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Abstract

An approach is presented which allows the incorporation of application�speci�c modi�

�cations to a general hierarchical shape deformation model� The general methodology

models the perception of labeled points� or facets� across an image class through a

joint distribution on facet position and image feature value� The modi�cation in�

troduces a set of parameters which represents the relative overall size of an image

scene directly into the statistical model for the deformation� Through this� a more

	exible and descriptive model is achieved without introducing an unmanageable com�

putational burden� The methods are applied to and the modi�cations based on the

application cardiac gated single photon emission computed tomography 
SPECT��

For this modality� a contraction factor and a center of contraction have real physi�

cal signi�cance and are therefore included in the modeling� Results consistent with

known heart behavior are seen for these quantities as well as for clinical quantities

derived from the estimation results� A meaningful representation of the timeseries

set of data is shown and improved results over traditional methods are seen� The

method is also tested on two phantom datasets� one clinical and one mathematical�

in order to quantify the ability of the method to track shapes and individual points�

and good correspondence with known truth is seen� The methodology as described

in detail is useful for any situation where automatic scaleability is useful� It also of�

fers an instructive example of how the general hierarchical shape deformation model

can be extended to incorporate application�speci�c information within the natural

structure of the statistical model�
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Chapter �

INTRODUCTION

��� General Overview

The utility of statistical models in imaging has been established over the past decades�

Recently� methods which utilize deformable structures have made great advances in

the sub��eld which can be labeled image understanding� This area is distinguished

from the related �elds of image restoration� reconstruction and enhancement through

the notion that a more conceptual structure relating to the image information is in�

corporated into the modeling� For instance� most restoration models are based on

either physical image generation models or models which treat the image informa�

tion as signal in a noisy background� with the goal to remove the noise� In image

understanding methods� the image is typically taken as is� and the focus is on the

perception of the image� that is� how can the image be analyzed so as to maximize

the utility of the information we derive from the data� In that sense� the �eld is

closely related to computer vision and other pattern recognition methodology� Note

that image processing methods of the enhancement� restoration and reconstruction

methods can be used as integral parts of or pre�processing for an image understanding

method� A skeleton example of how an image understanding method might ideally

�



work is to imagine an image class for which an atlas is de�ned� If a method ex�

isted which automatically could map one part of the image scene to the same part

in the atlas� all operations performed on the atlas could be automatically transferred

to the new realization� This could include segmentation� volume measurements or

descriptive summaries of object shape deformation�

The applications for such methods are numerous� a short list includes automatic

segmentation of medical images such as brains for diagnostic purposes� shape analysis

for industrial quality control and image�based person recognition systems� A partic�

ular type of deformation problem� treated in detail here� is that of images containing

a time�varying structure with a well�known large�scale behavior�

The imaging modality gated cardiac single photon emission computed tomogra�

phy 
gated cardiac SPECT� consists of a sequence of images which� taken together�

provide both strong evidence of where in the heart tissue might or might not be

functioning properly and also rich data about the motion of the heart� both in global


overall shape� and local 
where did certain parts of tissue move�� terms� To use this

data properly� however� the motion of points in and around the heart needs to be

estimated� and that gives the deformation models described in this thesis real util�

ity for this imaging problem� Because several things are known about the expected

motion of the heart� information can be incorporated into the model directly� It is

also of vital importance that the complexity of the model is kept at a level which is

computationally feasible� such that the potential for clinical implementation is main�

tained� The methodology applied grows naturally out of previous work in spatial

statistics� computer vision and medical imaging as described below� and is based on

the hierarchical deformation modeling as described in McCulloch 
������

�



��� Thesis Organization

Related methods and historical background will be discussed in Chapter � together

with an exposition of the medical modality from which our image data has been

provided� Following this� our methodology is described and developed in detail� First�

the baseline model is de�ned� followed by the modi�cations made to accomodate the

current application� The computational techniques used to maximize and sample

the resulting predictive probability distribution are then described� after which a few

measures of performance are explained� In the following chapter� Chapter �� the

particular datasets the methodology was applied to are described� This is followed

immediately by the results� organized as qualitative followed by quantitative� The

former dominates in volume� because of the impossibility of obtaining truth regarding

real patient data� Since the patient is alive� the true motion of heart tissue can not be

physically ascertained through markers or direct measurements� More quantitative

analysis is performed� however� on two phantom datasets for which some truth is

known� and these results immediately follow the patient data� Finally� results are

summarized and discussed� and future extensions of the methodology are proposed�

�



Chapter �

BACKGROUND

The �eld of image analysis as applied to medical imaging has grown out of several av�

enues of research� Most notable and relevant to the work presented here are the �elds

of computer vision research and statistical image analysis� While this methodology

clearly falls in the latter category� it has enough similarities to computer vision meth�

ods and has borrowed some particular ideas from that �eld which makes a description

and comparison appropriate�

��� Computer Vision Methods

These methods are fundamentally based on the notion of making a computer capable

of seeing� that is� perceiving an image scene in a sense similar to that of a human� Hu�

man vision research by Young 
����� indicates that the human eye in many aspects

acts as a Gaussian �lter bank� and thus the idea of a hierarchical Gaussian convo�

lution pyramid gained acceptance as a viable candidate for human vision modeling�

Particularly� the �eld of scale�space analysis grew out of this insight�

�



����� Scale�Space

The concept of scale�space is based on the idea that we perceive objects and image

scenes at di
erent scales or resolutions� 
See Lindeberg 
����� for a full description��

Thus� it makes sense to blur out irrelevant details when considering an image at a

certain scale� To achieve this algorithmically� let I
x� t� be the 
n � ���dimensional

extension of an n�dimensional image created by convolving the original image I
x� t �

�� � I
x� with a Gaussian kernel of variance t�� G
�� t� � e�
x�

�t� � Then� de�ne the

scale�space as

I
x� t� � I
x� �G
�� t� �

Z �

y���

I
y�G
x� y� t�dy � t � � � 
����

Under this de�nition� then� we can think of objects in the image as having inherent

scales associated with them� To see this� consider the spatial Laplacian

LI
ii
x� t� �

nX
i��

�
��

�x�i

�
I
x� t� 
����

across scales� This quantity has been shown to relate to �middleness� 
ter Haar Romeny

et al�� ����� in an image or object� that is� a local maximum or minimum corresponds

to a center for regions of high or low intensity� respectively� For example� in a face�

the nose exists at a lower scale than the face as a whole� and when tracing the scale�

space Laplacian Lii this will give rise to a local maximum at the center of the nose

at some scale tn and to another local maximum for the face as a whole at some scale

tf � tn 
for the scale�space of a facial image� see Figure �����

Many other scale�space quantities of interest exist and have been studied 
for

an excellent exposition� see ter Haar Romeny 
������� for example boundariness�

cornerness and higher�order invariants� The scale�space concept has been the subject

or tool of choice for many relevant image analysis methods in computer vision� An

example of a simple and direct application is seen in Lifshitz and Pizer 
������ where

�



(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure �
�� An image of a face observed at several scales� From left to right� top to
bottom� scale t 
in pixels� is 
a� original 
b� � 
c� � 
d� � 
e� �� 
f� �� � In addition�
the Laplacian at scale 
g� � and 
h� � is shown� Here� the mouth has an associated
scale of approximately �� the eyes nad nose are dominant at scale approximately
�� and the face as a whole is associated with scale approximately ��� We also see
how the zero�scale Laplacian acts as a simple edge detector and how the higher�scale
Laplacian operator focuses in on �blobs� of high and low intensity in the image�

�



	owlines in scale�space 
isointensities of Laplacian� for instance� are traced spatially

through scale towards zero 
the original image� and used as a basis for segmenting

regions of interest in the images�

More relevant to our methodology� the scale�space of an image has been used for

hierarchical maximization of objective functions ranging from individual image region

segmentation 
encourage regions of smoothness within boundaries� to atlas mapping

methods 
encourage similarities between matching anatomical locations on the two

images�� These methodologies typically utilize a model structure which in physical

terms can be thought of as an external force 
the image data� being weighed against

an internal force 
model�imposed structure or regularization��

����� Multiscale Registration Algorithm � ANIMAL

A very good example of atlas mapping methodology is seen in the ANIMAL algorithm

developed by Collins et al 
������ They utilize a hierarchy of grids and the scale�space

of an image to perform a constrained maximization which matches images to an atlas

for the relevant image modality� This is done by de�ning the objective function

O
x� y� t� �
X

�x��Cx�y��Cy�

A
x�� t�I
y�� t� 
����

where x is the coordinate in the atlas A� y is the corresponding grid position in

the image under consideration I� and t the current scale for grid maximization� Cx

is a neighborhood of prede�ned extent about the point x� For each level in the

hierarchy this correlation measure between local features is maximized with respect

to grid deformation 
location of grid points in new image� site by site much like in

the statistically based iterated conditional modes algorithm 
ICM� 

Besag� ������

see Section ��� for a more complete explanation�� The maximization is performed

subject to regularization constraints� such that the full deformation indicated by the

�



objective function O is relaxed by a factor � towards the mean deformation in the

neighborhood of a site on the grid�

d� � �d � 
�� ��
�

NC

X
C

d � 
����

Here� d is the full estimated deformation vector� d� the regularized value� C a set of

neighboring site for the d being considered and NC the number of neighbors� After

completing maximization for a level� the resulting deformation estimates d� are then

used as a starting point for the next �ner resolution level� The process is repeated

until heuristic convergence is seen� These methods have produced good results for

human brain mapping 
��dimensional magnetic resonance imaging� in the context of

automatic atlas�based segmentation�

����� Active Contour Models

Another approach to segmentation applied both with and without the scale�space

framework� as well as being an example of external�internal force maximization is

the so�called active contour approach used for example by Kass et al 
����� and

McEachen and Duncan 
������ This methodology uses the concept of �tting a smooth

contour to a boundary in an image by maximizing the perpendicular gradient or a

similar measure along the contour while de�ning a regularity condition in the form

of a smoothness constraint on the curve� One such constraint would be to impose

smoothness in the directional derivative along the contour� Using a two�dimensional

example 
Kass et al�� ������ consider the maximization of the functional

E
v� � S
v� � P 
v� � 
����

of a contour v
s� � 
x
s�� y
s�� where the internal energy term S is de�ned as

S
v� �

Z �

�

fw�
s�k
�v

�s
k� � w�
s�k

��v

�s�
k�dsg � 
����
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and the external energy term P is taken as

P 
v� �

Z �

�

P 
v
s��ds� P 
x� y� � �ckrI
x� y� t�k � 
����

Here� r is the ��dimensional gradient operator� This particular setup would encour�

age the �snake� to �nd boundaries� with the internal energy term encouraging the

curve to bend smoothly� This approach can be extended to � dimensions by using

similarly de�ned deformable surfaces� see for example Clarysse et al 
����� or Park

et al 
������ This has produced interesting results� particularly in situations where

there are relatively clear boundaries to be found 
e�g� brain ventricles��

��� Statistical Image Analysis Methods

Since the method proposed here is statistical in nature� it is reasonable to start with

the beginning of statistical image analysis� mentioning some of the key developments�

before moving on to the speci�c areas particularly relevant to the methodology at

hand�

����� Origins and Markov Random Fields

The current �eld of statistical image analysis owes much to the work of Julian Be�

sag who �rst presented the idea of specifying statistical lattice models conditionally


Besag� ������ Through this� he outlined the necessary ingredients for the Markov

Random Field 
MRF� 
Dobrushin� ����� as applied to statistical imaging and related

subsequent developments� This involves the realization� through the Hammersley�

Cli
ord theorem�� that given appropriate constraints� a valid model can be speci�ed

via potential functions V 
x�� � � � � xn� so that the full conditional distributions are

completely speci�ed by a set of functions which each depend on only a limited subset

�named for an unpublished ���� paper by Hammersley and Cli�ord

�



of variables in the model� Referring to Besag 
����� for the proof itself� the joint

speci�cation on variable vector x � 
x�� � � � � xn� given parameters �� expressed as

p
x�� � � � � xnj�� � Z��
�� exp

�
MX
m��

Vm
xim � ��

�
� 
����

will give rise to a valid joint distribution as long as certain conditions� given in

the paper 
Besag� ������ are met� Here� the Vm are a limited number of potential

functions which depend only on interactions between the variables xim � x� and Z is

the partition function� also known as the normalizing constant� which is independent

of x� M is the number of cliques in the model� that is� the total number of interaction

terms speci�ed between the various elements of x�

This representation enables e�cient computation in situations where joint speci�

�cation would be far too complex or computationally intensive to implement� In this

representation� each variable can be updated or maximized based only on a subset of

the other variables in the model� Marginally� of course� there can be signi�cant corre�

lations between all variables� These correlations can� in fact� in some cases seriously

a
ect the computational performance when using the MRF conditional speci�cation


slow exploration of the supported parameter space��

����� Implementation

Besag also outlined many practical aspects of implementing MRFs� such as the

method of Iterated Conditional Modes 
ICM� 
Besag� ������ in which the value of

each variable is set iteratively to the value which gives a maximum of its full con�

ditional distribution� This algorithm is guaranteed to converge to at least a local

maximum of the joint distribution on x� Updating is done according to the iterative

setup

f�i � I � max
xi

p
xijx�i� � max
xi

p
xijxci�g� 
����

��



where i is the index of the current variable or variables under consideration and I is

the full set of indices in the model� The variable x�i is the full set of variables except

for xi� and xci denotes the subset of x which is in the neighborhood of xi� that is�

which has interactions with xi directly through the model speci�cation� be it MRF

or otherwise� The maximization is cycled several times through all the variables until

convergence is obtained�

To ensure global convergence� other methods such as simulated annealing 
Kirk�

patrick et al�� ����� must be used� In simulated annealing� a temperature parameter

T is de�ned which expresses a smoothing applied to the probability distributions�

This terminology is drawn from thermal physics� where such a parameter is used

to characterize ensemble particle motion 
statistical mechanics�� In this context� we

maximize 
p
x����T rather than p
x� iteratively over x� and an outer loop is included

in the algorithm in which T is allowed to cool towards zero� Given a slow enough

schedule of cooling� this converges surely to the global maximum of p� but there is

no guarantee of convergence in a reasonable amount of time� In many problems�

therefore� estimating a �good� local maximum of the joint distribution is the only

option available due to the complexity of the problem� Simulated annealing was �rst

proposed for the imaging problem by Geman and Geman 
������ In the same paper�

they proposed the Gibbs sampler as a tool of choice for updating and maximization

in lattice problems� cast as an alternative or complement to the already popular

Metropolis algorithm�

The Metropolis algorithm or its extension� the Metropolis�Hastings algorithm


Metropolis et al�� ����� Hastings� ������ works on the principle that we obtain sam�

ples y from a true distribution �
y� by generating candidates from a distribution p
y�

which is easy to sample from 
e�g� the normal� and then accepting or rejecting that

��



sample with probability q 
for symmetric proposal distributions� p
yijyj� � p
yjjyi��

q � min

�
��
�
yi���

�
yi�

�
� 
�����

For asymmetric proposals p 
i�e� p
yijyj� �� p
yjjyi��� this is modi�ed slightly via a

so�called Hastings correction� to

q � min

�
��
�
yi���p
yijyi���

�
yi�p
yi��jyi�

�
� 
�����

The Gibbs sampler can be seen as a special case of this� where you know and

can sample directly from �� such that p
yi� � �
yi�� which� as is intuitively obvious�

leads to always accepting the proposed value� Note that �
yi� can depend on other

variables in the model 
conditioning suppressed for compactness when writing out

equations�� such that the bene�t of the conditional speci�cation of the MRF still can

be taken advantage of fully� The Gibbs sampler is thus just the sequential updating

of the variables in the model directly using known full conditional distributions from

which we are able to generate samples�

From the above� it is obvious that the computational e�ciency of the applica�

tion of these methods depends critically on the form of the distributions� whether

the joint or full conditional form is being used� In that context� the idea of data

augmentation� as described well in the general modeling sense in Tanner 
������ has

become important in �elds like medical imaging� The idea is to introduce underlying

unobservables in order to make the model more straightforward in implementation

and statistical structure� if somewhat less compact� For example� the relationship

between underlying image formation parameters 
attenuation� mean radiation� and

the observed image recorded can be quite complex� If an intermediary set of param�

eters representing the radiation from a certain position directed towards a particular

image location is introduced� then the resulting model structure can be �t into a

more standard analysis and implementation becomes much more straightforward�

��



����� Classes of Imaging Problems

A clear distinction should be drawn here between classes of imaging�related problems

and the corresponding motivation and models� Early on in the �eld� most work was

performed in image enhancement or restoration� In these problems� the task was

to modify the intensities of the original image to make the pictures clearer or make

certain features stand out� This typically involved a physical model for the image

likelihood p
yjx�� where y is the image data and x is the true parameter describing

the image� Priors p
x� are then de�ned in an MRF representation to enforce local

noise contraints of the type given by the potential function 
referring back to equation


�����

V 
xi� xj� � �
xi � xj�
� � 
�����

where xi and xj are adjoining pixels in a ��dimensional image� for instance� The

posterior estimate of x could then be obtained from the product of the two through

Bayes rule� p
xjy� � p
yjx�p
x�� More complex potentials V have been developed� of

course� but the spirit remains the same� to use the MRF structure to regularize the

image scene towards behavior which we expect a priori�

There has also been much statistical work in image reconstruction� a �eld which

concerns itself with the creation of an n�dimensional image from 
n� ���dimensional

projections� Except for the more complicated physical model 
the compilation of re�

constructions from the projections to obtain the image scene�� this �eld was also dom�

inated by incorporation of physical image formation models and noise�constraining

regularization� A good example of recent methodology cast in the Bayesian frame�

work can be found in Higdon et al 
������

Extensions and further work in such statistical image analysis are too numerous to

fully describe here� One of many excellent reviews is available in Besag et al 
������

One particularly notable extension is that suggested in the previously mentioned

��



paper by Geman and Geman 
������ For purposes of segmentation� that is� to allow

sudden changes in intensities as correspond to region boundaries� they introduce so�

called line�sites which exist between pixel sites and determine whether a site is a

neighbor 
line�site set to �� of its nearest sites or not 
line�site value ��� This gives

rise to a somewhat complex distribution with normalizing and stability problems�

Johnson et al 
����� proposed a modi�ed version of this approach with continuous�

valued line�sites 
line�sites valued on the interval ��� ����

Johnson 
����� also later introduced a model for segmentation based on hierarchi�

cal thinking� Priors for image regions were speci�ed hierarchically through potential

functions de�ned on the entire graph 
all sites� as a function of the number of distinct

regions� This was done to penalize a high number of regions� thus eliminating spuri�

ous region formation� In addition� a more local portion of the prior was de�ned on

cliques formed as �rings� around a given site at a certain selected radius� This por�

tion was designed to discourage breaks in labels around that ring� thus encouraging

regions of size at least the diameter of the ring� By varying this parameter� the types

of regions being encouraged varies accordingly� from large smoothly outlined areas

to smaller intertwined �ngers of intensity� The use of a hexagonal grid for purposes

of space��lling and symmetry reasons was utilized and the model thus de�ned was

applied to real and simulated examples with interesting results in terms of captur�

ing di
erent types of image structures 
large regions with smooth boundaries versus

intertwined snake�like patterns��

All of the statistical methods thus far described can be viewed as pixel�based

methods� that is� they focus on changing or classifying the pixel values of an im�

age to achieve an objective in terms of image quality� The latter examples� however�

point in the direction of representing images in the modeling sense to represent mean�

ingful conceptual things about the image� The linesite model can be thought of as

��



segmenting images into regions by �nding boundaries� and the hierarchical region

modeling can be thought of as deciding what kind of information the image contains


how many regions� what type of regions�� This type of thinking has lead to the

more recent and complimentary discipline of image understanding� models where the

emphasis� regardless of image type or inherent noise structure� is on modeling the

image scene in such a way as to maximize the conceptual and practical information

content extracted from the image�

����� Curve�Based Image Understanding Methods

This latter methodology often includes reducing the image to a set of salient features�

for example a set of curves representing a shape in the image� This was proposed

for facial image analysis by Phillips and Smith 
������ who also cast it in a Bayesian

framework� They de�ned a model in which such curves� de�ned by a small number

of parameters �� uniquely identi�ed a pixel i as being in one of n regions in the face�

giving it a label xi� They then de�ned a likelihood p
yjx� as

p
yjx� 	� 
� � exp�
�

�

X
i�I

	xi
yi � 
xi� � 
�����

where yi is the pixel value at location i and I is the full set of pixel sites�

Thus� the likelihood is based directly on the uniformity of intensity within curve�

enclosed regions� Vague priors on the parameters � which determine the curve shapes


e�g� ellipse size or breakpoints� were de�ned� Also� a set of hierarchical constraint

were introduced which enforced the notion that various parts of the face would be

correctly positioned relative to each other� such as the eye inside the face outline�

the pupil within the eye� etc� Reasonable results were seen for this simple curve

representation of the face�

Referring back to Section ������ the active contour methodology is sometimes also

cast in a similar framework� A likelihood p
yjx� on the curve x with respect to the

��



image data y is de�ned as a function of the gradient values along the points de�ning

the curve� and the internal energy of the contour is replaced by a prior distribution

p
x�� serving the same purpose in constraining the snake shape� A good example

of such an approach is found in Cootes 
������ with applications to segmentation

of objects such as the ventricles in magnetic resonance images of the brain and the

heart chambers in ultrasound�

����� Landmark Methods

The �eld of landmark analysis grew out of the understanding that in images of the

same kind� certain points may have special signi�cance across the image class� and

that these points could be incorporated into statistical models to better understand

and represent the image scenes� Bookstein 
����� de�nes three types of landmarks

as follows�

Type I � a point with special anatomical signi�cance� typically the intersection of

structures or a branch point�

Type II � a point representing a local mathematical feature� such as a local maxi�

mum in some feature such as the curvature or derivative�

type III � a point at an extremal value of some feature�

Within the same framework� the pseudo�landmark can be de�ned as a point de�ned

only by its position in relation to landmarks of types I� II or III�

Dryden and Mardia 
����� use a similar division� in which anatomically based�

mathematically based and derived 
from the two others� landmarks are used as cat�

egories� To measure the relative positions of the landmarks in a statistical fashion�

a joint distribution� often de�ned as an MRF� can be speci�ed on the landmark po�

sitions� This distribution can then be used in the context of an example image or

��



atlas con�guration to estimate landmark positions in a new image� or to measure in

some sense the shape deviation between two images in the same class� For example�

Amit and Kong 
����� extracted mathematical landmarks from an image and pruned

them to the same number for each image� A regularizing prior speci�ed via potential

functions de�ned on triangular cliques was then used to limit shape deviations from

an atlas when estimating the landmark positions�

Wilson 
����� developed another� scale�space method for the use of landmarks in

medical images� Here� several scale�space features were used to de�ne mathematical

landmarks in scale�space on an object in a medical image 
ventricles in a brain MRI��

An MRF graph was then de�ned to link these landmarks and enable deformation

analysis between images of the same class�

One of the unique aspects of this approach to image analysis was the inclusion of

scale in the speci�cation of a landmark so that it is situated in the scale�space of the

image� The landmark for a two�dimensional image then has associated coordinates

x � fsx� sy� tg 
s are spatial coordinates� t is scale�� A potential function for an

MRF type speci�cation can then be based on the scale�space orientation and distance

between two landmarks position in a template con�guration and in the current image�

Let dss denote the scale�space distance between two landmarks� let xi and xj be two

landmark positions in the image under consideration for which a clique is speci�ed�

and let 
i signify the position of landmark i in the template� Then� de�ne a potential

function as

Vm � fdss
xi� xj�
� � dss

i� 
j�

�

� �dss
xi� xj�dss

i� 
j�cos
xi � xj� 
i � 
j�g �

�����

This speci�cation encourages the vectors connecting landmarks in the template and

observed image to have similar magnitude and direction�

��



In addition� a feature�based distribution pI was de�ned for each landmark inde�

pendently on some scale�space feature� chosen to represent things such as �middle�

ness� 
Laplacian extremum� or �boundary� 
spatial �rst derivative magnitude�� The

predictive distribution on landmark positions in a new image for consideration was

then de�ned as the product of these two components� 
This contains L independent

landmark feature distributions and M MRF�type clique�based distributions� where L

is the total number of landmarks and M is the total number of interactions between

landmarks in the shape model� or the total number of cliques��

McCulloch et al 
����� developed this notion further by using a di
erent shape�

descriptor with larger cliques� The Procrustes distance dP measures the deviation of

two objects after rotating and scaling linearly to the best match for the two con�g�

urations being evaluated� It can then be used as a basis for the potential functions�

This approach worked well for simple objects� but the inclusion of scale as a pa�

rameter introduced a sizeable computational obstacle� To perform useful estimation

for clinical tasks such as segmentation and volume estimation requires a large set of

points� When the number of landmarks used is increased to a number su�cient to

do this� the computational time increases to levels beyond clinical utility�

Landmark�type analysis in the context of atlas mapping can be taken further by�

for instance� incorporating a thin�plate spline 
Bookstein� ����� into the model� basi�

cally extending the methodology to estimate a warp of the entire coordinate system�

This approach provides a very rich and useful representation of the understanding of

an image� but carries a high computational burden� An alternative approach based

on modeling the deformation as a Gaussian �eld has been developed by Amit et al


������

McCulloch et al 
McCulloch et al�� ����� McCulloch� ����� Laading et al�� �����

developed a method which extends the landmark idea to one of generalized landmarks�

��



or facets� which are labeled points without any pre�assigned signi�cance attached to

them� Only when a set of facets is put down in an atlas or reference image do they

gain signi�cance� and even so only implicitly through the interpretation of the atlas�

This methodology is described in detail in the next chapter� and it has provided

promising results in several medical imaging modalities 
e�g� MRI� SPECT��

��� Medical Imaging � Cardiac Gated Single Pho�

ton Emission Computed Tomography

The application in this thesis is that of gated cardiac single photon emission computed

tomography 
gated cardiac SPECT�� Since inherent features of this modality are

crucial to the speci�c modi�cations made to the general methodology� the modality

and related image�processing methodology applied to this modality is presented here�

����� Explanation of Modality

SPECT imaging is based on the idea of measuring the physiological activity in tissue

by measuring uptake of injected radiochemicals designed to act similarly to substances

such as sugar and water� The selected compounds then decay radioactively� causing

a high�energy photon to be emitted from a location in the patient� These photons are

detected 
through a setup involving collimators� screens and photo�multiplier tubes�

and form n�dimensional images 
n � f�� �g� of the activity in the patient� These

n�dimensional images� termed projections� are then used as a basis for an 
n � ���

dimensional reconstruction of the activity in the ��dimensional volume 
n � �� or

the ��dimensional slice 
n � �� being imaged� The reconstruction of the emission

intensity is itself the subject of much study� statistical and otherwise� but this aspect

of the modality is not considered here�

In cardiac SPECT� the heart is imaged using compounds which go where the

��



heart is consuming energy� thus enabling detection of malfunctioning heart muscle as

areas of abnormally low activity� It is typically used to identify extent and location of

cardiac ischemia 
lack of blood supply to the heart muscle� before heart surgery� The

area of greatest interest is the left ventricular 
LV� heart muscle� which is responsible

for pumping blood out of the LV chamber� through the aorta and out into the body�

To create the SPECT image� the patient is injected with a radioactive compound and

data is acquired over several beat cycles� causing obvious blurring problems due to

the beating of the heart and patient movement� This is necessary to provide enough

photons 
counts� to image the heart adequately� there is an epidemiological tradeo


between image quality and radiation risk to the patient�

In gated cardiac SPECT� part of this blurring problem is alleviated by partitioning

the acquisition of data according to the patient s electrocardiogram 
ECG�� This is

acquired for some beat cycles and divided into k segments� After injection of the

radionuclear substance� the detected activity is then assigned to k di
erent images�

so that each image represents one speci�c portion of the patient s heart beat cycle�

The acquisition is triggered at a certain point on the ECG 
start of contraction or

start�systole�� and because the partitioning of the cycle is less accurate than detecting

its start� the images shortly after that point typically have better characteristics than

the ones late in the series� It is important to note that while this method avoids part

of the motion�blurring problem� each of the images su
ers from the reduction in the

number of detected photons per image to approximately �
k

of the original number�

Thus� the noise characteristics associated with number of photons detected in the

individual images are inferior to that of the single image�

This problem forms the motivation for our approach to this image class� The

motivation will lead us to estimate the motion of a large number of points on the

heart through the image timeseries such that the intensity can be compiled correctly
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and summarized for better clinical utility than in the traditional SPECT case� Since

the gross behavior of the heart is much�studied and relatively well�known� we have an

accurate model for its expected behavior� and this model can be used in performance

evaluation� Particularly� it is known 
Potel et al�� ����� that most of the contraction

seen in the heart is radially towards a moving center of contraction� that most of

the motion in the LV wall occurs in the outer LV wall� and that the apex 
bottom

portion� of the LV chamber remains relatively stationary throughout the heartbeat�

����� Previous Methods Applied to Gated Image Series

The challenge of using the gated images for clinically useful tasks have been adressed

in several ways� A recent approach is found in Klein et al 
������ who use an optical

	ow methodology to trace intensities between two gates taken from a timeseries of

positron emission tomography 
PET� images� Using this method� they sum the

intensities from two images according to the motion �eld� rather than voxel�wise� to

achieve a composite anatomical estimate of the heart radiotracer uptake� Motion

estimates are obtained by minimizing the objective function de�ned as a sum over

all voxels of terms of the form

e � eI � es � ed � 
�����

De�ne an image motion �eld u
x� � fu�
x�� u�
x�� u�
x�g � x � X from image I�

to image I�� where X is the image domain� Then de�ne a squared di
erence image

error function eI on the image intensities at a location in image I� and the deformed

version of I�� In other words�

eI � �I 
I�
x�� I�
x� u��� � 
�����

Also� de�ne a smoothness�based function

es � �s

�X
i��

�
�

�xi
ui

��

� 
�����
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Finally� ed is de�ned to discourage by an over�tting to the image data enforcing an in�

compressibility constraint� that is� a penalty on moving points closer together� Thus�

eI encourages image similarity in a direct intensity sense� es enforces smoothness in

motion between adjoining voxels� and ed pulls the con�guration towards the original

image� limiting the magnitude of motion allowed� The parameter vector � adjusts

the smoothness of the deformation estimate allowed� Like Collins et al 
������ a

multiscale minimization approach was utilized to speed convergence� The results for

this method were promising� if somewhat sparse�

Other researchers 
McEachen and Duncan� ����� Clarysse et al�� ����� have used

shape�based methodology similar to that described in Section ������ applied to gated

magnetic resonance image timeseries of the heart� with some success�
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Chapter �

METHODS

The motivation behind my model is to statistically represent an intelligent ob�

server�s placement of labeled points in images of a certain class� This

implies a focus on the image as is� rather than the physical formation of the images�

There is no attempt made to model the image acquisition itself� Rather� the percep�

tion of the image scene is modeled based on using ideas inspired by the methodologies

outlined in the previous chapter�

��� Hierarchical Deformation Model � Facets

The model is developed around the concept of a facet� which should be interpreted

as a type of generalized landmark or a labeled point� Facets di
er from landmarks


following Bookstein 
������ in that facets do not correspond to speci�c pre�de�ned

anatomical or mathematical features� Instead� each facet s label is generally inferred

by its location in a reference or atlas image� A facet model can be thought of as a

representation of the image as a concept� with the stated goal of providing a general

framework for representing the image as contextual perceived information rather than

a set of individual pixels� This includes the image intensity resulting from the image

formation as a basis for the analysis� but in addition includes a wider context� both

��



relative to other images in the image class and between points in the image� The

basis of the modeling is that we have a class of images containing similar structures�

We then want to identify points that represent the same conceptual quantity� that

is� we are interested in obtaining the map of perceived deformation

fM � 

� �� 	 
x� f�g � 
����

with

f
� xg � X � Rd� f�� fg � F � Rp � 
����

Here� X is the space spanned by the image grid� and F the space spanned by the

image features used in modeling the perception as described below� Furthermore� d

is the dimensionality of the images and p is the length of a feature vector derived

from the image data� The positions of all facets are contained in the vector x� and

the corresponding positions in the reference image are held in vector 
� Similarly�

relevant image information pertaining to placement of the facets is contained in the

vectors f and � for the image under consideration and the reference� respectively�

In this model� an individual facet labeled i has associated position xi� It also has

an associated feature value or values fi� To obtain the map M � we de�ne a joint

predictive probability distribution p on fx� fg given hyperparameters � � f�x� �fg�

with x and f conditionally independent� typically so that 
see Section ������

p
x� f j�� � pS
xj�x�pI
f j�f� � 
����

The parameter vector �x contains location and scale parameters f
� 
� ��g for the facet

location 
shape� portion pS of the distribution� and �f similarly contains parameters

f�� 	g for the feature 
image� part pI of the distribution� We separate the distribution

in this way to re	ect that two distinct processes are at work� one which favors a pre�

de�ned facet con�guration and one which encourages similarity in some image�derived

feature�

��



����� Shape Distribution

The baseline shape distribution pS is now de�ned� As before� let x be the vector of

facet positions� Let xl indicate the vector of facets at level l in the hierarchy and

let xlj refer to an individual facet j in that level� Similarly� let 
 be the vector of

corresponding facet locations in the reference image T � The distribution pS
xj�x� is

assumed to have a hierarchical normal structure de�ned by equations 
���� and 
�����

Each level l has Nl facets� and d is the dimensionality of the images in the class the

model is applied to� For 
L � �� levels in the hierarchy� l � f�� � � � � Lg� de�ne�

pS
xj�x� � pS
x�j�x�pS
x�jx�� �x� � � � pS
xLjxL��� �x� 
����

where each factor is a density of the form�

pS
x�j
� 
� � MVN

�� 
�
�
�Id�

pS
x�jx�� 
� 
� � MVN

� � A�!x�� 
�
�
�IN�d�

���

pS
xljxl��� 
� 
� � MVN

l � Al!xl��� 
�
�
l INld�

���

pS
xLjxL��� 
� 
� � MVN

L � AL!xL��� 
�
�
LINLd� �


����

Here� MVN
a�"� denotes the multivariate normal density with mean vector a and

covariance matrix "� The vectors xl and 
l have identical lengths� Nld� The di
erence

between facet placement and the reference position at a level l is given by !xl �

xl � 
l� In denotes the n x n identity matrix� Al is an Nld x Nl��d design matrix

for the hierarchical model� which in one dimension would schematically have entries

��



indexed as follows�

Al �

�
									


w
�l�
�� � � � w

�l�
�k � � � w

�l�
�Nl��

w
�l�
�� � � � w

�l�
�k � � � w

�l�
�Nl��

���

w
�l�
j� � � � w

�l�
jk � � � w

�l�
jNl��

���

w
�l�
Nl�

� � � w
�l�
Nlk

� � � w
�l�
NlNl��

�
���������


� 
����

Finally� ��l is a conditional scale parameter for a facet on level l given knowledge

of the locations of facets on level 
l � ��� The parameter 
 is an overall scale factor

to allow for adjustments in the weighting of shape 
pS� versus image 
pI� portions

of the density in equation 
����� The e
ective hierarchical conditional variance for a

facet on level l is given by the product� 
���

This form for pS captures the deformation on several levels of scale� thus easing the

exploration of con�guration space� This means that gross deformations are modeled

by upper�level facets and that lower�level facets will not be subsequently penalized for

the same movement� This makes sense in the same way scale�space does� that image

perception should be modeled as occuring at a variety of resolutions� and that once

a gross deformation has been detected� we move our expectations about deformation

on �ner resolutions accordingly� An alternate way of writing pS is as a distribution

on deviations� namely

pS
!x�j
� 
� � MVN
�� 
���Id�

pS
!x�j!x�� 
� 
� � MVN
A�!x�� 
�
�
�IN�d�

���

pS
!xlj!xl��� 
� 
� � MVN
Al!xl��� 
�
�
l INld�

���

pS
!xLj!xL��� 
� 
� � MVN
AL!xL��� 
�
�
LINLd� �


����

��



This emphasizes the fact that the model only penalizes deviations once� that is� if

an upper level motion occurs� then low�scale deviations are recentered to a non�zero

value according to this motion�

Choice of Design Matrix

The design matrix A which de�nes the interactions between facets may be constructed

in several ways� The most straightforward formulation and the least costly computa�

tionally is the single connection approach� where each row in Al has only one entry�

Schematically� a one�dimensional example of that would be the form

Al �

�
							


���
���

���
���

���
� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �
���

���
���

���
���

�
�������


� 
����

This approach provides quite compact full conditional distributions 
see Section

������� in that there are no direct interactions between facets on the same level�

These downwards conditional dependencies are shown as a tree�structure in Figure

����

There is a great deal of anisotropy spatially with this approach� however� and

so model�driven rather than data�driven blocking of deformation has a tendency to

occur� To see this� consider the marginal distribution of a hierarchical normal model

as described in Gelman et al 
������ Given vectors U and V such that

U jV 
 MVN
AV�"U jV �

V 
 MVN

V �"V � �

then the joint density on 
U� V � has the form�
U

V

�

MVN

��
A
V

V

�
�

�
A"VA

� "U jV

"�
U jV "V

��
� 
����

��
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Figure �
�� The conditional structure of the model when de�ned as in equation ����
that is� with each facet on a level connected only to one parent on the level above�
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Figure �
�� The marginal covariance structure for the form of the design matrix as
seen in equation 
����� We see the blockedness inherent in this model� which will give
rise to model�driven artifacts when applied to real image data� The labeling runs
from one side to the other in Figure ����

This� repeatedly applied as per the context of the hierarchical model de�ned in equa�

tion 
���� gives a marginal covariance matrix "l on level l of the nested form

"l � 
��

�
l��X
j��

���j

�
lY

i�j��

Ai

��
l��Y
i�j

A�
l�i

�
� ���l INld

�
� 
�����

Figure ��� illustrates this e
ect for a one�dimensional vector x with � levels in the

hierarchy�

If we have knowledge about the objects in the image class we are applying the

method to� linkages in the hierarchy 
non�zero entries in A� could be tied to which

object a facet belongs to� The blocking would then be natural rather than arti�cial�

Such speci�c de�nitions would require more prior knowledge and less generality than

we wish to assume here� however� While some attempts at automatic object linkage

generation via maxima in the scale�space of a reference image have been made 
see

��



Figure �
�� A portion of the resulting design matrix from tracing extrema in the
spatial Laplacian for the image shown 
a digital chest radiograph�� The top three
levels for the connections which turned out to represent the left lung are shown�
displaying the decreasing number of extrema in scale�space as scale increases 
upward
direction from image plane in �gure�� The Al matrices would then be set to ones for
entries corresponding to the linkages seen between levels�

��
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Figure �
�� The conditional structure of the model when de�ned as in equation
����� that is� each facet on a level is now connected to the �d nearest parents on the
level above�

Laading et al 
����� and Figure ��� for an example�� this has not to date been proven

to be a practical approach�

Approximate isotropy can be achieved if A is expanded in complexity and taken

schematically 
in one dimension� to be as follows�

Al �

�
									


���
���

���
���

���

� � � � w
�l�
�j���� w

�l�
�j���� � � � � �

� � � � w
�l�
j� w

�l�
j� � � � � �

� � � � � w
�l�
�j���� w

�l�
�j���� � � � �

� � � � � w
�l�
�j���� w

�l�
�j���� � � � �

���
���

���
���

���

�
���������


� 
�����

This form of Al enforces some smoothness on the deformation� that is� the marginal

covariance between any pair of facets on a level l becomes a smooth decreasing func�

��
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Figure �
�� The marginal covariance structure for the form of the design matrix
as seen in equation ����� We see the that the blockedness seen in Figure ��� has
been alleviated in this model� We still see some edge e
ects� corresponding to loca�
tions where multiple parents are unavailable� In the interior� the structure is nearly
isotropic� The labeling of facets runs from one side to the other in Figure ���

tion of their template 

� distance� provided that the w are appropriately selected�

To handle the boundaries in the model 
facets on the outer edge of the tree struc�

ture�� facets are tied more strongly to the closest available parents in the sense seen

schematically in one dimension in Figure ����

One way in which the near�isotropy can be achieved is to set the values of the

w
�l�
jk proportional to the inverse distance between 
lj and 
�l���k� constrained by

P
k w

�l�
jk � � and such that only the �d closest facets on level 
l � �� to facet lj are

given non�zero weights w
�l�
jk � If the w are determined in this way� as illustrated in

Figure ���� most of the blocking problem is mitigated� A visual example of how the

hierarchy propagates observed deformations is seen in Figure ���� More accurate

isotropy could be achieved by increasing the number of non�zero entries� but this

��
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Figure �
	� The levels l � f�� �g in the one�dimensional example with means for all
facets shown as solid circles� Given the observed values of level l � �� the deviation
is propagated in expectation to level l � � through the hierarchical model�

minor improvement in the approximation of isotropy has not proven to be worth the

extra computation required to include further interactions into the model�

To achieve the same improvement in isotropy for the ��dimensional application

presented in the next chapter� such entries in a row of Al would be kept limited to ��


or � per direction� in a parallel fashion to that seen above� Outer facets would be

handled similarly with the exception that� when thinking of a cube of facets� corner

facets would have one parent facet available� edge facets would have two parents

available and face facets would have four parents� The edge e
ects diminish as you

go to higher numbers of levels in the model�

Full Conditional Distributions

For both the implementation and understanding of the model� it is important to

look closely at the full conditionals resulting from the shape model above� Consider

Figure ��� together with Figure ��� for a coarse one�dimensional concept illustration

of a facet s conditional connectedness� Using standard normal theory and assuming

the structure of A as indicated above� this is easily shown to result in the following

conditional distribution for p
xljjx�lj�� For l �� f�� Lg�

p
xljjx�lj� � N

ljjfx�ljg� �
�
ljjfx�ljg� � 
�����

��



(l)
jk

μ  φx  f  

w

k’j

Level (l-1)

Level l

Level (l+1)k’

j

k

w (l+1)

Figure �
�� One�dimensional schematic for a facet in the hierarchical conditional
speci�cation of the model� A facet in the interior on level L � l � � is shown�
When thinking in terms of the full conditional distributions or the equivalent MRF
speci�cation� horizontal linkages are added to the ones seen in this �gure�

with


ljjfx�ljg � 
lj �
��l

��ljjfx�ljg

X
k�Plj

w
�l�
jk 
x�l���k � 
�l���k� 
�����

�
��l��

��ljjfx�ljg

X
k�Dlj

w
�l���
kj �lk �

where

�lk �

��
�
x�l���k � 
�l���k��

X
j��P �

�l���k

w
�l�
j�k
xlj� � 
lj��

��
� � 
�����

and

���lj jfx�ljg � ���l � ���l��

X
k�Dlj


w
�l���
kj �� � 
�����

Here� the subscript �lj indicates all variables in x except for those associated with

facet lj� All other conditioning is suppressed in the notation� The term 
ljjfx�ljg

denotes the mean of the full conditional distribution� not to be confused with the

placement of a facet in the reference image� 
lj� In the summations� Plj denotes the

��



set of facets on level 
l� �� which contribute to the mean 
via the design matrix Al�

in the full conditional distribution on xlj� The index k runs over that set� Similarly�

Dlj is the set of facets on level 
l � �� related directly to facet lj through the design

matrix Al�� between those levels�

The top level has the simpler form


�jfx��g � 
� �
���

��� jfx��g

X
k�D�

w
���
kj ��k 
�����

and

���� jfx��g � ���� � ����

X
k�D�


w
���
kj �� � 
�����

The bottom level is �nally speci�ed by


Ljjfx�Ljg � 
Lj �
X
k�PLj

w
�L�
jk 
x�L���k � 
�L���k� 
�����

since obviously

��Ljjfx�Ljg � ��L � 
�����

Graphical Model Representation

It is instructive at this point to draw attention to the equivalent MRF model� an

equivalence investigated by� among others� Lavine 
������ It is shown� through cal�

culation of the full conditional distributions as seen in equation 
������ that a facet

hierarchy in which there are multiple connections between facets on adjacent levels

corresponds to an equivalent model graph in which facets are connected not only to

the non�zero contributors on the level above 
parents� and below 
children�� but also

to the facets on the same level with which it has common children� This e
ect concep�

tually comes from the fact that an adjustment in a parent s position is directly related

to all the facets which are its descendants� but only to the extent not explained by

��
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Figure �

� An illustration of the full conditional graph structure for the model
using the design matrix in equation ����� The emphasis is still on the dependence
upwards and downwards� but there is also the added element of direct dependence
on siblings as seen in the full conditional distribution in equation �����
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other parents of the same facets� In this way� a �multiply connected� scheme spreads

the full conditional interaction pattern somewhat� and the model graph or equivalent

MRF representation for the hierarchical model structure in Figure ��� becomes that

seen in Figure ����

Parameter Choice

Consider the parameters f
� 
� ��g in the shape portion of the model� The vector


 represent reference positions� 
 is an overall scale parameter and �� expresses the

relative variances on the levels in the hierarchical model� respectively� The vector 


is typically taken so that the positions on each level� 
l� form an evenly spaced square

grid� giving the number of facets per level as Nl � �ld� This re	ects our intent not to

treat any parts of or positions in the images as having a priori particular signi�cance�

except possibly where we lay the facet grid down in the reference image 
location of


��� The most appealing way to de�ne the hierarchical conditional variances �� and

the overall scale parameter 
 is obviously to estimate them from a set of existing facet

placement data� as is demonstrated in McCulloch 
����� through use of expectation

maximization 
EM� methodology� Introducing a prior on 
� estimation of maximum

a posteriori values is straightforward in a missing data framework 
due to the large

number of facets typically used� it is completely unrealistic to ever have all facet

positions for clinical data available��

When such data does not exist� as is true in our current situation� they can be

set according to several heuristic schemes� One way of specifying this parameter

set is to choose them so that the marginal variance of a facet on the lowest level is

approximately equal regardless of the number of levels� Thus� the number of levels

and bottom�level density of facets can be set according to the perceived need for

resolution or availability of computational resources� Another scheme is to set the

��



parameters �� empirically so that there is a balance in how much of the motion is

explained by the various levels of facets� If you know that the object you want to

capture moves mostly in a gross fashion� it makes sense that the lower�level facets

are more constrained 
lower hierarchical conditional variance�� Similarly� if you don t

have any previous knowledge about the scale at which the deformation occurs� it

makes sense to allow approximately equal explanatory power to be given to each

level in the model�

����� Feature Distribution

Now consider the image�driven part of the joint distribution p
x� f j��� pI
f j�f�� As

stated previously� let f be the vector of image�derived feature values associated with

the set of facets� Similarly� let � be the corresponding vector of template values� Then

given an image match function g� the facet features are assumed to be drawn from an

exponential family distribution given in equation 
������ It is further assumed that if

ffj� �jg are the corresponding jth element or jth set of elements of the vectors ff� �g�

respectively� then the feature distribution pI is modeled as a product of univariate

distributions with a common image match function gI �

pI
f j	� �� � exp f�g
f� ��g

� exp

�
�

�

�	

NLX
j��

gI
fj� �j�

�
�


�����

Here� 	 is an overall scale parameter which is similar to 
 de�ned for the shape

distribution� pS� The sum extends over those facets that have associated feature

values� which typically are the facets on the lowest level L in the hierarchy� numbering

NL� The parameters �j are taken to be some image feature value calculated at the

locations 
Lj in the reference image T � �j � �
T� 
Lj�� Note that this does not

necessarily imply taking the image value at 
Lj directly� The independent form

��



of equation 
����� means that while we may consider more than one feature value

per facet� we model the observation of feature fj at a facet j as independent of

the observation of features at all other facets� This again is based on modeling the

perception rather than the images� which enables us conceptually to eliminate direct

spatial feature correlation modeling�

The derivation of ffj� �jg from the image data can be speci�ed in a number of

ways� It is generally not a good idea to use the image intensity directly� as most

image problems have variations in both mean intensity and intensity range� even for

the imaging of an identical object� A photograph of the same person with bright

sunshine for one picture and overcast the next is a perfect example� For that reason�

the choice of a quantile�rescaled image intensity might make sense�

� � q
T� 
� � f � q
Q� x� � 
�����

where q normalizes the images T 
reference� and Q to some pre�de�ned mean and

stretches the range such that the ��th and ��th percentile of the image intensity in

some region of interest match� The low�scale image Laplacian in equation 
�����

� � LT
ii

� t� � f � L

Q
ii 
x� t� � 
�����

is another choice with several interesting features� First� it has been shown to enhance

edges� so if you are interested in perception of boundaries� it may be a good candidate�

Another interesting feature is that isointensies in the Laplacian form closed curves

when considering an image scene not close to the edge of the image� The curves of

zero�crossings are one natural set of such quantities to focus on which have often been

used as a basis for region extraction in images� A point with an extremal value of the

Laplacian at higher scales is usually indicative of a center of high or low intensity�

for instance the eyes or mouth in the facial example�

The feature function gI also o
ers several options� To choose a function appropri�

ate for the imaging problem at hand� we once again must consider computational load

��



against image representation� For computational reasons and ease of interpretation�

one of the most commonly used functions is the squared di
erence� simply

gI
fj� �j� � 
fj � �j�
�
� 
�����

which corresponds to independent normal distributions centered at �j and with vari�

ance 	
from equation 
������� This feature is very local and� while sensitive� can work

well in situations with good contrast betweens regions of interest and low noise� It

is particularly important in this case that the images are well matched to start with�

so that fj � �j makes sense in the conceptual matching sense�

Another feature function gI found to be e
ective for some noisier imaging prob�

lems is one based on a local intensity regression around the facet in question� A

small neighborhood de�ned by a set of m points is placed around the facet s position

in the template image T 
around 
Lj� and observed image Q 
around xLj�� Subse�

quently� these points are evaluated in T and Q� respectively� to form m�vectors �j

and fj� indexed by k in equation 
������ This is motivated by the thinking that an

observer may perceive not so much an isolated intensity at a point� but rather the

local context when considering an image feature� A normalized regression parameter


see 
McCulloch� ����� for details� can then be calculated according to

gI
fj� �j� � �� a � �� f �j
���j�

�
j
�f �j �

� ��


P

k �jkfjk �
�
m

P
k �jk

P
k fjk�

�



P

k �
�
jk �

�
m



P

k �jk�
��

P

k f
�
jk �

�
m



P

k fjk�
��

�

�����

which is subsequently used to de�ne the distribution function pI 
equation 
�������

The latter term in equation 
����� is basically a normalized regression coe�cient


a � ��� ���� re	ecting the overall correspondence between the two sets of m points� It

is then inverted in sign to provide a measure which gives a maximum rather than a

minimum for a good match when gI is used in equation 
������ This feature function

��



picks up patterns of intensity both level� and scale�independent 
in image values

rather than size�� and is thus less sensitive to image intensity level and scaling� It is�

however� much more computationally intensive�

����� Observational Constraint

We will treat the fact that we typically observe the position and feature in concert

when observing a new image as a constraint� i�e� f � Q
x�� without modeling

this explicitly� By doing this� we achieve one of our stated goals� which is to make

no model assumptions about the image formation in the class� If we included a

model such that p
x� f j�� � p
xj�x�p
f jx� �f� we would be implying directly a certain

spatial correlation structure in the image intensities� McCulloch 
������ for example�

mentions a general model based on Cressie 
����� as

p
f j��"f
x�� � j"f 
x�j���� exp

�
�

�

�

f � ���"f
x���
f � ��

�
� 
�����

This leads to a non�standard joint density p
x� f j�� thanks to the non�linear depen�

dence of f on x via "f � This density is not at all desirable from our standpoint�

however� as it makes fundamental assumptions about the underlying structure of the

image data� While any model we de�ne jointly on f and x will introduce marginal

correlations� the explicit modeling of this is precisely what the facet model is not in�

tended to do� The implementational implications of this interpretation will be further

discussed in Section ����

��� Modality�Speci�c Modi�cations

The baseline shape model de�ned in equations 
���� and 
���� captures the shape

changes in the general case when little prior knowledge is available about the shape

change within the image class� If we know salient facts about the expected behavior

��



of the structure we are trying to match to the reference� it makes sense in some cases

to modify the expectations in the shape portion of the model to accomodate this�

given that it is computationally feasible� This corresponds to an overall adjustment

to the expectation of facets observed locations 

��

In the cardiac gated SPECT scenario� we know a priori that the heart size changes

during the heart beat cycle� and so it is sensible to build this into the model� Doing

this involves a tradeo
 between detailed modeling of the contraction process� some�

thing which is possible thanks to an extensive body of knowledge about the cardiac

system� and computational feasibility and stability� We also should be mindful of the

fact that non�linear contractions not incorporated into the gross model can still be

accommodated by the baseline deformation model given our added parameters�

To de�ne the ��dimensional contraction model� let �� consist of three coordinates

for a center of contraction� and let �� be a ��dimensional set of contraction factors

for orthogonal directions f�� �� �g� This is a reasonable representation based on the

studies cited in Section ���� where the �nding was that most of the contraction seen in

the heart is directed towards a moving center of contraction� Also� we limit ourselves

to these relatively few contraction parameters based on computational feasibility and

the facts that the images are rather coarse and that the deformation portion of the

model should be able to handle the remaining contraction patterns�

Specifying the new shape model� then� let the full vector � � f��� ��g transform


 in the shape portion of the model in equation 
���� to a vector of contracted means


c
t� as given in equation 
����� at time t in the image time series� Given ��� 

c is

de�ned such that along each orthogonal direction� 
�
c is a linear function of 
����

increasing in magnitude the further we get from ��� An illustration can be seen in

Figure ���� Thus� the facet grid will contract in expectation towards the center of

contraction ��� When all elements of �� are equal� this corresponds to a straight

��



X1

γ
1

μ
μc

X2

Figure �
�� Visual illustration of how the contraction model modi�es 
 through
� into a set of contracted means 
c� The open circles symbolize 
 and the solids
indicate 
c� Each level in the hierarchy undergoes this same transformation�

linear radial contraction�

The shape distribution pS� then� is modi�ed accordingly in the general case l �

f�� � � � � Lg to

pS
xljxl��� 
� 
� �
t�� � MVN

cl 
t� � Al!xl��� 
�
�
l INld� � 
�����

with


cl 
t� � #���Nld � 

l � #���Nld� $��
t� � 
�����

The top level l � � is similarly de�ned� with the simpler form

pS
x�j
� 
� �
t�� � MVN

c�
t�� 
�
�
�Id� � 
�����

Throughout� #�� is a stacked vector of Nl replicates of ��� $�� is the diagonal matrix with

Nl replicates of �� along the diagonal� and �n is the n�dimensional one�vector� The

interpretation of and form for the model parameters fAl� 
� �
�
l � 
g remain unchanged�

Note also that the introduction of 
c does not change the values of �j� which are still

taken as the reference image feature values at 
Lj� that is� �j � �
T� 
Lj�� See Figure

���� for a schematic representation of the modi�ed model structure�

With this added level in the hierarchy� a prior distribution can be included to

capture the expected contraction pattern during the beat cycle� A natural choice for

��



μ

φ

μ

f

xcContraction Deformation

Feature correspondence

PREDICTEDREFERENCE

Figure �
��� Schematic model structure with contraction modi�cations� The shape
portion is modi�ed in expectation according to the values of �� whereas the image
feature portion remains the same as before�

the prior on �� is

p
��
t�� � MVN
�
t�� ���I�� � f���
t�� ���
t�� ���
t�g �� ��� � � 
�����

Obviously� for a reasonable situation� �� could be truncated further� particularly on

the positive end� We leave the prior for �� unspeci�ed as p
���� This yields the �nal

form for the joint shape distribution pS as

pS
x� ��� ��
t�j�x� � pS
xj�x� ��� ��
t��p
��
t��p
��� � 
�����

Full Conditionals

As mentioned earlier� the most practically useful quantities in our modeling are the

full conditional distributions� Here� the modality�speci�c corrected distributions will

be considered� starting with the contraction parameter vector ��

Consider �rst the center of contraction �� � f���� ���� ���g in this model� The

full conditional distribution for this set of parameters reduces to 
for each direction

i � f�� �� �g�

p
��ijx� ��� �x� � N

��i jfx� ��� �xg� �
�
��i
jfx� ��� �xg� � 
�����

��



with


��i jfx� ��i� �xg �
x�i � ��
�i

�� ��i

�����

and

����i jfx� ��� �xg� � ���
�� ��i�
�� � 
�����

This means that its displacement only really interacts with the overall placement

of the facet mean grid of positions 

� only� and contraction in the image under

consideration� This is an extremely vague and non�informative speci�cation for ���

and so we elect to keep �� �xed in the model implementation and rather introduce

an empirical step� where �� is estimated more directly from the evidence of the full

hierarchical facet placement results for the image at hand� This will be further

discussed in the section on maximization�

The full conditional distribution for the contraction factor �� also is of normal

form� Using standard normal methodology� write

� log p
x� ��j�x� �

c
�x� �
X
l

X
i

�

�
��l

�
xli �

X
j�Pli

w
�l�
ij x�l���j � ��

�

li �

X
j�Pli

w
�l�
ij 
�l���j

���
�


�����

As before� k is the index for a facet in the set Plj which contribute non�zero terms to

the full conditional distribution on xlj� c is a constant dependent only on �x�

Then� re�express equation 
����� in terms of di
erences de�ned as

!lj
� � 
lj �

X
k�Plj

w
�l�
jk
�l���k � !lj

x � xlj �
X
k�Plj

w
�l�
jkx�l���k 
�����

for l � �� For l � �� de�ne

!�
� � 
� � �� � !�

x � x� � �� � 
�����

��



The sums in equation 
����� can be interpreted as a facet s �virtual parents�� that

is� a non�existent facet on the level above whose motion facet lj inherits directly�

From that representation� we can obtain the following for the full conditional on

�� � f���� ���� ���g� for orthogonal direction i � f�� �� �g�

p
��ijx� ��� �x� � N

��i jfx� ��� �xg� �
�
��i
jfx� ��� �xg� � 
�����

The mean and variance of this full conditional distribution p
��jx� ��� �x� turns out

to be a function best expressed in terms of the di
erences in distance just de�ned

between facets on adjacent levels in the reference and currently considered image�

namely


��i jfx� ��� �xg �

PL
l��

PNl

j�� f
!
lj
�i�

��

�l�
��!lj

xi!
lj
�igPL

l��

PNl

j�� f
!
lj
�i�

��

�l���g
� 
�����

and

����i jfx� ��� �xg �

�
LX
l��

NlX
j��

f
!lj
�i�

��

�l�
��g

���

� 
�����

Here� !lj
�i is the ith directional component of !lj

� �

Furthermore� if a normal distribution truncated at zero with mean � and precision

� as a prior on p
��� is included as indicated in equation 
������ we get a regularization

of the full conditional mean and variance according to


��i jfx� ��� �x� �� �g �

PL
l��

PNl

j�� f
!
lj
�i�

��

�l�
��!lj

xi!
lj
�ig� ��PL

l��

PNl

j�� f
!
lj
�i�

��

�l���g� �

�����

and

����i jfx� ��� �x� �� �g �

�
LX
l��

NlX
j��

f
!lj
�i�

��

�l�
��g� �

���

� 
�����

��



with f!lj
�i�!

lj
xig de�ned as before�

Finally� the full conditional distributions for the facet placements remain very

similar to the ones seen before in Section ������ 
equations 
����� through 
������

with the only modi�cation of replacing the parameter vector 
 with the contracted

version 
c� for example


ljjfx�ljg � 
clj �
��l

��ljjx�lj

X
k�Plj

w
�l�
jk 
x�l���k � 
c�l���k� 
�����

�
��l��

��ljjx�lj

X
k�Dlj

w
�l���
kj �lk �

with

�lk �

��
�
x�l���k � 
c�l���k��

X
j��P �

�l���k

w
�l�
j�k
xlj� � 
clj��

��
� � 
�����

��� Maximization and Implementation

As described above� one goal of this methodology is to provide a computationally

tractable method for estimating observed facet locations and the perceived deforma�

tion map M � This maximization can be performed relatively straightforwardly in the

framework of iterated conditional modes 
ICM�� in which each parameter is updated

by setting it to the mode of its full conditional distribution as previously described

in Section ����

Given the hierarchical structure of the proposed model� the natural order of max�

imization is fairly obvious� If we begin with maximizing the upper levels of the

hierarchy� it makes sense to do the next level down next� then one further down and

so on� maximizing all facet positions on one given level l before moving on to the next

level 
l � ��� When the �nal 
bottom� level L has been reached and xL maximized�

��



the center of contraction and contraction factors can be updated to give a new esti�

mate for 
c� When seen in this light� this �nal portion of the model can be seen as

a form of data augmentation� Here� we can think of the set f
cg as an underlying�

unobservable parameter vector which corresponds to the linearly contracted version

of the reference image facet representation from which the deformation proceeds� The

way the model is designed� this is only inferrable after the x have been observed or

estimated� making the 
c augmentation variables� In this case� this augmentation

has been reduced to �d variables� where d is the dimensionality of the image class�

since we treat 
c as a deterministic function of the contraction parameters�

Since our interest lies in the facet positions x� we will treat the new image Q we are

considering as a constraint on the model� thus imposing f � f
Q� x�� given the image

Q� This follows the reasoning outlined in Section ������ and we now need to establish

the implication for maximizing p
x� f j�� �� for x under this observational constraint�

Following McCulloch 
������ this reduces to the distribution seen in equation 
�����

by the argument that p
xj�� is the limit when considering a neighborhood � around

the line f � f
Q� x� in the parameter space� as the size of that neighborhood goes

to zero� Since there is no model�de�ned dependence between x and f � this is an

uncomplicated limit to take� The resulting constrained distribution on facet locations

x in an image Q is then proportional to 
����� namely� as k�k 	 ��

p
xj�� � pS
xj�x�pI
f � f
Q� x�j�f� � 
�����

The full hierarchical conditional distribution for facets on level L with the observa�

tional constraint taken into account can then similarly be written

p
xLjxL��� �� � pS
xLjxL��� �x�pI
f � f
Q� xL�j�f � � 
�����

To describe the maximization in detail� let us �rst treat 
c as �xed� In that

case� the maximum for x under the shape distribution pS is simply the mean 
c�

Any change in the mode for x arises from the image distribution pI � Thus it would

��



almost seen that one should start with the bottom level L and maximize higher

levels subsequently� We have found� however� that an approximate approach which

maximizes top�down works far better in terms of quickly achieving a good maximum

in the global sense� To see this� revisit the concept of scale�space as described in

Section ������ One of the key features of scale�space is the reduction in image intensity

extrema for quantities such as the scale�space intensity or Laplacian� In other words�

as the scale t increases� the number of extrema decreases� For this reason� we compose

the maximization algorithm as follows� Referring to equation 
����� maximize only

a subpart of the model� with every relation below it �xed� That is� shift over all

�descendants� according to the weights in A� If the simplest form in equation 
���� is

used� then the facets connected upwards through facet lj in the hierarchical scheme

move over with exactly the displacement of facet lj� An illustration of this is seen in

�gure ����� One could then maximize this ��xed subtree� with contributions from

pI as

$pI�lj �
Y

j��Dlj

pI
f � f
Q
x� ��� xLj� � !xlj�j�f � � 
�����

where Dlj now represents the lowest level descendants of facet lj� This would give

the following for maximization

max
	xlj

�
$pI�ljpS
xljjx�l���� �x�

�

�����

As an approximation and to enhance computational e�ciency� the maximization ap�

proach thus involves partial maximization of the upper levels with relations between

lower�level facets kept �xed� It is also possible to approximate the image feature con�

tributions based on the scale�space 
Lindeberg� ����� of the observed and reference

image� To thus further reduce computational demands and also take advantage of

the simpler image representation at higher scales� the scale�space at location xlj is

��
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Figure �
��� This illustrates the maximization approach used for upper�level facets�
Instead of maximizing the full conditionals� maximization is based on propagating
the deformation of a facet down throughout the hierarchy and thus calculating the
feature contribution from all descendants�

��



used� In other words� we choose to maximize the facets individually according to

pmod
xljj�
mod� � pS
xljjx�l���� �x�pmod

I 
f � f
Q
x� tl�� xlj�j�
mod
I � � 
�����

where �mod
I contains the template image�derived functions �mod

j on scale tl rather than

the original �j values�

�mod
j � �
T 
x� tl�� 
lj� � 
�����

Then� maximize pmod directly for the xlj to achieve the full conditional maximum for

that level in the reduced complexity modi�ed model� After this has been completed�

we add a level and repeat the procedure� and so on� When each level is completed� we

revisit higher level facets� for which we have analytical expressions as in Section ���

to set them to their full conditional maxima within the submodel� As we add levels�

we get closer and closer to the full model� until� with level L included� we are doing

ICM on the full model� From this perspective� the steps prior to the inclusion of level

L can be thought of as achieving a very good starting position before applying ICM

to the full model� Numerical maximization is required anytime the location of a facet

is being estimated with the image contributions from pI or pmod
I taken directly into

account 
included in the full conditionals or approximations thereof�� This is due to

the fact that the pI factor picked up in equation 
����� introduces a non�standard

distribution on x under the constraint�

When using the more isotropic A 
equation 
������� we can no longer maximize

the facets within a level l as independent due to the interaction e
ect described

in the graphical model section� In this case� maximizing the individual facets full

conditionals correspond to an ICM step within the submodel maximization rather

than an exact maximization of the reduced model� The propagation of !xlj for

$pI�lj also involves more lowest�level facets due to the wider covariance structure� See

�gure ���� for an illustration� We have found� however� that the same method using

the scale�space approximation still produces a very good starting point for the full

��
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Figure �
��� This �gure illustrates the maximization of upper level facets when
using the near isotropic form of the design matrix A� The red connections show
facets a
ected when propagating the deformation of the top red facet downwards in
the hierarchy through the non�zero entries w� These are the facets whose feature
contributions would be considered� The blue connections indicate facets which are
taken into account when looking at the full conditional shape portion of the density�

ICM� When all levels are included� the setup remains the same as before 
no direct

interactions have been introduced on the lowest level� except for the higher number

of interactions and thus computational operations�

After each full cycle� we can set the contraction parameters � to their full con�

ditional mean 
equal to the mode� as in equation 
������ thus completing the full

ICM cycle over all parameters to be estimated� The �� can be set to their full con�

ditional mean given in equation 
������ The full conditional distribution on �� has

also been discussed� as well as some justi�cation for using an empirical type step for

its estimation� In short� the center of contraction �� could be set to its conditional

maximum under the model� but this is generally not very meaningful due to the

��



overall translational near�invariance of the linear contraction modeling� Therefore�

empirical estimation based on a more meaningful objective function is added as an

empirical step� that is� treat the center of contraction as �xed� but estimate it under a

given model outside the model framework itself� To do this� consider a perpendicular

deviation v� from a radial contraction towards �� for all lowest�level facets� First�

de�ne

vljx � fvljx�� v
lj
x�� v

lj
x�g � xlj � �� 
�����

and similarly

vlj� � fvlj��� v
lj
��� v

lj
��g � 
lj � �� 
�����

Then the motion of xlj from 
lj not explained by the contraction is

v
lj
� � vx �


vljx � v
lj
� �vlj�

kvlj� k�
� vljx � aljvlj� � 
�����

where

alj �

P
i v

lj
xiv

lj
�iP

i

�
v
lj
�i

�� � 
�����

This vector has magnitude

���vlj���� �

sX
i

�
v
lj
xi � aljv

lj
�i

��
� 
�����

We can also constrain �� to lie on a line inside the ventricle 
again� as per the studies

cited in Section ��

��i
�� � bi � �ci � 
�����

with bi and ci derived empirically from the reference image� Under this constraint�

then� minimize for � the functional b
x�� given as

b
x� �

NLX
j��

���vlj����� � 
�����
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to obtain the current estimate of �� 
empirically� as ��
 $��� where

$� � min
�

b
x� � 
�����

For the numerical ICM maximization steps necessary when image information 
pI

in some form� is included� the Nelder�Mead simplex method is applied 
Nelder and

Mead� ������ This involves using an initial estimate of an 
n� �� dimensional vector

of n�dimensional points� taken in our case to be the current estimate of the contracted

reference position P� � 
clj and the three point Pi � P� � ksei� where ei is the unit

vector in the directions i � f�� �� �g and ks is a constant which re	ects the scale at

which we are maximizing 
the higher we are in the facet hierarchy� the higher ks is set��

The objective function� which is either�p
xLjjx�Lj� �� or�pmod
xljjx�lj� �
mod� is then

evaluated at all four points� and based on the ranking of these function values� the

simplex shape is altered such that the simplex is driven away from high�valued points

through re	ection and expansion and towards low�valued points through contraction�

This method will always converge to a local minimum of the objective function� No

globality of minimization 
or equivalently maximization of p� can be shown� but

our experience through the use of multiple starting points and sampling around the

minima found� is that the method provides� at the least� a very good local extremum

in the model parameter space�

��� Sampling

In order to learn about the stability and constraints of the models� sampling was per�

formed based on the previously described Metropolis�Hastings algorithm 
see Section

������� Referring back to the maximization scheme and the model setup� particularly

the simplicity of many of the full conditional distributions� it is clear that the task

of sampling is quite straightforward� The upper levels in the facet hierarchy can

��



be sampled using Gibbs steps 
the conditionals are known exactly and are possible

to sample directly from�� The contraction factor �� is similarly straightforward to

sample� with mean and variance as given in equation 
������ The lowest level facets

require a Metropolis or Metropolis�Hastings step due to the non�standard form of pI �

Consider the full conditional distributions as stated in equation 
����� and detailed

in Section ����� and Section ���� Given that the shape portion of the full conditionals

are normal� it makes sense to use an overly wide normal proposal density centered

at the current estimate of x� We can set the proposal variance heuristically such

that we get a reasonable acceptance ratio 
number of accepted to proposed values

for elements in x�� The sampling is started at a sensible initial condition� e�g� the

maximum found using the maximization technique in Section ���� Other alternatives

considered were a �xed normal proposal centered at a reference value or a mixture

of the two� These latter methods require signi�cant Hastings corrections� Due to the

high�dimensional parameter space� it is clear that we will not be able in reasonable

time to probe su�ciently the entirety of that space� Rather� we use sampling to get an

idea of the local characteristics of the distributions around our maximum probability

estimates�

��� Evaluation

����� Summary Images

In order to evaluate the performance of the observer model� a few considerations

must be given to which representations of the data and the estimation results should

be used� For the gated image sets� summaries are often compiled to reduce the size

of the data presented to the physician� One such representation is the equivalent

of the standard SPECT image� that is� to sum the images voxel�wise over time�

This obviously negates the entire idea of acquiring the gated dataset� but it o
ers a
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valid object to compare to when evaluating the utility of the gated method with an

intelligent processing versus the standard ungated SPECT approach� The summary

image which we propose for comparison is one in which the image intensities are

summed back to the reference facet positions based on the estimated facet positions

in the other timeframes� In other words� de�ne the composite image Scomp as

Scomp

Lj� �
�

n

T 

Lj� �

X
t��t�

Qt
xLj
t���� 
�����

where Qt is the t�th image in the time series of n images and t� is the gate used as

the reference� i�e� Qt� � T �

����� Volume Comparison

Also� it is of value to compare LV chamber volumes in the di
erent gates to that of

the reference state� To do this� we apply the simple approach as follows� Assume

a voxel�wise segmentation of the volume in the reference state� Then take the cor�

responding volume in a deformed dataset to be the sum of voxels containing facets

after deformation estimation� In other words� give voxels containing facets a label

�i � �� while all others have label �i � � and calculate

V �
X
i

fvI
�i � ��g � 
�����

where V is the estimated volume and v is the volume of an individual voxel element�

I is the indicator function� and i is an index running over all the voxels in the image�
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Chapter �

APPLICATIONS

Three sources of data were used to evaluate the methodology for the gated cardiac

SPECT modality� A clinically acquired patient dataset was used for in�depth qualita�

tive analysis and feasibility evaluation� Two phantom data sets� one clinical and one

mathematical� were then used for more accurate estimation of tissue tracking 
facet

placement correspondence with tissue movement�� as well as for secondary qualitative

evaluation�

��� Patient Data

The method as described was applied to a dataset from Duke University Medical

Center consisting of �� images acquired during the heart beat cycle� For each gate�

an image of size ��x��x�� voxels was acquired 
��� mm voxel size�� The heart is

contained entirely in a ��x��x�� voxel volume� Using a � level facet hierarchy� each

voxel in the heart volume contains one bottom�level facet� located at the voxel centers�

The entire hierarchy spans a ��� cube at �ve di
erent resolutions 
L � �� and has a

total of ����� facets� Gate � 
�lling phase� mid�diastole� was used as the reference

image throughout� The resulting density on facet locations x was then maximized for

each non�template gate individually� The local regression feature and near�isotropic

��



shape model o
ered the best modeling performance� Typical maximization time was

approximately � minutes per gated image on a DEC ���au workstation�

����� Qualitative Results

The results are summarized as follows� Plots of estimated facet movement from the

reference image to another gated image are shown as a �D vector �eld together with

two�dimensional slices for further visualization� Individual facet positions are also

considered and displayed on the template and observed images to demonstrate the

deformation achieved under the model� We then display a composite image and

compare it to the traditional SPECT image and a single gated image� Di
erence

images for the composite versus the traditional and gated image are also shown�

Subsequently� estimated changes in template size are shown for the time series� as well

as estimates of the center�of�contraction location through the timeseries� Distribution

characteristics� convergence and stability relative to initial condition are also brie	y

examined�

Facet Motion

Overall motion �elds are instructive in that they give a good indication of whether the

method can capture the gross motion of the heart as a relatively smooth and sensible

vector �eld� The methods applied did indeed show such behavior� and some example

�elds are shown in Figures ��� through ���� Figure ��� shows the full estimated

deformation �eld in the gate � image for the next to lowest level of facets using gate

� as the reference� Gate � corresponds to the most contracted state 
end�systole��

The general contraction from diastole 
gate �� to systole is clearly captured by this

ICM estimated mode of the joint density on facet locations� This is shown even

more clearly in Figures ��� through ���� where� for clarity� facet displacement vectors

are shown for representative two�dimensional slices in three orthogonal directions�
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Figure �
�� Facet motion from gate � 
reference�mid�diastole� to gate � 
end�systole�
in three dimensions� Only level l � � 
next to lowest� facets are shown to allow for
a better display of overall motion� Detailed motion on the lowest level is shown in
Figures ��� through ���
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The grid has contracted on average� but there are also regions of the heart which

have not moved signi�cantly� This demonstrates the method s ability to capture the

nonlinear deformation seen in the heart contraction as well as the overall change in

expected heart size� The motion �eld seen is consistent with typical heart motion

from mid�diastole to end�systole�

Next� the same type of �gure is shown in Figure ��� for the deformation based

on estimated observed facet positions in gate ��� This gate corresponds to the state

of maximum dilation 
end�diastole�� This is in the period of the heart cycle when

the heart is relatively quiescent� that is� oscillating slightly in size in its �lled state�

Again� reasonable motion estimates can be seen� Particulary� it is important to note

that most parts of the heart are shown as not having moved� agreeing with visual

evidence and known cardiac motion theory� Since this is a state very close to the

reference� this is correct� and we can thus have con�dence that the model does not

overly encourage deformation� Only minor motion is detected� consistent with the

quiescence of the heart at this stage in the cycle�

To further investigate the motion sensibility of the facet placements under the

model� the positions of several individual facets in the reference image and gate � are

shown in Figures ��� through ����� Points on the heart are estimated under the model

to deform in a complex manner� and are consistent with the heart shapes seen� No

abrupt discontinuities seem to have been introduced arti�cially by the model� Note

also the fully ��dimensional nature of the deformation as evidenced in the slice�jumps

of several sections� particularly in Figures ��� and ���� The top part of the heart is

seen to shift signi�cantly downwards� whereas only mild upwards motion is seen for

the bottom� This is consistent with known heart behavior and inspection of the image

series� The same slices and points are shown for the adjacent timepoint� gate �� to

note consistency across time in facet position estimation for these two very similar
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Figure �
�� Facet motion from gate � 
reference�mid�diastole� to gate � 
end�systole�
in perpendicular slices with intersection point at the center of the LV chamber� Panels

a��
c� show a transaxial plane� 
d��
f� a coronal plane and 
g��
i� a sagittal plane�
The left column shows the reference image slice� the middle column shows the facet
motion estimate and the right column shows that same estimate superimposed on
the image slice from the gate � image� Note the overall contraction as well as the
non�uniformities� driven by the variation in image intensities to capture the actual
deformation�
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Figure �
�� Facet motion from gate � 
reference�mid�diastole� to gate � 
end�systole�
in perpendicular slices with intersection point towards the top of the LV chamber�
Panels 
a��
c� show a transaxial plane� 
d��
f� a coronal plane and 
g��
i� a sagittal
plane� The left column shows the reference image slice� the middle column shows the
facet motion estimate and the right column shows that same estimate superimposed
on the image slice from the gate � image� Note especially the similarity with Figure
���� showing the cohesiveness of the entire motion �eld� as well as the local di
erences�
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Figure �
�� Facet motion from gate � 
reference�mid�diastole� to gate � 
end�systole�
in slices with intersection point towards the bottom of the LV chamber� Panels 
a��
c�
show a transaxial plane� 
d��
f� a coronal plane and 
g��
i� a sagittal plane� The
left column shows the reference image slice� the middle column shows the facet mo�
tion estimate and the right column shows that same estimate superimposed on the
image slice from the gate � image� Again� note the global similarities and local di
er�
ences compared to Figures ��� and ��� to get an idea of the whole three�dimensional
deformation volume�
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Figure �
�� Facet motion from gate � 
reference�mid�diastole� to gate ��

late�diastole� in perpendicular slices with intersection point at the center of the LV
chamber� Panels 
a��
c� show a transaxial plane� 
d��
f� a coronal plane and 
g��
i�
a sagittal plane� The left column shows the reference image slice� the middle column
shows the facet motion estimate and the right column shows that same estimate
superimposed on the image slice from the gate �� image� This illustrates that the
model is stable for con�gurations near the template in shape� not over�encouraging
motion�
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Figure �
	� Selected facet positions in transaxial slice � of the reference image 
a��
with corresponding estimated facet positions in the gate � image� slice � 
b� and
� 
c�� Note the contraction and deformation in relative positioning without losing
relations between neighboring facets� as well as the slice�jump� indicating fully �D
deformation�
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Figure �
�� Selected facet positions in transaxial slice � of the reference image 
a��
with corresponding estimated facet positions in the gate � image� slice � 
b� and �

c�� As we move down towards the the center of contraction in the volume� we see
less slice�jumping�

states� as seen in Figures ��� and �����

Finally� results are shown to illustrate the local characteristics of the distribution

being maximized� In Figure ���� is shown the �� % highest probability region pro�

jected onto the maximum probability slice in the z�direction� This shows results from

running the sampling scheme for ����� iterations� starting at the density maximum

estimate� We see how the density� which is circular in the shape portion alone� has

been shifted in location and deformed to �t the intensity pattern seen in the new

image�
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Figure �

� Selected facet positions in transaxial slice �� of the reference image 
a��
with corresponding estimated facet positions in the gate � image� slice �� 
b� and ��

c�� Now we are past the mid�point� and slice�jumps 
if slight� occur upwards rather
than downwards�
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Figure �
�� Selected facet positions in transaxial slice � of the reference image 
a��
with corresponding estimated facet positions in the gate � image� slice � 
b� and �

c�� This �gure should be seen together with Figure ���� and shows the consitency
in facet placement estimates between adjacent gates in the series�
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Figure �
��� Selected facet positions in transaxial slice � of the reference image

a�� with corresponding estimated facet positions in the gate � image� slice � 
b�
and � 
c�� These are the facet position estimates for the gate adjacent to that seen
in the previous �gures� and shows 
relative to Figure ���� that the estimation stays
consistent for close times�
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Figure �
��� A representation of the �� % highest probability region for predicted
facet placement in the gate � image� The contour is formed by projecting the ��di�
mensional contour onto the maximum probability slice in the z�direction� 
b� shows
the reference position and 
a� shows the sample highest probability region with the
maximum predictive probability estimate indicated

Contraction

With a relatively vague normal prior distribution on �� 
high variance� truncated

such that ��i �� �� � ��� the contraction was estimated in the three independent

directions� Figure ���� shows these three parameters estimated time evolutions�

as well as the overall resulting contraction correction as a function of time 
gates�

when taken as an overall volume change 
product of the three parameters�� The

parameters behave very sensibly through the cycle� Gates ��� comprise the relatively

short contraction phase 
systole�� while the remaining images are acquired in the

expanded or dilated state 
diastole� of the heart� The parameter time evolution tracks

this� with some variability in the individual directional contraction parameters� as is

reasonable� considering the blurry nature of this image type and the complexity of

the true contraction� Due to the discrete nature of the image data� a certain range

of ��i is undistiguishable� That is� unless ��i causes facet means to change which

voxel actually contains the facet� the data cannot help us distinguish between two

close values of ��i� The more important clinically relevant quantity� overall volume�

behaves exactly as expected� however� Since the contraction factors re	ect an overall
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Figure �
��� Estimated overall contraction through cycle� measured in percent of
total volume spanned by 
c relative to 
� This corresponds well to the expected and
observed heart contraction through the series of images� It is not interpretable as
heart chamber volume� however

correction rather than a direct estimate of� say� the heart chamber size� they can be

interpreted as a rough indicator of relative heart size� They should not� however� be

used as a measure of particular quantities� such as LV chamber volume� To perform

this estimation� segmentation or identi�cation data 
which facet is in the chamber in

the reference� is necessary� In addition to agreeing with the a priori known behavior�

the general trend shown in Figure ���� matches well with visual inspection of changes

in heart size over the image series�

Furthermore� the characteristics of the distribution being maximized were probed

through sampling 
jointly with the facet position estimates seen in Figure ������

����� iterations of the sample chain and a histogram density estimate is shown in

Figure ����� We see that� while having wide support� the maximum estimate for the
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Figure �
��� Results from the sampling chain for one of the contraction parameters
from estimation of facet positions in gate �� 
a� shows a portion of the sample chain
and 
b� shows the resulting histogram density estimate for that parameter with the
maximum found through the maximization technique indicated with a line�

contraction factor is clearly de�ned�

The center of contraction �� similarly displays sensible behavior� In Figure ���� is

shown the empirically estimated z�location ��� 
guided by $�� for the gates prior to the

reference 
rapid contraction and expansion�� The evolution is exactly as indicated

in the literature� up towards the middle of the heart in the quieter phase 
end�

contraction� end�expansion� and lower down in the rapidly changing phases 
mid�

contraction� mid�expansion��
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Figure �
��� Estimated center of contraction z coordinate 
���� for the rapid con�
traction�expansion phase of the heart beat cycle� discretized to which slice of the
dataset it resides in� The center of contraction moves down along the LV long axis in
the most rapidly changing gates and resides at approximately the LV center when the
size is more stable 
at maximum contraction or expansion�� This behavior matches
that of the literature�

Summary Images

To more accurately represent the distribution of radiotracer uptake in the heart� a

facet�composite 
composite for short� image was calculated� As described in Section

������ the maximization for facet placement in all gated images was consolidated

into this composite image by mapping the gated image intensity found at the facet

position in each image to that facet s reference image position and averaging those

intensities across the image sequence�

A traditional ways of comparing such representations of the data is to look at

one�dimensional pro�les from the volume� However� we �nd that this representation

is relatively uninformative visually� To make comparisons about shape and intensity

patterns� we therefore choose to display two�dimensional slices from the volume�

which we �nd to o
er a better tool for inspection� When looking at the results this

way� the composite image 
Figure ����
a�� compares favorably to both of the other

representations of the data� the voxel�wise mean 
standard SPECT equivalent as
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Figure �
��� Perpendicular slices from three representations of the data� The in�
tersection point is at the center of the LV chamber� 
��� ��� ��� 
a��
c� show the
transaxial view� 
d��
f� show the coronal view and 
g��
i� show the sagittal view�
The representations shown are � 
a��
d��
g� Composite image mapped to gate ��

b��
e��
h� mean voxel�wise image 
standard SPECT�� and 
c��
f��
i� gate � image
only� The composite image was formed by computing average intensity based on the
facet motion through the series of images and mapping back to the reference image

gate ��� We observe similarity between gate � and composite� with the composite
having superior smoothness in regions of activity� Furthermore� a better spatial de�
lineation of the heart wall in the composite image relative to the standard SPECT
image is seen
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seen in Figure ����
b�� and the gated image alone 
as seen in Figure ����
c��� Image

intensity uniformity has been improved in the LV wall region relative to the gated

image alone� while retaining image contrast� Comparing the facet�composite with

the mean image shows a better delineation of the lateral wall of the left ventricle�

The composite image thus represents a speci�c state of the heart 
here� it maps to

mid�diastole� rather than a time�averaged state which does not exist� The di
erence

images shown in Figure ���� highlight the structural di
erences between the summary

images� The mean image minus the composite image 
voxel�wise di
erence� shows

a clear pattern 
dark and bright� that corresponds to the lateral wall of the left

ventricle� Again� this corresponds to known heart motion� Also� when the composite

image is subtracted from the gate � reference image� no pattern other than the known

intensity di
erence between an average and any individual gate late in the time series

is apparent� 
Early gates tend to have more intensity due to an out�of�phase blurring

e
ect which worsens towards the end of the beat cycle because in acquisition� the

start of the series is more accurate than the partitioning��

Stability

Each full ICM cycle includes an iterative maximization over facet locations x� followed

by a maximization for ��� The model was allowed to run for ��� such cycles� and did

not exhibit any signi�cant changes in parameter estimates or facet locations from the

values determined with a shorter run 
� full cycles� when initialized at a reasonable

starting point� Previous work 
McCulloch� ����� has reported fast convergence of

the maximization for a model which does not incorporate contraction 
�� directly�

Several starting positions for the maximization routine were used without changing

the �nal results� enforcing our belief that the ICM method applied to this problem

�nds� if not the global maximum� then a sensible and very good local maximum in p�

��
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Figure �
�	� Di
erence images corresponding to the images in Figure ����� 
a��
c�
and 
e� show mean minus composite 
mapped to gate ��� and 
b��
d� and 
f� show
gate � minus composite� For detailed explanation of the composite image� see section
����� � Here we see clearly the structural di
erence between the standard 
mean�
image and the composite facet�based image� The regions of dark and bright indicate
that the deformation model has shifted intensity outward for the lateral wall of the left
ventricle� This is in accordance with the use of gate � 
mid�diastole� as the reference�
The gated versus composite comparison shows no structural di
erences other than an
overall intensity level di
erence in the heart region� which is attributable to a known
intensity trend discussed in the text
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����� Quantitative Results

Since this is a clinical dataset� it is impossible to ascertain the absolute motion of

portions of the heart tissue� as that would involve invasiveness which is clinically

unacceptable� Therefore� we can not numerically measure the accurateness of the

individual facet motion in the clinical dataset� Since we are modeling the perception

process� this would give us important information on how good of an observer this

method represents� and thus about its possible clinical usefulness� To get some mea�

sure of performance� we performed a manual observation task on the data from both

the reference and the contracted state of the heart� We then performed a standard

clinical volume calculation from the model motion estimates to see if it fell within a

clinically reasonable range�

Volume Estimates � Ejection Fraction

For the clinical dataset� then� we performed a manual volume segmentation of the

left ventricle in the reference image 
gate ��� We calculated the new volume based on

the new facet position estimates� such that only those voxels containing facets were

counted as being in the volume�

Using this method resulted in the volume shapes shown in Figure ����� which

again are very reasonable based on knowledge of the heart motion� Again� we see the

stationarity of the inner LV wall and the motion down and in of the outer wall� The

ratio of volume change from dilated to contracted state relative to the dilated state

was then calculated as

e �

Vdilated � Vcontracted�

Vdilated
� 
����

This quantity e corresponds to what is clinically known as the ejection fraction� a tool

much used by clinicians as an indicator of the severity of a heart problem� Obviously�
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Figure �
��� Reference and estimated positions for the facets manually segmented
in the reference image as being inside the left ventricular chamber� 
a� The segmented
facets in the reference image� 
b� The same facets positions estimated in the gate
� 
end�systole� image from the same view� 
c� and 
d� The data from 
a� and 
b�
superimposed� shown from two di
erent and almost opposing angles to demonstrate
the change in shape� We see that the chamber has been estimated to have shrunk
substantially� and that this is due mostly to the motion of one side of the chamber

the outside wall��
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the lower the ejection fraction� the worse the heart function� For the dataset in

question� the ejection fraction from the facet motion estimates comes out to be ��

per cent� which is very reasonable for a patient with a heart condition� A �normal�

ejection fraction is up around �� per cent� This volume calculation also agrees within

� per cent with the same calculation based on manual segmentation of the contracted

volume�

��� Mathematical Phantom Data

The method was also applied to a dataset generated from a mathematical phantom

representing the beating heart in a human thorax� Using three�dimensional hyper�

ellipsoids and the anatomical and functional reference literature for the human and

cardiac physiology and function� Peter et al 
����� have developed a realistic phantom

which can be used to generate a variety of data� Each object within the thorax is

controlled by its own set of shape parameters� and so a variety of anatomies and heart

states can be modeled computationally� In particular� it can be used to simulate a

gated cardiac SPECT scan� by imposing the geometry of the dynamic phantom at

several timepoints in the cardiac cycle as the basis for a Monte Carlo simulation

of SPECT emission� attenuation and detection� By generating individual photon

histories� the two�dimensional projections as mentioned in Section ��� are formed�

which can then be reconstructed into the full three�dimensional images exactly as in

the patient data case� The data was generated for �� gates as a ���x���x��� voxel

representation� of which we used every other gate� a total of ��� The spatial resolution

of the simulation was such that a �� x �� x �� cube of voxels contained the entire

LV chamber� This is approximately double the resolution 
along each dimension�

compared to the clinical data in the previous subsection� Note that the simulation

data shown here is very high�count� making the noise characteristics superior to those

��



typically seen for a clinical gated dataset� They o
er a good test for the deformation

aspects of the model� however� due to our more detailed knowledge of the underlying

truth�

The methods were applied as before� but now with � levels in the hierarchy to

once again provide one lowest�level facet per voxel in the reference image in a ���

cube con�guration� This yields a total of ������ facets in the model� Arbitrarily�

the reference was taken to be the �rst image in the series� gate � 
expanded state��

Maximization was carried out as described in Section ���� using the local regression

feature function and the near�isotropic shape speci�cation�

����� Qualitative Results

Facet Motion

First we investigate the overall motion pattern� displayed through the same type of

results and illustrations as seen for the patient data� This is done to demonstrate

consistency in behavior between the two sets of data as well as for visual inspection

of the estimation� We elect to look at the motion �elds for the next to lowest level

of facets� since there is simply too much information on the lowest level to display

e
ectively across the heart as a whole in single �gures� Looking at these facets for the

contracted state 
end�systole� as seen in Figure ���� indicates very sensible estimates

for the maximum probability placement of the facets� They correspond well to visual

inspection and expected contraction behavior� As before� note the overall contraction

with signi�cant areas of non�uniformity� It is also worthwhile to mention that the

�elds in this case are much smoother than in the previous case� as should be expected

since the contraction is modeled as hyperellipsoids changing smoothly in size from

frame to frame� and also due to the better identi�ability of the heart thanks to the

noise characteristics of the data�
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Figure �
�
� Facet motion from gate � 
reference�expanded state� to gate ��

end�contraction� in perpendicular slices with intersection point at the center of the
LV chamber� Panels 
a��
c� show a transaxial plane� 
d��
f� a coronal plane and

g��
i� a sagittal plane� The left column shows the reference image slice� the mid�
dle column shows the facet motion estimate and the right column shows that same
estimate superimposed on the image slice from the gate �� image� The estimated
positions for the level l � L�� � � was shown in order to be able to display estimates
across the entire heart�
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Figure �
��� Facet motion from gate � 
reference�expanded� to gate ��

start�contraction� in perpendicular slices with intersection point at the center of
the LV chamber� Panels 
a��
c� show a transaxial plane� 
d��
f� a coronal plane and

g��
i� a sagittal plane� The left column shows the reference image slice� the middle
column shows the facet motion estimate and the right column shows that same esti�
mate superimposed on the image slice from the gate �� image� We observe that the
facets are estimated as having positions only slightly di
erently positioned from the
reference�
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Figure ���� shows the same for the gate in the series corresponding to the time�

point just before contraction begins� This corresponds to a slightly expanded 
dilated�

state of the heart� We again see that the model estimates the slight expansion while

keeping most of the facets stationary� We thus see that the method is able to capture

variation of magnitude and pattern in the deformation just like in the patient data

case�

An intermediate state during the expansion phase 
after maximum contraction� is

seen in Figure ����� and we see that the maximum probability estimates for the facet

positions again indicate a smooth motion �eld of varying magnitude and direction�

This also holds true across time� as we see that the overall deformation magnitude is

seen to be in between the results from the two previously shown gates�

Next is shown a subarea of the estimated facet positions for this intermediary gate

in detail in Figure ����� this time with display of all lowest�level facets corresponding

to three orthogonal slices through the same intersection point as before� These are

the estimated positions that will later be used to calculate the composite image for

the timeseries� Again� reasonable behavior is seen�

Finally� some individual lowest level facet placements are displayed in Figure ����

to demonstrate that they correspond to reason and visual inspection� We see that

there is cohesiveness in the facet patterns shown� while deformations vary from minor

to signi�cant� Especially note the signi�cant slice shifting as should be expected for

this fully three�dimensional estimation�

����� Quantitative Results

Since we posess the underlying truth about both heart shape generation 
if not in�

dividual tissue position� and contraction pattern� the sections on summary images

and contraction parameters� while still somewhat qualitative in nature� o
er some

��
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Figure �
��� Facet motion from gate � 
reference�expanded� to gate ��

late�expansion� in perpendicular slices with intersection point at the center of the
LV chamber� Panels 
a��
c� show a transaxial plane� 
d��
f� a coronal plane and

g��
i� a sagittal plane� The left column shows the reference image slice� the mid�
dle column shows the facet motion estimate and the right column shows that same
estimate superimposed on the image slice from the gate �� image� We see that the es�
timates again indicate a smoothly varying contraction and that the overall magnitude
is intermediate relative to that seen in Figures ���� and �����
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Figure �
��� Detailed facet motion from gate � 
reference�expanded� to gate ��

mid�expansion� in perpendicular slices with intersection point at the center of the
LV chamber as in Figure ����� Panels 
a��
c� show a transaxial plane� 
d��
f� a
coronal plane and 
g��
i� a sagittal plane� The left column shows the reference image
slice� the middle column shows the facet motion estimate and the right column shows
that same estimate superimposed on the image slice from the gate �� image�
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Figure �
��� Selected facet positions in transaxial slice �� of the reference image 
a��
with corresponding estimated facet positions in the gate �� image� slice �� 
b� and
�� 
c�� Note the smooth contraction and deformation in relative positioning without
losing relations between neighboring facets� as well as the slice�jump� indicating fully
�D deformation�

quantitative comparisons as well�

Summary Images

Since this is an image series with better noise characteristics than the earlier discussed

patient data� we would expect that we can even more markedly improve the summary

image explained in Section ������ This is indeed the case� as evidenced in Figures

���� and ����� In the composite image formed using the facet placement estimates

we see a better delineation of the heart wall as mapped to the reference� as well as

similar uniformity of intensity within the heart wall� We know that the true activity

distribution was constant� and it looks like we consistently overestimate the activity

in some regions based on areas that are imaged as particularly high in intensity in

the reference gate we are using� The di
erence images clearly show� however� how

much better this methodology maps the activity into a clinically meaningful shape

when compared to the physiologically non�existent average state�

Contraction Parameters

The contraction parameters again behave exactly as expected� tracing the visually

evident and known pattern of the contraction and expansion cycle of the heart beat�
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Figure �
��� Perpendicular slices from three representations of the data� The in�
tersection point is at the center of the LV chamber� 
��� ��� ���� 
a��
c� show the
transaxial view� 
d��
f� show the coronal view and 
g��
i� show the sagittal view�
The representations shown are � 
a��
d��
g� Composite image mapped to gate ��

b��
e��
h� mean voxel�wise image 
standard SPECT�� and 
c��
f��
h� gate � image
only� The composite image was formed by computing average intensity based on the
facet motion through the series of images and mapping back to the reference image

gate ��� We observe similarity between gate � and composite� with the composite
having superior smoothness in regions of activity� Furthermore� a better spatial de�
lineation of the heart wall in the composite image relative to the standard SPECT
image is seen�
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Figure �
��� Di
erence images corresponding to the images in Figure ����� 
a��
c�
and 
e� show mean minus composite 
mapped to gate ��� and 
b��
d� and 
f� show
gate � minus composite� For detailed explanation of the composite image� see Section
������ Here we see clearly the structural di
erence between the standard 
mean� image
and the composite facet�based image� The regions of dark and bright indicate that
the deformation model has shifted intensity outward from the LV chamber center�
especially for the lateral wall of the left ventricle� This is in accordance with the
use of gate � 
expanded� state as the reference and agrees with the moving versus
stationary regions both as observed in the dataset and as known from the underlying
model�
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Average Range
Normalized residual ����� � ����� ����� �
Normalized residual 
gates ������ ���� � ����� ����� �

Table �
�� Table of residuals for the regression of outer LV chamber volume on the
estimated product of contraction parameters� Both the results with and without the
initial phase of the heart cycle is shown� The poorer performance on the full series
is probably due to a voxelization e
ect discussed in the text�

We also have access to the hyper�ellipsoid parameters used for the generation of the

LV chamber� and so an intelligent comparison can be made�

In Figure ���� are shown the three contraction parameters through the beat cycle�

next to a normalized version of the three ellipsoid radii used for the mathematical

phantom data generation� We see good if somewhat noisy correspondence between

the three sets� recalling that none of these can be said to correspond to the other�

since the orientation of the heart is not the same as that used in the modeling� When

viewed as a volume� which is the most meaningful clinical quantity in any case� that

is� taking the product of the three parameters� we see an excellent correspondence

between the three curves as seen in Figure ����� This indicates that the contraction

parameters could be used as a good predictor for LV chamber size for this type of

data� In fact� when used to predict the outer volume of the LV chamber through the

rapid contraction�expansion phase of the heart beat� we get a normalized residual

error of less than ���� when regressing the product of the phantom radii on the

product of the ��� The results of this simplistic prediction is summarized in table

��� with the results plotted in Figure �����

The only clear inconsistency in estimation is in the slight expansion phase seen in

the beginning of the cycle� This is easily accounted for� however� when we consider

that the change in radius must translate into actually changed voxel labels for a

signi�cant number around the heart in order to be detectable� Since the radius of

the LV chamber in the reference varies from � to �� voxels� this means that a size
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Figure �
��� Estimated contraction parameters through cycle 
a��
d��
g�� contrasted
to mathematical phantom parameters for the left ventricle� outer wall 
b��
e��
h� and
inner wall 
c��
f��
i��
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Figure �
�	� Estimated overall contraction through cycle� measured as the product
of the ��� panel 
a�� This is contrasted to the product of the outer LV chamber wall

panel 
b�� and the inner LV chamber wall 
panel 
c���
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��� Plot of the results from using a linear regression on the product contrac�
tion parameters to predict the product of the LV chamber radii during the contraction
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parameter must change by a minumum of � per cent uniformly for this to happen�

Thus the model will not be able to pick up small changes such as that seen in the

beginning of the cycle simply because they are not observable when translated into

the discrete overall voxelized representation� There is also a range of values for ��i

for which a change is not meaningful in real terms� since no voxel change in actual

facet placement is e
ected� Thus� the 	uctuations in a �band�like� fashion seen in

Figure ���� are reasonable� Note that the deformation is still estimated 
as seen in

Figure ����� reasonably in the model given ���

To illustrate convergence of the maximization for these parameters� the maximiza�

tion was allowed to run for ��� iterations� and the beginning of the resulting timeseries

for one component of �� for �ve of the gates is shown in Figure ����� We see that

the parameter converges for all gates within approximately �� iterations� while those

gates started closer to the estimated maximum density value converge in less than ��

This indicates that �nding a heuristic starting point� maybe by automatic distance

measurements on a thresholded version of the image� could speed up convergence

signi�cantly� In addition� the log probabilities of the facet estimated con�guration

is shown to demonstrate the maximization convergence� The slight 	uctuations once

the curves 	atten out are due to the approximations used for estimating the upper

level facet positions�

��� Clinical Phantom Data

The �nal dataset considered was formed using a hollow beating heart phantom to

image three states of the heart� maximum expansion� maximum contraction and

a point roughly midways between the two� These scans were performed at Duke

University Medical Center with standard clinical parameters and resulted in three

images consisting of ��x��x�� voxels each� covering the entire heart phantom� Note
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Figure �
�
� Here is shown in 
a� the values for one of the contraction parameters
for �ve of the gates in the mathematical phantom data timeseries through several
maximization cycles� We see convergence on the order of � iterations for gates close
to the reference and on the order of �� for the gate furthest from the reference� In 
b�
is seen the associated log probability densities for the full parameter con�guration
for the same chains� The 	uctuations in 
b� are caused by the approximation used
on the higher levels of facet�
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that this dataset� unlike the previous two� has activity throughout the heart and is as

such a phantom only in the volumetric and not in the functional 
activity localization�

sense� No attempt was made to partition out the LV chamber� as we used the set

exclusively to evaluate overall motion and the tracking of markers placed on the

surface of the phantom� Points on the phantom surface were labeled by imaging

the phantom twice at the exact same settings� with highly radioactive sources �xed

to the surface of the heart phantom in one of the scan series� Figure ���� shows

identical slices from the two series at each heart state imaged� We can thus extract

a relatively accurate motion map for a number of points on the surface and compare

to the estimated facet placement under the model� In all � markers were placed�

and of these � were in positions which could usefully evaluate the model estimation

accuracy� The model was applied by using a � level facet hierarchy 
����� facets

total with a ��� cube on the bottom level� to cover a ��x��x�� voxel volume which

contained the heart portion of the phantom� The fully expanded state was used as

the reference dataset�

����� Qualitative Results

Facet Motion Estimates

As with the other datasets� the �rst thing considered is the overall facet motion de�

rived from the facet maximum probability position estimates� Again� very reasonable

behavior is seen� In Figure ���� is shown the motion �eld for the maximum con�

tracted state� and once again we observe overall contraction modi�ed non�linearly

but smoothly to �t the observed image features� A small region with no movement

is seen� while the rest of the heart generally contracts smoothly towards the upper

portion of the heart� In Figure ���� is seen the same type of �gure for the intermedi�

ary state imaged� This time� we see a mild contraction with signi�cant areas of little
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Figure �
��� The clinical phantom data imaged with and without markers� Panels

a� through 
c� show the same central sagittal plane for the three di
erent states of
the phantom that were imaged� Panels 
d� through 
f� show the same for the case
without markers attached� which is the data used for the facet estimation� Reverse
intensity was used in the marker case as it provided for better visual illustration of
their location�
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Figure �
��� Facet motion from expanded to contracted state in perpendicular slices
with intersection point at the center of the heart� Panels 
a��
c� show a transaxial
plane� 
d��
f� a coronal plane and 
g��
i� a sagittal plane� The left column shows
the reference image slice� the middle column shows the facet motion estimate and
the right column shows that same estimate superimposed on the image slice from the
reference image�
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Figure �
��� Facet motion from expanded to intermediary state in perpendicular
slices with intersection point at the center of the heart� Panels 
a��
c� show a transax�
ial plane� 
d��
f� a coronal plane and 
g��
i� a sagittal plane� The left column shows
the reference image slice� the middle column shows the facet motion estimate and
the right column shows that same estimate superimposed on the image slice from the
reference image�
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��� Selected facet positions in transaxial slice �� of the reference image

a�� with corresponding estimated facet positions in the maximum contracted image�
slice �� 
b� and �� 
c��
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Figure �
��� Selected facet positions in transaxial slice �� of the reference image 
a��
with corresponding estimated facet positions in the intermediary contracted image�
slice �� 
b� and �� 
c��

or no movement� The pattern seen is consistent both with the more expanded state

in the sense of sequential motion� and also with the observed shape of the heart in

this intermediary state�

Figures ���� and ���� show the same set of facets in the reference image with their

estimated observed locations in the maximum contracted and intermediary state� re�

spectively� The estimation is entirely reasonable in terms of relative facet positioning

within an image 
smoothly deformed�� In addition� the progression from the interme�

diary to maximum contraction illustrates the deformation along all three dimensions

as facets move from mostly being in slice �� to mostly being in slice ���
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Figure �
��� One of the markers 
situated in slice �� in the reference image� actual
and estimated position in the clinical phantom dataset� Facet position in the 
a�
reference 
expanded� image� 
b� intermediary state and 
c� maximum contracted
state are shown� Also� measured marker position in the 
d� expanded image� 
e�
intermediary state and 
f� maximum contracted state are indicated� A near�perfect
match is seen�

����� Quantitative Results

Marker movement

Finally� the eight markers were evaluated� The facet closest to each marker in the

reference image was located� and the motion estimated under the model was compared

to the motion observed manually from the marker dataset� This resulted in excellent

matches�

Most facets were estimated within � voxels of the measured position� and they all

fell within a ��� voxel distance 
see table ����� They also all agree well with visual

inspection� as demonstrated in Figures ���� and ����� The error seen is completely

��



x

y

(a)

25 30 35 40

25

30

35

40

x

y

(b)

25 30 35 40

25

30

35

40

x

y

(c)

25 30 35 40

25

30

35

40

x

y

(d)

25 30 35 40

25

30

35

40

x

y
(e)

25 30 35 40

25

30

35

40

x
y

(f)

25 30 35 40

25

30

35

40

Figure �
��� One of the markers 
situated in slice �� in the reference image� actual
and estimated position in the clinical phantom dataset� Facet position in the 
a�
reference 
expanded� image� 
b� intermediary state and 
c� maximum contracted
state are shown� Also� measured marker position in the 
d� expanded image� 
e�
intermediary state and 
f� maximum contracted state are indicated� A near�perfect
match is again seen�

Image data set Average Value Range
Intermediary State ���� � ���� ���� �
Fully Contracted State ���� � ���� ���� �

Table �
�� Average values and range for deviation between facet placement and
observed marker location for the clinical phantom dataset� We see excellent corre�
spondence� within the limits of error inherent in the measurement method used to
determine marker locations manually and the natural scale of the image series� �
voxel�
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acceptable given that there is uncertainty associated with the location of the marker


performed by visual inspection of images such as seen in Figure ���� 
a��
c��� There

may also not be an exact match between the two image series� While the two series

agree extremely well� there may be local inaccuracies at scales as small as one voxel�

Overall� the agreement seen between actual perceived motion and estimated facet

positions lends great strength to the method s ability to follow individual structural

points through the timeseries�
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Chapter �

DISCUSSION AND EXTENSIONS

��� General Discussion

The statistical model proposed in this thesis uses an image understanding approach

to improve the utility and applicability of gated cardiac SPECT data� By balancing

the modeling of known characteristics of heart motion against computational con�

cerns� an estimation of perceived facet locations has proven possible on a timescale

which could render the methods useful in clinical settings� The inclusion of contrac�

tion parameters encourages deformation estimates to track known cardiac behavior

while remaining relatively simple in implementation� The contraction parameters

themselves are meaningful in tracking the heartbeat cycle and for rough estimation

of volumes� Furthermore� the structure of the facet model� that is� the use of a large

number of labelled points� leads to the set of locations for every facet in every gate

as a very rich representation of the image data� With further investigation of true

anatomical correspondence� this representation can o
er new diagnostic ways to look

at heart function abnormalities via estimated deformations rather than based solely

on radiotracer uptake� The facet�composite image is also a clearly improved summary

of the image time series over the voxel�wise sum and o
ers better intensity uniformity
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in the heart region and from that a better SNR than the individual gated images�

Furthermore� reasonable volume estimates for the patient data and corresponding

ejection fraction estimates show that the methods can track relevant clinical quan�

tities well� The successful application of the model to phantom data demonstrates

that the methods provide accurate as well as qualitatively sensible results� The close

tracking of known parameters as seen in the mathematical phantom case and the ac�

curate estimation of speci�c point motion as seen for the clinical phantom especially

support the accuracy and utility of the proposed deformation method� The maxim�

imization technique used throughout provides good estimates� and while it does not

guarantee convergence to a global maximum� it clearly provides very reasonable facet

placements� This� balanced with the computational savings� justi�es its use�

��� Modality and Data Extensions

This methodology can obviously be directly applied to other medical imaging modal�

ities� in particular those who image the beating heart in a sequential manner� Gated

magnetic resonance imaging or positron emission tomography are other techniques

used to image cardiac function in this manner� The general methodology should be

useful for any kind of modeling of objects where some knowledge about size evolution

is available a priori or also if linear scaling in expectation of facet placement for an

image scene is desireable�

The Monte Carlo computed phantom of a beating heart in a thorax as used

in the evaluation can� when further re�ned and validated� provide a rich testing

ground for this type of modeling by allowing further testing of individual facet motion

and the shape deformation of regions in hearts of di
erent shapes and sizes� and

eventually� when such data becomes available� in various disease states� This is

important since there is no clinical data available to evaluate the real motion of
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individual heart tissue elements for time series such as these� as that would require

invasiveness beyond what is acceptable as clinical risk� Once the simulation data has

been validated as being near�clinical� simulation data could also be used for parameter

estimation based on segmentation data� inherently available from the phantom data�

or individual facet positions� if these could be sensibly mathematically extracted�

Currently� estimation of parameters such as 
 and 	 is limited by lack of data rather

than lack of methodology� The approach for both types of estimation mentioned

above is already outlined in McCulloch 
������

As for cardiac SPECT itself� research is being performed in the area of including

the simultaneous acquisition of a second dataset� so�called transmission computed

tomography 
TCT�� In this modality� radiation is emitted from a radiation source

mounted opposite the detector� and the transmission of the radiation that passes

through the patient is measured to produce an anatomical rather than functional

map of the heart� This data could then be used in a straightforward manner as

additional image feature data 
included in ff� �g� for the deformation modeling�

The application of the general model without contraction to modalities such as

positron emission tomography and magnetic resonance imaging 
both anatomical and

functional� is already underways� One of the most challenging problems arising out

of some of this data is due to these objects containing more detail than in the cardiac

SPECT case� In addition� the objects being deformed 
brain sulci� f�ex�� vary in

more complicated fashion� Thus� the balance between gross and local deformation

needs to be re�ned� that is� the model must accommodate the fact that there may

be regions greatly deformed next to regions which are very similar to the template�

something the model currently handles poorly if at all�
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��� Other Model Extensions

In terms of the model itself� then� the most important future extension seems to be the

ability to adjust linkages between facets via the corresponding weights in the design

matrix Al� This is based on the idea that structures can be the same conceptually

and yet be di
erent enough to not be captureable under the model as described� In

such scenarios� the desire is for the model to be automatically adjustable� This could

be achieved if a stable estimation scheme for the individual weights used to form A

themselves was developed� for instance by using a Dirichlet prior p
w� on the set of

weights connected upwards from a facet� The model would then be speci�ed as

p
x� f� w� �j�� � p
xj�x� ��p
f j�f�p
��p
w� � 
����

and maximization and sampling� while more complicated than in the current model�

could be performed as before based on the full conditionals�

p
wjx� f� �� ��� p
�jx� f� w� �� � 
����

and so on�

An important area which is already being pursued� is the possibility of inclusion

of image features at all levels� This corresponds to extending the pI to include

terms linked to facets lj for l �� L� This obviously leads to a more computationally

demanding model� but is sensible in the sense of basing the deformation model itself

on the scale�space of an image� rather than using the scalespace as a maximization

tool as done here� The question of choice of feature also o
ers itself as you move

up in the hierarchy� It is clear that the same features are not equally meaningful at

all levels� For instance� the local correlation feature may make sense on the lowest

few levels� but higher up� the scale�space intensity or scale�space Laplacian may o
er

a better modeling candidate for the image deformation� Finally� it is worth noting

that any representation of the image can be seen as a candidate for image features�
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for example the wavelet representation or other image transforms� We then get

away from modeling human visual perception in the direct sense presented here� but

nothing in the implementation precludes such application�

Another issue is the choice of the reference values �� When choosing a single

gate image as the reference as done for the case discussed in this thesis� you leave

yourself open to artifacts from spurious details in that image� For example� the slight

over�estimation of activity in the mathematical phantom data summary images can

be traced to this e
ect� It may be useful� therefore� either to compile an atlas of

expected behavior for � across the reference using more than one example� Another

possibility is to add estimation of � directly into the modeling� thus drawing strength

from the combined observation of facet positions across the timeseries� As this would

make most sense in a framework where the entire series is modeled jointly� the com�

putational burden would be quite signi�cant� but the case can certainly be made for

at least evaluating the increase in performance such estimation would entail� In a

way� this would also bring the modeling full circle� as we would then use our image

understanding method to estimate not just observed image deformation� but now

indirectly get back to the process underlying the image formation via a perception

aproach rather than a physically based model�

Another possible extension of the model in terms of clinical applicability for

SPECT� is to have several reference sequences to which the imaged series is mapped�

This could for example be achieved by �rst estimating the contraction factors ��

under a reduced model 
low number L of levels�� Based on those estimates� one

could then choose one or several of the reference series to estimate a more detailed

deformation� Probabilities of having a certain heart characteristic� disease or oth�

erwise� could then be expressed from the shape deviations from these states� The

alternative would be to use tissue motion estimates from single series as direct in�
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dicators for heart malfunction� Any such approach to prove clinical signi�cance of

such derived information from the facet position estimation would require access to

an extensive clinical database and close collaboration with clinical researchers and

medical personnel�
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