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Abstract

The advent and proliferation of “Big Data” has led to time efficiency issues of

classical algorithms. One way of approaching this issue is by developing probabilistic

algorithms that terminate more quickly than comparable deterministic ones. In this

paper, we implemented probabilistic algorithms for computing the singular value de-

composition and inverse of a matrix in R and C++. Further, we measured the speed

and accuracy of these implementations against comparable, available deterministic al-

gorithms. In order to keep all operations in memory, we developed “slice” matrix

multiplication algorithm that progressively computed the product of two matrices. Fi-

nally, we apply these methods for fitting thin plate spline models for detecting land

mines.

1 Introduction

A major focus of the analysis of algorithms is determining algorithmic efficiency. Specifically,

one asks how long it takes for an algorithm to run, usually considering the average case.

The length of time it takes for an algorithm to run is called its runtime, but it is often more

important to understand its long term or asymptotic runtime behavior. First, to determine

the simple runtime of an algorithm, one counts the number of scalar operations, such as

addition, multiplication, and comparison, needed to perform the algorithm for a given input

size. As an example, given two square matrices of dimension n2, it takes 2n3 − n2 scalar

operations to perform classic matrix multiplication. Consider the following multiplication

of two 3× 3 matrices:

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 b11 b12 b13
b21 b22 b23
b31 b32 b33

 =

 a11 ∗ b11 + a12 ∗ b21 + a13 ∗ b31 ... ...

... ... ...

... ... ...


In order to calculate each element of the product matrix, we must calculate three mul-

tiplications and two additions, which gives five scalar operations. Because there are nine

elements of the product matrix, it takes 45 scalar operations to perform the complete matrix

multiplication. For n = 3, the runtime function for matrix multiplication above agrees, as

2 ∗ 33 − 32 = 45.

To represent the asymptotic behavior of an algorithm, we use Big-O notation. We can

consider two functions: f(x) and g(x). Then, f(x) = O(g(x)) as x→∞ if and only if there

exist constants M and x0 such that |f(x)| ≤M |g(x)| for all x ≥ x0. This means that after a

certain value of f, f is bounded by g. Consider again the runtime for matrix multiplication,
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which we can write as f(x) = 2x3 − x2. It is clear that f is bounded by g(x) = 2x3 for

at least all x ≥ 1. Thus, if we consider M = 2, then we can say that f(x) = O(g(x)).

That is, asymptotically, the runtime of matrix multiplication grows like x3. Generally, if

f(x) =
∑
i cifi(x), where the cis are coefficients, then O(f(x)) will be the function fk(x)

which grows fastest. If f(x) is a polynomial, then this implies that O(f(x)) will be the

highest degree term of f(x).

An asymptotic growth rate on the scale of O(n3) poses significant issues to the efficiency

of many algorithms. Multiplying two square matrices of dimension 1002 takes about one

million floating point (which are mostly the same as scalar) operations. For two matrices

of size 1, 000, 0002, it takes about one quintillion or one billion billion operations. An Intel

Core i7 processor, one of the most powerful, commercial processors, can perform about 110

billion floating point operations in a second (110 gigaflops). Thus, it would take such a

processor about 10 million seconds to compute the product of two 1, 000, 0002 matrices,

which is about 116 days.

“Big Data”, which often considers data sets on the scales of those discussed or larger,

can be defined as data big enough that it won’t fit easily on a single machine (generally 1TB

or larger). The advent and proliferation of “big data” has made using classic algorithms

prohibitively expensive in regards to the time it takes for them to run.

This is especially important in the field of statistics and statistical programming. Matrix

multiplication and other matrix operations, like matrix inversion and the singular value

decomposition, which all have runtime complexity of O(n3) as well, are used extensively

in statistical programming. For example, matrix inversion and multiplication are integral

to performing ordinary least squares regression. Given a vector response y and matrix

predictors X such that y = Xβ + ε, where β is the vector of regression coefficients and

ε is an error term, we find that β̂ = (XTX)−1XT y minimizes the the sum of the squared

residuals between the regression line and the actual data. If our data set is exceedingly large,

such as on the scale considered before, it can take a prohibitively long time to perform such

an operation. Other algorithms are even more complicated and computationally expensive,

exacerbating the issue with utilizing them on large data sets.

Thus, it is worthwhile to explore new algorithms that can perform such operations more

efficiently. For example, Strassen’s Algorithm and the Coppersmith-Winograd Algorithm

can perform matrix multiplication in about O(n2.81) and O(n2.37) times respectively. How-

ever, there are drawbacks to using such algorithms, including the presence large coefficients

hidden by Big-O notation that make these algorithms inefficient for small values of n and

issues with regard to the numerical stability of these algorithms when implemented us-

ing limited precision floating point data. This paper will explore the use of probabilistic

algorithms to derive efficiency gains in performing matrix operations.

At this point, all the algorithms discussed have been deterministic algorithms: ones

that produce the same output for a given input every time they are run. A probabilistic

algorithm is one that uses randomness in one or more of its steps. Thus, for a given input,

the output of the algorithm will not always be the same. This paper will explore the utility of

using probabilistic algorithms to perform the singular value decomposition and inversion of a

matrix. We will consider the efficiency gains provided by using probabilistic algorithms, their

stability regarding the accuracy of their outputs compared to the deterministic solutions,

and applications to fitting thin-plate spline models.
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2 Probabilistic Singular Value Decomposition

Given a real or complex m× n matrix A, there exists a factorization A = UΣV ∗, such that

U is m×m and is unitary, Σ is an m×n diagonal matrix of the singular values of A, and V ∗

is n×n and unitary as well. This is referred to as the Singular Value Decomposition (SVD)

of A. Typical uses of the SVD include computing pseudo-inverses of matrices in order

to solve systems of linear equations, performing total least squares minimization, finding

the range, rank, and nulls space of A, and constructing low-rank matrix approximations.

Common ways of calculating the SVD of a matrix include (1) the classical two-step method

of converting the matrix to a bidiagonal matrix using Householder reflections and applying

a variant of the QR decomposition and (2) using an iterative low rank algorithmic approach.

The utility of being able to readily construct the SVD of a matrix is clear; however,

for an m× n matrix, the runtime for constructing the SVD is O(m2n+mn2 + n3), which,

for a square n× n matrix, would be O(n3), as mentioned before. Thus, for large matrices,

performing singular value decompositions can be prohibitively expensive in terms of time.

An alternative to using the deterministic SVD calculation algorithm is to use a proba-

bilistic algorithm, as presented in Halko, et al. (2010). If we have an m×n matrix A and a

target number of singular vectors k, we can construct an approximate rank-k factorization

UΣV ∗ of A. There are two stages to this algorithm. The first is to construct a matrix Q

with a range that approximates the range of A. This means that A ≈ QQ∗A The second

stage is to use this matrix Q to compute the SVD of A.

The algorithm is a follows:

Input: Matrix A ∈Mn×n, number of target singular vectors k, oversampling parameter

l, and iteration parameter q

1. Stage 1

(a) Generate a n× (k + l) Gaussian matrix Ω

(b) Compute Y0 = AΩ

(c) Compute the QR factorization of Y0 = Q0R0

(d) for i = 1, 2, ..., q

i. Compute Ỹi = A∗Qi−1 and its QR decomposition Ỹi = Q̃iR̃i

ii. Compute Yi = AQ̃i and its QR decomposition Yi = QiRi

(e) Q = Qq

2. Stage 2

(a) Compute B = QA

(b) Construct the SVD of B: B = ŨΣV ∗

(c) U = QŨ

(d) return (U,Σ, V ∗)

We now have an approximate SVD of A, UΣV ∗. The step that makes this a probabilistic

algorithm comes at the very beginning when we draw the random Gaussian matrix Ω. The

iterative process in stage 1 creates matrix Q, which is an approximate basis of matrix A.

At the same time, Q is created so that it has few columns; that is, so that it has low rank.

Because Q has low rank, when we construct B in stage 2, it is efficient to compute its SVD

using classical methods. Thus, it is the construction and utilization of the low rank basis

matrix Q that makes this probabilistic algorithm potentially useful.
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Before determining if an algorithm is more efficient than standard algorithms for matrices

of large size in practice, we have to better understand the accuracy of the algorithm. That

is, we would like to know about its average error, specifically E||A−QQ∗A||. Halko, et al.

(2010) provide the following average error bound for the probabilistic SVD algorithm:

E||A−QQ∗A|| ≤ (1 +
4(k + l)1/2

l − 1
× n1/2)σk+1

All variables here are the same as defined previously and σk+1 is the k+ 1 singular value

of A. Additionally, the optimal error is given as:

||A−QQ∗A|| ≈ σk+1

Thus, the expected error of the probabilistic algorithm lies within a polynomial of the

optimal error. Further, by Gu and Eisenstat (1996), this error bound is actually sharper

than that of comparable deterministic algorithms, like rank-revealing QR. Thus, not only

does this probabilistic algorithm produce matrices Q that consistently approximate the basis

of A, it permits less error than competitive deterministic algorithms, signaling that any error

caused by the stochastic sampling will not be greater than error allowable within machine

precision.

To determine the effectiveness of this algorithm in practice, we first needed to generate

matrices on which to apply the algorithm. First, we generated lists of 5000 point coordinates

with differing properties. One list was generated so that the points were equally spaced out

in a grid. The other list was generated by drawing the x and y coordinates of the point

from standard random uniform distributions. From these lists of coordinates, we generated

covariance matrices with short, medium, and long range dependence structure by defining

an exponential covariance function exp(−dr ) where d is the distance between the points and

r is a chosen radius. An important feature of these different matrices is the differing rates

at which their eigenvalues decay. The eigenvalues decay most quickly for the covariance

matrix with long range dependence structure and least quickly for the covariance matrix

with short range dependence structure.

We then applied the probabilistic SVD algorithm to these covariance matrices. We

varied: the number of target singular vectors, so that k ∈ {5, 10, 15, 20, 100, 200, 5000}; the

number of QR iterations, so that q ∈ {0, 1, 2, 3}; and the oversampling parameter, so that

l ∈ {5, k}. We recorded the time taken for the algorithm to run and the error of the returned

product of the algorithm, which was found by taking the Frobenius or point-wise norm of

the given covariance matrix and the probabilistic low rank SVD of the matrix. As a basis

of comparison, we also recorded the performance of a deterministic, iterative algorithm that

is also used to approximate the SVD of a matrix.

The results make it clear that setting q to above 1 was almost never necessary as the error

improvement wouldn’t make up for the greater amount of time needed for the algorithm to

run. Additionally, setting the over-sampling parameter l to the lower value of 5 was usually

better than setting it to k as the higher setting didn’t meaningfully improve the errors, while

almost always increasing runtimes.

More important, though, was coming to understand how the probabilistic algorithm

compared to the iterative one when the number of target singular vectors, k, increased.

Consider the following graphs that show the time and error of the probabilistic algorithm,

for select values of q and l, and the iterative algorithm for all values of k for the short,

medium, and long covariance matrices:

In all three graphs, k increases from the top-left to the bottom-right, such that the runs

with the most error and least time had the fewest number of target singular vectors and
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Figure 1: Probabilistic vs Iterative SVD Results

those with the least error and most time has the most number of target singular vectors. It

is immediately clear that in the case of all three covariance matrices, when k is small, the

iterative algorithm outperforms the probabilistic ones in regards to time and error for any

choice of parameters. However, for small k, even though the time taken for the algorithms

to run is small, the error produced by the algorithms can be sufficiently large so as to

make the results unusable for application. In practice, a larger number of target singular

vectors would be chosen so as to produce as accurate a result as possible, while improving

or producing an equivalent run time.

For the short and medium covariance matrices, the probabilistic algorithm with set

parameters of q = 1 and l = 5 outperforms all other algorithms when the number of

singular target vectors is maximized, in that it produces a minimal error, while also not

requiring an exorbitant amount of time to run the algorithm compared other options that

take less time, but produce substantially more error. In the case of the long covariance

matrix, the iterative algorithm almost always outperforms the probabilistic ones, though

the probabilistic algorithm with q = 0 and l = 5 is competitive when k is maximized.

One important point to emphasize is that the preceding graphs are not all monotonically

decreasing. The previous tests were performed multiple times and, on average, the results

were monotonically decreasing; however, the aberrations that are present exemplify the

variance observed in the run times. These aberrations can be caused by factors intrinsic to

the algorithms, such as generated random matrices that are in some way pathological, or

extrinsic, like using a shared machine to perform the run.

Our first implementation was developed in R. We later implemented this algorithm in

C++ so as to try to improve its performance. The time versus error results for the R and

C++ implementations are shown in the graphs below:
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Figure 2: Time vs Error for R Implementation

Figure 3: Time vs Error for C++ Implementation

As we can see by comparing these figures, the C++ implementation performed about

the same as the R implementation regarding error, which was expected, as well as time,

which was unexpected. Specifically and counterintuitively, the C++ implementation was

about 0.85 times as fast as the R implementation, while having about the average amount of

error. This is likely due to the rate limiting steps for both implementations depending on the

low level linear algebra libraries lapack and blas used for the heavy lifting. The slowdown

in the C++ implementation is likely due to the overhead of translating and copying R’s

matrix objects into a native C++ data structure. Thus, while useful in exercise, the C++

implementation did not yield any practical gains.
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3 Probabilistic Matrix Inverse

Given a square matrix A, A−1 is said to be the inverse of A if AA−1 = A−1A = I, where I is

the identity matrix. Matrix inversions are found throughout statistical analysis with some

examples being computing least square solutions to regression problems and determining

posteriors for multivariate distributions in Bayesian analyses. There are a number of ways

to compute the inverse of a square matrix. The classical way to do so is to use Gauss-

Jordan elimination. Other common methods to find the inverse of a matrix are to use the

LU decomposition, QR decomposition, and Cholesky decomposition.

Another means to finding the inverse of a matrix is to utilize the eigendecomposition of

the matrix. Consider a square matrix A of dimension N ×N that is full rank. We can find

matrices Q and Λ, such that A = QΛQ−1, such that the Q is N × N and its ith column

is the ith eigenvector of A and that Λ is the diagonal matrix of the eigenvalues of A. One

can determine the eigenvectors and eigenvalues of A by solving Av = λv, where v is an

eigenvector of A and λ is an eigenvalue of A. The eigendecomposition of a matrix has the

useful property that A−1 = QΛ−1Q−1. Thus given the eigendecomposition of a matrix,

we need only find the inverse of its diagonal eigenvalue matrix to compute the inverse of

the matrix in question. This too is simple as, [Λ−1]ii = 1
λi

. That is, we only need to take

the reciprocal of each element of Λ to find its inverse and, thus, to find the inverse of A.

Additionally, for a symmetric matrix A, Q will be orthogonal, so Q−1 = QT . This finally

gives A−1 = QΛ−1QT .

Like the SVD, it is clear that finding the inverse of a matrix is useful in statistical

computing. However, also like the SVD, computing the inverse of a matrix using classical

algorithms, including using Gauss-Jordan elimination and finding the eigendecomposition, is

inefficient as it is O(n3) for matrices of dimension n×n. While there have been developments

that have improved on the time complexity of matrix inversion, the remaining inefficiency of

these algorithms (they are all less efficient than O(n2)) provides the opportunity to develop

a probabilistic algorithm for finding the inverse of a matrix, similar to how one was found

to determine the SVD of a matrix.

The probabilistic matrix inverse algorithm is also given by Halko, et al. (2010) and is

almost identical to the one given for the probabilistic SVD:

Input: Matrix A ∈Mn×n, number of target singular vectors k, oversampling parameter

l, and iteration parameter q

1. Stage 1

(a) Generate a n× (k + l) Gaussian matrix Ω

(b) Compute Y0 = AΩ

(c) Compute the QR factorization of Y0 = Q0R0

(d) for i = 1, 2, ..., q

i. Compute Ỹi = A∗Qi−1 and its QR decomposition Ỹi = Q̃iR̃i

ii. Compute Yi = AQ̃i and its QR decomposition Yi = QiRi

(e) Q = Qq

2. Stage 2

(a) Compute B = QTAQ

(b) Construct the eigendecomposition of B: B = V ΛV ∗, where V is the matrix of

B′s eigenvectors and Λ is the diagonal matrix of its eigenvalues
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(c) Compute U = QV

(d) return (U,Λ) such that A ≈ UΛUT

As with the probabilistic SVD algorithm, the probabilistic matrix inversion algorithm

was implemented in R and C++ and was explored using various values of k, l, and q to find

the inverse of the short, medium, and long range covariance matrices as inputs. The graphs

below show the results of the R and C++ implementations:

Figure 4: Time vs Error for R Implementation

Figure 5: Time vs Error for C++ Implementation

While the graphs look similar, it is important to notice that the x-axis scales for the

two sets of graphs are different. Specifically, the C++ implementation yielded a mean-

ingful speed up in runtime that we did not see in the SVD example. On average, the

C++ implementation of the matrix inversion algorithm was 8.73 times faster than the R

implementation, with almost exactly the same error on average.
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The probabilistic algorithm was also compared to deterministic matrix inverse algo-

rithms, though, unlike the comparison made with the SVD algorithms, the latter algorithms

were not iterative. The natural first deterministic algorithm to test was using the Cholesky

Decomposition (A = LL∗ where L is is the lower triangular of A and L∗ is its inverse). The

runtime for this implementation was 2.538 seconds with negligible error, which means that

it performed better, both time and error-wise, than the probabilistic algorithms. However,

the downside of the Cholesky Decomposition is that it can only be made on Hermitian,

positive definite matrices. This includes all correlation and covariance matrices (the latter

of which are our test inputs), but excludes many other classes of matrices, including some

matrices that will be considered later. Thus, while it exhibits the best performance, its

specificity makes its usability limited compared to the probabilistic algorithm.

Other common algorithms used to compute inverse matrices are the Moore-Penrose

Pseudo-Inverse, QR decomposition, and LU decomposition. For the relatively small co-

variance matrices considered, these inverses were only slightly slower than the probabilistic

algorithm, but were much better performers in terms of error. However, as we consider ma-

trices on the scale of 10000×10000 and larger, the error-performance between these methods

become more similar, while the runtime differences between these deterministic algorithms

and the probabilistic algorithm continue to increase in favor of the latter. The reason for this

divergence is that the runtime of the deterministic algorithms are O(n3) (this is also true

for the Cholesky decomposition, but its hidden coefficients are much smaller than the other

algorithms’), while the runtime for the probabilistic algorithm is O(n2log(k)). Thus, the

deterministic algorithms’ runtimes will increase at a much faster rate than the probabilistic

algorithm, even as the probabilistic algorithm becomes more accurate.

4 Slice Matrix Multiplication

An issue encountered while scaling up the previous algorithms was how to store and read

in the actual data used in the algorithms. Generally, data is stored in two places in the

computer: on the hard disk and in memory. Much more data can be held on the disk than

in memory, usually on the scale of terabytes versus gigabytes, which is a difference of about

three orders of magnitude. On the other hand, data can be accessed much more quickly from

memory than from the disk. Data, as floating point values, can be sequentially accessed

from memory about six times faster than from disk, while the difference is about 100,000

times if the data access is random (Jacobs, 2009). As our data sets can be exceedingly large,

determining ways to efficiently use memory as opposed to disk is increasingly important in

maintaining useful algorithms.

Further, after accessing data, there is the issue of actually operating on the data that

was accessed. When discussing how much memory is needed to perform an operation or

algorithm, we consider the space complexity of the algorithm. While Big-O notation was

used to describe the computational efficiency (time complexity) of an algorithm, we will use

Big-Θ notation to describe the space complexity of an algorithm. Given functions f and g,

we say that f(n) ∈ Θ(g(n)) if there exists n0 such that for all n > n0 there exist k1, k2 such

that k1g(n) ≤ f(n) ≤ k2g(n). That is, f is asymptotically bounded above and below by g.

This is similar to Big-O notation, except that that constants for the above and below bound

can be different. The space complexity of both matrix multiplication and matrix inversion,

for matrices of size n × n, is Θ(n2). Thus, even if some “big data sets” could be read to

memory, it could be unfeasible use them in algorithms while still working in memory.

From this point on, rather than considering square matrices in general, we will only con-

sider distance and radial basis function matrices. First, consider a list of two-dimensional
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coordinates that is recorded in an n × 2 matrix, called the location matrix. From this, a

distance matrix can be constructed in the following way: take the coordinates from rows

i and j from the location matrix and find the Euclidean distance between these locations.

This distance will be the [i, j] entry of the distance matrix. This can be done with all

pairs of locations to fill out the entire distance matrix. Because the entries of these ma-

trices are determined using the euclidean distance (a metric), they are symmetric because

metrics are symmetric and that their diagonals are zero for all entries because metrics are

positive-definite. From a given distance matrix, D, we can construct a matrix of radial

basis functions, K, by: K = D2log(D), where all operations are done element wise. For

further clarification, a radial basis function is one whose value only depends on the dis-

tance from the origin (i.e. f(x) = f(||x||)). In this case, the specific radial basis functions

being used are thin plate splines (TPS), which are a special type of polyharmonic splines.

Sums of radial basis functions are often used in statistics in function approximation, such

as kernel smoothing techniques, and in machine learning algorithms, such as support vector

machines. In the context of the probabilistic algorithms described above, these matrices

will act as inputs.

It is clear that, if given a sufficiently long list of coordinates, the respective distance

matrix will become increasingly large, to the point that it cannot be wholly stored in memory.

Further, even if they can be stored in memory, there is no guarantee that there will remain

enough space in memory to perform matrix operations with them. In both algorithms

described above, the input matrix A is used in multiplications in a number of steps of the first

stages of the algorithms. If A is sufficiently large, then these matrix multiplications cannot

be carried out in memory and would have to be done on disk, which would significantly

slow down the algorithm. To avoid this problem, we implemented partial matrix generating

functions for the distance and TPS matrices and a “slice matrix multiplication” algorithm.

The former are functions that inputs a location matrix, a list of rows, and list of columns

and outputs the indicated rows and columns of the distance/TPS matrix of the respective

location matrix.

The latter “slice matrix multiplication” works by taking row slices of the distance/TPS

matrix (e.g. slices of size s × n) and right multiples them sequentially with a given, con-

formable matrix. After each multiplication, the result is vertically concatenated with the

previous results, generating the resultant matrix product. A specific implementation for

Stage 1, Step b of both probabilistic algorithms is as follows:

Input: location matrix locs, number of locations n, generating function gen fcn, number

of target singular vectors k, oversampling parameter l, and slice size slice

1. Generate empty matrix Y of dimension n× (k + l)

2. Generate random number matrix Ω of dimension n× (k + l)

3. Define start row as the sequence from 1 to n by size slice

4. Define end row as following: take start row and remove the first entry, subtract 1 from

all remaining entries, and concatenate n to the end of it

5. for i in 1, 2, ..., length(start row)

(a) rows = start row[i] = end row[i]

(b) Y[rows, ] = gen fcn(locs, rows) * Ω

6. return Y
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As with the previous algorithms, the slice matrix multiplication algorithm was imple-

mented in both R and C++. To get a better understanding of the efficiency of these

implementations, we generated lists of 100, 1000, 10000, and 100000 coordinates to use as

test inputs for the algorithms. For each of the lists of coordinates, a number of values for

k, the target number of singular vectors, and slice were used (where k ≤ slice), while l was

left constant at l = 0 as varying it would have the same effect as varying k. For example,

for the 1000 coordinate list, slice was set to values of 10 and 100, while k was set to values

of 5, 10, and 100.

It is clear that when k is increased, the time taken for the algorithm to run would increase.

Thus, it is more important to see how varying the slice size affects the algorithm’s runtime.

The graphs on the following page present the runtime for the slice matrix multiplication

algorithm implemented in R and C++ for a list of 10000 coordinates for slice sizes set from

50 to 1000 incrementally increasing by 50 and k set to 5.

These graphs present two different stories. First, in general, the C++ implementation

ran more quickly than the R implementation, averaging a runtime of about 2.87 times faster.

With regards to the C++ implementation, other than the outlier for slice = 100, there

appears to be a positive linear relationship between slice size and run time (R2 = .65). It is

important to note that the observed run time for slice = 100 is not an aberration. Each slice

size was tested multiple times and the run time for slice = 100 was consistently much larger

than the other run times. The cause of this is unknown. However, the linear relationship

observed for the rest of the data is due to backend parallelization of the algorithm that

distributes the many slice multiplications to various cores, which perform the multiplications

at the same time. For small slice sizes, these multiplications occur more quickly. The speed

gain due to the small slice sizes is further maintained when the parallelized jobs are brought

back together to form the resultant product matrix, which accounts for the more faster run

times for smaller slice sizes.

On the other hand, there is no clear pattern for the run times for the R implementation.

The fastest run time is again observed when slice is minimized and the slowest run time is

when slice is 100, but there is no linear relationship between slice size and run time (sans

slice = 100, R2 = .01). Again, each slice size was tested repeatedly, but still no pattern

emerged. The cause for this sporadic behavior is unknown, but could be due to a trade off

between the speed of each slice multiplication and the number of multiplications needed,

issues with backend parallelization, and added run time for slice sizes that are not divisors

of the number of locations.
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Figure 6: Slice Matrix Multiplication R Implementation

Figure 7: Slice Matrix multiplication C++ Implementation

5 Thin Plate Splines and Land Mines

Land mines are potent defensive explosive devices that are concealed or buried underground.

They typically come in two varieties: anti-tank mines use to disable tanks and anti-personnel

mines used to primarily injure people. The former are typically larger, require more pressure

to set off, and are made of metal, while the latter are smaller (making them easier to conceal),

require less pressure to set off, and are made of plastic. Anti-personnel mines are particularly

known for their debilitating effects and there have been efforts to eliminate their use in the
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battlefield, notably through the drafting of the Ottawa Treaty. Unfortunately, due to their

potency as an area denial weapon, both anti-tank and anti-personnel mines remain popular

weapons.

In order to counter the potency of land mines, many countries have developed advanced

minesweeping (detecting) and mine clearing (removing) technologies. In regards to the

former, a minesweeper will often employ some sort of detecting sensor, often a metal de-

tector. The sweeper will “sweep” the detector over the potential minefield. For example,

the sweeper might take a number of measurements left to right over an arbitrary horizontal

area. He would then sweep vertically while taking measurements before sweeping right to

left. This zig-zag sweeping motion provides a voluminous number of discrete measurements,

though most points on the ground will not be measured by the detector.

Current research and development into detector technology has focused partially on

using a hybrid dual-sensor approach to detecting mines. Specifically, many organizations

are seeking to integrate ground penetrating radar (GPR) and metal detecting sensors into a

single instrument. The benefit of using both of these sensors is that they complement each

other as, for example, metal detecting sensors often can’t identify anti-personnel mines made

of plastic. A major drawback of this hybrid approach is that the sensors are necessarily offset

from each other, as shown in the image below. Thus, in regards to the sweeping described

above, the two sensors will provide data at close but different points.
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● ●niitek emi

La
ne

 1
04

Thus, the hybrid detectors are left with two data issues: the data they collect is discrete

and they collect two complementary, but offset sets of data. To correct for these issues, we

want to fuse, interpolate, and smooth the data to create a single, continuous data set which

would then be the basis of a detection algorithm for flagging potential land mines within an

examined area. One tool used to do this is thin plate spline interpolation. In the previous

section, thin plate splines were defined as radial basis functions of the form f(r) = r2∗log(r)

where all operations are taking element-wise. Sums of radial basis functions are often used

to approximate functions in a technique known as kernel smoothing.
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In our consideration of land mines, we have data of the form (xi, yi, zi) where we wish

to predict zi using xi and yi for all i. Thus, we seek to fit a regression model to this data,

subject an additional following smoothness penalty:

arg min
f(x,y)

n∑
i=1

(zi − f(xi, yi))
2 + λ

∫ ∫ (
∂2f

∂x2
+ 2

∂2f

∂x ∂y
+
∂2f

∂x2

)
dx dy

This penalty is the 2D analog of the 1D smoothing spline. It has a natural solution of

the form:

f(x, y) =

n∑
i=1

wi
(
(x− xi)2 + (y − yi)2

)
log
√

(x− xi)2 + (y − yi)2.

This solution is a weighted sum of radial basis functions, specifically thin plate splines.

The goal of this TPS model is to estimate the weights, wi of the model. Regression type

predictors can be added to this TPS model and their coefficients can be estimated at the

same time as the TPS weights. This combined model is of the following form:

f(x,y)
n′×1

= X
n′×p

β
p×1

+

n∑
i=1

wi

((
x

n′×1
−xi

)2
+
(
y

n′×1
−yi

)2)
log

√(
x

n′×1
− xi

)2
+
(
y

n′×1
− yi

)2
.

To solve for the β’s and wi’s, we can solve:Kn×n X
n×p

X′
p×n

0
p×p

 wn×1
β
p×1

 =

 zn×1
0
p×1


Here K is the matrix of radial basis functions and X is the design matrix for the

regression predictors. When we solve for w and β we get:

[
w

β

]
=

[
K X

X ′ 0

]−1 [
z

0

]
=

[
K−1 +K−1X (−X ′K−1X)−1X ′K−1 −K−1X (−X ′K−1X)−1

−(−X ′K−1X)−1X ′K−1 (−X ′K−1X)−1

] [
z

0

]
w = (K−1 +K−1X (−X ′K−1X)−1X ′K−1) z

β = (−(−X ′K−1X)−1X ′K−1) z

Most of the above is not difficult to calculate. However, for large data, calculating K−1

will be time and space expensive. Current algorithms will typically sample a subset of points

from the larger data set in order to achieve reasonable runtimes. This presents the obvious

issue of accuracy deficiency as only some of the data is utilized. The probabilistic algorithms

described above will hopefully allow for the inclusion of more data as they are more time

and space efficient than similar deterministic algorithms.

In implementing the above model, we utilized two data sets called “NII” (36766 ob-

servations) and “EMI” (224458 observations). The NII data set has three variables: x

coordinates, y coordinates, and a measurement using ground penetrating radar at that x,y

location. The EMI set consists of x and y coordinates as well, but includes metal detector

measurements rather than GPR measurements. Also considered are subsets of NII and EMI

of size 4219 and 2665 observations respectively. These subsets are determined by choosing

points from the full data sets that sit on a particular grid. They are utilized as training

sets to train prediction models for the complete sets of data. Overall, the above model

uses these discrete data to create smooth surface profiles for the GPR and metal detector
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measurements. Further modeling can fuse these smooth surfaces to create a single model to

predict whether or not a land mine is present at a certain location.

The above model was implemented using the classical inverse and the random inverse

algorithm described in section 3. The parameters for the probabilistic algorithm were set at:

q = 1, l = 5, and k ∈ {100, 500, 1000}. We recorded the time it took for the implementations

to run and the model prediction error using root mean squared error. Prediction was done

in and out of sample, using the subset data and full data as the true values respectively.

The results are presented in the tables below:

EMI
Type k Time In Sample Error Out of Sample Error

Probabilistic 100 2.680 .312 .550

Probabilistic 500 5.371 .454 .405

Probabilistic 1000 11.587 .307 .274

Deterministic n/a 12.703 .055 .114

NII
Type k Time In Sample Error Out of Sample Error

Probabilistic 100 5.962 .391 .303

Probabilistic 500 10.522 .857 .657

Probabilistic 1000 19.599 1.41 1.69

Deterministic n/a 18.912 .097 .142

Overall, the deterministic algorithm performed better error-wise, both in and out of sam-

ple, than the probabilistic algorithms regardless of the set value of k, while the probabilistic

algorithms generally ran in less time than the deterministic one. An interesting observation

made was that, while it was expected that accuracy would increase for the probabilistic

algorithm as k increased, that was not always the case. There are few possible causes for

this discrepancy. The first is that the subsets of data that we have are already highly struc-

tured as the points they sampled were chosen on a grid. The probabilistic algorithm, in

effect, attempts to find structure in the data that it is given. Because the data is already

highly structured, this exercise might lead to the probabilistic implementation being more

inaccurate. Another possibility is that, when it comes to prediction, not all parts of the

TPS matrix are equally important. Rather, certain parts, namely the diagonal, are more

influential in prediction accuracy. Thus, random differences in the stochastic matrix could

lead to better and worse TPS matrices for prediction based on what the diagonal ends up

being.

Regardless, the results are fairly promising. The probabilistic algorithm ended up being

faster than the deterministic algorithm and the errors were relatively similar enough. Further

tuning and corrections can be made to improve the accuracy of the probabilistic algorithm

without sacrificing time efficiency, which should make it an overall better option than the

deterministic algorithm.

6 Next Steps

There are a couple of future directions that can be pursued to improve on the prediction

of the previous implementation. First, to improve the issue regarding the diagonal of the

inverse TPS matrix, we can utilize the Sherman-Woodbury-Morrison (SWM) Identity. The

matrix inverse algorithm outputs the approximate eigenvectors and eigenvalues of the TPS

matrix, such that K ≈ QΛQT . Because we want to improve the approximation of the
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diagonal of K, we can find a diagonal matrix C such that C = diag(K)−diag(QΛQT ). Thus,

K ≈ C + QΛQT . However, inverting a matrix K of this form is not obvious. Fortunately,

the SWM identity provides a concise way to invert it. It states that, given conformable

matrices A,U,B, V ,

(A+ UBV )−1 = A−1 −A−1U(B−1 + V A−1U)−1V A−1

In our case, we would consider,

K−1 ≈ (C +QΛQT )−1 = C−1 − C−1Q(Λ−1 +QTC−1Q)−1QTC−1

Because C and Λ are both diagonal matrices, there inverses are found simply by taking

the reciprocal of their diagonal elements. Thus, the only new inverse that would need to

be calculated would be: (Λ−1 + QTC−1Q)−1, which should be done reasonably efficiently

using traditional algorithms because Q is low rank. Further, this approximate inverse TPS

matrix should be more accurate because of the improved calculation of the diagonal of K.

Another future step could be using the probabilistic algorithm to seek out subspace

structure in the full NII and EMI data sets. To do that, rather than using the subset data

in the model creation, we would use the full data and set k to the number of observations

in the subset data. Ideally, the probabilistic algorithm would be able to find structure in a

smarter way than just choosing data points from a grid, which would lead to better predictive

accuracy. This would also allow for the implementation of the slice matrix multiplication

algorithm as using the full data set and such a large value for k would probably necessitate

it to maintain time and space efficiency.

Taken together, these two steps should improve the predictive accuracy of the proba-

bilistic algorithm, making it competitive with the deterministic algorithm. Once this com-

petitiveness is achieved, issues regarding data fusion can be addressed.
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