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Introduction 
Welcome to the R Markdown thesis template. This template is based on (and in many places 
copied directly from) the Reed College LaTeX template, but hopefully it will provide a nicer 
interface for those that have never used TeX or LaTeX before. Using R Markdown will also allow 
you to easily keep track of your analyses in R chunks of code, with the resulting plots and output 
included as well. The hope is this R Markdown template gets you in the habit of doing 
reproducible research, which benefits you long-term as a researcher, but also will greatly help 
anyone that is trying to reproduce or build onto your results down the road. 

Hopefully, you won’t have much of a learning period to go through and you will reap the benefits 
of a nicely formatted thesis. The use of LaTeX in combination with Markdown is more consistent 
than the output of a word processor, much less prone to corruption or crashing, and the resulting 
file is smaller than a Word file. While you may have never had problems using Word in the past, 
your thesis is likely going to be about twice as large and complex as anything you’ve written 
before, taxing Word’s capabilities. After working with Markdown and R together for a few weeks, 
we are confident this will be your reporting style of choice going forward. 

Why use it? 

R Markdown creates a simple and straightforward way to interface with the beauty of LaTeX. 
Packages have been written in R to work directly with LaTeX to produce nicely formatting tables 
and paragraphs. In addition to creating a user friendly interface to LaTeX, R Markdown also 
allows you to read in your data, to analyze it and to visualize it using R functions, and also to 
provide the documentation and commentary on the results of your project. Further, it allows 
for R results to be passed inline to the commentary of your results. You’ll see more on this later. 

Having your code and commentary all together in one place has a plethora of benefits! 

Who should use it? 

Anyone who needs to use data analysis, math, tables, a lot of figures, complex cross-references, 
or who just cares about the final appearance of their document should use R Markdown. Of 
particular use should be anyone in the sciences, but the user-friendly nature of Markdown and its 
ability to keep track of and easily include figures, automatically generate a table of contents, 
index, references, table of figures, etc. should make it of great benefit to nearly anyone writing a 
thesis project. 
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Chapter 1 Introduction 
Leading up to each NFL game, “bookmakers”, or casino staff, place a “spread” on 
which casino patrons can bet. The bookmakers create a spread for the game 
because most NFL games feature unbalanced teams, and the result of the game is 
not in much question; however, the amount by which the superior team will win 
creates a more fair proposition. The spread is the amount by which the bookmakers 
think the superior team will win. For example, the spread for the Super Bowl was the 
New England Patriots (-2.0) versus the Los Angeles Rams. This means the 
bookmakers expected the Patriots to win by 2 points. For the Patriots to beat the 
spread, they needed to win the game by greater than 2 points – which they did, as 
they won the game 13 - 3. 

For the casino, the goal of creating this supposed fair value proposition is to give its 
patrons the opportunity to bet on the result of an NFL game with what should be a 
50/50 proposition. However, the casino uses unfair odds to create an edge for itself. 
For a bet against the spread, a bettor must place 11 units in order to win 10 units. 

This means that if there is an equal amount of money on both teams, the casino wins 
money. For example, if both teams have 11 units placed on them to beat the spread, 
the casino is guaranteed to make money. This is because one team will beat the 
spread and win 10 units for its bettor, while the other team will fail to cover the spread 
and instead lose 11 units for its bettor. Thus, for 22 units bet on the game, the casino 
is guaranteed to win 1 unit. So, their return is a guaranteed 122=4.5%122=4.5%. 
In most cases, the casino looks to place the spread at a point that will generate equal 
amount of money on both sides – not the true number of points by which they think a 
team will win. As a result, there is value in this market in finding the instances where 
the true result differs greatly from the spread. These points of value often come from 
betting against popular or trendy picks, as the market (or the bettors) tend to 
overreact to recent performance, as well as big-name players. If there are unequal 
amounts of money on each side leading up to the game, the casino will adjust the 
spread throughout the week. This means there are certain points in the week where it 
is more advantageous to bet on a certain team. 

In addition, there are also times when the casino fails to move the spread even with 
unequal amounts of money on both sides. This means that the casino is essentially 
placing a bet that the side the public bets more on will lose. The cliche states, “the 
casino always wins”. It is important to identify the times when a casino is placing a 
bet in order to bet on the same side as the casino. 

The goal of this project is to create a betting model that provides a statistical basis for 
choosing the timing, team and amount to bet on a certain game. To do this, I first 
create a model to forecast the spread throughout the week, as to determine when 
exactly in the week is the most advantageous point to bet. Treating the spread as a 
time series object is a good method to achieve this goal. Second, I create a model 
that can predict the difference in score between the two teams playing and provide a 
probability point estimate for each team “beating the spread”. Using this probability 



and the fact that a bettor must bet 11 units to win 10 units, I generate an expected 
value for betting on each team. In order to have a positive expected value to bet on a 
game, the probability point estimate must be greater than 52.8%. In addition, the 
forecasted spreads helps determine whether it would be more advantageous to wait 
to bet on the game. Finally, after generating expected value for all the games, I 
simulate how my models perform using a variety of different betting strategies. I 
examine the distribution of winnings for each betting strategy after running the 
simulations numerous times. Each betting strategy has different rules and parameters 
that determine the stake and timing of each bet. One key note is that there will not be 
a bet placed on every game, as if the model predicts a 50% probability of a team 
beating the spread, the expected value for betting on this game for either team is 
negative. Thus, it is not always advantageous to bet on the games. 

The remainder of this thesis is organized as followed: in Section 2, I discuss how I 
gathered my data and the techniques I used for organizing these data into a usable 
format. In Section 3, I discuss my two different modeling techniques – starting first 
with the model to forecast the spread throughout the week before moving into the to 
predict the score of the game. Section 4 discusses my nine different betting strategies 
and evaluates the distribution of outcomes resulting from these betting strategies. 
Finally, Section 5 wraps up this thesis with a discussion of the process, feasibility and 
next steps for this project. 

 

Chapter 2 Data 
There were multiple data sources needed for this project. First, to create the dynamic linear 
model to forecast the spread, I gathered data on all the spread movements throughout the week 
leading up to the game for as many NFL games as possible. Through web scraping from 
the https://pregame.com/game-center website, I was able to gather these data on all NFL games 
from the past two seasons. These data needed a significant amount of manipulating and cleaning 
to be put in a usable format. Through using “stingr” manipulations, each game contained a data 
frame of approximately 100-200 observations of the variables listed in Table 2.1. 

Table 2.1: Betting Statistics 

Statistic Description 

Time and Date 

The time and date of the observation; The first observation nearly always occurred after bot  
teams had finished playing their previous game, so usually the first observation was Sunday 
evening one week prior to the game with the final observation seconds before game time 
(usually the following Sunday) 

Spread The spread for the away team 

https://pregame.com/game-center
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Table 2.1: Betting Statistics 

Statistic Description 

Away Cash 
Percentage The percent of the money bet on the game that is bet on the away team 

Away Cash 
Bet The amount of money that is bet on the away team 

Away Ticket 
Percentage The percent of bets on this game that are on the away team 

Away Ticket 
Number The number of bets on this game that are on the away team 

With these data, it is easy to calculate the same dataset for the home team through the simple 
formulas listed Equations (2.1) — (2.4) 

Home Cash Bet=Away Cash BetAway Cash Percentage−Away Cash BetHome 
Cash Percentage=Home Cash BetHome Cash Bet+Away Cash BetHome Ticket 
Number=Away Ticket NumberAway Ticket Percentage−Away Ticket 
NumberHome Ticket Percentage=Home Ticket NumberHome Ticket 
Number+Away Ticket Number(2.1)(2.2)(2.3)(2.4)(2.1)Home Cash Bet=Away 
Cash BetAway Cash Percentage−Away Cash Bet(2.2)Home Cash 
Percentage=Home Cash BetHome Cash Bet+Away Cash Bet(2.3)Home 
Ticket Number=Away Ticket NumberAway Ticket Percentage−Away Ticket 
Number(2.4)Home Ticket Percentage=Home Ticket NumberHome Ticket 
Number+Away Ticket Number 
These variables are important because they influence the spread. This is because a casino wants 
to manipulate the spread so the percent of money on each team is 50%, as this will generate 
4.5% of money for the casino, guaranteed. However, other times, the casino is essentially 
gambling by allowing for uneven money percentages. They take a position in a certain outcome 
that, according to their models, can raise their expected value. 

The timing for each of the data points from these series are irregular. To start, each week, one 
game is played on Thursday night, one on Monday night, with the rest of the games played on 
Sunday. The series starts when the casinos first open the game for betting. This is usually occurs 
the Sunday one week prior to the start of the game. But, since not all games are played on 
Sunday, some games are open for betting for shorter or longer periods of time. In addition, the 
casinos open up the Week 1 games for betting weeks in advance. This is the first irregularity that 
causes for different length series’. This is why the shortest series has only 57 data points while 
the longest series has 265 data points. However, the 25% - 75% of data points is 130 to 170, and 
nearly all series fall between 100 - 200 data points. 
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Within each series, the data is not captured in standardized time intervals, but instead, each data 
point is captured when there is a shift in the percentage of money or the percentage of tickets 
that is bet on each team. Some data points can be spaced minutes apart while others can be 
spaced out 12 hours apart. It is the timing of bets that trigger a data point. For modeling 
purposes, I treat these irregular intervals as evenly timed data points. When I forecast the spread, 
I forecast for hh number of future points with hh chosen through a separate model used to 
predict how many more data points this series based on the week in the NFL season, the hours 
until the game starts, the number of bets and amount of cash bet based on the game. This is 
further discussed in the modeling section. 
The next dataset is a CSV that is updated weekly that contains information, such as the teams, 
week, year and location, about all NFL games dating back to 2006, in addition to the opening and 
closing spreads for these games. This aspect is useful for cross-referencing. But, more 
importantly, this dataset contains the results of all the games, in addition to a list of all games. 
This list can be iterated through for all 414 separate DLMs. 

Finally, in order to find team-level statistics, I needed to find separate data sets for each NFL 
season. This is because leading up to a Week 5, 2018 matchup, the only information that bettors 
have is all the season (and all previous seasons) data leading up to Week 5 in 2018. Football 
Outsiders has webpages with week by week statistics for a certain type of statistic. This is called 
Defense-adjusted Value Over Average (DVOA). DVOA measures a team’s efficiency by 
comparing success on every single play to a league average based on situation and opponent. In 
addition, the “Weighted DVOA” is another metric provided, and this statistic weights the team’s 
DVOA with a preseason projection that the website, Football Outsider, created. This is because 
after 1 week, a team’s DVOA will be very extreme, but weighting it with a projection ensures that 
the metric will not overreact to an extremely limited sample size. This is essentially similar to 
putting a prior on DVOA and updating the posterior with the data from the games played. The 
scale for these statistics is a percentage, and this indicates the percent above or below average 
that a team is. Table 2.2 describes all these statistics. 

Table 2.2: Team-specific Statistics 

Statistic Explanation 

Total DVOA Measures a team’s efficiency by comparing success on every single play to a league ave  
based on situation and opponent 

Weighted DVOA Weights the DVOA with a preseason projection 

Offense DVOA Measures a team’s offensive efficiency 

Defense DVOA Measures a team’s defensive efficiency 

Special Teams 
DVOA Measures a team’s efficiency on Special Teams plays (field goals, punts, kickoffs) 
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Table 2.2: Team-specific Statistics 

Statistic Explanation 

Record A teams record of their wins, losses and ties 

I needed to merge and match these data sets. I did so by matching the week and year of each 
game to the correct dataset for the statistics, and then matching the team to their statistics up to 
that certain week. This completed data set is used for modeling. Section @ref{appen1} of the 
Appendix shows one line of this data set. 
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Chapter 3 Modeling 
I have two separate aspects to modeling: forecasting the point spread throughout the 
week and predicting the score of the game. For both processes, I tried different 
approaches to modeling and chose the best performing model based on performance 
on test datasets. 

3.1 Point Spread Forecasting Model 
I forecasted the point spread throughout the week by treating this object as a time-
series. I explored the data with an aim to find the best approach to modeling, before 
then moving into the modeling procedure. The best performing model was a time-
varying Bayesian Dynamic Linear Regression model that used ARIMA 
(Autoregressive Integrated Moving Average) methods to forecast the time-varying 
parameters that are used to forecast the point spread in the Dynamic Linear 
Regression Model. In addition, for utilizing the model, I needed to determine how 
many data points will be in the series. I used a mixed linear regression model for this 
purpose. 



3.1.1 Exploratory Data Analysis 

 
Figure 3.1: Histograms of Point Spreads and Score Differences from Games 

The first aspect to examine when forecasting the spreads is the distribution of 
spreads. It is also important to look at the distribution of game outcomes that these 
spreads model. Figure 3.1 shows both of these distributions. Both have multiple 
peaks. These multiple peaks arise because in football, nearly all scores are 
worth 33 or 77 points. When predicting the difference between two teams, many 
games will end up with a forecasted spread near these key numbers, and the results 
of these games will fall at these numbers often. In addition, there are a few dead 
zones – mainly in between 00 and 33. The results of the games mirror the distribution 
of the forecast spreads, however, with a much wider distribution. It is difficult to 
forecast a blowout game, but they do occur, which is why there are much longer tails 
for the true score differences. 
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Figure 3.2: Histogram of Game Results against Spread 

Figure 3.2 shows a distribution of the result of the game against the spread. A result 
of 00 would indicate that the game ended with the same result as the spread, and the 
result of the game would be a push, meaning that nobody wins and the bettor’s stake 
is returned to the better. To demonstrate the accuracy of the bookmaker’s, it is 
evident that the distribution is relatively normally distributed around 00, with a second 
peak at −3−3 indicating that many of the games resulted in the home team beating 
the spread by 33 points. 
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Figure 3.3: Transformations of Key Betting-Statistic Variables 

Research1 suggests that casinos adjust the line based on the amount of cash bet on 
each side, so that they can even out the amount of money bet on each time and 
guarantee themselves a return. Examining the cash variables can help evaluate this 
research. Figure 3.3 demonstrates the skewness of the cash and ticket number 
variables, as well as updated distributions after transformations. The cash variable is 
very right-skewed. For modeling and interpretability, it is integral to transform this 
variable into the log of the cash bet. The number of bets on each side is also right 
skewed. The log(Away Cash Bet)log⁡(Away Cash Bet) and log(Away Number 
of Bets)log⁡(Away Number of Bets) are both significantly closer to normally 
distributed. 
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Figure 3.4: Line Difference versus Key Variables 

Figure 3.4 shows the the line difference from when the casino first listed the spread to 
the spread when the game started compared with the cash percentage and 
the log(Away Cash Bet)log⁡(Away Cash Bet). Research2 suggests that with more 
cash bet on the away team, the casino would want to make the spread less favorable 
for the away team, in an effort to get more money placed on the home team and 
achieve a 50/50 split. 
Here, while the effect is not major, for both the away cash percentage and away cash 
amount variables, as they increase, the line difference for the away tends to become 
more negative. This means that when more cash is on the away team, the spread 
tends to become more favorable to the home team. For example, a line difference of -
2 means that the initial spread could have been the away team is favored by 6 points 
(-6), but then the spread moved to make the away team favored by 8 points (-8). The 
away team must now win by more than 8 points to cover the spread, opposed to the 
previous point where the away team only needed to win by more than 6 points. 

There are a few outliers where the line difference is greater than 5 points. This sort of 
extreme movement only can occur due to big player news. For example, if there is 
news on the Friday leading up to the game that Tom Brady is injured and cannot play, 
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this would cause a massive swing in the line that would not be related to the cash and 
ticket percentages. 

3.1.2 Modeling the Point Spread 
After exploratory data analysis, the next step is finding the best model to forecast the 
future spread. The model needs to forecast what the spread will be from a certain 
decision point. This first decision point is the first point when bets will be placed. The 
chosen decision point is after two-thirds of the observations in each time-series. The 
data frame containing the observations for each game is cut off at the two-thirds 
mark, and the model then forecasts the point spread for the final one-third of 
observations, using only the information up to this two-thirds point. I consider a 
Bayesian and frequentist approach to modeling the point spread. After forecasting the 
point spread for the final one-third observations, I calculate the error for each model 
by finding the difference between the forecasted point spread and true point spread 
for each observation. I use the forecasts from the model with the lowest average error 
across all my time-series’ in my betting strategies. 

The Bayesian approach to modeling is a time-series random walk plus noise 
regression model. The process starts by placing a prior for the parameters in my 
model before updating these parameters with the posterior mean through finding the 
MLE of the parameters of this regression model. The regressors in the model are 
the log(Away Cash Bet)log⁡(Away Cash Bet), Away Number of Bets (Away 
Ticket Number), log(Home Cash Bet)log⁡(Home Cash Bet) and Home Number of 
Bets (Home Ticket Number). 
The full process of creating the dynamic linear model is demonstrated through the 
example of the Week 2, 2018 game between the Minnesota Vikings and the Green 
Bay Packers. 

Equations (3.1) and (3.2) express a dynamic linear regression model with time-
varying parameters. 

yt=X′t θt+vtvt∼N(0,Vt); (observation equation)θt=Gt θt−1+ωtωt∼N(0,Wt); (evolution 
equation).(3.1)(3.2)(3.1)yt=Xt′ θt+vtvt∼N(0,Vt); (observation 
equation)(3.2)θt=Gt θt−1+ωtωt∼N(0,Wt); (evolution equation). 

The vector of observations up to time tt is yt=(y1,...,yt)yt=(y1,...,yt). The observation 
equation (Equation ??) describes the vector of observations ytyt (the spread at 
time tt) through its State vector θtθt (the predictor variables at time tt) and the vector 
of noise from the observations vtvt. The evolution equation (Equation ??) describes 
the evolution of the state vector over time with a Markov structure. θtθt is the state 
vector of the time-varying regression parameters (of 
number pp); θt=(αt ;βt)′θt=(αt ;βt)′ with dimension p×1p×1. αtαt and βtβt are the 
regression coefficients X′tXt′ is the row vector of covariates at time t of 
dimension 1×p1×p. wtwt is the variance of the state-space vectors. GtGt is an 

https://dlevine820.github.io/Beating-Vegas-Thesis/3-model.html#eq:basicDLM
https://dlevine820.github.io/Beating-Vegas-Thesis/3-model.html#eq:basicDLM2
https://dlevine820.github.io/Beating-Vegas-Thesis/3-model.html#basicDLM
https://dlevine820.github.io/Beating-Vegas-Thesis/3-model.html#basicDLM2


evolution matrix of p×pp×p dimension. This is the evolution matrix because it allows 
for the evolution of the state space vector by matching up the dimensions the 
parameters. GtGt is typically, and in this model, an identity matrix. 
This is the general setup for a dynamic linear regression model. 
Equations (3.3) — (3.5) show the expansion of equation (3.1). 

yt=αt+βt X′t+vtvt∼N(0,Vt)αt=αt−1+ϵαtϵαt∼N(0,σ2α)βt=βt−1+ϵβtϵβt∼N(0,σ2β)(3.3)(3.4)(
3.5)(3.3)yt=αt+βt Xt′+vtvt∼N(0,Vt)(3.4)αt=αt−1+ϵtαϵtα∼N(0,σα2)(3.5)βt=βt−
1+ϵtβϵtβ∼N(0,σβ2) 
There are three parameters that need to be set, and that is the variance of the 
observations VtVt, and then the variances of the regression coefficients for the state-
space vector – σ2ασα2 and σ2βσβ2. 
This can be done through a Bayesian method, where the initial parameter start values 
are set, and then through finding the MLE of the DLM using the dlmMLE, these 
parameters are updated with the posterior mean. I used sample observational 
variance of the spread up to the first decision point as the starting value of the 
observational variance VV. I used a flat prior for the variances of the regression 
parameters have a flat prior. Table 3.1 shows the values for the prior and posterior 
means of the variance parameters. 

Table 3.1: Prior and Posterior Values for Variance Parameters 

 Prior Parameters Posterior Param  

VV 0.5261619 0.00  

σ2ασα2 0.0000000 0.09  

σ2βσβ2 0.0000000 0.00  

The posterior mean for the σ2ασα2 and σ2βσβ2 values are used diagonally in 
the ωtωt matrix. Looking back at equations (3.1) and (3.2), θtθt for each observation 
is found through using αtαt and βtβt values, which are drawn 
through σ2ασα2 and σ2βσβ2. The values of the design vector X′tXt′ comes directly 
from the predictors and the variance for VV is set. Thus, all the parameters needed 
for modeling are set, and I use a dynamic linear regression model through the 
function dlmModReg to calculate my values for the observational values (ytyt) and 
the state-space parameters (θtθt). This is done through the filtering method. 
The filtering distribution takes in the DLM, and returns a series of one-step forecasts 
for the observations. These one-step forecasts are created from filtering all the 
information up to time tt. The first step of the filtering distribution has a starting 
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value θ0∼N(m0,C0)θ0∼N(m0,C0). m0m0 and C0C0 are the pre-sample means and 
variances for θθ. 

1. θ0∼N(m0,C0)θ0∼N(m0,C0). 
2. One-step forecast for the state:θt∣yt−1∼N(at,Rt)θt∣yt−1∼N(at,Rt) 

for at=Gt⋅mt−1at=Gt⋅mt−1 and Rt=Gt⋅Ct−1⋅G′t+WtRt=Gt⋅Ct−1⋅Gt′+Wt. 

3. One-step forecast for the observation:yt∣yt−1∼N(ft,Qt)yt∣yt−1∼N(ft,Qt) 

for ft=Ft⋅atft=Ft⋅at and Qt=Ft⋅Rt−1⋅F′t+VtQt=Ft⋅Rt−1⋅Ft′+Vt. 
Creating a filtered distribution with the dlmFilter function returns a series of one-step 
forecasts and variances for the observations, as well as the same information for the 
state-space vector. 

For a time-invariant dynamic linear model, there would be no extra work for finding a 
forecast for the observations after a given point tt. But, for a time-varying model, such 
as this, the X′tXt′ values are also unknown past the given point tt. The Kalman 
filtering method extends the time-series with new future predictor values, but does not 
input future values for the observational values. Once the future predictor values are 
entered, I create a filtered distribution with this new set – using the filtered values of 
the extended observational values as my forecast. 
There are a few common methods for finding new methods for the predictor values, 
such as inputting the last known observation, the mean or the median. However, 
since my predictor values continue to grow, these methods do not apply to this 
model. So, at the decision point, I fit ARIMA models for each of my new predictor 
values. I used the auto ARIMA method to generate these new values for each of my 
predictor variables. Using the ARIMA method is a frequentist approach to a time-
series forecast. I used this approach because for two reasons: it is unrealistic to build 
a separate Bayesian DLM for each parameter and these parameters simply grow 
without fluctuation (unlike the point spread), so it is not as necessary to build as 
complex of a model. There are three parameters that go into that ARIMA method: p is 
the number of lag observations in the model, d is the degree of differencing and q is 
the order of the moving average. 

The auto.arima function automatically chooses the best p, d and q values that will 
minimize the AIC and BIC of the model. However, by setting the seasonal parameter 
to “false”, I ensured that no model that incorporated a seasonal trend is chosen 
because that would not fit these data. Figure 3.5 is the forecasted number of tickets 
versus the true number of tickets for the Green Bay Packers versus Minnesota 
Vikings game. While this forecast is certainly not perfect, it generally follows a similar 
path to the true value. This is certainly an imperfect method and one area for 
improvement in this facet of the model. 
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Figure 3.5: Forecasted versus True Away Ticket Number 

This forecast model for the number of tickets is an ARIMA(1, 2, 2) model that is 
expressed in Equations (3.6) and (3.7). 

^Yt=^yt+2Yt−1−Yt−2^yt=μ+AR1⋅yt−1−MA1⋅et−1−MA2⋅et−2(3.6)(3.7)(3.6)Yt^=yt^+
2Yt−1−Yt−2(3.7)yt^=μ+AR1⋅yt−1−MA1⋅et−1−MA2⋅et−2 

Table 3.2 displays the coefficients to the ARIMA(1, 2, 2) model. 

Table 3.2: Coefficients of ARIMA(1, 2, 2) Model for Away Ticket Number 

 Coeff  

AR1 -0.98  

MA1 0.17  
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Table 3.2: Coefficients of ARIMA(1, 2, 2) Model for Away Ticket Number 

 Coeff  

MA2 -0.42  

 
Figure 3.6: Diagnostic Plots for ARIMA(1, 2, 2) Model for Away Ticket Number 



Figure 3.6 is the diagnostic plots for the auto.arima method for forecasting the 
number of tickets for the away team. The plots show that this model is a pretty good 
fit for the data, as the standardized residuals generally look like white noise, though 
the p-values for autocorrelation become significant when the lag factor reaches high 
values such as 9. As these models are automatically fitted to best describe the data 
at hand, they generally fit the data pretty well. 

It is important to note that the automatic ARIMA is fit for each different new variable 
from each time-series (opposed to using the same ARIMA model for the cash bet for 
all series) because the trends are not the same across all series. While bookmakers 
generally look to obtain 50/50 amount of cash on each game, this is certainly not 
always the case, as bookmakers will take a position on many of the games. Thus, the 
automatic ARIMA model will fit the model best to the data for each of the predictor 
variables. 

Finally, after generating new values for the predictor variables in my DLM, the 
Kalman filtering method can be used to find predictions for the spread. This method 
follows the exact same approach as above, however, the one-step forecasts for the 
last third of observations will replace the NAs. 

In addition, for comparison, the spread is also modeled with the auto.arima forecast, 
using the same predictor variables as the Bayesian DLM as regressors. This is a 
frequentist approach for modeling each time-series. The accuracy of each approach 
is determined by looking at the average error in the predicted spread values versus 
the true spread values. 

For this example game between the Green Bay Packers and the Minnesota Vikings, 
the auto.arima method fit an ARIMA(1, 0, 0) model, which is a first-order 
autoregressive model. 

Equation (3.8) expresses this 
model.Yt=c+ϕpYt−1+ϵtϵt∼N(0,σ2ϵ)(3.8)(3.8)Yt=c+ϕpYt−1+ϵtϵt∼N(0,σϵ2) 

cc is the intercept or the constant in the equation and ϕpϕp is the vector of 
coefficients for the autoregressive term (AR), as well as all the predictors. 
Table 3.3 shows the coefficients of this model and the variance 
parameter σ2ϵσϵ2 = 0.005950.00595. 

Table 3.3: Coeffecients of ARIMA(1, 0, 0) Model for the Point Spread 

 Coeffe  

AR1 0.85  

Intercept -2.41  
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Table 3.3: Coeffecients of ARIMA(1, 0, 0) Model for the Point Spread 

 Coeffe  

Log Away Cash -0.01  

Log Home Cash 0.00  

Away Ticket Number -0.05  

Home Ticket Number 0.00  

 
Figure 3.7: Spread versus Forecasts for Minnesota Vikings at Green Bay Packers 

Week 2, 2018 

Figure 3.7 compares the Bayesian DLM and the frequentist ARIMA model’s 
predictions with the true final spread values from the game between the Minnesota 
Vikings and the Green Bay Packers. The blue line represents the true spread, while 
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the red and green lines represent the Bayesian and frequentist forecasts, 
respectively. Both forecasts correctly predict the spread to rise. However, the 
Bayesian approach does a better job, in this scenario, of being closer to the true 
spread values. 

 

Figure 3.8: Spread versus Bayesian Forecast for Minnesota Vikings at Green Bay 
Packers Week 2, 2018 with 80% Confidence Interval 

Figure 3.8 shows the Bayesian DLM forecast with a 80% confidence interval. I chose 
an 80% confidence based on trial and error. Here, while the spread at the decision 
point is within the 80% interval, there is a point when the spread reaches Vikings (-1) 
when the spread is out of the 80% interval. This will be a key distinction to make 
when it comes to betting strategies. Actually, this is why I chose an 80% confidence, 
as opposed to a more standard 95% confidence interval. With the wider 95% 
confidence interval, it is more rare for me to have a value outside of that interval. 
Since I make betting decisions based on whether the spread is within the selected 
interval, I use an interval that allows me to incorporate more instances of waiting to 
bet until the future spread moves to a more advantageous position. Also, while 95% 
confidence interval is more standard, the choice is as arbitrary as an 80% confidence 
interval. 
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Figure 3.9: Normal QQ Plot for Residuals of the Forecasted Spread from the DLM 

Figure 3.9 shows the residuals plot from the filtered distribution. The residuals do not 
seem to be completely normally distributed. This is due to the fact that the true 
spread can only move in increments of 0.5, which is a massive amount in terms of the 
jumps in the filtered values. When looking at the rounded values of the spread, 
however, the residuals are more likely to be normally distributed. 
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Figure 3.10: Diagnostic Plots for DLM of MIN at GB game 

Figure 3.10 is the diagnostic plots for the Kalman-filtered model of the Minnesota 
Vikings at Green Bay Packers game. The p values for autocorrelation are all 
extremely high, indicating there is no autocorrelation. The residuals generally look 
like noise, with a few exceptions attributed to the nature of these data, and the ACF is 
within the bounds for all factors of the lag. 
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After building two models, I chose to use the forecasts from the best performing 
model. For each time-series, the error is the sum of the difference between each true 
spread and predicted spread. Each method had a vector of errors of 414 errors. 

When looking at the error vectors, I removed 5 outliers where each model had error 
sums above 100 total points. It is interesting to note that both models had the same 
forecasts for some series’ – especially those with the largest errors. These massive 
errors that both models found are likely due to games that were affected 
extraordinary circumstances for which my model cannot account. I did not use the 
time-series predictions for these 5 games for my simulations either. 

Table 3.4: Sum of Error Greater than 100 

gameID Week  

PHIvJAC 8  

GBvDET 5  

CARvATL 2  

LARvTEN 16  

LACvJAC 10  

Table 3.4 shows the five games that were excluded. After taking a brief look at these 
games, it is noteworthy that the PHIvJAC game was played in London at 9:30AM ET 
(6:30AM PT) on a Sunday. The odd start time could have caused odd betting patterns 
where there were way fewer bets in the last third of observations than normal. 
Typically the amount of cash increases more linearly. However, with such an early 
start time on a Sunday morning, combined with the fact that people often have plans 
on Saturday nights, there may be a massive influx of money very close to the start of 
the game, as people wake up just before the game starts – opposed to having a few 
hours to place bets before the game starts. 
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Figure 3.11: Total Cash Bet on GB vs. MIN (left) compared to PHI vs. JAC (right) 
Throughout the Week 

Figure 3.11 represents the amount of cash bet throughout the week. The dotted line 
is the decision point. The charts show that the odd start time games have a 
significantly more massive exponential increase in the amount of money bet directly 
after the decision point. This makes these games tough to model. In addition, looking 
at the GB vs. DET game that was a massive outlier, star Green Bay Packers 
quarterback Aaron Rodgers was questionable to play throughout the week due to 
injury. He was finally announced as healthy late in the week. It is unclear the 
circumstances for the other three outliers. 

Table 3.5: Summary Statistics for Errors 

 Min. 1st Q Median Mean 3rd Q  

DLM Errors -11.81761 -0.5605623 0 0.0519290 0.4935073 38.  
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Table 3.5: Summary Statistics for Errors 

 Min. 1st Q Median Mean 3rd Q  

Auto ARIMA Errors -11.81761 -0.5544576 0 0.0690394 0.4947444 38.  

Table 3.6: Mean and Median Absolute Error 

 DLM Auto A  

Median Abs. Error 0.5468115 0.76  

Mean Abs. Error 1.4152842 3.40  

Table 3.5 displays the summary statistics for my two vectors. these data shows that 
the DLM model has a lower mean error. In addition, when looking at simply absolute 
error, the Bayesian DLM approach provided a lower median absolute average error, 
as seen in Table 3.6, so I used this model’s forecasts for incorporating the future 
values from my decision point. 

3.1.3 Modeling Number of Observations 
To predict how many future points to forecast from a certain time tt, I built a simple 
linear regression model. I gathered ten equally spaced data points from each of my 
data sets. Each data point contains information on the amount of total cash, total 
number of tickets and number of observations up to time tt, as well as the number of 
final data points in this series. One row of this data frame is shown in Section 6.2 of 
the Appendix. I then built a simple mixed linear regression model to forecast the 
number of total data points in the series, so I could find how many points hh I should 
use for forecasting at my decision point. While I considered using Poisson regression 
because the number of observations are a number of occurrences, the Poisson mixed 
linear and simple model did not fit the data as well as the linear mixed model, based 
on the diagnostics of the model. Equations (3.9) — (3.11) is the equation for this 
simple mixed model, with nini representing the amount of final observations in the 
series, while ntnt is the amount of observations up to time tt. Week is a factor and 
random effect (playoffs are treated here as week 0), as certain weeks attract more 
bettors than other weeks. 
for j in 0 , ... , 17^ni=β0+β1⋅log(Total Cash Bet)+β2⋅log(Total 
Tickets)+β3⋅nt+αweekj+ϵi   ϵi∼N(0,σ2residuals)αweekj∼N(0,σ2week)(3.9)(3.10)(3.11)for j
 in 0 , ... , 17(3.9)ni^=β0+β1⋅log⁡(Total Cash Bet)+β2⋅log⁡(Total 

https://dlevine820.github.io/Beating-Vegas-Thesis/3-model.html#tab:sumerror
https://dlevine820.github.io/Beating-Vegas-Thesis/3-model.html#tab:abserror
https://dlevine820.github.io/Beating-Vegas-Thesis/6-appendix.html#appen2
https://dlevine820.github.io/Beating-Vegas-Thesis/3-model.html#eq:obsreg
https://dlevine820.github.io/Beating-Vegas-Thesis/3-model.html#eq:obsreg3


Tickets)+β3⋅nt+αjweek+ϵi   (3.10)ϵi∼N(0,σresiduals2)(3.11)αjweek∼N(0,σw
eek2) 
The coefficients and diagnostics for this model are also shown in Section 6.2 of the 
Appendix, as this is a less essential part of the greater goal of this thesis. 
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3.2 Game Result Prediction 

3.2.1 Overview of Decisions 



 



Figure 3.12: Overview of Betting Decisions 

Figure 3.12 shows a flow chart detailing the different possible scenarios and how 
much I would bet in each scenario. I use “allotment” to describe the betting amount 
because the many different betting strategies will bet different amounts for the same 
scenarios. The bookmakers open up betting on the game by placing an initial spread 
typically about a week before the game starts. I then wait until my decision point, 
forecast the spread for the rest of the week up until game time and provide a 
probability estimate for each team beating the spread. If betting on the game provides 
negative expected value based on the probability point estimate, I do not bet on the 
game, but I leave the opportunity open to bet later on in the week if a new, forecasted 
spread would make the advantageous to bet on. If the game has positive expected 
value, I place my bet on the game at the decision point. However, if the future 
forecasted spread projects a new spread that is even more advantageous to bet on, 
then I will only place a portion of my bet at the decision point and wait to place the 
rest of my bet. If the spread does in fact move as projected, I then place the rest of 
the bet the moment the spread hits my projections. 

3.2.2 Exploratory Data Analysis 
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Figure 3.13: Game Result Against Spread vs. Spread – The red indicates that the 
team has beat the spread and the black indicates that the team has failed to beat the 

spread 

Some key decisions determine whether the actual spread itself was a major factor in 
predicting team performance against the spread. In Figure 3.13, the y variable is the 
score differential during the game subtracted by the spread, in order to standardize 
the scores. For example, if the away team wins by 11 points, and the spread had the 
away team favored by 10 points, the y-variable in this scenario would be 1, as the 
away team performed one point better than the spread. The x variable is the spread. 
The red points are the observations where the away team covered the spread and the 
black points are the observations where the home team covered the spread. 

The spread does not seem to have any impact on the team’s performance against the 
spread. This means that bookmakers do not have any dead zones in making spreads 
where a certain team is much more likely to beat the spread at a certain point. There 
do not seem to be any biases (either making spreads too small or too large), with 
respect to the spread and the performance. 
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Figure 3.14: Result Against Spread vs. Cash-Ticket Percentage Difference – The red 
indicates that the team has beat the spread and the black indicates that the team has 

failed to beat the spread 

Figure 3.14 examines the relationship between the cash and ticket percentages and 
the outcome against the spread. When there is a significantly higher percentage of 
cash bet on a team, in comparison to to the number of bets on a team, one of the 
teams is receiving larger bets. This is typically an indicator that professional bettors 
are betting on a team. Those who bet on sports for living tend to bet significantly 
more than those who bet recreationally, and the professional betters tend to be 
correct more often than the recreational betters. 

From Figure 3.14, when the cash percentage rises, in comparison to the ticket 
percentage, the team tends to perform slightly better, with respect to the spread. This 
is an indication that the cash-ticket difference may be a useful indicator of 
performance. 

 

Figure 3.15: Game Result Against Spread vs. Away Win Percentage – The red 
indicates that the team has beat the spread and the black indicates that the team has 

failed to beat the spread 
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Figure 3.16: Cash Percentage vs. Win Percentage – The red indicates that the team 
has beat the spread and the black indicates that the team has failed to beat the 

spread 



 

Figure 3.17: Result versus Spread by Away Team 

Figure 3.15 shows a team’s performance against the spread relative to its current win 
percentage. The data shows that as the win percent rises for a team, its performance 
against the spread gets worse. This is indicative of the fact that many bettors 
overreact to past performance – especially when it comes to undefeated or winless 
teams, so the bookmakers will “shade” the lines against the more popular team. For 
example, if a team is 2-0, many bettors will overreact to a small sample size, and in 
order for the bookmakers to achieve equal amount of money on each team to 
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guarantee themselves a profit, the bookmakers will move the line against the 
undefeated team. The opposite phenomena occurs for winless teams. 

Figure 3.16 shows that as win percentage increases, the cash percentage tends to 
increase. At the edges with win percentages of 0% and 100%, this trend seems to 
slightly reverse. This is likely due to bookmakers shading the lines at such an 
extreme amount for these extreme win percentages, where they are able to achieve 
nearly equal action. 

Figure 3.17 shows the result against the spread for each away team. There is great 
variation among all the teams, and while certain teams seemed to perform better 
against the spread, like the New Orleans Saints, treating the team as a random effect 
in modeling seems to suit the data. 

3.2.3 Model Approach 
There were a few different approaches to modeling that deserved consideration. 
Because scores are only in whole units, an ordinal regression model seemed as if it 
could have been appropriate. However, because there are an unbounded amount of 
levels, as well as the fact that there are so many levels – many of which have few 
data points – this approach would not have yielded appropriate results. A mixed linear 
model is a good approach to model these data with many different groups (the 
different teams). The downfall to this approach is that it does not give extra weight to 
the peaks in the score differences between games at 3 and 7, but still the score 
predictions would be more accurate than an inappropriately used ordinal regression 
model. Perhaps if there were tens of thousands of data points where each level would 
be represented numerous times, an ordinal regression would be more appropriate. 

To first assess the best mixed linear models, the models were whittled down based 
on minimizing the BIC on the full dataset. After finding two models with similar BIC’s 
but different predictors, the models were compared through k-fold validation. There 
were a few metrics in this used: error rate between predicted results for the test set 
and the actual results, and then betting (and bankroll) performance across each of 
the simulations. The k-fold validation used 100 simulations in order to get a large 
distribution of bankroll amounts. But, if this k-fold validation was performed as usual, 
this would leave the test data sets with only 4 data points. Instead, the data was 
randomly shuffled for each of the 100 iterations, and then broken up into 7 folds – 
with one fold used as a test data set and the rest as a training dataset. 

3.2.4 Simulations 
For generating the simulated probabilities of beating the spread for each game in the 
test dataset, I generated 500 draws from its posterior predictive distribution for each 
model. 
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Figure 3.18: Simulated Outcomes for NYG @ Den Week 6, 2017 

Figure 3.18 is a histogram representing the results of the 500 draws from the 
posterior predictive distribution from the best overall performing model (as will be 
discussed in Section 3.2.5) for an example game in a test dataset for the New York 
Giants at the Denver Broncos during Week 6, 2017. The vertical black line represents 
the median of the 500 draws from the posterior predictive distribution, and the vertical 
red line represents the actual point spread. The median of the simulated outcomes 
(the vertical black line) is placed at -11.8, meaning the away team, the Giants, are 
expected to lose this game by 11.8 points. However, the spread (the vertical red line) 
at our first decision point has the Giants +12.5 points, meaning to beat the spread, 
the Giants must lose by 12 points or fewer, or win. Thus, at first glance, there seems 
to be a slight edge on betting on the New York Giants +12.5 because the spread has 
the Giants losing by 12.5 points, but the model projects the Giants to only lose by 
11.8 points. 
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Figure 3.19: Empirical Cumulative Distribution of Simulated Outcomes for NYG @ 
DEN Week 6, 2017 

Figure 3.19 is the empirical cumulative distribution (ECDF) of the 500 draws from the 
posterior predictive distribution. The blue represents where the point spread falls in 
the ECDF. Being either above or below the two redlines means that betting on this 
game will generate a positive expected value. If the point is below the lower redline, it 
is advantageous to bet on the away team, and if the point is above the top red line, 
then it is advantageous to bet on the home team. The interval of these red lines is 
(0.4762, 0.5238). If the ECDF is below 0.5, the probability of success is 1 - 
ECDF(Point Spread). Because the casino does not give fair odds, and offers -110 
odds, where a bettor must stake 1.1 units to win 1 units, this interval of probabilities 
generates a negative expected value. The edges of the probability provide an 
expected value of 0. Expected value is calculated by adding the probability of failure 
multiplied by -1.1 (the amount of units lost if the bet loses) and the probability of 
success multiplied by 1 (the amount of units won if the bet wins). Equation (3.12) is 
the equation for expected value. 

P(Beating Spread)⋅1+(1−P(Beating Spread))⋅−1.1.(3.12)(3.12)P(Beating 
Spread)⋅1+(1−P(Beating Spread))⋅−1.1. 
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Now, to find the probability of success for each game, I found where on the ECDF of 
the draws from the posterior predictive distribution the current spread falls. For 
example, the ECDF for this point spread of Giants (+12.5) is 0.4780.478, so the 
probability of the Giants beating the spread is 1−0.478=0.5221−0.478=0.522. The 
model expects the Giants to beat the spread with a proportion of 0.5220.522. The 
model expects the Broncos to beat the spread with a proportion of 0.478. Since the 
spread, in this scenario, is 12.5, and not a full number, there is no probability of a 
push, or tying the spread. 
After generating a probability of success, the expected value can be calculated. Since 
one must bet 1.1 units to win 1 unit, the expected value 
is 0.522−((1−0.522)⋅1.1)=−0.00380.522−((1−0.522)⋅1.1)=−0.0038. Betting on 
the Broncos is even more disadvantageous, as their expected value 
is 0.478−((1−0.478)⋅1.1)=−0.09620.478−((1−0.478)⋅1.1)=−0.0962. 
In this scenario, the model suggests a negative expected value of betting on the 
Giants with this spread of -0.0038 units lost per unit bet. There is a negative expected 
value for betting on both teams! So, because of the negative expected value, there 
will be no bet on the game at this point. However, the forecasted spread impacts 
whether there may be a bet at a future time point. 

 



Figure 3.20: Forecasted Spread for the NYG @ DEN Week 6, 2017 with 80% Interval 

Figure 3.20 shows the forecasted spread up until projected game time for the Giants 
and Broncos game. The 80% interval is using a rounded spread, to the nearest one-
half, to calculate my interval. The forecasted spread predicts an 80% confidence 
interval of (13.0, 14.5) for this spread about 20 data points into the 32 point forecast. 
The current decision point spread of 12.5 is outside of this interval. The expected 
value changes once the spread enters my interval. The Empirical Cumulative 
Distribution for the Giants when the spread is Giants (+13) is 0.47 meaning the 
simulated probability is 1−0.47=0.531−0.47=0.53. The new expected value 
is 0.53−((1−0.53)×1.1)=0.0130.53−((1−0.53)×1.1)=0.013. Thus, if the spread 
does move within my interval at any point, I will bet. 
This is an extremely small edge. However, the spread does actually move to 13.0, so 
there would be a bet on the Giants. However, the 80% interval later moves even 
further to (13.5, 15.5) about 30 index points into the forecast. The new ECDF of 
Giants (+13.5) is 0.45, meaning the new simulated probability is 0.55 and the new 
expected value is 0.055. The level of confidence that the spread will move to Giants 
(+13.5) is only 80%, but 0.055×0.8>0.0130.055×0.8>0.013, so at the first point of 
positive expected value, I choose that my bet is only one-third of the total allotment. 
For example, if the bet allotment for this game is 15 units, I would place a 5 unit bet 
on the Giants (+13). The other two-thirds of the allotment will be placed if the spread 
enters my interval and hits 13.5. In actuality, the spread does move to Giants (+13.5). 
So, two-thirds of the bet allotment – or 10 units – is placed at Giants (+13.5). 
This ended up being extremely important because the Giants actually lost the game 
by 13 points, so a bet on the Giants at (+12.5) would have lost money, while the 5 
unit bet on the Giants +13 is a push, meaning the money is returned, and the 10 unit 
bet at Giants +13.5 wins and returns a profit of (10/1.1)=9.09(10/1.1)=9.09 units! 
This was the process I went through for each game in the test data set for each 
model, as there were different probabilities of beating the spread from the two 
different models. For comparison, I used a simple method from a simple multiple 
linear regression, where the point estimate was generated directly through utilizing 
the mean and variance of the predicted value from the formula to calculate the t-value 
of the point spread and the using the t-distribution to find a probability estimate. One 
row of my test data set with the probabilities included is displayed in the 
Section 6.3 of the Appendix. 

3.2.5 Model Selection 
There were two models that provided similar results of BIC on the full datasets. Both 
models used the away team as a random effect, and used the decision point spread 
as a predictor. But, the first model delves into more team-specific stats, such as win 
percentages, number of wins and the weighted DVOA, in order to best predict who 
will win. I will refer to this model as the “team-specific” model. The second model 
tends to look more at the betting trends, such as the log of the tickets and cash bet 
for both the away and home team, and the difference between the cash and ticket 
percentage (this model also uses the difference between the teams’ weighted DVOA). 
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for its predictors. The second model also uses the year as a random effect. This 
model will be referred to as the “betting-trends” model When looking to incorporate 
certain additional variables into the other models, the BIC rises. 

The team-specific model is shown in Equations (3.13) — (3.15). 

for i in 1 , ... , 414 and j in 1, ... , 32^Away Score - Home Scorei=αaway 

teamj[i]+β′⋅Xi+ϵiϵi∼N(0,σ2residuals)αaway teamj∼N(0,σ2away 

team)(3.13)(3.14)(3.15)for i in 1 , ... , 414 and j in 1, ... , 32(3.13)Away Score - 
Home Scorei^=αj[i]away 
team+β′⋅Xi+ϵi(3.14)ϵi∼N(0,σresiduals2)(3.15)αjaway team∼N(0,σaway 
team2) 

Output of Team-Specific Model 

 

 Dependent variable: 

  

 Away Score - Home Score 

 

poly(home.wins, 2)1 174.093 

 (113.876) 

  

poly(home.wins, 2)2 116.674 

 (68.643) 

  

poly(away.wins, 2)1 -90.551 

 (100.298) 

  

poly(away.wins, 2)2 -106.191 

 (62.894) 
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first_decision_point_spread -0.790 

 (0.179) 

  

home.winpercent -5.878 

 (5.919) 

  

away.winpercent -13.392 

 (5.983) 

  

away_WEI.dvoa 0.197 

 (0.070) 

  

poly(home.wins, 2)1:home.winpercent -292.348 

 (150.945) 

  

poly(home.wins, 2)2:home.winpercent -73.081 

 (79.646) 

  

poly(away.wins, 2)1:away.winpercent 182.016 

 (141.167) 

  

poly(away.wins, 2)2:away.winpercent 86.750 

 (82.067) 

  



Constant 9.993 

 (3.839) 

  
 
 

 
Figure 3.21: Residual Plots for Team-Specific Model 



 

Figure 3.22: Residual Plots for Team-Specific Model 

Table ?? is the output parameters for the Team-Specific model. 
Figures 3.21 and 3.22 is the diagnostic plots for this first model, and the model seems 
to pass all the diagnostic tests. The residuals tend to be random and non-correlated; 
the residual plots based on the groups are shown in Section 6.4 of the Appendix, but 
there are no egregious errors. 

The model focusing on betting trends is shown in Equations (3.16) — (3.19): 

for i in 1 , ... , 414; j in 1, ... , 32 and m in 2017,2018^Away Score - Home 
Scorei=αaway teamj[i]+αYearm[i]+β′⋅Xi+ϵiϵi∼N(0,σ2residuals)αaway teamj∼N(0,σ2away 

team)αYearm∼N(0,σ2Year)(3.16)(3.17)(3.18)(3.19)for i in 1 , ... , 414; j in 1, ... , 32 
and m in 2017,2018(3.16)Away Score - Home Scorei^=αj[i]away 
team+αm[i]Year+β′⋅Xi+ϵi(3.17)ϵi∼N(0,σresiduals2)(3.18)αjaway 
team∼N(0,σaway team2)(3.19)αmYear∼N(0,σYear2) 

Output of Betting-Stats Model 
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 Dependent variable: 

  

 Away Score - Home Score 

 

log_away_cash_bet 17.360 

 (11.854) 

  

log_home_cash_bet -21.420 

 (11.946) 

  

log_away_tic_num -13.576 

 (11.148) 

  

log_home_tic_num 19.662 

 (11.332) 

  

WEI_away.diff 0.105 

 (0.054) 

  

first_decision_point_spread -0.719 

 (0.276) 

  

away_total.dvoa -0.069 

 (0.036) 

  



cash_tic_diff -63.509 

 (50.684) 

  

Constant 5.371 

 (22.890) 

  
 
 

 
Figure 3.23: Residual Plots for Betting-Trends Model 



 

Figure 3.24: Residual Plots for Betting-Trends Model 

Table ?? displays the parameters for the Betting-Trend model. This model also 
seems to pass all the diagnostic tests, shown in Figures 3.23 and 3.24, as the 
residuals tend to be random and non-correlated. The residual plots based on the 
groups are shown in Section 6.4 of the Appendix, but there are no egregious errors. 

The mixed-linear models are appropriate for modeling these data, and k-fold 
validation using 100 test data sets is used to evaluate the models. It is possible that 
the models have different strengths and weaknesses, in terms of risk and reward, and 
this can be examined through looking at the distribution of winnings. 

 

1. https://www.thesportsgeek.com/sports-betting/strategy/point-spread/↩ 

2. https://www.thesportsgeek.com/sports-betting/strategy/point-spread/↩ 

 

https://dlevine820.github.io/Beating-Vegas-Thesis/3-model.html#tab:lmer2
https://dlevine820.github.io/Beating-Vegas-Thesis/3-model.html#fig:lmer2diag
https://dlevine820.github.io/Beating-Vegas-Thesis/3-model.html#fig:lmer2diag2
https://dlevine820.github.io/Beating-Vegas-Thesis/6-appendix.html#appen4
https://www.thesportsgeek.com/sports-betting/strategy/point-spread/
https://www.thesportsgeek.com/sports-betting/strategy/point-spread/
https://www.thesportsgeek.com/sports-betting/strategy/point-spread/
https://www.thesportsgeek.com/sports-betting/strategy/point-spread/


Chapter 4 Betting Strategy 
Research3 shows the most successful betting strategy is the Kelly Criterion. The Kelly 
Criterion states that each bet should be equivalent to the percent edge. For example, 
with an expected value of 0.109, or a 10.9% edge, the bet should be equivalent to 
10.9% of the bankroll. However, this strategy is contingent on having an extremely 
accurate model where the expected edge is the true edge. Due to limited data of just 
two seasons right now, many of the expected values are above 0.2, which would be a 
ludicrous amount of the bankroll to bet on one game. So, all expected values are 
capped at 0.2 with this method. 

Starting with a bankroll of 100 units, the absolute maximum bet is capped at 40 
because it became too easy to lose any sort of winnings while using the Kelly 
criterion. 

Another system used modifications to the Kelly criterion system. In this system, the 
expected values essentially received a square root transformation; however, since 
the absolute value of the expected value must be less than one, this is actually a 
squared transformation. The new Kelly proportion is the expected value squared. 

The Martingale betting system is another popular method. This betting system starts 
by betting a certain amount of units (in this case, 5 units). If the bet loses, the 
subsequent bet doubles, so that winning the bet leaves the bettor ahead by 5 units. If 
the second bet instead loses again, the third bet once again double – now to 20 units. 
This keeps on going until either the bankroll is empty or the bettor is ahead 5 units. 
This is a risky strategy. 

One strategy simply bets 15 units any time there is a positive expected value. 
Another strategy only bets when there is an extreme edge; the bet is 10 units if the 
expected value is above 0.1 and 20 units if the expected values is above 0.2. 

Finally, another betting system relied on the agreement of the two linear mixed 
models. If both models suggested betting on the same team, and each expected 
value is positive, then the system bets on this team. Betting amounts are determined 
with the Kelly Criterion, and the Kelly proportion is the average of the two different 
expected values generated from the different models. 

The different betting systems are listed in Table 4.1. 

Table 4.1: Description of Betting Strategies 

Strategy.Name Description.of.Strategy 

K1 
Kelly Criterion using team-specific stats mixed linear model. Best performing model by error. M  
bet of 40 units. Capped expected value at 0.2. Utilize future betting strategy. 
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Table 4.1: Description of Betting Strategies 

Strategy.Name Description.of.Strategy 

K2 
Kelly Criterion using betting-specific model. Max bet of 40 units. Capped expected value at 0.2  
Utilize future betting strategy. 

K3 
Kelly Criterion using simple linear regression model. Max bet of 40 units. Capped expected val   
0.2. Utilize future betting strategy. 

K2 - Transform Utilize same strategy as K1, but the Kelly proportion is the expected value squared. 

Simple Bets 
If positive expected value at first decision point from team-specific model, bet 15 units. If nega  
expected value, do not bet. Do not incorporate future betting strategy 

Extreme Edge 
(Simple) 

If edge at first decision point from team-specific model is greater than 0.1, bet 10 units. If grea  
than 0.2, bet 20 units. 

Extreme Edge 
(Transform) 

Only bet if the expected edge from team-specific model is greater than 0.1 and use Kelly Crite  
with square transformation for betting amounts. Utilize future betting strategy. 

Agreement 
If both mixed linear models suggest betting on the same team, bet on that team. Use Kelly Cri  
with a mean of the two expected values. Utilize future betting strategy. 

Martingale 
Use Martingale strategy if positive expected value from team-specific model. Use 5 units for in  
bet. Do not incorporate future betting strategy. 



4.1 Results Using K-Fold Validation 

 
Figure 4.1: Final Bankroll Box Plots by Strategy 

For each game in each test data set, the model went through the process outlined 
above for each betting strategy. After iterating through all the games in the test data 
set, I was left with the final bankroll from each model for each test data set in the k-
fold. With 100 test data sets, I had a vector of 100 final bankrolls for each of the nine 
betting strategies. 



Figure 4.1 is a boxplot looking at the distribution of the final bankrolls for each of the 
betting strategies over the 100 simulations. Most of the strategies have medians 
above 100, meaning they generated positive median returns. In addition, these 
distributions have a boundary on the low end of 0, as the strategy cannot end with a 
bankroll below 0, but with no maximum, the distributions tend to be right-skewed, 
leaving the means higher than the medians. 

Table 4.2 shows the mean and median final bankrolls over the 100 simulations for the 
different methods. Four of the methods stand out; the K1 method, Martingale, 
Extreme Edge - Simple Bets and the LMER Agreement method. Outside of the 
Martingale method, which is interesting because this is the only strategy where the 
mean is significantly lower than the median, the other listed methods are noteworthy 
because of the huge returns – each of those three methods have mean returns above 
35%. 

Table 4.2: Mean Final Bankroll vs. Strategy 

 Mean Final Bankroll Median Final Ba  

K1 153.61 1  

K2 80.88  

K3 33.55  

K1.Transform 102.01  

Simple.Bets 131.82 1  

Extreme.Edge…Transformed 109.19  

Martingale 113.62 1  

Extreme.Edge…Simple 150.25 1  

LMER.Agreement 137.62 1  

Table 4.3 displays the summary statistics for the 4 top methods; the team-specific 
model using Kelly Criterion for betting amounts, the Martingale method, the Extreme 
Edge with Simple Bets and the Agreement method. The highest median is this K1 
method. All these methods used the team-specific model to generate probabilities of 
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beating the spread. The returns are very high in each of the quartiles, with positive 
returns for over 75% of simulations for the Extreme Edge with Simple Bets and 
Martingale methods. However, these are both the riskiest methods, as in 5% and 
15%, respectively for each method, the bettor would have lost the entire bankroll 
using these methods. This is a very high chance relative to most other more standard 
investments in the stock market. 

Table 4.3: Summary Statistics for the Best Performing Methods 

 Min. 1st Qu. Median Mean 3rd Qu.  

Kelly Criterion 8.78 56.61 129.42 153.61 221.56 5  

Extreme Edge - Simple 0.00 113.64 157.27 150.25 198.41 3  

Model Agreement 20.31 71.41 121.40 137.62 179.07 4  

Martingale 0.00 108.52 129.09 113.62 144.09 1  



 
Figure 4.2: Density Plots comparing Four Successful Betting Strategies 

Figure 4.2 shows the density plots for the 100 final bankrolls from the top four 
methods. The dotted lines represent the medians of each distribution. There seems to 
only be 3 dotted lines, but the medians for both the K1 and Martingale methods are 
both 129, so these lines are overlaid. The LMER-Agreement method seems to 
provide the safest betting strategy, as the density plot does not have as long of a tail, 
but a larger peak close to 175 units. It makes sense that this method is safest 
because this method only chooses to bet on games that both models agree on for 
whom to bet. Thus, a more selective group of games is chosen for bets. The 
Martingale method has 15% of observations at 0, but based on the nature of the bets, 
which continue to double if the bettor is losing, if the bettor does not lose the entire 
bankroll, it is a near guarantee to make money. The K1 and Extreme Edge - Simple 
methods both have extremely long tails and provide riskier investments than the 
LMER agreement methods, but also higher mean and median returns. 

 

3. www.investopedia.com/articles/trading/04/091504.asp↩ 
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returns for over 75% of simulations for the Extreme Edge with Simple Bets and 
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3. www.investopedia.com/articles/trading/04/091504.asp↩ 

https://dlevine820.github.io/Beating-Vegas-Thesis/4-bet.html#fig:densplot
https://dlevine820.github.io/Beating-Vegas-Thesis/4-bet.html#fnref3


Chapter 5 Discussion 
The goal of this thesis is to create a betting model that provides a statistical basis for 
choosing the timing, team and amount to bet on a certain game. Through combining a 
dynamic linear model for the point spread throughout the week with a mixed-linear 
model for predicting the score difference in the game, I found different betting 
strategies that generated astronomical average returns. 

So, if I was able to create a model with such high average returns, why are there not 
large funds that specialize in sports gambling? Casinos are not forced to accept a 
bet, so if a customer keeps coming with massive bets and continues to win, the 
casino will not accept the bets of these customers. There are difficult and complex 
ways to circumvent some of the casino staff and place bets, but that is another factor 
that makes sports gambling quite difficult. For betting small amounts of money, 
however, the casino is less likely to notice the bets and utilizing this model can be a 
fun way to increase this cash. However, each of these betting methods – even the 
safest of them – are extremely risky, with a much larger chance of losing over 50% of 
your bankroll than just about any other type of typical investment. Human emotion 
plays a role, as well, as many people will quit when they are down, even though 
continuing to bet may be the statistically savvy decision. As sports gambling becomes 
more legalized, more recreational bettors will place bets, and these bets typically 
lose. Thus, casinos are more likely to accept bets from the “sharper” bettors. One 
leading prop trading firms, Susquehanna International Group (SIG), already has a 
“quantitative sports trader” role, and it is likely more firms will follow suit as sports 
gambling becomes legal in their states (SIG is based in Pennsylvania where sports 
gambling is legal) and sports gambling becomes destigmatized. 

For my future work with this model, after optimizing my arbitrarily chosen parameters, 
such as the decision point at two-thirds of the way through the week, the 80% 
confidence interval, my future betting amounts and more, I would like to expand this 
model to hedge against risk. I want to make this model more applicable to a real 
person willing to invest their money, and even with advertising the massive average 
returns, few people would invest money in models that are so risky. Furthermore, this 
model only provides the basis on when to bet. In order to make this model usable, I 
need to create a computer program that tracks the current spreads (across multiple 
markets) and places bets at the first decision point, and then if the spread for any 
game reaches its key number. Finding ways to hedge risk and creating a computer 
program to carry out bets are both necessary to implement this model. 

 

 

 

 

 



Chapter 6 Appendix 
6.1 Example Row of Dataframe used for 
Modeling the Game Score 
Table 6.1 shows one row of the dataset used for modeling. For size purposes, I 
included just general columns for the key variables used in modeling, but there are 
individual columns for both the home and away teams that show the statistics of each 
team. The DVOAs listed are percentages. My mixed-linear models utilized only the 
listed variables, and transformations of the listed variables. 

Table 6.1: Example Row of D     

Date 
Game 
ID 

Home 
Team 

Away 
Team 

Home 
Score 

Away 
Score 

Week Year 
Total 

DVOA 
 
 

 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

2017-09-10 INDvLAR LAR IND 46 9 1 2017 -5.1          

Note:                  

These stats are available 
and specified for the 
home and away team. 

                 

6.2 Modeling Number of Observations 
Table 6.2: Row of Dataframe used for Observation Point Model 

Final Number of Obsv. Obsv. at Time Total Ticket Number Total Cash  

188 132 1467 210373  

Output of Observation Number Model 

 

 Dependent variable: 
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 Number of Observations 

 

Log(Total Ticket Number) -9.824 

 (1.105) 

  

Log(Total Cash Bet) -16.211 

 (0.938) 

  

Observations up to Point 0.971 

 (0.012) 

  

Constant 311.840 

 (4.786) 

  
 
 



 
Figure 6.1: Residual Plots for Observation Number 



 

Figure 6.1: Residual Plots for Observation Number 



 

Figure 6.2: Residual Plots for Observation Number by Week 



 

Figure 6.3: Residual Plots for Observation Number by Week 

Table 6.2 is an example row of the dataframe used to model the number of 
observations that will be in a series based on the amount of cash, tickets and 
observations up to a time tt. 
Table ?? displays the parameters for this model, while Figures 6.1 — 6.3 shows the 
diagnostic plots for this model. The residual plots show that a mixed linear model is a 
good approach. The residuals, while not perfect, seem to follow the normal 
distribution and the residuals are relatively evenly distributed for each week – the 
random effect. 

6.3 Example Row of Test Data set with 
Probabilities 
The test data set includes all the same columns shown in 6.1, in addition to the 
following key columns (and more for each of the different betting strategies). Using 
the K1 betting strategy for the game between the Indianapolis Colts and Jacksonville 
Jaguars on November 11, 2018, the spread at the first decision point was the away 
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team, the Jaguars (+3). At this decision point spread, I expect the away team to beat 
the spread with a proportion of 1−0.444=0.5561−0.444=0.556. If the Bet Team 
variable is equal to 1, it means the bet will be on the away team. With an expected 
value of betting on the Jaguars (+3) of 0.0676, the K1 betting strategy calls for me to 
bet on the Jaguars. My allotment for this bet is 6.76% of my current bankroll. If the 
future forecasted spread were to make the game more advantageous to bet on, in 
terms of expected value, then I would only be one-third of my allotment now. 
However, the forecasted future spread has the Jaguars (+2.5), which would be a 
much worse bet. The expected value of the Jaguars (+2.5) is not only lower than our 
expected value at the first decision point, but it is negative. Because the expected 
value would lower by betting on the game at the number my DLM forecasts for the 
spread, I bet my full allotment at Jaguars (+3), and there will be no future bet, 
regardless of where the spread actually does move. The Future Bet Team column 
refers to the fact that because the simulated probability is below 0.5, I would bet on 
the away team (the Jaguars), if I were to make a future bet. 

6.4 Diagnostics for Random Effects in Mixed-
Linear Models for the Score Difference 
Figures 6.4 and 6.5 show the diagnostic plots for the random effects of the first mixed 
linear model, while Figures 6.6 — 6.8 show the diagnostic plots for the random effect 
of the second mixed linear model. The residuals seem relatively consistent 
throughout the groups, and the mixed linear models seem to fit both models 
appropriately. 
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Figure 6.4: Team-Specific Model Diagnostics by Away Team Group 



 

Figure 6.5: Team-Specific Model Diagnostics by Away Team Group 



 

Figure 6.6: Betting-Trend Model Diagnostics by Away Team 



 

Figure 6.7: Betting-Trend Model Diagnostics by Away Team 



 

Figure 6.8: Betting-Trend Model Diagnostics by Year 
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