ź

1ăjďn

Γpα ` yjq

Γpαq

pα

p1´ ρ` ρpqα
p1´ pqyj`yj´1

yj^yj´1
ÿ

ξ“0

1

p1´ ρq2ξ
dαdρ, (H)
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where BY,p,ρ is a bound for yj, p1´ pq
yj , p1´ ρ` ρpqyj`yj´1 , ρξ and

ˆ

p2

1´ p

˙ξ

.

Similar to the argument for I5, the integral with respect to ρ in (H) is bounded,

and then following the argument for I3, the integral with respect to α is also

finite, so I6 ă 8.

11. Each double integral on one of the six sets is integrable, and the integral of

the posterior distribution is the sum of the six integrals over subregions, so the

posterior has a finite integral, which indicates that the posterior is proper.
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