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Abstract

The advent and proliferation of “Big Data” has led to time efficiency issues of
classical algorithms. One way of approaching this issue is by developing probabilistic
algorithms that terminate more quickly than comparable deterministic ones. In this
paper, we implemented probabilistic algorithms for computing the singular value de-
composition and inverse of a matrix in R and C+4. Further, we measured the speed
and accuracy of these implementations against comparable, available deterministic al-
gorithms. In order to keep all operations in memory, we developed “slice” matrix
multiplication algorithm that progressively computed the product of two matrices. Fi-
nally, we apply these methods for fitting thin plate spline models for detecting land
mines.

1 Introduction

A major focus of the analysis of algorithms is determining algorithmic efficiency. Specifically,
one asks how long it takes for an algorithm to run, usually considering the average case.
The length of time it takes for an algorithm to run is called its runtime, but it is often more
important to understand its long term or asymptotic runtime behavior. First, to determine
the simple runtime of an algorithm, one counts the number of scalar operations, such as
addition, multiplication, and comparison, needed to perform the algorithm for a given input
size. As an example, given two square matrices of dimension n?, it takes 2n® — n? scalar
operations to perform classic matrix multiplication. Consider the following multiplication
of two 3 x 3 matrices:

aip a2 a3 bin b2 bis @11 * b1 + a2 * ba1 + aq3 * b3y
a1 az Go3 bar b bog | =
as1 asy Gs3 b31 b3z bss

In order to calculate each element of the product matrix, we must calculate three mul-
tiplications and two additions, which gives five scalar operations. Because there are nine
elements of the product matrix, it takes 45 scalar operations to perform the complete matrix
multiplication. For n = 3, the runtime function for matrix multiplication above agrees, as
2% 3% — 32 = 45.

To represent the asymptotic behavior of an algorithm, we use Big-O notation. We can
consider two functions: f(z) and g(x). Then, f(x) = O(g(x)) as © — oo if and only if there
exist constants M and xo such that | f(x)| < M|g(x)| for all > x¢. This means that after a
certain value of f, f is bounded by g. Consider again the runtime for matrix multiplication,



which we can write as f(z) = 22% — 22. It is clear that f is bounded by g(z) = 2z3 for
at least all x > 1. Thus, if we consider M = 2, then we can say that f(z) = O(g(z)).
That is, asymptotically, the runtime of matrix multiplication grows like z3. Generally, if
f(x) = >, cifi(x), where the ¢;s are coefficients, then O(f(x)) will be the function fi(x)
which grows fastest. If f(z) is a polynomial, then this implies that O(f(x)) will be the
highest degree term of f(x).

An asymptotic growth rate on the scale of O(n?) poses significant issues to the efficiency
of many algorithms. Multiplying two square matrices of dimension 100? takes about one
million floating point (which are mostly the same as scalar) operations. For two matrices
of size 1,000,0002, it takes about one quintillion or one billion billion operations. An Intel
Core i7 processor, one of the most powerful, commercial processors, can perform about 110
billion floating point operations in a second (110 gigaflops). Thus, it would take such a
processor about 10 million seconds to compute the product of two 1,000,000? matrices,
which is about 116 days.

“Big Data”, which often considers data sets on the scales of those discussed or larger,
can be defined as data big enough that it won’t fit easily on a single machine (generally 1TB
or larger). The advent and proliferation of “big data” has made using classic algorithms
prohibitively expensive in regards to the time it takes for them to run.

This is especially important in the field of statistics and statistical programming. Matrix
multiplication and other matrix operations, like matrix inversion and the singular value
decomposition, which all have runtime complexity of O(n?) as well, are used extensively
in statistical programming. For example, matrix inversion and multiplication are integral
to performing ordinary least squares regression. Given a vector response y and matrix
predictors X such that y = X3 + ¢, where 8 is the vector of regression coefficients and
¢ is an error term, we find that § = (X7 X)~*XTy minimizes the the sum of the squared
residuals between the regression line and the actual data. If our data set is exceedingly large,
such as on the scale considered before, it can take a prohibitively long time to perform such
an operation. Other algorithms are even more complicated and computationally expensive,
exacerbating the issue with utilizing them on large data sets.

Thus, it is worthwhile to explore new algorithms that can perform such operations more
efficiently. For example, Strassen’s Algorithm and the Coppersmith-Winograd Algorithm
can perform matrix multiplication in about O(n?#) and O(n?37) times respectively. How-
ever, there are drawbacks to using such algorithms, including the presence large coeflicients
hidden by Big-O notation that make these algorithms inefficient for small values of n and
issues with regard to the numerical stability of these algorithms when implemented us-
ing limited precision floating point data. This paper will explore the use of probabilistic
algorithms to derive efficiency gains in performing matrix operations.

At this point, all the algorithms discussed have been deterministic algorithms: ones
that produce the same output for a given input every time they are run. A probabilistic
algorithm is one that uses randomness in one or more of its steps. Thus, for a given input,
the output of the algorithm will not always be the same. This paper will explore the utility of
using probabilistic algorithms to perform the singular value decomposition and inversion of a
matrix. We will consider the efficiency gains provided by using probabilistic algorithms, their
stability regarding the accuracy of their outputs compared to the deterministic solutions,
and applications to fitting thin-plate spline models.



2 Probabilistic Singular Value Decomposition

Given a real or complex m x n matrix A, there exists a factorization A = UXV™*, such that
U is m x m and is unitary, ¥ is an m x n diagonal matrix of the singular values of A, and V*
is n x n and unitary as well. This is referred to as the Singular Value Decomposition (SVD)
of A. Typical uses of the SVD include computing pseudo-inverses of matrices in order
to solve systems of linear equations, performing total least squares minimization, finding
the range, rank, and nulls space of A, and constructing low-rank matrix approximations.
Common ways of calculating the SVD of a matrix include (1) the classical two-step method
of converting the matrix to a bidiagonal matrix using Householder reflections and applying
a variant of the QR decomposition and (2) using an iterative low rank algorithmic approach.

The utility of being able to readily construct the SVD of a matrix is clear; however,
for an m x n matrix, the runtime for constructing the SVD is O(m?n + mn? + n?), which,
for a square n x n matrix, would be O(n?), as mentioned before. Thus, for large matrices,
performing singular value decompositions can be prohibitively expensive in terms of time.

An alternative to using the deterministic SVD calculation algorithm is to use a proba-
bilistic algorithm, as presented in Halko, et al. (2010). If we have an m x n matrix A and a
target number of singular vectors k, we can construct an approximate rank-k factorization
UXV* of A. There are two stages to this algorithm. The first is to construct a matrix @
with a range that approximates the range of A. This means that A ~ QQ*A The second
stage is to use this matrix @) to compute the SVD of A.

The algorithm is a follows:

Input: Matrix A € M,,«,, number of target singular vectors k, oversampling parameter
[, and iteration parameter ¢

1. Stage 1

(a) Generate a n x (k + 1) Gaussian matrix

(b) Compute Yy = AQ

(¢) Compute the QR factorization of Yy = Qo Ro

(d) fori=1,2,...,q

i. Compute Y; = A*Q;_1 and its QR decomposition Y, = @ll%l

ii. Compute Y; = AQ; and its QR decomposition V; = Q;R;
() @=0Q,

2. Stage 2
a) Compute B = QA

return (U, X, V*)

We now have an approximate SVD of A, UXV*. The step that makes this a probabilistic
algorithm comes at the very beginning when we draw the random Gaussian matrix €2. The
iterative process in stage 1 creates matrix (), which is an approximate basis of matrix A.
At the same time, @ is created so that it has few columns; that is, so that it has low rank.
Because @ has low rank, when we construct B in stage 2, it is efficient to compute its SVD
using classical methods. Thus, it is the construction and utilization of the low rank basis
matrix @ that makes this probabilistic algorithm potentially useful.



Before determining if an algorithm is more efficient than standard algorithms for matrices
of large size in practice, we have to better understand the accuracy of the algorithm. That
is, we would like to know about its average error, specifically E||A — QQ*A||. Halko, et al.
(2010) provide the following average error bound for the probabilistic SVD algorithm:

Ak +1)Y/?
-1
All variables here are the same as defined previously and oy is the k4 1 singular value

E[lA - QQ Al < (1+ X n2) 4

of A. Additionally, the optimal error is given as:

14 - QR A|| = ok 1

Thus, the expected error of the probabilistic algorithm lies within a polynomial of the
optimal error. Further, by Gu and Eisenstat (1996), this error bound is actually sharper
than that of comparable deterministic algorithms, like rank-revealing QR. Thus, not only
does this probabilistic algorithm produce matrices @) that consistently approximate the basis
of A, it permits less error than competitive deterministic algorithms, signaling that any error
caused by the stochastic sampling will not be greater than error allowable within machine
precision.

To determine the effectiveness of this algorithm in practice, we first needed to generate
matrices on which to apply the algorithm. First, we generated lists of 5000 point coordinates
with differing properties. One list was generated so that the points were equally spaced out
in a grid. The other list was generated by drawing the x and y coordinates of the point
from standard random uniform distributions. From these lists of coordinates, we generated
covariance matrices with short, medium, and long range dependence structure by defining
an exponential covariance function exp(%d) where d is the distance between the points and
r is a chosen radius. An important feature of these different matrices is the differing rates
at which their eigenvalues decay. The eigenvalues decay most quickly for the covariance
matrix with long range dependence structure and least quickly for the covariance matrix
with short range dependence structure.

We then applied the probabilistic SVD algorithm to these covariance matrices. We
varied: the number of target singular vectors, so that k € {5,10, 15,20, 100, 200, 5000}; the
number of QR iterations, so that ¢ € {0, 1,2,3}; and the oversampling parameter, so that
1 € {5,k}. Werecorded the time taken for the algorithm to run and the error of the returned
product of the algorithm, which was found by taking the Frobenius or point-wise norm of
the given covariance matrix and the probabilistic low rank SVD of the matrix. As a basis
of comparison, we also recorded the performance of a deterministic, iterative algorithm that
is also used to approximate the SVD of a matrix.

The results make it clear that setting ¢ to above 1 was almost never necessary as the error
improvement wouldn’t make up for the greater amount of time needed for the algorithm to
run. Additionally, setting the over-sampling parameter [ to the lower value of 5 was usually
better than setting it to £ as the higher setting didn’t meaningfully improve the errors, while
almost always increasing runtimes.

More important, though, was coming to understand how the probabilistic algorithm
compared to the iterative one when the number of target singular vectors, k, increased.
Consider the following graphs that show the time and error of the probabilistic algorithm,
for select values of ¢ and [, and the iterative algorithm for all values of k£ for the short,
medium, and long covariance matrices:

In all three graphs, k increases from the top-left to the bottom-right, such that the runs
with the most error and least time had the fewest number of target singular vectors and
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Figure 1: Probabilistic vs Iterative SVD Results

those with the least error and most time has the most number of target singular vectors. It
is immediately clear that in the case of all three covariance matrices, when k is small, the
iterative algorithm outperforms the probabilistic ones in regards to time and error for any
choice of parameters. However, for small k, even though the time taken for the algorithms
to run is small, the error produced by the algorithms can be sufficiently large so as to
make the results unusable for application. In practice, a larger number of target singular
vectors would be chosen so as to produce as accurate a result as possible, while improving
or producing an equivalent run time.

For the short and medium covariance matrices, the probabilistic algorithm with set
parameters of ¢ = 1 and [ = 5 outperforms all other algorithms when the number of
singular target vectors is maximized, in that it produces a minimal error, while also not
requiring an exorbitant amount of time to run the algorithm compared other options that
take less time, but produce substantially more error. In the case of the long covariance
matrix, the iterative algorithm almost always outperforms the probabilistic ones, though
the probabilistic algorithm with ¢ = 0 and [ = 5 is competitive when k is maximized.

One important point to emphasize is that the preceding graphs are not all monotonically
decreasing. The previous tests were performed multiple times and, on average, the results
were monotonically decreasing; however, the aberrations that are present exemplify the
variance observed in the run times. These aberrations can be caused by factors intrinsic to
the algorithms, such as generated random matrices that are in some way pathological, or
extrinsic, like using a shared machine to perform the run.

Our first implementation was developed in R. We later implemented this algorithm in
C++ so as to try to improve its performance. The time versus error results for the R and
C-++ implementations are shown in the graphs below:



cov_long cov_med cov_shart

puBTd

100- settings

q=0,1=0

— q=0.1=5
—a=1.1=0
— g=1,1=5
—a=2.1=0

300 - q=2,1=5

pun—yd

100 -
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Figure 3: Time vs Error for C4++ Implementation

As we can see by comparing these figures, the C++ implementation performed about
the same as the R implementation regarding error, which was expected, as well as time,
which was unexpected. Specifically and counterintuitively, the C++ implementation was
about 0.85 times as fast as the R implementation, while having about the average amount of
error. This is likely due to the rate limiting steps for both implementations depending on the
low level linear algebra libraries lapack and blas used for the heavy lifting. The slowdown
in the C++ implementation is likely due to the overhead of translating and copying R’s
matrix objects into a native C++ data structure. Thus, while useful in exercise, the C++
implementation did not yield any practical gains.



3 Probabilistic Matrix Inverse

Given a square matrix A, A~! is said to be the inverse of A if AA~' = A1 A = I, where I is
the identity matrix. Matrix inversions are found throughout statistical analysis with some
examples being computing least square solutions to regression problems and determining
posteriors for multivariate distributions in Bayesian analyses. There are a number of ways
to compute the inverse of a square matrix. The classical way to do so is to use Gauss-
Jordan elimination. Other common methods to find the inverse of a matrix are to use the
LU decomposition, QR decomposition, and Cholesky decomposition.

Another means to finding the inverse of a matrix is to utilize the eigendecomposition of
the matrix. Consider a square matrix A of dimension N x N that is full rank. We can find
matrices Q and A, such that A = QAQ ™", such that the Q is N x N and its i** column
is the i*" eigenvector of A and that A is the diagonal matrix of the eigenvalues of A. One
can determine the eigenvectors and eigenvalues of A by solving Av = Av, where v is an
eigenvector of A and ) is an eigenvalue of A. The eigendecomposition of a matrix has the
useful property that A=! = QA~'Q~'. Thus given the eigendecomposition of a matrix,
we need only find the inverse of its diagonal eigenvalue matrix to compute the inverse of
the matrix in question. This too is simple as, [A71]; = )\% That is, we only need to take
the reciprocal of each element of A to find its inverse and, thus, to find the inverse of A.
Additionally, for a symmetric matrix A, @ will be orthogonal, so Q! = QT. This finally
gives A7 = QAIQT.

Like the SVD, it is clear that finding the inverse of a matrix is useful in statistical
computing. However, also like the SVD, computing the inverse of a matrix using classical
algorithms, including using Gauss-Jordan elimination and finding the eigendecomposition, is
inefficient as it is O(n?) for matrices of dimension nxn. While there have been developments
that have improved on the time complexity of matrix inversion, the remaining inefficiency of
these algorithms (they are all less efficient than O(n?)) provides the opportunity to develop
a probabilistic algorithm for finding the inverse of a matrix, similar to how one was found
to determine the SVD of a matrix.

The probabilistic matrix inverse algorithm is also given by Halko, et al. (2010) and is
almost identical to the one given for the probabilistic SVD:

Input: Matrix A € M,,x,, number of target singular vectors k, oversampling parameter
[, and iteration parameter ¢

1. Stage 1

(a) Generate a n x (k + 1) Gaussian matrix Q
(b) Compute Yy = AQ
(c) Compute the QR factorization of Yy = QoRo
(d) fori=1,2,...,q
i. Compute Yl = A*Q;_1 and its QR decomposition YZ = QZRl
ii. Compute Y; = AQ; and its QR decomposition V; = Q;R;
(e) Q@ =0Qq
2. Stage 2

(a) Compute B = QT AQ

(b) Construct the eigendecomposition of B: B = VAV*, where V is the matrix of
B’s eigenvectors and A is the diagonal matrix of its eigenvalues



(¢) Compute U = QV
(d) return (U, A) such that A ~ UAUT
As with the probabilistic SVD algorithm, the probabilistic matrix inversion algorithm
was implemented in R and C++ and was explored using various values of k, [, and ¢ to find

the inverse of the short, medium, and long range covariance matrices as inputs. The graphs
below show the results of the R and C++ implementations:
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Figure 5: Time vs Error for C+4 Implementation

While the graphs look similar, it is important to notice that the x-axis scales for the
two sets of graphs are different. Specifically, the C++ implementation yielded a mean-
ingful speed up in runtime that we did not see in the SVD example. On average, the
C++ implementation of the matrix inversion algorithm was 8.73 times faster than the R
implementation, with almost exactly the same error on average.



The probabilistic algorithm was also compared to deterministic matrix inverse algo-
rithms, though, unlike the comparison made with the SVD algorithms, the latter algorithms
were not iterative. The natural first deterministic algorithm to test was using the Cholesky
Decomposition (A = LL* where L is is the lower triangular of A and L* is its inverse). The
runtime for this implementation was 2.538 seconds with negligible error, which means that
it performed better, both time and error-wise, than the probabilistic algorithms. However,
the downside of the Cholesky Decomposition is that it can only be made on Hermitian,
positive definite matrices. This includes all correlation and covariance matrices (the latter
of which are our test inputs), but excludes many other classes of matrices, including some
matrices that will be considered later. Thus, while it exhibits the best performance, its
specificity makes its usability limited compared to the probabilistic algorithm.

Other common algorithms used to compute inverse matrices are the Moore-Penrose
Pseudo-Inverse, QR decomposition, and LU decomposition. For the relatively small co-
variance matrices considered, these inverses were only slightly slower than the probabilistic
algorithm, but were much better performers in terms of error. However, as we consider ma-
trices on the scale of 10000 x 10000 and larger, the error-performance between these methods
become more similar, while the runtime differences between these deterministic algorithms
and the probabilistic algorithm continue to increase in favor of the latter. The reason for this
divergence is that the runtime of the deterministic algorithms are O(n?®) (this is also true
for the Cholesky decomposition, but its hidden coefficients are much smaller than the other
algorithms’), while the runtime for the probabilistic algorithm is O(n2log(k)). Thus, the
deterministic algorithms’ runtimes will increase at a much faster rate than the probabilistic
algorithm, even as the probabilistic algorithm becomes more accurate.

4 Slice Matrix Multiplication

An issue encountered while scaling up the previous algorithms was how to store and read
in the actual data used in the algorithms. Generally, data is stored in two places in the
computer: on the hard disk and in memory. Much more data can be held on the disk than
in memory, usually on the scale of terabytes versus gigabytes, which is a difference of about
three orders of magnitude. On the other hand, data can be accessed much more quickly from
memory than from the disk. Data, as floating point values, can be sequentially accessed
from memory about six times faster than from disk, while the difference is about 100,000
times if the data access is random (Jacobs, 2009). As our data sets can be exceedingly large,
determining ways to efficiently use memory as opposed to disk is increasingly important in
maintaining useful algorithms.

Further, after accessing data, there is the issue of actually operating on the data that
was accessed. When discussing how much memory is needed to perform an operation or
algorithm, we consider the space complexity of the algorithm. While Big-O notation was
used to describe the computational efficiency (time complexity) of an algorithm, we will use
Big-© notation to describe the space complexity of an algorithm. Given functions f and g,
we say that f(n) € ©(g(n)) if there exists ng such that for all n > ng there exist k1, ko such
that k1g(n) < f(n) < keg(n). That is, f is asymptotically bounded above and below by g.
This is similar to Big-O notation, except that that constants for the above and below bound
can be different. The space complexity of both matrix multiplication and matrix inversion,
for matrices of size n x n, is ©(n?). Thus, even if some “big data sets” could be read to
memory, it could be unfeasible use them in algorithms while still working in memory.

From this point on, rather than considering square matrices in general, we will only con-
sider distance and radial basis function matrices. First, consider a list of two-dimensional



coordinates that is recorded in an n x 2 matrix, called the location matrix. From this, a
distance matrix can be constructed in the following way: take the coordinates from rows
¢ and j from the location matrix and find the Euclidean distance between these locations.
This distance will be the [¢, j] entry of the distance matrix. This can be done with all
pairs of locations to fill out the entire distance matrix. Because the entries of these ma-
trices are determined using the euclidean distance (a metric), they are symmetric because
metrics are symmetric and that their diagonals are zero for all entries because metrics are
positive-definite. From a given distance matrix, D, we can construct a matrix of radial
basis functions, K, by: K = D?log(D), where all operations are done element wise. For
further clarification, a radial basis function is one whose value only depends on the dis-
tance from the origin (i.e. f(z) = f(||z||)). In this case, the specific radial basis functions
being used are thin plate splines (TPS), which are a special type of polyharmonic splines.
Sums of radial basis functions are often used in statistics in function approximation, such
as kernel smoothing techniques, and in machine learning algorithms, such as support vector
machines. In the context of the probabilistic algorithms described above, these matrices
will act as inputs.

It is clear that, if given a sufficiently long list of coordinates, the respective distance
matrix will become increasingly large, to the point that it cannot be wholly stored in memory.
Further, even if they can be stored in memory, there is no guarantee that there will remain
enough space in memory to perform matrix operations with them. In both algorithms
described above, the input matrix A is used in multiplications in a number of steps of the first
stages of the algorithms. If A is sufficiently large, then these matrix multiplications cannot
be carried out in memory and would have to be done on disk, which would significantly
slow down the algorithm. To avoid this problem, we implemented partial matrix generating
functions for the distance and TPS matrices and a “slice matrix multiplication” algorithm.
The former are functions that inputs a location matrix, a list of rows, and list of columns
and outputs the indicated rows and columns of the distance/TPS matrix of the respective
location matrix.

The latter “slice matrix multiplication” works by taking row slices of the distance/TPS
matrix (e.g. slices of size s x n) and right multiples them sequentially with a given, con-
formable matrix. After each multiplication, the result is vertically concatenated with the
previous results, generating the resultant matrix product. A specific implementation for
Stage 1, Step b of both probabilistic algorithms is as follows:

Input: location matrix locs, number of locations n, generating function gen_fcn, number
of target singular vectors k, oversampling parameter [, and slice size slice

1. Generate empty matrix Y of dimension n x (k +1)
2. Generate random number matrix 2 of dimension n x (k + 1)
3. Define start_row as the sequence from 1 to n by size slice

4. Define end_row as following: take start_row and remove the first entry, subtract 1 from
all remaining entries, and concatenate n to the end of it

5. for ¢ in 1, 2, ..., length(start_row)

(a) rows = start_row[i] = end_row|]

(b) Y[rows, ] = gen_fen(locs, rows) * Q

6. return Y

10



As with the previous algorithms, the slice matrix multiplication algorithm was imple-
mented in both R and C++. To get a better understanding of the efficiency of these
implementations, we generated lists of 100, 1000, 10000, and 100000 coordinates to use as
test inputs for the algorithms. For each of the lists of coordinates, a number of values for
k, the target number of singular vectors, and slice were used (where k < slice), while [ was
left constant at [ = 0 as varying it would have the same effect as varying k. For example,
for the 1000 coordinate list, slice was set to values of 10 and 100, while k& was set to values
of 5,10, and 100.

It is clear that when k is increased, the time taken for the algorithm to run would increase.
Thus, it is more important to see how varying the slice size affects the algorithm’s runtime.
The graphs on the following page present the runtime for the slice matrix multiplication
algorithm implemented in R and C++ for a list of 10000 coordinates for slice sizes set from
50 to 1000 incrementally increasing by 50 and k set to 5.

These graphs present two different stories. First, in general, the C++ implementation
ran more quickly than the R implementation, averaging a runtime of about 2.87 times faster.
With regards to the C++ implementation, other than the outlier for slice = 100, there
appears to be a positive linear relationship between slice size and run time (R? = .65). It is
important to note that the observed run time for slice = 100 is not an aberration. Each slice
size was tested multiple times and the run time for slice = 100 was consistently much larger
than the other run times. The cause of this is unknown. However, the linear relationship
observed for the rest of the data is due to backend parallelization of the algorithm that
distributes the many slice multiplications to various cores, which perform the multiplications
at the same time. For small slice sizes, these multiplications occur more quickly. The speed
gain due to the small slice sizes is further maintained when the parallelized jobs are brought
back together to form the resultant product matrix, which accounts for the more faster run
times for smaller slice sizes.

On the other hand, there is no clear pattern for the run times for the R implementation.
The fastest run time is again observed when slice is minimized and the slowest run time is
when slice is 100, but there is no linear relationship between slice size and run time (sans
slice = 100, R? = .01). Again, each slice size was tested repeatedly, but still no pattern
emerged. The cause for this sporadic behavior is unknown, but could be due to a trade off
between the speed of each slice multiplication and the number of multiplications needed,
issues with backend parallelization, and added run time for slice sizes that are not divisors
of the number of locations.

11
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Figure 6: Slice Matrix Multiplication R Implementation
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Figure 7: Slice Matrix multiplication C++ Implementation

5 Thin Plate Splines and Land Mines

Land mines are potent defensive explosive devices that are concealed or buried underground.
They typically come in two varieties: anti-tank mines use to disable tanks and anti-personnel
mines used to primarily injure people. The former are typically larger, require more pressure
to set off, and are made of metal, while the latter are smaller (making them easier to conceal),
require less pressure to set off, and are made of plastic. Anti-personnel mines are particularly
known for their debilitating effects and there have been efforts to eliminate their use in the
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battlefield, notably through the drafting of the Ottawa Treaty. Unfortunately, due to their
potency as an area denial weapon, both anti-tank and anti-personnel mines remain popular
weapons.

In order to counter the potency of land mines, many countries have developed advanced
minesweeping (detecting) and mine clearing (removing) technologies. In regards to the
former, a minesweeper will often employ some sort of detecting sensor, often a metal de-
tector. The sweeper will “sweep” the detector over the potential minefield. For example,
the sweeper might take a number of measurements left to right over an arbitrary horizontal
area. He would then sweep vertically while taking measurements before sweeping right to
left. This zig-zag sweeping motion provides a voluminous number of discrete measurements,
though most points on the ground will not be measured by the detector.

Current research and development into detector technology has focused partially on
using a hybrid dual-sensor approach to detecting mines. Specifically, many organizations
are seeking to integrate ground penetrating radar (GPR) and metal detecting sensors into a
single instrument. The benefit of using both of these sensors is that they complement each
other as, for example, metal detecting sensors often can’t identify anti-personnel mines made
of plastic. A major drawback of this hybrid approach is that the sensors are necessarily offset
from each other, as shown in the image below. Thus, in regards to the sweeping described
above, the two sensors will provide data at close but different points.

O niitek © emi

Lane 104

Thus, the hybrid detectors are left with two data issues: the data they collect is discrete
and they collect two complementary, but offset sets of data. To correct for these issues, we
want to fuse, interpolate, and smooth the data to create a single, continuous data set which
would then be the basis of a detection algorithm for flagging potential land mines within an
examined area. One tool used to do this is thin plate spline interpolation. In the previous
section, thin plate splines were defined as radial basis functions of the form f(r) = r2*log(r)
where all operations are taking element-wise. Sums of radial basis functions are often used
to approximate functions in a technique known as kernel smoothing.
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In our consideration of land mines, we have data of the form (z;,y;, z;) where we wish
to predict z; using z; and y; for all <. Thus, we seek to fit a regression model to this data,
subject an additional following smoothness penalty:

82 2f 82f
argmln Z x’wyz +)\//( axa +8>dzd

f(z,y) i=1

This penalty is the 2D analog of the 1D smoothing spline. It has a natural solution of
the form:

sz —z)? 4 (y — 1)) log /(= — 2:)% + (y — )2

This solution is a weighted sum of radial basis functions, specifically thin plate splines.
The goal of this TPS model is to estimate the weights, w; of the model. Regression type
predictors can be added to this TPS model and their coefficients can be estimated at the
same time as the TPS weights. This combined model is of the following form:

2 2 2
flzy)= X B +sz(< x _l'i) +( Yy —yz> )log\/( —xi) +( ] —yi) :
n’x1 n'Xp px1 =1 n'x1 n’x1 "Xl n’x1

To solve for the #’s and w;’s, we can solve:

K X w z
nxn nxXp nx1l| _ |nx1
X' 0 B 0
pXn  pXp px1 px1

Here K is the matrix of radial basis functions and X is the design matrix for the
regression predictors. When we solve for w and 5 we get:

X 0 0 (- X'K'X)"' X' K~! (-X'K-'X)~!
w=K'"+K'X(-X'K'X)' X' K12
B=(—(-X'K'X)' X' K12

Most of the above is not difficult to calculate. However, for large data, calculating K !
will be time and space expensive. Current algorithms will typically sample a subset of points
from the larger data set in order to achieve reasonable runtimes. This presents the obvious
issue of accuracy deficiency as only some of the data is utilized. The probabilistic algorithms
described above will hopefully allow for the inclusion of more data as they are more time
and space efficient than similar deterministic algorithms.

In implementing the above model, we utilized two data sets called “NII” (36766 ob-
servations) and “EMI” (224458 observations). The NII data set has three variables: x
coordinates, y coordinates, and a measurement using ground penetrating radar at that x,y
location. The EMI set consists of x and y coordinates as well, but includes metal detector
measurements rather than GPR measurements. Also considered are subsets of NII and EMI
of size 4219 and 2665 observations respectively. These subsets are determined by choosing
points from the full data sets that sit on a particular grid. They are utilized as training
sets to train prediction models for the complete sets of data. Overall, the above model
uses these discrete data to create smooth surface profiles for the GPR and metal detector
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measurements. Further modeling can fuse these smooth surfaces to create a single model to
predict whether or not a land mine is present at a certain location.

The above model was implemented using the classical inverse and the random inverse
algorithm described in section 3. The parameters for the probabilistic algorithm were set at:
g=1,1=5,and k € {100,500, 1000}. We recorded the time it took for the implementations
to run and the model prediction error using root mean squared error. Prediction was done
in and out of sample, using the subset data and full data as the true values respectively.
The results are presented in the tables below:

EMI
Type k Time | In Sample Error | Out of Sample Error
Probabilistic 100 | 2.680 312 .550
Probabilistic 500 | 5.371 454 .405
Probabilistic | 1000 | 11.587 307 274
Deterministic | n/a | 12.703 .055 114

NIT
Type k Time | In Sample Error | Out of Sample Error
Probabilistic 100 | 5.962 391 .303
Probabilistic 500 | 10.522 .857 .657
Probabilistic | 1000 | 19.599 1.41 1.69
Deterministic | n/a | 18.912 .097 142

Overall, the deterministic algorithm performed better error-wise, both in and out of sam-
ple, than the probabilistic algorithms regardless of the set value of k, while the probabilistic
algorithms generally ran in less time than the deterministic one. An interesting observation
made was that, while it was expected that accuracy would increase for the probabilistic
algorithm as k increased, that was not always the case. There are few possible causes for
this discrepancy. The first is that the subsets of data that we have are already highly struc-
tured as the points they sampled were chosen on a grid. The probabilistic algorithm, in
effect, attempts to find structure in the data that it is given. Because the data is already
highly structured, this exercise might lead to the probabilistic implementation being more
inaccurate. Another possibility is that, when it comes to prediction, not all parts of the
TPS matrix are equally important. Rather, certain parts, namely the diagonal, are more
influential in prediction accuracy. Thus, random differences in the stochastic matrix could
lead to better and worse TPS matrices for prediction based on what the diagonal ends up
being.

Regardless, the results are fairly promising. The probabilistic algorithm ended up being
faster than the deterministic algorithm and the errors were relatively similar enough. Further
tuning and corrections can be made to improve the accuracy of the probabilistic algorithm
without sacrificing time efficiency, which should make it an overall better option than the
deterministic algorithm.

6 Next Steps

There are a couple of future directions that can be pursued to improve on the prediction
of the previous implementation. First, to improve the issue regarding the diagonal of the
inverse TPS matrix, we can utilize the Sherman-Woodbury-Morrison (SWM) Identity. The
matrix inverse algorithm outputs the approximate eigenvectors and eigenvalues of the TPS
matrix, such that K ~ QAQ”. Because we want to improve the approximation of the
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diagonal of K, we can find a diagonal matrix C' such that C' = diag(K)—diag(QAQT). Thus,
K ~ C + QAQT. However, inverting a matrix K of this form is not obvious. Fortunately,
the SWM identity provides a concise way to invert it. It states that, given conformable
matrices A,U, B,V

(A+UBV) '=A"' Al UB+vATlU)vAT!
In our case, we would consider,

K™= (C+QAQN) ™ =Cc7' o7l + QT Qe

Because C' and A are both diagonal matrices, there inverses are found simply by taking
the reciprocal of their diagonal elements. Thus, the only new inverse that would need to
be calculated would be: (A~! + QTC~1Q)~!, which should be done reasonably efficiently
using traditional algorithms because @ is low rank. Further, this approximate inverse TPS
matrix should be more accurate because of the improved calculation of the diagonal of K.

Another future step could be using the probabilistic algorithm to seek out subspace
structure in the full NII and EMI data sets. To do that, rather than using the subset data
in the model creation, we would use the full data and set k to the number of observations
in the subset data. Ideally, the probabilistic algorithm would be able to find structure in a
smarter way than just choosing data points from a grid, which would lead to better predictive
accuracy. This would also allow for the implementation of the slice matrix multiplication
algorithm as using the full data set and such a large value for & would probably necessitate
it to maintain time and space efficiency.

Taken together, these two steps should improve the predictive accuracy of the proba-
bilistic algorithm, making it competitive with the deterministic algorithm. Once this com-
petitiveness is achieved, issues regarding data fusion can be addressed.

References

[1] Gu, Ming, and Stanley C. Eisenstat. ”Efficient Algorithms for Computing a Strong
Rank-Revealing QR Factorization.” STAM Journal on Scientific Computing 17.4 (1996):
848-69. Web.

[2] Halko, N., P. G. Martinsson, and J. A. Tropp. ”Finding Structure with Randomness:
Probabilistic Algorithms for Constructing Approximate Matrix Decompositions.” STAM
Review 53.2 (2011): 217-88. Web.

[3] Jacobs, Adam. ”The Pathologies of Big Data.” Queue 7.6 (2009): 10. Web.

16



