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Abstract

The present thesis addresses three important issues in modelling spatio-temporal

data: (i) develop a flexible nonparametric Bayesian methodology for spatial random

effect models; (ii) extend the current Bayesian nonparametric approach to model

discrete spatial data; and (iii) construct a spatio-temporal point process that incor-

porates established scientific models into a Bayesian hierarchical model.

The spatial Dirichlet process(SDP) is the first attempt to introduce a nonpara-

metric model for a neither Gaussian nor stationary spatial process. The SDP arises

as a probability weighted collection of random surfaces. This can be unattractive

for modelling, hence inferential purposes since it insists that a process realization

is one of these surfaces. In Chapter 2, we introduce a generalized spatial Dirichlet

process(GSDP) model for the spatial effects that allows different surface selection at

different sites. Moreover, we can specify the model to preserve the property that the

marginal distribution of the effect at each site still comes from a Dirichlet process.

The development is offered constructively, providing a multivariate extension of the

stick-breaking representation of the weights. We then introduce mixing using this

generalized spatial Dirichlet process (GSDP). We illustrate the fitting of this novel

model with a simulated data set and demonstrate how to embed the GSDP within a

dynamic linear model.

In Chapter 3, we extend the SDP to a generalized linear model(GLM) setting

by proposing a Bayesian nonparametric spatial approach to analyze disease mapping

data. We develop a hierarchical specification using random effects modelled with a

spatial Dirichlet process prior. We introduce a dynamic formulation for the spatial

random effects to apply the model to spatio-temporal settings.

Chapter 4 introduces a novel structured model for spatio-temporal point pro-
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cesses. We formulate a dynamic Cox process model where the evolution of latent

intensity is governed by deterministic and stochastic differential equations describ-

ing the population growth mechanisms. We construct a Bayesian hierarchical model

based on this point process and propose a process convolution approximation for

statistical inference. We address the Bayesian estimation and space-time prediction

issues and illustrate with simulated and real house construction data examples.
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Chapter 1

Introduction

Spatial data are observations associated with a set of geographical locations in a

certain domain. For example, (i) in environmental science, we may observe pollu-

tant at fixed stations; (ii) in public health, researchers are interested in geographical

dispersion of cancer rates in different states and counties; (iii) in real estate market,

people are interested in how house prices are related to locations. Spatial data can

be modelled as realizations of vector valued random fields at a set of fixed locations.

The spatial correlation structure is introduced through the form of spatial random

effects, where a term capturing residual spatial correlation is explicitly introduced.

In this thesis, we will propose a class of very flexible nonparametric models for the

spatial random effects.

There are cases where the spatial domain, the set of geographical locations and

the moments of observations are also random. These constitute a space-time point

pattern, which arise in many different settings, e.g., (i) ecology where we might seek

the evolution of the range of a species over time, (ii) disease incidence examining

say the pattern of cancer cases over time, (iii) astronomy where the goal is the

ascertainment of newly discovered stars, and (iv) urban development explained using

say the pattern of single family homes constructed over time. The random locations
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and moments of these random events are customarily modelled as a spatio-temporal

point process with an inhomogeneous intensity surface. The classical Cox model

views the intensity surface as a realization of another spatial random process. The

space-time point process, in the Cox model framework, can be modelled with the

dynamics of the intensity surface. In this thesis, we introduce a class of stochastic

differential equations to model the dynamics of the evolving intensity surface.

1.1 Bayesian Nonparametric Spatial Statistics

Spatial random effects are traditionally modelled as a mean-zero stationary Gaussian

process (GP). The stationarity or the Gaussian assumption is inappropriate in many

cases. Flexible and computationally tractable modelling to relax the stationarity

assumption includes the spatially varying kernel approach of Higdon et al. (1999)

and the local stationarity approach of Fuentes and Smith (2001) but both are still

within the setting of GP’s. The fundamental paper of Sampson and Guttorp (1992)

introduces a nonparametric specification for the covariance function, as does followup

work by Damian et al. (2001) and Schmidt and O’Hagan (2003) but all still employ

a GP in the likelihood.

The Gaussian assumption is criticized when the spatial variability is attributable

to more than one latent processes so that, for example, a mixture of Gaussian pro-

cesses would be more appropriate. See Brown et al. (2003) for a recent example or

Palacios and Steel (2004) for the development of a class of models that can accommo-

date heavy tail behaviors. Recently, Gelfand et al. (2005) proposed a spatial Dirichlet

process (SDP) mixture model which adopts a stationary and Gaussian base measure.

However, the resulting random stochastic process is nonstationary and its joint fi-

nite dimensional distributions are not normal. The use of the SDP specification to

model the distribution of the spatial component in a spatial random effect model
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leads to a fully Bayesian semiparametric approach that, for fitting purposes, relies

on well-known results and algorithms developed for Dirichlet process (DP) mixing.

See, among others, Escobar and West (1995) and MacEachern and Müller (1998).

Because our generalized spatial Dirichlet process models are a generalization of the

SDP, we will first briefly review the SDP models in the following section.

1.1.1 Spatial Dirichlet Process Models

Denote the stochastic process by {Y (s) : s ∈ D}, D ⊆ Rd. Within this domain

D, let s(n) = (s1, ..., sn) be a specific set of distinct locations at which the ob-

servations are collected. Assume that we have replicate observations available at

each location and therefore that the full data consist of the collection of vectors

Yt = {Yt(s1), ..., Yt(sn)}
T , t = 1, ..., T . In fact, imbalance or missingness can be

accommodated in Yt(si) through customary latent variable methods.

For a measurable space (Θ,B), the Dirichlet process (DP), (Ferguson 1973, 1974)

specifies random distributions on Θ denoted by DP (νG0), where ν > 0 is a scalar

precision parameter and G0 a specified base distribution defined on (Θ,B). A random

distribution function on (Θ,B) arising from DP (νG0) is almost surely discrete and

admits the representation
∑∞

l=1 plδθ∗l , where δθ∗l denotes a point mass at θ∗l ; p1 = q1,

pl = ql
∏l−1

r=1(1 − qr), l = 2, 3, ...,with qr, r = 1, 2, ..., independently and identically

distributed as Beta(1, ν). The θ∗l ’s are independent and identically distributed as G0

and also independent of the qr’s, l = 1, 2, ... (Sethuraman 1994). In this notation, θ∗l

is assumed to be scalar or vector-valued, the latter case leading to a multivariate DP.

To model YD ≡ {Y (s) : s ∈ D}, following Gelfand et al. (2005), one can con-

ceptually extend θ∗l to a realization of a random field by replacing it with θ∗l,D =

{θ∗l (s) : s ∈ D}. For instance, G0 can be a stationary GP, from which each real-

ization θ∗l,D is a surface over D. The resulting random process or distribution, G,
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for YD is denoted by
∑∞

l=1 plδθ∗l,D and the construction is referred to as a spatial

Dirichlet process (SDP) model. The interpretation is that for the s(n) above, G in-

duces a random probability measure G(s(n)) on the space of distribution functions for

{Y (s1), ..., Y (sn)}. To simplify our notation, we will use G(n) instead of G(s(n)) in as

follows. Thus, we have that G(n) ∼ DP (νG
(n)
0 ), where G

(n)
0 , G

(s(n))
0 is the n-variate

distribution for {Y (s1), ..., Y (sn)} induced by G0. E.g., G
(n)
0 is an n-variate normal

distribution if G0 is taken to be a GP.

Gelfand et al. (2005) notice a connection between the spatial DP above and the

concept of a dependent Dirichlet process (DDP) developed by MacEachern (2000).

The DDP provides a formal framework that describes a stochastic process of random

distributions. These distributions are dependent, such that, at each index value, the

distribution is a univariate DP. In the above setting, G induces a random distribution

G(Y (s)) for each s, hence the set GD ≡ {G(Y (s)) : s ∈ D} which, under sufficient

conditions (MacEachern 2000) will be a DDP.

For a stationary G0 (i.e., cov{θ∗l (si), θ
∗
l (sj)} depends upon si and sj only through

si − sj), the choice of the covariance function determines how smooth the process

realizations are. Kent (1989), for instance, shows that, if the covariance function

admits a second order Taylor-series expansion with a remainder that goes to 0 at the

rate of 2 + δ for some δ > 0 then θ∗(si) − θ∗(sj) → 0, almost surely, as ||si − sj||

→ 0. But then, in the representation of G as
∑

plδθ∗l,D , the continuity of θ∗l,D implies

that the random marginal distributions G(Y (si)) and G(Y (sj)), are such that the

difference between them tends to 0 almost surely, as ||si − sj|| → 0. This continuity

property implies that we can learn about G(Y (s)) more from data at neighboring

locations than from data at locations further away, as in usual spatial prediction.

For G arising from G0 and ν, note that given G, E {Y (s) | G} =
∑

plθ
∗
l (s) and

4



var {Y (s) | G} =
∑

plθ
∗2
l (s) − {

∑

plθ
∗
l (s)}

2. Moreover for a pair of sites si and sj,

cov {Y (si), Y (sj) | G} =
∑

plθ
∗
l (si) θ

∗
l (sj) −

{

∑

plθ
∗
l (si)

}{

∑

plθ
∗
l (sj)

}

. (1.1)

Hence, the random process G has heterogeneous variance and is nonstationary. If G0

is a mean zero stationary GP with variance σ2 and correlation function ρφ(si − sj),

where the (possibly vector valued) parameter φ specifies ρφ(·), then, marginalizing

over G, E{Y (s)}=0, var{Y (s)}=σ2 and cov{Y (si), Y (sj)}=σ
2ρφ(si − sj). That is,

G is centered around a stationary process with constant variance but it has non-

constant variance and is nonstationary. Also, with almost surely continuous process

realizations, (1.1) makes it clear that the SDP is mean square continuous. That is,

given G, lim||s−s′||→0E[{Y (s) − Y (s′)}2 |G] = 0.

Since the almost sure discreteness of G will be undesirable in practice, mixing a

pure error process with variance τ 2 with respect to G creates a random process F

which has continuous support. If θD given G is a realization from G and YD − θD

is a realization from the pure error process, then, operating formally, we find that,

marginally, YD arises from the process F which can be defined as the convolution

F
(

YD | G, τ 2
)

=

∫

K
(

YD − θD | τ 2
)

G (dθD) .

By differentiating with respect to YD, we obtain the density,

f
(

YD | G, τ 2
)

=

∫

k
(

YD − θD | τ 2
)

G (dθD) . (1.2)

Here K and k denote the joint distribution function and density function, respectively,

of the pure error process over D. k might denote a N(0, τ 2) or tr(0, τ
2) density. Hence

for any s, we have

f
(

Y (s) | G, τ 2
)

=

∫

k
(

Y (s) − θ(s) | τ 2
)

G (dθ(s)) .
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In other words, by introducing the normal mixing kernel, we decompose Y (s) into the

sum of θ(s) + ε(s), where θ(s) arises from the above spatial DP prior model and ε(s)

is white noise with N(0, τ 2) distribution: similar to the customary partitioning the

spatially correlated residual into a spatial random effect and a nugget component.

The process model is created by convolving distributions rather than convolving

process variables as in Higdon et al. (1999) or Fuentes and Smith (2001).

For the finite set of locations s(n) = (s1, ..., sn), (1.2) implies that the joint density

for Y = {Y (s1), ..., Y (sn)}
T , given G(n) (where G(n) ∼ DP (νG

(n)
0 )) and τ 2, is

f
(

Y | G(n), τ 2
)

=

∫

Nn

(

Y | θ, τ 2In
)

G(n) (dθ) , (1.3)

where, to simplify the notations, θ , θ
(s(n))

= {θ(s1), ..., θ(sn)}
T and Nn(· | µ,Σ)

denotes the n-variate normal density/distribution (depending on the context) with

mean vector µ and covariance matrix Σ. Again, the almost sure representation of

G(n) as
∑

plδθ∗l , where θ∗l is the vector {θ∗l (s1), ..., θ
∗
l (sn)}

T , yields that f(Y | G(n), τ 2)

is almost surely of the form
∑∞

l=1 plNn(Y | θ∗l , τ
2In), i.e. a countable location mixture

of normals. In fact, assuming the existence of expectations given G(n) and τ 2, one can

obtain that E(Y | G(n), τ 2) =
∑

plθ
∗
l and the covariance matrix ΣY |G(n),τ2 = τ 2In +

Σ
(s(n))
θ , where (Σ

(s(n))
θ )i,j = cov{θ(si), θ(sj) | G

(n)} is the covariance specified in (1.1).

A regression term, XTβ, could typically be added to the kernel of the mixture

model in (1.3) leading to

f
(

Y | G(n), β, τ 2
)

=

∫

Nn

(

Y | XTβ + θ, τ 2In
)

G(n) (dθ) . (1.4)

That is, E(Y | G(n), β, τ 2) = XTβ +
∑

plθ
∗
l where X is a p × n matrix and β is a

p× 1 vector of regression coefficients.

Consider the data Yt = {Yt(s1), ..., Yt(sn)}
T with associated Xt, t = 1, ..., T. Given

Xt, the Yt are assumed independent from f(Yt | G
(n), β, τ 2) as in (1.4). A DP prior

6



is placed on G(n), i.e., G(n) ∼ DP (νG
(n)
0 ) (induced by the spatial DP prior for G in

(1.2)), with G
(n)
0 being a multivariate normal with mean zero and covariance matrix

σ2Hn(φ). The full Bayesian model is completed by placing (independent) priors on

β, τ 2, ν, σ2 and φ. Associating with each Yt a θt = {θt(s1), ..., θt(sn)}
T where the

θt, t = 1,...,T are independent realizations from G(n), the following semiparametric

hierarchical model is established

Yt | θt, β, τ
2 ∼Nn(Yt | X

T
t β + θt, τ

2In), t = 1, ..., T

θt | G
(n) ∼G(n), t = 1, ..., T

G(n) | ν, σ2, φ ∼DP (νG
(n)
0 ); G

(n)
0 (· | σ2, φ) = Nn(· | 0n, σ

2Hn(φ))

β, τ 2 ∼Np(β | β0,Σβ) × IGamma(τ 2 | aτ , bτ )

ν, σ2, φ ∼Gamma(ν | aν, bν) × IGamma(σ2 | aσ, bσ) × [φ],

(1.5)

where [φ] indicates a prior distribution for φ, according to the bracket notation of

Gelfand and Smith (1990).

The hierarchical nature of this modelling framework enables extensions by replac-

ing the Gaussian distribution (the kernel for the DP mixture) in the first hierarchy

with other distributions, such as tr(0, τ
2) aforementioned. If Yt(s) happens to be

a discrete random variable, its distribution may belong to any of the exponential-

dispersion family, hence we can formulate a semiparametric spatial generalized linear

model. This specification extends the work in Diggle et al. (1998) where a stationary

GP was used for the spatial random effects (see also, e.g., Heagerty and Lele 1998,

Diggle et al. 1998, and Christensen and Waagepetersen 2002). In this spirit, we will

apply the spatial Dirichlet process in the context of GLM to model discrete disease

incidence data in Chapter 3.
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1.1.2 Generalized Spatial Dirichlet Process Models

We give a brief introduction to the research object of the generalized spatial Dirich-

let process in this section. The SDP is essentially a Dirichlet process defined on

a space of surfaces, with probability one, its realizations being discrete probability

measures with countable support (Ferguson 1973; Sethuraman 1994). Mixing against

a Gaussian kernel yields an error specification that can be characterized as a count-

able location mixture of normals. The SDP insists that Yt = {Yt(s1), ..., Yt(sn)}
T at

any t are sampled on only one realization of the random surface. We introduce a

random distribution for the spatial effects that allows different surface selection at

different sites. Moreover, we can specify the model to preserve the property that the

marginal distribution of the effect at each site still comes from a Dirichlet process.

This generalization of the SDP is done constructively by developing a multivariate

extension of the stick-breaking weights that characterize the usual Dirichlet process

(Sethuraman 1994). A new class of random probability measures for random vec-

tors and processes arise thereof, which is referred as the generalized spatial Dirichlet

process models (GSDP), including the customary Dirichlet process specification as a

special case. Other extensions, also motivated by the stick-breaking representation

are described in Hjort (2000) and Ishwaran and James (2001).

By relaxing the restriction that two locations in spatial sample are on the same

random surface, we introduce a random distribution for the spatial effects such that

surface selection can vary from location to location and the joint selection of surfaces

for the n locations can vary with the choice of locations. Moreover, we can still

preserve the property that the marginal distribution at each location comes from

a usual univariate Dirichlet Process. This is achieved constructively by defining a

new multivariate stick-breaking prior in which spatial dependence structure is also

introduced in the modelling of the weights.
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Accordingly, we start by considering a base random field G0, which, for conve-

nience, we assume to be stationary and Gaussian, and define θ∗l = {θ∗l (s), s ∈ D}

as a realization from G0, i.e., a sample surface over D. Then, we define a random

probability measure G on the space of surfaces over D, whose finite dimensional dis-

tributions almost surely have the following representation: for any set of locations

s(n)=(s1, . . . , sn) ∈ D, and any collection of sets {A1, . . . , An} in B(R),

pr{Y (s1) ∈ A1, . . . , Y (sn) ∈ An} =

∞
∑

i1=1

...

∞
∑

in=1

pi1,...,in δθ∗i1 (s1)(A1) . . . δθ∗in (sn)(An),

where the θ∗j ’s are independent and identically distributed as G0, ij is an abbreviation

for i(sj), j = 1, 2, . . . , n, and the weights {pi1,...,in}, conditionally on the locations,

have a distribution defined on the infinite dimensional simplex P = {pi1,...,in ≥ 0 :
∑∞

i1=1 ...
∑∞

in=1 pii,...,in = 1} independent of that for the θ′s.

The focus of our development is the construction of the weight pi1,...,in, which has to

satisfy two conditions. First the weights need to satisfy the Kolmogorov consistency

condition in order that we can properly define a random process for Y (·). Specifically,

we need that for any set of locations (s1, . . . , sn), n ∈ N and for all k ∈ {1, . . . , n},

pi1,...,ik−1,ik+1,...,in = pi1,...,ik−1,·,ik+1,...,in ≡

∞
∑

j=1

pi1,...,ik−1,j,ik+1,...,in.

In addition, for the purpose of spatial modelling, we insist that the weights must

satisfy a continuity property: we desire the random laws associated with locations

s1 and s2 near to each other to be similar. That is, for locations s and s0, as

s→ s0, pi1,i2 = pr{Y (s) = θ∗i1(s), Y (s0) = θ∗i2(s0)}, tends to the marginal probability

pi2 = pr{Y (s0) = θ∗i2(s0)} when i1 = i2, and to 0 otherwise. If we also assume

the random field G0 to be almost surely continuous (a univariate spatial process

θ(s), s ∈ D is said to be almost surely continuous at a point s0 if θ(s) → θ(s0)
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with probability one as ||s− s0|| → 0), we want establish the almost sure continuity

property. We shall show in Chapter 2 that the consistency and continuity properties

are satisfied by our multivariate stick-breaking construction of pi1,...,in using latent

Gaussian random processes.

The goal of our formulation is to establish a setting where very few random sur-

faces are needed to achieve an adequate random spatial effects model; the novel

modelling ingredient is a latent stochastic process that determines surface selection.

Therefore, the resultant realizations are functions of these surfaces. As a motivating

example, consider a study of performance of plant species (presence/absence, abun-

dance, growth, etc.) over a specified region. While some location-specific environ-

mental covariates would be available to explain performance, there will be unobserved

local covariate information that affects suitability of the location for the species. A

latent covariate can be conceptualized to indicate the selection among suitability

surfaces. As a second example, we can consider modelling of selling prices for single

family homes. After adjusting for house characteristics, unobserved neighborhood and

preference features remain as random effects in the desirability of a house location.

A latent local indicator that selects among desirability surfaces naturally captures

the random effects. We demonstrate in Chapter 2 by simulation examples the ad-

vantage of the GSDP over the SDP in a setting where there are only a small number

of locations and replicated observations at each location.

Replications are typically needed for a full nonparametric approach (see, e.g.

Sampson and Guttorp 1992) and so in our GSDP case as well. However, with repli-

cations that are discretized across time, we can shed the independence assumption by

embedding our methodology within a dynamic model, retaining the temporal depen-

dence. These methods allow the possibility to infer about the (random) distribution

function that is operating at any given location, at any time, in the region. Non-
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parametric spatial prediction under such modelling can be made not only at new

locations for each replicate, but more generally through the generation of an entire

new predictive surface at a future time. The GSDP model embedded in a dynamic

linear model and its Bayesian inference is developed in Chapter 2. Also, though

we develop our model in the context of spatial data, the theory is general and can

be used when our responses are indexed by covariates in usual regression settings.

Hence, we offer an alternative for most of the problems where mixtures of products

of Dirichlet processes (Cifarelli and Regazzini 1978) and/or the dependent Dirichlet

processes (MacEachern 2000) have been employed. See, for example, De Iorio et al.

(2004).

We are aware of only two other recent approaches that also consider mixture mod-

els for spatial data where the weights are allowed to vary across locations. Fernandez

and Green (2002) confine their attention to Markov random fields over lattices and

Poisson distributed data where only the weights in the mixture vary from one location

to another. We work with general point referenced data allowing both the weights and

the parameters of the mixed distribution to vary spatially. Griffin and Steel (2004)

present an implementation of the dependent Dirichlet process using Sethuraman’s

constructive representation, providing a random marginal distribution at each site.

The components of the marginal stick breaking are the same at each location, but

they are randomly permuted according to the realizations of a latent point process,

so that at each site the resulting weights are assigned to different surfaces, inducing

spatial dependence. Instead, we define a multivariate stick-breaking construction for

any number and choice of locations, and also allow the marginal components to vary

in space. Moreover, in this approach the closeness between the random distribu-

tions is ruled directly by the topology of the space, rather than by realizations of an

underlying point process.
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1.2 Spatio-temporal Point Process Models

The theory of spatial point processes provides convenient tools for the study of ran-

dom spatial point patterns. The most commonly used and easily interpretable model

is the spatial Poisson process: for any region in the area under study, the total num-

ber of observed points is a Poisson random variable with mean equal to the integrated

intensity over that region. Then, the locations of these points, conditioned on the

total number, is selected by using the intensity surface as a (non-normalized) density

function. Again, if the points are emerging dynamically and the exact moments of

their occurrence are viewed as continuous variables, we turn to the spatio-temporal

version of the Poisson process which, in essence, is a three-dimensional generalization

of the spatial Poisson processes.

The mathematical theory of point process on a general carrying space has been

well established in the literature (Daley and Vere-Jones 1988; Karr 1991). Cressie

(1993) and Møller and Waagepetersen (2004) discuss a larger variety of spatial point

processes in practice, but most of their applications are restricted to two-dimensional

spatial point processes. Recent developments in spatio-temporal point process mod-

elling include Ogata (1998) with application to statistical seismology and Brix and

Møller (2001) with application in modelling weeds. Brix and Diggle (2001), in mod-

elling a plant disease, extend the log Gaussian Cox process (Møller et al. 1998) to a

space-time version by using a stochastic differential equation model for the spatially

varying relative risk. See Diggle (2005b) for a comprehensive review of the current

methods.

The motivating problem for our research is to model the constructions of new

residential houses. One attractive method of modelling space-time point process is

the Cox process (Cox 1955), which is a Poisson process with inhomogeneous intensity

arising as a realization of another stochastic process. The focus of our research is
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to develop a statistically viable, physically insightful and computationally feasible

stochastic process model for this intensity process. When we model urban growth by

the construction of new residential houses, it is natural to assume these new houses

would be quickly occupied by people, or vice versa the constructions themselves were

driven by the population growth. That is, as a measure of urban development, the

construction of new residential houses is a suitable surrogate for population growth.

Moreover, the former is collected as spatial point pattern while the latter is not so

easily available at such spatio-temporal resolution. Mathematically the conceptual

connection between urban and population growth suggest adapting the population

growth models in mathematical ecology (Kot 2001) to model the intensity process.

In Chapter 4, spatial stochastic differential equation models for this intensity process

are formulated from three types of population growth mechanisms.

Here we give a brief overview of the structure of our model. Let D be the study

region, which would be some metropolitan area or a portion thereof. Depending upon

the window of time, it might include primarily urban area or with a later (or longer)

window, the suburban and rural areas surrounding it. Let NT (D) be the number of

houses constructed in the period from t = 0 to T and XT =
{

x1,t1 , . . . , xNT ,tNT

}

be

the set of locations and times of these new constructions. The intensity of this space-

time point process XT is Ω (t, s) , s ∈ D, t ∈ [0, T ] , which is a positive-valued function.

Ω (t, s) could be viewed as essentially being a nonparametric specification which, for

instance, could be a realization of a space-time process over D×[0, T ] (Nonparametric

functions using basis representations would also be possible.) However, in the present

work, we choose to view Ω (t, s) as having a parametric form that is motivated by

mechanistic considerations. We want to introduce specific parametric choices where

the parameters quantify relationships and inference is sought about these parameters.

Indeed, these parameters themselves will be associated with spatial locations and so
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will themselves be viewed as realizations of spatial processes; thus, we can see how

they vary over D.

More specifically, let

Ω (t, s) = f (t, θl(t, s); l = 1, . . . , p)

where θl (t, s) , s ∈ D, l = 1, . . . , p are p possibly interdependent space-time pro-

cesses. Again, this general formulation of the spatio-temporal Cox process allows

incorporation of relevant subject matter mechanistic and theoretical behaviors into

the statistical model. Again, the parameters and latent variables in the structured

model, the θl(t)’s, can be shown to capture flexibly spatial variation and correlation

since they are realizations of spatial processes.

In the urban development problem, the parametric function f (t, θl(t); l = 1, . . . , p)

can be determined by a variety of differential equations that describe different mech-

anisms of development, such as the logistic growth equation:

Ω (t, s) = r (t, s)

∫ t

0

Ω (τ, s) dτ

[

1 −

∫ t

0
Ω (τ, s)

K (s)

]

,

where r (t, s) and K (s), s ∈ D are space-time processes representing local growth

rate and carrying capacity.

The Bayesian inference for this space-time point process with dynamic intensity

poses a difficult problem due to the nonlinearity in the model and the large number

of observations. We will use a process convolution technique proposed in Xia and

Gelfand (2006) to handle the inference problem. Our house construction data are

discrete in time, therefore it requires discretizing the stochastic differential equation

model and hence formulate a “transition model” (Diggle 2005b) between successive

periods.

Our modelling approach is innovative in a number of respects. First, our model is
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structured in the time dimension, reflecting physical limitation in density of residen-

tial houses, hence belongs to the “mechanistic modelling” category in Diggle (2005b),

in contrast to the empirical approaches in Brix and Møller (2001) and Brix and Dig-

gle (2001). The advantage of our approach to the urban development problem is

that the population growth models have been well studied and proved “good” by

ecologists. The model estimation and prediction are more easily interpretable and

can provide insight into the real mechanism of growth. On the other hand, lacking

theory to describe the nature of spatial pattern, we choose to employ a more empiri-

cal model for it reflecting only structured dependence based upon distance. Second,

we employ a Bayesian hierarchical model to retain the conditional structure from

the urban development mechanism. We do not have to resort to a partial likelihood

as in Diggle (2005a). The estimation and computational difficulties stated in Diggle

(2005b) can be overcome by implementing a full Bayesian model fitting. Third, the

number of points in our example is very large, requiring likelihood approximation.

We introduce a kernel convolution approximation (Xia and Gelfand 2006) to achieve

such approximation. To our knowledge, this is the first time that this approximation

has been applied to space-time point process models.

It is also worth reiterating that we intentionally specify our latent space-time

intensity through a differential equation rather than a spatio-temporal process (see,

e.g. Banerjee et al. 2004 and references therein). We intentionally seek to introduce

a mechanistic modelling component; we are directly interested in parameters in our

differential equation, such as spatially varying growth rates and carrying capacities.

Although space-time process realizations are flexible, they do not offer the physical

interpretation and insight we seek.
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Chapter 2

Generalized Spatial Dirichlet Process

Models

In this chapter, we formally present the construction and properties of the generalized

Dirichlet process models. We then employ this model as a mixing distribution against

a Gaussian kernel. We develop a hierarchical Bayesian model and its statistical

inference based on the GSDP. The computational issues in model fitting are carefully

presented. We then show how to embed the GSDP within a dynamic linear model.

We demonstrate the flexibility of the GSDP model in data analysis by simulation

examples.

2.1 GSDP and Its Mixture Models

2.1.1 Constructing the GSDP

In the spatial Dirichlet process developed by Gelfand et al. (2005), the random dis-

tribution of the pure spatial effect is essentially a Dirichlet Process defined on the

space of the random surfaces over D generated by a mean 0 base spatial process.

Then the almost sure characterization of the process implies that the random G for

s is not the same as that for s′ since θ∗l (s) is not the same as θ∗l (s
′). However, each
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distribution has the same set of random stick-breaking probabilities. Indeed, for any

group of n locations, the joint distribution uses the same set of stick-breaking proba-

bilities inducing common surface selection for all locations in the group. The spatial

dependence is introduced only through the underlying base measure, and it is not

possible to capture the situation in which spatial effects can be selected from different

surfaces at different locations. This limitation of the SDP is common to other recent

work relating to the so-called dependent Dirichlet process (MacEachern 2000). See,

for example, De Iorio et al. (2004).

We introduce a random distribution for the spatial effects that allows different

finite dimensional distributions across locations in the sense that surface selection

can vary with location and that the joint selection of surfaces for the n locations

can vary with the choice of locations. Moreover, we still preserve the property that

the marginal distribution at each location comes from a usual univariate Dirichlet

Process. This is achieved constructively by defining a new multivariate stick-breaking

prior in which spatial dependence structure is also introduced in the modeling of the

weights. See Ishwaran and Zarepour (2002b) for a review of stick-breaking univariate

priors.

Accordingly, we start by considering a base random field G0, which, for con-

venience, we take to be stationary and Gaussian, and indicate its sample with

θ∗l = {θ∗l (s), s ∈ D}, i.e., a surface over D. Then, we define a random probability mea-

sure G on the space of surfaces over D, whose finite dimensional distributions almost

surely have the following representation: for any set of locations (s1, . . . , sn) ∈ D,

and any collection of sets {A1, . . . , An} in B(R),

pr{Y (s1) ∈ A1, . . . , Y (sn) ∈ An} =

∞
∑

i1=1

...

∞
∑

in=1

pi1,...,in δθ∗i1 (s1)(A1) . . . δθ∗in (sn)(An),

(2.1)
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where the θ∗l ’s are independent and identically distributed as G0, ij is an abbreviation

for i(sj), j = 1, 2, . . . , n, and the weights {pi1,...,in}, conditionally on the locations,

have a distribution defined on the infinite dimensional simplex P = {pi1,...,in ≥ 0 :
∑∞

i1=1 ...
∑∞

in=1 pii,...,in = 1} independent of that for the θ∗l ’s.

The generalization of the usual Dirichlet process setting is evident because we

allow the possibility of selecting different surfaces at different locations. We will

return to this point later in this section. The weights need to satisfy a consistency

condition in order to properly define a random process for Y (·). Specifically, we need

that for any set of locations s(n)=(s1, . . . , sn), n ∈ N and for any k ∈ {1, . . . , n},

pi1,...,ik−1,ik+1,...,in = pi1,...,ik−1,·,ik+1,...,in ≡

∞
∑

j=1

pi1,...,ik−1,j,ik+1,...,in. (2.2)

In addition, for the reason of spatial modelling, we insist that the weights must satisfy

a continuity property: we want the distributional laws associated with locations s1

and s2 near to each other to be similar. Equivalently, for locations s and s0, as

s → s0, pi1,i2 = pr{Y (s) = θ∗i1(s), Y (s0) = θ∗i2(s0)}, should converge to the marginal

probability pi2 = pr{Y (s0) = θ∗i2(s0)} when i1 = i2, and to 0 otherwise. Analogously,

if we consider three locations (s1, s2, s3), if s3 is close to say, s2, we require pi1,i2,i3 to

be close to pi1,i2 if i2 = i3 and to 0 otherwise. Extension to n locations is similar; we

avoid introducing further notations, and from now on refer to this property simply

as almost sure continuity of the weights. The name is suggested by the almost sure

continuity of the paths of a univariate spatial process, as defined in Kent (1989)

or Banerjee et al. (2003a). If we also assume the random field G0 to be almost

surely continuous (a univariate spatial process θ(s), s ∈ D is said to be almost surely

continuous at a point s0 if θ(s) → θ(s0) with probability one as ||s− s0|| → 0), we

are able to establish the following proposition.
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Proposition 1 Let {Y (s), s ∈ D} be a random field, whose random finite dimen-

sional distributions are given by (2.1) for all n ∈ N. If the set of weights {pi1,...,in}

and the base random field G0 are almost surely continuous, then for all s0 ∈ D, Y (s)

converges weakly to Y (s0) with probability one as ||s− s0|| → 0.

Proof. Consider two sites s, s0 in D. According to (2.1) the joint distribution of

the process is almost surely a realization of the random element

pr{Y (s) ∈ A, Y (s0) ∈ B} =

∞
∑

l=1

∞
∑

m=1

pl,m(s, s0) δθ∗l (s)(A) δθ∗m(s0)(B),

for all A,B ∈ B(R). Notice that

lim
||s−s0||→0

pl(s) = lim
||s−s0||→0

∞
∑

m=1

pl,m(s, s0) =
∞
∑

m=1

lim
||s−s0||→0

pl,m(s, s0) = pl(s0),

because of the almost sure continuity property of the weights. The interchange be-

tween limit and sum operations in the equation above follows from the dominated

convergence theorem, since pl,m(s, s0) ≤ pm(s0) for all m. Since 0 ≤ pl(s) δθ∗l (s)(A) ≤

pl(s) and
∑∞

l=1 pl(s) = 1 for all s, we can apply Fatou’s Lemma for the series in order

to justify

lim
||s−s0||→0

pr{Y (s) ∈ A} = lim
||s−s0||→0

∞
∑

l=1

pl(s) δθ∗l (s)(A) =

∞
∑

l=1

pl(s0) δθ∗l (s0)(A)

= pr{Y (s0) ∈ A},

which shows the almost sure convergence of the marginal random distributions.

In fact, the proof demonstrates almost sure convergence of the random probability

measures. Note that Proposition 1 is an extension to our case of analogous results

stated in MacEachern (2000) and Gelfand et al. (2005).
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Conditional on the realized distribution G, the process has first and second mo-

ments given by

E{Y (s)|G} =

∞
∑

l=1

pl(s) θ
∗
l (s) (2.3)

var{Y (s)|G} =

∞
∑

l=1

pl(s) θ
∗2

l (s) −

{ ∞
∑

l=1

pl θ
∗
l (s)

}2

, (2.4)

and, for a pair of sites si, sj,

cov{Y (si), Y (sj)|G} =
∞
∑

l=1

∞
∑

m=1

pl,m(si, sj) θ
∗
l (si) θ

∗
m(sj)+

−

{ ∞
∑

l=1

pl(si) θ
∗
l (si)

}{ ∞
∑

m=1

pm(sj) θ
∗
m(sj)

}

.

(2.5)

Equation (2.5) shows that with almost surely continuous realizations from the base

process and of the weights, the GSDP is mean square continuous. Again, the process

Y (s) has heterogeneous variance and is nonstationary. However, when we marginalize

over G, we can see more clearly the difference between the GSDP and SDP models.

Suppose G0 is a mean zero stationary Gaussian process with finite variance σ2 and

correlation function ρφ(si − sj). Then, E{Y (s)} = 0 and var{Y (s)} = σ2 as before,

but now

cov{Y (si), Y (sj)} = σ2ρφ(si − sj)
∞
∑

l=1

E{pll(si, sj)}. (2.6)

Notice that
∑∞

l=1E{pll(si, sj)} < 1, unless pll′(si, sj) = 0, l 6= l′, as it is in Gelfand

et al. (2005) or, more generally, in the single-p dependent Dirichlet process discussed

by MacEachern (2000). We can interpret this limiting situation as the one of maxi-

mum concordance among the surfaces chosen at the two locations. In all other cases,

the association structure is diminished by the amount of mass that the process (2.1)

is expected to place on the not equally indexed θ∗’s. Moreover, from (2.6) it follows
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that, although the base measure G0 is stationary, the process Y (s) is centered around

a stationary process only when E{pll(si, sj)} is a function of si− sj for all si and sj.

We now turn to the specification of pi1,...,in for any choice of n and s1, ..., sn through

a multivariate stick-breaking construction. For the sake of simplicity, we present our

approach in a bivariate setting, considering the random measure

pr{Y (si) ∈ Ai, Y (sj) ∈ Aj} =

∞
∑

l=1

∞
∑

m=1

pl,m · δθ∗l (si)(Ai)δθ∗m(sj)(Aj), (2.7)

for a pair of sites si, sj, providing details on extension to the general multivariate

case when necessary. First, we define a convenient process which retains the same

Dirichlet process structure marginally at each site and then we move to a more general

setting.

Sethuraman’s univariate stick-breaking construction has weights pl defined by

p1 = q1, pl = ql
∏l

m=1(1 − qm), l ≥ 2 where, for all l ≥ 1, ql are independent

Beta(1, ν) random variables. Denote the random events {Y = θ∗l } by Θ1
l (with

their complements Θ0
l ) and interpret the sequence of weights {p1, p2, . . .} as arising

from q1 = pr{Θ1
l }, ql = pr{Θ1

l |Θ
0
m, m < l} = pr{Y = θ∗l |Y 6= θ∗m, m < l}, l = 1, 2, . . ..

Turning back to our model, at each location s we can define events Θu
l (s), u = 0, 1,

such that Θ1
l (s)={Y (s) = θ∗l (s)} and Θ0

l (s)={Y (s) 6= θ∗l (s)}. Then, for any two

locations si, sj, we can consider the probabilities q1,u,v(si, sj) = pr{Θu
1(si),Θ

v
1(sj)},

ql,u,v(si, sj) = pr{Θu
l (si),Θ

v
l (sj)|Θ

0
m(si),Θ

0
m(sj), m < l}, l ≥ 2, u, v ∈ {0, 1}. For all

l = 1, 2, . . ., we can enter these probabilities in the form of Table 2.1. Note that,

formally, e.g., ql,1,1(si, sj) + ql,1,0(si, sj) = ql,1,+(si, sj) and we need to argue that

ql,1,+(si, sj) = ql(si). Similarly, ql,+,1(si, sj) = ql(sj). The argument is supplied in

Lemma 1.
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Θ1
l (sj) Θ0

l (sj)
Θ1
l (si) ql,1,1(si, sj) ql,1,0(si, sj) ql(si)

Θ0
l (si) ql,0,1(si, sj) ql,0,0(si, sj) 1 − ql(si)

ql(sj) 1 − ql(sj) 1

Table 2.1: Relevant probabilities in the multivariate stick-breaking construction in
the special case of n = 2 locations, for l = 1, 2, . . ..

Lemma 1 The probabilities q1,u,v(si, sj) = pr{Θu
1(si),Θ

v
1(sj)} and

ql,u,v(si, sj) = pr{Θu
l (si),Θ

v
l (sj)|Θ

0
m(si),Θ

0
m(sj), m < l}, l ≥ 2, u, v ∈ {0, 1},

are such that ql,1,+(si, sj) = ql(si) and ql,+,1(si, sj) = ql(sj), for any l = 1, 2, . . ..

Proof. By definition of the q’s,

ql,1,+(si, sj) = pr{Θu
l (si)|Θ

0
m(si),Θ

0
m(sj), m < l}, l ≥ 2, u, v ∈ {0, 1}.

But Θu
l (si) is independent of {Θ0

m(sj), m < l} given {Θ0
m(si), m < l} by the definition

of stick-breaking. Since ql(si) = pr{Θu
l (si)|Θ

0
m(si), m < l}, we are done.

Then, accordingly, we can define the weights pl,m in (2.7) as

pl,m = pr{Y (si) = θ∗l (si), Y (sj) = θ∗m(sj)}

= pr{Θ1
l (si),Θ

1
m(sj),Θ

0
k(si), k < l,Θ0

r(sj), r < m}

=











∏l−1
k=1 qk,0,0 ql,1,0

∏m−1
r=l+1(1 − qr) qm if l < m

∏m−1
r=1 qr,0,0 qm,0,1

∏l−1
k=m+1(1 − qk) ql if m < l

∏l−1
r=1 qr,00 ql,11 if l = m

,

(2.8)

where we have suppressed si and sj.

Inspection on expression (2.8) reveals that the weights are determined through

a partition of the unit square similar to the one induced on the unit segment by
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Figure 2.1: An exemplification of the multivariate stick-breaking procedure for the
special case of n = 2 locations

the usual stick-breaking construction. At the first stage, if both the events Θ1
1(si)

and Θ1
1(sj) are true, we break off a region of the unit square of the same size as

the realized value of q1,1,1(si, sj). This is region A in Figure 2.1. If only Θ1
1(si) (or

Θ1
1(sj)) is true, we remain only with a piece corresponding to region B (D). In fact,

given Θ1
1(si) (Θ1

1(sj)), we go on with a univariate stick-breaking procedure so that we

break off a part of region B (C) according to the values of ql(sj) (ql(si)), l = 2, 3, . . ..

If neither Θ1
1(si) nor Θ1

1(sj) are true, then we discard all regions A, B, and D and

remain only with region C, whose size is determined by q1,0,0(si, sj). Then, at stage

two, we repeat the same arguments as above for region C, and so on.

For n locations we require an n-dimensional stick breaking construction on the

unit n-dimensional hypercube, i.e., we require the specification of probabilities ql,u1,...,un,

uj ∈ {0, 1}, j = 1, 2, . . . , n, where uj is an abbreviation for u(sj), at any set of loca-

tions (s1, . . . , sn). This entails defining a spatial process which, conditionally on the

locations, has values on the simplex Q = {ql,u1,...,un ≥ 0 :
∑1

u1,...,un=0 ql,u1,...,un = 1},

and also satisfies consistency conditions of the type (2.2) for all l = 1, 2, . . . and any
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set of locations (s1, . . . , sn), n ∈ N and for all k = 1, . . . , n, that is

ql,u1,...,uk−1,uk+1,...,un = ql,u1,...,uk−1,·,uk+1,...,un =
1
∑

uk=0

ql,u1,...,uk−1,uk,uk+1,...,un.

In the next section, we offer a flexible construction under which this can be done

consistently. For the remainder of this section, as a special case, suppose the process

retains the same marginal distribution at any location. This can be achieved by im-

posing ql(s) = ql, together with the symmetry condition ql,1,0(si, sj) = pr{Y (si) =

θ∗l (si), Y (sj) 6= θ∗l (sj)} = pr{Y (si) 6= θ∗l (si), Y (sj) = θ∗l (sj)} = ql,0,1(si, sj), for all

l = 1, 2 . . . and s ∈ D. But, given ql, if we can compute say ql,1,1(si, sj) as a function

of ql, the remainder of Table 2.1 is determined. Then, according to Sethuraman’s

construction, if we allow ql to be Beta(1, ν), we get a process which marginally is a

Dirichlet process with precision parameter ν and base measure G0. Together with

(2.8), this illuminates the role of the distribution of the q’s in specifying the depen-

dence structure in a multivariate Dirichlet process.

Notice that there are other ways of achieving this particular result. For example,

we might consider a process such that each ql given ql,0,0 has a Beta-Stacy distribution

with parameters 1, ν − 1, 1 − ql,0,0. If ql,0,0 is assumed to be Beta(1, ν), then ql is

Beta(1, ν). The model we present in section 4 offers an alternative spatially-explicit

way to specify ql and ql,1,1. For the n-dimensional case, symmetry conditions similar

to the one stated above must be assumed in order to obtain the same marginal

behavior at each site.

Modelling the marginals to be Dirichlet processes allows direct comparison with

the models described by Gelfand et al. (2005) and De Iorio et al. (2004). However,

it is worth noting that, though we employ a generalized stick-breaking construction

and achieve DP marginal distributions, our model doesn’t generally describe a joint

Dirichlet process for a collection of locations. In particular, it follows that, given the
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dependence between the θ∗’s in the sum representation (2.1), we are not able to trace

a joint urn scheme, but only a marginal one. The SDP model described in Gelfand

et al. (2005) stands as a particular case of the model described here, where we set

ql,0,1 = ql,1,0 = 0 and ql,1,1 = ql for all locations and for all l.

We can see the generalization from the SDP model also by looking at the random

conditional distribution associated with Y (si)|Y (sj) for any pair of locations si, sj. In

fact, in the SDP this is just a random indicator function. In our model, it turns out to

be another random measure. In fact, the random distribution Y (si)|Y (sj) = θ∗m(sj)

is discrete with probability one and of the form
∑∞

l=1 pl|m(si, sj)δθ∗l (si), where

pl|m(si, sj) = pr{Y (si) = θ∗l (si)|Y (sj) = θ∗m(sj)} =

=
plm(si, sj)

∏m−1
k=1 {1 − qk(sj)} qm(sj)

,

since
∑

l pl,m(si, sj) = pm(sj) due to marginal stick-breaking. But, substituting the

expressions in (2.8),

pl|m =











∏l−1
k=1

qk,0,0

(1−qk)

ql,1,0

1−ql if l < m
∏m−1

k=1
qk,0,0

(1−qk)

qm,0,1

qm

∏l−1
k=m+1(1 − qk) ql if m < l

∏l−1
k=1

qk,0,0

(1−qk)

ql,1,1

ql
if l = m.

(2.9)

If we proceed along the lines that lead us to (2.8), we can show that for any given

m, based on conditional reasoning, (2.9) defines a stick-breaking partition of the

unit segment. However, this is not obtained through the usual Beta(1, ν) random

variables, even if the process is marginally Dirichlet. In fact, the random measure

arising from (2.9) can be seen as a generalized Dirichlet process, in the spirit of the

more general definitions of Hjort (2000) and Ishwaran and James (2001).

As a final remark, notice that defining a stick-breaking construction does not

necessarily guarantee that the random weights sum to one with probability one.
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This depends on the distribution of the weights. In the context of univariate stick-

breaking priors, however, it is possible to provide a necessary and sufficient condition

for that to happen (see Lemma 1 in Ishwaran and James 2001). We can expect that

this condition holds for our model too, as long as we marginally get a DP prior (or,

more in general, a stick-breaking prior). The precise argument is a direct extension of

the result of Ishwaran and James (2001) and is given for the bivariate case in Lemma

2.

Lemma 2 For any given si, sj in D,

∞
∑

l=1

∞
∑

m=1

pl,m(si, sj) = 1 if and only if

∞
∑

l=1

E [log{1 − ql(si)}] = −∞. (2.10)

Proof. Necessity follows after noticing that, if we marginalize with respect to

si, condition (2.10) reduces to condition (5) in Ishwaran and James (2001). Now,

consider for any N,M = 1, 2, . . ., the remainder term

RN,M(si, sj) = 1 −

N
∑

l=1

M
∑

m=1

pl,m(si, sj),

and assume (2.10) holds. We need to prove that RN,M(si, sj) → 0 with probability

one as N,M → ∞. Write RN,M(si, sj) = R1 +R2 +R3, where

R1 =

N
∑

l=1

∞
∑

m=M+1

pl,m(si, sj),

R2 =
M
∑

m=1

∞
∑

l=N+1

pl,m(si, sj),

R3 =
∞
∑

l=N+1

∞
∑

m=M+1

pl,m(si, sj).

Since all the terms in the sums are positive, it is necessary and sufficient that all the

series tend to zero, as N,M → ∞. Consider first R1 and substitute (2.8) into all
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pl,m(si, sj), so that

N
∑

l=1

∞
∑

m=M+1

pl,m(si, sj) =
N
∑

l=1

l−1
∏

k=1

qk,0,0(si, sj) ql,1,0(si, sj)
∞
∑

m=M+1

m−1
∏

r=l+1

{1−qr(sj)} qm(sj).

Since
∑∞

m=M+1

∏m−1
r=l+1{1−qr(sj)} qm(sj) =

(
∑∞

m=M+1 pm(sj)
)

/
(

1 −
∑l

m=1 pm(sj)
)

,

for any l = 1, 2, . . . , N , it tends to 0 as M → ∞ again because of condition (5) in Ish-

waran and James (2001). Since the result is true for allN ,
∑N

l=1

∑∞
m=M+1 pl,m(si, sj) →

0, with a similar argument for R2. Now consider R3. Let τ = min(N,M). Then,

R3 ≤
∑∞

l=τ+1

∑∞
m=τ+1 pl,m(si, sj) =

∏τ
k=1 qk,00(si, sj) ≤

∏τ
k=1{1 − qk(si)}, since

qk,0,0(si, sj) < 1 − qk(si), k = 1, . . . ,. Then the desired result follows again from

the Lemma 1 in Ishwaran and James (2001) for the marginal model in si.

2.1.2 Mixing Using a Generalized Spatial Dirichlet Process.

The GSDP will be used to model the distribution of the spatial component θ(s) in a

random effect model of the type

Y (s) = µ(s) + θ(s) + ε(s),

where µ(s) is a mean term, typically assumed to be a regression term X(s)Tβ for

some vector of covariates X(s) and some vector of parameters β, and ε(s) is a white

noise (nugget) component with mean zero and variance τ 2. Again, if we denote by

G(n) the finite dimensional distributions defined by (2.1), for any finite set of locations

s(n) = (s1, . . . , sn), n ∈ N, the joint distribution for Y = {Y (s1), . . . , Y (sn)}
T , given

G(n), µ and τ 2 is given by

f
(

y|G(n), µ, τ 2
)

=

∫

Nn

(

y| θ + µ, τ 2In
)

G(n)(dθ). (2.11)

where θ = {θ(s1), . . . , θ(sn)}
T , µ = {µ(s1), . . . , µ(sn)}

T . As with the SDP, since G(n)

is almost surely discrete, with probability one the conditional density (2.1) can be
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rewritten as a countable location mixture of normals,

f
(

y|G(n), µ, τ 2
)

=

∞
∑

i1=1

...

∞
∑

in=1

pi1,...,inNn(y| θi1,...,in + µ, τ 2In),

where, for simplicity, we have suppressed ij (sj), j = 1, . . . , n in pi1,...,in and set the

vector θi1,...,in = {θi1(s1), . . . , θin(sn)}
T . Immediately we know Y is a random vector

which has a density absolutely continuous with respect to the Lebesgue measure on

(Rn,B(Rn)) with probability one. Its expected value is

E(Y |G(n), µ, τ 2) =

∞
∑

i1=1

...

∞
∑

in=1

pi1,...,inθi1,...,in + µ,

and covariance matrix

ΣY |G(n),µ,τ2 = τ 2 In + Σs
θ,

where (Σs
θ)i,j=cov

{

θ(si), θ(sj)|G
(n)
}

is given by (2.5).

Under the assumptions of Proposition 1, if, in addition, the mean vector µ de-

scribes a continuous surface over D, it is easy to prove that an analogous statement

holds for the convoluted process Y . In fact, the normal density is a bounded con-

tinuous function of the mean. Then the bounded convergence theorem applies to

(2.11). Together with almost sure convergence of the random probability measures

G(n) proved in Proposition 1, this implies that, with probability one, Y (s) converges

weakly to Y (s0) for any s, s0 ∈ D, as ||s− s0|| → 0.

2.2 The Spatially Varying Probabilities Model

Using latent variables we provide a constructive approach to specify the stick-breaking

components in a way that is appealing for modelling purposes and ensures the ex-

istence of the processes sampled from G. In its implementation, using MCMC, we

never need to sample or even estimate the ql’s or pl’s.
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For any n = 1, 2, . . . and any l = 1, 2, . . . the stick-breaking components

ql,u1,...,un(s1, . . . , sn), uj ∈ {0, 1}, j = 1, 2, . . . , n arise through probabilities associated

with the events Θ
uj

l (sj), l = 1, 2, . . .. So, we can induce a distribution to the stick-

breaking components by directly specifying a law for these events. In particular, we

can consider the process {δΘ1
l (s), s ∈ D, l = 1, 2, . . . , }, such that at any l = 1, 2, . . .,

δΘ1
l (s) = 1 if Θ1

l (s), δΘ1
l (s) = 0 if Θ1

l (s) does not occur. Suppose Θ1
l (s) occurs if and

only if Zl(s) ∈ Al(s). Then, we can work with the equivalent stochastic process

{δ∗Al(s)
, s ∈ D, l = 1, 2, . . .} defined by

δ∗Al(s)
= 1 if Zl(s) ∈ Al(s),

δ∗Al(s)
= 0 if Zl(s) 6∈ Al(s)

where {Zl(s), s ∈ D, l = 1, 2, . . .} is a latent random field. Furthermore,

ql,u1,...,un(s1, . . . , sn) = pr{δΘ1
l (s1) = u1, . . . , δΘ1

l (sn) = un| δΘ1
i (sj) = 0, i < l, j = 1, . . . , n}

= pr{δ∗Al(s1) = u1, . . . , δ
∗
Al(sn) = un| δ

∗
Ai(sj)

= 0, i < l, j = 1, . . . , n}.

It is easy to see that such a characterization guarantees that (2.2) holds, hence the

existence of the processes sampled from the random distribution (2.1).

We employ Gaussian thresholding to provide binary outcomes. This is routinely

done in binary regression modelling (Albert and Chib 1993), is computationally con-

venient and, as a model for second stage random effects, there will be little posterior

sensitivity to this choice. In fact, we assume that {Zl(s), s ∈ D, l = 1, 2, . . .} is a

countable collection of independent stationary Gaussian random fields on D having

variance 1 and correlation function ρZ(·, η). We further assume that the mean of the

l-th process, say µl(s), is unknown and we put a convenient prior on it, so that the

distribution of Zl(s) (and hence of the ql’s) can be viewed as random. We also choose

Al(s) = {Zl(s) ≥ 0}. With these assumptions, it follows that

ql,u1,...,un(s1, . . . , sn) = pr{δ∗{Zl(s1)≥0} = u1, . . . , δ
∗
{Zl(sn)≥0} = un|µl(s1), . . . , µl(sn)},
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because of the independence of the processes {Zl(s)} over the index l. For example,

for n = 2, we get ql,0,1 = pr{Zl(s1) < 0, Zl(s2) ≥ 0|µl(s1), µl(s2)}. If the µl(s) surfaces

are independent, l = 1, 2, ..., then also the ql,u1,...,un(s1, . . . , sn)’s are.

Since Zl(s) is assumed to be Gaussian, at any location s we obtain

ql,1(s) = pr{Zl(s) ≥ 0} = 1 − Φ {−µl(s)} = Φ {µl(s)} ,

where Φ(·) denotes the univariate standard normal cumulative distribution func-

tion(cdf). If the µl(s) are such that the Φ{µl(s)} are independent Beta(1, ν), l =

1, 2, . . ., then for each s, the marginal distribution of θ(s) is a DP with probabilities

that vary with location. In the special case that µl(s) = µl, for all s, with Φ(µl) inde-

pendent Beta(1, ν) then, again marginally, the θ(s) follow a DP where the marginal

weights are same for each s but the marginal distributions are not the same since

θ∗l (s) 6= θ∗l (s
′).

Marginal reduction to a DP is not necessary for the definition of the GSDP (al-

though it can be useful for purposes of comparison with the SDP or other competing

approaches). For instance, if we retain the µl(s), then, since we would like to en-

courage Zl(s) to resemble Zl(s
′) when s is close to s′, we could take µl(s) to be a

realization of say a Gaussian spatial process rather than say independent as above.

To summarize, we let

pi1,...,in = pr
[

Z1(s1) < 0, . . . , Zi1−1(s1) < 0, Zi1(s1) ≥ 0;

Z1(s2) < 0, . . . , Zi2−1(s2) < 0, Zi2(s2) ≥ 0; . . . ;

Z1(sn) < 0, . . . , Zin−1(sn) < 0, Zin(sn) ≥ 0|{µl(si)}
]

,

(2.12)

Again, we will never actually calculate the random weights pi1,...,in in practice. Fi-

nally, following the discussion above Proposition 1, we require two properties for this

construction: (i) the random finite dimensional distribution G(n) satisfies the Kol-

mogorov consistency condition and (ii) the continuity property should be satisfied,
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that is, if location s is near s′, the probability of choosing the same sample surface for

s and s′ is high. In Propositions 2 and 3 we prove that these conditions are satisfied.

Proposition 2 Let {Y (s1), Y (s2), . . . Y (sn), si ∈ D, i = 1, . . . n} have random finite

dimensional distribution given by (2.1), for n = 1, 2, . . .. If the set of weights {pi1,...,in}

is defined by means of a latent process as in (2.12), then the collection of random finite

dimensional distributions define a random field Y (s) on D.

Proof. First we show that for any l = 1, . . . , n,

pi1,...,il−1,il+1,...in = pi1,...,il−1,·,il+1,...in =
∞
∑

k=1

pi1,...,il−1,k,il+1,...in . (2.13)

In fact, let Z(si) = {Z1(si), . . . , Zk(si), . . .}, i = 1, . . . , n. Note that if θ(si) =

θ∗k (si), then Z(si) ∈ Si,k, where Si,k = (−∞, 0)1×· · ·×(−∞, 0)k−1×[0,∞)k×R×· · · .

By the continuity of the probability measure,

∞
∑

k=1

pi1,...,il−1,k,il+1,...in =pr
{

Z(s1) ∈ S1,i1 , . . . , Z(sl−1) ∈ Sl−1,il−1
, Z(sl) ∈

∞
⋃

k=1

Sl,k

Z(sl+1) ∈ Sl+1,il+1
, . . . , Z(sn) ∈ Sn,in

}

,

with straightforward calculation, since
∞
∪
k=1

Sl,k =
∞
⊗

k=1

R.

The theorem is proven, after showing that for any Ai ∈ B(R), i = 1, . . . , k, we
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have

pr{θ(s1) ∈ A1, . . . , θ(sl−1) ∈ Al−1, θ(sl) ∈ R, θ(sl+1) ∈ Al+1, . . . , θ(sn) ∈ An}

=
∑

(i1,...,in)∈{1,2,...}n

pi1,...,in δθ∗i1 (s1)(A1) · · · δθ∗il (sl) (R) · · · δθ∗in (sn)(An)

=
∑

(i1,...,il−1,il+1,...,in)∈{1,2,...}n−1

δθ∗i1 (s1)(A1) · · · δθ∗in (sn)(An)

( ∞
∑

k=1

pi1,...,il−1,k,il+1,...in

)

=
∑

(i1,...,il−1,il+1,...,in)∈{1,2,...}n−1

pi1,...,il−1,il+1,...,inδθ∗i1 (s1)(A1) · · · δθ∗in (sn)(An)

=pr{θ(s1) ∈ A1, . . . , θ(sl−1) ∈ Al−1, θ(sl+1) ∈ Al+1, . . . , θ(sn) ∈ An}.

Proposition 3 Let {Y (s), s ∈ D} be as in Proposition 2. If the base random field

G0 is almost sure continuous, then for all s0 ∈ D, Y (s) converges weakly to Y (s0)

with probability one as ||s− s0|| → 0.

Proof. The proof follows immediately from Proposition 1, once we notice that,

under our assumptions, for any n = 1, 2, . . ., lim||sn−sn−1||→0 pi1,...,in = pi1,...,in−1 if

in = in−1,= 0 otherwise, independently of the particular mean around which we

center the process Z, i.e. the weights are almost surely continuous.

Spatially varying weights have recently been considered by Griffin and Steel

(2004), who work in the framework of dependent Dirichlet processes. They pro-

ceed from the assumption that the distribution of a DP (ν G0) is unaffected by a

permutation of the atoms {θ∗l (·), ql(·), l = 1, 2, . . .} in Sethuraman’s constructive

representation. Then, if {π(s), s ∈ D} is a process of permutations of the set of

integers {1, 2, . . .}, it is possible to define an order-based dependent stick-breaking

prior over D, abbreviated πDDP as a process {Fπ(s), s ∈ D}, such that at any

s ∈ D, given a realization of the process π(s), Fπ(s) =
∑∞

l=1 pl(s) δθl(s), where

pl(s) = qπl(s)

∏

j<l

{

1 − qπj(s)

}

.
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With regard to surface selection, the difference between their approach and ours

is as follows. We define a joint random distribution for any grouping of the locations

(s1, . . . , sn), n = 1, 2, . . . and the probabilities of picking up the different surfaces are

directly assigned. For instance, for n=2 and any integers l and m, we have seen that

pr {Y (si) = θ∗l (si), Y (sj) = θ∗m(sj)} = pl,m(si, sj). For Griffin and Steel’s πDDP , this

probability is given by

pr {Y (si) = θ∗l (si), Y (sj) = θ∗m(sj)} =

∫

pl(si) pm(sj) dH(π(si), π(sj)),

that is, as the expected value of the marginal probabilities with respect to the dis-

tribution of the permutation field at the two locations. By the definition of πDDP ,

it follows that the dependence among the marginal random distribution functions is

directly deduced by the permutation at each s. In particular, this is given by means

of an auxiliary latent point process Z. In fact, Griffin and Steel first associate each

atom {θ∗i (s), qi} with a realization zi from Z, for i = 1, 2, . . .. Then, at any s, the

πDDP is defined permuting the set of q′s according to the realizations of the latent

point process Z. In fact, π(s) is defined to satisfy ||s− zπ1(s)|| < ||s− zπ2(s)|| < . . ..

It follows that a realization from this process will necessarily be the same for some

regions of D, while allowing different stick-breaking constructions for points far apart

from each other. However, the representation at any s depends on how the process Z

is associated with the atoms of the process, so that the representation does not seem

to be invariant to a reordering of the z’s. Moreover, for practical purposes it can be

difficult to model the type of dependence induced by the point process mechanism,

unless we choose simple processes, such as a stationary Poisson process. On the other

hand, in our approach the spatial behavior of the stick-breaking components depends

on the distribution of the latent Gaussian process Z and can vary across locations if

this is true for the mean of Z.
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2.3 Simulation Based Model Fitting for the GSDP

Assembling Section 2.1 and 2.2, we work with the following spatial model. Let the

vectors Yt={Yt(s1), Yt(s2), . . . , Yt(sn)}
T , t = 1, . . . , T denote T groups of independent

observations collected at the same set of locations (s1, . . . sn) ∈ D ⊂ R2. The mean

surface u (s) , s ∈ D is modelled by a linear regression u (s) = X(s)Tβ. The spatial

random effect θ(s), s ∈ D has the GSDP rule defined in Section 2.2. The overall

model has the following hierarchical structure

Yt | θt, β, τ
2 ∼Nn(yt | X

T
t β + θt, τ

2In), t = 1, ..., T

θt | G
(n) ∼G(n), t = 1, ..., T

G(n) | pi1,...,in, θ
∗
l =

∞
∑

i1,...,in=1

pi1,...,in δθ∗i1 (s1)(·) · · · δθ∗in (sn)(·), l = 1, 2, . . .

pi1,...,in = pr {Zil(sl) < 0, . . . , Zil(sl) ≥ 0, l = 1, . . . , n} , il = 1, 2, . . .

{θ∗l (s1) , . . . θ
∗
l (sn)}

T ∼Nn

(

0, σ2Rn (φ)
)

, l = 1, 2, . . .

{Zt,l(s1), . . . , Zt,l(sn)}
T ∼Nn (µl1n, Hn (η)) , l = 1, 2, . . . , t = 1, 2, ...T

µl s.t. Φ (µl) ∼Beta(1, ν), l = 1, 2, . . .

β, τ 2 ∼Np(β | β0,Σβ) × IGamma(τ 2 | aτ , bτ )

σ2, φ, η ∼ IGamma(σ2 | aσ, bσ) × [φ] × [η] ,

(2.14)

The priors for φ and η depend on the specific form of covariance function in Rn (φ)

and Hn (η). For convenience, in our examples we have set ν = 1. In the version with

µl(s) replacing µl, for each l, we obtain a realization from a Gaussian process with

mean 0 and stationary covariance function C(·, ψ). In either case, the replications

across t enable us to learn about the µl or the process driving the µl(s).

Although in (2.14) the marginal random distribution at an individual location s

follows a Dirichlet process, the joint random distribution G(n) does not; we can not
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marginalize over G(n). Instead, we approximate G(n) with a finite sum

G
(n)
K =

∑

(i1,...,in)∈{1,2,...,K}n

pi1,...,in δθ∗i1 (s1)(·) δθ∗i2(s2)(·) . . . δθ∗in (sn)(·), (2.15)

for K suitably large. In this finite mixture model, we only need θ∗l , l = 1, . . . , K and

Zl, l = 1, . . . , K − 1. Note that pK (s) = pr {Z1(s) < 0, . . . , ZK−1(s) < 0}.

Again, we sample the latent variables Zl’s directly to avoid computation of the

weights pi1,...,in in (2.15). We eliminate the sampling of the conditional distribution

[θt|G
(n)
K ] by referring to the following equivalent structure:

θt(s) = θ∗1(s) IZt,1(s) + θ∗2(s) IZt,2(s) + . . .+ θ∗K(s) IZt,K(s). (2.16)

In equation (2.16), θt(s) is a deterministic function of θ∗l (s), l = 1, . . . , K and Z l
t (s),

l = 1, . . . , K − 1. We rewrite the first stage of the hierarchical model as [Yt|µ, θt] =

[Yt|µ, θ
∗, Zt]. Then, the likelihood function for Yt can be expressed as

[Yt|µ, θ
∗, Zt] ∝ exp

[

−
1

2τ 2

n
∑

i=1

{

yt(si) −Xt (si)
T β − θt(si)

}2
]

∝ exp

[

−
1

2τ 2

K
∑

l=1

n
∑

i=1

{

yt(si) −Xt (si)
T β − θ∗l (si)

}2

IZt,l(si)

]

∝

n
∏

i=1

(

K
∑

l=1

exp

[

−
1

2τ 2

{

yt(si) −Xt (si)
T β − θ∗l (si)

}2
]

× IZt,l(si)

)

,

The posterior distributions for the latent variables and parameters are proportional

to this likelihood function multiplied by the priors,

T
∏

t=1

[Yt|θ
∗, Zt, τ

2] ×

K
∏

l=1

[θ∗l |σ
2, φ] ×

T
∏

t=1

K−1
∏

l=1

[Zt,l|µt,l, η] [µt,l]

× [σ2][φ][τ 2][η].

This model can be fitted by a Gibbs sampler. The details of all the full conditional

distributions are given in Appendix A.
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2.4 An Illustrative Example

We illustrate the fitting of (2.14) with a simulated data set from a finite mixture

model of Gaussian processes that allows different joint multi-modal distributions for

different pairs of locations. We first draw a specified number of locations in a given

region. They are denoted as (s1, . . . , sn). Suppose there are T independent replicates

{yt (s1) , . . . , yt (sn)} , t = 1, . . . , T . We proceed as follows. For t = 1, . . . , T , let

{

θ1
t (s1) , . . . , θ

1
t (sn)

}T
∼ N (1)

n

(

−µ1n, σ
2
1Rn (φ1)

)

and
{

θ2
t (s1) , . . . , θ

2
t (sn)

}T
∼ N (2)

n

(

µ1n, σ
2
2Rn (φ2)

)

Also, let {Zt (s1) , . . . , Zt (sn)}
T ∼ Nn (0, Hn (η)). Then, for i = 1, . . . , n, if Zt (si) ≥

0, we set yt (si) = θ1
t (si); if Zt (si) < 0, we set yt (si) = θ2

t (si).

Each yt (si) has a bimodal distribution of the form

1

2
N (1)

(

−µ, σ2
1

)

+
1

2
N (2)

(

µ, σ2
2

)

.

For two locations si and sj near each other, the strong association between Zt (si)

and Zt (sj) makes yt (si) and yt (sj) very likely to be from the same component

N (k) (µk, σ
2
k) , k = 1, 2. If si and sj are distant, the linkage between Zt (si) and

Zt (sj) is weak, therefore the component choices for yt (si) and yt (sj) are almost

independent.

We simulate at 50 design locations in a rectangular region shown in Figure 2.2.

Then, 40 independent replicates are sampled for these 50 locations. We choose the

values of the parameters as µ1 = −µ2 = 3, σ1 = 2σ2 = 2, φ1 = φ2 = 0.3 and

η = 0.3 in the mixture model above. We fit the model in (2.14) to this data set.

We approximate G(n) with a finite sum of K = 20 components. To focus on the

modelling of spatial dependence, we fixed the mean structure of {yt (s1) , . . . , yt (sn)}
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Figure 2.2: The Design Locations for the Simulation Example.

to be zero. For comparison, we considered the analogous SDP, using the same base

measure and the same prior for all the parameters.

Performance is examined through the posterior predictive densities, both marginal

and joint. In Figure 2.3, for four selected locations (s26, s33, s49, s50), we plot the true

posterior predictive density, the predictive density estimated under the SDP and

the posterior predictive density estimated under the GSDP. The values of the 40

observations at each of these 4 locations are shown along the x-axis. It is evident

that the GSDP estimates more closely agree with the true densities of the model.

Next, we select 3 pairs of sites and for each pair we show three predictive joint
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Figure 2.3: Posterior Predictive Densities for the GSDP (thick line −) and SDP
(dashed line ·−) model for the locations indicated in Figure 2.2. The dotted line (−)
is the estimated true density, and the observed sample is reported on the x-axis.

densities. In Figure 2.4, the first pair {y (s50) , y (s26)} are very close to each other,

the second pair {y (s50) , y (s33)} slightly distant and the third pair {y (s50) , y (s49)}

very distant (see Figure 2.2). Again, the GSDP is evidently much better than the

SDP in capturing the local details and in particular the heights of the local modes.

Figure 2.5 plots the probability that a common sample surface is selected for a

pair of locations against the distance between the two locations. We can see the

decay in this probability as locations become further apart. Finally, for the SDP, we

see no clustering; essentially a separate surface is needed for each replication. For
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Figure 2.4: Predictive Bivariate Posterior Distributions for the GSDP (on the left)
and SDP (on the right) models and the data. The middle column shows the true
bivariate posterior distribution from a sample from the true model.

the GSDP, the modal number of surfaces is 3 and the maximum number of surfaces

is 5. Clearly, the GSDP is able to respond to the local surface selection, while the

SDP is not.
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Figure 2.5: Decay in Probability of Common Surface Selection as a Function of
Distance (See Section 2.4 for details)

2.5 A Spatio-temporal Dynamic Model Version

In Section 2.3 and 2.4, we assumed the Yt = {yt (s1) , . . . , yt (sn)}
T , t = 1, . . . , T to

be independent replicates. In practice, these observations are usually made in T

consecutive time periods, so it is more realistic to model the evolution of the spatial

process over time. In this section we present a version of the spatio-temporal model by

embedding the GSDP in a dynamic linear model. We illustrate this spatio-temporal

model also by fitting it to a simulated data set.
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Preserving the notation in (2.12), the observations at time t can be modelled by

the following dynamic linear model structure:

Yt = XT
t β + θt + εt; εt ∼ N

(

0, τ 2In
)

θt = γθt−1 + ωt;ωt ∼ GSDP (νG0)
(2.17)

These dynamics yield spatial random effects θt that evolve auto-regressively over time

with autocorrelation coefficient, γ (|γ| ≤ 1). Only the second hierarchical specifica-

tion in (2.14) changes to reflect (2.17). Updating of the full conditional distributions

and the associated MCMC algorithm for the dynamic version is straightforward but

careful attention to bookkeeping is required. We detail it in Appendix A.

We illustrate the model above by with a simulated data set. We still use the

region and the 50 locations given in Figure 2.2. However, we add 4 new locations

(with no observations) labelled 51-54 where we seek to predict. Also, a simple linear

regression of β0 + β1X (si) is added to the model. X (si) denotes the distance from

location si to a fixed point source represented by the diamond in Figure 2.2.

The simulated observations {yt (s1) , . . . , yt (sn)}
T , t = 1, . . . , T are sampled again

from a mixture of two distributions as follows. Following the specifications from the

previous section, now consider
{

ω1
t (s1) , . . . , ω

1
t (sn)

}

∼ N (1)
n

(

−µ1n, σ
2
1Rn (φ1)

)

and
{

ω2
t (s1) , . . . , ω

2
t (sn)

}

∼ N (2)
n

(

µ1n, σ
2
2Rn (φ2)

)

.

Also, let {Zt (s1) , . . . , Zt (sn)} ∼ Nn (0, Hn (η)). Then, for i = 1, . . . , n, if Zt (si) ≥ 0,

we set θt (si) = γ θt−1 (si) + ω1
t (si); if Zt (si) < 0, θt (si) = γ θt−1 (si) + ω2

t (si) for

i = 1, . . . , n. Then we obtain yt (si) = β0 + β1X (si) + εt (si), where εt (si) is sampled

independently from the normal distribution N (0, τ 2).

We choose the same values for the parameters of µ1 = −µ2 = 3. σ1 = 2σ2 = 2,

φ1 = φ2 = 0.3 and η = 0.3 as in Section 2.4. Also, γ is chosen as 0.7, τ 2 is 9. β0 and

β1 are 2 and −1 respectively, and T is equal to 40.
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In fitting a model to the data, we use the same truncated GSDP for ωt as given

in Section 2.4 with K = 20 components. The Bayesian posterior mean of γ is found

to be 0.8 in our experiment. The Bayesian goodness of fit is again illustrated by

the posterior predictive densities at T + 1. We show not only the marginal posterior

predictive density at each location, but also the joint posterior predictive densities

for two locations.
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Figure 2.6: Posterior Predictive Densities, True Densities for Two Locations with
Observations and Two New Locations at T+1 (See text for details)

In Figure 2.6 we plot the posterior predictive density at T + 1(= 41) for two

locations with observation (labelled 6 and 12 on Figure 2.2) and two new locations
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(labelled 51 and 54 on Figure 2.2). The thick density curves are the predictive

densities estimated from our model. The thin density curves represent the true

densities of the model from which we simulated the data. The results are interesting

in that, despite the small sample size and the introduction of bimodality only through

the innovations at the second stage, we find bimodal behavior at 6 and 12. Location

51 is not very close to any of the sampled locations and, in the absence of data,

yields a uni-modal predictive density. However, location 54 is very close to sampled

locations and, reflecting the mean square continuity of the GSDP, an indication of

two modes emerges.

Turning to bivariate predictive densities, we select 2 pairs of sites to show the

predictive joint density at T + 1. The first pair s50, s26 are close to each other. The

second pair s50, s49 are much farther apart. In Figure 2.7, we provide perspective plots

of the predictive and true joint densities. The first pair reveals a bimodal joint density

while the second pair shows a density with four modes. If one were interested in

developing simultaneous highest posterior density (HPD) confidence sets, one needs

to identify the “footprint” associated with a level surface of the joint density. In

particular, one must choose the level to provide a specified posterior probability. Of

course, these bivariate densities are unavailable analytically so, using the posterior

samples, we obtain a bivariate kernel density estimator. However, since level surfaces

associated with this density estimate are still difficult to obtain, we evaluate the

density estimate at the observed samples, providing an ordering for the samples.

Then, according to the desired probability, we choose the density ordinate such that

the proportion of the sample with ordinate above this value is the probability we seek.

Figure 2.8 provides illustrative 80 % (inner curve) and 95 % (outer curve) HPD’s for

the site pairs in Figure 2.7.
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Figure 2.7: Predictive and True Bivariate Predictive Distribution at T+1 for the
Simulated Data Example of Section 2.5 (See text for details)

2.6 Discussion and Summary

We have introduced the GSDP as a more flexible successor to the SDP proposed by

Gelfand et al. (2005). However, any multivariate density can be approximated by a

suitable countable mixture of multivariate normal densities. Since, for any finite set

of locations, with probability one the SDP mixture model is such a countable mixture

model, what practical advantages can the GSDP offer over the SDP? Why would we

take the trouble to implement the much more computationally demanding GSDP? For

example, with a bivariate distribution that is the product of two bimodal univariate
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Figure 2.8: 95% and 80% Simultaneous Bivariate Posterior Density Confidence Sets
(See Section 2.5 for details)

distributions, while the GSDP might capture such a distribution using essentially two

components, wouldn’t the SDP be able to do it with four components?

In fact, while, in principle, the SDP can equally well find multiple modes in say

a bivariate distribution, it will have a more difficult time distinguishing the joint

distribution for points close to each other than from the joint distribution for points

far apart. In other words, in practice, the normal mixture model in (2.14) can more

quickly adapt to the data. Expressed in different terms, in requiring additional com-

ponents, the SDP will run into the, a priori, geometrically decaying weights, so it may
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struggle to properly allocate mass to the modes. Furthermore, consider the situation

where we might have varying numbers of mixing components and these might vary

with spatial location. The GSDP, which allows different marginal distributions at

each s, is better suited to handle this situation.

Other extensions of the SDP can be envisioned. For instance, in a future manuscript

we will report on the use of the representation of Ishwaran and Zarepour (2002a), The-

orem 3 rather than the Sethuraman representation, to create a different constructive

formulation. Other future investigation will take us to the case of modelling discrete

data, e.g., binary or count data at the first stage with a GSDP to model the spatial

structure in the mean on a transformed scale. We are also interested in the case where

we observe multivariate data at each location. GSDP’s centered around multivariate

spatial process models provide an obvious place to start.
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Chapter 3

Modelling Disease Incidence Data with

Spatial and Spatio-temporal Dirichlet

Process Mixtures

In this chapter, we will extend the spatial Dirichlet process to model discrete spatial

observations using the example of disease incidence data. As stated in Chapter 1, we

can replace the Gaussian assumption in the first hierarchy of the SDP model with any

exponential family and still model the spatial random effect by the spatial Dirichlet

process. We will first review the disease mapping problem, and then formulate the

spatial and spatio-temporal Dirichlet process models for it. This model is motivated

by the lung cancer incidence data in 88 counties of Ohio.

3.1 Disease Mapping Problem

Data on disease incidence (or mortality) are typically available as rates or summary

counts for contiguous geographical regions, e.g., census tracts, post or zip codes,

districts, or counties, and collected over time. Hence, though cases occur at point

locations (residences), the available responses are associated with entire subregions

in the study region. We denote the disease incidence counts (number of cases) by
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yit, where i = 1, ..., n indexes the regions Bi, and t = 1, ..., T indexes the time

periods. In practice, we may have covariate information associated with the region,

e.g., percent African American, median family income, percent with some college

education. In some cases, though we only know the areal unit into which a case

falls, we may have covariate information associated with the case, e.g., sex, race, age,

previous comorbidities. Moreover, any of this covariate information could be time

dependent. We devote Section 3.2.3 below to a discussion of how to accommodate

such information in our modelling framework. However, the focus here is on flexible

modelling of areal unit spatial random effects and so, to avoid obscuring our primary

contribution, we do not consider covariates elsewhere.

A primary inferential objective in the analysis of disease incidence data is summa-

rization and explanation of spatial and spatio-temporal patterns of disease (disease

mapping); also of interest is spatial smoothing and temporal prediction (forecasting)

of disease risk. The field of spatial epidemiology has grown rapidly in the past fifteen

years with the introduction of spatial and spatio-temporal hierarchical (parametric)

models; see, e.g., Elliott et al. (2000), and Banerjee et al. (2004) for reviews and

further references.

The typical assumption (for rare diseases) is that the disease count yit, condi-

tionally on parameters Rit, are independent Po(yit | EitRit) (we will write Po(· | m)

for the Poisson probability mass function/distribution with mean m). Here, Eit is

the expected disease count, and Rit is the relative risk, for region i at time period

t.1 Eit is obtained as R∗nit, with R∗ an overall disease rate, using either external or

internal standardization, the former developing R∗ from reference tables (available

for certain types of cancer), the latter computed from the given data set, e.g., R∗ =
∑

it yit/
∑

it nit. Next, the relative risks Rit are explained through different types of

1Below we will use an alternative and, we assert, preferable, specification, writing nitpit for the
Poisson mean, where nit is the specified number of individuals at risk in region i at time t and
pit is the corresponding disease rate.
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random effects. For instance, a specification with random effects additive in space

and time is logRit = µit + ui + vi + δt, where µit is a component for the regional

covariates (e.g., µit = x′itβ for regression coefficients β), ui are regional random effects

(typically, the ui are assumed i.i.d. N(0, σ2
u)), vi are spatial random effects, and δt

are temporal effects (say, with an autoregressive prior).

The most commonly used prior model for the vi is based on some form of a con-

ditional autoregressive (CAR) structure (see, e.g., Clayton and Kaldor 1987; Cressie

and Chan 1989; Besag et al. 1991; Bernardinelli et al. 1995; Besag et al. 1995; Waller

et al. 1997; Pascutto et al. 2000). For instance, the widely-used specification sug-

gested by Besag et al. (1991) is characterized through local dependence structure by

considering for each region i a set, ϑi, of neighbors, which, for example, can be defined

as all regions contiguous to region i. Then the (improper) joint prior density for the vi

is built from the prior full conditionals [vi | vj; j 6= i]. These are normal distributions

with mean m−1
i

∑

j∈ϑi
vj and variance λm−1

i , where λ is a precision hyperparameter

and mi is the number of neighbors of region i. Alternatively, a multivariate normal

distribution for the vi, with correlations driven by the distances between region cen-

troids, has been used (see, e.g., Wakefield and Morris 1999; Banerjee et al. 2003b).

A different hierarchical formulation, discussed in Böhning et al. (2000), involves re-

placing the normal mixing distribution with a discrete distribution taking values ϕj,

j = 1, ..., k (that represent the relative risks for k underlying time-space clusters)

with corresponding probabilities pj, j = 1, ..., k. Hence, marginalizing over the ran-

dom effects, the distribution for each region i and time period t emerges as a discrete

Poisson mixture,
∑k

j=1 pjPo(yit | Eitϕj). See, also, Schlattmann and Böhning (1993)

and Militino et al. (2001) for use of such discrete Poisson mixtures in the simpler

setting without a temporal component. In this setting, related is the Bayesian work

of Knorr-Held and Rasser (2000) and Giudici et al. (2000) based on spatial partition
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structures, which divide the study region into a number of clusters (i.e., sets of con-

tiguous regions) with constant relative risk, assuming, in the prior model, random

number, size, and location for the clusters. Further related Bayesian work is that of

Green and Richardson (2002).

When spatio-temporal interaction is sought, the additive form vi + δt is replaced

by vit. The latter has been modelled using independent CAR models over time,

dynamically with independent CAR innovations, or as a CAR in space and time (see

Banerjee et al. 2004).

Rather than modelling the spatial dependence through the finite set of spatial

random effects, one for each region, an alternative prior specification arises by mod-

elling the underlying continuous-space relative risk (or rate) surface and obtaining

the induced prior models for the relative risks (or rates) through aggregation of the

continuous surface. This approach is less commonly used in modelling for disease in-

cidence data (among the exceptions are Best et al. 2000; Kelsall and Wakefield 2002).

However, it arguably offers a more coherent modelling framework, since by modelling

the underlying continuous surfaces, it avoids the dependence of the prior model on

the data collection procedure, i.e., the number, shapes, and sizes of the regions cho-

sen in the particular study. It replaces the specification of a proximity matrix, which

spatially connects the subregions, with a covariance function, which directly models

dependence between arbitrary pairs of locations (and induces a covariance between

arbitrary subregions using block averaging).

In this research, we follow this latter approach, our main objective being to

develop a flexible nonparametric model for the needed risk (or rate) surfaces. In

particular, denote by D the union of all regions in the study area and let zt,D =

{zt(s) : s ∈ D} be the latent disease rate surface for time period t, on the logarithmic

scale. Hence, zt(s) = log pt(s), where pt(s) is the probability of disease at time t and
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spatial location s. (With rare diseases, the logarithmic transformation is practically

equivalent to the logit transformation). We propose spatial and spatio-temporal non-

parametric prior models for the vectors of log-rates zt = (z1t, ..., znt), which we define

by block averaging the surfaces zt,D over the regions Bi, i.e., zit = |Bi|
−1
∫

Bi
zt(s)ds,

where |Bi| is the area for region Bi. We develop the spatial prior model by block

averaging a Gaussian process (GP) to the areal units determined by the regions Bi,

and then centering a Dirichlet process (DP) prior (Ferguson 1973; Antoniak 1974)

around the resulting n-variate normal distribution. We show that the model is equiv-

alent to the prior model that is built by block averaging a spatial DP (Gelfand et al.

2005). To model the zt, we can specify them to be independent replications under

the DP or we can add a further dynamic level to the model with zt evolving from zt−1

through independent DP innovations. We use the former in our simulation example

in Section 3.4.1; we use the latter with our real data example in Section 3.4.2.

With regard to the existing literature, our approach is, in spirit, similar to that

of Kelsall and Wakefield (2002) where an isotropic GP was used for the log-relative

risk surface. However, as exemplified in Section 3.2.2, we relax both the isotropy

and the Gaussianity assumptions. In addition, we develop modelling for disease

incidence data collected over space and time. Moreover, as we show in Section 3.2.1,

our nonparametric model has a mixture representation, which is more general than

that of Böhning et al. (2000) as it incorporates spatial dependence and it allows

model-based identification of the extent of clustering through the structure of the

DP prior.

The plan of the chapter is as follows. Section 3.2 develops the methodology for

the spatial and spatio-temporal modelling approaches. Section 3.3 discusses methods

for posterior inference with more details given in Appendix B. Section 3.4 includes

illustrations motivated by a previously analyzed data set involving lung cancers for
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the 88 counties in Ohio over a period of 21 years. In fact, in Section 3.4.1 we develop

a simulated data set for these counties which is analyzed using both our modelling

specification as well as a GP model, revealing the benefit of our approach. We also

reanalyze the original data in Section 3.4.2. Finally, Section 3.5 provides a summary

and discussion of possible extensions.

3.2 Bayesian Nonparametric Models For Disease

Incidence Data

The spatial prior model is discussed in Section 3.2.1. Section 3.2.2 demonstrates

how the use of the SDP provides foundation for the modelling approach presented in

Section 3.2.1. Section 3.2.3 discusses how to include different types of covariate in-

formation. Lastly, Section 3.2.4 develops a nonparametric spatio-temporal modelling

framework.

3.2.1 The Spatial Prior Probability Model

Here, we treat the log-rate surfaces zt,D as independent realizations (over time) from

a stochastic process over D. We build the model by viewing the counts yit and

the log-rates zit as aggregated versions of underlying (continuous-space) stochastic

processes. The finite-dimensional distributional specifications for the yit and the zit

are induced through block averaging of the corresponding spatial surfaces.

For the first stage of our hierarchical model, we use the standard Poisson specifica-

tion working with the nitpit form for the mean, following the footnote in Section 3.1.

We note that this parametrization seems preferable to the EitRit form, since it avoids

the need to develop the Eit through standardization; the overall log-rate emerges as

the intercept in our model. Thus, the yit are assumed conditionally independent,

given zit = log pit, from Po(yit | nit exp(zit)).
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This specification can be derived through aggregation of an underlying Poisson

process under assumptions and approximations as follow. For the time period t,

assume that the disease incidence cases, over region D, are distributed according to

a non-homogeneous Poisson process with intensity function nt(s)pt(s), where {nt(s) :

s ∈ D} is the population density surface and pt(s) is the disease rate at time t and

location s. If we assume a uniform population density over each region at each time

period (this assumption is, implicitly, present in standard modelling approaches for

disease mapping), we can write nt(s) = nit|Bi|
−1 for s ∈ Bi. Hence, aggregating the

Poisson process over the regions Bi, we obtain, conditionally on zt,D, that the yit are

independent, and each yit follows a Poisson distribution with mean
∫

Bi
nt(s)pt(s)ds =

nitp
∗
it, where p∗it = |Bi|

−1
∫

Bi
pt(s)ds. If we approximate the distribution of the p∗it

with the distribution of the exp(zit), we can write yit | zit
ind.
∼ Po(yit | nit exp(zit))

for the first stage distribution. We note that the stochastic integral for p∗it is not

accessible analytically. Moreover, using Monte Carlo integration to approximate the

p∗it is computationally infeasible (Short et al. 2005). Also, Kelsall and Wakefield

(2002) use a similar approximation working with relative risk surfaces. Brix and

Diggle (2001) do so as well, using a stochastic differential equation to model pt(s).

To build the prior model for the log-rates zt, we begin with the familiar form,

zt(s) = µt(s) + θt(s), for the log-rate surfaces zt,D. Here, µt(s) is the mean structure

and θt,D = {θt(s) : s ∈ D} are spatial random effects surfaces. As discussed in Section

3.2.3, the surfaces {µt(s) : s ∈ D} can be elaborated through covariate surfaces over

D. In the absence of such covariate information, we might set µt(s) = µ, for all t,

and use a normal prior for µ. Alternatively, we could set µt(s) = µt, where the µt

are i.i.d. N(0, σ2
µ) with random hyperparameter σ2

µ. In what follows for the spatial

prior model, we illustrate with the common µ specification.

To develop the model for the spatial random effects, first, let the θt,D, t = 1, ..., T ,
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given σ2 and φ, be independent realizations from a mean-zero isotropic GP with

variance σ2 and correlation function ρ (||s− s′||;φ) (say, ρ (||s− s′||;φ) = exp(−φ||s−

s′||) as in the examples in Section 3.4). Hence by aggregating over the regions Bi, we

obtain zit = µ + θit, where θit = |Bi|
−1
∫

Bi
θt(s)ds is the block average of the surface

θt,D over region Bi. The induced distribution for θt = (θ1t, ..., θnt) is a mean-zero n-

variate normal with covariance matrix σ2Rn(φ), where the (i, j)-th element of Rn(φ)

is given by

|Bi|
−1|Bj|

−1

∫

Bi

∫

Bj

ρ (||s− s′||;φ) dsds′.

Next, consider a DP prior for the spatial random effects θt with precision parameter

α > 0 and centering (base) distribution Nn(· | 0, σ2Rn(φ)) (we will write Np(· | λ,Σ)

for the p-variate normal density/distribution with mean vector λ and covariance ma-

trix Σ). We denote this DP prior by DP(α,Nn(· | 0, σ2Rn(φ))). The choice of the DP

in this context yields data-driven deviations from the normality assumption for the

spatial random effects; at the same time, it allows relatively simple implementation

of simulation-based model fitting.

Note that the above structure implies for the vector of counts yt = (y1t, ..., ynt) a

nonparametric Poisson mixture model given by
∫
∏n

i=1 Po(yit | nit exp(µ+θit))dG(θt),

where the mixing distribution G ∼ DP(α,Nn(· | 0, σ2Rn(φ))). Under this mixture

specification, the distribution for the vectors of log-rates, zt = µ1n + θt, is discrete (a

property induced by the discreteness of DP realizations), a feature of the model that

could be criticized. Moreover, although posterior simulation is feasible, it requires

more complex MCMC algorithms (e.g., the methods suggested by MacEachern and

Müller 1998 and Neal 2000) than the standard Gibbs sampler for DP based hierarchi-

cal models (e.g., West et al. 1994; Bush and MacEachern 1996). Thus, to overcome
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both concerns above, we replace the DP prior for the zt with a DP mixture prior,

zt | µ, τ
2, G

ind.
∼

∫

Nn(zt | µ1n + θt, τ
2In)dG(θt),

where, again, G ∼ DP(α,Nn(· | 0, σ2Rn(φ))). That is, we now write zit = µ + θit +

uit, with uit i.i.d. N(0, τ 2). Introduction of a heterogeneity effect in addition to the

spatial effect is widely employed in the disease mapping literature dating to Besag

et al. (1991) and Bernardinelli et al. (1995), though with concerns about balancing

priors for the effects (see, e.g., Banerjee et al. 2004 and references therein). Here, in

responding to the above concerns, we serendipitously achieve this benefit.

Hence, the mixture model for the yt now assumes the form

f(yt | µ, τ
2, G) =

∫ n
∏

i=1

p(yit | µ, τ
2, θit)dG(θt),

where p(yit | µ, τ
2, θit) =

∫

Po(yit | nit exp(zit))N(zit | µ+ θit, τ
2)dzit is a Poisson-log-

normal mixture. Equivalently, the model can be written in the following semipara-

metric hierarchical form

yit | zit
ind.
∼ Po(yit|nit exp(zit)), i = 1, ..., n, t = 1, ..., T

zit | µ, θit, τ
2 ind
∼ N(zit | µ+ θit, τ

2), i = 1, ..., n, t = 1, ..., T

θt | G
i.i.d.
∼ G, t = 1, ..., T

G | σ2, φ ∼DP (α,Nn(· | 0, σ2Rn(φ))).

(3.1)

The model is completed with independent priors p(µ), p(τ 2) and p(σ2), p(φ) for µ,

τ 2, and for the hyperparameters σ2, φ of the DP prior. In particular, we use a normal

prior for µ, inverse gamma priors for τ 2 and σ2, and a discrete uniform prior for φ.

Although not implemented for the examples of Section 3.4, a prior for α can be added,

without increasing the complexity of the posterior simulation method (Escobar 1994).
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In practice, we work with a marginalized version of model (3.1),

p(µ)p(τ 2)p(σ2)p(φ)p(θ1, ..., θT | σ2, φ)

n
∏

i=1

T
∏

t=1

Po(yit|nit exp(zit))N(zit | µ+ θit, τ
2),

(3.2)

which is obtained by integrating the random mixing distribution G over its DP prior

(Blackwell and MacQueen 1973). The resulting joint prior distribution for the θt,

p(θ1, ..., θT | σ2, φ), is given by

Nn(θ1 | 0, σ2Rn(φ))

T
∏

t=2

{

α

α+ t− 1
Nn(θt | 0, σ2Rn(φ)) +

1

α + t− 1

∑t−1

j=1
δθj

(θt)

}

,

(3.3)

where δa denotes a point mass at a. Hence, the θt are generated according to a Pólya

urn scheme; θ1 arises from the base distribution, and then for each t = 2, ..., T , θt is

either set equal to θj, j = 1, ..., t− 1, with probability (α+ t− 1)−1 or is drawn from

the base distribution with the remaining probability.

Note that we have defined the prior model for the spatial random effects θt by

starting with a GP prior for the surfaces θt,D, block averaging the associated GP

realizations over the regions to obtain the Nn(0, σ
2Rn(φ)) distribution, and, finally,

centering a DP prior for the θt around this n-variate normal distribution. This

approach might suggest that the DP prior is dependent, in an undesirable fashion,

on the specific choice of the regions (e.g., their number and size). The next section

addresses this potential criticism by connecting the model in (3.1) with the spatial

DP (SDP) from Gelfand et al. (2005).
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3.2.2 Formulation of the Model through Spatial Dirichlet

Processes

The SDP can be proposed as the prior for the spatial random effects surfaces θt,D

to replace the isotropic GP prior that we used to build the DP model in Section

3.2.1. Therefore, now the model is developed by assuming that the θt,D, t = 1, ..., T ,

given GD, are independent from GD, where GD, given σ2 and φ, follows a SDP prior

with precision parameter α and base process G0D = GP(0, σ2ρ (||s− s′||;φ)) (i.e., the

same isotropic GP used in Section 3.2.1).

Next, we block average the θt,D over the regions Bi with respect to their distribu-

tion that results by marginalizing GD over its SDP prior. Recall that for any set of

spatial locations sr, r = 1, ...,M , over D, the random distribution G(M) induced by

GD follows a DP with base distribution G
(M)
0 induced by G0D. Because we can choose

M arbitrarily large and the set of locations sr to be arbitrarily dense over D, using

the Pólya urn characterization for the DP, we obtain that, marginally, the θt,D arise

according to the following Pólya urn scheme. First, θ1,D is a realization from G0D,

and then, for each t = 2, ..., T , θt,D is identical to θj,D, j = 1, ..., t−1, with probability

(α + t− 1)−1 or is a new realization from G0D with probability α(α + t− 1)−1.

Hence, if we block average θ1,D, we obtain the Nn(0, σ
2Rn(φ)) distribution for

θ1. Then, working with the conditional specification for θ2,D given θ1,D, if we block

average θ2,D, θ2 arises from Nn(0, σ
2Rn(φ)) with probability α(α+1)−1 or θ2 = θ1 with

probability (α+1)−1. Analogously, for any t = 2, ..., T , the induced conditional prior

p(θt | θ1, ..., θt−1, σ
2, φ) is a mixed distribution with point masses at θj, j = 1, ..., t−1,

and continuous piece given by the Nn(0, σ
2Rn(φ)) distribution; the corresponding

weights are (α + t − 1)−1, j = 1, ..., t − 1, and α(α + t − 1)−1. Thus, the prior

distribution for the θt in (3.3) can be obtained by starting with a SDP prior for the

θt,D (centered around the same isotropic GP prior used in Section 3.2.1 for the θt,D),
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and then block averaging the (marginal) realizations from the SDP prior over the

regions.

As in Section 3.2.1, we extend zt = µ1n + θt to zt = µ1n + θt + ut, where the ut

are independent Nn(0, τ
2In). Hence, model (3.2) is equivalent to the marginal version

of the model above, i.e., with GD marginalized over its SDP prior.

The argument above, based on SDPs, provides formal justification for model (3.1)

– (3.3). The SDP is a nonparametric prior for the continuous-space stochastic process

of spatial random effects; regardless of the number and geometry of regions chosen to

partition D, it induces the appropriate corresponding version of the model in (3.2).

3.2.3 Introducing Covariates

As noted in Section 3.1, often in looking at disease incidence/mapping data we will

seek to bring in covariate information. Here, we indicate how we would do this

in the context of the model given in (3.1). Our approach is to consider how we

would handle the idealized situation of point-referenced case/non-case data and then

propagate the effect of the assumptions and approximations in Section 3.2.1. Our

approach is similar in spirit to that of Wakefield and Shaddick (2006). In particular,

illustrating with a single covariate surface {Xt(s) : s ∈ D}, suppose zt(s) = β0t +

β1tXt(s) + θt(s).

If Xt(s) is an areal unit level covariate, i.e., Xt(s) = Xit, for all s ∈ Bi, then p∗it =

exp(β0t + β1tXit) |Bi|
−1
∫

Bi
exp(θt(s))ds. So, for such covariates, no approximation

beyond that of Section 3.2.1 is required.

Next, associate with each of the nit individuals at risk in areal unit i at time t an

(unknown) location sij, j = 1, 2, ..., nit, and covariate level Xt(sij) (suppressing time

t in the notation for sij). At each location there is a Bernoulli trial with probability

pt(Xt(sij)). (Here, we write pt(Xt(sij)), instead of pt(sij), to emphasize the depen-

58



dence on the covariate.) Since incidence rates are usually very small, we can envision

a Poisson approximation to the sum of the nit Bernoulli trials in areal unit i at time

t with expectation equal to pit =
∑nit

j=1 pt(Xt(sij)).

Suppose that Xt(s) is categorical, in fact, for convenience, binary. Then, though

we do not know where they occur, we do know that n0it of the Xt(sij) are 0 and

n1it of the Xt(sij) are 1. So, in the absence of spatial effects,
∑nit

j=1 pt(Xt(sij)) =

n0itpt(0) + n1itpt(1) = nitp
∗
it where p∗it = n−1

it (n0itpt(0) + n1itpt(1)). With spatial

effects and with locations assigned at random, we obtain

nit
∑

j=1

pt(Xt(sij)) =
∑

{sij :Xt(sij)=0}
exp(β0t + θt(sij)) +

∑

{sij :Xt(sij)=1}
exp(β0t + β1t + θt(sij)).

Again, we know the number of 0s and 1s but can only assume they are randomly

assigned to the sij. Hence, for ` = 0, 1,

∑

{sij :Xt(sij)=`}
exp(θt(sij)) ≈

n`it
nit

nit
∑

j=1

exp(θt(sij)) ≈ n`it|Bi|
−1

∫

Bi

exp(θt(s))ds,

and, thus,
∑nit

j=1 pt(Xt(sij)) ≈ nitp
∗
it, with

p∗it =
n0it

nit
exp(β0t)|Bi|

−1

∫

Bi

exp(θt(s))ds+
n1it

nit
exp(β0t + β1t)|Bi|

−1

∫

Bi

exp(θt(s))ds.

Finally, making the same integral approximation (i.e., exp(θit) ≈ |Bi|
−1
∫

Bi
exp(θt(s))ds),

we can write p∗it ≈ exp(β0t + θit){1 + n−1
it n1it[exp(β1t) − 1]} ≈ exp(β0t + θit)[1 +

n−1
it n1itβ1t] ≈ exp(β0t + n−1

it n1itβ1t + θit).

Lastly, with a continuous covariate, we may envision two scenarios – (i) that it

is available for each of the nit individuals at risk in areal unit i at time t or (ii)

more generally, that it is available as a surface known over the entire study region.

Again, the quantity of interest is
∑nit

j=1 pt(Xt(sij)) =
∑nit

j=1 exp(β0t + β1tXt(sij) +
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θt(sij)) = nitp
∗
it where p∗it = n−1

it exp(β0t)
∑nit

j=1 exp(β1tXt(sij) + θt(sij)). In case (i),

let Vit = n−1
it

∑nit

j=1Xt(sij) while in case (ii) let Vit = |Bi|
−1
∫

Bi
Xt(s)ds; under our

assumptions, in either case, Vit can be calculated. Then, as earlier, we approximate

the distribution of p∗it by the distribution of exp(zit). In either case, we obtain p∗it ≈

exp(β0t + β1tVit + θit).

3.2.4 A Spatio-temporal Modelling Framework

To extend the spatial model (3.1) of Section 3.2.1 to a spatio-temporal setting, we cast

our modelling in the form of a dynamic spatial process model (see Banerjee et al. 2004

for parametric hierarchical modelling in this context, and for related references). We

now view the log-rate process zt,D = {zt(s) : s ∈ D} as a temporally evolving spatial

process.

To develop a dynamic formulation, we begin, as in Section 3.2.1, by writing zt(s) =

µt + θt(s) and add temporal structure to the model through transition equations for

the θt(s), say,

θt(s) = νθt−1(s) + ηt(s), (3.4)

where, in general, |ν| < 1, and the innovations ηt,D = {ηt(s) : s ∈ D} are independent

realizations from a spatial stochastic process. We can now define the nonparametric

prior for the block averages ηit = |Bi|
−1
∫

Bi
ηt(s)ds of the ηt,D surfaces following the

approach of Section 3.2.1 or, equivalently, of Section 3.2.2. Proceeding with the latter,

we assume that the ηt,D, given GD, are independent from GD, and assign a SDP prior

to GD with parameters α and G0D = GP(0, σ2ρ (||s− s′||;φ)). Marginalizing GD over

its prior, the induced prior, p(η1, ..., ηT | σ2, φ), for the ηt = (η1t, ..., ηnt) is given by

(3.3) (with ηt replacing θt). Block averaging the surfaces in the transition equations

(3.4), we obtain θt = νθt−1 + ηt, where θt−1 = (θ1,t−1, ..., θn,t−1). Adding, as before,

the i.i.d. N(0, τ 2) terms to the zit, we obtain the following general form for the
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spatio-temporal hierarchical model

yit | zit
ind.
∼ Po(yit|nit exp(zit)), i = 1, ..., n, t = 1, ..., T

zit | µ, θit, τ
2 ind
∼ N(zit | µ+ θit, τ

2), i = 1, ..., n, t = 1, ..., T

θt =νθt−1 + ηt

η1, ..., ηT | σ2, φ ∼p(η1, ..., ηT | σ2, φ).

(3.5)

The specification for the µt will depend on the particular application. For instance,

the µt could be i.i.d., say, from a N(0, σ2
µ) distribution (with random σ2

µ), or they could

be explained through a parametric function h(t; β), say, a polynomial trend, h(t; β) =

β0 +
∑m

j=1 βjt
j, or the autoregressive structure could be extended to include the µt,

say, µt = νµµt−1 + γt, with |νµ| < 1, and γt i.i.d. N(0, σ2
µ). For the Ohio state lung

cancer data (discussed in Section 3.4.2), we work with a linear trend function µt =

β0 + β1t. We set θ1 = η1, i.e., θ0 = 0 (alternatively, an informative prior for θ0 can

be used). We choose priors for τ 2, σ2 and φ as in model (3.2); we take independent

normal priors for the components of β; and a discrete uniform prior for ν.

3.3 Posterior Inference and Prediction

We discuss here the types of posterior inference that can be obtained based on the

models in Section 3.2. In particular, Section 3.3.1 comments on the (smoothed)

inference for the disease rates while, under the dynamic model, Section 3.3.2 discusses

forecasting of disease rates using the extension of Section 3.2.4.

3.3.1 Spatial Model

As is evident from expression (3.3), the DP prior induces a clustering in the θt (in

their prior and hence also in the posterior for model (3.2). Let T ∗ be the number of

distinct θt in (θ1, ..., θT ) and denote by θ∗ = {θ∗j : j = 1, ..., T ∗} the vector of distinct
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values. Defining the vector of configuration indicators, w = (w1, ..., wT ), such that

wt = j if and only if θt = θ∗j , (θ∗, w, T ∗) yields an equivalent representation for

(θ1, ..., θT ). Denote by ψ the vector that includes (θ∗, w, T ∗) and all other parameters

of model (3.2). Draws from the posterior p(ψ | data), where data = {(yit, nit) : i =

1, ..., n, t = 1, ..., T}, can be obtained using the Gibbs sampler discussed in Appendix

B.

The multivariate density estimate for the vector of log-rates associated with the

subregions Bi is given by the posterior predictive density for a new z0 = (z10, ..., zn0),

p(z0 | data) =

∫ ∫

p(z0 | θ0, µ, τ
2)p(θ0 | θ

∗, w, T ∗, σ2, φ)p(ψ | data). (3.6)

Here, p(z0 | θ0, µ, τ
2) is a Nn(µ1n + θ0, τ

2In) density, θ0 = (θ10, ..., θn0) is the vector

of spatial random effects corresponding to z0, and

p(θ0 | θ
∗, w, T ∗, σ2, φ) =

α

α+ T
Nn(θ0 | 0, σ2Rn(φ)) +

1

α + T

T ∗

∑

j=1

Tjδθ∗j (θ0), (3.7)

where Tj is the size of the j-th cluster θ∗j . Therefore, p(z0 | data) arises by averaging

the mixture

α

α + T
Nn(z0 | µ1n, τ

2In + σ2Rn(φ)) +
1

α+ T

T ∗

∑

j=1

TjNn(z0 | µ1n + θ∗j , τ
2In)

with respect to the posterior of ψ. Hence, the model has the capacity to capture,

through the mixing in the θ∗j , non-standard features in the distribution of log-rates

over the regions.

3.3.2 Spatio-temporal Model

Turning to the spatio-temporal model of Section 3.2.4, let µt = β0 + β1t (as in

the example of Section 3.4.2). Denoting by ψ = (β0, β1, τ
2, ν, σ2, φ, {(zt, ηt) : t =
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1, ..., T}) the parameter vector corresponding to model (3.5), the posterior p(ψ|data)

is proportional to

p(β0)p(β1)p(ν)p(τ
2)p(σ2)p(φ)×

p(η1, ..., ηT | σ2, φ)
T
∏

t=1

Nn(zt|λt, τ
2In)

n
∏

i=1

T
∏

t=1

Po(yit|nit exp(zit)),
(3.8)

where λt = (β0 +β1t)1n +
∑t

`=1 ν
t−`η`. The Gibbs sampler given in Appendix B can

be used to obtain draws from p(ψ|data). For instance, of interest might be inference

for zt, the vector of log-rates corresponding to specific time periods t. Moreover,

given the temporal structure of model (3.5), our interest is temporal forecasting for

disease rates at future time points. In particular, the posterior forecast distribution

for the vector of log-rates zT+1 at time T + 1,

p(zT+1|data) =

∫

p(zT+1|η1, ..., ηT , ηT+1, β0, β1, ν, τ
2)p(ηT+1|η1, ..., ηT , σ

2, φ)p(ψ|data)

where p(zT+1|η1, ..., ηT , ηT+1, β0, β1, ν, τ
2) is an n-variate normal distribution with

mean vector (β0 + β1(T + 1))1n +
∑T+1

`=1 ν
T+1−`η` and covariance matrix τ 2In, and

p(ηT+1|η1, ..., ηT , σ
2, φ) can be expressed as in (3.7) by replacing θ0 with ηT+1 and

using the, analogous to (θ∗, w, T ∗), clustering structure in the (η1, ..., ηT ).

3.4 Data Illustrations

Our data consists of the number of annual lung cancer deaths in each of the 88

counties of Ohio from 1968 to 1988. The population of each county is also recorded.

Figure 3.1 depicts the geographical locations and neighborhood structure of the 88

counties in Ohio. The county location, area, and polygons are obtained from the

“map” package in R.
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Figure 3.1: Map of the 88 counties in the state of Ohio.

Regarding prior specification, for both models (3.1) and (3.5) we work with an

exponential correlation function, ρ (||s− s′||;φ) = exp (−φ||s− s′||). For both data

examples, the discrete uniform prior for φ takes values in [0.001, 1], corresponding to

the range from 3 to 3000 miles; σ−2 and τ−2 have gamma(0.1, 0.1) priors (with mean

1); and α is set equal to 1 (results were practically identical under α = 5 and α = 10).

Finally, the normal priors for µ (Section 3.3.1) and for β0 and β1 (Section 3.3.2) have

mean 0 and large variance (there was very little sensitivity to choices between 102

and 108 for the prior variance).
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We observed very good mixing and fast convergence in the implementation of the

Gibbs samplers discussed in Appendix B. In both of our simulation and Ohio lung

cancer example below, we obtain 15,000 samples from the Gibbs sampler, and discard

the first 3,000 samples as burn-in. We use 3,000 subsamples from the remaining 12,000

samples, with thinning equal to 4, for our posterior inference.

3.4.1 Simulation Example

We illustrate the fitting of our spatial model in (3.1) – (3.3) with a simulated data

set for the 88 counties of Ohio. We simulate the areal incidence rate from a two-

component mixture of multivariate normal distributions whose correlation matrix

is calculated by block averaging isotropic GPs. The GPs cover the entire area of

Ohio. The induced correlation matrix of the 88 blocks is computed by Monte Carlo

integration.

In particular, we proceed as follows. For i = 1, ..., 88 and t = 1, ..., T (with

T = 40), we first generate zit independent N(µ + θit, τ
2) and, then, yit indepen-

dent Po(ni exp(zit)), where ni is the population of county i in 1988. The distri-

bution of the spatial random effects θt = (θ1t, . . . , θnt) arises through a mixture of

two block-averaged GP’s. In particular, for ` = 1, 2, let θ(`) =
(

θ
(`)
1 , . . . , θ

(`)
n

)

∼

Nn((−1)`µθ1n, σ
2
`R), with the (i, j)-th element of the correlation matrix R given by

|Bi|
−1|Bj|

−1
∫

Bi

∫

Bj
exp (−φ||s− s′||) dsds′. Then, each θt is independently sampled

from 0.5θ(1) + 0.5θ(2). The values of the parameters are µ = −6.5, µθ = 0.5, σ2
1 =

σ2
2 = 1/32, τ 2 = 1/256, and φ = 0.6. Under these choices, marginally, each θit has a

bimodal distribution of the form 0.5N (−µθ, σ
2
1) + 0.5N (µθ, σ

2
2).

We fit model (3.1) to this data set. The Bayesian goodness of fit is illustrated

with univariate and bivariate posterior predictive densities for the log-rates, which are

estimated using (3.6). In Figure 3.2 we compare the true densities of the model from

65



−7.5 −7.0 −6.5 −6.0 −5.5 −5.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

Delaware, Population: 61K

d
e
n
si

ty

−8.0 −7.5 −7.0 −6.5 −6.0 −5.5 −5.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

Franklin, Population: 933K

d
e
n
si

ty

−8.0 −7.5 −7.0 −6.5 −6.0 −5.5 −5.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

Hamilton, Population: 876K

d
e

n
si

ty

−8.0 −7.5 −7.0 −6.5 −6.0 −5.5 −5.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

Stark, Population: 368K

d
e

n
si

ty

Figure 3.2: For the simulation example in Section 3.4.1, posterior predictive densi-
ties for the log-rates, corresponding to four counties, based on the SDP model (thick
curves) and the GP model (dashed curves). The true densities are denoted by the
thin curves, and the observed log-rates by “+”.

which we simulated the data with the SDP model posterior predictive densities for

four selected counties. They are “Delaware” and “Franklin” in central Ohio, “Hamil-

ton” in southwest, and “Stark” in northeast. “Franklin” includes Columbus and

“Hamilton” includes Cincinnati so these are highly populated counties. “Delaware”
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is more suburban and “Stark” is very rural (see Figure 3.1).

The “+” mark the values of the 40 observed log-rates log(yit/ni) in each of these

four counties. In addition, Figure 3.2 includes posterior predictive densities from

a parametric model based on a GP(0, σ2 exp(−φ||s − s′||)) for the spatial random

effects surfaces. This specification results in a limiting version of model (3.1) (for

α → ∞) where the θt, given σ2 and φ, are i.i.d. Nn(0, σ
2Rn(φ)). The SDP model

clearly outperforms the GP model with regard to posterior predictive inference.

Next, we pair the four counties above to show in Figure 3.3 the predictive joint

densities, based on the SDP model, and, again, to compare with the true joint den-

sities (using samples in both cases). The first pair “Delaware” and “Franklin” are

next to each other. The second pair “Hamilton” and “Stark” are distant. We note

that, with only 40 replications, our model captures quite well both marginal and joint

densities for the log-rates.

3.4.2 Ohio Lung Cancer Data

The exploratory study of the Ohio lung cancer mortality data reveals a spatio-

temporal varying structure in the incidence rates. We display the observed log-rates

log(yit/nit) for the aforementioned four counties in Figure 3.4. This plot shows clear

evidence of an increasing, roughly linear, trend in the log-rate. Therefore we apply

the dynamic SDP model (3.5) with a linear trend over time, setting µt = β0 + β1t.

Moreover, because negative values for ν do not appear plausible, we use a discrete

uniform prior on [0, 1) for ν.

The time t is normalized to be from year t = 1 to 21. In order to validate

our model, we leave year 21 (year 1988) out in our model fitting and predict the

log-rates for all 88 counties in that year, using the posterior forecast distribution

developed in Section 3.3.2. Posterior point (posterior medians) and 95% equal-
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Figure 3.3: For the simulation example of Section 3.4.1, posterior predictive densi-
ties (left column) and true bivariate densities (middle column) for log-rates associated
with two pairs of counties. The right column includes plots of the corresponding ob-
served log-rates.

tail interval estimates for β0, β1 and for ν are given by −8.208 (−8.319,−8.100),

0.0367 (0.0292, 0.0448) and 0.7 (0.6, 0.8), respectively. There was also prior to pos-

terior learning for the other hyperparameters, in particular, point and interval es-

timates were 0.0586 (0.0552, 0.0656) for φ; 0.104 (0.0855, 0.113) for τ 2; and 0.133
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Figure 3.4: Observed log-rates for four counties from 1968 to 1988 for the Ohio data
example of Section 3.4.2.

(0.101, 0.152) for σ2.

In Figure 3.5 we display the marginal posterior forecast density of the log-rate for

the earlier four counties in the hold-out year 1988. We also calculated 95% marginal

predictive intervals for all 88 counties in 1988 and found that 83 out of 88 observed

log-rates (94.3 %) are within their 95% interval; we do not seem to be overfitting

or underfitting. In Figure 3.6 we provide the contour plot of the predictive log-

rate surface for 1988, using medians from the posterior forecast distribution for each

county.
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Figure 3.5: Posterior forecast densities for the log-rate of four counties in the
hold-out year (year 1988) for the Ohio data example of Section 3.4.2. The verti-
cal line in each plot is the observed log-rate.

3.5 Discussion

We have argued that, with regard to disease mapping, it may be advantageous to

conceptualize the model as a spatial point process rather than through more custom-

ary areal unit spatial dependence specifications. Aggregation of the point process

to suitable spatial units enables us to use it for the observable data. Specifying a

non-homogeneous point process requires a model for the latent risk surface. Here,
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Figure 3.6: For the Ohio data example of Section 3.4.2, medians of the posterior
forecast distribution for the log-rate in each county for year 1988.

we have argued that there are advantages to viewing this surface as a process re-

alization rather than through parametric modelling. But then, the flexibility of a

nonparametric process model as opposed to the limitations of a stationary GP model

becomes attractive. The choice of a spatial DP finally yields our proposed approach.

We applied the modelling to both real and simulated data. With the simulated data

we clearly demonstrated the advantage of such flexibility.

Extensions in several directions may be envisioned. Three examples are the fol-

lowing. In treating the specification for the µt we could provide a nonparametric
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model as well through i.i.d. realizations obtained under DP mixing or the associated

dynamic version with independent innovations under such a model. Next, we often

study concurrent disease maps to try to understand the pattern of joint incidence

of diseases. In our setting, for a pair of diseases, this would take us to a pair of

dependent surfaces from a bivariate spatial process. We could envision modelling

based upon a bivariate SDP centered around a bivariate GP. Finally, how would we

handle misalignment issues in this nonparametric setting? That is, what should we

do if disease counts are observed for one set of areal units while covariate information

is supplied for a different set of units? Banerjee et al. (2004) suggest strategies for

treating misalignment but exclusively in the context of GP. Extensions to our SDP

setting would be useful.
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Chapter 4

Space-time Modelling Using Differential

Equations with Application to Urban

Development

In this chapter, we develop our spatio-temporal point process whose dynamic inten-

sity is modelled with stochastic differential equations. In Section 4.1, we first review

the Cox process model, then propose a structured model for the evolution of latent in-

tensity surfaces over time. Deterministic and stochastic differential equation versions

of the growth mechanism are introduced and discussed. In Section 4.2, we formu-

late a Bayesian hierarchical model based on the theory in Section 4.1 and propose a

process convolution approximation. Section 4.3 addresses Bayesian estimation and

space-time prediction issues. Section 4.4 provides two illustrative examples, one of

which is the real urban growth data of Irving, TX. We conclude with a discussion on

future extensions of the current model in Section 4.5.
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4.1 Spatio-temporal Point Processes Models with

Dynamic Intensity

4.1.1 Space-time Cox Process Model

The motivating problem for our research is to model urban development by the

construction of new residential houses. Figure 4.1 shows the residential buildings in

Irving, TX from 1951–1968 in four different years. The exact locations and times of

new constructions form a point pattern over space and time.

Our fundamental approach to the urban development problem is the space-time

Cox process (Cox 1955), i.e,. conditioning on a realization of a positive-valued

stochastic process, in a fixed region, the emergence of newly observed points over

a certain period of time behaves according to an inhomogeneous Poisson process. If

we only model the locations, we can use the univariate Cox Process. However, we

might have additional information at the locations, a so-called marked point pro-

cess. For instance, we might note whether the construction was a single family home,

an apartment building, a commercial site, etc. We might expect that commercial

buildings have a different distributional pattern over space and time from residen-

tial buildings. These associated overlapping and correlated point patterns can be

modelled by the multivariate Cox processes. Here, we will only consider the uni-

variate case. The multivariate version is a conceptually straightforward extension

though computation will be much more demanding (and fitting our univariate model

is already quite challenging).

Focusing on the urban development setting, let D be the study region, which

would be some metropolitan area or a portion thereof. Depending upon the window

of time, it might include primarily urban area or with a later (or longer) window,

the suburban and rural areas surrounding it. Let NT (D) be the number of houses
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Figure 4.1: Residential houses in Irving, TX.

constructed in the period from t = 0 to T and XT =
{

x1,t1 , . . . , xNT ,tNT

}

be the set of

locations and times of these new constructions. The intensity of the space-time point

process model for XT is Ω (t, s) , s ∈ D, t ∈ [0, T ] , which is a positive-valued function.

Ω (t, s) could be viewed as essentially being a nonparametric specification which, for

instance, could be a realization of a space-time process over D×[0, T ] (Nonparametric
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functions using basis representations would also be possible.) However, in the present

work, we choose to view Ω (t, s) as having a parametric form that is motivated by

mechanistic or theoretical considerations. We want to introduce specific parametric

choices where the parameters quantify relationships and inference is sought about

these parameters. Indeed, these parameters themselves will be associated with spatial

locations and so will themselves be viewed as realizations of spatial processes; thus,

we can see how they vary over D.

More specifically, let

Ω (t, s) = f (t, θl(t, s); l = 1, . . . , p) (4.1)

where θl(t, s); l = 1, . . . , p are p possibly dependent space-time processes. Again, at

any location s, the θl (t, s) are the values of the parameters or latent variables which

determine Ω(t, s). Since they are realizations of spatial processes, the θl (t, s) can

flexibly capture spatial variation and correlation .

The emergence of new houses is conceptually a problem of continuous-time spatio-

temporal point process, because a house is virtually there when the land is acquired

and the blueprint drawn. However, as buildings are not constructed instantaneously,

we only observe new construction over an interval of time. Therefore when using

space-time point processes to model house construction, we discretize time and pre-

sume that there are only a finite number of periods. In each period there is a finite

random set of observed locations, which, altogether, can be treated as a spatial point

process. The intensity surface governing that process can still be considered as evolv-

ing over continuous time. Expressed in mathematical terms, the chance of an event

occurring at any specified time is 0; in order to observe a point pattern we have to

consider an interval of time.

If we discretize the space-time point process in time, the intensity for any spatial

point process, say X[t1,t2] consisting of locations emerging in a sub-period t ∈ [t1, t2)
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(t1 ≥ 0 and t2 ≤ T ) is

∫ t2

t1

Ω (t, s) dt =

∫ t2

t1

f (t, θl(t, s); l = 1, . . . , p) dt (4.2)

Temporally dependent spatial point processes X[t1=0,t2], X[t2,t3], . . . , X[tJ−1,tJ=T ] will

provide a good approximation to the spatio-temporal point process XT , when the

time intervals are sufficiently small. Moreover, this also allows us to approximate the

intensity (4.2) by

∫ t2

t1

Ω (t, s) dt ≈ (t2 − t1) Ω (t1, s) = (t2 − t1) f (t1, θl(t1, s); l = 1, . . . , p) (4.3)

In the next subsection we introduce the dynamics for the cumulative spatial inten-

sity Λ (t, s) =
∫ t

0
Ω (τ, s) dτ and use the approximation (4.3) to deduce the dynamics

for the discrete-time spatial point process.

4.1.2 Modelling Intensity Surface Dynamics

Theory from mathematical ecology and sociology argues that the growth of human

population, despite the transcendent intricacies of its infrastructure, bears resem-

blance in the macro scale to that of any other biological species. We do not attempt

to model arrival of people to a metropolitan area using our space-time point pro-

cess. Rather, we use the construction of single family homes as a surrogate process.

Moreover, urban growth is customarily described in aggregate, e.g., at the city-level

(e.g. Glaeser 2003; Rossi-Hansberg and Wright 2005 and the references therein).

We would argue that providing point referenced modelling for such building enables

assessment of urban development at previously unachievable spatial resolution. Ad-

ditionally, although we do not connect the intensity surface for our “house-building”

Cox process to population growth, it is plausible to assume that the spatial intensity

evolves with dynamics similar to those of population growth.
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Three typical growth models used in ecology and described through differential

equations (indexed by location) are

• Exponential growth

dΛ (t, s)

dt
= r (s) Λ (t, s) (4.4)

• Logistic growth

dΛ (t, s)

dt
= r(s)Λ (t, s)

[

1 −
Λ (t, s)

K (s)

]

(4.5)

• Gompertz growth

dΛ (t, s)

dt
= r(s)e−α(s)tΛ (t, s) (4.6)

By introducing a point-referenced spatial component into these equations, there

is a differential equation at every spatial location. Moreover, each of these differential

equations is random. Our modelling will ensure that the differential equations for lo-

cations close to each other will tend to be more similar than those for locations farther

apart. Note further that these differential equation models for the cumulative spatial

intensity Λ (t, s) imply integral equation models for the space-time intensity Ω (t, s).

For example, the logistic growth can be viewed as a nonlinear integral equation:

Ω (t, s) = r (s)

∫ t

0

Ω (τ, s) dτ

[

1 −

∫ t

0
Ω (τ, s)

K (s)

]

. (4.7)

In all three of the models above, r (s) denotes the local growth rate across space.

The apparent shortcoming of exponential growth with regard to house construction

is that the cumulative intensity is not bounded. The logistic growth model uses a

carrying capacity K (s) to bound this intensity by making the growth rate decrease to

zero when the intensity approaches the capacity. For residential house construction
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such a model seems to be plausible and the notion of a carrying capacity has a natural

interpretation so we adopt it as our illustrative focus. The Gompertz growth instead

uses an intrinsic decay parameter α to control for the infinite growth problem and

could be considered as well (see Section 4.1.3 for further discussion).

So, in using the logistic growth model for the intensity, we propose a local growth

rate r (s) and carrying capacity K (s) and impose spatial process models on these

parameters. In reality, the local growth rate r (s), the local carrying capacity K (s)

and the intensity Λ (t, s) only have physical interpretations when associated with a

region. If we consider the regional growth rate r (D) as the average of the local rate

r (D) =
1

|D|

∫

D

r (s) ds

where |D| denotes the area of D; and the regional capacity is the aggregate of the

local capacity

K (D) =

∫

D

K (s) ds

the global growth in the regional D should have the following dynamics:

dΛ (t, D)

dt
= r(D)Λ (t, D)

[

1 −
Λ (t, D)

K (D)

]

(4.8)

where

Λ (t, D) =

∫

D

Λ (t, s) ds.

Our local model for one location s can be considered the limit of this global model

when the area surrounding the location s goes to zero. Let δs be the neighborhood
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of s. The limits of the terms in the equation are

lim
|δs|→0

Λ (t, δs)

|δs|
= lim

|δs|→0

1

|δs|

∫

δs

Λ (t, s′) ds′ = Λ (t, s) ;

lim
|δs|→0

K (δs)

|δs|
= lim

|δs|→0

1

|δs|

∫

δs

K (s′) ds′ = K (s) ;

lim
|δs|→0

r(δs) = lim
|δs|→0

1

|δs|

∫

δs

r (s′) ds′ = r (s) .

Therefore the limit of the global growth equation (4.8) is

lim
|δs|→0

dΛ (t, δs) / |δs|

dt
= lim

|δs|→0
r(δs)

Λ (t, δs)

|δs|

[

1 −
Λ (t, δs) / |δs|

K (δs) / |δs|

]

⇒

dΛ (t, s)

dt
= r(s)Λ (t, s)

[

1 −
Λ (t, s)

K (s)

]

which is exactly our local model. In other words, our interpretations for r(s), K(s)

and Λ (t, s) provide coherent behavior when integrated across D or any portion of D.

In order to capture the spatial variation and suitable dependence for inhomoge-

neous growth, we assume the local growth rate and capacity have very flexible spatial

process models:

r (s) = exp (µr (s; βr) + θr (s)) (4.9)

K (s) = exp (µK (s; βK) + θK (s)) (4.10)

where µr (s; βr) and µK (s; βK) are trend surfaces and θr (s) and θK (s) are mean-zero

spatial random effects modelled as realizations of certain spatial processes, such as

stationary Gaussian random fields (Cressie 1993; Banerjee et al. 2004) or nonpara-

metric spatial Dirichlet processes (Gelfand et al. 2005).

Returning to (4.4), (4.5) and (4.6) above, we assume the intensity at any loca-

tion follows the same type of dynamics with spatially varying parameters, such as
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r (s) and K (s). The resulting models for the entire study region emerge as infinite-

dimensional dynamic systems (Itô 1984). In practice, we approximate them with

spatially discretized versions, hence reduce them to multivariate dynamic systems.

Computationally, for the large number of houses we will be working with, it will

not be tractable to work with the point process likelihood; rather, we will have to

introduce a partition of D and employ a Poisson likelihood for the number of points

observed in a given cell of the partition in a given time period. So, consider a

subdivision of the study region D into M cells. For each cell m ∈ {1, . . . ,M}, the

average intensity in this cell can be modelled with the average spatial parameters.

For example the logistic model can be approximated by

dΛ (t,m)

dt
= r(m)Λ (t,m)

[

1 −
Λ (t,m)

K (m)

]

(4.11)

where r (m) and K (m) are average growth rate and carrying capacity in each cell.

The spatial variation and correlation of r (m) and K (m) are inherited from their

spatial processes. Conversely, the continuous space model (4.5) can be viewed as the

infinitesimal version of (4.11).

4.1.3 Diffusion Equation Models for the Growth Rate

Given r(s) and K(s), model (4.5) yields a deterministic space-time model for the

evolution of the spatial and space-time intensity. That is, though we have a spatial

process of curves Λ(t, s), at any location, given the rate and the carrying capacity,

the resulting growth trajectory is fixed. To enrich this behavior, we could try to

introduce uncertainty into these trajectories. However, for the house construction

problem, we insist that the cumulative intensity must always be nonnegative. A

diffusion equation for the intensity achieved by adding a stochastic component to the

differential equation need not preserve nonnegativity. Furthermore, not only must
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Λ (t, s) be nonnegative, but Ω (t, s) must be nonnegative as well. A typical diffusion

equation, such as Feller’s branching process:

dΛ (t, s) = r(s)Λ (t, s)

[

1 −
Λ (t, s)

K (s)

]

dt+ σΛ

√

Λ (t, s)dWt (s) (4.12)

where Wt (s) is a spatial Brownian motion, can not guarantee this for the space-time

intensity Ω (t, s). Therefore we choose not to apply a stochastic differential equation

to the intensity itself, but instead to add temporal structure to the growth rate and

thus formulate a spatial diffusion equation model for r (s).

Let r (t, s) be the time-varying growth rate. Because r (t, s) is also positive, we

will model the log growth rate Z (t, s) = log r (t, s). The Gompertz growth model

can be viewed as an extension of the simplest exponential growth with the following

differential equation for Z(t, s):

dZ (t, s) = −α (s) dt, with z (0, s) = log r (0, s) . (4.13)

If we add a stochastic component with spatial Brownian motion to (4.13), we have

the following diffusion equation for Z (t, s):

dZ (t, s) = −α (s) dt+ σzdWt (s) , with Z (0, s) = log r (0, s) .

This resulting model for the growth rate r (t, s) is the geometric Brownian motion:

r (t, s) = r (0, s) exp

{[

−a (s) +
1

2
σ2
z

]

t+ σzW (t, s)

}

,

which is not stationary.

For the logistic growth, because the crowding effect [1 − Λ (s) /K (s)] already con-

trols for the decreasing growth, it is much easier to specify a stationary model for the

growth rate. We do so by letting Z (t, s) = log r (t, s) be a stationary mean-reverting
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Ornstein-Uhlenbeck process (See Rossi-Hansberg and Wright 2005 for economic jus-

tifications.):

dZ (t, s) = [α (s) − ζZ (t, s)] dt+ σZdWt (s) . (4.14)

The physical interpretation of this model is that the log growth rate will eventually

fluctuate about the deterministic level α (s) /ζ. As a result, Z (t, s) is stationary

space-time process with the following separable covariance function

cov (Z (t1, s1) , Z (t2, s2)) = σ2
Z exp (−β |t1 − t2|) ρ (s1 − s2;φ) (4.15)

where ρ (s1 − s2;φ) is the correlation function of the spatial Brownian motion Wt (s).

For the spatially discrete model (4.11), the corresponding discrete version for the

log growth rate over a subdivision of M cells is

dZ (t,m) =
[

αM − ζIMZ (t,m)
]

dt + σZdWt (m) (4.16)

where αM is an M -dimensional vector with each element αMm being the average of

α (s) in cell m and IM is an M × M identity matrix. For more properties of the

multivariate Ornstein-Uhlenbeck process, see Schach (1971). For a general treatment

of multivariate stochastic differential equations, see Gard (1988), Itô (1984), Karatzas

and Shreve (1991) and Oksendal (2002).

If after a sufficiently long time, Z (t, s) will have converged and will only fluctuate

slightly around α (s) /ζ, our deterministic model (4.5) with

Z (t, s) ≈ α (s) /ζ ≡ µr (s) + θr (s)

is a good approximation to the space-time model. Note this approximation reduces

the space-time model for the growth rate to the more parsimonious model (4.9). In

the examples that we will present in Section 4.4, we only have very few periods (less

than 20) of growth data that is insufficient to fit the model in (4.14), therefore the

more parsimonious model (4.9) is deliberately selected. If the data came with many
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periods (say more than 350 periods as in the simulated data example in Brix and

Diggle 2001), we could attempt to fit the full model with dynamic growth rate. The

following sections will focus on the logistic growth model (4.5) with only spatially

varying growth rate.

4.2 Statistical Model Fitting and Inference

The dynamic Cox Process models proposed in Section 4.1.2 imply the following sta-

tistical hierarchical model: At the first stage, the space-time point patten xT is a

realization of a spatio-temporal Poisson Process XT . The intensity Ω(t, s) is a func-

tion of the initial intensity

Λ (0, s) =

∫ 0

−∞
Ω (τ, s) dτ (4.17)

and the latent parameter processes describing the growth rate, such as r (t, s), K (s)

etc. The latent parameter processes are realizations of exponential Gaussian pro-

cesses.

The multi-period spatial Cox Process version of this dynamic model can be viewed

as a temporally discretized approximation to the space-time Cox Process above. If we

assume there are J evenly spaced periods {t1, . . . , tJ} in t ∈ [0, T ], the corresponding

sequential spatial point pattern xtj is a realization of the spatial Poisson Process with

the intensity ∆Λ (tj, s) =
∫ tj,2

tj,1
Ω (τ, s) dτ . In the following subsections, we discuss the

approximation and discretization of the dynamic spatial intensity ∆Λ (tj, s) and the

statistical inference for the latent parameter processes that define ∆Λ (tj, s).

4.2.1 The Discretized Cox Process Model

As noted in Section 4.1.2, if we observe the spatial point processes in evenly spaced

time intervals ∆t and the time intervals are small, the spatial intensity in period tj
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can be approximated as

∆Λ (tj, s) =

∫ tj,2

tj,1

Ω (τ, s) dτ ≈ Ω (tj,1, s)∆t.

From (4.5), the dynamics of the discretized spatial intensity can be derived as a

difference equation

∆Λ (tj, s) = r(s)Λ (tj−1, s)

[

1 −
Λ (tj−1, s)

K (s)

]

∆t, (4.18)

where

Λ (tj, s) =

∫ tj

0

Ω (τ, s) dτ ≈ Λ (0, s) +

j
∑

l=1

∆Λ (tl, s) . (4.19)

∆Λ (tj, s) defines the intensity surface for the conditionally independent point pro-

cesses X (tj) , j = 1, . . . , J in the disjoint periods {t1, . . . , tJ}. Equation (4.18) offers

an explicit transition model for the intensity over time. The realization of X (tj)

is a set x (tj) with the total number of points nj = |x (tj)|. We will now sup-

press the index t to use xj =
{

xj1, . . . , xjnj

}

as the points in period tj and let

∆Λj = {∆Λ (tj, s) , s ∈ D} be its intensity surface. Note that we begin with x0, the

initial point pattern (i.e., we begin our investigation of growth at some time point

after the city was founded), which provides necessary information for the initial in-

tensity surface Λ0 = {Λ (0, s) , s ∈ D}.

Suppose we model the initial intensity Λ0 as a realization of an log Gaussian

spatial process,

Λ0 (s) = exp (µΛ (s) + θΛ (s)) , θΛ (s) ∼ GP (0, CΛ (s− s′;φΛ)) . (4.20)

Then, we can construct a Bayesian hierarchical model for x0, . . . , xJ with (4.9) and
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(4.10) as follows:

xj|∆Λj ∼ Poisson (D,∆Λj) ; j = 1, . . . , J

x0|Λ0 ∼ Poisson (D,Λ0)

∆Λj (s) = r(s)Λj−1 (s)

[

1 −
Λj−1 (s)

K (s)

]

∆t; s ∈ D; j = 1, . . . , J

Λj (s) = Λ0 (s) +

j−1
∑

l=1

∆Λl (s)

log Λ0 (s) = µΛ (s; βΛ) + θΛ (s)

θΛ (s) ∼ GP (0, CΛ (s− s′;φΛ)) ; s, s′ ∈ D

log r (s) = µr (s; βr) + θr (s)

θr (s) ∼ GP (0, Cr (s− s′;φr)) ; s, s′ ∈ D

logK (s) = µK (s; βK) + θK (s)

θK (s) ∼ GP (0, CK (s− s′;φK)) ; s, s′ ∈ D

βΛ, βr, βr
φΛ, φr, φK

∼ priors

(4.21)

where β(·) is the parameter vector in the mean surface function and C(·)
(

s− s′;φ(·)
)

is the stationary covariance function.

In this model, the intensity surfaces are deterministic functions of r (s), K (s), and

Λ0 (s), s ∈ D. The joint likelihood for the J + 1 conditionally independent spatial

point patterns is

J
∏

j=1

{

exp

(

−

∫

D

∆Λj (s) ds

) nj
∏

i=1

∆Λj (xji)

}

· exp

(

−

∫

D

Λ0 (s) ds

) n0
∏

i=1

Λ0 (x0i) .

(4.22)

The stochastic integrals in (4.22) cannot be worked with directly. In order to fit
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this model, we have to approximate them by Riemann sums. We divide the geograph-

ical region D into M small cells and assume the point processes have homogenous

intensity within each cell. Let ∆Λj (m) and Λ0 (m) be the average intensity in cell

m. Let the area of cell m be A (m). The joint likelihood after this discretization is

J
∏

j=1

[

exp

(

−

M
∑

m=1

∆Λj (m)A (m)

)

M
∏

m=1

∆Λj (m)njm

]

· exp

(

−

M
∑

m=1

Λ0 (m)A (m)

)

M
∏

m=1

Λ0 (m)n0m ,

(4.23)

where njm is the number of point in cell m in period j.

If we assume the growth rate r (s) and the capacity K (s) ; s ∈ D are homogeneous

in each cell m, and denote them as r (m) and K (m), we derive a version of dynamics

in discrete time and space for the intensity,

∆Λj (m) = r(m)Λj−1 (m)

[

1 −
Λj−1 (m)

K (m)

]

∆t. (4.24)

Based on the assumptions in model (4.21) that θr (s), θK (s) and θΛ (s) are Gaus-

sian processes, we have

log r (m) = µr(m, βr) + θr (m) ,

where θr = (θr (1) , . . . , θr (M)) ∼ NM (0, RM (φr)) ;

logK (m) = µK(m, βK) + θK (m) ,

where θK = (θK(1), . . . , θK(M)) ∼ NM (0, RM (φK)) ;

log Λ0 (m) = µΛ(m, βΛ) + θΛ (m) ;

where θΛ = (θΛ(1), . . . , θΛ(M)) ∼ NM (0, RM (φΛ))

(4.25)

where RM

(

φ(·)
)

is the M×M covariance matrix derived from the correlation function

C
(

s− s′;φ(·)
)

.
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A criticism of models (4.21) and (4.25) which we noted above is that they are

deterministic conditional on r (s), K (s) and Λ0 (s). We can relax this restriction

according to the mean-reverting Ornstein-Uhlenbeck process model (4.14). To for-

mulate this model in discrete time and space, we can discretize equation (4.16) into

a difference equation for period j = 1, . . . , J :

∆Zj =
[

αM − ζIMZj
]

∆t + σZ (Wj −Wj−1) , (4.26)

and log rj = Zj = Z0 +

j
∑

l=1

∆Zl,

where ∆Zj = {Zj (m) ;m = 1, . . . ,M}, Wj = {Wj (m) ;m = 1, . . . ,M}, and for any

cell m,

αMm = log r(m) = µr(m, βr) + θr (m) ,

and Z0 (m) = µz0(m, βz) + θz0 (m) .

In this more flexible model, the log growth rate has a state space equation (4.26),

where Wj −Wj−1, j = 1, . . . , J are independent Gaussian random fields since Wt in

(4.14) is a spatial Brownian motion.

4.2.2 Approximation Using Kernel Convolution

The computational difficulty in fitting this model is the large number of cells (e.g.

2500 in the examples in Section 4.4.2) and therefore the high dimension of the correla-

tion matrix RM . There are numerous strategies for handling this “large M” problem

(Vecchia 1998; Furrer et al. 2006; etc.). To reduce the dimensionality of this model,

we use the kernel convolution approximation technique proposed by Xia and Gelfand

(2006) to approximate the distributions of θr, θK and θΛ. A brief account of this

method is as follow.

We define a region Dr that covers the region D under study. We divide the region

Dr into L blocks, each of which has centroid s∗l and area A (l), l = 1, . . . , L. We
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define Vl, l = 1, . . . , L to be independent standard-normal random variables, where

Vl is associated with block l and let ϕ (s− s∗l ) be the kernel function. The kernel

convolution approximation to a Gaussian random field θ = {θ (s) , s ∈ D} is defined

as

θ̃ (s) =

L
∑

l=1

√

A (l)ϕ (s− s∗l ;φ)Vl; s ∈ D (4.27)

The original Gaussian random field θ is assumed to be mean-zero and have a

stationary covariance function C (s− s′;φ), whose spectral density is Ĉ (ω;φ). For θ̃

to approximate θ, the kernel in (4.27) is shown to be the inverse Fourier transform

of

√

Ĉ (ω;φ):

ϕ (s− s′;φ) = (2π)−2

∫

R2

e−iω
T (s−s′)

√

Ĉ (ω;φ)dω (4.28)

For example, the Matérn class covariance function in R2 is

Cψ,ξ,ν (u) =
πψ

2ν−1Γ (ν + 1) ξ2ν
(ξ ||u||)ν κν (ξ ||u||) (4.29)

where the variance σ2 is proportional to ψ/νξ2ν . The kernel mixture approximation

to a random field with Matérn class covariance has the following kernel:

ϕ (u;ψ, ξ, ν) = (2π)−1 Cψ1/2,ξ,(ν−1)/2 (u)

=
πψ1/2

2(ν−3)/2Γ
(

ν+1
2

)

ξν−1
(ξ ||u||)

ν−1
2 κ(ν−1)/2 (ξ ||u||) .

(4.30)

Note that (4.30) requires that the smoothness parameter ν > 1. Xia and Gelfand

(2006) also discuss how to select the covering region Dr and the number of blocks in

Dr.

If we use Matérn covariance in our Model (4.25), we can approximate θr, θK and

θΛ with the kernel in (4.30) and 3L independent standard normal random variables:

V r ∼ N (0, IL) , V
K ∼ N (0, IL) , V

Λ ∼ N (0, IL) .
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Define a M × L matrix H (φ)

H (φ)ml =
√

A (l)ϕ (sm − s∗l ;φ) ;m = 1, . . . ,M ; l = 1, . . . , L

where sm is the centroid of cell m and ŝl the centroid of block l. The kernel mixture

approximation to θr (m), θK (m) and θΛ (m) , m = 1, . . . ,M is

θ̃r = H (φr)V
r; θ̃K = H (φK)V K ; θ̃Λ = H (φΛ)V Λ. (4.31)

Because θ̃r, θ̃r, θ̃Λ are linear combinations of a much lower dimensional independent

set of V r, V K, V Λ (L�M), computation is expedited.

4.3 Bayesian Inference and Prediction

We provide brief details on both inference and prediction associated with the models

in Section 4.2.1.

4.3.1 Bayesian Inference

With regard to inference for model (4.21) and (4.25), there are three latent surfaces

discretized over the grid M : r (m), K (m) and Λ0 (m). The parameters and latent

variables in this model include the βr, βK and βΛ in the parametric trend surfaces,

the discretized spatial random effects θr (m), θK (m), θΛ (m), m = 1, . . . ,M and the

parameters φr, φK, φΛ in the covariance functions. As in the previous section, we

use the kernel convolution processes θ̃r, θ̃K , θ̃Λ to approximate θr, θK, θΛ:

log r ≈ µr(βr) + θ̃r; logK ≈ µK(βK) + θ̃K ; log Λ0 ≈ µΛ(βΛ) + θ̃Λ. (4.32)

The priors and hyper-priors for the model parameters and latent variables are

assumed to take the form

βr, βK, βΛ ∼ π (βr) · π (βK) · π (βΛ)

φr, φK, φΛ ∼ π (φr) · π (φK) · π (φΛ)

V r, V K , V Λ ∼ N (0, IL) ·N (0, IL) ·N (0, IL)

(4.33)
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where specification of the hyper-priors for β(·) and φ(·) depends on the particular

application. For example, the trend surface for the log growth rate may take the

linear regression form: µr(βr) = X (s)βr, then we can specify a disperse normal prior

N
(

0, σ2
β = 108

)

for βr. The parameter in the correlation function φr may represent

a value proportional to the variance, hence we can specify a Inverse-Gamma prior

for it. Note that ∆Λj and Λ0 in the discretized likelihood (4.23) are deterministic

functions of the parameters and latent variables defined by (4.24), (4.31) and (4.32).

Therefore the joint posterior is proportional to

J
∏

j=1

[

exp

(

−
M
∑

m=1

∆Λj (m)A (m)

)

M
∏

m=1

∆Λj (m)njm

]

· exp

(

−
M
∑

m=1

Λ0 (m)A (m)

)

M
∏

m=1

Λ0 (m)n0m

· π (βr) π (βK) π (βΛ)N (0, IL)N (0, IL)N (0, IL) π (φr)π (φK) π (φΛ) .

(4.34)

Furthermore, each of βr, βK , βΛ, φr, φK, φΛ may represent multiple parameters; for

example, we have φr = {ψr, ξr, νr} if we use Matérn class covariance and kernel for

the spatial random effect in the log growth rate.

We simulate the posterior distributions of the model parameters and latent vari-

ables in (4.34) using a Markov Chain Monte Carlo algorithm. Because the intensities

in the likelihood function are very irregular nonlinear functions of the model parame-

ters and latent variables, it is very difficult to obtain derivatives, and hence a directed

MCMC (e.g., Langevin diffusions in Benes et al. 2002 and Robert and Casella 1999),

we use the random-walk Metropolis-Hastings algorithm in the posterior simulation.

Each parameter is updated in turn in every iteration of the simulation and the latent

variables
{

V r, V K, V Λ
}

are sampled in three blocks.
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4.3.2 Prediction

The prediction problem in the context of our spatio-temporal model is about forecast-

ing the future intensity and point pattern for the spatial point process. Indeed, we can

hold out the observed point pattern in a future time period. Then, if we obtain ex-

pected growth for that period, we can compare with observed growth to validate our

model. The predictive intensity relies highly on the model specification. For the logis-

tic growth function, conditioning on the posterior samples of {βr, βK, βΛ, φr, φK, φΛ}

and
{

V r, V K, V Λ
}

, we can extrapolate the intensity ∆ΛJ+1 (s) in period J+1 at any

location s ∈ D by calculating

µr(s, βr); µK (s, βK) ; µΛ (s, βΛ)

θ̃r (s) =
L
∑

l=1

H (s− s∗l ;φr)V
r
l ;

θ̃K (s) =

L
∑

l=1

H (s− s∗l ;φK)V K
l ;

θ̃Λ (s) =

L
∑

l=1

H (s− s∗l ;φΛ)V Λ
l .

and then using (4.18) and (4.19) recursively. Because we can obtain a predictive sam-

ple for ∆ΛJ+1 (s) from the posterior samples, we can easily compute any quantity of

interest pertaining to the predictive distribution of ∆ΛJ+1 (s), such as E [∆ΛJ+1 (s)],

Median [∆ΛJ+1 (s)] and a predictive interval for ∆ΛJ+1 (s).

For any subregion D1 ⊂ D of interest, we can aggregate ∆ΛJ+1 (s) over s ∈ D1

to obtain the predictive distribution of the Poisson intensity ∆ΛJ+1 (D1):

∆ΛJ+1 (D1) =

∫

D1

∆ΛJ+1 (s) ds ≈
∑

m∩D1 6=φ
∆ΛJ+1 (m) .

We can then use the predictive distribution of ∆ΛJ+1 (D1) to find the predictive
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distribution for NJ+1 ∼ Po (∆ΛJ+1 (D1)). And, as above, with holdout data, we can

compare observed growth with predicted.

4.4 Examples and Results

4.4.1 Simulation Example

In order to see how well we can learn about the true process, we first illustrate the

fitting of models (4.21) and (4.25) with a simulated data set. In a study region D of

24×24 square miles shown as the central block in Figure 4.2, we simulate an initial

point pattern representing the locations of the existent houses in a city, and 16 con-

secutive years of growth. Figure 4.3 displays the growth of the simulated urban area,

where the first plot shows the existent houses at the time we start our observation,

and the other five show the locations of new houses in the next 5 successive years.

The data are simulated as follows. As in the real house construction data set, the

observed spatio-temporal point process is discrete in time (we use annual data here).

The point patterns in our simulation comprise locations of new buildings in each

year. The intensity for the development of these point patterns has the transition

model defined by (4.25), where we need three spatial processes r (s), K (s) and Λ0 (s),

s ∈ D. The initial intensity Λ0 (s), s ∈ D also generates the initial point pattern,

e.g. the locations of the existent houses when we start our observation.

In practice, we can only simulate the latent spatial processes at a finite number

of grid points. We therefore divide the region into 1600 (40×40) equally spaced grid

cells. In order to use the kernel convolution methods in Section 4.2.2, we put our

study region in a larger area Dr of 40×40 square miles (see Xia and Gelfand 2006 for

justifications for the selection of the area and grid). We overlay the region Dr with

a 10×10 grid at spacing of 4 miles and thus obtain 100 blocks shown in Figure 4.2,

each of which has an area of 16 square miles. The latent variables V r, V K and V Λ
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Figure 4.2: The region under study and the bigger area and grid for the kernel
convolution approximation (see Section 4.4.1).

are defined at the centroid (see Figure 4.2) of each square.

The latent variables r (m), K (m) and Λ0 (m) of each cell in D are defined in

(4.25). The log initial intensity log Λ0 (m) has a mean surface µΛ of the following

structure: if the centroid of m is less than 4 miles from the center of the entire

region, we let µΛ (m) = β1, otherwise we let µΛ (m) = β0, where β1 > β0. By

doing so, we generate a densely populated “downtown” area with the diameter of 4

miles, and less populated “suburbs”. The spatial random effect θΛ is assumed to be a

isotropic Gaussian process with Matérn class covariance function C (ψΛ, ξΛ, ν) defined

by (4.29). The vector of {θΛ (m), m = 1, . . . , 1600} is then simulated using the kernel
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Figure 4.3: Existing houses at time 0 and new houses constructed in 5 successive
years for the simulated example.

convolution method with the corresponding Matérn kernel. We assume log r (m) has

a homogeneous mean µr and θr has a Matérn class covariance C (ψr, ξr, ν). Finally

logK (m) has the homogeneous mean µK and θK has a Matérn class covariance

C (ψK , ξK, ν). {θr (m) and θK (m), m = 1, . . . , 1600} are also simulated using the

kernel convolution method. The actual values of these parameters are presented in
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Table 4.2. We fix the smoothness parameter ν to be 3
2
.

At the centroid of each cell m, we use the simulated r (m), K (m) and Λ0 (m) and

the transition equation (4.24) recursively to obtain the intensity ∆Λj (m) for each of

the following years. Within each cell, we simulate the points using a Poisson process

with homogeneous intensity equal to ∆Λj (m). We simulate the initial point pattern

with intensity Λ0 (m) and then 16 point patterns with ∆Λj (m), j = 1, . . . , 16. We

use the initial point pattern and the next 15 to fit our model and leave the 16th

period out for prediction and model validation. Table 4.1 summarizes the number of

points in each of the following years.

Year Initial One Two Three Four Five Six
# of houses 4914 224 236 227 214 226 237
Year Seven Eight Nine Ten Eleven Twelve Thirteen
# of houses 262 267 261 286 293 300 309
Year Fourteen Fifteen Sixteen
# of houses 311 341 347

Table 4.1: Number of new houses in 16 years.

We fit the discretized model with the same 40×40 grid to the data obtained above.

We use very vague priors for the parameters in the mean function. Because ψ and

ξ are weakly identified (Zhang 2004), we only use vagues prior for ψ(·)’s and very

informative priors for ξ(·)’s:

π (β0) , π (β1)
ind
∼ N

(

0, 10−8
)

; π (µr) ∼ N
(

0, 108
)

; π (µK) ∼ N
(

0, 108
)

;

π (ψΛ) ∼ log-N
(

0, 108
)

; π (ψK) ∼ log-N
(

0, 108
)

; π (ψr) ∼ log-N
(

0, 108
)

;

π (ξΛ) ∼ log-N (−2.5, 2) ; π (ξK) ∼ log-N (−2.5, 2) ; π (ξK) ∼ log-N (−2.5, 2) ;

where log-norm(−2.5, 1) has the mean=0.223 and variance=0.318.

Our posterior is proportional to (4.34) by the kernel convolution approximation.

We use the random-walk Metropolis-Hastings mentioned in Section 4.3.1 to simulate
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posterior samples. The algorithm is tuned to obtain acceptance rates close to the

theoretically optimal values in Robert and Casella (1999). We obtain 50,000 samples

from the algorithm and discard the first 20,000 as burn-in. For the posterior inference,

we use 3,000 subsamples from the remaining 30,000 samples, with a thinning equal

to 10. The posterior median and 95% equal-tail quantile for the model parameters

are presented in Table 4.2. Evidently we are recovering the true parameter values

very well. Figure 4.4 displays the contour plot of the posterior median surfaces for

the initial intensity, growth rate and carrying capacity, compared with the actual

surfaces. Up to the uncertainty in the model we seem to approximate the actual

intensity surface quite well.

Model Parameters True Value Posterior Median 95% Equal-tail Interval
β0 3.0 2.998 (2.815, 3.211)
β1 1.0 0.897 (0.741, 1.091)
µr −3.0 −2.991 (−3.135,−2.855)
µK 5.0 5.011 (4.844, 5.188)
ψΛ 2.0 × 10−3 2.37 × 10−3 (1.62 × 10−3, 3.23 × 10−3)
ψr 1.0 × 10−3 1.35 × 10−3 (9.07 × 10−3, 1.95 × 10−3)
ψK 1.0 × 10−3 7.46 × 10−4 (7.91 × 10−5, 2.18 × 10−3)
ξΛ 0.2 0.204 (0.171, 0.251)
ξr 0.2 0.288 (0.21, 0.376)
ξK 0.6 0.241 (0.148, 0.505)

Table 4.2: Simulation example parameters and their posterior inference.

We use the Bayesian prediction in Section 4.3.2 to obtain the predictive distri-

butions for the intensity ∆ΛJ+1 (m) in each cell. In Figure 4.5 we display the true

intensity surface at period J + 1 = 16 and the predictive intensity surface, using the

medians of the predictive samples for ∆ΛJ+1 (m), m = 1, . . . ,M . We can see the

prediction captures the major spatial variation of the actual intensity surface.
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Figure 4.4: Actual and posterior-median initial intensity, growth rate and carrying
capacity in the simulated example.
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Figure 4.5: Actual and predicted intensity surfaces for period J+1 in the simulated
example

4.4.2 Residential House Construction Data for Irving, TX

Our real house construction data consist of the geo-coded locations and years of the

newly constructed residential houses in Irving, TX from 1901 to 2002. Figure 4.1

demonstrates how the city develops from early 1950’s to late 1960’s. It seems that
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Figure 4.6: New residential houses constructed in Irving, TX from 1952 to 1957.

Irving started to develop after WWII. The current outline of the city is not much

different from that of late 1960’s because city had been almost fully developed by

the early 1970’s. For our data analysis, we select the period from 1951 through 1968
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when the urban development was substantial. The number of new residential houses

for each of the 18 year is recorded in Table 4.3. Figure 4.6 shows the geographical

distribution and locations of new houses in six consecutive years (1952–1957) during

that period. In our analysis, we use the data for year 1951–1966 to fit our model and

leave year 1967 and 1968 out for prediction and model validation.

Year Before 1951 1952 1953 1954 1955 1956 1957
# of houses 1957 747 1006 1288 1332 807 629
Year 1958 1959 1960 1961 1962 1963 1964
# of houses 910 759 950 918 860 954 1034
Year 1965 1966 1967 1968
# of houses 851 531 654 583

Table 4.3: Number of new houses from 1952 to 1968.

As shown in the central block of Figure 4.7, our study regionD in this example is a

square of 5.6×5.6 square miles with Irving, TX in the middle. This region is selected

to exclude other urban areas of Dallas county. We divide the region into 2500 (50×50)

equally spaced grid cells. In order to use the kernel convolution approximation, we

put our study region in the middle of a larger area Dr of 10×10 square miles. We

again overlay the region by a 10×10 grid at spacing of 1 mile and define the latent

variables V r, V K and V Λ at the centroids (centroids shown as small circles in Figure

4.7) of the resulting 100 blocks.

The log initial intensity, log Λ0 (m), in this case is assumed to have a constant

mean surface µΛ. We also assume a constant mean, µr, for the log growth rate

and µK for the log carrying capacity. θΛ, θr and θK have Matérn class covariance

C (ψΛ, ξΛ, ν), C (ψr, ξr, ν) and C (ψK , ξK, ν) respectively, with ν equal to 3
2
.

We again use very vague priors for the parameters in the mean function. For

the same reason as in the simulated example, we only use vague priors for ψ(·)’s and
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Figure 4.7: The gridded study region encompassing Irving, TX and the bigger area
for the kernel convolution approximation.

informative priors for ξ(·)’s:

π (µΛ) ∼ N
(

0, 10−8
)

; π (µr) ∼ N
(

0, 108
)

; π (µK) ∼ N
(

0, 108
)

;

π (ψΛ) ∼ log-N
(

0, 108
)

; π (ψK) ∼ log-N
(

0, 108
)

; π (ψr) ∼ log-N
(

0, 108
)

;

π (ξΛ) ∼ log-N (0.5, 1) ; π (ξK) ∼ log-N (0.5, 1) ; π (ξK) ∼ log-N (0.5, 1) ;

We use the same random-walk Metropolis-Hastings algorithm as in the simulation

example to simulate posterior samples with the same tuning of acceptance rates. We

obtain 250,000 samples from the algorithm and discard the first 100,000 as burn-

in. For the posterior inference, we use 5,000 subsamples from the remaining 150,000

samples, with a thinning equal to 30. The posterior mean, median and 95% equal-tail
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quantile for the model parameters are presented in Table 4.4. Figure 4.8 displays the

contour plot of the posterior median surfaces for the initial intensity, growth rate and

carrying capacity.

Model Parameters Posterior Mean Posterior Median 95% Equal-tail Interval
µΛ −0.6464 −0.5764 (−1.2540,−0.2013)
µr −2.6467 −2.6458 (−2.8476,−2.4582)
µK 2.7747 2.6049 (1.7955, 4.5789)
ψΛ 1.3456 1.3578 (1.1964, 1.5210)
ψr 3.2675 3.2839 (2.9858, 3.4921)
ψK 35.4332 38.0502 (0.7739, 67.4488)
ξΛ 0.04231 0.04399 (0.03765, 0.05109)
ξr 0.4765 0.4808 (0.3119, 0.6320)
ξK 0.6429 0.6578 (0.4197, 0.8953)

Table 4.4: Posterior inference for Irving, TX data

In Figure 4.9 we display the predictive intensity surface in year 1967 and 1968,

using the medians of the predictive samples for ∆ΛJ+1 (m), m = 1, . . . ,M . We also

overlay the actual point patterns in 1967 and 1968 on the predictive intensity surface.

Figure 4.9 shows our model can forecast the major areas of high intensity, hence high

growth very well.

4.5 Discussion

In our data analysis, we apply the parsimonious model (4.21) without the time-

varying growth rate to a simulated example and the Irving, TX data. In the short

term, when the fundamental elements in the structured model are stable, this is

advantageous as we demonstrate its functionality through the real house construction

data for Irving, TX. In the long term, the growth rate r (t, s) is expected to change,

and therefore we will have to employ model (4.14) for the growth rate. But in this

case, the more complicated model can be fitted since many more periods of data
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Figure 4.8: Posterior-median initial intensity, growth rate and carrying capacity in
the Irving, TX example.

will be available. Of course, (4.14) is only an idealized model for the growth rate,

presuming a stable mean and stationary process in both time and space. However, if

the damping effect of growth is controlled by the logistic model, it is not unreasonable

to assume the growth rate is mean-reverting. Additionally the logistic model, in a

fixed functional form, may be too restrictive as well as the time-independent carrying

capacity. These issues will be considered in future research.
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Figure 4.9: Predicted intensity surfaces and actual point patterns for year 1967 and
1968 in the Irving, TX example.

We demonstrate in our data analysis that the Bayesian hierarchical model can

preserve the complicated model structure and achieve good estimation and predic-

tion. The major challenges in fitting our proposed model are: (i) the handling of a

large data set that has thousands of spatially correlated observations; (ii) the eval-

uation of a likelihood that involves stochastic integrals to be approximated with

discretization; and (iii) a likelihood that does not allow an easy formulation of an
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efficient Metropolis-Hastings algorithm. In dealing with first two challenges, we use

the process-convolution approximation in Xia and Gelfand (2006) and the discretiza-

tion method in Benes et al. (2002). Though the simulation results are encouraging,

further investigation of these approximations or alternatives would be helpful. For

(iii), we apply the random-walk Metropolis algorithm to the posterior simulation,

which is liable to create large auto-correlation in the sampling chain. The nonlinear

and recursive structure of our likelihood makes most of the current Metropolis meth-

ods inapplicable, encouraging future research for a more efficient Metropolis-Hastings

algorithm for this class of problems.

Despite all these concerns, the current model is the first attempt to incorporate a

structured growth model into a spatial-temporal point process. The structured model

and its statistical inference affords valuable insights into the mechanism of the urban

development problem. We hope our approach will spark more research related to the

integration of scientific mechanisms and statistical models, and the development of

novel statistical methodologies in this field.
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Appendix A

Gibbs Sampler for the GSDP Models

1. Full conditionals for the Z’s.

To write the full conditionals for the Z’s, we first write the conditional distributions

[Zt,l(si)|Zt,l(sj), j 6= i, µl, η] ∼ N(µ̃it,l , H̃i(η)),

for all i = 1, . . . , n, l = 1, . . . , K − 1, t = 1, . . . , T , where

µ̃it,l = µl − hi(η)
TH−1

(−i)(η)Z
(−i)
t,l ,

H̃i(η) = 1 − hi(η)
TH−1

(−i)(η)hi(η),

in which hi(η) is the i-th column vector of Hn (η), H(−i)(η) the (n− 1)× (n− 1) sub-

matrix obtained fromHn (η) by deleting the i-th row and column, and Z
(−i)
t,l is the n−1

dimensional vector obtained from Zt,l by deleting the i-th element. Notice that both

µ̃it,l and H̃i(η) are scalars. Let us indicate with ψ = {Xt, β, θ
∗, τ 2, σ2, φ, µl, l > 1, η}

the vector of parameters of the model other than the Zt,l’s. Then, the full conditional

of Zt,l(si) is given by

[Zt,l(si)|Yt, Zt,l (sj) , Zt,m(si), m 6= l, j 6= i, ψ] ∝ [Zt,l(si)|Zt,l(sj), j 6= i, ψ]×

K
∑

m=1

exp

[

−
1

2τ 2

{

yt(si) −Xt (si)
T β − θ∗m(si)

}2
]

IZt,m(si),
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where Zt,m(si), m 6= l are all known. If Zt,m(si) ≥ 0, for some m < l, then

θt(si) = θ∗m(si) and Zt,l(si) is sampled directly from the unrestricted distribution

N(µ̃it,l , H̃i(η)).

Otherwise if Zt,m(si) < 0, for all m < l, the full conditional is a binary mixture of

truncated normals. If Zt,k(si) ≥ 0 for the first k > l, let

ω− = exp

[

−
1

2τ 2
{yt(si) −Xt(si)

Tβ − θ∗l (si)}
2

]

ω+ = exp

[

−
1

2τ 2
{yt(si) −Xt(si)

Tβ − θ∗k(si)}
2

]

,

and

πl =

ω− · Φ

{

µ̃i
t,l√

H̃i(η)

}

ω− · Φ

{

µ̃i
t,l√

H̃i(η)

}

+ ω+ · Φ

{

−
µ̃i

t,l√
H̃i(η)

} and πk =

ω+ · Φ

{

−
µ̃i

t,l√
H̃i(η)

}

ω− · Φ

{

µ̃i
t,l√

H̃i(η)

}

+ ω+ · Φ

{

−
µ̃i

t,l√
H̃i(η)

} .

The full conditional for Zt,l(si) is a mixture of two truncated normals. In partic-

ular, with probability πl, we sample Zt,l(si) from the truncated normal distribution

N(µ̃it,l , H̃i(η))I{Zt,l(si)≥0}; with probability πk, we sample Zt,l(si) from the truncated

normal distribution N(µ̃it,l , H̃i(η))I{Zt,l(si)<0}.

The modification for the full conditionals for the Z’s in the spatio-temporal dy-

namic model is as follows: for t = 1, follow the same steps as in the original sampler

of the independent-sample case. Suppose Zm,l, l = 1, ..K − 1; m = 1, . . . , t − 1 are

already sampled. Calculate ωm by Zm,l and θ∗l . For t, let ỹt = yt −
∑t−1

m=1 γ
t−mωm.

With ỹt replacing yt, follow the same steps as in the independent sampler to get Zt,l,

and calculate ωt.

2. Full conditional for the θ∗’s.

We can update all the θ∗’s at once for all locations. Let us consider at each point
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s ∈ D the partition induced on the space of the Z ’s by the allocation process, that

is, for t = 1, . . . , T and l = 1, . . . , K−1, consider the sets Zt,l(s) = {s ∈ D : Zt,1(s) <

0, . . . , Zt,l−1(s) < 0, Zt,l(s) ≥ 0}, and Zt,K(s) = {s ∈ D : Zt,1(s) < 0, . . . , Zt,K−1(s) <

0}. Then, I(Zt,l) = diag{IZt,l(s1), . . . , IZt,l(sn)} is the diagonal matrix whose i-th entry

is equal to one when the component l is chosen at location si. Immediately, the full

conditional for θ∗l = {θ∗l (s1), . . . , θ
∗
l (sn)} is given by

[θ∗l |Yt, Zt, t = 1, . . . , T, β, τ 2, σ2, φ] ∝

exp

{

−
1

2τ 2

T
∑

t=1

(yt −XT
t β − θ∗l )

T I(Zt,l)(yt −XT
t β − θ∗l )

}

exp

{

−
1

2σ2
θ∗Tl R−1

n (φ) θ∗l

}

Then, with Λ =
(

1
τ2

∑T
t=1 I(Zt,l) + 1

σ2R
−1
n (φ)

)−1

,

[θ∗l |Yt, Zt, t = 1, . . . , T, β, τ 2, σ2, φ] ∼ N

(

1

τ 2
Λ

T
∑

t=1

I(Zt,l)
(

yt −XT
t β
)

,Λ

)

.

Once we know θ∗l and Zt for all l = 1, . . . , K and t = 1, . . . , T , we can compute

each θt as a function of (θ∗l , Zt). The full conditionals for θ∗l ’s in the spatio-temporal

dynamical model are far more complicated. We are still able to update θ∗l at all

locations, but it has to be conditioned on all the other value θ∗j ’s with j 6= l.

For the dynamic linear model (2.17), we expand accumulated spatial random effect

Yt(s) = Xt(s)
Tβ +

t
∑

m=1

γt−mωm(s) + εt(s)

Then, if we write ωm as a function θ∗l ’s and Zt’s, we obtain

Yt(s) = Xt(s)
Tβ +

t
∑

m=1

γt−m
K−1
∑

j=1

I(Zm,j)θ
∗
j (s) + εt(s)
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Hence, the likelihood × prior can be written as proportional to

exp



−
1

2τ 2

T
∑

t=1

{

yt −
t
∑

m=1

γt−m
K−1
∑

j 6=l=1

I(Zm,j)θ
∗
j −

t
∑

m=1

γt−mI(Zm,l)θ
∗
l −XT

t β

}T

{

yt −

t
∑

m=1

γt−m
K−1
∑

j 6=l=1

I(Zm,j)θ
∗
j −

t
∑

m=1

γt−mI(Zm,l)θ
∗
l −XT

t β

}]

×

× exp

{

−
1

2σ2
θ∗Tl R−1(φ)θ∗l

}

.

Let us define

ỹt = yt −

t
∑

m=1

{

γt−m
K−1
∑

j 6=l=1

I(Zm,j)θ
∗
j

}

−XT
t β,

The expression above becomes

exp



−
1

2τ 2

T
∑

t=1

{

ỹt −

t
∑

m=1

γt−mI(Zm,l)θ
∗
l

}T {

ỹt −

t
∑

m=1

γt−mI(Zm,l)θ
∗
l

}



×

× exp

{

−
1

2σ2
θ∗Tl R−1(φ)θ∗l

}

,

from which we can deduce

[θ∗l |θ
∗
j (j 6= l) , zt, yt, βt, τ

2, σ2, φ] ∼ N

(

1

τ 2
Λ

T
∑

t=1

{

t
∑

m=1

γt−mI(Zm,l)

}

ỹt,Λ

)

,

with Λ =
[

1
τ2

∑T
t=1

{
∑t

m=1 γ
t−mI(Zm,l)

}2
+ 1

σ2R
−1(φ)

]−1

.

3. Full conditionals for β, τ 2, σ2, φ, µ and η.

Assume β ∼ Np(β0,Σ0). Then, [β|Xt, Yt, Zt, θt, τ
2] ∼ N(β̂, Σ̂β), where

Σ̂β =

(

1

2

T
∑

t=1

XT
t Xt + Σ−1

0

)−1

and β̂ = Σ̂β

{

1

2
XT
t (yt − θt) + Σ−1

0 β0

}
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.

4. Full conditional for τ 2.

Assume τ 2 ∼ IGamma(ατ , βτ ). Then [τ 2|Xt, Yt, θt, β] ∼ IG(α̃τ , β̃τ ) where

α̃τ = ατ +
nT

2
and β̃τ = βτ +

1

2

T
∑

t=1

(

yt −XT
t β − θt

)T (
yt −XT

t β − θt
)

.

5. Full conditional for σ2.

Assume σ2 ∼ IG(ασ, βσ). Then, [σ2|θ∗l , φ] ∼ IGamma(α̃σ, β̃σ) where

α̃σ = ασ +
nK

2
and β̃σ = βσ +

1

2

K
∑

l=1

θ∗Tl R−1
n (φ)θ∗l .

6. Full conditional for φ.

Depending on the prior [φ], the full conditional of φ can be sampled with a Metropolis

within Gibbs step

[φ|θ∗l , σ
2] ∼ [φ] × exp

{

−
1

2σ2

K
∑

l=1

θ∗Tl R−1
n (φ)θ∗l

}

.

7. Full conditional for µ.

Generally we must use a Metropolis step for µl, l = 1, . . .K − 1, unless the ν in

the Beta(1, ν) is equal to 1. Note that pr {Zl(s) ≥ 0} = Φ (µl) and pr {Zl(s) ≥ 0} ∼

Beta(1, ν) induce a prior for µl ∝ {1 − Φ (µl)}
ν−1 × exp

{

−1
2
µ2
l

}

. If ν = 1, the prior

for µl is but a normal distribution thus conjugate. The full conditional for µl is

[

µl|Z
l
t, η
]

∝ {1 − Φ (µl)}
ν−1 × exp

{

−
1

2
µ2
l

}

×

× exp

{

−
1

2

T
∑

t=1

(Zt,l − µl1n)
T H−1

n (η) (Zt,l − µl1n)

}
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8. Full conditional for η.

Depending on the prior [η], the full conditional of ψ can be sampled with a Metropolis

within Gibbs step

[η|Zt, µl] ∼ [η] × exp

{

−
1

2

T
∑

t=1

K−1
∑

l=1

(Zt,l − µl1n)
T H−1

n (η) (Zt,l − µl1n)

}

.
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Appendix B

Posterior Simulation for the SDP Disease

Mapping Models

Here, we provide the details for MCMC posterior simulation for the spatial and

spatio-temporal models discussed in Sections 2.1 and 2.4, respectively. In both cases,

the posterior of the model can be explored using a Gibbs sampler that combines stan-

dard MCMC techniques for DP mixtures (West et al. 1994; Bush and MacEachern

1996) with updates for the latent zit.

1. Spatial model

Under model (3.2), the full conditional for each zit can be expressed as

p(zit | ..., data) ∝ exp(−nit exp(zit))N(zit | µ+ θit + τ 2yit, τ
2).

We can sample from this full conditional introducing an auxiliary variable uit, with

positive values, such that

p(zit, uit | ..., data) ∝ N(zit | µ+ θit + τ 2yit, τ
2)1(0<uit<exp(−nit exp(zit))).

The Gibbs sampler is extended to draw from p(uit | zit, data) and p(zit | uit, ..., data).

The former is a uniform distribution over (0, exp(−nit exp(zit))). The latter is a
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N(µ+ θit+ τ 2yit, τ
2) distribution truncated over the interval (−∞, log(−n−1

it log uit)).

Alternatively, adaptive rejection sampling can be used to draw from the full condi-

tional for zit noting that its density is log-concave.

Having updated all the zit, the mixing parameters θt, t = 1, ..., T , and hyperpa-

rameters µ, τ 2, σ2, φ, can be updated as in the spatial DP mixture model, with zt

playing the role of the data vector yt. (We refer to the Appendix in Gelfand et al.

2005 for details.) All these updates require computations involving the matrix Rn(φ).

To approximate the entries of this matrix, we use Monte Carlo integrations based

on sets of locations distributed independently and uniformly over each region Bi,

i = 1, ..., n. Note that, with the discrete uniform prior for φ, these calculations need

only be performed once at the beginning of the MCMC algorithm.

2. Spatio-temporal model

The posterior for model (3.5) is given by expression (3.8). The form of the full

conditionals for the zit is similar to the one for the spatial model, and, thus, ei-

ther auxiliary variables or adaptive rejection sampling can be used to update these

parameters.

For each t = 1, ..., T , the full conditional for ηt,

p(ηt|..., data) ∝ p(ηt|{ηj : j 6= t}, σ2, φ)
T
∏

`=t

Nn(z`|d` + ν`−tηt, τ
2In)

where d` = (β0 +β1`)1n +
∑`

m=1,m6=t ν
`−mηm, ` = t, ..., T . The product term above is

proportional to a Nn(ηt|µt,Σt) density, with µt = (
∑T

`=t ν
2(`−t))−1

∑T
`=t ν

`−t(z` − d`)

and Σt = τ 2(
∑T

`=t ν
2(`−t))−1In. Let T ∗− be the number of distinct ηj in {ηj : j 6=

t}, η∗−j , j = 1, ..., T ∗−, be the distinct values, and T−
j be the size of the cluster

corresponding to η∗−j . The prior full conditional p(ηt|{ηj : j 6= t}, σ2, φ) is a mixed

distribution with point masses T−
j (α + T − 1)−1 at the η∗−j and continuous mass
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α(α + T − 1)−1 on the Nn(0, σ
2Rn(φ)) distribution. Hence, p(ηt|..., data) is also a

mixed distribution with point masses, proportional to T−
j qj, at the η∗−j and continuous

mass, proportional to αq0, on an n-variate normal distribution with covariance matrix

Ht = (Σ−1
t + σ−2R−1

n (φ))−1 and mean vector HtΣ
−1
t µt. Here, qj is the value of the

Nn(µt,Σt) density at η∗−j , and

q0 =

∫

Nn(u|0, σ
2Rn(φ))Nn(u|µt,Σt)du,

an integral that is available analytically.

Updating σ2 and φ proceeds as in the spatial model. The full conditional for τ 2 is

an inverse gamma distribution, and β0 and β1 have normal full conditionals. Finally,

working with a discrete uniform prior for ν, we sample directly from its discretized

full conditional.
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Itô, K. (1984), Foundations of Stochastic Differential Equations in Infinite Di-
mensional Spaces, Philadelphia: Society for Industrial and Applied Mathemat-
ics.

Karatzas, I. and Shreve, S. (1991), Brownian Motion and Stochastic Calculus,
New York: Springer Verlag, 2nd ed.

119



Karr, A. (1991), Point Processes and Their Statistical Inference, New York:
Marcel Dekker, 2nd ed.

Kelsall, J. and Wakefield, J. (2002), “Modeling spatial variation in disease risk:
a geostatistical approach,” Journal of the American Statistical Association, 97,
692–701.

Kent, J. (1989), “Continuity properties of random fields,” Annals of Probability,
17, 1432–1440.

Knorr-Held, L. and Rasser, G. (2000), “Bayesian detection of clusters and dis-
continuities in disease maps,” Biometrics, 56, 13–21.

Kot, M. (2001), Elements of Mathematical Ecology, Cambridge Press.

MacEachern, S. (2000), “Dependent Dirichlet processes,” Tech. rep., Depart-
ment of Statistics, The Ohio State University.

MacEachern, S. and Müller, P. (1998), “Estimating mixture of Dirichlet process
models,” Journal of Computatioanl and Graphical Statistics, 7, 223–238.

Militino, A., Ugarte, M., and Dean, C. (2001), “The use of mixture models for
identifying high risks in disease mapping,” Statistics in Medicine, 20, 2035–2049.

Møller, J., Syversveen, A., and Waagepetersen, R. (1998), “Log Gaussian Cox
processes,” Scandanavian Journal of Statistics, 25, 451–482.

Møller, J. and Waagepetersen, R. (2004), Statistical Inference and Simulation
for Spatial Point Processes, Chapman and Hall/CRC Press.

Neal, R. (2000), “Markov Chain sampling methods for Dirichlet process mixture
models,” Journal of Computational and Graphical Statistics, 9, 249–265.

Ogata, Y. (1998), “Space-time point-process models for earthquake occur-
rences,” Annals of the Institute for Statistical Mathematics, 50, 379–402.

Oksendal, B. (2002), Stochastic Differential Equations, New York: Springer Ver-
lag, 5th ed.

Palacios, M. and Steel, M. (2004), “Non-Gaussian Bayesian geostatistical mod-
eling,” Warwick Statistics Research report 426, University of Warwick.

120



Pascutto, C., Wakefield, J., Best, N., Richardson, S., Bernardinelli, L., Staines,
A., and Elliott, P. (2000), “Statistical issues in the analysis of disease mapping
data,” Statistics in Medicine, 19, 2493–2519.

Robert, C. and Casella, G. (1999), Monte Carlo Statistical Methods, New York:
Springer Verlag, 1st ed.

Rossi-Hansberg, E. and Wright, M. (2005), “Urban structure and growth,”
NBER Working Papers 11262, National Bureau of Economic Research, Inc.

Sampson, P. and Guttorp, P. (1992), “Nonparametric estimation of nonstation-
ary spatial covariance structure,” Journal of the American Statistical Associa-
tion, 87, 108–119.

Schach, S. (1971), “Weak convergence results for a class of multivariate Markov
processes,” Annals of Mathematical Statistics, 42, 451–465.
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