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Abstract

Bayesian nonparametric analyses develop probability models on very high, possi-

bly infinite, dimensional function spaces. However, with the benefits of exploring

large parameter spaces comes the responsibility of controlling potentially over-

parameterized models. With thoughtful prior elicitation, Bayesian methods may

naturally impose model complexity restrictions depending upon whether a func-

tion is defined by a collection of random components or as one random variable.

This dissertation, via the progression of three separate works, takes advantage

of two ways prior distributions may penalize complex functions in nonparametric

analyses of expression proteomic data .

Since all cellular functions are carried out by proteins, the primary purpose

for expression proteomics is to assess from differences in protein production how

an organism responds under various conditions. One common way to assess the

differences is to analyze the protein content of varying biological samples us-

ing Matrix Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF)

mass spectrometry (MS). Although, MALDI-TOF MS has many analytical ben-

efits, inherent within the technology are sources of measurement error that make

deciphering true signal from noise difficult. Thus, all expression proteomic stud-

ies that use MALDI-TOF MS data must first extract data of interest from mass

spectra before making inference.

Chapters 2 and 3 are devoted solely to developing nonparametric Bayesian

models to identify significant features from individual spectra. Both models es-

timate an unknown function f that represents true protein signal as a weighted

sum of J kernel functions with either prespecified or data-determined J location
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parameters. In the prespecified case, a truncated exponential prior on the co-

efficients regularize the proposed over-parameterized model. In the unspecified

case, the function f itself is assumed to be a random variable for which a Lévy

random field prior is elicited. The process prior of f penalizes complex models

and is comparable to specifying a joint prior distribution on J , kernel function

parameters, and the basis coefficients.

Chapter 4 expands the model presented in Chapter 3 to include multiple spec-

tra from two sub-populations. Underlying every observed spectra, regardless of

sub-population, is one mean-spectrum that is modeled similarly to f as described

in Chapter 3 with a Lévy random field prior. The difference is an added dimen-

sion to the random field that represents sub-population association. With the new

dimension, the proposed model extracts and aligns population significant features

and compares them to make treatment group classifications.
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Chapter 1

Introduction

Within the Bayesian paradigm, completing a nonparametric data analysis as orig-

inally defined by Dr. Jacob Wolfowitz in 1942 is impossible. The original defi-

nition referred to distribution free, statistical techniques that avoided potentially

restrictive or erroneous assumptions concerning the probability density or mass

functions of random variables; yet, Bayesian methods require a well defined like-

lihood distribution and probability measures on all parameters. Thus, Bayesians

redefine the meaning of nonparametric analyses and develop a definition that

maintains the spirit of Wolfowitz’s intentions and applies to flexible, statistical

models which may summarize data that cannot or do not support typical analysis

assumptions. Since model flexibility may result from the addition of parameters,

or equivalently, expansion of the parameter space, Bayesian nonparametrics, is

accepted ironically as “ordinary Bayesian analysis with an infinite [or extremely

large] dimensional parameter space” [Wolpert, 2002; Bernardo and Smith, 1994;

Müller and Quintina, 2004]. Within the applied field of expression proteomics,

this dissertation develops three novel, nonparametric data analysis approaches.

1



1.1 Expression Proteomics and MALDI-TOF

Expression proteomics is the study of all protein forms observed within an organ-

ism as a function of time, age, state, or other external factor(s). Since, all cellular

functions are carried out by proteins [Martin and Nelson, 2001] the aim is to as-

sess how an organism responds under various conditions and to answer questions

including “What proteins are present?”, “How do the proteins work together in

signaling pathways?”, and “What protein differences or changes may drive the de-

velopment, repair, breakdown, and/or death of an organism?” [Wu et al., 2002].

For example, one expression proteomic, observational study discussed within this

dissertation called for serum samples from lung cancer and control patients. The

purpose of the study was to gain an understanding of how the body responds to

lung cancer and to find protein biomarker(s) that may differentiate patient disease

states.

The protein content of samples can be summarized by spectra acquired from

Matrix Assisted Laser Desorption/ Ionization Time-of-Flight (MALDI-TOF) mass

spectrometers. MALDI-TOF mass spectrometers have four primary components:

a sample inlet, an ionization source, a mass analyzer, and an ion detector. On a

plate, samples insert directly into an ion source, where a laser excites, vaporizes,

and ionizes molecules so that they “fly” through the instrument’s field free region

and separate according to size and charge. At the end of the region, an ion

detector measures at uniform time intervals the intensity of an electrical current

that is proportional to the number of detected ions. Upon converting the time

units to molecular mass divided by charge (m/z1 in unit Da/e), MALDI-TOF

1Standard mass spectrometry literature does not provide units for m/z. However, mass is
measured in Daltons (Da) and e represents the change an electron in coulombs.
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mass spectrometers produce a spectrum or proteomic profile from either one or

the sum of multiple laser shot(s). Figure 1.1 is a spectrum of a serum sample that

was generated from the sum of ten laser shots.
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Figure 1.1: Example of a MALDI-TOF spectrum from the sum of 10 laser shots.

One spectrum may contain tens of thousands of paired {m/z, intensity} mea-

surements, and one expression proteomic experiment may require hundreds of

spectra. However, each observation will be influenced by multiple sources of mea-

surement error and may not necessarily represent an actual protein. Thus, how

to combine and compare thousands or millions of observations within and across

spectra, subjects, and treatment groups deems a difficult question. To answer it,

requires a thorough understanding of the data issues inherent in MALDI-TOF.

Five data quality terms tend to describe MALDI-TOF data issues: resolu-

tion, calibration/alignment, background, scaling, and noise [Morris et al., 2005;

Baggerly et al., 2004; Coombes et al., 2005a].

1. Resolution: For a variety of reasons including unequal kinetic energy dis-

persions from the ionizing laser, the spacial location of molecules in the
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matrix, and the size of the protein molecules, ions of equal size and charge

may not reach the TOF detector at the same time. Hence, measurements

for one protein may occur over a range of TOFs and appear as peaks within

a spectrum. The width of spectrum peaks in part reflects the quality of the

data and is summarized by resolution. The resolution of a spectrum is typ-

ically calculated from the Full Width Half Mass procedure and represents

the distance needed between two peaks in order to distinguish them [p.g.

74 Dass, 2001]. The distance will be small for spectra with narrow peaks

and large for spectra with wide peaks; high resolution spectra have narrow

peaks where as low resolution spectra have wide peaks.

2. Calibration/Alignment: The process by which time is converted to m/z

is referred to as calibration. Proteins or calibrants with known masses are

either injected into a given sample or analyzed outside the sample to col-

lect data and fit a two or higher degree polynomial regression function that

converts time to mass. The regression function is typically referred to as a

calibration equation and maps time to mass within ±0.1% −±0.3% [Wang

et al., 2003; Coombes et al., 2005a].

Accurate calibration equations are needed in order to compare measure-

ments across multiple spectra. Because molecules of equal size and charge

may not reach the detector at the same time, protein peaks from different

spectra may not align accurately. Although, mis-alignment can be corrected

with well calibrated masses, the calibration procedure can be inexact and

force researchers to use another means to match peaks across spectra. Mor-

ris et al. [2005] stresses that peak matching is currently more of a game than

a science, and too many ad hoc decisions can lead to mismatched peaks.
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3. Scale: The TOF detector quantifies the presence of proteins by recording

an electrical current proportional to the number of ions [Dass, 2001, p.g. 85].

The proportional constant scales spectra and is extremely sensitive to small

deviances in sample protocol, e.g. laser intensity, sample concentrations,

and laboratory differences.

4. Background: Typical spectra display two types of background that propa-

gate from different sources in MALDI-TOF. The first type is time-independent

and tends to result from detector ringing- an apparent thermal noise that av-

erages to be greater than zero. The non-zero average multiplied by the scal-

ing factor vertically lifts spectra and appears as a constant background term.

The second type is time-dependent and is due to small matrix molecules in-

terrupting the detector. Typically, the interruption decays exponentially in

time [Coombes et al., 2005a].

5. Noise: The distribution of random error, like background, appears to de-

pend either on time or mean intensity. However, current approaches tend

to assume constant variance within and between spectra.

Because of these data issues, comparisons of raw spectra are arguably useless;

feature extraction and data cleaning procedures are necessary to assure that infer-

ence from expression proteomic studies are based on biologically relevant data and

not spectrum anomalies induced by measurement error [Morris et al., 2005; Bag-

gerly et al., 2004]. Nonparametric Bayesian models work effectively to isolate the

features of interest while accounting for the issues that arise within MALDI-TOF

data.

5



1.2 Bayesian Nonparametrics

In Bayesian nonparametric analyses, probability distributions are developed on ex-

tremely high, possibly infinite, dimensional function spaces [Müller and Quintina,

2004] in order to explore flexible data representations. However, with the flexibil-

ity of modeling an unknown function from a parameter space with a dimension

that equals or exceeds the dimension of the data, comes the responsibility of

controlling potentially over-parameterized models. Bayesian methods naturally

impose model complexity restrictions through prior distributions. For example,

in frequentist terms, the posterior mode under a Gaussian model is the parame-

ter estimate that minimizes a squared error loss function with the penalty set to

the logarithm of the prior distribution. [p.g.34 Hastie et al., 2001]. In this dis-

sertation, I explore two ways prior distributions in nonparametric analyses may

penalize complex functions depending upon whether a function is defined by a

collection of random components or as one random variable.

In the case of random components, such as basis expansion models (Hastie

et al. ch. 5 2001; Kohn et al. 2001) including non-adaptive kernel regression,

smoothing, and wavelets, a function f is defined by a collection of p (e.g. for

decimated wavelets, p equals the sample size) random basis coefficients and the

prior on f is obtained from the linear combination of p distributions. The priors

regularize the parameter estimates to remove or reduce the influence of insignifi-

cant components. Mixtures of normals with point mass priors at zero [Chipman

et al., 1997; Clyde et al., 1998] and scale mixtures of normal priors [Vidakovic,

1998; Johnstone and Silverman, 1997; Brown and Griffin, 2005] have been shown

to be effective for many applications. However, without transforming spectro-
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metric data, such as Morris et al. [2006] who transform intensities to the wavelet

domain, these priors do not apply well when assessing expression proteomic data.

In Chapter 2, I describe a basis expansion approach for spectrum feature extrac-

tion and control the model complexity by eliciting a prior on each basis coefficient

that is a scale mixture of truncated normal distributions.

Another way to assure sparse model estimation is to consider f itself as a

random variable and elicit a prior directly on f . The prior is referred to as random

probability measure (RPM) [Müller and Quintina, 2004]. Examples of RPMs are

stochastic process (or random field) priors, including Gaussian, Dirichlet, and

Lévy [e.g. O’Hagan and Kingman, 1978; Antoniak, 1974; Wolpert et al., 2003],

which rely on the fact that stochastic processes are random functions. Random

functions, similar to stochastic processes, can be viewed as a collection of random

variables; given a random function f that maps t in T to Xt = f(t), f can

be characterized by a collection of random variables indexed by T, {f(t)|t ∈

T}. Thus, to elicit a prior distribution on the random function is comparable to

eliciting a prior on the collection of random variables, as achieved by process prior

distributions. Common applications for process priors include density estimation,

the mean estimation of generalized linear models, and kernel regression.

This dissertation utilizes kernel regression or locally weighted linear regression

models of the form,

f(t) = E[y|t] =

J∑

j=1

k(t, θj)ηj

where η represents a 1 × J vector that weights each respective kernel function of

t with parameter θ ∈ Θ. Müller et al. [1996] propose a random measure on the

joint distribution of (y, t) that results via standard Bayesian theory to posterior

7



estimates of θj, ηj, and the expected regression curve E[y|t]. Wolpert and Ickstadt

[1998a] however, utilize a Lévy process prior to assign random measures Γ(dθ) on

Θ which weight the kernels. Wolpert and Ickstadt’s approach is very similar to

the basis expansion models, however, the random measure inherently elicits a

joint prior distribution on all adaptive kernel parameters and coefficients. We

expand on Wolpert and Ickstadt’s work in Chapters 3 and 4, and, within the

context of expression proteomics, and demonstrate the benefits of using weighted,

adaptive kernel regression with Lévy processes. In the next section, I describe

useful properties of Lévy processes.

1.3 Lévy Process Priors

Given spectra similar to the one displayed in Figure 1.1, the goal is to find a

function of m/z or of time t (the raw measurements taken from the TOF detector)

that estimates the expected intensity; ignoring the inclusion of parameters for

the aforementioned data issues, let Yt represent observed intensities at time t, et

represent independent error terms with mean zero, and assume

Yt = f(t) + et.

Given the nature of the spectrometric data, the function f(t) should be positive

with distinguishable features at a priori unknown locations and unknown ampli-

tudes. These necessary characteristics of f(t) motivate constructing the function

from a pure-jump, increasing, random function or stochastic process Xt. Figure

1.2 displays a construction of f : given the number J , locations τ , and heights η

of jumps in Xt, let f equal the convolution
∑J

j=1 k(t, τj)ηj.
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Figure 1.2: Plot a. represents a realized, pure jump, increasing stochastic process
Xt. Plot b. plots f(t) that generated from Xt, where f(t) =

∑J
j=1 k(t, τj)ηj.

Lévy processes, as represented using the Lévy-Khintchine theorem, have char-

acterizable pathways which, under certain conditions, are pure-jump, increasing

functions. A Lévy process is a real-valued, stochastic process with stationary,

independent increments (SII), defined as follows:

Definition 1.1. Let Xt={Xt0, ..., Xti , Xti+1
, ..., XtN} where N < ∞ and Xta ∈ R

Xt is a Lévy process if it satisfies the following:

1. Xt has independent increments, Xti+1
− Xti

2. Xt has stationery increments:

the distribution of Xti+1
− Xti does not depend on ti

3. Xt is stochastically continuous: as ti+1 → ti, Xti+1
→ Xti in probability.

[Papapantoleon, 2005; Wolpert, 2002]

From the definition, each increment Xti+1
−Xti in a Lévy process can be written as

the sum of n mutually exclusive increments which are, by the stationery property,

identically distributed. Thus, SII processes are examples of infinitely divisible

random variables,
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Definition 1.2. A random variable X is infinitely divisible when it equals in

distribution the sum of n identically distributed random variables. [Papapantoleon,

2005; Wolpert, 2002]

Since every Lévy process Xt is infinitely divisible, the celebrated Lévy-Khintchine

provides the form of its characteristic function [Papapantoleon, 2005];

Theorem 1.1. Lévy-Khintchine The law of a random variable is infinitely

divisible if and only if there exists a triplet {m, σ2, ν} with m ∈ R, σ2 ∈ R+, and

ν being a measure that satisfies ν(0) = 0 and (1 ∧ η2)ν(dη) < ∞, such that

E[exp{iwXt}] = exp
{
iw(x0 + tm)t

σ2w2

2
+ t

∫

R/0

[
eiwη − 1 − iwη1|η|<1

]
ν(dη)

}
.

For Xt, the parameters x0, m, σ2, and ν(dη) refer to an initial value, a Brownian

Motion(BM) Drift component, a BM diffusion constant, and a “Lévy measure”

respectively. The form of the characteristic function shows that a Lévy process is

the sum of two processes, BM with drift and a compensated Poisson process,

E[exp{iwXt}] = exp
{[

iw(x0 + tm)t
σ2w2

2

]
+

[
t

∫

R

(
eiwη − 1 − iwη1|η|<1

)
ν(dη)

]}

= exp
{[

BM with Drift
]
+

[
Compensated Poisson Process

]}
.

However, when the BM components m and σ2 equal zero and the Lévy measure

satisfies a stricter condition

∫

R

(1 ∧ |η|)ν(dη) < ∞ (1.1)

the Lévy process is a pure jump, increasing process.
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The expected number of jumps, E[J ], in any finite time interval over which the

process occurs t ∈ [T0, T1], depends on the Lévy measure ν(dη). Since the Lévy

measure specifies the rate for jumps of size η, E[J ] equals

E[J ] =

∫∫

[T0,T1]×R+

ν(dη)dt.

However, ν(dη) can be an infinite measure; the integrability constraint in Equation

1.1 only relates to the sum of jump heights and allows infinitely many jumps to

occur around zero. Thus, E[J ] need not be finite, unless a constraint is placed

on the jump heights η. Constraining the jump heights to be greater than ε,

as implemented by Wolpert et al. [2003] for a specific application, results in an

approximate Lévy measure ν+(dη) and a finite estimate for E[J ]

E[J ] =

∫ T1

T0

∫ ∞

ε

ν(dη)dt < ∞.

A finite number of jumps, in the case of expression proteomics, is important for

an interpretable functional estimate of f .

In expression proteomics, we assume that f is constructed similarly to what

is displayed in Figure 1.2, except we represent, for now, both the kernel location

and scale parameters as θj

f(t) =
J∑

j=1

k(t, θj)ηj.

Because θ is two-dimensional, f is constructed from a realized Lévy random field,

rather than process, and for reasons that will evolve from this thesis, we assume

a Gamma random field (GaF) prior

Γt ∼ GaF(α, λ)
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with shape and rate parameters α and λ. The characteristic function of Γt given

a finite measure π(dθ) is

E[exp{iwΓt}] = exp
{ ∫∫

R×Θ

eiwη − 1
]
αη−1e−ηλdηπ(dθ)

}
(1.2)

where the Lévy measure is underlined in equation (1.2) and equals

ν(dη, dθ) = 1η>0αη−1e−ληdηπ(dθ). (1.3)

From the Lévy measure we see that the Gamma random field is a generalized

Poisson process and considering connections made by Wolpert and Ickstadt [1998a,

2004], Γ(dθ) can be written as the sum of jumps or points masses with random

heights and locations (in a plane) drawn from a Poisson point process with an

intensity measure ν(dη, dθ)

Γ(dθ) =
∑

j

ηjδθj
(dt)

Further, since Equation 1.3 is an infinite measure, the approximation,

ν+(dη, dθ) = 1η>εαη−1e−ληdηπ(dθ)

results in representing Γ(dθ) as a finite sum,

Γ(dθ) =
J∑

j

ηjδθj
(dt), (1.4)

where the number of jumps is also random. The expected value of J is easily

derived provided a finite measure on θ.

From the summation in Equation 1.4, we see the connection between the adap-

tive kernel representation of f and Gamma random field. The weights of the
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kernels are determined by the random measures assigned by the Gamma process

prior,

f(t) =

∫

Θ

k(t, θj)Γ(dθj) =

J∑

j=1

k(t, θj)ηj.

By eliciting a Gamma process prior on Γt, or equivalently f(t), a joint prior is

specified for all of the peak identifying parameters, the number of peaks, locations,

widths, and heights. We demonstrate the benefits of the joint prior in Chapters

3 and 4.

1.4 Outline of Dissertation

Chapters 2 and 3 of this thesis are devoted to developing single-spectrum feature

extraction models that include measurement error and protein related parameters.

The protein parameters define a latent protein signal which, in both chapters, is

estimated nonparametrically. In Chapter 2 however, a basis expansion method is

proposed, whereas in Chapter 3, the protein signal is assumed to be a random

variable with a Lévy random field prior distribution.

Taking advantage of the benefits gained from the random variable approach,

Chapter 4 completes the research for my thesis and expands the single-spectrum to

a multi-spectra feature extraction model. The multi-spectra model draws informa-

tion from within and between experimental treatment groups to estimate the lo-

cations of significant, possibly classifying, features. In one hierarchical model, fea-

tures from every collected spectrum in an experiment are selected, scaled, aligned,

and compared in order to isolate protein biomarkers.

The conclusion of my dissertation, Chapter 5, will include a brief summary of
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what I accomplished as well ideas for future work. The ideas pertain to model

extensions, computational improvements, and other applications for this research.
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Chapter 2

Rapid Peak Identification in Matrix

Assisted Laser Desorption/Ionization

Time-of-Flight Mass Spectrometry

2.1 Introduction

Matrix Assisted and Surface-Enhanced Laser Desorption/Ionization (MALDI and

SELDI) Time-of-Flight (TOF) mass spectrometers (MS) are used to estimate

the protein content of biological samples. Proteomic profiles generated by these

instruments may contain thousands of paired measurements which reflect the mass

and quantity of all molecules present. However, many of the measurements reflect

protein fragments, matrix molecules, or detector anomalies, rather than intact

proteins [Campa et al., 2003a]. Thus, data reduction procedures should be used to

extract information of interest from spectra, i.e. the mass and quantity of proteins.

Here, we present an extraction algorithm that incorporates mass spectrometry

theory and utilizes an expectation maximization (EM) algorithm to estimate true

protein signal.
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In a spectrum, data from actual proteins or protein isotopes appear as peaks.

Traditionally, spectrometrists found the peaks by hand, but the task was tedious,

prone to error, and time consuming. Now, peak identification procedures are

automated [e.g. Morris et al., 2005; Tibshirani et al., 2004; Yasui et al., 2003]

and tend to first, pre-process the data in order to differentiate protein signal

from noise, and second, locate peaks in the protein signal. For example, before

attempting to find peaks, Morris et al. [2005] suggests a five step procedure to

de-noise, background subtract, and normalize intensities; and, Tibshirani et al.

[2004], motivated by Yasui et al. [2003] and Li [2005], proposes smoothing spectra

to assess/remove background, reduce random error, and/or merge protein iso-

topes. Although these and many other automated procedures consider known MS

characteristics to isolate signal, two-step or deterministic data-cleaning procedures

may alter inappropriately proteomic profiles and inhibit, rather than foster, peak

detection.

Data-cleaning procedures may change peak characteristics including height,

area, width, location, relation to noise, and/or shape, and make the differentia-

tion of protein peaks from noise difficult. Thus, to avoid pre-processing and still

account for measurement error within our feature extraction procedure, we de-

velop a model-based procedure for identifying and quantifying proteins. In this

setting, we estimate both MS variation in terms of background, scaling, and pre-

cision and peak characteristics, including concentration, location, and resolution.

The protein parameters works within a kernel regression approach for estimating

protein signal; the basis functions are weighted by the concentrations, scale to the

spectrum resolution, and center initially at every data point. However, because

all data points do not correspond to real proteins, we regularize the model within
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a Bayesian framework. The regularizing prior is a truncated normal scale mixture

prior distribution that induces L1 shrinkage on peak concentration estimates and

constrains them to be greater than a user defined minimum concentration; peaks

are deleted from the model when the estimated areas are less than or equal to a

minimum concentration. Ultimately, the remaining, significant model terms rep-

resent key features in a spectrum. Posterior point estimates for model parameters

are obtained via Expectation - Maximization (EM) [Dempster et al., 1977].

The remainder of this paper describes in detail the model, the parameter

estimation process, and the implementation of our approach using simulated and

real data. The paper concludes with a discussion of future work.

2.2 Statistical Model

Using MALDI-TOF characteristics, we propose a model that accounts for spec-

trum background, resolution, and precision in order to estimate protein peaks

according to their location, width, and concentration. We assume initially that

one peak is located at every observation, and rely on regularization methods to

remove those that are least significant. We impose hard thresholding on shrunken

parameter estimates to remove insignificant peaks. Peaks remaining in the final

model are used to provide a list of the extracted features.

2.2.1 Expected Intensity

We begin by defining the response variable as Yt, the observed intensity at time t,

and map peaks according to TOF rather than m/z. Since the conversion from time

to mass is one to one, we may develop a model in either domain. We choose time,

the raw scale on which a TOF detector measures, to avoid error possibly induced
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from mis-calibration and to model the original shape of peaks before the data are

transformed by a quadratic or higher order polynomial calibration function.

We model Yt as a Gaussian random variable

Yt = µ(t) + et, where et ∼ No(0, ϕ−1) (2.1)

with mean µ(t) and precision ϕ. We take µ(t) as the sum of a time dependent

background level β0(t) and a scaled weighted average of J peak concentrations,

µ(t) = β0(t) +

J∑

j=1

k(t, τj, ωj)ηj (2.2)

where ηj, τj, and ωj represent respectively the concentration, location and width

of peak j, j ∈ {1, 2, ..., J}, and k() is a basis function with a shape that mimics an

isotopic peak. One major influence of peak shape is the distribution of velocities

at which molecules leave the ion source [Dass 2001, p.g. 75; Coombes et al. 2005a];

molecules of equal mass that have more kinetic energy will arrive at the detector

faster than those which have less. The distribution of arrival times forms the

spectrum peaks. We opt to model the distributions as either Gaussian or Cauchy

[Kempka et al., 2004]

k(t, τj, ωj) =

√
ωj

2π
exp{−ωj|t − τj|2} (2.3)

k(t, τj, ωj) =

√
ωj

π(1 + ωj|t − τj|2)
. (2.4)

where the kernel function equals the respective density function. Although the

number, location, and scale kernel parameters are ultimately determined by the

data, we initially assume that τ = [T0, t2, t3, ..., T1] where one peak is centered at
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every observed time t. Given τ , we derive the peak widths from the spectrum

resolution.

Resolution % is a unitless measure that reflects a spectrum’s quality and relates

to the minimum distance needed between two peaks to distinguish them. The

resolution may be calculated in either the mass or time domain [Dass, 2001, p.g.

74], and accords to the Full Width Half Mass (FWHM) definition (Figure 2.1):

The resolution %, of a given peak j, equals the peak location τj divided by ∆τj

the width of peak j at half the height [e.g. Dass, 2001, p.g. 120],

% =
τj

∆τj
. (2.5)
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Figure 2.1: A Gaussian peak centered at τ clock-ticks with temporal resolution,
% = 50. Peak resolution equals peak location, τ , divided by ∆τ , where ∆τ is the
peak width at 50% intensity.

The FWHM definition, within the context of our kernel regression model, implies

that 50% of the peak height at τj equals the height at τj + ∆τj/2,

1

2
% × ηjk(τj, τj, ωj) = ηjk(τj +

∆τj

2
, τj, ωj)
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so that after substituting ∆τj =
τj

%
from Equation 2.5, ωj solves as

ωj = log(4)
(2%

τj

)2

and ωj =
(2%

τj

)2

for the Gaussian kernel and the Cauchy kernel respectively.

Expected resolutions for MALDI-TOF data may be listed in the user manuals

of any mass spectrometer, [e.g. PerSeptive Biosystems, 1999], and ranges from 50-

2000. The resolution reflects both the quality of the spectrum and the shape of

the peaks; sharp, narrow peaks occur in high resolution, good quality spectra and

short, broad peaks occur in low resolution, arguably poor quality spectra. In our

model, information regarding resolution propagates into information governing

peak location and width which influences peak identification. For example, given

a low resolution spectrum, our model will dismiss narrow peaks as noise because

they are not consistent with the overall quality of the spectrum. Methods that

ignore resolution, such as local maxima methods, would likely declare the same,

narrow peaks as proteins.

Also indicative of a spectrum ’s quality, is the amount of background noise that

may inflate molecular intensities. Typically, background in MALDI-TOF data

causes an extreme intensity increase that decays in time to a non-zero constant.

The time-dependent decay is a result of several small, matrix fragments leaving the

ion source and inflating the intensities of comparable size proteins; the non-zero

constant occurs primarily because of detector ringing. We model each background

separately as either a time independent constant S or a time dependent function

with parameters τ0, ω0, and η0,

β0(t) = S + η0k0(t, τ0, ω0). (2.6)
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We estimate the background parameters by fitting a first-peak at τ0 = T0 and using

the same kernel framework in Equation 3.6 where η0 represents the concentration

of matrix fragments and ω0 solves from %0, the first-peak resolution. The kernel

function k0() may either match the chosen peak kernel k() in Equation 2.3 or

equal an exponential density function,

k0(t, τ0, ω0) = ω0 exp{−ω0|t − τ0|}. (2.7)

Figure (2.2) displays three Cauchy first-peaks with varying resolution values.
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Figure 2.2: Examples of first-peak fits using three different, Cauchy first-peak
resolutions.

Given k0() and substituting Equation 2.6 into Equation 3.6 with an indicator

to state the basis function (i.e. if τj > T0 then use k() or if τj = T0 then use k0()),

the expected intensity at time t becomes

µ(t) = S +
J+1∑

j=0

ηjk1τj>T0
(t, τj, ωj), (2.8)
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and for N observations the likelihood is

L(Y |S, ϕ, K) = No(Kη + 1S, ϕ−1IN), (2.9)

where Y = {Y (t1), Y (t2), ..., Y (tN)}, K represents an N × (J + 1) matrix with

elements [K]tj = k1τj>T0
(t, τj, ωj), η′ = {η1, η2, ..., ηJ}′ and IN is an N × N iden-

tity matrix. Initially, J + 1 = N because we assume that one peak occurs at

every observation. In the next section, we describe how to regularize the model

parameters to reduce the model dimension and estimate a sparse representation

of µ(t).

2.2.2 Regularization

Regularization methods have been developed in both the Classical and Bayesian

paradigms [e.g. Abramovich et al., 1998; Vidakovic, 1998; Green, 1987] that pe-

nalize high dimensional models and result in sparse data representations. Classi-

cal approaches maximize a penalized likelihood or minimize a constrained resid-

ual sums of squares, such as the least absolute shrinkage and selection operator

(LASSO)[Tibshirani, 1996]; Bayesian approaches require the specification of prior

distributions. Here, we choose the Bayesian paradigm and specify a prior distri-

bution on peak concentration η that is comparable to imposing an L1 penalty.

The penalty shrinks the posterior estimates of peak concentrations estimate η̂

toward ε, a value that interprets as the minimum concentration level needed for

peak detection.

When a peak concentration reaches ε, η̂j is set to zero, peak j drops effectively

from the model, and J decreases. For shrinkage and selections, priors based on

scale mixtures of Normal distributions have been effective [Johnstone and Silver-

man, 1997; Vidakovic, 1998], but the support of the Normal density does not
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match the range of non-negative, protein concentrations. Thus, we model ηj as a

scale mixture of truncated Normal distributions where the convolution of

π(ηj|ϕ, ε, σj) =

{
No(ε, σj/ϕ) ηj > ε
0 ηj ≤ ε

(2.10)

with σj distributed as an Exponential distribution

π(σj|µ) = Ex(0, µ) (2.11)

(Ex(a, b) ∼ b exp{−b(x − a)}; x ∈ (a,∞)) results in the truncated Double Expo-

nential marginal distribution (DE(a, b) ∼ 1
b
exp{− (x−a)

b
}) for ηj,

ηj|ϕ, ε, µ,∼ 1{η>ε}DE
(
ε,

1√
2µϕ

)
(2.12)

[Andrews and Mallows, 1974; West, 1987], or equivalently, a shifted Exponential

distribution with location and rate parameters ε and
√

2µϕ. Depending upon µ,

the shrinkage parameter, the Exponential prior places a large amount of prior mass

near ε and the right tail. This distribution of weight, unlike the Normal density,

naturally shrinks insignificant peaks toward ε and reinforces the estimation of

large, significant peaks.

The specification of an Exponential prior on ηj however, makes estimating the

posterior mean and variance difficult; they each depend upon the unstable matrix

inversion of K ′K. The full conditional posterior distribution for ηj with prior

Equation 2.12 is,

π(η|ϕ, ε, µ, Y )

∝ 1{η>ε} exp
{−ϕ

2
||Y − S1N − Kη||2 − (2µϕ)

1

2 η′1J

}

∝ 1{η>ε}No
(
(K ′K)−1

[
K ′(Y − S1N) + (2µ)

1

2 ϕ− 1

21J

]
, ϕ−1(K ′K)−1

)
,
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where 1{x>a} = 1 when x > a, 1x = [1, 1, ..., 1]′x, and ε = ε1J . Yet, with N

peaks, K ′K may be nearly singular. However, if we do not analytically integrate

Equations 2.10 and 2.11, the posterior mean and covariance are stabilized with

the addition of diag(1/σ) = diag([1/σ1, 1/σ2, ..., 1/σJ ]′),

π(η|ϕ, ε, σ, Y ) ∝ 1{η>ε}No
([

K ′K + diag(
1

σ
)
]−1[

K ′(Y − 1NS) + ε/σ
]
,

ϕ−1
[
K ′K + diag(

1

σ
)
]−1

)

We set the mean of σj to an empirical Bayes estimate for µ [Vidakovic, 1998;

Silverman, 1985] and use either standard reference or informative prior distribu-

tions for the remaining parameters. Given

π(S) ∝ 1

π(ϕ) ∝ ϕ−1

π(%) = LN(log(R), s2
R)

π(%0) = LN(log(R0), s
2
R0)

where {R, s2
R} and {R0, s

2
R0} represent respectively user specified location and

scale parameters for a LogNormal(µ, σ2) = 1/(x
√

2πσ2) exp(−(x − µ)2/(2σ2)),

the joint posterior distribution is

π(η, σ, ϕ, S, %, %0|Y )

∝ No(Y ; Kη + 1NS, INϕ−1)

× 1{η>ε}No(η; 1Jε, diag(σ/ϕ))

×
M∏

j=0

Ex(σj; µ) × 1

ϕ
× LN(%; R, s2

R) × LN(%0; R0, s
2
R0)
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(No(x; a, b) = (2πb).5 exp(−(x − a)2/(2b)), LN(x; a, b) = (1/x)(2πb).5 exp(−(x −

a)2/(2b)), and Ex(x; a) = a exp(−xa)). A variety of methods exist to integrate

stochastically the joint posterior distribution and obtain the posterior marginal

distributions of the model parameters, e.g. MCMC or importance sampling.

Such approaches are advantageous for summarizing the posterior parameter dis-

tribution, but may take time to implement. Thus, we utilize the Expectation-

Maximization (EM) algorithm to obtain rapidly the posterior mode estimates for

peak locations, peak concentrations, and peak widths.

2.2.3 Posterior Mode Estimates

Iterating between two steps, the Expectation-step (E-step) and Maximization step

(M-step), the EM algorithm finds posterior mode estimates of θ = {η, S, %, %0}

by averaging over the latent parameters, ϕ and σj. We program the algorithm in

R for which we supply pseudo-code at the end of this section in Figure 2.3.

During the E-step the expected value of the log complete posterior distribu-

tion of θ and {σ, ϕ} is calculated with respect to the full posterior conditional

distribution of {σ, ϕ} given current (iteration i) values of θ,

E[log(f(θ, σ, ϕ|Y ))|θ(i), Y ] (2.13)

=

∫∫

R+×R+

log(π(θ, σ, ϕ|Y ))π(σ, ϕ|θ(i), Y )dσdϕ.
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Ignoring terms independent of θ, Equation 2.13 equals

= −1

2
E
[
ϕ|θ(i), Y

]
||Y − Kη − 1NS||2 (2.14)

−1

2
(η − 1Jε)′diag

(
E
[ ϕ

σj
|θ(i), Y

])
(η − 1N ε)

− log(%) − 1

2s2
R

(log(%) − log(R0) − log(R))2 − 1

2s2
R0

(log(%0) − log(R0))
2,

where

π(σ, ϕ|θ(i), Y )

=
No(Y ; Kη + 1NS, INϕ−1) × 1

ϕ
× No(η; 1Jε, diag(σ/ϕ)) × ∏J

j=0 Ex(σj; µ)
∫

ϕ
No(Y ; Kη + 1NS, INϕ−1) × 1

ϕ
× ∏J

j=0 Ex(ηj;
√

2ϕµ)dϕ
,

E
[ ϕ

σj

|θ(i), Y
]

=

∫∫

R+×R+

ϕ

σj

π(σ, ϕ|θ(i), Y )dσdϕ, (2.15)

E
[
ϕ|θ(i), Y

]
=

∫∫

R+×R+

ϕπ(σ, ϕ|θ(i), Y )dσdϕ. (2.16)

Both Equations 2.15 and 2.16 integrate to a scaled sum of two infinite series or

confluent hypergeometric functions (HG1F1). When we approximated the series

we found obvious inaccuracies for estimating the expected values of ϕ and ϕ/σj,

thus we analytically integrate over σ and use Laplace approximation for the in-

tegration over ϕ.

The purpose of the M-step is to estimate values for θ that will maximize, or at

least increase, the expected log joint posterior distribution in Equation 2.14. We

do so by implementing a Gauss-Seidel(GS), one-dimensional line search [Jiang,
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2000] that maximizes each element of θ individually while holding all other, cur-

rent parameter estimates constant. Since convergence of the iteration scheme is

not necessary for setting θ to values that will increase Equation 2.14, the GS

completes only three iterations before returning to the E-step.

In the following order, the GS algorithm estimates θ.

1. η: Maximizing Equation 2.14 over η subject to ηj > ε for j ∈ [1, ..., J ] is

equivalent to the quadratic programming problem,

η̂ =
argmin

η
{
1{η>ε}

[(1

2
η′

(
E[ϕ|θ(i), Y ]K ′K + diag(E[ϕ/σ|θ(i), Y ])

)
η

− E[ϕ|θ(i), Y ](Y − 1NS)′K + diag(E[ϕ/σ|θ(i), Y ])(1′
Jε)

)
η
]}

for which we use the function solve.QP within the R package quadprog that

implements a dual method for constrained optimization problems introduced

by Goldfarb and Idnani [1983].

2. S: A simple solution exists for the maximum estimate of S,

Ŝ =
(Y − Kη̂)′1N

N
.

3. {%, %0}: The function optim in the standard R package implements a quasi-

Newton update step to maximize Equation 2.14 over % and %0. We found that

updating the resolution parameters every GS iteration was time consuming

and inefficient for finding peaks. Thus, we only update % and %0 during the

second, of the three, GS iteration.

At the completion of the GS, the parameter µ must be updated since it de-

pends on J and σ. Using the posterior expectation for σ, estimated similarly to
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Equations 2.15 and 2.16, we set µ̂ to

µ̂ =
J + 1

∑J
j=0 E[σj|θ(i), Y ]

.

Convergence of the EM algorithm is assessed by calculating the percent change

between the log posterior distribution at the I−1 iteration and the Ith iteration. If

the percent change is less than 1.0% then the EM breaks; if not, the EM algorithm

continues for at most A additional iterations or until the percent change criterion

is achieved.

When the EM algorithm ends, the number of significant peaks remaining in

the model depends heavily upon ε, the chosen minimum peak concentration con-

straint. If ε is too small then several false positive peaks may occur, and if ε

is too large then several false negatives may occur. Further, if the thresholding

is invoked before significant concentrations have converged to be greater than ε,

then again, false negatives may occur. For this reason, we do not invoke hard

thresholding for ε > 0 until half way through the I iterations. After completing at

least one half of the EM iterations, the constraint is gradually increased from zero

to a pre-specified ε (e.g. constraint = 0.25ε when i ≥ 0.5I, 0.5ε when i ≥ 0.625I,

0.75ε when i ≥ 0.75I, and ε when i ≥ 0.875I). The slow introduction of ε reduces

the effects of hard-thresholding before parameters estimates have converged.

The algorithm’s sensitivity to ε is not uncommon for feature extraction ap-

proaches as several tend to impose thresholds based on signal to noise ratio es-

timates. We however, avoid prior estimates of signal and random error and set

ε so that ε divided by the observed total intensity
∑

Yt equals a user defined

percentage. The percentage may be adjusted to the users needs or to the sam-

pling procedure. For example, MALDI-TOF spectra generated from fractionated
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samples may only display approximately 50 distinguishable peaks [Campa et al.,

2003a]. Thus, ε should approximately equal
∑

Yt/50 or 2% of
∑

Yt. We explore

the effects of varying specifications for ε in Section 2.3.

2.2.4 EM Implementation

Optimizing η when K ′K is initially an N × N matrix may be too large for R to

manage. Thus, to reduce the matrix dimension, we segment the spectrum into

large (N ≈ 2000) disjoint subsets. For each subset, we apply the EM algorithm

and combine the results to create informative starting locations for an analysis of

the entire spectrum.

Breaking the data into subsets enables a thorough, computationally feasible,

preliminary search for peaks. Given local, segmental estimates for precision and

resolution, peak concentration may increase, decrease, or delete. However, to

minimize the possibility of deleting true, protein peaks (false negatives) before

modeling the entire spectrum, we transform all measurements by subtracting the

spectrum minimum intensity and set S = 0 while the data are segmented; the es-

timation of S during the entire spectrum analysis remains as previously described.

Additionally, the minimum concentration level imposed for the entire spectrum

need not match that of the segments; let εs and εe represent the segment and

entire spectrum constraints respectively.

We implement our two-step, EM approach to real and simulated datasets. The

simulation study demonstrates our ability to find peaks with varying signal- to-

noise (S/N) ratios, and compares the results to a peak finding algorithm currently

available in R. From the simulation study, we gain user input information for

modeling the real data.
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Initialize θ, E[ϕ], E
[

ϕ
σj

]
, E[σj]

i = 0
a = 0
conv = 0
while (a<20 and conv==0){
//M-step

set ε
η(1) = θ(i)[1]

S(1) = θ(i)[2]

%(1) = θ(i)[3]

%
(1)
0 = θ(i)[4]
for k in 1:3 {

η(k+1) = max(η|S(k), ϕ(k), %
(k)
0 , %(k), E[ϕ/σj]

(i), E[ϕ](i))

for j in 1:M { if (η
(k+1)
j == ε) delete ηk+1

j , τj, ωj}
S(k+1) = max(S|η(k+1), %(k), %

(k)
0 , E[ϕ/σj]

(i), E[ϕ](i))
if (k==2){

%(k+1) = max(%|η(k+1), S(k+1), %
(k)
0 , E[ϕ/σj]

(i), E[ϕ](i))
%0

(k+1) = max(%0|η(k+1), S(k+1), %(k+1), E[ϕ/σj]
(i), E[ϕ](i))

}
}
θ(i+1) = {η(k+1), S(k+1), %(k+1), %

(k+1)
0 }

//Update Empirical Bayes Hyper-parameter
estimate µ

//E-step

estimate E[ϕ/σj|θ(i+1), Y ]

estimate E[ϕ|θ(i+1), Y ]

estimate E[σj |θ(i+1), Y ]

//Check Convergence

if (i == I-1) logPost1 =π(θ(i)|Y )
if (i >= I) {

logPost2 = π(θ|Y )
if ((logPost2−logPost1)/logPost1<.01) conv=1
else a+ =1
}

}

Figure 2.3: R pseudo-code for EM algorithm.
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2.3 Application

We applied our feature extraction method to real data (Figure 2.8) and to sim-

ulated data (Figure 2.5). The simulated data were generated in an attempt to

mimic the appearance of the real spectrum, so both datasets span approximately

between 5k Da and 75k Da, or 30 microseconds (µs) to 280 µs, and were thinned

by every 7th observation.

2.3.1 Simulation Study

We created varying S/N simulation scenarios by simulating a total of 100 spectra

from one of four Normal error models that have the same mean or latent signal

(refer to Figure 2.4), but different precisions, ϕ = {0.04, 0.0044, 0.0011, 0.00028}.

The latent signal was generated from the Cauchy convolution of J = 35 peaks,

at locations τ true (listed in Table 2.3.1), with {% = 56, %0 = 2, S = 50, µ =

3.68e − 9, ϕ = 0.04, ε = 20000}, and the vectors, {σ, η} were drawn from the

respective prior distributions. Across 25 simulated spectra, the S/N ratio for each

scenario averaged respectively in the order of descending precision, 74.56, 24.85,

12.43, and 6.21. Figure 2.5 plots one spectrum from each scenario.

With the exception of εs and εe, we fit the model for each simulated dataset

using all of the same user inputs: segments = [5000, 11000, 16000, 24000, 40000,

55000, 75000], I = 10, A = 20, k() = Cauchy, R = 50, s2
R = 0.52, R0 = 3,

and s2
R0 = 0.52. The scale of the resolution parameters provide an approximate

geometric standard deviation of 0.5 which makes for fairly diffuse (relative to

the mean), but informative distributions where 95% of the prior mass for % and

%0 are between respectively [7.00, 354.95] and [0.42, 21.30] respectively. As for εs
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Figure 2.4: Simulated true signal from which datasets are generated.

and εe, we originally set each to 0.02
∑

Yt, but found the value too high when

assessing the entire spectrum. Thus, we adjusted εe accordingly and set {εs, εe}

= {0.02
∑

Yt, 0.0085
∑

Yt} for scenarios ϕ ∈ {0.04, 0.0044, 0.0011} and {εs, εe} =

{0.02
∑

Yt, 0.015
∑

Yt} when ϕ = 0.00028.

A summary of the EM results, by scenario, is provided in Table 2.2. The time-

dependent background resolution, constant background, and precision parameters

are within one standard deviation of their true value and each resolution parameter

is within 3 standard deviations, but the number of peaks Ĵ , with the exception of

ϕ = 0.00028, is consistently greater than 35. We are not concerned by the over-

estimation for two reasons. The first is that we place greater risk on missing peaks

than flagging false positive peaks, and second, the over-estimation is minimal in

comparison to local maxima approaches.

We compare our method to a peak finding algorithm of Li [2005] and avail-

able in the statistical, open source software R as a package called PROcess. The

PROcess function is.Peak implements a multi-step method on background-subtracted

data for finding significant features by smoothing the data twice according to the
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Table 2.1: Peak locations, heights, and widths to simulate data.
j τ η ω
1 8288 87283.15 0.0001826
2 8442 26980.03 0.0001760
3 8575 221014.16 0.0001706
4 8757 45359.41 0.0001636
5 9163 54269.42 0.0001494
6 9408 44489.46 0.0001417
7 9667 37901.07 0.0001342
8 9828 243056.88 0.0001299
9 10010 78389.91 0.0001252
10 10220 20132.57 0.0001201
11 10430 44701.77 0.0001153
12 10766 160725.61 0.0001082
13 11137 117713.11 0.0001011
14 11550 112407.88 0.0000940
15 11865 104475.23 0.0000891
16 12124 408963.45 0.0000853
17 12719 161810.83 0.0000775
18 13153 36802.79 0.0000725
19 13552 162076.52 0.0000683
20 15197 332156.57 0.0000543
21 15526 29380.37 0.0000520
22 15960 23881.45 0.0000492
23 16821 97049.85 0.0000443
24 22274 35659.71 0.0000253
25 26124 319530.65 0.0000184
26 26894 148826.58 0.0000173
27 27713 179595.03 0.0000163
28 30730 117703.13 0.0000133
29 31892 114780.29 0.0000123
30 35420 224042.33 0.0000100
31 42070 43754.57 0.0000071
32 42742 91832.14 0.0000069
33 43183 39489.11 0.0000067
34 44548 55174.28 0.0000063
35 60004 174267.72 0.0000035
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Scenario Ĵ %̂ %̂0 ϕ̂ µ̂ Ŝ
69.00 55.63 2.40 3.28e−02 9.40e−10 48.82

0.0400
(4.28) (0.12) (0.15) (8.53e−03) (1.98e−10) (1.88)
58.20 55.59 1.66 3.84e−03 7.24e−10 50.78

0.0044
(1.19) (0.67) (0.26) (3.19e−04) (1.51e−10) (5.65)
49.20 54.21 2.00 1.05e−03 6.88e−10 48.23

0.0011
(7.26) (0.72) (0.50) (4.55e−05) (1.62e−10) (13.13)
33.20 48.08 1.41 2.60e−04 2.32e−10 32.02

0.00028
(13.19) (4.18) (0.55) (7.89e−06) (7.50e−11) (20.87)

Table 2.2: Average parameter point estimates with standard deviations in paren-
theses from 25 simulations per four scenarios: ϕ = {0.04, 0.0044, 0.0011, 0.00028}.
The following lists the true parameters values: J = 35, % = 56, %0 = 2,
µ = 3.68e − 09, and S = 50.

parameters span and sm.span and declaring observations as peaks based on the

arguments for sm.span, threshold, SoN, and ratio. In PROcess observed inten-

sities are considered peaks when they are local maxima within neighborhoods of

sm.span observations; they are greater than threshold; they have estimated S/N

ratios that are greater than SoN; and their areas are greater than ratio times the

area of the largest peak in the spectrum.

When using all default isPeak parameters, the function found on average 39%

to 42% of the real peaks and had an extremely high false discovery rate (refer to

Figure 2.6. To increase the functions sensitivity and specificity, we changed all of

the arguments, except sm.span=11 to scenario-dependent values; respectively to

scenarios {0.04, 0.0044, 0.0011, 0.00028} we set span= {31, 81, 101, 161}, ratio=

{0.05, 0.075, .1, .2} and SoN={2.5, 2.5, 3.5, 3.5}.

Table 2.3 compares the average results across the 25 simulations from our

EM algorithm and the PROcess package. The first two rows note the number of

peaks estimated (Ĵ) and the proportion of true peaks found or True Discovery
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Scenario
ϕ = 0.04 ϕ = 0.0044 ϕ = 0.0011 ϕ = 0.00028

(S/N = 74.56) (S/N = 24.85) (S/N = 12.43) (S/N = 6.21)
Results

EM PRO EM PRO EM PRO EM PRO

Ĵ 71.04 24.16 56.32 26.56 51.48 19.04 34.76 19.96
TDR 0.94 0.57 0.80 0.43 0.75 0.35 0.54 0.29
FDR 0.04 0.18 0.10 0.43 0.17 0.35 0.35 0.49

Table 2.3: Averaged across simulations per scenario, Ĵ , TDR, and FDR refer to
average number of peaks estimated, the proportion of true peaks found (sensitiv-

ity), and the number of false positive peaks divided by Ĵ respectively per scenario
when using either the proposed EM approach or PROcess.

Scenario
ϕ = 0.04 ϕ = 0.0044 ϕ = 0.0011 ϕ = 0.00028

(S/N = 74.56) (S/N = 24.85) (S/N = 12.43) (S/N = 6.21)
Peak S/N

EM PRO EM PRO EM PRO EM PRO

>20 0.97 0.50 0.96 0.52 1.00 1.00 1.00 1.00
(10,20] 0.71 0.17 0.85 0.29 0.87 0.17 0.97 1.00
(5,10] − − 0.54 0.59 0.82 0.20 0.68 0.16
(0,5] − − 0.37 0.19 0.39 0.34 0.35 0.18

Table 2.4: By scenario, the column labeled by “J” lists the number of true peaks
that fall within the given signal to noise (S/N) ranges declared by the first column.
The proportion of the true peaks that were found by either the EM approach or
PROcess are provided in the remaining columns.

Rate (TDR). We consider a true peak “found” if an estimated location is within

±0.2% × τj. If more than one estimated peak falls within 0.2% Da of a single

true peak, then the true peak is referenced once as found; none of the simulated

true peak locations ±0.2% overlap another. A peak is marked as a false positive

if it does not fall within 0.2% of any true peak. The False Discovery Rate (FDR)

equals the number of false positives divided by the estimated number of peaks,

Ĵ . For example, the first column labeled “EM” indicates that our approach, on

average, found 71 peaks within a spectrum of the first scenario, 94% of the true
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peaks were covered by the 71 peaks, and 4% of the 71 peaks did not fall within

±0.2% of a true peak.

We expect the model to find peaks with high S/N ratios. Defining S/N as

(f(t)− β0(t))/
√

ϕ, Table 2.3 displays the mean S/N, S/N , for each scenario. The

proposed model finds almost every peak in large S/N situations, and never finds

less than 50% of the peaks in any S/N range. PROcess is consistently less sensitive.

PROcess routinely misses small peaks that follow larger peaks and, in large S/N

situations, one or more of adjacent peaks that are approximately the same height.

For example, PROcess routinely misses true peaks occurring at approximately 14

kDa/e and within the range 33.5-36.6 kDa/e in each of the scenarios and regardless

of the argument specifications (Figures 2.6 and 2.7). Although decreasing the

argument span enabled the discovery of some peaks, the decrease also caused a

dramatic increase false positive peaks(Figure 2.7).

One reason PROcess falsely flags several peaks is that the local maxima proce-

dure does not account for resolution. For example, in plot d. of Figure 2.7 peaks

found around 17 kDa/e meet the PROcess peak criteria. Given the resolution of

these peaks, all of the features found after 40 kDa/e are theoretically impossible

according to the definition of resolution in Equation 2.5. In our case, the resolu-

tion functions into the width of a peak and thus contributes to its identification.

Thus, the EM algorithm tends to perform with a lower FDR than PROcess.

To further explore which peaks are found by the different approaches, Table

2.4 groups the simulated peaks according to their S/N ratio. From Table 2.4 we

see that our approach is able to find peaks in very low signal to noise situations.

Specifically, when ϕ = 0.00028 our model found almost twice as many of the 19

peaks as PROcess.
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2.3.2 Real Data

We extract features from four real datasets (Figure 2.8) that were collected by the

Duke Medical Center, Radiology Department in Durham, North Carolina for a

case-control, observational study of lung cancer. In the study, serum samples from

30 diseased and healthy, Caucasian males were drawn, fractionated, and summa-

rized by 10 replicate, MALDI-TOF spectra (MALDI-TOF Delayed Extraction

Mass Spectrometer, Applied Biosystems Voyager DE). Each spectra is the sum

of ten laser shots. For our purposes, Dataset 1 is one replicate chosen from one

sample; Dataset 2 is the average of 10 replicates; Dataset 3 is the average for one

fraction across all oncology patients; and Dataset 4 is the average for one fraction

across all control patients.

We apply the model with the following user specifications to all datasets; kernel =

Cauchy or Gaussian, R = 50, R0 = 2, and segments = {5000, 10000, 15000, 26000,

40000, 60000, 75000}. When modeling a spectrum with a Cauchy kernel, the shape

of the first peak mimics the kernel, but when imposing a Gaussian kernel, k0() is

an exponential kernel, Equation 2.6. We learned from the simulation study that

a dataset of comparable range and size may require constraints approximately

equal to εs = 0.02
∑

Yt and εe = 0.0085
∑

Yt or 0.015
∑

Yt . To make sure, we

explored reduced values for εs and εe for dataset 1: 0.0
∑

Yt, 0.0025
∑

Yt and

0.005
∑

Yt. Most satisfied with εs = 0.02
∑

Yt and εe = 0.0025
∑

Yt, we applied

the same constraint to datasets 2-4. Table 2.5 lists the user inputs by datasets

and labels the rows with a letter; per row, Table 2.6 includes the corresponding

model estimates for J , %, %0, ϕ, and S. Figures 2.9 - 2.13 graphically display the

functional estimates of the protein signal.
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Dataset Row k R R0 εs/
∑

Yt εe/
∑

Yt

a 0 0
b 0.020 0.0025

1 c 0.020 0.0050
d

Cauchy 50 2

0.020 0.0085
2 a Cauchy 50 2 0.020 0.0025

a Cauchy 50
b Gaussian 50

3 c Gaussian 65 2 0.20 0.0025
d Gaussian 75
e Gaussian 100

4 a Cauchy 50 2 0.020 0.0025

Table 2.5: User inputs for EM Algorithm to apply to four real datasets.

Figure 2.12 depicts the model results for the spectrum averaged across the

diseased group, Dataset 3. Averaging spectra may either decrease resolution be-

cause of spectra misalignment or increase resolution because of the central limit

theorem. Thus, for Dataset 3, we explore the use of both Gaussian and Cauchy

kernels as well as varying resolution centering parameters. Table 2.5 lists the

varying hyperparameter specifications and Figure 2.12 displays the results. From

Figure 2.12, we see that the Cauchy kernel clearly fits better then a Gaussian

kernel regardless of the resolution parameters proposed.

Both averaged and raw spectra were used because Morris et al. [2005] re-

ported that more accurate peak extraction occurs when using mean, rather than

individual, spectra. To compare the results from individual and mean spectrum

analyses, we calculate the number of peaks found in each. Assuming peak loca-

tions are equal if they are within 0.2% Da [Campa et al., 2003a], Dataset 1 and 2

when modeled with the same hyperparameter specifications share 35 peaks.
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Dataset Row Ĵ %̂ %̂0 ϕ̂ Ŝ
a 807 83.88 1.56 0.00034 2.64
b 123 92.77 1.60 0.00032 14.50

1 c 100 93.30 1.50 0.00032 15.48
d 74 94.67 1.43 0.00032 17.89

2 a 59 94.67 1.58 0.00168 13.05
a 67 90.91 1.89 0.00282 12.44
b 38 57.22 2.49 0.00118 24.11

3 c 36 57.98 2.49 0.00098 25.60
d 45 52.27 2.53 0.00121 20.99
e 38 57.18 2.45 0.00130 22.53

4 a 102 66.29 1.78 0.01465 1.78

Table 2.6: Results from EM Algorithm application to four real datasets. The
column labeled by “Row”, corresponds to the same column in Table 2.5.

2.4 Discussion

To extract pertinent features from MALDI-TOF spectra we present a model-

based approach that enables the simultaneous estimation of protein signal and

random and/or systematic error. In modeling both, the declaration of a peak

depends upon all of the characteristics of a spectrum: resolution, background,

precision, peak concentration and peak location. This is a distinct difference from

previous approaches that only compare peak heights to thresholds, neighboring

observations, and/or noise estimates. In fact, we saw from the simulation exercises

that even when attempts are made to clean the data before comparing peak heights

and areas as described in PROcess, our modeling effort was approximately two

times more sensitive than PROcess and had 30% lower FDR in low S/N scenarios.

Posterior point parameter estimates are achieved via an expectation maximiza-

tion algorithm. Other means of parameter estimation(e.g. stochastic integration)

are applicable to the proposed model, but the EM algorithm is quick, easy to im-
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plement, and takes advantage of quadratic programming and optimization func-

tions available in R. We continue our peak finding research in two sequel papers

that use the results from this effort as starting values for a stochastic integration

approach. Unlike the EM algorithm, peaks may die and birth during a Markov

Chain Monte Carlo that will ultimately define the posterior distribution for peak

concentrations, widths, and locations.
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Figure 2.5: Plots a.-d. provide example feature extraction results when using
the EM approach. Plots a.- d. show one spectrum from each of the simulation
scenarios where ϕ = 0.04, 0.0044, 0.0011, and 0.00028 respectively. The circular
dots reference estimated peaks locations and the dashes marks on the x-axes locate
the true peak locations.
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Figure 2.6: Plots a. - d. provide feature extraction results from using PROcess
with default arguments. Plots a.- d. show one spectrum from each of the sim-
ulation scenarios where ϕ = 0.04, 0.0044, 0.0011, and 0.00028 respectively. The
circular dots reference estimated peaks locations and the dashes marks on the
x-axes locate the true peak locations.
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Figure 2.7: Plots a. - d. provide feature extraction results from using PROcess
with user altered inputs, rather than default arguments. Plots a.- d. show one
spectrum from each of the simulation scenarios where ϕ = 0.04, 0.0044, 0.0011,
and 0.00028 respectively. The circular dots reference estimated peaks locations
and the dashes marks on the x-axes locate the true peak locations.
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Figure 2.8: Plot a.-d. refer respectively to Datasets 1-4. Dataset 1 is one
spectrum from one shot, Dataset 2 is an average spectrum for 10 shots on the same
sample, Dataset 3 is an average spectrum of one shot from 16 cancer patients, and
Dataset 4 is an average spectrum of one shot from 13 control patients. Each of
the datasets have been shifted by minus the minimum, spectrum intensity.
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Figure 2.9: Final model fit using the proposed EM approach for dataset 4 using
two different sets for εs and εe: a. εs = 0 and εe = 0, b. εs0.02

∑
Yt and

εe = 0.0025
∑

Yt, c. εs = 0.02
∑

Yt and εe = 0.005
∑

Yt, d. εs = 0.02
∑

Yt and
εe = 0.0085

∑
Yt.

45



a.

10 20 30 40 50 60 70

0
40

0
80

0

m/z (kDa/e)

In
te

ns
ity

Figure 2.10: Final model fit for dataset 2 where εs = .02
∑

Yt and
εe = 0.0025

∑
Yt.
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Figure 2.11: Final model fit for dataset 3 using the same values for εs and
εe,εs = 0.02

∑
Yt and εe = 0.0025

∑
Yt, but different kernels. Plots a. and b.

shows the model fit with a Cauchy and Gaussian kernels respectively.
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Figure 2.12: Final model fit for dataset 3 using the same values for εs and
εe,εs = 0.02

∑
Yt and εe = 0.0025

∑
Yt, but different R: Plot Plots a.- d. show

Gaussian kernel model fits with R set to 50, 65, 75, and 100 respectively.
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Figure 2.13: Final model fit for dataset 2 where εs = 0.02
∑

Yt and
εe = 0.0025

∑
Yt.
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Chapter 3

Mass Spectrometry Feature Extraction

Using a Lévy Random Field Model

3.1 Introduction

Recent innovations in protein separation methods, ionization procedures, and

detection algorithms have led mass spectrometry (MS) to play a vital role in

the explosive growth of proteomics [Dass, 2001, p. xxi]. Despite technological

advances in data collection, it remains challenging to extract biologically relevant

information (such as biomarkers) from MS spectral data [Coombes et al. 2005a;

Baggerly et al. 2004; Dass 2001, chaps. 3, 5; Do et al. 2006, chaps. 14, 15].

Identifying peak locations (which represent proteins) and quantifying protein

abundance is often preceded by a two or more stage analysis, involving calibra-

tion, normalization, baseline subtraction and filtering of noise [Morris et al., 2005;

Tibshirani et al., 2004; Yasui et al., 2003; Carpenter et al., 2003]. A problem

with such multistage analyses is that each individual step potentially introduces

errors or biases that may subsequently create challenges for later stages such as

classification of subjects or identification of biomarkers; methods that simultane-

49



ously model background, noise and features may lead to improved classification or

inferences [Coombes et al., 2005b]. Nonparametric models such as wavelets have

proved successful in simultaneously modeling background and denoising, allowing

one to extract features or regions of spectra that differentiate groups [Yasui et al.,

2003; Coombes et al., 2005b]. While wavelets are well suited for modeling local

features like spectral peaks, the coefficients and basis functions used in the repre-

sentation of expected intensity have no inherent biological interpretation. In this

paper, we propose a novel nonparametric model using an adaptive kernel regres-

sion model [Clyde and Wolpert, 2006] that provides the adaptivity and flexibility

that make wavelet methods advantageous, but more importantly uses a model

parameterization for features with direct biological interpretations.

We begin in Section 3.2 with a brief overview of MALDI-TOF mass spectrom-

etry. In Section 3.3 we develop a statistical model for protein abundance as a

function of time-of-flight using a novel nonparametric Bayesian approach. The

model encompasses both signal (the protein abundance) and noise (due to arti-

facts of the MALDI-TOF technology), including run-to-run variability. Based on

physical models for mass spectroscopy [Coombes et al., 2005a], the distribution of

the time of flight of a given protein may be represented by a kernel density, such as

a Gaussian or Cauchy density with location parameter representing the expected

time of flight and width parameter governed by both the mass of the protein and

resolution of the machine (and its settings) used for MS. The unknown protein sig-

nal is then represented as a convolution of theses kernels with a distribution that

characterizes protein abundance at expected times of flight. Solving this deconvo-

lution problem provides estimates of the number of proteins, their times of flight,

and abundances. As deconvolution problems typically have no unique solution, we
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utilize a Bayesian approach that incorporates prior knowledge about the process

which facilitates resolving the number of peaks (proteins). Prior distributions for

the Bayesian model are developed in Section 3.4 from expert knowledge about

the MALDI-TOF procedure and from exploratory analysis of MALDI-TOF data

from related experiments. Inference about parameters of clinical interest, based

on posterior distributions, are described in Section 3.5. In Section 3.6 we validate

our method and compare it to the conventional peak-finding algorithm PROcess

[Li, 2005] using simulated data. We illustrate our methodology in Section 3.7

using data from a recent lung cancer study conducted at Duke University. We

conclude with a discussion and suggestions for future work in Section 3.8.

3.2 MALDI-TOF Data

In Matrix Assisted Laser Desorption Time-of-Flight Mass Spectrometry, or MALDI-

TOF MS, inference about the molecular composition of a compound is based on

indirect measurement of molecular masses. Molecules, initially embedded in a

matrix of low molecular weight substance such as sinapinic acid on a metal target

plate, are simultaneously dislodged (by vaporizing the substrate) and ionized (by

removing one or more electrons from the molecule) by laser pulses, or shots. The

now-charged molecules are accelerated by a strong electric field toward a detector,

where the total number of molecules detected (or, more precisely, their aggregate

charge) are recorded during specified time intervals (clock ticks, each about 4 ns

long). From these, a histogram or spectrum is constructed of the approximate

times-of-flight (TOF’s) for the molecules that comprise the compound in some

number of repeated laser “shots” at the same location.

Distance traveled under constant acceleration is a quadratic function of time,
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leading to a simple but nonlinear relationship between TOF and the molecules’

masses and ionic charge (the latter two enter only through their quotient, the

mass to charge ratio m/z). Under ideal conditions the TOF spectrum generated

by MALDI-TOF would show a narrow spike at the TOF corresponding to each

molecular species present, with a height to the molecule’s concentration.
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Figure 3.1: A MALDI-TOF mass spectrum, plotting intensity vs. both m/z and
TOF, for a ten-shot spectrum.

In actual MALDI-TOF spectra (see Figure 3.1.) we observe irregular peaks rather

than one-dimensional spikes because molecules of equal size and charge do not all

reach the detector at the same time. The most important of the many causes of

TOF dispersion is variability in the amount of ionizing laser energy received by

molecules of varying location within the matrix; those further from the matrix

surface or from the center of the laser pulse may receive less kinetic energy and

thus have lower initial velocities than similarly-sized molecules located closer to

the center, delaying their arrival at the detector. Molecules may exchange energy

in collisions, and may lose or gain mass through fragmentation and agglomeration,
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respectively. All these lead to TOF variation for each molecular species [Coombes

et al., 2005a; Zhigilei and Garrison, 1998; Franzen, 1997].

The interpretation and analysis of MALDI-TOF data are complicated by sev-

eral other sources of variation described by Morris et al. [2005] and Coombes et al.

[2005a]. In addition to measurement error, or random noise, which may mask or

distort protein peaks even in a single spectrum, at least three other sources com-

plicate the comparison or synthesis of multiple spectra: calibration (uncertainty

in the conversion of TOF to m/z, including variable latency that affects time reg-

istration); background (a constant or even time-varying trend in the overall level);

and scale (caused by many things including variability of laser intensity).

One way to accommodate these sources of variability is to construct models for

peak identification and quantification that incorporate all these recognized sources

of variability, as in the wavelet approach of Morris et al. [2005]. Our approach,

described in Section 3.3, has the advantage that each of the model parameters has

a direct physical interpretation.

3.3 A Model for MALDI-TOF

To eliminate variability attributable to differing numbers of laser shots and dif-

fering baselines, we model the standardized spectrum at TOF t, for some range

T0 ≤ t ≤ T1,

Yt =
Y ob

t − min(Yob)

l
(3.1)

based on a raw spectrum Yob = {Y ob

t }T0≤t≤T1
with l laser shots. Dass [2001, p. 75]

suggests that the initial molecular velocities will be approximately Gaussian in

distribution. This and the physical modeling of the MALDI-TOF process by
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Coombes et al. [2005a] suggest that TOFs for a single isotopic peak will also have

symmetric bell-shaped distributions in the time domain, leading us (and others—

see [Morris et al., 2005; Kempka et al., 2004; Malyarenko et al., 2005]) to prefer

TOF (in µs) rather than m/z (in Da/e) for spectral modeling.

3.3.1 Peak Shape

The shape of a symmetric isotopic peak may be represented by a probability

density function with parameters governing the protein peak’s location τ and

width ω. Examples include the Gaussian

k(t; τ, ω) =
1√
2π ω

exp(−|t − τ |2/2ω2)

and Cauchy (sometimes called Lorentzian in the MS literature)

k(t; τ, ω) =
ω

π(ω2 + |t − τ |2) , (3.2)

as suggested by [Dass 2001, p. 75; Kempka et al. 2004; Applied Biosystems 2001, p. 6-

30]. A protein signature associated with J peaks may now be represented as a

sum

f(t) =

J∑

j=1

k(t; τj, ωj) ηj, (3.3)

where {τj}, {ωj} and {ηj} represent the location, width, and abundance of the

jth peak.

3.3.2 Peak Width and Resolution

Protein peaks tend to be broader for late-arriving molecules than for earlier ones,

with width nearly proportional to arrival time [Siuzdak, 2003, p. 44]; for this reason
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it is conventional in mass spectrometry to quantify the precision (narrowness) of

a kernel k( · ; τ, ω) not by the width ω, but by the resolution

ρ ≡ τ/∆τ

where ∆τ , the so-called full width at half mass or FWHM, is the width of the

kernel k( · ; τ, ω) at half its height. For a symmetric kernel, ∆τ is the solution of

the equation

k(τ ± 1
2
∆τ ; τ, ω) = 1

2
k(τ ; τ, ω)

[e.g., Dass, 2001, p. 120]. For the Gaussian and Cauchy kernels we have ∆τ =

2ω
√

log 4 and ∆τ = 2ω, leading respectively to ω = ω(τ, ρ) with

ω(τ, ρ) =
τ

2ρ
√

log 4
and ω(τ, ρ) =

τ

2ρ
. (3.4)

Prior knowledge about precision can be used to resolve the ambiguity illustrated

in Figure 3.2., where the observed spectrum may arise from either a single wide

peak or a pair of near-by narrower peaks.

100 110 120 130 140

0.
00

0.
10

TOF (µs)

Si
gn

al
 f

(t
)

Figure 3.2: The (nearly indistinguishable) solid and dotted lines represent sim-
ulated protein signals from a sample mixture with either one wide or two narrow
peaks.
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3.3.3 Background Noise Sources

Even in the absence of any protein molecules (i.e., with f(t) ≡ 0) the MALDI-TOF

spectrum does not vanish. Figure 3.3 a. shows the nearly-constant level of thermal

noise from a run with an empty plate, while Figure 3.3 b. shows the rapidly-

decreasing signal with only the sinapinic acid matrix, showing the arrival at the

detector of ionized matrix molecules (far lighter than the proteins under study,

hence near the left of the spectrum). Together these contribute a background

that falls off nearly exponentially to a non-zero asymptote. Exploratory analysis
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Figure 3.3: Figure 3.3 a. shows the near-uniform thermal noise spectrum (or
“ringing”) from an empty plate, while Figure 3.3 b. shows the rapidly-decreasing
spectrum from the sinapinic acid matrix without any protein sample. Note the
vertical axes are scaled differently.

suggests that the matrix molecular signal β0(t) can be modeled adequately as an

exponential function,

β0(t) = k0(t; ω0) η0 =
η0

ω0
exp{−t/ω0}1(t>0), (3.5)

with width ω0 > 0 and intensity η0 > 0.
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3.3.4 Mean Spectrum

To reflect all these features, we model the expected spectral intensity as:

µ(t) = ζ
{

(1 − S) + S
[
f(t) + β0(t)

]}
(3.6)

for an overall scale ζ, a dimensionless number S ∈ [0, 1], the protein signal

f(t) from Equation (3.3), and the matrix molecular signature β0(t) from Equa-

tion (3.5). The term S represents the proportion of observed intensity produced

by molecular signal (both matrix and protein), rather than by the ringing and

thermal noise of Figure 3.3 a..

3.3.5 Likelihood

Both gamma and log-normal distributions are commonly used to model positive

data like Yt. We based our choice on the observation that the variance is pro-

portional to the mean for gamma distributions and to the square of the mean

for log-normals. Exploratory data analysis (from both a Box-Cox approach, and

a regression comparison illustrated in Figure 3.4.) suggests that the variance of

standardized MS data Yt, given the mean, is nearly proportional to the first power

of the mean, supporting the gamma model

Yt | µ( · ), ϕ
ind∼ Ga(ϕµ(t), ϕ), (3.7)

with mean µ(t) and mean : variance ratio ϕ. This leads to likelihood function

L(θ;Y) =

n∏

i=1

Ga(Yti; ϕµ(ti), ϕ) (3.8)

for the parameter vector θ comprising the conditional mean function µ( · ) (or,

equivalently from Equation (3.6), all of ζ, J , {τj, ωj, ηj}1≤j≤J , S, ω0, and η0) and
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Figure 3.4: Linear and quadratic fits of mean intensity vs. variance of intensity
for 200 µs blocks of observations from a single spectrum.

ϕ. Here Y = {Y (ti)}1≤i≤n represents the vector of standardized intensities, and

Ga(y; α, β) = βα

Γ(α)
yα−1e−βy1(y>0) is the probability density function at y ∈ R for

the gamma Ga(α, β) distribution.

Typically the likelihood function of Equation (3.8) has many modes because it

is difficult to distinguish wide peaks from clusters of narrow ones, or small peaks

from noise, from the data alone. Estimating θ (and in particular J , the number

of protein peaks) by direct maximization of the likelihood leads to over-fitting the

data and to over-estimating J . This can be overcome by regularization [Tikhonov,

1963] or by a Bayesian approach like ours, in which prior distributions penalize

overly complex models.
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3.4 Prior Distributions for MALDI-TOF

We now address the problem of constructing a joint prior distribution for all the

unknown parameters of the model of Section 3.3,

Yt | µ( · ), ϕ ind∼ Ga(ϕµ(t), ϕ) (3.9)

µ(t) = ζ
{

(1 − S) + S
[
f(t) + β0(t)

]}

f(t) =

J∑

j=1

k(t; τj, ωj) ηj, β0(t) =
η0

ω0
exp{−(t − T0)/ω0}1(t>T0)

3.4.1 Measurement Error ϕ and Overall Level ζ

The exploratory data analysis of Section 4.3.3 suggests that the sample mean of

the {Yt} is nearly proportional to the variance, with a ratio of approximately

ϕ ≈ 0.223. We use a gamma prior distribution ϕ ∼ Ga(aϕ = 0.5, bϕ = 1) to place

about 90% of the prior mass in the interval [0.002, 2].

The parameter ζ may be interpreted as the mean level or scale for Yt, since

E[f(t)] ≈ 1 (see Section 3.4.2). Since experimental levels depend on a wide range

of exogenous variables and vary widely among trials, we use a rather tight data-

dependent prior distribution for ζ centered at the empirical mean Ȳ ,

ζ ∼ Ga(aζ , bζ)

with aζ , bζ chosen so that E[ζ] = Ȳ and the geometric standard deviation (
√

V[Y ]/E[ζ])

is approximately 0.10.
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3.4.2 Prior Distribution for Protein Signature f( · )

We use a negative binomial prior distribution for the number J of peaks in the

protein signature

f(t) =
J∑

j=1

k(t; τj, ωj) ηj

with mean parameter µJ = E[J ] = 100 and shape parameter αJ = 1 chosen

to achieve a median of J ≈ 70 peaks with symmetric 50% and 90% ranges of

approximately 30 ≤ J ≤ 140 and 5 ≤ J ≤ 300, respectively [Campa et al.,

2003b].

Conditional on J , we take the triplets {(τj, ωj, ηj)}1≤j≤J to be independent and

identically-distributed. For peak abundances {ηj} we use the truncated gamma

distribution Ga(0, λ, ε) with parameters λ and ε chosen below in Section 3.4.4.

Here Ga(α, λ, ε) denotes the truncated gamma distribution with density function

Ga(η; α, λ, ε) ≡ λα

Γ(α, λε)
ηα−1 e−λη1(η>ε), (3.10)

where Γ(α, x) ≡
∫ ∞

x
zα−1e−z dz denotes the incomplete gamma function [Abramowitz

and Stegun, 1964, §6.5.3]. For α, λ > 0 this is the conditional distribution of a

gamma-distributed Ga(α, λ) random variable, given that it exceeds ε ≥ 0; it is

well-defined for all α ∈ R if ε > 0.

There is little reason to give higher prior probability to one range of TOFs

than another without prior knowledge of the collection of proteins present in

the samples. Thus we take {τj}1≤j≤J
iid∼ Un(T0, T1) (independently of J and

{λj}1≤j≤J), for some interval large enough to exceed the TOF for all molecules of

interest. To eliminate saturation by matrix molecules at the low end, and include
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as wide a range as possible of the biologically relevant molecules, we chose the

range [5 kDa/e ≤ m/z ≤ 75 kDa/e], leading to TOF range [T0, T1] = [32 µs, 278 µs]

of length T = T1 − T0 = 246 µs.

To construct a prior distribution on the widths {ωj}1≤j≤J we first use expert

opinion to construct an informed prior distribution on the resolutions {ρj}1≤j≤J

(see Section 3.3.2). Siuzdak [2003, p. 44] suggests that individual peak resolutions

ρj should be nearly constant across the entire TOF range, but in practice they

are observed to vary [Coombes et al. 2005a; Applied Biosystems 2001, p. 6-32]. To

reflect this variation we construct a hierarchical prior probability distribution for

the resolution parameters {ρj}1≤j≤J . Independently of J and {(λj, τj)}1≤j≤J , we

take

% ∼ LN
(
log(%µ), 0.52

)

ρj | %
iid∼ LN

(
log(%), 0.052

)
,

centered around a hyperparameter %µ taken from the literature [Applied Biosys-

tems, 2001, Table 6-2; see also Table H-6]

%µ =





%
(S)
µ = 400, for 2 kDa/e ≤ m/z < 5 kDa/e

%
(M)
µ = 700, for 5 kDa/e ≤ m/z < 25 kDa/e

%
(L)
µ = 100, for 25 kDa/e ≤ m/z

for small (S), medium (M), and large (L) compounds. Standard deviations were

chosen following discussions with collaborating spectrometrists to fit observed

resolution values and to achieve overlapping ranges for adjacent molecular size

ranges [Fitzgerald and Roulhac, 2006]. The relationship between width, TOF,

and resolution given by Equation (3.4) now induces a prior distribution on the
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width parameters, e.g., {ωj}1≤j≤J | τ , %
ind∼ LN

(
log(τj/2%), 0.052

)
for the Cauchy

kernel.

A random variable η ∼ Ga(α, λ, ε) with the truncated gamma distribution of

Equation (3.10) has mean E[η] = (α/λ) + εαλα−1 e−λε/Γ(α, λε) in general or, in

our case with α = 0,

E[η] =
1

λ eλε E1(λε)

Exploratory data analysis and discussions with spectrometrists suggest that the

smallest peak that can possibly be distinguished from noise is about 5–10% of the

average signal, so we take ε/E[η] = λε eλε E1(λε) = 0.075, i.e., λε = 0.0227. Since

∫ T1

T0
k(t; τj, ωj) dτj ≈ 1 for t well away from the boundary of [T0, T1],

E
[
f(t)

]
≈ µJ

T λ eλε E1(λε)
T0 � t � T1 (3.11)

and so to achieve E[f(t)] = 1 we need µJ ε = 0.075 T , so ε = 0.1800 µs and

λ = 0.1261 µs−1.

3.4.3 Prior Distribution for Matrix Background

Distributions for the remaining parameters, η0 and ω0 (which determine β0(t)) and

S, are based in part on exploratory analyses of matrix-spectra (from experiments

with sinapinic acid matrix but no protein mixture) and blank-spectra (in which

neither matrix nor protein mixture cover the target metal plate).

The exponential fall-off rate 1
ω0

of β0(t) (see Equation (3.5)) can be estimated

by logarithmic regression of an initial segment of the blank spectrum from Fig-

ure 3.3 b. From the estimate 1
ω0

≈ 0.0492 ±0.0001367 (mean ± one standard error,

in units of µs−1) we infer (using the delta method) that log(ω0) ≈ 11.5± 0.00278.
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To accommodate possible variation between the blank spectrum experiment and

the protein analysis, we use a much broader prior distribution,

ω0 ∼ LN(3.012, 0.52).

We use a truncated gamma model for the abundance η0,

η0 ∼ Ga(0, λ0, ε)

with λ0 chosen to match the mean E[η0] =
{
λ0 eελ0 E1(ελ0)

}−1 ≈ η̂0 with the

estimate η̂0 from nonlinear regression on an initial segment of the protein data

set short enough that it does not appear to include any peaks associated with

proteins (we used 0 < t < 40 µs, corresponding to the range 0 < m/z < 6 kDa/e).

The solution is λ0 = x/ε for the solution x to the equation

x ex E1(x) =
ε

η̂0

(easily found using MathematicaTM [2005] or MapleTM [2005], for example, or the

approximations in Abramowitz and Stegun [1964, §5.1.53–56]).

With the same dataset we approximate E[1 − S] by first estimating the noise

in low intensity region, divided by the average spectral intensity Yt. Exploratory

analysis suggests that the detector might be responsible for 0–46% of an observed

intensity, leading us to use a beta prior distribution

S ∼ Be(αS, βS)

with mean µS = 0.77 and variance σ2
S = 0.013, i.e., parameters αS = µS[µS(1 −

µS)/σ2
S − 1] = 9.720 and βS = (1 − µS)[µS(1 − µS)/σ2

S − 1] = 2.903. Notice that

the signal-to-noise ratio S
1−S

has an F 2αS

2βS
= F 19.4

5.81 prior distribution with mean

αS

βS−1
≈ 5.12.
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3.4.4 Random Field Formulation

The distribution constructed in Section 3.4.2 for J and {(τj, ωj, ηj)}1≤j≤J induces

one for f( · ) =
∑J

j=1 k(t; τj, ωj) ηj, which can be written in integral form

f(t) =

∫∫

R2

k(t; τ, ω)Γ(dτ, dω)

with a random measure

Γ(dτ, dω) ≡
J∑

j

δτj
(dτ)δωj

(dω) ηj

that assigns masses {ηj}1≤j≤J to the J discrete support points {(τj, ωj)}1≤j≤J ⊂

R
2. The negative binomial distribution J ∼ NB(αJ = 1, µJ = 100) can be written

in hierarchical form as a gamma-mixture of Poisson distributions, J | λJ ∼ Po(λJ),

λJ ∼ Ga(αJ , βJ), with βJ = αJ/µJ = 0.01.

For disjoint sets {An} ⊂ R
2 the random variables {Γ(An)} are conditionally

independent given λJ and %— that is, learning about the widths and locations of

peaks in one part of the spectrum tells us nothing a priori about peaks and their

widths in other parts of the spectrum.1 Conditional on λJ and %, the random

measure Γ(dτ, dω) is a Lévy random field, whose integrals

Γ[φ] ≡
∫∫

φ(τ, ω) Γ(dτ, dω)

have characteristic functions of Lévy-Khinchine form [see Khinchine and Lévy

1936 or p. 74 of Rogers and Williams 1994]

E
[
exp{isΓ[φ]} | λJ , %

]
= exp

{∫∫ (
ei s φ(τ,ω)η − 1

)
ν(dη, dτ, dω)

}

with finite Lévy measure

1Note this does not reflect the possibility of multiply-charged ions (dimers, trimers, etc.),
although a more sophisticated version of this model could incorporate that feature.
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ν(dη, dτ, dω) = λJ Ga(η; 0, λ, ε) Un(τ ; T0, T1)

× LN
(
ω; log(τ/c%), 0.052

)
dη dτ dω

=
λJ η−1 e−λη 1(η>ε)

E1(λε) T ω
√

200π
exp

{
− 200 log2(ω%c/τ)

}
dη dτ dω

where c = 2 for the Cauchy kernel and c = 2
√

log 4 for the Gaussian.

3.5 Posterior Analysis

To support inference about protein peak locations and abundance, and about

other model parameters, we construct an ergodic Markov chain in the space Θ of

possible parameter vectors θ = {ζ, J, {τj, ωj, ηj}1≤j≤J , S, (ω0, η0), λJ , ρ} with the

posterior distribution as its stationary distribution [Besag et al., 1995; Tierney,

1994; Gelfand and Smith, 1990]. At each Markov chain step we select one of the

components of θ and either replace it with a draw from its complete conditional

posterior distribution, given the other components (a Gibbs step) or, if this is im-

practical, propose a small change in that component which is then accepted or re-

jected according to the Hastings probabilities (a random-walk Metropolis-Hastings

or M-H step). Note that each proposed change in J (which we always take to be

an M-H step of size one) changes the dimension of θ (by three), requiring some

delicacy in computing the Hastings ratios; such schemes, called “reversible jump

MCMC algorithms,” were introduced by Green [1995]. Our approach is modeled

after that of Wolpert and Ickstadt [2004], who introduced a general RJMCMC

procedure that iterates though possible values of {τj, ωj, ηj}1≤j≤J using just three

possible moves: peak birth (incrementing J by one and introducing a new triplet

(τ∗, ω∗, η∗)), peak death (decrementing J by one and removing a randomly-chosen
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triplet (τj, ωj, ηj)), and peak update (moving a randomly-chosen triplet (τj, ωj, ηj)

within R
3). To these we add two new moves, with a vast improvement in algo-

rithmic efficiency: splitting, in which a single large peak is replaced by a pair of

smaller ones, and merging, in which two nearby peaks are replaced with a single

larger one.

For sufficiently large spectra or complex protein mixtures, convergence to the

posterior distribution may require millions of MCMC iterations and days of com-

putation. To reduce computation time we begin the Markov chain close to its

mode, located by applying the EM algorithm [Dempster et al., 1977] to a simple

Gaussian approximation to our model; see House et al. [2006c] for details. This

acceleration of convergence entails a possible cost— it may lead us to miss multiple

modes, and so may overstate the posterior precision of some model parameters.

3.6 Simulation Study

In this section we describe a simulation study intended to explore how well our ap-

proach succeeds in locating true peaks within spectra of varying signal-to-noise ra-

tios. We fit the model to simulated datasets for five values of the signal proportion:

S ∈ [0.10, 0.40, 0.70, 0.85, 0.95] (i.e., signal-to-noise ratios of [0.1, 0.7, 2.3, 5.7, 19]).

Twenty-five datasets were generated for each of these values of S, with fixed

peak locations and with the remaining model parameters set to nominal values

(J = 35, ζ = 130, ϕ = 0.50, (αJ , βJ) = (1, 0.02), % = 56, ηj ≡ 3.9 µs, η0 = 35.6 µs,

ω0 = 46.2 µs) chosen so that the simulated spectra appeared similar to observed

spectra. With a few exceptions the hyperparameter and RJMCMC specifications

remained the same as those described in Section 3.4. Departures include reducing

µJ (by half) to 50 and fixing the overall spectrum resolution at %µ = 50. As start-
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ing values for the peak locations {τj} we took 50 equidistant peaks in the range

[32, 278] µs, corresponding to the range [5 000, 67 000]m/z. We used 500 000 RJM-

CMC iterations, and retained the last 5 000 for further analysis. We compare our

approach to a conventional peak finding algorithm using the R package PROcess

[Li, 2005], which was originally designed for analysis of SELDI-TOF data, but

is also applicable to MALDI-TOF. Li [2005] suggests removing background via

subtracting a smoothed estimate of the spectrum local minima. Peaks are then

defined as local maxima, with a signal greater than a user specified threshold and

have a signal to noise ratio greater than a user specified value. Further more, an

observation initially flagged as a peak may become disqualified if its area divided

by the maximum peak area is less than a specified ratio. For both approaches, a

discovered peak is regarded as a true peak if the TOF falls within ±0.2% of that

of a true peak.

Figure 3.5 a,b. illustrates the fractions of true peaks found (TDR) and of spu-

rious peak discoveries (FDR), respectively, by our approach and by PROcess at

several signal fractions S. Both the single highest-probability simulation outcome

(thin solid lines) and the posterior mean (thick solid lines) are shown, along with

two estimates from PROcess (dashed lines showing default program settings and

dotted lines lines representing carefully tuned settings). Figure 3.5. shows that

we find an average of 75% of the true peaks, with a FDR in the range of 13–56%,

across the range of signal fractions for both model output summaries; the posterior

mean FDR remains below 16% and the mean FDR above 83% for all signal-to-

noise ratios above one. The simulation shows that the kernel based approach is

superior in performance to PROcess over a range of scenarios.
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Figure 3.5: True and False Discovery Rates from simulation study. Note supe-
riority of Posterior Mean (thick solid line) to Posterior Mode (thin solid line) and
both PROcess approaches (dotted and dashed lines).

3.7 Examples

In this section, we apply our approach to three datasets and compare the results

to those produced by the peak-finding algorithm PROcess [Li, 2005].
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The first two datasets come from an observational study at the Duke Medical

Center Radiology Department [Campa et al., 2003b], intended to assess proteomic

differences between cancerous and healthy patients. Serum from 30 diseased and

control Caucasian males was collected and analyzed by a linear MALDI-TOF

Delayed Extraction Mass Spectrometer, Applied Biosystems Voyager DE. Each

sample was fractionated to 20 pH levels prior to the MALDI-TOF analysis to

promote the ionization of a range of proteins. Ten replicate spectra were stored

for each fraction, each from ten laser shots. For the present analysis we selected

arbitrarily one fraction from one subject, from which we generated two datasets

(see Figure 3.6.): a single spectrum from the chosen subject-fraction (DS1), and

the mean spectrum of all ten replicates (DS10). The higher signal-to-noise ratio of

the mean spectrum DS10 should make it better for supporting inference [Morris

et al., 2005], but the single spectrum of DS1 offers an opportunity to show how

our model accommodates noisy data.

Dataset DS0 shows a pure matrix solution with no serum sample (it was displayed

in Figure 3.3 b.). The 5–75 kDa range of each dataset (TOF 30–280µs) was stan-

dardized as in Equation (3.1). Similar prior distributions (see Section 3.4) were

used for the three datasets, with only small differences— for example, we used

µJ = 100 (i.e., βJ = 0.01) for DS1 and DS10 but reduced it to µJ = 20 (or

βJ = 0.05) for DS0 in anticipation of a much smaller number of peaks.

Table 3.1. Table 3.2. and Figure 3.7. display posterior parameter estimates

and model fits, respectively, from the last 1 200 000 draws from 4.2 million RJM-

CMC iterations. Three model estimates are given in Table 3.2. for the number

of proteins found: the posterior mean JPM, the single highest-probability value

found in the simulation JHP, and the number J∇ of local maxima found in the
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Figure 3.6: Single spectrum (a.) and mean of ten spectra (b.) from a single
fraction, single subject. Note noise reduction and peak broadening in (b.)

posterior mean E[µ(t)] (see Equation (3.9)). The difference JPM − J∇ increases

with decreasing resolution as multiple nearby peaks merge [Dass, 2001, p. 119].

Such peak merging would be appropriate for proteins with multiple isotopes, but

it will lead to distortion when two or more similar-sized but distinct proteins ap-

pear as one. Figure 3.8. shows the difference between the two model fits for the

mean dataset DS10 at different TOF ranges.

Notice that our approach is far more satisfactory than algorithmic feature

extraction methods such as that in PRO. When strong peaks are present, PROcess
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Table 3.1: Posterior Model Parameter Estimates (and Standard Deviations).

Dataset ζ S ϕ %(M) %(L) η0 ω0 JPM

5.37 0.14 4.95 102.59 108.01 180.80 16.94 154.62
Mean

(0.11) (0.00) (0.08) (1.31) (1.04) (4.01) (0.22) (7.11)

11.20 0.01 0.33 60.62 95.91 105.63 18.55 103.97
Single

(0.86) (0.00) (0.01) (5.88) (2.49) (8.37) (0.55) (7.85)

16.84 0.23 1.52 15.32 25.56 34.12 18.40 34.99
Matrix

(0.91) (0.04) (0.03) (1.76) (2.95) (2.74) (0.47) (3.69)

Table 3.2: Number of peak extracted by the model and Process. Three model
summaries are provided: the posterior mean JPM, the single highest-probability
value found in the simulation JHP, and the number J∇ of local maxima.

Dataset JPM JHP J∇ JPRO

Mean 154.62 137 77 2

Single 103.97 81 57 2

Matrix 34.99 32 31 66

mistakes smaller peaks as noise; in the absence of large peaks, many noise features

are falsely identified as peaks. One reason for this behavior is that local-maxima

procedures do not impose uniformity of resolution across the TOF range.

Without knowledge of the true protein distribution in our serum samples, we

do not know if we are over- or under- estimating the number of proteins. We do

see that the method finds more peaks in the mean spectrum than in the single

spectrum, and that it finds about thirty spurious peaks in the matrix spectrum.

The spurious peaks mark possible fluctuations in the laser and have extremely

low resolutions. Thus, the peaks found in Figure 3.7e. would be avoided in the

presence of proteins because they would not comply with the posterior estimate

for spectrum resolution.
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Figure 3.7: Model (left) and PROcess (right) peak reconstructions for single-spec-
trum (a., b.), mean-spectra (c., d.) and matrix-only (e., f.) experiments.
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Figure 3.8: Local maxima from posterior mean (left) and highest probability
model (right) estimates for various regions in mean spectra.

73



3.8 Discussion

We have demonstrated through simulation studies and analysis of experimental

data that the our novel model based adaptive regression kernel approach provides

estimates of parameters of interest and has desirable true and false discovery

rates. The incorporation of physical information such as resolution and peak

shape can lead to improved methods. Given the posterior samples, we are able to

estimate the number of proteins, protein mass, and protein abundance, using the

posterior mean or the sample with the highest posterior density. In addition to

point estimates, the Bayesian model based approach can also be used to provide

measures of uncertainty for any of these quantities.

While this paper describes a model for a single spectrum, modeling multiple

spectra simultaneously may be carried by extending the single spectrum model

to a hierarchical model to accommodate multiple spectra from different subjects,

and multiple subjects within groups. Because of the variability of TOFs across

shots within the same subject or experimental conditions, spectra may be slightly

misaligned. Averaging spectra across shots for the same subject may lead to the

broadening of peaks or possible loss of small peaks. A hierarchical model that

allows the TOF parameters to vary from shot to shot, but that are centered at

a subject specific expected TOF provides automatic calibration and alignment of

spectra. Similar to the functional data analysis approach of Morris et al. [2006],

the hierarchical version of our single spectrum model can be extended to iden-

tity peaks with differential abundance or presence/absence across experimental

conditions.
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Chapter 4

Functional Data Analysis Using a Lévy

Random Field Models for Multi-Spectra

Peak Identification and Classification

4.1 Introduction

Expression proteomic studies that use mass spectra and aim to differentiate ex-

perimental sub-populations (e.g. drug treatment or disease status groups) via the

discovery of protein biomarkers must control for known sources of measurement er-

ror. Variation within and between spectra may cause inaccurate multi-spectrum

comparisons and mask significant protein differences. Many approaches try to

draw comparisons and locate biomarkers by completing three separate steps: 1.

per spectrum, identify significant features or peaks that may represent actual pro-

teins; 2. decide if the discovered peaks are present in more than one spectrum, i.e.

align the peaks; and 3. compare the features according to a chosen classification

scheme [e.g. Morris et al., 2005; Tibshirani et al., 2004; Baggerly et al., 2003].

In this paper, we propose a novel expression proteomic analysis approach that

addresses all three steps in a single hierarchical model.
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In general, peaks observed within mass spectrometry data represent proteins-

the peak areas measure the relative protein concentrations and peak locations on

the x-axis identify the proteins by weight. Hence, the first two aforementioned

steps, feature extraction and alignment, are necessary so that the third step, sub-

population classification, can be based on biologically relevant information [Morris

et al., 2005; Baggerly et al., 2004]. In the previous chapter, we addressed feature

extraction by modeling nonparametrically Matrix Assisted Laser Desorption Ion-

ization Time of Flight (MALDI-TOF) intensities. This paper extends the previous

model to include multiple MALDI-TOF spectra in order to address alignment and

classification.

We expand the single-spectrum model (SSM) to multiple spectra by assuming

each observed profile, is related hierarchically to one, mean or population spec-

trum. The population peak locations, areas, and resolutions summarize a latent,

population protein signal that centers the latent observed protein signal in each

spectrum and induces a dependence structure between them; i.e. given the pop-

ulation protein signal, subject-specific protein parameters are generated a priori

independently to produce another set of latent protein signal estimates which un-

derly all observed spectra. The benefit of assuming this hierarchical dependence

structure is two-fold. First, data across several spectra can be used to determine

the existence and quantification of protein peaks common to the population; and

second, all estimated peaks are aligned with the mean spectrum. The hierarchi-

cal approach also assists in classification by labeling each latent population peak

with a mark that determines sub-population(s) expression. The peak marks result

from assuming that the population protein signal is generated from a three dimen-

sional Gamma random field (GaF) prior, rather than the SSM’s two-dimensional
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Gamma random field.

Measurement error will cause observed intensities to deviate from the latent,

observed protein signal. Thus, we account for the sources of error as well as

the protein signal within the likelihood distribution for all molecular intensities

as discussed in Section 4.3. Subsequently, in Section s 4.4 and 4.5, we elicit

parameter prior distributions and assess the posterior distributions. Sections 4.6

and 4.7 contain respectively summaries of simulation exercises and results using

real data which depict the effectiveness of our approach. Before describing our

approach in detail however, we motivate our research and exemplify the standard

study designs to which our model applies in the next section.

4.2 Motivation

A research team from the Duke Medical Center Radiology Department conducted

a retrospective, observational study to explore potential protein differences be-

tween lung cancer and control patients. The study included proteomic profiles

created by a linear MALDI-TOF Delayed Extraction Mass Spectrometer (Ap-

plied Biosystems Voyager DE) of serum samples collected from 30 Caucasian,

male patients who were either diagnosed or not diagnosed currently with lung

cancer. Since only 2 of the 30 samples exhibited MALDI-TOF saturation or other

problems, data from 16 disease patients and 12 control patients were deemed

usable; i.e. n0 = 12 and n1 = 16.

For each patient, the serum sample was fractionated using liquid phase isoelec-

tric focusing prior to generating a spectrum [Campa et al., 2003a]. Per fraction,

10 replicate spectra were created from the sum of 10 laser shots. For this effort,

we summarize the shots, replicates, and fractions by averaging all of the spectra

77



from one patient and subtracting the minimum average intensity. Figure 4.1 pro-

vides example spectra for three control and three diseased subjects and ; Figure

4.2 shows a heat-map of all 28 spectra used in subsequent analyses.
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Figure 4.1: Column a. represents three example spectra from the control group
and column b. represents three example spectra from the disease group. Each
spectrum represents one person and is an average across 10 laser shots, 10 repli-
cates, and 20 fractions.
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Figure 4.2: A heat-map of the log intensities analyzed in Section 4.7. Low to high
intensities are represented by dark to light gray colors. The bottom 16 spectra
refer to disease spectra, whereas the top 12 rows refer to control spectra.

In Figures 4.1 and 4.2, control and disease spectra peak intensities generally

differ, and some peaks are found in one treatment group, but not the other. For

this effort (and comparable expression proteomic studies), the primary question of

interest is whether or not these differences relate significantly to disease status or

result merely from measurement error and/or subject variation. In the following

sections, we address the research question with an approach that models all spectra

with measurement uncertainty and protein signal parameters.

4.3 Likelihood

For reasons described in (Dass 2001, p.g. 74; House et al. 2006b; Morris et al.

2005), we model mass spectra on the time, rather than mass, scale. Thus, let

79



Yit = Y ob

it + s where s is a small positive constant and Y ob

it represents the mean

intensity, as plotted in Figure 4.1, for person i at time t where i ∈ [1, ..., n],

T0 = 32 µs, T0 = 278 µs, t ∈ [T0, T1], T1 − T0 = T , and N is the number of

observations per spectrum. Each person i has a predetermined treatment group

status di which may take one of two values, either “C” for control or “D” for

disease. Given di, the expected value for Yit is a function of data uncertainties

inherent within MALDI-TOF and true, latent protein signal.

4.3.1 Protein Signal: Adaptive Kernel Regression

We use a kernel regression approach to model the protein signal f i(t, d) for an

observed spectrum i,

f i(t, d) =
J∑

j=1

ηijk(t, τij, ωij, mij)

where the function k() specifies the shape of a single isotopic peak with parameters

τij, ωij, and mij. Based on House et al. [2006b], we set k() to a normalized Cauchy

density function

f i(t, d) =

J∑

j=1

ηijδ1(mij)
ω2

ij

π(ω2
ij + |t − τij|2)

(4.1)

and consider the unknowns, J , and 1 × J vectors τi, ωi, mi, and ηi, to be

the protein signal parameters. The signal parameters, in the context of function

estimation, represent respectively the number, location, width, area, and existence

of spectrum peaks. However, they each have biological interpretations as well.

The combination of the mark and concentration vectors 1mi=1J
ηi estimates the
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protein concentrations for person i given di; τi maps to the masses of proteins; and

ωi is a function of peak resolutions ρi [Dass, 2001, p.g. 74]. As a result, the signal

parameterization of our model will work to identify, quantify, and determine the

expression of proteins in sample i.

Typically, the quantification and precision of protein expression measurements

depend upon the spectrum resolution ρ. Hence, we incorporate ρ within our

estimate of protein signal via the width parameter ω. The parameter ω is specified

deterministically as a function of resolution that is calculated from the “full width

half mass” (FWHM) procedure [e.g Dass, 2001, p.g. 74]. The FWHM procedure

calculates resolution ρ for a a given peak by dividing its location (expected TOF)

τ by one half its width ∆τ at half the peak’s height,

ρ ≡ τ

∆τ
.

Within the context of our kernel regression, the above translates to

ηijk(τij, τij, ωij) = 0.5ηijk(τij +
∆τij

2
, τij, ωij)

= 0.5ηijk(τij +
ρij

2τij

, τij, ωij),

and given a kernel function, provides a means to solve for ωij as a function of τij

and ρj. With a Cauchy kernel function, the solution for ωij is

ωij =
( τij

2ρij

)
. (4.2)

The resolution of a spectrum offers a numerical summary of its quality. The

summary is important because the MALDI-TOF proteomic analysis technique

is extremely sensitive and will inevitably induce both random and systematic
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measurement error. The next section describes how we incorporate some of the

MALDI-TOF uncertainties into the modeled expected intensity.

4.3.2 Expected Intensity

Inconsistencies in sample preparation, laser intensity, spatial matrix-molecule co-

ordinates, and environmental variables cause positive and negative measurement

errors on both protein intensities and masses; i.e. observed spectra are vertical

and/or horizontal translated versions of true protein signal. To isolate the protein

signal from the altered data, researchers frequently use deterministic data cleaning

procedures. Our approach however, models the sources of error in the expected

intensity µi(t, d).

Similar to the SSM, we set µi(t, d) to a scaled sum of detector noise and

molecular signal,

µi(t, d) = ζi

{
Si

[
f i(t, d) + β1i(t)

]
+ (1 − Si)

}
.

where for person i, ζi, Si, and β1i(t) are scaling and background parameters.

Specifically, ζi is a scaling constant; 1−Si is between zero and one and reflects the

average proportion of each intensity measurement output from detector ringing;

and, β1i(t) is an exponentially decaying background level [Coombes et al., 2005a].

The parameter ζi vertically stretches or shrinks an estimated signal while ζiSi lifts

the signal by a constant. The parameter β1i(t) also lifts the estimated intensities,

but by a TOF-dependent quantity. Low TOFs tend to have higher intensities

than large TOFs because the initial shock of the ionizing laser causes several small

molecules to break from the matrix, “fly” quickly to the detector, and interfere

with the abundance measures of comparable size, protein molecules [Dass, 2001].
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The interference seems to decay exponentially [Coombes et al., 2005a].

We model β1i(t) within the aforementioned adaptive kernel framework by es-

timating a first-peak, an imposed peak at the first, observed TOF. Let

β1i(t) = ηi0k0(t, τ0, ωi0) =
ηi0

ωi0
exp(− 1

ωi0
|t − τ0|), (4.3)

where ηi0 represents the concentration of all matrix molecules, ωi0 is the scale

parameter for the exponential decay, τ0 = T0, and k0() is the first-peak kernel.

The difference between modeling the first-peak and an actual protein peak is the

pre-determined peak location τ0 for all spectra and the specification of kernel k0().

Rather than specify a Cauchy kernel for k0(), we set it to the exponential density

function.

Given the definitions for β1i(t) and protein signal, we may rewrite the expected

intensity, Equation 4.3, as

µi(t, d) = ζi

{
Si

[
ηijδ1(mij)k(t, τij, ωij) + ηi0k0(t, τ0, ωi0)

]
+ (1 − Si)

}
. (4.4)

All of the protein and uncertainty parameters are spectrum-specific in order to

account for the known, sensitive nature of mass spectrometry. In the following

section, we decide to model a spectrum-specific relationship between the expected

mean µi(t, d) and the variance of Yit as well.

4.3.3 Intensity Error Model

In developing the SSM, we found that an approximate linear relationship exists be-

tween the expected mean and variance of intensities, E[variance] = 1
ϕ
mean (refer

to section ). To investigate whether the steepness of the linear slope changes be-

tween spectra (Figure 4.3) we added an interaction term to the model of variance
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that multiples a factor variable, the spectrum identification number (id), and

mean. Since the interaction was significant (p−value < 0.001), we let Yit be

Gamma distributed with shape and rate parameters set respectively to ϕiµi(t, d)

and ϕi. Assuming Yit are conditionally independent, we have the following likeli-

hood distribution,

L(Y |µ, ϕ, d) =

n∏

i=0

T1∏

t=T0

Ga(Yit; µi(t, d)φi, φi, 0) (4.5)

where Ga(x; a, b, e) = ba

γ(a)
xa−1 exp(−xb)1x>e.
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Figure 4.3: From five diseased patients, the sliding means and variances per
spectrum are plotted and regressed: variance = mean + mean × id.

4.4 Prior Specification

We relate hierarchically each observed spectrum to one latent, mean spectrum;

each spectrum-specific, or stage-one parameter, is independent a priori of all

other parameters and depends upon a corresponding latent, mean parameter; e.g.

π(ζi|ζ) = f(ζ). The latent spectrum includes the expected protein signal f(t),

regardless of sub-population status, for the entire sample population as well as the
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population MALDI-TOF uncertainties, {ζ,β0(t),S}. Since the mean parameters

describe one spectrum, we may estimate them via the SSM, with one primary

difference - the incorporation of a sub-population attribute variable mj.

4.4.1 Latent Mean Spectrum

The functional form and parameter definitions of the latent spectrum µ(t) are

identical to that of an individual spectra,

µ(t) = ζ
{
S
[
f(t) + β0(t))

]
+ (1 − S)

}
, (4.6)

where f(t) represents the mean protein signal,

f(t) =

J∑

j=1

ηjk(t, τj, ωj, mj).

However, the prior for f(t) changes. The SSM specifies a joint prior distribution

on the protein parameters, J and the 1 × J vectors for peak locations τ , η, and

ρ by assuming f(t) is a random variable and generates from a Lévy random field

(Lv) prior. Specifically, a Gamma random field prior is used with shape and rate

parameters α(dt) and λ,

Γ ∼ GaF(α(dt), λ)

and assigns random measures to the space of the kernel parameters equal to the

sum of random jump heights at random locations in the [T0, T1] × R
+ plane,

Γ(dτ, dρ) =
J∑

j=1

ηjδτj
(dτ)δρj

(dρ)
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[Wolpert and Ickstadt, 1998b,a]. By expanding this plane to a hyperplane,

Γ(dτ, dρ, dm) =
J∑

j=1

ηjδτj
(dτ)δρj

(dρ)δmj
(dm)

we change the SSM to a mean spectrum model.

The additional dimension refers to sub-population(s) association and effec-

tively marks or labels each peak in the Gamma random field to be in one of

three categories: observed only in control patients (C), observed only in disease

patients (D) or shared (S) by both patient groups. We depict the incorporation

of the m−dimension (while holding resolution constant) in Figure 4.4. The mark

parameter is useful for determining the group in which each individual protein

is expressed as well as grouping the proteins to determine the latent signal for

each subpopulation. For example, all of the peaks marked by either C or S work

to summarize the control population’s expected protein signal, f(t)|mi ∈ [C, S]

(Figure 4.5).
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Figure 4.4: By marking each jump of the Gamma random field in plot a., the
latent signal indicates the treatment groups state(s) in which each protein is ex-
pressed.
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Figure 4.5: Thinning the Gamma random field displayed in Figure 4.4, results
in two latent signals, one for the control group (plot a.) and one for the disease
group (plot b.).

Provided a finite measure on m and the remaining kernel parameters, the Lévy

measure for the three dimensional Gamma random field is

ν(dη, dτ, dρ, dm) = 1η>0αη−1e−ηλdηπ(dτ, dρ, dm)

which satisfies,

∫

R

(1 ∧ |η|)ν(η) < ∞. (4.7)

However, ν(dη, dτ, dρ, dm) is not a finite measure- without constraints, the number

of jumps in a field will be infinite while still meeting the bound stated in Equation

4.7. However, in constraining η to be greater than a predetermined ε, the Lévy

measure is approximated as

νε(dη, dτ, dρ, dm) = 1η>εαη−1e−ηλdηπ(dτ, dρ, dm), (4.8)

and the expected value of J becomes finite.
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Given the approximate Lévy measure for a Gamma random field, the peak

parameter prior distributions follow naturally. Given J , Equation 4.8 presents a

factorisable prior implying that individual peak concentrations ηj is proportional

to

π(ηj|α, λ) ∝ 1ηj>εη
−1
j eληj (4.9)

= Ga(0, λ, ε), (4.10)

(Ga(a, b, ε) = ba/Γ(a)xa−1 exp(−bx)1x>ε) and independent a priori from the pa-

rameters τ , ρ, m. For τ , we do not use prior information concerning expected

proteins within a sample, thus we let each τj be uniform over the interval [T0, T1],

π(τj) = 1[T0,T1](t),

where T1−T0 = T . For peak resolutions ρj, we suggest an informative, LogNormal

prior based on an overall estimate of spectrum resolution, %.

Typically, one or a small number of resolutions are reported per spectrum to

reflect the quality of the data. However, due to the sensitive nature of MALDI-

TOF, individual peak resolutions will deviate slightly from the reported value

[Coombes et al., 2005a]. Hence, we assume a conjugate LogNormal hierarchal

model, where the individual peak resolutions have approximately 0.95 prior mass

within ±10% of the estimated spectrum resolution, the variance for the overall

spectrum resolution scales according to the n, and %µ is based on preliminary data

investigations

ρj ∼ LogNo(log(%), (.05)2)

% ∼ LogNo(log(%µ), n(.05)2)
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We let %µ depend upon the size of the molecules, and specify two values %
(M)
µ and

%
(L)
µ for medium and large size molecules

%µ =

{
%

(M)
µ = 500, if m/z ∈ [5000, 25000)

%
(L)
µ = 100, if m/z ∈ [25000,∞)

The remaining parameter in the population protein signal for which we elicit

a prior distribution is J . A Gamma random field (or any pure jump process) is

a generalized version of a multi-dimensional Poission process. In our application,

the elicited Gamma process is comparable to jumps generating from a Poission

point process with intensity αTE1(ελ) because

∫∫∫
νε(dη, dτ, dρ, dm) = 1η>εαη−1e−ηλdηπ(dτ, dρ, dm) = αTE1(ελ)

where E1() is the exponential integral function [Abramowitz and Stegun, 1964, p. 228].

However, we elicit a Gamma prior distribution for α

α ∼ Ga(αa, αb)

which results in a Negative Binomial marginal prior distribution for J ,

J |αa, αb, λ ∼ NB
(
αa,

αb

TE1(ελ) + αb

)
,

with expected value,

E[J |αa, αb, λ] =
αaTE1(ελ)

αb

. (4.11)

The value for ε is considered a minimum detection level, where 100(ε/E[η]) rep-

resents a minimum percent concentration level of the average signal.
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To complete the latent mean spectrum model in Equation 4.6, we elicit prior

distributions for the population parameters: ζ, S and β0(t). For ζ, a LogNormal

prior is specified so that its location parameter equals the mean of all spectra and

the geometric standard deviation approximately equals to 0.10;

ζ ∼ LN(log
(
log(µζ), σ

2
ζ

)
,

(LN(µ, σ) = 1/(xσ
√

2π) exp{−(log(x) − µ)2/(2σ2)}) where, µζ =
P

i Y i

n
and σζ =

0.10µζ. For S and β0(t), the distributions are similar to the SSM in House et al.

[2006b],

S ∼ Be(Sa, Sb), s.t. E[S] = .23 and V[S] = 0.13

β0(t) = η0k0(t, τ0, ω0)

η0 ∼ Ga(0, λ0, ε)

ω0 ∼ LN(3.012, 0.252),

(Be(a, b) = Γ(a + b)/(Γ(a)Γ(b))xa−1(1 − x)b−1) with the exception of ω0. Prelim-

inary exponential model fits from House et al. [2006a] suggest that ω0 should be

centered around 11.5. Thus we place 0.95 prior mass for ω0 between approximately

7 and 19.

Depending on the latent mean spectrum parameters, the first stage priors are

centered accordingly and have either Normal or LogNormal distributions. The

next section will summarize the hyper-parameter specifications for the first stage

priors and conclude with the priors of the remaining parameters.
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4.4.2 Remaining Prior Distributions

Two parameters in the likelihood are deterministic from the mean spectrum. The

first, as previously discussed, is ωij which is a function of τij and ρj; the second,

is mij which equals 1 when mj indicates that peak j is either shared or in disease

group di,

mij|mj, di = δ[S,di](mj).

With the exception of the two deterministic parameters, we elicit the remaining

prior distributions while considering expert opinion, preliminary analyses using

SSM, and sample size.

The spectrum-specific parameters for peak location and concentration exist

only when mij = 1, thus for ηij and τij point-mass priors are specified,

τij|τj, mij ∼ δ1(mij)LN(log(τj), 0.0022)

ηij|ηj, mij ∼ δ1(mij)1ηij>εLN(log(ηj), (0.11)2).

For τij|τj, mij = 1 we elicit a LogNormal prior with σ = 0.002 because expert

opinion suggests that a peak location may shift among spectra by approximately

0.15−0.30% its mass [Campa et al., 2003a]. For ηij|ηj, mij = 1, we specify a prior

distribution with the same support as ηj and determine the scale hyperparameter

from preliminary SSM analyses. We implemented the SSM for all 28 spectra

from one fraction (averaged across replicates) and store the model sampled with

highest posterior probability. Per maximum probability model i, i ∈ [1, ..., 28],

the mean ηi and standard deviation si of peak concentrations was calculated and

plotted in Figure 4.6 while noting disease state di. From the regression results of

si = ηi + di + ηi × di, we learn that d and the interaction term are insignificant.

Thus, in removing those terms, E[si] = 0.11ηi or that that the geometric standard
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Figure 4.6: Mean and standard deviations for posterior mode estimates of pro-
tein concentration from SSM model using data from fraction 5 described in Section
4.2. The SSM analyzed spectra from both the control (C) and disease (D) sub-
-populations.

deviation is approximately .11. Thus, we set the scale parameter for the truncated

LogNormal prior distribution of ηi to 0.112.

From the same SSM analyses, we estimate the scale parameter for ηi0. We

set the scale parameter of a LogNormal prior to the standard deviation of the

posterior mode estimates for the first peak concentrations,

ηi0 ∼ LN(η0, 0.3).

Normal and LogNormal prior distributions are also assigned to the remaining

spectrum specific MALDI-TOF uncertainty parameters,

ζi|ζ ∼ LN(log(ζ), 0.52) (4.12)

Si|S ∼ No(S, 0.013/n)

ωi0 ∼ LN(ω0, 0.252/n).
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With the exception of ζ, the variance hyperparameters in Equation 4.12 differ from

the respective mean-spectrum, parameter variances by a factor of 1/n. Although,

the mean parameter prior distributions are not necessarily conjugate to Normal

and LogNormal distributions, they differ in scale by approximately n times which

is similar to specifying to g-priors where g = n [Zellner, 1986; Kass and Wasser-

man, 1995]. For the same reason, the prior distributions for {ϕi, ϕ} and the third

stage parameter % depends on n

ϕi|ϕ ∼ No(ϕ, 0.52/n)

ϕ ∼ Ga(0.5, 1).

The conclude this section, we specify a prior distribution for [πC , πD, πS]′. We use

a conjugate Dirichlet prior to mj,

[πC , πD, πS]′ ∼ Di(1, 1, 1).

Table 4.1 provides a comprehensive listing of all prior specifications. The

hierarchical approach allows both spectra alignment and the identification of po-

tentially classifying proteins to result naturally from estimating the model pa-

rameters. All extracted features from individual spectra τi align with the mean

spectrum features τ and the marked protein concentrations indicate differences in

sub-population proteomic profiles. Using the differences and Bayes rule, we may

classify future patients from the posterior analysis of the model.

4.5 Posterior Analysis

We implement a reversible jump Markov chain Monte Carlo (RJMCMC) algorithm

[Green, 1995] to estimate the posterior distributions for the collection of all model
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parameters, θ. The RJMCMC algorithm is identical to that explained in House

et al. [2006b] with the addition of either Metropolis-Hasting (M-H) or Gibbs steps

to sample from the full conditional distributions of the spectrum specific and the

sub-population indicator variables.

For cross validation, we use subset of the data Yi|di for i ∈ [1, ..., n] to estimate

the model parameters so that we may predict the sub-population status d∗
i of the

remaining profiles Y ∗

i
for i ∈ 1, .., n∗]. The predictions are based on the posterior

density, P[d∗
i |Y ∗

i
, Y, d], which we obtain from the stochastic integration,

π(Y ∗

i
, |d∗

i = D, Y , d) =

∫∫
π(Y ∗

i
, θ∗

i
, θ|d∗

i = D, Y , d)dθ∗dθ

and applying Bayes Rule,

P[d∗
i |Y ∗

i
, Y, d] =

π(Y ∗
i |d∗

i = D, Y , d)π(d∗
i = D|Y , d)∑

s∈C,D π(Y ∗
i |d∗

i = s, Y , d)π(d∗
i = s|Y , d)

(4.13)

[Gilks et al., 2000]. Equation 4.13 simplifies to

P[d∗
i |Y ∗

i
, Y, d] =

π(Y ∗
i |d∗

i = D, Y , d)∑
s∈C,D π(Y ∗

i |d∗
i = s, Y , d)

because d∗
i is independent of {Y , d} (π(d∗

i = D|Y , d) = π(d∗
i = D)) and we set

π(d∗
i = D) to equal 0.5.

4.6 Simulation Data

Before applying our approach to real data, we analyze in this section three sim-

ulated datasets that contain sub-populations with varying degrees of distinction;

datasets DS0 DS30 and DS100 include a total of 35 peaks with disease popula-

tions that share either 0%, 30%, or 100% of the peaks in the control populations.
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Given the peak locations and sub-population assignments, each of the simulated

datasets were generated with the following population parameters: T0 = 32 µs,

T1 = 258 µs, l = 10, n0 = 3, n1 = 3, M = 35, ζ = 13, ϕ = 0.5, S = .85, αa = 1,

αb = .02, % = 56, η = 7 × 135, η0 = 97, and ω0 = 11.5. We also generate n∗ = 6

spectra for prediction.

Similar to House et al. [2006b], we started the RJMCMC chain with peaks in

informative locations, assumed initially that the expected value for E[J ]=50, and

used only one overall resolution parameter, %
(M)
µ = %

(L)
µ = 50. We also changed

the scaling parameters for ηij and ηi0 to 0.25 and 0.025 respectively in order to

achieve acceptable M-H acceptance rates. For the last 5000 of 120000 iterations,

we summarize the model with the highest posterior probability (HP) and calculate

the model average (∇). The model average peaks locations are the critical points

where first derivative of the model average equals zero and the second derivative is

less than zero. The model fits resulted in high (greater then 0.80) True Discovery

Rates (TDR) of the known peaks and spectra: a true-peak at location τtrue is

discovered when there exists at least one mean spectrum, estimated peak τ̂j within

the range τtrue ± 0.003τtrue. Table 4.2 summarizes by dataset the TDR and False

Discovery Rates (FDR).

The simulation exercise included the prediction of 6 spectra: 2 control, 2 with

the same percent of shared peaks as the modeled data, and 2 from the disease

population that either shared 5%, 60%, or 100% of the control peaks. For 100%

of the cases, the spectra were accurately classified.Additionally, we see successful

separation of control only, disease only, and shared signal in Figures 4.8–4.12;

these figures display, per dataset, the model average estimates of the protein signal

when mj = C, mj = D, and mj = S. In conjunction with the figures, Table 4.3

95



documents the number of estimated peak and the number of peaks we should see

per figure. Even though not all of the disease-only peaks seem to have been found

in datasets DS30 and DS100 we see from Table 4.2 that the true discovery rates are

adequately high. Thus, the loss of some peak identification is due to the effects

of model averaging.

4.7 Real Data Application

The proposed model is applied to the real data mentioned in Section 4.2. Twenty-

two (n0 = 9 and n1 = 13) of the 28 spectra were fit by the multi-spectra model so

that we could make predictions with the remaining six. We started the RJMCMC

algorithm with informative peak locations provided by the EM algorithm from

House et al. [2006c]. Table 4.4 and Figures 4.11–4.13 summarize the last 5000

draws of the RJMCMC.

Table 4.4 provides the posterior modes for the MALDI-TOF uncertainty pa-

rameters, resolution, and the number of peaks: approximately 0.80 of an observed

intensity is generated from the protein signal; the mean-variance relationship is

0.1; and the model size JPM (posterior mode) is 97. Additionally, Table 4.4 in-

cludes the number of peaks within the model of the highest posterior probability

(JHP) and the model average (J∇) which are 98 and 78 respectively. Figure 4.11

displays the model average fit for the same data displayed in section Section 4.2.

Figure 4.12 displays the latent protein signal, decomposed using the three marks,

that underlies Figure 4.11; and Table 4.5 provides the posterior probabilities for
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Figure 4.7: Model Average Fit for one simulated dataset per sub-population
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Figure 4.8: Model Average latent signal for dataset DS0 (0%) that was observed
either in control spectra only: mj = C, disease spectra only: mj = D, or both:
mj = S
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Figure 4.9: Model Average latent signal for dataset DS30 (30%) that was ob-
served either in control spectra only: mj = C, disease spectra only: mj = D, or
both: mj = S
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Figure 4.10: Model Average latent signal for dataset DS100 (100%) that was
observed either in control spectra only: mj = C, disease spectra only: mj = D,
or both:: mj = S
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Figure 4.11: Column a. represents model average results for three example
spectra from the control group. Column b. represents model average results for
three example spectra from the disease group.
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mj = C,mj = D, and mj = S. Most of the extracted features are shared by both

treatment groups however, there are several peaks solely expressed in the disease

and control populations, specifically within the region between 10 and 20 kDa.
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Figure 4.12: Model Average latent signal for real data that was observed either
in control spectra only: mj = C, disease spectra only: mj = D, or both: mj = S
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To look closely at how the latent mean-spectrum signal underlies the data, Fig-

ure 4.13 displays two disease-only peaks which occur between 10 and 20 kDs at

11,757.0 and 12,604.9 Da and one control-only peak at 17,340.9 Da. The control-

only peak clearly does not exist in the disease spectrum and depicts one form dif-

ferential protein expression: either a protein exists or does not exist within both

sub-populations. Another way protein expression may differ is via the degree of

intensity: if one peak is present in both population spectra, but on average, has

different intensity levels, then the protein is differentially expressed. Our model

estimates the latter form of differential expression by placing a second peak near

the shared peak in the population with higher intensity. The convolution of both

peaks results in a higher expected mean intensity.

Given the small differences in the populations, accurate classifications for three

control and three disease spectra are still made. Again, because of computational

restrictions, the posterior probability that each spectrum belonged to the control

population P[d∗
i = D|Y ∗

i
, Y , d] was either zero or one; P[d∗

i = D|Y ∗

i
, Y , d]=1 for

the disease spectra and P[d∗
i = D|Y ∗

i
, Y , d]=0 for the control spectra.

4.8 Discussion

Our model successfully completes the three steps necessary to analyze expres-

sion proteomic data by extracting biologically relevant information from multiple

MALDI-TOF mass spectra, assuring the extracted features from one spectrum

align with those extracted from other spectra, and classifying profiles that were

not within the training dataset. To make the classifications, the model accounts

for two forms of differential expression: 1. the existence of proteins in only one
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Figure 4.13: Top plot displays the model average, latent signal for a control
patient (µ(y, d = C)|mij = 1) and the bottom plots the model average, latent
signal for disease patients (µ(y, d = D)|mij = 1). Underlying each plot is real
data from one patients belonging to the appropriate sub-population group. Thick
rug marks are made at the peaks that differ between the two populations.

sub-population group, and 2. the expected intensity is increased in one sub-

population over the other. A significant difference in intensity can be interpreted

as differential expression after adjusting for the sample scaling and background.

We developed the model within the context of two experimental sub-populations

and without subject-specific peaks (peaks that only occur within one spectrum,

but not in others). However, by increasing the number of possible marks, the

model may account for more experimental groups and/or estimate proteins present

in one subject. For example, by including n labels Ui to signify unique within
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spectrum i, in addition to the aforementioned labels C, D, and S, a peak may

be declared as either observed in control patients, observed in disease patients,

observed in all patients, or observed only in the ith patient. The benefit of adding

Ui to the model is that the mean spectrum would identify the entire experimental

proteome and list all present proteins, regardless of their significance in making

classification. For this research however, treating subject-specific peaks as noise

was justified since the primary goal was biomarker detection.

The inclusion of additional marks is also an example of the proposed model’s

flexibility. Some model specifications may change to accommodate the needs

of datasets. For example, in some datasets, peaks may not appear symmetric

due either to the ionizing process or low resolution (protein peaks merge and

display an asymmetric, isotopic distribution). In which case, the kernel basis

function as well as the deterministic function for ωij may change to accommodate

data specific characteristics. Specifically, one would change the kernel to be a

normalized summation of two basis functions, such as a Gaussian kernel function

for the left peak tail summed with a Cauchy distribution kernel for the right peak

tail, and still model the parameters as described in this paper.
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First Stage

J |α, λ ∼ Po(αTE1(λε)

mij|d = δ[d,S](mj)

τij|τj, mij ∼ δ1(mij)LN(log(τj), 0.002)

ηij|ηj, mij ∼ δ1(mij)1ηj>εLN(log(ηj), 0.11)

ωij|τij = g(τij, ρj)
∗

ζi|ζ ∼ LN(log(ζ), 0.52)

Si|S ∼ No(S, 0.013/n)

β1i(t) = ηi0k0(t, τ0, ωi0)

ηi0 ∼ LN(log(η0), 0.3)

ωi0 ∼ LN(log(ω0), 0.252/n)

ϕi|ϕ ∼ No(ϕ, 0.52/n)

Second Stage

mj ∼ Mu(3, πC , πD, πS)

τj ∼ Un(T0, T1)

ηj ∼ Ga(0, λ, ε)

ρj|%(M), %(L)τj ∼
{

LN(log(%(M)), 0.052) if τj ∈ [5, 25]kDa
LN(log(%(L)), 0.052) if τj >25kDa

ζ ∼ LN(log
(∑

i Y i

n
, σ2

ζ

)
, s.t. V[ζ]/E[ζ] ≈ 0.102

S ∼ Be(Sa, Sb), s.t. E[S] = .23 and V[S] = 0.013

β0(t) = η0k0(t, τ0, ω0)

η0 ∼ Ga(0, λ0, ε)

ρ0 ∼ LN(0, log(11.5), 0.252)

ϕ ∼ Ga(0.5, 1)

α ∼ Ga(αa, αb)

Third Stage

%(M) ∼ LN(log(%(M)
µ ), 0.05

√
n)

%(L) ∼ LN(log(%(L)
µ ), 0.05

√
n)

[πC , πD, πS]′ ∼ Di(1, 1, 1)

Table 4.1: Hierarchical model for the modeling multiple spectra. The symbol
“∗′′ is a reminder that g() is the function provided in Equation 4.2.
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0% 30% 100%
Rate JHP J∇ JHP J∇ JHP J∇

TDR 0.94 0.86 0.97 0.80 0.86 .80
FDR 0.27 0.03 0.27 0.12 0.33 0.12

Table 4.2: Summary of true and false feature discovery rates per dataset using
the posterior model (HP) and model average (∇) estimates.

f(t) f(t)|mj = C f(t)|mj = D f(t)|mj = S
% J J∇ J J∇ J J∇ J J∇

0 35 31 17 17 18 13 0 2
30 35 32 12 14 23 16 5 6
100 35 32 0 0 18 14 17 17

Table 4.3: True J and estimated J∇ number of peaks from the model average
estimates of the mean spectrum across all marks f(t), the mean spectrum for
only control spectra f(t)|mj = C, the mean spectrum for only disease spectra
f(t)|mj = S, and the mean spectrum for shared signal f(t)|mj = S.

Parameter Mean Std. Dev

ζ 7.80 0.83
S 0.23 0.01
ϕ 9.39 0.08

%(M) 416.32 3.19
%(L) 105.20 0.98
η0 147.20 9.40
ω0 18.13 1.93
JPM 97.04 0.53
JHP 98.00 -
J∇ 78.00 -

Table 4.4: Posterior mode estimates for model parameters.
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Parameter Mean Std. Dev

πC 0.07 0.03
πD 0.14 0.03
πS 0.79 0.04

Table 4.5: Stochastic means for the parameters πC , πD, and πS, which estimate
the probabilities that mj is either C, D, or S. Notice, very little information differs
between the control and disease populations.
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Chapter 5

Discussion

5.1 Summary

The protein signal in a spectrum appears as multiple peaks with widths that

relate to the measurement resolution. Finding the peaks can be challenging since

they are among tens or hundreds of thousands spectrum data points. Chapters 2

and 3 were devoted solely to developing nonparametric Bayesian models to identify

significant peaks from individual spectra. Chapter 4 also found significant features

in spectra, but for the purpose of classifying treatment groups as well as identifying

proteins. Each of the models were based on estimating the expected intensity as

a function of measurement error parameters and a latent protein signal which was

estimated from four protein parameters, the number, location, width, and area of

peaks. Distinct differences between the approaches however, present advantages

and disadvantages.

In Chapter 2, we described a kernel regression approach to estimate protein

signal. The model included initially one protein peak at every observed m/z and

relied on parameter shrinkage or thresholding to reduce the model dimension. Pos-
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terior model parameter estimates were obtained via an EM algorithm programmed

in R. Provided the optimization packages available in R, the algorithm was fast to

implement. However, the proposed model faulted in two primary ways: 1. for the

sake of speed, we did not calculate variance estimates for the posterior parameter

distributions, and 2. the basis expansion model constrains peaks to locate only

at observed data points. The latter is particularly problematic because the true

mass of a protein may exist between measurements.

The second feature extraction model proposed in Chapter 3 avoided the pit-

falls of the previous approach, but possibly introduced others. Again, estimates

for a latent protein signal were obtained via kernel regression, but the location and

scale parameters of the kernels were adapted to the data. Thus, upon specifying a

joint prior distribution on the kernel parameters and the protein concentrations,

peaks were able to be placed any where within the mass domain of a given spec-

trum. Further, variance estimates for the model parameters were calculated from

stochastically sampling the full joint posterior distribution using RJMCMC. The

RJMCMC was considerably more difficult to program than the aforementioned

EM algorithm, and depending upon the dataset, the Markov chain took millions of

iterations to converge. However, from simulation studies in Chapter 3, we learned

that the model may find true peaks in extremely noisy situations.

Taking advantage of these benefits, the final model developed in Chapter 4

extracted significant features from multiple spectra and classified them according

to treatment group. In turn, the list of features did not include every peak seen in

each individual spectrum, but rather, identified peaks observed in several spectra.

This dissertation was the progression of three nonparametric Bayesian models,

each extending or improving the one proceeding. However, improvements and
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extensions to the presented research remain.

5.2 Future Work

Improvement or extensions to my research are grouped in the following categories:

Computational Efficiency, Prior elicitation and Model specifications, and Appli-

cations.

Computational Efficiency

First and foremost, the software developed to estimate the proposed models should

be made available for others to use. Before doing so, the code should be stream-

lined so that the speed of the current RJMCMC increases. However, large com-

putational changes to the programs developed for Chapters 3 and 4 may increase

the speed of the Markov chain as well. Three possibilities are presented below.

1. Approximate the likelihood: Calculating the likelihood distribution several

times per RJMCMC iteration is extremely time consuming. Developing

a good way to approximate the likelihood that will decrease computation

time and not effect significantly the final parameter estimates would be very

useful.

2. Parallelizing the likelihood calculation: The final model in Chapter 4, in-

creases the time needed to calculate the likelihood distribution by n, the

number of spectra. Parallelizing this calculation to n nodes in a computer

cluster however, would reduce the processing time back to that of a single

spectrum.

3. Proposal distributions: Currently the RJMCMC explores the model space

via a birth/death process; one peak is proposed to be either added, deleted,
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or updated during each iteration. To add a peak, one location is proposed

uniformly from the entire time domain, thus proposing a location near a

true peak is small. We may increase this probability by proposing peaks in

data dependent locations.

4. Tempering Scheme: In our application, feature extraction is comparable

to finding modes within a spectrum. Plentiful research exists for sampling

schemes to explore multi-modal distributions, and some of the ideas ap-

ply here, such as tempering. For example, the current RJMCMC relies on

the birth or movement of peaks in a birth/death process to find the spec-

trum modes. One way to promote movement and increase the probability

of birthing a peak in a meaningful place is to decrease the temperature of

a spectrum. This will temporarily broaden the spectrum modes to cover

more area on the x-axis and increase the probability or peaks within the

birth/death chain to find them. Increasing the temperature as the RJM-

CMC iterates will eventually allow accurate estimates for the remaining

parameters.

Prior Elicitation and Model specifications

Wasserman [1998] notes another irony of Bayesian nonparametrics in that the

methods are applied traditionally when little is known about the structure of the

data, yet “huge amounts of prior information” are necessary to search infinite

dimensional parameter spaces. Mass spectrometric data fit the paradoxical data

requirements for employing nonparametric analysis methods, and informative pri-

ors for many parameters are elicited. However, improvements can always be made

on the prior distributions with either more data or better insight into the behavior

of the parameters.
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Specifying a meaningful value for ε was challenging. Thus, possibly modeling

the Lévy process with a data determined ε is worth exploring, but care must be

taken to assure identifiability. Another option might be to assume the spectro-

metric data are generated from a mixture of two Lévy processes; one process may

model the protein signal, and the other may model the small noisy observations.

Applications

In my mind, nonparametric regression using Lévy processes is the wave of the

future. In the past, Dirichlet and Gaussian process priors were used for curve

estimation because sampling from each was easy within an MCMC framework.

However, when Wolpert and Ickstadt [1998b] introduced an easy way to sample

Lévy processes, time was the only factor keeping it from entering the nonpara-

metric literature. I look forward to using models similar to what was developed

here in other applications.
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Dey et al. [1998], 227–242.

Wolpert, R. L. and Ickstadt, K. (2004). Reflecting uncertainty in inverse prob-
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