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AbstractThe problem of comparing two therapies with survival data is considered from aBayesian point of view. Survival times on each therapy are assumed to have anexponential distribution. The posterior distribution of the log hazard ratio ofthe experimental therapy to the standard therapy is the basis of inference. Twomodels are proposed in this dissertation. The �rst assumes center homogeneityand the second uses a Bayesian hierarchical model for heterogeneity of therapye�ects among di�erent centers in a multicenter trial. Center heterogeneity in amulticenter trial is explored in terms of the posterior distributions of the �rstand second stage parameters as well as the predictive distributions of survivaltime on each therapy at every center. Posterior distributions of parametersin the �rst model are derived by doing numerical integration on univariatefunctions. Posterior distributions of parameters in the second model are derivedby using a sampling based algorithm, called Gibbs sampling.Sensitivity of results to the prior belief is examined by doing the analysison some di�erent prior distributions. In the �rst model, stress is given to theprior variance of the log hazard ratio. In the second model, stress is given tothe prior belief of the center heterogeneity.Two clinical trials are analyzed in this dissertation as examples. One is ai



iiphase III clinical trial conducted by Cancer and Leukemia Group B to test twotherapies for treatment of patients with stage III non-small cell lung cancer.The other is a NIMH-PRB Collaborative Study of Long-Term Maintance DrugTherapy in Recurrent A�ective Illness.
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Chapter 1Introduction1.1 Statement of the ProblemClinical trials are designed to assess the e�cacy of therapies. Usually, datafrom patients treated with experimental therapies are compared to data frompatients treated with standard therapies or placebos. In many clinical trials,the primary endpoint occurs when a patient dies or when some other speci�edevent happens. In this dissertation, we are interested in the length of timethat it takes for a particular event to occur in the individual patient. If theevent is death, then it is the patient0s survival time that interests us. In thesekinds of clinical trials, some individuals do not experience the event during theirobservation period, so we can only observe them during the time that they stayin the trial. The data on such individuals are said to be right censored. Rightcensoring occurs when the individual under observation has not experiencedthe event at the end of the study when the statistical analysis is performed,when the individual withdraws from the study, or when the individual movesand is lost to follow up.Clinical trials may be conducted in one or more medical centers. Although1



2it may be reasonable to assume that all the patients in a single center areexchangeable, patients at di�erent centers may not be.In clinical trials conducted at di�erent medical centers, there may be di�er-ences in inclusion and exclusion criteria or in the way such criteria are applied.For example, a patient with a large tumor may be admitted to a cancer trialat one medical center, but not at another.Many clinical trials are multicenter trials. Conducting these trials at morethan one center allows researchers to evaluate the e�cacy of a therapy in a va-riety of patients and centers. Moreover, it might be di�cult or even impossiblefor a single center to recruit the required number of patients in a given timeperiod, especially for some rare diseases.It is important for us to recognize the di�erences between centers when weanalyze data from a multicenter trial, especially when the results vary sub-stantially from center to center. In modeling this kind of data, we can notassume that the observations from all the centers are exchangeable. Fleiss(1986) discussed the controversy about the appropriate analysis of data froma multicenter clinical trial. He posited that pooling in the sense of averagingwithin-clinic di�erences is almost always justi�ed, and pooling in the sense ofthrowing together all the data is only rarely justi�ed.One way to pool the data from all these di�erent centers is to use a hier-archical model, with the idea that these centers are a random sample from apopulation of centers. (This is a random-e�ects as opposed to a �xed-e�ectsmodel.) Such a hierarchical structure takes advantage of the information fromall centers to estimate the e�cacy of therapy in individual centers and thecenter population. In this dissertation, I will propose a full Bayesian model for



3analyzing a clinical trial without center di�erences and a full Bayesian hierar-chical model for analyzing a multicenter clinical trial with center di�erences.The models will be applied to some clinical trial data.1.2 Literature ReviewFor comparing survival distribution functions, Mantel (1966) �rst proposed thelog rank test based on the work of Mantel and Haenszel (1959). The test isa nonparametric method of comparing survival distribution functions, it hasbeen a commonly used classical method in survival analysis.One of the earliest works with Bayesian hierarchical models is that of Lind-ley and Smith (1972). They analyzed the usual linear regression model, using aBayesian hierarchical model. In the �rst stage of the hierarchy, observations areassumed to have independent normal distribution, given �rst stage parameters.Moreover there is a linear regression relationship between the observations andthe �rst stage parameters. In the second stage of the hierarchy, the �rst stageparameters are assumed to have independent normal distributions, given sec-ond stage parameters; and there is a linear regression relationship between thesecond-stage parameters and the �rst-stage parameters. In the third and �nalstage of the hierarchy, the relationship between the second-stage parametersand the third-stage parameters is also a linear regression. Lindley and Smithderived the posterior distribution of the �rst-stage parameters analytically, andthey used the model in some examples.Chakrovorti and Grizzle (1975) proposed a mixed-e�ects model to analyzedata from multicenter experiments for a continuous treatment response. Usinga normal linear model, they treated treatment e�ects as �xed factors; they



4assumed that clinic e�ects and clinic by treatment e�ects were random. Maxi-mum likelihood estimates and likelihood ratio statistics were used as the basisof inference.Hierarchical models have been used to analyze clinical trial data for manyyears. Skene and Wake�eld (1990) presented an application for discrete data,and DuMouchel (1990) presented an application for normal data. Berry andBerry (1993) used a Bayesian hierarchical model in a multi-study of binarydata. In the �rst stage, they assumed that the distribution of the observationsin each study was binomial. In the second stage, they assumed that the successprobabilities in each study were exchangeable and had a beta distribution withunknown parameters. In the third stage, the parameters in the beta distribu-tion were assumed to have a known prior distribution. Berry and Berry derivedthe posterior distributions of the success probabilities in each study and theparameters in the beta distribution. These distributions provided informationabout each individual study and the heterogeneity between the studies.In recent years, researchers have developed applications for continuous butnot normal distributed data. Perhaps the �rst work applying hierarchical mod-els to continuous time survival data is that of Clayton (1991). He used aBayesian hierarchical model termed a \Bayesian Frailty Model" to model theheterogeneity between subgroups in the proportional hazards model. In theproportional hazards model, the hazard function for an individual character-ized by covariate vector z is denoted�(tjz) = �0(t)exp(�Tz):The baseline hazard function, �0(t), is modeled nonparametrically, whereas thesecond factor on the right-hand side is modeled parametrically.



5Stangl (1991) used an exponential-gamma hierarchical model to analyzecontinuous time survival data in a multicenter study aimed at comparing twointerventions. In the �rst stage, she assumed that survival time under one in-tervention in each center had an exponential distribution. In the second stage,Stangl assumed that the hazard rates from all centers in each intervention wereexchangeable gamma random variables, and that the hazard rates for di�erenttreatments were independent. She applied both empirical and nonempiricalBayesian methods to the model. Stangl extended the general exponential dis-tribution to mixture exponential and changepoint exponential distributions forsurvival time in the �rst stage in her other models, and she compared thosedi�erent models by applying them to a multicenter trial data set.Robert Gray (1993) used a Bayesian method to investigate the amountof center variation in a multicenter clinical trial with a censored failure timeendpoint. He used a hierarchical structure to model the center e�ects in aproportional hazards model. In the �rst stage, he modeled failure time asa piecewise exponential distribution. In the second stage, he assumed thatthe constant hazard rates in each interval were lognormally distributed, and hetook some covariates into account by using the Cox proportional hazard model.The jumps of log hazard rates in each interval are assumed to be exchangeableand normally distributed, and so are the log hazard ratios for the treatmentsand the coe�cients of the covariates in the Cox proportional model. Gray thenderived the numerical results of the posterior distributions.Another Bayesian hierarchical model for a multicenter trial is proposed inthis dissertation. In the �rst stage, exponential distributions are assumed forsurvival times. In the second stage, the hazard rate of the standard therapyand the log hazard ratio of the experimental to the standard therapy at di�er-



6ent centers are assumed to be samples from a center population. This modelconnects di�erent centers and the two therapies together, the inference on eachtherapy will use the information on the therapy as well as the information onthe other therapy at all centers. Modelling the log hazard ratios in the secondstage of the hierarchy makes the inference about them in the center populationvery straightforward.1.3 Outline of DissertationIn Chapter 2 of this dissertation, I will introduce a general Bayesian model forcomparing two therapies in a clinical trial that was conducted in one medicalcenter, or that was conducted in multicenters but ignored possible heterogene-ity between di�erent centers. Survival time on each therapy will be modeledwith an exponential distribution. I will model the log hazard ratio directly. Iwill present general procedures for deriving posterior distribution and predic-tive distribution.In Chapter 3, a phase III clinical trial of non-small cell lung cancer (NSCLC)will be introduced, this study was conducted by the Cancer and LeukemiaGroup B (CALGB). I will apply the model proposed in Chapter 2 to this trial,present the numerical results of the posterior distributions and the predictivedistributions, and discuss the sensitivity to prior distributions.In Chapter 4, a general Bayesian hierarchical model for modeling hetero-geneity between centers in a multicenter clinical will be introduced. I assumethat the survival time on each therapy at every center has an exponential dis-tribution, and that the hazard rate of the standard therapy and the log hazardratio of the experimental therapy to the standard therapy in each center are



7a sample from a larger population. I will present the general procedures ofderiving posterior distribution of the parameters in each individual center andthe population. The Gibbs sampling technique will be applied for getting theposterior distributions.In Chapter 5, the hierarchical model proposed in chapter 4 will be appliedto the data from the NSCLC trial sponsored by CALGB. I will model theheterogeneity between di�erent centers and estimate the parameters in eachindividual center and the center population. I will present the results derivedfrom di�erent prior distributions to explore the impact of prior distribution onposterior distribution.In Chapter 6, the model in chapter 4 will be applied to a NIMH-PRBCollaborative Study of Long-Term Maintenance Drug Therapy in a RecurrentA�ective Illness. I will present the numerical results of the posterior distribu-tions of the parameters in each individual center and the center population.I will also present the predictive survival functions for each therapy in all in-dividual centers. Finally, to check the sensitivity to prior distributions, I willpresent the results of some di�erent prior distributions.



Chapter 2A Bayesian Model for ComparingTwo Therapies2.1 IntroductionThis chapter consists of a Bayesian model designed without concern for di�er-ences between centers. This model can be applied to a single-center clinicaltrial or a multicenter clinical trial in which the number of patients in the indi-vidual centers is small. How long a patient survives on a therapy or how longit takes for a disease to recur is of major interest in this kind of trial. Quiteoften, some observations will be right censored. The main goal of the trial is tocompare the e�cacy of two therapies, recognizing that often the e�cacy of agiven therapy is measured by how long a patient can survive on that therapy.2.2 Statistical ModelIt is assumed that survival times on each therapy are exchangeable with anexponential distribution, and that each therapy has a constant hazard rate. Let�1 and �2 be the hazard rates for the standard therapy and the experimental8



9therapy respectively. The hazard rate completely determines the exponentialdistribution; a greater hazard rate means a shorter survival time. To comparethe e�cacy of the two therapies is to compare �1 and �2.Let tjk denote the length of time until the event or censoring occurs on thekth patient assigned therapy j in the trial. The density of tjk is:f(tjkj�j) = �je��jtjk ; j = 1; 2k = 1; � � � ; njwhere j = 1 corresponds to the standard therapy, and j = 2 corresponds tothe experimental therapy.Let v stand for the log hazard ratio of experimental therapy to standardtherapy: v = ln(�2=�1). Parameter v is positive or negative depending onwhether the standard or the experimental therapy is better (in the sense ofhaving smaller hazard rate), and the value of v represents the degree of di�er-ence between the two therapies. The larger the jvj, the greater the di�erencebetween the two therapies. For example, jvj = ln2 = 0:7 implies that the meansurvival time on one therapy is twice that on the other therapy.�2 is determined by �1 and v through relation �2 = �1ev, so (�1, v) formsa full parameter space for this model.Assume our observations are (tjk; �jk); k = 1; :::; nj, j = 1; 2, where �jk isthe status at the observing.�jk = 8><>: 0 if tjk is right censored1 otherwiseIf tjk is a censored point, then the corresponding observation's contribution tothe likelihood function is the survival function S(tjk) = 1� F (tjk) = e��jtjk .



10The likelihood function of �1 and v isL(�1; vjdata) = �2j=1�njk=1f(tjk; �jkj�j)= �2j=1�njk=1��jkj e��jtjk= �2j=1�Pnjk=1 �jkj e��jPnjk=1 tjk= �d11 e��1T1�d22 e��2T2= �d1+d21 ed2vexp[��1(T1 + T2ev)]where dj = Pnjk=1 �jk; j = 1; 2 is the total number of uncensored observationson therapy j, and Tj = Pnjk=1 tjk; j = 1; 2 is the total exposure time observedon therapy j. Su�cient statistics for (�1; v) are dj ; Tj; j = 1; 2.2.3 Prior DistributionsPrior probability distributions of �1 and v represent our knowledge about �1and v before the clinical trial. When much knowledge about �1 and v is avail-able, the prior distributions are quite concentrated. If our knowledge about �1and v is slight, then the prior distributions are disperse.In prior distributions, �1 and v are assumed to be independent. A conjugateprior distribution for �1 is a gamma distribution:f(�1ja; b) / �a�11 e�b�1Usually, there is historical information about the standard therapy. For ex-ample, we might know the median or mean survival time, as well as survivalrate up to a certain time for the patients treated with the standard therapyin previous studies. It is possible that historical and current patients are not



11exchangeable (Lin, 1993), so we only use the information from historical pa-tients to build our prior distribution, we do not use historical patients in ourlikelihood function. Parameters a and b are chosen by assessing the historicalinformation, so that Gamma(a,b) distribution represents prior belief about �1.In this model, prior distribution of v is N(0; �2), and v = 0 correspondsto �1 = �2. Prior belief about the relative e�cacy of the two therapies issymmetric about zero. The value of � re
ects the degree of our prior knowledgeabout v; a small � indicates a �rm belief in the relative e�ciency of the twotherapies. When � is varied to address sensitivity, a larger � represents moreopen-mindedness concerning the relative e�ciency of the experimental therapyto the standard therapy in the sense that the data then have a greater impacton the posterior distribution.2.4 Posterior DistributionsThe joint posterior density of �1 and v isf(�1; vjdata) / f(�1; v)L(�1; vjdata)/ f(�1)f(v)L(�1; vjdata)/ �a�11 e�b�1e� v22�2 �d1+d21 ed2vexp[��1(T1 + T2ev)]/ �a+d1+d2�11 ed2ve� v22�2 exp[��1(b+ T1 + T2ev)]So the posterior density of v isf(vjdata) = Z 10 f(�1; vjdata)d�1/ ed2ve� v22�2 Z 10 �a+d1+d2�11 exp[��1(b+ T1 + T2ev)]d�1



12/ ed2v� v22�2(b+ T1 + T2ev)a+d1+d2f(vjdata) = c ed2v� v22�2(b+ T1 + T2ev)a+d1+d2where c is the normalizing constant.Noticingf(�1jv; data) / f(�1; v)f(dataj�1; v)/ f(�1)f(dataj�1; v)/ �a�11 e�b�1�d1+d21 exp[��1(T1 + T2ev)]/ �a+d1+d2�11 exp[��1(b+ T1 + T2ev)]so,f(�1jv; data) = (b+ T1 + T2ev)a+d1+d2�(a+ d1 + d2) �a+d1+d2�11 exp[��1(b+ T1 + T2ev)] ;a Gamma(a+ d1 + d2; b+ T1 + T2ev) distribution.The posterior density of �1 isf(�1jdata) = Z 1�1 f(�1; vjdata)dv= Z 1�1 f(�1jv; data)f(vjdata)dv= c�(a + d1 + d2)�a+d1+d2�11 e��1(b+T1) Z 1�1 exp[�( v22�2 + �1T2ev)]dvNumerical integration in one dimension is required for calculating f(vjdata)and f(�1jdata). The integrating functions are smooth and unimodal. Simp-



13son's rule will be used to do the numerical integration in the example in thenext chapter.2.5 Predictive Survival FunctionsThe predicted survival function for each therapy is of particular interest tonew patients who need to choose a therapy. Let X1 and X2 denote the survivaltime of new patients treated with therapy 1 and therapy 2, respectively. Thepredicted survival functions for the two therapies areS1(t) = P (X1 > tjdata)= R10 P (X1 > tj�1)f(�1jdata)d�1= R10 e��1tf(�1jdata)d�1S2(t) = P (X2 > tjdata)= R1�1 R10 P (X2 > tj�1; v)f(v; �1jdata)d�1dv= R1�1 R10 e��1evtf(v; �1jdata)d�1dv



Chapter 3Study of a NSCLC Trial3.1 Introduction3.1.1 Purpose of the StudyIn this chapter, we present a case study of a phase III clinical trial conducted byCancer and Leukemia Group B (CALGB) to test two therapies for treatmentof patients with stage III non-small cell lung cancer (NSCLC). Lung cancer isgenerally subdivided into two categories, based on the cell type determined atdiagnosis. The �rst type, small cell (or oat cell) anaplastic carcinoma, accountsfor roughly 30% of all lung cancers. Most other cell types are classi�ed asNSCLC, which includes adenocarcinoma, squamous cell carcinoma, and largecell anaplastic carcinoma. All cancers are usually classi�ed further according tothe extent or stage of disease, so that therapies may be tailored to the particulardisease stage. Patients with NSCLC who have extensive disease in the chestbut no demonstrable distant metastases are de�ned as having stage III NSCLC.Such patients are not generally considered curable by surgery alone.For many years, radiotherapy (RT) alone had been the standard treatment14



15of choice for these patients. In attempting to improve survival time in thesepatients, clinical researchers in the early 1980s considered the possibility thatRT alone might not be su�cient to eradicate micrometastatic disease, andthey accumulated some considerable evidence that indicated that platinum-based chemotherapy (CT) increased the survival time of patients who hadmore advanced disease. Therefore, these researchers proposed that CT beadministered in conjunction with standard RT.The study presented in this chapter was designed to compare the standardtreatment (RT only), which consists of RT delivered over six weeks to theoriginal tumor volume and involved regional lymph nodes, to an experimentaltreatment (CT+RT), which employs �ve weeks of cisplatin plus vinblastineprior to the RT.3.1.2 Design of the StudyThe patient population for this study was limited to patients with documentedregional stage III NSCLC. Patient eligibility criteria included no prior CT, RT,or total resection; performance status of 0 or 1; and weight loss of less than5% in the three-month interval prior to study entry. It also imposed standardCALGB eligibility criteria for laboratory values, other diseases, and so on.Details of the eligibility and other clinical aspects of this study are outlined inDillman et al. (1990).The trial was a prospective, randomized, nonblinded study. The centralo�ce of the CALGB strati�ed patients according to historic type to ensure abalanced distribution between therapy groups, and then randomly assigned thepatients to receive either RT only or CT+RT. For the RT only group, radiation



16therapy was started within �ve days after entry, and the �rst day of therapywas de�ned as day 1. For the CT+RT group, chemotherapy was started on day1 and stopped on either day 29 or day 36; and radiation therapy was startedon day 50.The primary study objective was to compare the overall survival time forthe two therapy groups. The original �xed sample size for this trial was 240patients (120 patients in each therapy group). This sample size was calculatedto provide 80% power to detect a hazard ratio of 1.5:1, assuming that thelogrank test would be used at a two-side signi�cance level of � = 0:05. Ifsurvival times are assumed to be distributed exponentially, a 1.5:1 hazard ratiorepresents a 50% increase in median survival time in one therapy group overanother.3.1.3 Analysis of Survival TimePatients were enrolled from May 1984 to May 1987. Although the trial wasdesigned as a �xed sample size study, several interim analyses were performedand the trial was terminated early in response to a therapy di�erence emergingover time. When the �rst interim analysis was performed in the fall of 1985,the sample size (10 deaths in 50 eligible patients) was too small and the fol-lowing time was too short to allow any meaningful comparison of survival timeby therapy. Four more interim analyses were performed in March 1986, Au-gust 1986, October 1986 and March 1987. In these analyses, the logrank testwas used to compare the two survival curves, and truncated O0Brien-Flemingboundary level for each p-value was adopted in decision making. The Kaplan-Meier plot for the two therapy groups at each interim analysis is presented inFigure 3.1, and Table 3.1 lists the observed p-values and boundary signi�cance



17Analysis Logrank p-value Boundary Decision1st Interim { 0.0013 Keep open2nd Interim 0.021 0.0013 Keep open3rd Interim 0.0071 0.0013 Keep open4th Interim 0.0015 0.0013 Keep open5th Interim 0:0015? 0.0013 Close? After adjusting covariates with Cox model, p-value is 0.0008Table 3.1: Observed p-values and the boundary at the interim analyseslevels used in the monitoring process.Results of the March 1987 interim analysis convinced the CALGB re-searchers to close the trial to further accrual. At that time, 155 eligible patientshad been accrued and follow-up data were available for 105 patients. After thetrial stopped enrolling new patients, the enrolled patients were followed upuntil the summer of 1992. We will analyze the data observed in 1992 as themost recent analysis.3.2 Bayesian Analysis of the NSCLC Study3.2.1 The ModelIn this section, I will apply the model proposed in Chapter 1 to this trial, andperform interim analyses and an analysis of the information gathered in 1992.The primary interest is to compare e�cacies of the two therapies.It is assumed that survival times for each therapy are distributed exponen-tially with hazard rates �j , j = 1; 2. Here, j = 1 corresponds to the RT onlytherapy, and j = 2 corresponds to the CT+RT therapy. Parameter v denotesthe log hazard ratio: v = ln(�2=�1). Posterior distributions of �1 and v arederived at each interim analysis and as of 1992. The prior distributions of �1
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Figure 3.1: Kaplan-Meier plot at interim analyses and as of 1992



19On RT On CT+RTAnalysis Time n1 d1 T1 n2 d2 T21st Interim 25 7 122.03 25 3 164.432nd Interim 41 12 240.63 38 4 341.073rd Interim 41 20 298.53 47 14 432.774th Interim 46 24 375.97 49 18 532.675th Interim 51 32 441.83 54 24 611.13as of 1992 77 71 1135.70 78 65 1737.60Table 3.2: Available information at time of analysisand v are Gamma(a,b) and N(0; �2), respectively.3.2.2 DataThe data from the study, with information up to 1992, are presented in Ap-pendix A. In the model, su�cient statistics of (�1; v) are dj ; Tj; j = 1; 2, which,respectively, represent the total number of deaths and the total exposure timeobserved on each therapy. Table 3.2 displays the su�cient statistics and thetotal number of patients enrolled on each therapy (ni) at the times of the �veinterim analyses and as of June 1992. The time unit is one month.3.2.3 Choice of Prior DistributionsParameters a, b and �2 in prior distributions need to be speci�ed. The priordistribution re
ects our knowledge of the parameters �1 and v prior to thetrial. Available historical information about �1 and v are used to determinetheir prior distribution.Note that the prior distribution function of survival time on RT therapy isf1(t j a; b) = Z 10 f(t j�1)f(�1 j a; b) d�1



20= Z 10 �1e��1t ba�(a)�a�11 e��1bd�1= ba�(a) Z 10 �a1e��1(b+t)d�1= ba�(a) � �(a+ 1)(b+ t)a+1= aba(b+ t)a+1Prior survival function on RT therapy isS1(t j a; b) = Z 1t f1(x j a; b)dx= Z 1t aba(b+ x)a+1dx= ( bb+ t)aEvidence available before this trial suggests that the median survival timeon RT is 8 to 10 months, with a two-year survival rate of 10 to 20 percent and athree-year survival rate of 5 to 10 percent (Perez et al., 1987). In this chapter,parameter values a = 2 and b = 20 are chosen to approximate the historicalinformation. These parameter values set the prior median survival time to 8:3months, two-year survival rate to 20 percent and three-year survival rate to 13percent. So, the prior distribution of �1 is Gamma(2,20).�2, the prior variance of v, re
ects the variation of our prior belief of v. Alarge � re
ects a prior belief of a possible large di�erence between the two ther-apies, and it represents open-mindedness concerning the e�ect of adding CTto RT in the sense that the data then have a greater impact on the posteriordistribution, A small � re
ects a prior belief of only a small di�erence between



21MLE v �1Analysis Time vMLE �1MLE v̂ �̂2v �̂1 �̂2�11st Interim �1:146 0:057 �0:883 0:288 0:050 0:000362nd Interim �1:447 0:050 �1:176 0:221 0:045 0:000183rd Interim �0:728 0:067 �0:680 0:106 0:064 0:000204th Interim �0:636 0:064 �0:607 0:087 0:062 0:000165th Interim �0:612 0:072 �0:586 0:067 0:070 0:00015as of 1992 �0:514 0:063 �0:509 0:028 0:062 0:00005Table 3.3: MLE, posterior modes and variances of v and �1 at times of analysesthe two therapies. Since our prior belief is that adding CT to RT might bepro�table, � is set to 1 �rst. Di�erent values of � will be considered to seethe sensitivity. N(0; 1) distribution for v is a quite disperse prior distributionand a rather open-minded choice. Data will strongly in
uence the posteriordistribution. For example, the trial was designed to detect a log hazard ratio of�ln(1:5) = �0:41, and �0:41 is close to the middle of a standard normal dis-tribution. Choosing a value of � larger than 1 leaves the conclusions essentiallyunchanged from assuming � = 1.3.2.4 Posterior DistributionsResults of analysis are presented in the following tables and �gure. Table 3.3displays the maximum likelihood estimators (MLE), posterior modes (v̂ and�̂1) and variance (�̂2v and �̂2�1) of v and �1 at the times of the analyses. Table3.4 displays posterior probabilities of v < 0, v < �0:25 and v < �0:5 at timesof the analysis. Figure 3.2 shows the marginal posterior densities of v and �1at the �ve interim analyses and as of 1992.From those tables and the �gure, one can see how our beliefs about theparameters changed as the trial went on. They clearly shown that the posterior
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23Some Probabilities of vAnalysis Time P (v < 0 jD) P (v < �0:25 jD) P (v < �0:5 jD)Prior 0.500 0.401 0.3091st Interim 0.976 0.911 0.7942nd Interim 0.997 0.984 0.9403rd Interim 0.987 0.916 0.7204th Interim 0.985 0.895 0.6505th Interim 0.990 0.909 0.637as of 1992 0.999 0.939 0.523Table 3.4: Some posterior probabilities of vvariance of v decreased as the trial went on, and that the posterior variance ofv in the 1992 analysis is about 10 times smaller than that in the �rst interimanalysis. As the trial went on, more and more information was obtained, theposterior density of v got more and more concentrated. The posterior densityof v is mainly concentrated on the left side of v = 0 at any time of analysis, sothe information about v consistently indicates that v is very likely negative.The posterior densities of �1 in the interim analyses have 
uctuated some-what. This is apparent in the plottings of the densities of �1 and the posteriorvariances of �1; and it suggests that the new information in the interim analy-ses might not very consistent with previous information, because in the interimanalyses, only a small number of observations were uncensored, and not muchinformation was available. The posterior density of �1 in the analysis of 1992is much more concentrated than those in the interim analyses because muchmore complete information was obtained in 1992.There were many more early deaths in the RT group than in the CT+RTgroup. In the �rst interim analysis, seven out of 25 patients in the RT onlygroup had died, whereas three out of 25 patients in the CT+RT group had



24died. In the second interim analysis, 12 out of 41 patients receiving RT onlyhad died, whereas only 4 out of 38 patients receiving CT+RT had died. Thissuggests that a patient's chances of surviving are a lot better with the CT+RTthan with the RT alone. This can be seen from the posterior densities of v inthese interim analyses.The posterior modes of v at the �rst and second interim analysis times aresmall, especially at the second interim analysis time when v̂ = �1:176. In themodel, v = �1:176 means a 224% increase in median or mean survival timewith CT+RT over RT only. Because there was less information in the �rstand second interim analyses, the densities of v were relatively 
at. The modeof v increased in the later analyses because more deaths were observed in theCT+RT group. Evidence at any given time suggested that patients would bebetter o� on the CT+RT regimen than on the RT only regimen because theposterior probability of v < 0 is very close to 1 at any time of analysis.3.2.5 Predictive Survival FunctionsPatients with this disease would like to know how well they will respond on eachtherapy and which therapy will help them survive longer. Table 3.5 displays thepredictive mean survival times on the two therapies at the times of analyses.Figure 3.3 presents the predictive survival functions on each therapy at thetimes of analyses.Because of the discrepancy between the results from the two therapies at theearly interimanalysis times, the di�erence between the predictivemean survivaltime on the two therapies is large at early interim analyses. The di�erence wasgreatest (57:6 months) at the time of the second interim analysis because the
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26Mean Survival (month)Analysis Time RT CT+RT1st Interim 17.9 52.92nd Interim 20.1 77.73rd Interim 15.6 31.54th Interim 16.2 30.25th Interim 14.2 25.9as of 1992 16.2 27.0Table 3.5: Predictive mean survival time at time of analysislargest di�erence between the data on the two therapy groups occurred then.In Figure 3.3, the predictive survival function for the CT+RT group is alwaysabove that for the RT only group. These plots indicate that at any time point,the probability of a patient in the CT+RT group would survive to that timepoint is always greater than that of a patient in the RT only group. Thedi�erence between the two survival functions was large in the early interimanalyses, especially in the second interim analysis. The di�erence between thetwo survival functions and the two predictive mean survival times decreased inlater analyses and became stable.3.2.6 Sensitivity to Prior DistributionsSince the log hazard ratio is unlikely to have a large absolute value, the N(0; 1)prior distribution of v is quite disperse. The choice of � = 1 in the N(0; �2)prior distribution of v is quite open-minded; that means that the data playa crucial role in making an inference about v. Choosing the N(0; �2) priordistribution for v shows that we are neutral concerning the e�ect of adding CTto RT, and the value of � re
ects our degree of con�dence about this concern.A larger � represents more open-mindedness in the sense that the data then



27have a greater impact on the posterior distribution.All priors in the N(0; �2) family have the same probability of v < 0 (CT isa bene�cial add-on) as of v > 0 (CT detrimental). This symmetry may not beappropriate, because CT was not regarded a priori as likely to be detrimental.However, the likelihood function concentrates on v < 0. So, the fact that halfthe prior probability is associated with v > 0 turns out to be unimportant.An open-minded prior means that if early data point to CT being e�ective,the posterior probability of v<0, say, may be quite large. For someone withan open-minded prior, this is appropriate; but it is not appropriate if thee�ectiveness of CT is questionable. If � is very small, then our prior belief thatCT+RT is as good as RT alone is strong, and early data would not change thisbelief much.Figure 3.4 shows how P (v < 0 jD), P (v < �0:25 jD) and P (v < �0:5 jD)change when � varies. We can see from the �gure that the posterior proba-bilities have a larger variation for a smaller �, and the variation decreases as� increases. The variation is larger at the earlier analysis times than at thelater analysis times, because when more data is available, the prior distributionbecomes less impact on the posterior distribution.3.2.7 What If the Trial Had Not Been Stopped EarlyThe trial became controversial because it was stopped early. A very importantquestion raised is, what would the trial have concluded if it had not beenstopped in 1987? Obviously, no one can be certain. An advantage of theBayesian approach is that all uncertainties have probabilities. One can �ndthe distribution of lifetimes that would have been concluded had the trial
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Figure 3.4: The e�ect on the posterior probabilities of changing �



29continued to its originally planned size. This distribution can be found atany time. The most interesting times during the conduct of a trial occur atthe interim analyses. From our perspective, the present is the most interestingtime. So, the predictive distributions conditioned on information availabletoday are calculated.According to its design, the trial was to stop once 240 patients had beenaccrued or a total of 190 deaths had occurred. In the simulations to be de-scribed, the 240th patient was always admitted before the 190th death oc-curred, so the former criterion is really the only e�ective one. In 1987, whenthe trial stopped, 155 patients had been admitted. These patients are includedin the \as of 1992" analysis. According to the predictive distribution basedon the information from the 155 patients in 1992, I simulated the informationthat would be available in June 1992 had an additional 85 patients accrued(uniformly over the 17 months between April 1987 and September 1988), for atotal of 240.Figure 3.5 displays simulated values of P (v < 0j240 pts), P (v < �0:25j240 pts)and P (v < �0:50j240 pts). In each case, the mean is the actual current value ofthe corresponding probability, which is based on the data for the 155 patientsin the \as of 1992" analysis of Table 3.4. The histogram for P (v < 0j240 pts)makes it clear that the strong conclusion that CT is bene�cial is unlikely tohave changed even with an increase in sample size of 55 percent. The secondhistogram, that for P (v < �0:25j240 pts), evinces greater variability, indicat-ing that this quantity is somewhat less predictable, but it is still very likely thatv would be less than �0:25. The third histogram shows still more variabilityfor P (v < �0:5j240 pts).
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31Figure 3.6 displays simulated values of the mean survival times for the twotherapy groups. From this �gure, one can conclude that the mean advantagein survival time of about 11 months would not change much had an additional85 patients accrued.
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Chapter 4A Bayesian Hierarchical Model forMulticenter Trial4.1 IntroductionCenter di�erences in a multicenter clinical trial are examined in this chapter.A multicenter trial applies therapies to a wider range of centers and patientgroups than a trial at a single center does. Di�erent medical centers might havedi�erent characteristics, so that their patients' response to one therapy mightbe di�erent at di�erent centers. I will describe a general Bayesian hierarchicalmodel for analyzing a multicenter clinical trial data, and in section 3, I willbrie
y introduce the Gibbs sampling technique that will be used for calculatingposterior marginal densities.In this chapter, a multicenter trial is conducted to compare two therapies.Observations are patients' survival times. Exponential distributions will beused for survival times. Our goal is to compare the e�cacies of the two thera-pies in the presence of a possible center e�ect.33



344.2 Statistical ModelIn a multicenter trial of two therapies, data are a combination of I � 2 sub-groups, where I is the number of medical centers that participated in the trial.For each center, there are two subgroups of data that correspond to the twotherapies. In the hierarchical model proposed in this chapter, survival timesare modeled in the �rst level of the hierarchy. In the second level, parametersfor individual centers are modeled to be a sample from a center population. Inthe third level, the parameters in the center population are modeled.Let tijk be the survival time of the kth patient on therapy j in center i,i = 1; � � � ; I, j = 1; 2, k = 1; � � � ; nij . In the �rst stage, tijk has distribution:f(tijkj�ij) = �ije��ijtijk ; i = 1; � � � ; Ij = 1; 2k = 1; � � � ; nijwhere j = 1 corresponds to the standard therapy, and j = 2 corresponds tothe experimental therapy. �i1 and �i2 are the two hazard rates in center i.Comparing the two therapies in center i is to compare �i1 and �i2. Let vi =ln(�i2=�i1) | the log hazard ratio in center i, i = 1; � � � ; I. Parameter vi ispositive or negative depending on whether the standard or the experimentaltherapy is better (in the sense of having smaller hazard rate) in center i, andthe value of vi represents the degree of di�erence between the two therapies incenter i. �i2 is determined by �i1 and vi through relation �i2 = �i1evi. So (�i1,vi), i = 1; � � � ; I, form a full parameter space in the �rst level of this hierarchicalmodel.In the second level, �i1; i = 1; � � � ; I are assumed to be exchangeable with a



35gamma distribution; and vi; i = 1; � � � ; I are assumed to be exchangeable witha normal distribution.�i1j(a; b) i:i:d:� Gamma(a; b)f(�i1ja; b) / �a�1i1 e�b�i1 i = 1; � � � ; Ivij(�; �2) i:i:d:� N(�; �2) i = 1; � � � ; I�i10s and vi0s are independent.In the third level, parameters are assumed asa is knownb � Gamma(c; d)f(b) / bc�1e�db� � N(0; 1)�2 � IG(u;w) (Inverse Gamma)f(�2) / (�2)�(u+1)e� w�2b; � and �2 are independent. c; d; u and w are known parameters.Assume that the observations are (tijk; �ijk), where �ijk is the status at thetime of the observation.�ijk = 8><>: 0 if tijk is right censored i = 1; � � � ; Ij = 1; 21 otherwise k = 1; � � � ; nij



36The likelihood function in center i isLi(�i1; vijdata) = �2j=1�nijk=1f(tijk; �ijkj�ij)= �2j=1�nijk=1��ijkij e��ijtijk= �2j=1�Pnijk=1 �ijkij e��ijPnijk=1 tijk= �di1i1 e��i1Ti1�di2i2 e��i2Ti2= �di1+di2i1 edi2viexp[��i1(Ti1 + Ti2evi)]where dij = Pnijk=1 �ijkTij = Pnijk=1 tijk ; j = 1; 2; i = 1; � � � ; Iare the total number of uncensored observations and total exposure time ontherapy j in center i, j = 1; 2; i = 1; � � � ; I.The likelihood function isL(�; v; b; �; �2jdata) = �Ii=1Li= �Ii=1�di1+di2i1 edi2viexp[��i1(Ti1 + Ti2evi)]where � = (�11; � � � ; �I1), v = (v1; � � � ; vI).The su�cient statistics for those parameters are dij; Tij; j = 1; 2; i =1; � � � ; I.4.3 Gibbs SamplingIn a high dimensional problem, to calculate the marginal posterior distributionsof parameters once involved numerical integration. Geman and Geman (1984)



37introduced a method of estimating the marginal posterior distributions of ran-dom variables using the full conditional distributions, and their method wasfurther developed by Gelfand and Smith (1990) into a popularly used methodcalled Gibbs sampling technique.Suppose we have m random variables, X1; � � � ;Xm, and know the full con-ditional distributions f(XijXj; j 6= i); i = 1; � � � ;m. We need to �nd theirmarginal distributions. To do Gibbs sampling, we begin withm arbitrary start-ing values X01 ; � � � ;X0m for the m random variables. First, we update X01 by arandom observationX11 from the full conditional distribution f(X1jX02 ; � � � ;X0m).Next, X02 is updated by a random observation X12 from the full conditional dis-tribution f(X2jX11 ;X03 ; � � � ;X0m). The process is continued forX3; � � � ;Xm untilX0m is updated by a random observation X1m from the full conditional distri-bution f(XmjX11 ; � � � ;X1m�1). X01 ; � � � ;X0m is updated by X11 ; � � � ;X1m, and werepeat the entire process S times, updating Xs�1i by a random observationXsi from the full conditional distribution f(XijXs1 ; � � � ;Xsi�1;Xs�1i+1 ; � � � ;Xs�1m )at the s-th iteration. Under mild regularity conditions, Geman and Gemanshowed that as s ! 1, this joint sample tends in probability distribution toa variable with the joint distribution f(X1;X2; � � � ;Xm). So (Xs1 ;Xs2 ; � � � ;Xsm)can be regarded as a random observation from the joint distribution. We dothis sampling R times to get R m-tuples (X(r)1 ;X(r)2 ; � � � ;X(r)m ); r = 1; 2; � � � ; R,and to approximate the marginal density of f(Xi) by the �nite mixture densityf(Xi) = 1R RXr=1 f(XijX(r)1 ; � � � ;X(r)i�1;X(r)i+1; � � � ;X(r)m )Because of the hierarchical structure, the full posterior conditional distribu-tions are relatively easy to be derived in a hierarchical model. The Gibbs



38sampling technique greatly simpli�es the process of calculating marginal pos-terior distributions in a hierarchical model.4.4 Full Posterior Conditional DistributionsTo do statistical inference on the parameters �i1; vi; i = 1; � � � ; I; b; � and �2, Iapplied the Gibbs sampling technique in such a high dimensional problem to getposterior marginal distributions. First, I must derive full posterior conditionaldistributions. In the following conditional distributions, \all" refers to all theseparameters, and \others" refers to all the other parameters except the onewhose conditional distribution is being derived.The full posterior conditional distributions aref(�i1 j others; data) / f(�i1 j a; b)f(data j all)/ �a�1i1 e�b�i1�di1+di2i1 exp[��i1(Ti1 + Ti2evi)]/ �a+di1+di2�1i1 exp[��i1(b+ Ti1 + Ti2evi)](�i1 j others; data) � Gamma(a+ di1 + di2; b+ Ti1 + Ti2evi)f(vi j others; data) / f(vi j�; �2)f(data j all)/ e� (vi��)22�2 edi2vie��i1Ti2evif(b j others; data) / f(b)f(�11; :::; �I1ja; b)f(datajall)/ f(b)�Ii=1f(�i1 j a; b)/ bc�1e�dbbIae�bPIi=1 �i1/ bIa+c�1e�b(d+PIi=1 �i1)(b j others; data) � Gamma(Ia+ c; d+PIi=1 �i1)



39f(� j others; data) / f(�)f(v1; :::; vk j�; �2)f(data j all)/ f(�)�Ii=1f(vi j�; �2)/ e��22 e�PIi=1 (��vi)22�2/ expf� (��PIi=1 vi�2+I )22( �2�2+I ) g(� j others; data) � N(PIi=1 vi�2+I ; �2�2+I )f(�2 j others; data) / f(�2)�Ii=1f(vi j�; �2)f(datajall)/ (�2)�(u+1)e� w�2 (�2)�I=2e�PIi=1 (vi��)22�2/ (�2)�(u+ I2+1)e�w+12PIi=1 (vi��)2�2(�2 j others; data) � IG(u+ I2 ; w + 12 PIi=1 (vi � �)2)In all these conditional distributions, �i10s, b0s, �0s and �20s are gamma, normaland inverse gamma distributions. It is easy to sample from these distributions.The full posterior conditional distributions of vi0s are not among those wellde�ned distribution families, and the rejection method (Devroye, 1986) needsto be used for getting a random sample of vi from the posterior conditionaldistribution of f(vijothers; data). Applying the Gibbs sampling technique, wecan estimate the posterior distributions f(�i1jdata), f(vijdata), i = 1; � � � ; I,f(bjdata), f(�jdata) and f(�2jdata).



404.5 Choice of Prior DistributionsWhen one speci�es The parameters in the third level of the hierarchical model,they will re
ect the prior belief about the hazard rates of the standard therapy,the relative therapy e�ects, and their heterogeneity across centers. To choosetheir values for a real problem, one needs to use the knowledge about thetherapies before the trial. Prior knowledge about the standard therapy isusually expressed on �i1, the marginal prior distribution of �i1 isf(�i1jc; d) = Z 10 f(�i1ja; b)f(bjc; d)db= Z 10 ba�(a)�a�1i1 e�b�i1 dc�(c)bc�1e�bddb= dc�a�1i1�(a)�(c) Z 10 ba+c�1e�b(d+�i1)db= dc�(a+ c)�(a)�(c) �a�1i1(d + �i1)a+cprior mode of �i1 is �̂i1 = (a�1)dc+1 , i = 1; � � � ; I.The prior means of �i1; vi; i = 1; � � � ; I areE(�i1jc; d) = E(E(�i1jb)jc; d)= E(ab j c; d)= adc� 1E(viju;w) = E(E(vij�; �2)ju;w)= E(�ju;w)= 0



414.6 Predictive Survival FunctionsInformation on the patients in the trial is analyzed to compute the predictedsurvival functions for each therapy in every center participated in the trial.Let Xi1 and Xi2 denote the survival times of a new patient on therapy 1 andtherapy 2 in center i. The predictive survival functions on the two therapiesin center i, i = 1; � � � ; I areSi1(t) = P (Xi1 > t j data)= R10 P (Xi1 > t j�i1)f(�i1 j data)d�i1= R10 e��i1tf(�i1 j data)d�i1After applying Gibbs sampling technique, we have a random sample fromany marginal or joint posterior distribution. We can calculate the above pre-dictive survival function by applying Monte Carlo integration method.



Chapter 5The NSCLC Study with aHierarchical Model5.1 IntroductionIn Chapter 3, the phase III clinical trial conducted by CALGB for comparingtwo therapies was presented. It was multicenter trial, but we regarded all theobservations in one therapy group as exchangeable, ignoring possible centerheterogeneity.In this chapter, I will consider center heterogeneity. The model proposedin Chapter 4 will be used to analyze the trial data. Analysis will focus on theinformation available in 1992.In the CALGB trial, the standard therapy was radiotherapy (RT) alone,and the experimental therapy was chemotherapy followed by radiotherapy(CT+RT). By May 1987, the trial accrued a total of 155 patients, and 22medical centers participated in the trial. The total number of patients in eachof these centers varied from 1 to 22. Many centers had only a few patientseach. 42



43Center ni1 di1 Ti1 ni2 di2 Ti21 1 0 83.77 1 1 16.532 4 3 87.23 1 1 9.473 12 12 189.73 10 7 323.374 11 10 203.80 11 10 200.675 2 2 16.60 1 1 48.076 3 2 44.33 4 3 103.707 4 4 26.67 3 2 82.238 2 2 22.77 2 2 26.039 2 2 24.50 2 1 81.4310 4 3 83.40 4 4 56.4311 6 6 59.93 6 3 211.9712 1 1 2.30 3 3 33.7013 7 6 147.77 11 11 106.0014 6 6 40.90 7 7 110.1715 1 1 3.57 1 1 47.8316 3 3 27.40 3 3 45.9717 1 1 8.30 1 0 56.6718 1 1 1.27 2 2 18.5319 3 3 33.93 3 2 91.0320 2 2 10.03 0 0 021 0 0 0 1 1 12.0322 1 1 17.50 1 0 55.77total 77 71 1135.7 78 65 1737.6Table 5.1: Su�cient statistics by center5.2 DataThe su�cient statistics dij ; Tij; j = 1; 2; i = 1; � � � ; I, represent the totalnumber of uncensored observations and the total exposure time observed ontherapy j in center i. j = 1 denotes the patients treated with RT only, andj = 2 denotes the CT+RT group. Table 5.1 displays dij; Tij and nij (the totalnumber of patients) from all the centers. The time unit is one month. Only�ve centers have more than 10 patients.



445.3 Choice of Prior DistributionsBefore applying the hierarchical model introduced in Chapter 4, we must spec-ify the parameter a in the second level and the parameters in the third leveldistributions of the hierarchy. These parameters re
ect our prior belief aboutthe value of the hazard rate for the RT therapy and the log hazard ratio, andalso the heterogeneity between di�erent centers. The �rst analysis is performedwith values of a; c; d; u and w that are chosen according to our prior knowl-edge. Then analyses will be performed with other values for these parametersto determine the sensitivity of the analysis to the prior distribution.In this trial, our prior belief is that there would not be a large variationamong the vi0s across centers. That means � is small. So we choose u = 3 andw = 0:32, which gives an IG(3,0.32) prior distribution to �2, which has priormean and variance ofE(�2 ju;w) = wu� 1 = 0:16V (�2 ju;w) = w2(u� 1)2(u� 2) = 0:0256The gamma distribution of �i1 in the second level is conjugate to the ex-ponential distribution in the �rst level. From the posterior distribution of �i1,we see that a acts as a prior number of uncensored observations and b is likethe prior total exposure time for the patients treated with RT only. The in-formation available before this trial suggests that the median survival time onRT is 8 to 10 months, with a two-year survival rate of 10 to 20 percent and athree-year survival rate of 5 to 10 percent. This suggests that �i1 is likely tobe approximately 0:075. We set a at 6, and choose c = 4 and d = 0:075 to



45approximate this information; that gives a Gamma(4; 0:075) prior distributionto b, and the prior mode of �i1 is �̂i1 = (a�1)dc+1 = 0:075. Prior distributions area = 6b � Gamma(4; 0:075)� � N(0; 1)�2 � IG(3; 0:32)Given a and b, expectations of the population mean and variance of �i1 areE(�i1 j a; b) = abV (�i1 j a; b) = ab2Figure 5.1 presents the prior distributions of a=b, a=b2, � and �2.5.4 Posterior DistributionsThe results are presented in the following tables and �gures. Figure 5.2 dis-plays posterior distributions of vi at those 22 centers and a random new center(Center 23). In the model, vi = 0 indicates �i1 = �i2, and that means theRT only regimen and the CT+RT regimen perform equally well at center i.In many centers, zero is close to the middle of the posterior distribution ofvi. There is not enough evidence to conclude which therapy is better in manycenters because of small sample sizes in these centers. For the same reason,the posterior distributions of vi in many centers are disperse. In several cen-ters with relatively larger sample size, the posterior densities of vi are moreconcentrated than in other centers with smaller sample sizes.
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48Figure 5.3 displays the posterior distributions of �i1; i = 1; � � � ; 22. Similarto the posterior distributions of vi, posterior distributions of �i1 are dispersein many centers because of small sample size. In several centers with relativelarger sample size, The posterior distributions of �i1 are more concentratedthan in other centers with smaller sample sizes.Without hierarchical structure, parameters in di�erent individual centersare independent. The maximum likelihood estimators of vi and �i1 are�i1MLE = di1Ti1viMLE = ln(di2=Ti2di1=Ti1 ); i = 1; � � � ; 22In a multicenter hierarchical model, statistical inference about each individ-ual center not only depends on the information from that center, but also onthe information from all the other centers. Information from the other centerswill a�ect the inference about that center because of the hierarchical structure.That is usually called \borrowing strength." A hierarchical model will pullthe parameters in individual centers to each other. Extreme or small centersborrow more strength than other centers do.For a given b, the mode of �i1 in population is (a�1)=b, when we substituteb in its posterior mode b̂, our estimator of the mode of �i1 in population is(a � 1)=b̂ = 0:057. For a given �, the mode of vi in population is �, whenwe substitute � in its posterior mode �̂, our estimator of the mode of vi inpopulation is �̂ = �0:472.Table 5.2 displays individual center log hazard ratios (their MLE), theposterior mode of vi (v̂i), the pooled population log hazard ratio (posteriormode �̂), the posterior mean and variance of vi, and the posterior probability
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50Center viMLE v̂i �̂ E(vi jD) V(vi jD) P (vi < 0 jD)1 1 �0:302 �0:472 �0:266 0:442 0:6372 1:122 �0:281 �0:472 �0:234 0:454 0:6363 �1:072 �0:844 �0:472 �0:877 0:166 0:9314 0:015 �0:202 �0:472 �0:173 0:160 0:5985 �1:756 �0:680 �0:472 �0:777 0:345 0:8566 �0:444 �0:574 �0:472 �0:607 0:268 0:8177 �1:819 �0:776 �0:472 �0:854 0:284 0:8988 �0:134 �0:298 �0:472 �0:295 0:327 0:6369 �1:894 �0:828 �0:472 �0:943 0:338 0:90910 0:678 �0:106 �0:472 �0:080 0:264 0:53711 �1:956 �1:079 �0:472 �1:152 0:255 0:96312 �1:586 �0:222 �0:472 �0:201 0:306 0:61913 0:938 0:323 �0:472 0:385 0:210 0:27014 �0:837 �0:397 �0:472 �0:373 0:199 0:71915 �2:595 �0:679 �0:472 �0:772 0:352 0:85016 �0:517 �0:339 �0:472 �0:339 0:273 0:69917 �1 �0:895 �0:472 �1:060 0:410 0:93118 �1:987 �0:227 �0:472 �0:201 0:352 0:60519 �1:392 �0:738 �0:472 �0:818 0:294 0:87420 � �0:473 �0:472 �0:474 0:572 0:74321 � �0:348 �0:472 �0:337 0:422 0:68122 �1 �0:868 �0:472 �1:025 0:412 0:921Table 5.2: The MLE, posterior mode, pooled population mode, posterior mean,variance of vi and P (vi < 0jD) from all centersof vi < 0 for each center.The parameters for each individual center are pulled toward each other,as is clearly shown in columns 2 to 4 in Tables 5.2. For all the centers thattheir center MLE of vi (column 2) is greater than the pooled population loghazard ratio (column 4), the posterior modes of vi in these centers are pulleddown from their center's log hazard ratio. For all centers with MLE of vi is lessthan the pooled population value, the posterior mode of vi in these centers arepulled up from their center's log hazard ratio. The center-to-center variation



51between the posterior modes of vi is much less than that between the MLEsof vi, because the hierarchical model connects vi in individual centers togetherand pulls them closer.Table 5.3 shows the individual center hazard rates on the RT therapy (theirMLE), the posterior mode of �i1 (�̂i1), the pooled population hazard rate ((a�1)=b̂), and the posterior mean and variance of �i1. In the same manner as thevi0s, the individual center hazard rates on the RT therapy are pulled towardthe pooled population hazard rate on the RT therapy. For all the centersthat their center MLE of �i1 are greater than the pooled population value,their posterior modes of �i1 are pulled down toward the pooled populationvalue. For all the centers that their center MLE of �i1 are less than the pooledpopulation value, their posterior modes of �i1 are pulled up toward the pooledpopulation vale. The variation between the posterior modes of �i1 in di�erentcenters is much less than that between the MLE of �i1 in di�erent centers,because the hierarchical model connects �i1 in di�erent centers together andpulls them closer.Let us now see how this shrinkage happens at some individual centers. Incenter 1, there are two patients, one treated with RT only and one receivingCT+RT. The latter patient died after 16:5 months in the study, and the formerpatient was still alive after 83:8 months in the study. Based only on the infor-mation from center 1, it seems that patients can survive much longer on a RTonly regimen than on a CT+RT regiman, and that the maximum likelihoodestimators of v1 and �11 arev1MLE = 1:6; �11MLE = 0However, in the hierarchicalmodel, the evidence from the other centers suggests



52
Center �i1MLE �̂i1 (a� 1)=b̂ E(�i1 jD) V(�i1 jD)1 0 0:031 0:057 0:037 0:000212 0:034 0:047 0:057 0:054 0:000323 0:063 0:055 0:057 0:059 0:000284 0:049 0:052 0:057 0:055 0:000275 0:120 0:058 0:057 0:068 0:000706 0:045 0:048 0:057 0:056 0:000467 0:150 0:069 0:057 0:077 0:000768 0:088 0:064 0:057 0:074 0:000749 0:082 0:050 0:057 0:060 0:0005510 0:036 0:050 0:057 0:056 0:0003611 0:100 0:059 0:057 0:067 0:0005412 0:435 0:069 0:057 0:082 0:0010813 0:041 0:054 0:057 0:058 0:0003514 0:147 0:081 0:057 0:091 0:0009615 0:280 0:055 0:057 0:068 0:0008016 0:109 0:068 0:057 0:078 0:0007817 0:012 0:047 0:057 0:058 0:0006218 0:787 0:069 0:057 0:083 0:0010919 0:088 0:055 0:057 0:065 0:0005920 0:200 0:068 0:057 0:081 0:0009821 � 0:057 0:057 0:071 0:0009022 0:057 0:043 0:057 0:054 0:00052Table 5.3: The MLE, posterior mode, pooled population mode, posterior meanand variance of �i1 from all centers



53that patients survive longer when treated with CT+RT than when treated withRT only. The posterior mode of v1 is v̂1 = �0:302, it is shrunk toward thepooled population log hazard ratio from the individual center value v1MLE =1:6, and the posterior distribution of v1 indicates that v1 is more likely to benegative than to be positive (P (v1 < 0jD) = 0:637).Because center 1 is a small center, the posterior distribution of v1 is greatlya�ected by the information from the other centers. Similar shrinkage happensto �11, and its posterior mode of 0:021 shrank toward the pooled populationhazard rate for patients receiving RT only. This kind of strong \strength bor-rowing" happens in many other small centers, too.Take center 3 as an example of the large centers. Center 3 has 12 patientstreated with RT only and 10 patients received CT+RT. the su�cient statisticsare d31 = 12; T31 = 189:73; d32 = 7; T32 = 323:37Based on the information from this center, the maximum likelihood estimatorsof v3 and �31 are v3MLE = �1:07; �31MLE = 0:063v3MLE is very small, and v3 = �1:07 means that the mean survival time forpatients treated with CT+RT is as much as 2:9 times that of those received RTonly. Evidence from the other centers suggests that the population log hazardratio would not be so small, so the hierarchical model pulled v3 up towardthe pooled population log hazard ratio. The resulting posterior mode of v3is �0:844, up from its individual center value. For �31, its MLE is above thepopulation hazard rate for patients treated with RT only, but information fromother centers pulled �̂31 toward the population value. The resulting posterior



54mode is 0:055, down from the individual center value. Since center 3 has arelatively larger number of patients, the inference about this center is relativelystronger, and the posterior variances of vi and �i1 in this center are smallerthan those in small centers.Let us now look at another large center. Center 13 has 7 patients on the RTonly regimen and 11 patients on the CT+RT regimen. The su�cient statisticsare d13;1 = 6; T13;1 = 147:77; d13;2 = 11; T13;2 = 106:0Based on the information in this center, the maximum likelihood estimators ofv13 and �13;1 are v13MLE = 0:938; �13;1MLE = 0:041v13MLE is far greater than the pooled population log hazard ratio, which in-dicates that a patient's mean survival time on CT+RT is less than that onRT only. v13 = 0:938 means that in center 13 a patient's mean survival timeon CT+RT is only 39% of that on RT only. After borrowing strength fromother centers, v13 is pulled down toward the pooled population log hazard ra-tio. The posterior mode of v13 is 0:323, down from its individual center value.v13 = 0:323 means that in center 13 a patient's mean survival time on CT+RTis about 72% of that on RT only. The individual center value of �131 is belowthe pooled population value, but information from other centers pulled �131 uptoward the population value. The posterior mode of �131 is 0:054, up from theMLE of �131.The solid curves in Figure 5.4 show posterior distributions of populationparameters a=b, a=b2, � and �2. The posterior distributions of a=b and �are much more concentrated than their prior distributions, indicating that the



55Parameter Mode Mean Variancea=b 0:066 0:068 0:00011a=b2 0:00114 0:00079 6:62 � 10�8� �0:472 �0:473 0:075�2 0:304 0:514 0:102Table 5.4: Posterior mode, mean and variance of a=b, a=b2, � and �2study contains much information about these parameters. Table 5.4 displaysthe posterior mode, mean and variance of a=b, a=b2, � and �2. The posteriormode of � is �0:472. � = �0:472 corresponds to a 60% increase in meansurvival time for the population on CT+RT compared to the population treatedonly with RT. With posterior probability P (� < 0jD) = 0:963, it is very likelythat the population mean of vi is negative.5.5 Inference in Large CentersThe �ve centers that have the most patients are centers 3, 4, 11, 13 and 14.The posterior variances of vi in these centers are smaller than those in othercenters. Figure 5.5 displays the posterior distributions of vi and �i1 in these�ve centers. This �gure shows the degree of heterogeneity among these largecenters. The posterior distributions of these vi0s demonstrate some variation.The posterior modes of vi in these centers vary from �1:079 to 0:323, and theposterior variances of vi in these centers vary from 0:160 to 0:255. The vi0sin center 3 and 11 are very likely to be negative (P (v3 < 0jD) = 0:931 andP (v11 < 0jD) = 0:963), whereas v13 is likely to be positive (P (v13 > 0jD) =0:730), Thus, the CT+RT regimen is very likely to be more e�ective than theRT only regimen in centers 3 and 11, whereas the RT only regimen is likely
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57to be more e�ective than the CT+RT regimen in center 13. Center 13 is theonly center whose vi is more likely to be positive than negative, which meansthat center 13 is the only center in which it is likely that the RT only regimenperforms better than the CT+RT regimen.There is less heterogeneity among the �i10s at these centers than there isamong the vi0s. The posterior modes of �i1 at these centers vary from 0:052 to0:081, and the posterior variances of �i1 at these centers vary from 0:00027 to0:00096. The posterior distributions of �i1 at centers 3, 4, 11 and 13 are veryclose, the posterior modes of �i1 at these four centers change only from 0:052 to0:059, and the posterior variances of �i1 at these four centers vary from 0:00027to 0:00054. The posterior distribution of �i1 in center 14 is quite di�erent fromthose at the other four centers, the posterior mode of �i1 at center 14 is muchgreater than those at the other four centers, and the posterior distribution of�i1 at center 14 is 
atter than those at the other four centers. Therefore, itis quite likely that the hazard rate on the RT only at centers 3, 4, 11, and 13are very close, and that the �i1 at center 14 is greater than those at the otherfour centers, which means that the RT only regimen performed equally well atcenters 3, 4, 11, and 13, and it performed better at those four centers than incenter 14.5.6 Predictive Survival FunctionsThe predictive survival functions for patients treated with each therapy arealways among the things that a new patient wants to know. Figure 5.6 displaysthe predictive survival functions on RT only and CT+RT at all 22 centers anda new random center (Center 23).
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60There are some variations among the di�erent centers for the di�erencebetween the two survival functions at each center. The survival function forpatients on CT+RT is always greater than that for those on RT only at all thecenters except center 13. There is a large di�erence between the two survivalfunctions at centers 3, 5, 7, 9, 11, 15, 17, 19 and 22, because the vi0s for thesecenters are small. For example, in center 3, the probability of surviving up totwo years on the RT only regimen is 0:263, whereas it is 0:547 on the CT+RTregimen. At center 11, the two-year survival probability is 0:229 on the RTonly regimen and 0:579 on the CT+RT regimen. The di�erence between thetwo survival functions on the two therapies is greatest at center 11, becausev11 is likely to be the smallest among all the vi; i = 1; � � � ; 22.Center 13 is a relatively large center, and it is the only center at whichthe RT only regimen likely performs better than the CT+RT regimen. Thereason could be the randomness in sampling; or it might be that the patientswho received CT+RT were in worse condition than those treated with the RTtherapy; or perhaps, center 13 performed the therapies slightly di�erently fromthe other centers etc. Certainly, a careful review of the patients at center 13and how this center performs the therapies should be performed.Table 5.5 displays the predicted survival probabilities of six months, oneyear, two years and three years on the RT therapy in all centers.Table 5.6 displays the predicted survival probabilities of six months, oneyear, two years and three years for patients treated with the CT+RT therapyat each center.



61
Predicted survival probabilityCenter six months one year two years three years1 0:806 0:654 0:439 0:3022 0:729 0:537 0:300 0:1733 0:706 0:504 0:263 0:1424 0:723 0:527 0:288 0:1625 0:671 0:459 0:228 0:1206 0:717 0:522 0:289 0:1687 0:637 0:415 0:187 0:0918 0:647 0:428 0:199 0:0989 0:704 0:505 0:271 0:15410 0:718 0:521 0:284 0:16111 0:675 0:464 0:229 0:12012 0:622 0:400 0:180 0:08813 0:712 0:514 0:276 0:15514 0:595 0:365 0:149 0:06715 0:672 0:463 0:234 0:12716 0:634 0:412 0:185 0:09017 0:710 0:515 0:285 0:16718 0:618 0:394 0:174 0:08319 0:680 0:472 0:239 0:12820 0:623 0:400 0:178 0:08621 0:666 0:455 0:227 0:12222 0:730 0:542 0:312 0:189Table 5.5: Predicted survival probability on the RT therapy



62
Predicted survival probabilityCenter six months one year two years three years1 0:818 0:686 0:505 0:3872 0:742 0:577 0:376 0:2623 0:851 0:730 0:547 0:4194 0:742 0:564 0:344 0:2215 0:804 0:660 0:464 0:3406 0:812 0:671 0:475 0:3497 0:800 0:652 0:452 0:3278 0:685 0:498 0:292 0:1859 0:848 0:722 0:549 0:42710 0:706 0:519 0:306 0:19411 0:863 0:751 0:579 0:45612 0:650 0:452 0:247 0:14813 0:596 0:380 0:176 0:09114 0:682 0:485 0:268 0:16115 0:803 0:658 0:464 0:34216 0:696 0:508 0:296 0:18717 0:864 0:755 0:590 0:47418 0:639 0:445 0:245 0:14919 0:818 0:680 0:486 0:36120 0:710 0:538 0:343 0:23721 0:711 0:536 0:334 0:22522 0:870 0:765 0:605 0:491Table 5.6: Predicted survival probability on the CT+RT therapy



635.7 Sensitivity to Prior Distributions5.7.1 Three Prior DistributionsIn previous sections, the analyses are based on the set of prior distributionsgiven in section 5.3, with parametersa = 6; c = 4; d = 0:075; u = 3; w = 0:32The set of prior distributions is labeled as Prior I. In this section, analyses willbe done based on some di�erent prior distributions to see how prior distribu-tions a�ect analysis result. We choose two other sets of prior distributions,which will be called Prior II and Prior III. The three sets of prior distributionsrepresent di�erent beliefs in the degree of heterogeneity among the di�erentcenters.In Prior II, the parameters are chosen such that our prior belief aboutcenter heterogeneity is vague. We choose a small a and uniform distributionsfor 1=b and �2. 1=b has a uniform prior is equivalent to that b has a prior ofp(b) / 1=b2. Prior II is a = 3p(b) / 1b2 ; b > 0� � N(0; 1)p(�2) / constant; �2 > 0The prior distributions of b and �2 are improper distributions. With this prior,our belief about the the center heterogeneity is 
at, and we are open-mindabout it.



64In Prior III, the parameters are chosen such that our prior belief is thatcenters are likely homogeneous. The parameters area = 15; c = 6; d = 0:0375; u = 5 and w = 0:25that is a = 15b � Gamma(6; 0:0375)� � N(0; 1)�2 � IG(5; 0:25)which sets the prior mean of a=b, a=b2, and the prior mean and variance of �2to be E(ab j c; d) = adc� 1 = 0:1125E( ab2 j c; d) = ad2(c� 1)(c � 2) = 0:0010E(�2 ju;w) = wu� 1 = 0:0625V (�2 ju;w) = w2(u� 1)2(u� 2) = 0:0013For comparison, Figure 5.7 displays the prior distributions of a=b, a=b2, � and�2 in Prior I and Prior III. The distributions of population mean a=b in PriorI and Prior III are very close, and the distributions of population mean �are identical in Prior I and Prior III. The distributions of center populationvariances a=b2 and �2 are quite di�erent in Prior I and Prior III.
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665.7.2 ResultsIn this section, the posterior distributions based on Prior II and Prior III willbe presented. Results based on all the three sets of prior distributions will becompared. Prior IIDotted curves in Figures 5.8 and 5.9 display the posterior distributions of vibased on Prior II for all centers. The prior distributions of 1=b and �2 are 
atin Prior II, so the \strength borrowing" is not strong in this case. The posteriordistribution of vi is relatively 
at for every center, and there is a relativelylarge discrepancy among these posterior distributions of vi for all centers.Table 5.7 displays the individual center vi (MLE), posterior mode of vi(v̂i), pooled population mode (�̂), posterior mean, posterior variance of viand posterior probability of vi < 0 based on Prior II for all the centers. Theindividual center log hazard ratio shank toward the pooled population value byborrowing strength from other centers, but this shrinkage is not strong, becausethe prior distribution of �2 is 
at. The posterior probability P (vi < 0jD) variesfrom 0:202 in center 13 to 0:955 in center 11; however, P (vi < 0jD) is close to0:5 in many centers, so for many centers, there seems to be no strong evidenceto conclude that either therapy is better. Because the number of patients isvery small at many centers, and because there is not strong strength borrowing,there is no enough information to conclude which therapy performs better atthose centers.The dotted curves in Figures 5.10 and 5.11 display posterior distributionsof �i1 based on Prior II for all centers. Table 5.8 displays the individual center
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69
Center viMLE v̂i �̂ E(vi jD) V(vi jD) P (vi < 0jD)1 1 0:108 �0:459 0:074 0:903 0:4402 1:122 0:095 �0:459 0:034 0:855 0:4553 �1:072 �0:957 �0:459 �0:946 0:241 0:8954 0:015 �0:093 �0:459 �0:028 0:250 0:5315 �1:756 �0:914 �0:459 �0:994 0:606 0:8166 �0:444 �0:567 �0:459 �0:553 0:501 0:7067 �1:819 �1:043 �0:459 �1:098 0:467 0:8678 �0:134 �0:128 �0:459 �0:165 0:576 0:5399 �1:894 �1:132 �0:459 �1:204 0:563 0:88110 0:678 0:205 �0:459 0:232 0:427 0:38911 �1:956 �1:427 �0:459 �1:435 0:379 0:95512 �1:586 �0:104 �0:459 �0:076 0:557 0:52213 0:938 0:581 �0:459 0:809 0:374 0:20214 �0:837 �0:501 �0:459 �0:445 0:325 0:70815 �2:595 �0:896 �0:459 �0:967 0:636 0:81316 �0:517 �0:258 �0:459 �0:276 0:460 0:57417 �1 �1:411 �0:459 �1:442 0:640 0:92218 �1:987 �0:042 �0:459 �0:054 0:639 0:48619 �1:392 �0:937 �0:459 �0:986 0:491 0:83520 � �0:456 �0:459 �0:428 1:293 0:64721 � �0:157 �0:459 �0:205 0:845 0:53322 �1 �1:316 �0:459 �1:376 0:659 0:911Table 5.7: The MLE, posterior mode, pooled population mode, posterior mean,variance of vi and P (vi < 0jD) based on Prior II in all centers



70Center �i1MLE �̂i1 (a� 1)=b̂ E(�i1 jD) V(�i1 jD)1 0 0:018 0:047 0:026 0:000202 0:034 0:040 0:047 0:047 0:000373 0:063 0:055 0:047 0:060 0:000404 0:049 0:047 0:047 0:052 0:000375 0:120 0:053 0:047 0:072 0:001366 0:045 0:039 0:047 0:052 0:000727 0:150 0:068 0:047 0:087 0:001528 0:088 0:056 0:047 0:074 0:001309 0:082 0:045 0:047 0:061 0:0010110 0:036 0:040 0:047 0:048 0:0004711 0:100 0:062 0:047 0:074 0:0009612 0:435 0:060 0:047 0:087 0:0024513 0:041 0:042 0:047 0:050 0:0004814 0:147 0:086 0:047 0:103 0:0019615 0:280 0:047 0:047 0:072 0:0017116 0:109 0:064 0:047 0:080 0:0014417 0:012 0:037 0:047 0:059 0:0012218 0:787 0:063 0:047 0:070 0:0023319 0:088 0:052 0:047 0:068 0:0010520 0:200 0:070 0:047 0:093 0:0020021 � 0:044 0:047 0:070 0:0017622 0:057 0:033 0:047 0:050 0:00085Table 5.8: The MLE, posterior mode, pooled population mode, posterior meanand variance of �i1 based on Prior II in all centers�i1 (MLE), posterior mode of �i1 (�̂i1), pooled population mode ((a � 1)=b̂),posterior mean and variance of �i1 at each center. The individual center hazardrate was pulled toward the pooled population value by borrowing strength fromother centers. The posterior mode of �i1 varies from 0:018 in center 1 to 0:086in center 14. The posterior distribution of �i1 is relatively concentrated insome centers at which there is a relatively large number of patients. There isa relatively large discrepancy among these posterior distributions of �i1 at thedi�erent centers.
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LegendFigure 5.10: Posterior distributions of �i1, i = 1; � � � ; 11
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73Parameter Mode Mean Variancea=b 0:065 0:069 0:00022a=b2 0:00126 0:00168 5:65 � 10�7� �0:459 �0:457 0:130�2 1:087 1:578 0:783Table 5.9: Posterior mode, mean and variance of a=b, a=b2, � and �2 based onPrior IIThe dotted curves in Figure 5.12 display posterior distributions of a=b, a=b2,� and �2 based on Prior II. Table 5.9 displays the posterior mode, mean andvariance of a=b, a=b2, � and �2. The �rst two rows represent the populationmean and variance of �i1, and the last two rows represent the population meanand variance of vi. The posterior mode of a=b is 0:065, which corresponds to a15:4-month mean survival time on the RT only regiman. The posterior modeof � is �0:459, which corresponds to a 58% increase in the mean survival timefor the patients on therapy 2 over the patients on therapy 1.Prior IIIThe solid curves in Figures 5.8 and 5.9 show the posterior distributions of vibased on Prior III for all centers. The values of a=b2 and �2 are small in PriorIII, so the strength borrowing is very strong in this case, and the posteriordistribution of vi is relatively concentrated in every center. The posteriordensities of vi in all centers are very close, and the variations between thoseposterior densities are very small.Table 5.10 displays the individual center vi (MLE), posterior mode of vi(v̂i), pooled population mode (�̂), posterior mean, posterior variance of vi,and posterior probability of vi < 0 based on Prior III for all centers. The
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75individual center log hazard ratio shrank toward the pooled population valueby borrowing strength from other centers, and that shrinkage was very strong.The individual center MLE of vi varies from �2:595 to 1:122 (except in thecenters without MLE or with an in�nity MLE), and the posterior mode of vivaries only from �0:787 to 0:002. P (vi < 0jD) is far above 0:5 in all centersexcept center 13, which indicates that therapy 2 performs better than therapy 1in all the centers except center 13. The posterior variance of vi is small for allthe centers because of much strength borrowing.The solid curves in Figures 5.10 and 5.11 display the posterior distributionsof �i1 based on Prior III for all centers. Table 5.11 shows each individualcenter hazard rate (MLE), posterior mode of �i1 (�̂i1), pooled population mode((a� 1)=b̂), posterior mean and variance of �i1. The individual center hazardrates were pulled toward each other by borrowing strength, and this shrinkageis strong. The individual center MLE of �i1 varies from 0 to 0:787, and theposterior mode of �i1 varies only from 0:045 to 0:074. The posterior varianceof �i1 is small in all centers.The solid curves in Figure 5.12 display posterior distributions of a=b, a=b2,� and �2 based on Prior III. Table 5.9 shows the posterior mode, mean andvariance of a=b, a=b2, � and �2. The �rst two rows represent the populationmean and variance of �i1, the last two rows represent the population meanand variance of vi. The posterior variances of these parameters are small.The posterior mode of a=b is 0:063, which corresponds to a 15:9-month meansurvival time. The posterior mode of � is �0:485, which corresponds to a 62%increase in mean survival time for patients on therapy 2 over those on therapy1.



76
Center viMLE v̂i �̂ E(vi jD) V(vi jD) P (vi < 0jD)1 1 �0:426 �0:485 �0:400 0:202 0:8112 1:122 �0:409 �0:485 �0:370 0:211 0:7983 �1:072 �0:712 �0:485 �0:752 0:108 0:9634 0:015 �0:320 �0:485 �0:302 0:101 0:7835 �1:756 �0:557 �0:485 �0:602 0:177 0:9066 �0:444 �0:534 �0:485 �0:559 0:141 0:8947 �1:819 �0:593 �0:485 �0:642 0:155 0:9188 �0:134 �0:392 �0:485 �0:362 0:179 0:7879 �1:894 �0:639 �0:485 �0:710 0:175 0:94710 0:678 �0:311 �0:485 �0:271 0:154 0:73611 �1:956 �0:787 �0:485 �0:874 0:153 0:97512 �1:586 �0:341 �0:485 �0:295 0:170 0:74913 0:938 0:002 �0:485 0:061 0:147 0:47714 �0:837 �0:366 �0:485 �0:352 0:117 0:79115 �2:595 �0:555 �0:485 �0:599 0:176 0:90116 �0:517 �0:390 �0:485 �0:369 0:155 0:81317 �1 �0:657 �0:485 �0:751 0:203 0:95818 �1:987 �0:363 �0:485 �0:313 0:192 0:76119 �1:392 �0:597 �0:485 �0:647 0:155 0:92720 � �0:476 �0:485 �0:469 0:234 0:84821 � �0:426 �0:485 �0:399 0:204 0:82522 �1 �0:648 �0:485 �0:739 0:203 0:942Table 5.10: The MLE, posterior mode, pooled population mode, posteriormean, variance of vi and P (vi < 0jD) based on Prior III in all centers



77Center �i1MLE �̂i1 (a� 1)=b̂ E(�i1 jD) V(�i1 jD)1 0 0:045 0:061 0:049 0:000182 0:034 0:054 0:061 0:058 0:000223 0:063 0:056 0:061 0:058 0:000174 0:049 0:057 0:061 0:059 0:000175 0:120 0:059 0:061 0:065 0:000326 0:045 0:054 0:061 0:059 0:000257 0:150 0:063 0:061 0:069 0:000338 0:088 0:064 0:061 0:069 0:000349 0:082 0:055 0:061 0:060 0:0002810 0:036 0:056 0:061 0:061 0:0002311 0:100 0:058 0:061 0:062 0:0002612 0:435 0:066 0:061 0:073 0:0004013 0:041 0:061 0:061 0:064 0:0002214 0:147 0:074 0:061 0:079 0:0003715 0:280 0:058 0:061 0:064 0:0003416 0:109 0:066 0:061 0:071 0:0003417 0:012 0:054 0:061 0:059 0:0003018 0:787 0:066 0:061 0:072 0:0004119 0:088 0:058 0:061 0:063 0:0002820 0:200 0:064 0:061 0:070 0:0003921 � 0:060 0:061 0:067 0:0003722 0:057 0:052 0:061 0:057 0:00027Table 5.11: The MLE, posterior mode, pooled population mode, posteriormean and variance of �i1 based on Prior III in all centersParameter Mode Mean Variancea=b 0:063 0:064 0:00011a=b2 0:00025 0:00028 6:97 � 10�9� �0:485 �0:469 0:050�2 0:071 0:185 0:023Table 5.12: Posterior mode, mean and variance of a=b, a=b2, � and �2 basedon Prior III



785.7.3 Comparison of the Three Prior DistributionsWhen we compare the posterior distributions derived from the three sets ofprior distributions that we chose, we can see how the posterior distributionsare a�ected by the prior distributions. By comparing the corresponding plotsfrom Figure 5.8 to Figure 5.12, we can see that the shrinkage of the individualcenter parameters increased as the priors changed from Prior II to Prior I, andfrom Prior I to Prior III. Prior belief in center heterogeneity has a strong impacton the posterior distributions of the individual center parameters. It also hasa strong impact on the posterior distributions of the population variances ofvi and �i1, but it does not have a strong impact on the posterior distributionsof the population means of vi and �i1 | these were clearly shown in thoseposterior distribution �gures.By comparing corresponding numbers from Table 5.2 to Table 5.12, we cansee the range of the posterior mode of the individual center parameters changeswith the variation of prior belief in center heterogeneity. The range of theposterior mode of vi across the centers is 2:008 based on Prior II, it decreasedto 1:302 based on Prior I, and it further decreased to 0:789 based on PriorIII. The range of the posterior mode of �i1 across the centers is 0:068 basedon Prior II, it decreased to 0:050 based on Prior I, and it further decreased to0:029 based on Prior III.By comparing the corresponding posterior variances of the individual cen-ter parameters and the population parameters derived from the three priordistributions, we can clearly see that the posterior variance decreased as priorbelief in center heterogeneity decreased. For example, the posterior varianceof v2 is 0:855 based on Prior II, it decreased to 0:454 based on Prior I, and



79it further decreased to 0:211 based on Prior III. The posterior variance of �51is 0:00136 based on Prior II, it decreased to 0:00070 based on Prior I, and itfurther decreased to 0:00032 based on Prior III. The posterior variance of � is0:130 based on Prior II, it decreased to 0:075 based on Prior I, and it furtherdecreased to 0:050 based on Prior III.5.8 Simulation with Homogeneous CentersSince many centers have very small number of patients in this trial, someonemight wonder that the di�erences among the posterior distributions of vi and�i1 at di�erent centers are resulted from the small sample size. For determiningthis, I performed analysis on some simulated data.In my simulation, there is not center heterogeneity, that is all the vi's areequal, and all the �i1's are equal, too. I used the posterior modes of v and �1in Chapter 3 as the values of common vi and �i1 respectively in my simulation.So the two hazard rates in simulation are�i1 = 0:062; �i2 = �i1evi = 0:037; i = 1; � � � ; 22I simulated the same number of patients in every center on each therapyas in the trial. For all the simulated patients whose survival time are longerthan 60 months, their survival times are censored at 60 months. I applied thehierarchical model to the simulated data. Analysis results show that if ourprior belief on the variances of vi and �i1 are not concentrated on very smallvalues, then there are some di�erences among the posterior distributions of viand �i1 at di�erent centers. In such small center sample size trial, very strongprior belief on center homogeneity is needed to protect center homogeneity instatistical inference.



80Center ni1 di1 Ti1 ni2 di2 Ti21 1 1 10.40 1 1 27.792 4 4 75.89 1 1 7.503 12 12 144.68 10 10 211.124 11 10 294.23 11 11 173.175 2 2 14.52 1 1 5.036 3 3 33.46 4 4 86.977 4 4 91.59 3 3 78.778 2 2 15.98 2 1 69.249 2 1 65.78 2 2 51.0610 4 4 32.62 4 3 72.0211 6 6 49.90 6 6 94.3412 1 1 13.17 3 3 37.6913 7 7 84.48 11 9 316.5214 6 6 135.66 7 5 172.4215 1 1 19.39 1 1 18.5916 3 3 13.18 3 3 43.7617 1 1 16.62 1 0 60.0018 1 1 1.40 2 2 54.4519 3 3 38.81 3 3 77.0220 2 2 55.95 0 0 0.0021 0 0 0.00 1 1 38.4222 1 1 1.59 1 1 0.94total 77 75 1209.3 78 71 1696.8Table 5.13: Su�cient statistics from simulationI present one simulation result in the following tables and �gures. Table5.13 displays the su�cient statistics from one simulated data.Prior I in section 5.3 is used in analyzing the simulated data. Figure 5.13displays the posterior distributions of vi at each center. We still can see somevariation among those posterior distributions. For example, centers 3 and 4are two large centers, but the posterior distributions of vi at centers 3 and 4are not very close. Posterior distributions of vi are more concentrated at largecenters than at small centers.
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82Center viMLE v̂i P (vi < 0jD)1 �0:983 �0:418 0:8152 0:928 �0:280 0:6733 �0:560 �0:425 0:8064 0:625 0:040 0:4525 0:367 �0:272 0:6526 �0:668 �0:409 0:7767 �0:137 �0:374 0:7748 �2:159 �0:604 0:9019 0:946 �0:332 0:73710 �1:080 �0:462 0:82211 �0:637 �0:348 0:75612 0:047 �0:255 0:67713 �1:070 �0:657 0:91014 �0:422 �0:470 0:83615 0:042 �0:358 0:75616 �1:200 �0:348 0:75417 �1 �0:634 0:91318 �2:968 �0:464 0:81919 �0:685 �0:442 0:80920 | �0:379 0:76921 | �0:458 0:82622 0:526 �0:235 0:634Table 5.14: The MLE, the posterior mode of vi, and P (vi < 0jD) from thesimulated dataTable 5.14 shows the MLE, the posterior mode (v̂i) of vi and the posteriorprobability P (vi < 0jD) at each center. The posterior mode of vi rangesfrom �0:657 at Center 13 to 0:040 at Center 4. The posterior probabilityP (vi < 0jD) ranges from 0:452 at Center 4 to 0:913 at Center 17. Center 4 isa large center, but P (v4 < 0jD) is below 0:5.Figure 5.14 displays the posterior distributions of �i1, i = 1; � � � ; 22. We seesome variation among those posterior distributions. Posterior distribution of�i1 is concentrated in some large centers, whereas it is relatively 
at in many



83Center �i1MLE �̂i11 0:096 0:0582 0:053 0:0583 0:083 0:0714 0:034 0:0455 0:138 0:0746 0:090 0:0637 0:044 0:0498 0:125 0:0549 0:015 0:04010 0:123 0:06911 0:120 0:07912 0:076 0:06513 0:083 0:05914 0:044 0:04615 0:052 0:05616 0:228 0:07917 0:060 0:04218 0:714 0:06119 0:077 0:05920 0:036 0:04821 | 0:05122 0:629 0:076Table 5.15: The MLE and the posterior mode of �i1 at each center from thesimulated datasmall centers.Table 5.15 shows the MLE and posterior mode (�̂i1) of �i1 at each center.The range of posterior mode �̂i1 is 0:039. �̂i1 changes from 0:040 at Center 9to 0:079 at Center 11. �i1 = 0:040 corresponds to a 25-month mean survivaltime at center i, whereas �i1 = 0:079 corresponds to only a 12:7-month meansurvival time at center i in our model.Figure 5.15 displays the prior and posterior distributions of population pa-rameters. The posterior distributions of a=b and � are much more concentrated
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85than their prior distributions, indicating that we learned a lot from the datafor those population means. The posterior distribution of a=b2 is much moreconcentrated than the prior distribution of a=b2, because the prior distributionof a=b2 is quite disperse. The posterior distribution of �2 is more disperse thanthe prior distribution of �2, and �2 is likely to be greater on its posterior dis-tribution than on its prior distribution. So our inference indicates that thereis certain variation among the vi's at di�erent centers.5.9 SummaryIn this chapter, we applied the hierarchical model proposed in Chapter 4 tothe NSCLC trial data. Since the trial included many centers that had only afew patients, many centers borrowed a lot of strength from other centers, andthe posterior distribution is sensitive to the prior distribution of the populationparameters. If our prior belief is that the centers are homogeneous, so will beour posterior belief. If we are open-minded about the heterogeneity among thedi�erent centers, then each individual center borrows less strength from theother centers. When centers do not borrow strong strength from other centers,the centers that have small number of patients do not have much informationon which to make conclusion about center parameters.In next chapter, I will analyze a data set from a National Institute of MentalHealth collaborative study. In that study, the number of patients at each centeris relatively large.
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Chapter 6A NIMH Collaborative Study6.1 Introduction6.1.1 Purpose of the StudyDepression is a recurrent illness. Psychiatric research has shown that mostpatients who experience an initial episode of depression will recover, but willthen go on to su�er one or more recurrences. Medical researchers have longtried to improve the e�cacy of medications designed to prevent the occur-rence of new episodes of illness. The multicenter clinical trial analyzed herewas conducted to determine the comparative e�ciencies of lithium carbonate,imipramine hydrochloride, and a combination of lithium and imipramine inpreventing the occurrence of unipolar and bipolar a�ective disorders. For adetailed description of the Pharmacologic and Somatic Treatments ResearchBranch of the National Institute of Mental Health (NIMH-PRB) CollaborativeStudy of Long-Term Maintenance Drug Therapy in Recurrent A�ective Illness,see Prien et al. (1984). The following analysis includes only the patients withunipolar depression. 87



886.1.2 Design of the StudyThe NIMH-PRB collaborative study had two phases: a preliminary phase anda maintenance phase. The purpose of the preliminary phase was to control theindex episode, stabilize the patient's clinical condition, and establish stablemaintenance dose levels of lithium carbonate and imipramine in preparationfor the maintenance phase. Upon patients met speci�ed entrance criteria thatensured that they were experiencing an acute episode, they received the treat-ment of choice of the psychiatrist responsible for their care during this prelim-inary phase of the illness. Approximately 90% of these patients were treatedwith imipramine. After their acute symptoms were controlled, these patientsreceived a combination of both lithium and imipramine. Once the patientremained on predetermined medication dosages and met speci�ed \wellness"criteria for two consecutive months, he or she entered the maintenance phaseof the study.The major experimental phase of the study, The maintenance phase in-volved two years of double-blind comparison testing which treatment regimenprolonged the recurrence of a�ective disorder. The 150 patients who were el-igible for the maintenance phase of the study were randomly assigned to oneof two groups. One group remained on imipramine; the other group was with-drawn from imipramine. After randomization, the patients were followed for upto two years (until the end of the study), or until they experienced a recurrenceof depression. The response variable of interest is time between randomizationand the �rst recurrence of a depression episode.



896.1.3 Analysis of Recurrence TimeFive medical centers participated in the collaborative study. Figure 6.1 presentsthe Kaplan-Meier estimates of the survival functions for each therapy with allcenters combined. The p-values for testing the homogeneity of these survivalcurves over therapy are about 0:0001 for both the logrank test and theWilcoxontest. Figure 6.1 clearly showns that the two survival curves diverge at a earlytime. At time point about 10 weeks, the di�erence between the two curves islarge; after that time, the di�erence remains roughly stable. The data showthat there are many more early recurrences in the o� imipramine group thanin the on imipramine group.6.2 Bayesian Hierarchical Analysis of theNIMH Collaborative Study6.2.1 The ModelIn this section, I will use the Bayesian hierarchical model proposed in Chapter4 to analyze the data from the collaborative study. For this study, a pa-tient's \survival time" refers to the time until the patient su�ers a recurrenceof depression. The standard therapy is the o� imipramine therapy, and theexperimental therapy is the on imipramine therapy. The goal is to determinethe relative e�cacy of the two therapies, and to discover the heterogeneityamong the di�erent centers.
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91Center ni1 di1 Ti1 ni2 di2 Ti2A 11 6 498.86 15 3 1205.43B 10 6 390.72 15 6 769.86C 8 7 176.86 5 3 332.00D 25 12 1367.29 26 8 1503.37E 17 15 240.00 18 9 845.57total 71 46 2673.73 79 29 4656.23Table 6.1: Su�cient statistics by center6.2.2 DataAppendix B presents the data from the �ve centers. In the hierarchical model,dij ; Tij; i = 1; � � � ; 5; j = 1; 2 form the su�cient statistics. dij is the numberof patients who experienced a recurrence of depression on therapy j in centeri; and Tij is the total time observed for all the patients on therapy j in center i,i = 1; � � � ; 5; j = 1; 2. Here, j = 1 corresponds to the o� imipramine therapy,and j = 2 corresponds to the on imipramine therapy. Table 6.1 displays thesesu�cient statistics and the total number of patients by center-therapy (nij).The time unit is one week.6.2.3 Choice of Prior DistributionsParameters a, c, d, u and w need to be speci�ed for applying the model to thedata. The gamma distribution of �i1 in the second level of hierarchy is con-jugate to the exponential distribution in the �rst level of hierarchy. From theposterior distribution of �i1, one see that a acts as a prior uncensored numberof observations and b is the prior total exposure time on the o� imipraminetherapy. The values of a, c and d can be chosen according to some prior in-formation about the o� imipramine therapy. These parameter values not only



92represent our prior belief about the hazard rate on the o� imipramine therapy,but also represent our prior belief about the center heterogeneity among those�i10s in di�erent centers. Note that V (�i1 j a; b) = a=b2. For �xed a, if ourchoice of c and d makes b likely to be large, then our prior belief is that centerheterogeneity is small.The second level parameter �2 represents the center heterogeneity amongthose log hazard ratio vi0s at di�erent centers. A smaller �2 re
ects less centerheterogeneity, and a larger �2 re
ects larger center heterogeneity among thosevi0s at di�erent centers. The prior distribution of �2 re
ects our prior belief ofthis heterogeneity.The available prior information about the o� imipramine therapy is fromthe history of those patients treated with the therapy, which suggested thatthe recurrence occurred mainly between 8 and 122 weeks, and the weightedaverage of the mean recurrence times across centers was 25 weeks.We choose a = 3, c = 4. Note thatE(�i1) = E(E(�i1 j a; b)))= E(ab )= Z 10 ab dc�(c)bc�1e�dbdb= adc� 1and given �i1, the mean survival time on the o� imipramine therapy is 1=�i1.We choose d such that the value of the prior E(�i1) is the reciprocal of theweighted average of mean recurrence time, that isadc� 1 = 125



93The following values for a, c and d are chosen:a = 3; c = 4 d = 0:04The mean and variance of �i1 areE(�i1 j a; b) = abV (�i1 j a; b) = ab2�i10s mean a=b has its prior distributionf(x j a; c; d) = dc�(c)�ax�c�1e� dax � ax2= (da)c�(c) �1x�c+1e� daxand �i10s variance a=b2 has its prior distributionf(x j a; c; d) = dc�(c) papx!c�1e� dpapx � pa2xpx= (dpa)c2�(c) 1x1+c=2e� dpapxWe chose a relatively 
at prior distribution of vi in this study, the values of uand w are chosen as: u = 4; w = 1:5which set the prior mean and variance of �2 to beE(�2 ju;w) = wu� 1 = 0:5V (�2 ju;w) = w2(u� 1)2(u� 2) = 0:125



94Center A B C D EP (vi < 0 jD) 0:986 0:915 0:962 0:889 0:991Table 6.2: Posterior probability of vi < 0 in all centersFigure 6.2 displays these prior distributions. The �rst row shows the dis-tributions of the mean and variance of �i1 | a/b and a/b2 respectively. Thesecond row displays the distributions of the population mean and variance ofvi | � and �2 respectively.6.2.4 Posterior DistributionsThe posterior distributions of vi (i = 1; � � � ; 5) are displayed in the �rst plotof Figure 6.3. From this �gure, one can see that the domain of the posteriordensity of vi is mainly at the left of vi = 0 at each center. Table 6.2 shows theposterior probabilities of vi < 0; those probabilities are high, which suggeststhat in all the centers the on imipramine therapy prevents the recurrence ofdepression longer than the o� imipramine therapy does. At some di�erentcenters, the posterior distributions of vi are quite di�erent, so the relativeimprovement of on imipramine over o� imipramine are likely to be di�erentacross centers.Table 6.3 displays individual center log hazard ratio (MLE), posterior modeof vi (v̂i), pooled population log hazard ratio (posterior mode �̂), posteriormean and variance of vi at each center. The table clearly shows that theparameters at each individual centers are shrunk toward the pooled populationvalue through borrowing strength from other centers. The individual centerlog hazard ratios for centers A, C and E fell below the pooled population log
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97Center viMLE v̂i �̂ E(vi jD) V(vi jD)A �1:575 �1:428 �1:045 �1:462 0:274B �0:678 �0:942 �1:045 �0:941 0:239C �1:477 �1:215 �1:045 �1:263 0:285D �0:500 �0:799 �1:045 �0:797 0:187E �1:770 �1:405 �1:045 �1:404 0:174Table 6.3: The MLE, posterior mode, pooled population mode, posterior meanand variance of vihazard ratio, and the posterior modes of vi at these centers were shrunk uptoward the population value. At centers B and D, the individual center vi0swere above the pooled population value, and their posterior modes were shrunkdown toward the pooled population value. The range of the MLE of individualcenter vi is 1:27 (from �1:77 at center E to �0:5 at center D), and the rangeof posterior modes of vi decreased greatly to 0:629 (from �1:428 at center Ato �0:799 at center D). This decrease occurred because the hierarchical modelconnected individual center parameters together, and pulled them close.The inference about the posterior distribution of vi at each center borrowedstrength from the other centers. The posterior mode v̂i reaches its maximum�0:799 at center D. In the model, vi = �0:799 corresponds to �i1=�i2 = e0:799 =2:22, which represents a 122% increase in median and mean survival time ontherapy 2 over therapy 1 at center i. The v̂i reaches its minimum �1:428at center A. When vi = �1:428 corresponds to �i1=�i2 = e1:428 = 4:17, itrepresents a 317% increase in median and mean survival time on therapy 2 overtherapy 1 at center i. So the posterior distributions of vi in individual centerssuggest that the on imipramine therapy can prolong the time of recurrenceof depression better than the o� imipramine therapy does, but the average



98relative increase of recurrence time for patients received the on imipraminetherapy varies from center to center, ranging from 122% at center D to 317%at center A.The posterior distributions of �i1 (i = 1; � � � ; 5) displayed in the second plotof Figure 6.3 show a large variation. The domains of the posterior densitiesof �i1 at centers D and E shared only a tiny area. The evidence strongly sug-gests that the hazard rate of the o� imipramine therapy changes from centerto center. Center D and E are the two largest centers, but the posterior distri-bution of �i1 is relatively concentrated at center D and relatively 
at at centerE, because there is a larger discrepancy on the observations at center E thanat center D. The posterior distributions of �i1 at these two centers stronglyindicate that the �i1 at center D is much less than that at center E, so thesurvival time on the o� imipramine therapy at center D is much longer thanthat at center E.Table 6.4 displays the individual center hazard rate (MLE), posterior modeof �i1, (�̂i1), pooled population hazard rate ((a � 1)=b̂), posterior mean andvariance of �i1 at each center. Just like the log hazard ratios, the hazard ratesat each individual centers are pulled toward each other through borrowingstrength from other centers. At centers A, B and D, the MLE of individualcenter hazard rates were below the pooled population hazard rate, and theposterior modes of �i1, at these centers were shrunk up toward the pooledpopulation value. At centers C and E, the MLE of individual center hazardrates were above the pooled population hazard rate, the posterior modes of �i1at these center were shrunk down toward the pooled population value. Therange of MLE of �i1 across centers is 0:054 (from 0:009 at center D to 0:063 atcenter E), and the range of the posterior mode of �i1 across centers decreased



99Center �i1MLE �̂i1 (a� 1)=b̂ E(�i1 jD) V(�i1 jD)A 0:012 0:012 0:016 0:013 0:000022B 0:015 0:016 0:016 0:018 0:000042C 0:040 0:028 0:016 0:032 0:000124D 0:009 0:010 0:016 0:010 0:000009E 0:063 0:044 0:016 0:047 0:000208Table 6.4: The MLE, posterior mode, pooled population mode, posterior meanand variance of �i1greatly to 0:033 (from 0:010 at center D to 0:044 at center E). This decreaseoccurred because the hierarchical structure connected the �i1 at the di�erentcenters together, and pulled them close. Thus, the inference about a center's�i1 borrowed strength from other centers. The posterior mode �̂i1 reaches itsminimum 0:010 at center D, and �i1 = 0:010 corresponds to a 100-week meansurvival time on therapy 1 at center i. The �̂i1 reaches its maximum 0:044at center E, and �i1 = 0:044 corresponds to a 22:7-week mean survival timeon therapy 1 at center i. The posterior distributions of �i1 at the individualcenters indicate that there is a large di�erence among the hazard rates of theo� imipramine therapy at di�erent centers.Figure 6.4 shows the posterior distributions of the population mean andvariance of �i1 and vi. The �rst row displays the posterior distributions of thepopulation mean and variance of �i1 | a=b and a=b2 respectively. The secondrow shows the posterior distributions of the population mean and variance ofvi | � and �2 respectively.Table 6.5 presents the posterior mode, mean and variance of b, � and �2.The posterior mode of � is �1:045, which is the mode of population log hazardratio. e1:045 = 2:84, so in the population, the mean survival time of patients
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101Parameter Mode Mean Variancea=b 0:024 0:027 0:0000580a=b2 0:0001609 0:0002591 2:6� 10�8� �1:045 �1:038 0:188�2 0:313 0:476 0:067Table 6.5: Posterior mode, mean and variance of a=b, a=b2, � and �2receiving the on imipramine therapy is about 2:84 times that of those on theo� imipramine therapy. The posterior probability P (� < 0 jD) = 0:989, whichmeans that it is almost certain that the mean of vi across centers is negative.The posterior density functions of a=b and � are much more concentratedthan their prior density functions, indicating that the study contains muchinformation about these parameters. The posterior density functions of a=b2and �2 did not change much from those of their prior distributions, and thedata did not change our belief much about the variation among the vi0s and�i10s at di�erent centers.6.2.5 Predictive Survival FunctionsNew patients who can choose a therapy are primarily interested in how wellthey will respond to the two therapies. Using the posterior distributions of theparameters at each center, we can calculate the predictive survival function foreach therapy at every center. Figure 6.5 shows the predictive survival functionsfor each center. The survival functions for the two therapies di�er from centerto center, but patients at all centers always have a higher survival probabilityon the on imipramine therapy than on the o� imipramine therapy at pointin time. The area between the two curves represents the improvement of the



102mean survival time between the two therapies, which is large at all the centers.The heterogeneity among the di�erent centers is clearly shown in the �gure.For example, the solid curve at center D is very di�erent from that at centerE, which indicates that the survival probability on the o� imipramine therapyat center E is very di�erent from that at center D.Table 6.6 displays the predicted survival probabilities at time of half-year,one-year, two-years and three-years for the patients on the o� imipramine ther-apy. Table 6.7 displays the predicted survival probabilities at time of half-year,one-year, two-years and three-years for the patients on the on imipramine ther-apy. Comparing di�erent rows in these tables, we see the heterogeneity betweendi�erent centers for the same therapy. For instance, the predicted one-year sur-vival probability for patients on the o� imipramine therapy is 0:590 at centerD, whereas it is only 0:114 at center E. For another example, the predicted two-year survival probability for patients on the on imipramine therapy is 0:715 atcenter A, whereas it is only 0:331 in center E. Comparing corresponding rowsin these two tables, we see the increase in survival probabilities for patients theon imipramine therapy over those on the o� imipramine therapy. For example,the predicted two-year survival probability at center E is 0:114 for patients onthe o� imipramine therapy, and it increased to 0:551 for patients on the onimipramine therapy.Table 6.8 shows the predicted mean survival times on the two therapiesat each center. At every center, we a very large increase in predicted meansurvival time for patients on the o� imipramine therapy compared to those onthe on imipramine therapy.
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104Predicted survival probabilityCenter half-year one-year two-year three-yearA 0:723 0:529 0:392 0:293B 0:632 0:410 0:272 0:185C 0:443 0:212 0:107 0:057D 0:766 0:590 0:457 0:356E 0:318 0:114 0:045 0:019Table 6.6: Some predicted survival probabilities on the o� imipramine therapyPredicted survival probabilityCenter half-year one-year two-year three-yearA 0:916 0:841 0:775 0:715B 0:814 0:671 0:560 0:472C 0:758 0:592 0:472 0:382D 0:870 0:762 0:670 0:593E 0:732 0:551 0:423 0:331Table 6.7: Some predicted survival probabilities on the on imipramine therapyPredicted Mean SurvivalCenter o� imipramine on imipramineA 89:8 420:0B 63:3 169:6C 34:6 132:2D 105:7 248:6E 23:8 107:4Table 6.8: The predicted mean survival time (weeks)



1056.3 Sensitivity Analysis6.3.1 Three Prior DistributionsIn this section, I will analyze the data with some di�erent prior distributions tosee how prior distribution a�ects the analysis results. Prior I refers to the setof prior distributions used previously. Prior II and Prior III are two other setsof prior distributions. The three sets of prior distributions represent di�erentbeliefs in the degree of heterogeneity among di�erent centers.Prior II has a small a and uniform distributions for 1=b and �2, it representsdisperse prior distributions for vi and �i1 in center population. 1=b has auniform prior is equivalent to that b has the prior p(b) / 1=b2. So, Prior II isa = 3p(b) / 1b2 ; b > 0� � N(0; 1)p(�2) / constant; �2 > 0The prior distributions of b and �2 are improper distributions. In this prior,our belief about the the center heterogeneity is vague. Consequently, data willhave strong impact on the inference about center heterogeneity.In Prior III, our prior belief is that there is only a small variation amongcenters. The parameter values area = 10; c = 3; d = 0:008; u = 5 and w = 0:8that is a = 10



106b � Gamma(3; 0:008)� � N(0; 1)�2 � IG(5; 0:8)which sets the prior mean of a=b, a=b2 and prior mean and variance of �2 to beE(ab j c; d) = adc� 1 = 0:04E( ab2 j c; d) = ad2(c� 1)(c � 2) = 0:00032E(�2 ju;w) = wu� 1 = 0:20V (�2 ju;w) = w2(u� 1)2(u� 2) = 0:0133For comparison, Figure 6.6 displays the prior distributions of a=b, a=b2, � and�2 in Prior I and Prior III.6.3.2 ResultsIn this subsection, the posterior distributions and other results based on PriorII and Prior III will be presented. We will compare all the results based on thethree sets of prior distributions. Prior IIThe �rst graph in Figure 6.7 displays posterior distributions of vi based onPrior II, i = 1; � � � ; 5. Because the prior distributions of 1=b and �2 are 
at, thestrength borrowing is not strong in the inference. The posterior distribution ofvi is relatively 
at at all the centers, and there is a relatively large discrepancy
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108Center A B C D EP (vi < 0 jD) 0:965 0:806 0:912 0:799 0:976Table 6.9: Posterior probability of vi < 0 based on Prior IICenter viMLE v̂i �̂ E(vi jD) V(vi jD)A �1:575 �1:463 �0:908 �1:545 0:381B �0:678 �0:838 �0:908 �0:783 0:332C �1:477 �1:182 �0:908 �1:251 0:403D �0:500 �0:682 �0:908 �0:645 0:243E �1:770 �1:451 �0:908 �1:434 0:224Table 6.10: The MLE, posterior mode, pooled population mode, posteriormean and variance of vi based on Prior IIamong these posterior distributions. Table 6.9 displays the posterior probabil-ity of vi < 0 for all the centers. At some centers, such as centers A and E,there is strong evidence that indicates that vi is negative. At other centers,such as center B and D, we are less certain that vi is negative. It is still likelythat vi is negative at all the centers, because the probability P (vi < 0 jD) isfar above 0:5 in all centers.Table 6.10 shows the individual center log hazard ratio (MLE), posteriormode of vi (v̂i), pooled population log hazard ratio (�̂), posterior mean andvariance of vi in each center based on Prior II. Column 2 to column 4 stillindicate that the individual center log hazard ratios were shrunk toward thepooled population log hazard ratio. The posterior mode of vi varies from�1:432 at center A to �0:680 at center D, which respectively correspond to a319% and a 97% increase in mean and median survival time on therapy 2 overtherapy 1.



109
v_i

de
ns

ity

-4 -3 -2 -1 0 1

0.
0

0.
4

0.
8

Posterior densities of v_i based on Prior II

A
B
C
D
E

v_i

de
ns

ity

-4 -3 -2 -1 0 1

0.
0

0.
4

0.
8

Posterior densities of v_i based on Prior III

A
B
C
D
E

Figure 6.7: Posterior distribution of vi based on Prior II and Prior III



110Center �i1MLE �̂i1 (a� 1)=b̂ E(�i1 jD) V(�i1 jD)A 0:012 0:012 0:019 0:013 0:000027B 0:015 0:015 0:019 0:017 0:000054C 0:040 0:028 0:019 0:032 0:000152D 0:009 0:009 0:019 0:010 0:000011E 0:063 0:042 0:019 0:047 0:000263Table 6.11: The MLE, posterior mode, pooled population mode, posteriormean and variance of �i1 based on Prior IIThe �rst plot of Figure 6.8 displays the posterior distributions of �i1 (i =1; � � � ; 5) based on Prior II. As in the vi0s, we see a large variation among the �veposterior distributions of �i1. These posterior distributions were relatively 
at;and the posterior distribution of �i1 at center E was extremely 
at, becausethere was a large discrepancy among the observations at that center. The 
atprior distributions on 1=b and �2 made each center borrow little strength fromother centers.Table 6.11 displays the individual center hazard rate (MLE), posterior modeof �i1 (�̂i1), pooled population hazard rate ((a � 1)=b̂), posterior mean andvariance of �i1 in each center based on Prior II. At centers C and E, the MLEsof individual center �i1 are far above the pooled population value, and theposterior modes of �i1 at these centers were shrunk down toward the populationvalue. In this 
at prior distribution case, only in very extreme centers, the �̂i1were shrunk to that about the population value. The posterior mode of �i1varies from 0:009 at center D to 0:042 at center E, which correspond to a 111:1-week and a 23:8-week mean survival time, respectively, on the o� imipraminetherapy.
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112Parameter Mode Mean Variancea=b 0:0288 0:0276 0:001617a=b2 0:0002763 0:0002860 2:2� 10�7� �0:908 �0:745 0:440�2 0:348 3:234 15:23Table 6.12: Posterior mode, mean and variance of a=b, a=b2, � and �2 basedon Prior IIThe dotted curves in Figure 6.9 show the posterior distributions of popula-tion parameters a=b, a=b2, � and �2 based on Prior II. Our prior distributionsof a=b and �2 are uniform distributions; and the prior distribution of � is 
attoo. The posterior distributions of a=b and � are much more concentrated thantheir prior distributions, but the posterior density of �2 is still relatively 
at.Thus, the data we observed provided much information on population meansa=b and �, but they did not provide much information about �2.Table 6.12 shows the posterior mode, mean and variance of the popula-tion mean and variance of �i1 and vi based on Prior II. The �rst two rowsrepresent the population mean (a=b) and variance (a=b2) of �i1. � and �2 arethe population mean and variance of vi. The posterior mode of � is �0:908,which corresponds to a 148% increase in mean survival time on therapy 2 overtherapy 1 in the population. Prior IIIThe second plot in Figure 6.7 displays the posterior distributions of vi basedon Prior III, i = 1; � � � ; 5. Since Prior III only assumes very little center hetero-geneity, the strength borrowing is very strong, and we only see little variationamong these posterior distributions. The posterior density curves of vi at cen-ter B, C, D and E are very close; and the posterior density curve of vi in center
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114Center A B C D EP (vi < 0 jD) 0:999 0:979 0:984 0:968 0:992Table 6.13: Posterior probability of vi < 0 based on Prior IIICenter viMLE v̂i �̂ E(vi jD) V(vi jD)A �1:575 �1:360 �1:052 �1:403 0:181B �0:678 �1:002 �1:052 �1:013 0:160C �1:477 �1:090 �1:052 �1:114 0:200D �0:500 �0:951 �1:052 �0:962 0:135E �1:770 �1:151 �1:052 �1:161 0:129Table 6.14: The MLE, posterior mode, pooled population mode, posteriormean and variance of vi based on Prior IIIA shifted to the left a bit compared to the others. These curves suggest thatcenters B, C, D and E have almost the same log hazard ratio, and center Ahas a smaller log hazard ratio than other centers. Table 6.13 displays posteriorprobabilities of vi < 0 at each center, and those posterior probabilities stronglysuggest that vi is negative for all the centers, which means that patients ontherapy 2 survive longer than those on therapy 1 at all the centers.Table 6.14 shows the individual center log hazard ratio (MLE), posteriormode of vi (v̂i), pooled population log hazard ratio (�̂), posterior mean andvariance of vi at each center based on Prior III. From column 2 to column 4, wecan see that the individual center log hazard ratio at each center was stronglyshrunk toward the population value. The posterior mode of vi changes from�1:259 at center A to �0:982 at center B, which correspond to a 252% and a167% increase, respectively, in mean survival time on therapy 2 over therapy1.



115Center �i1MLE �̂i1 (a� 1)=b̂ E(�i1 jD) V(�i1 jD)A 0:012 0:014 0:019 0:015 0:000018B 0:015 0:018 0:019 0:019 0:000027C 0:040 0:024 0:019 0:027 0:000056D 0:009 0:012 0:019 0:012 0:000008E 0:063 0:033 0:019 0:034 0:000077Table 6.15: The MLE, posterior mode, pooled population mode, posteriormean and variance of �i1 based on Prior IIIThe second graph of Figure 6.8 displays posterior distributions of �i1 (i =1; � � � ; 5) based on Prior III. Because of the strong strength borrowing, theposterior distribution of �i1 is relatively less 
at. We can still clearly see somevariation among these posterior density curves. Centers D and E are twocenters with extreme �i10s, and the posterior density curves of �i1 at the twocenters shared only a small area.Table 6.15 shows the individual center hazard rate (MLE), posterior modeof �i1 (�̂i1), pooled population hazard rate ((a � 1)=b̂), posterior mean andvariance of �i1 at each center based on Prior III. From column 2 to column4, we can see that the individual center �i1 was strongly shrunk toward thepopulation value. The posterior mode of �i1 changes from 0:013 at center Dto 0:026 at center E, which correspond to a 76:9-week and a 38:5-week meansurvival time respectively. The mean survival time doubles from center E tocenter D.Table 6.16 displays the posterior mode, mean, and variance of the popu-lation mean and variance of �i1 in its second and third rows. The posteriormode, mean and variance of � and �2 are displayed in the last two rows ofthe table. We see very small values for a=b2 and �2, which indicate strong



116Parameter Mode Mean Variancea=b 0:021 0:023 0:0000228a=b2 0:0000406 0:0000528 5:4 � 10�10� �1:052 �1:068 0:122�2 0:139 0:209 0:014Table 6.16: Posterior mode, mean and variance of a=b, a=b2, � and �2 basedon Prior IIIcenter homogeneity. The posterior mode of � is �1:037, which corresponds toa 182% increase in mean survival time on the on imipramine therapy over theo� imipramine therapy.6.3.3 Comparison of the Three Prior DistributionsWhen we compare the posterior distributions derived from the three sets ofprior distributions that we chose, we can see how the posterior distributionsare a�ected by the prior distributions. By comparing the corresponding plotsin the graphs from Figure 6.3 to Figure 6.9, we can see that the shrinkage ofthe individual center parameters increased as the priors changed from Prior IIto Prior I, and from Prior I to Prior III. As we expected, the posterior dis-tributions of individual center parameters derived from a 
atter prior are lesshomogeneous and less concentrated. Prior belief in the center heterogeneityhas strong impact on the posterior distributions of individual center parame-ters, but it has a relatively lighter impact on the posterior distributions of thepopulation mean of the individual center parameters.When we compare the corresponding numbers in the tables from Table 6.3to Table 6.16, we can see that the range of the posterior modes of individualcenter parameters changes with the variation of prior belief in center hetero-



117geneity. The range of posterior modes of vi from center to center is 0:752 basedon Prior II, it decreased to 0:629 based on Prior I, and it further decreased to0:277 based on Prior III. A similar thing happens to �i1; the range of posteriormodes of �i1 from center to center is 0:033 based on Prior II and Prior I, butit decreased to 0:013 based on Prior III.By comparing the corresponding posterior variances of the individual cen-ters and population parameters derived from the three sets of prior distribu-tions, we can clearly see that the posterior variance decreased as the priorvariation between centers decreases. For example, the posterior variance of viat center A is 0:381 based on Prior II. It decreased to 0:274 based on Prior I,and it further decreased to 0:181 based on Prior III. For other examples, theposterior variance of �i1 in center C is 0:000152 based on Prior II, it decreasedto 0:000124 based on Prior I, and it further decreased to 0:000056 based onPrior III. The posterior variance of population parameter � is 0:440 based onPrior II, it decreased to 0:188 based on Prior I, and it further decreased to0:122 based on Prior III.The data of this study strongly suggest that there is a certain center het-erogeneity between di�erent centers, even when it is our prior belief that thereis only very small center heterogeneity (Prior III), the posterior distributionsstill showed a strong heterogeneity on the center hazard rate �i1 for patientson the o� imipramine therapy.



Appendix AData from the NSCLC Study
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119Variable CodesCenter: Medical CenterTime: Months until a deathStatus: A= AliveD= DeathTherapy: 1=RT2=CT+RT



120Center Time Status Therapy1 83.77 A 11 16.53 D 22 4.40 D 12 7.57 D 12 62.50 A 12 12.77 D 12 9.47 D 23 10.67 D 13 13.23 D 13 6.10 D 13 45.40 D 13 8.57 D 13 10.47 D 13 21.43 D 13 2.27 D 13 2.73 D 13 16.23 D 13 19.73 D 13 32.90 D 13 23.00 D 23 18.13 D 23 62.37 D 23 18.53 D 23 3.97 D 23 59.03 A 23 10.97 D 23 66.07 A 23 6.27 D 23 55.03 A 24 44.13 D 14 8.53 D 1Table A.1: Data from the NSCLC Study | Part 1



121Center Time Status Therapy4 19.93 D 14 4.23 D 14 23.30 D 14 4.50 D 14 18.10 D 14 15.83 D 14 9.67 D 14 42.47 A 14 13.10 D 14 4.03 D 24 62.40 D 24 9.80 D 24 6.70 D 24 16.53 D 24 8.33 D 24 11.67 D 24 12.83 D 24 8.73 D 24 3.90 D 24 55.73 A 25 1.27 D 15 15.33 D 15 48.07 D 26 31.20 A 16 2.60 D 16 10.53 D 16 18.93 D 26 39.47 A 26 40.27 D 26 5.03 D 27 6.00 D 1Table A.2: Data from the NSCLC Study | Part 2



122Center Time Status Therapy7 6.77 D 17 1.23 D 17 12.67 D 17 4.50 D 27 11.40 D 27 66.33 A 28 12.63 D 18 10.13 D 18 7.00 D 28 19.03 D 29 15.00 D 19 9.50 D 19 28.83 D 29 52.60 A 210 0.37 D 110 7.50 D 110 64.87 A 110 10.67 D 110 20.67 D 210 13.73 D 210 6.47 D 210 15.57 D 211 19.77 D 111 8.13 D 111 7.67 D 111 4.83 D 111 5.33 D 111 14.20 D 111 57.43 A 211 69.13 A 211 52.67 A 2Table A.3: Data from the NSCLC Study | Part 3



123Center Time Status Therapy11 23.43 D 211 1.83 D 211 7.47 D 212 2.30 D 112 6.57 D 212 21.20 D 212 5.93 D 213 6.90 D 113 31.93 D 113 15.20 D 113 73.43 A 113 10.83 D 113 6.10 D 113 3.37 D 113 17.23 D 213 6.33 D 213 20.47 D 213 2.70 D 213 16.40 D 213 13.30 D 213 7.97 D 213 5.20 D 213 3.13 D 213 6.07 D 213 7.20 D 214 7.63 D 114 2.97 D 114 6.87 D 114 16.87 D 114 3.63 D 114 2.93 D 1Table A.4: Data from the NSCLC Study | Part 4



124Center Time Status Therapy14 16.87 D 214 46.90 D 214 7.53 D 214 0.20 D 214 10.03 D 214 14.57 D 214 14.07 D 215 3.57 D 115 47.83 D 216 2.40 D 116 8.90 D 116 16.10 D 116 17.47 D 216 9.43 D 216 19.07 D 217 8.30 D 117 56.67 A 218 1.27 D 118 9.50 D 218 9.03 D 219 10.27 D 119 0.27 D 119 23.40 D 119 73.93 A 219 10.10 D 219 7.00 D 220 2.87 D 120 7.17 D 121 12.03 D 222 17.50 D 122 55.77 A 2Table A.5: Data from the NSCLC Study | Part 5
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126Variable CodesCenter: Medical CenterTime: Weeks until a recurrenceStatus: 0= Censored1= RecurrenceTherapy: 1=O� Imopramine2=On Imopramine



127
Center Recurrence Status Therapy1 36.143 1 11 49.714 1 11 5.000 1 11 2.857 1 11 55.714 1 11 5.571 1 11 14.429 0 11 104.857 0 11 102.429 0 11 105.857 0 11 16.286 0 11 8.429 1 21 13.429 1 21 27.286 1 21 105.143 0 21 74.571 0 21 102.143 0 21 108.857 0 21 106.429 0 21 105.143 0 21 83.000 0 21 104.000 0 21 83.000 0 21 98.000 0 21 98.000 0 21 88.000 0 2Table B.1: Data from the NIMH Collaborative Study | Center A



128
Center Recurrence Status Therapy2 1.286 1 12 4.000 1 12 74.143 1 12 0.143 1 12 1.429 1 12 45.857 1 12 2.143 0 12 104.857 0 12 78.429 0 12 78.429 0 12 27.143 1 22 9.857 1 22 42.429 1 22 17.429 1 22 18.000 1 22 66.857 1 22 100.000 0 22 52.143 0 22 78.000 0 22 78.857 0 22 54.857 0 22 78.286 0 22 78.143 0 22 52.000 0 22 15.857 0 2Table B.2: Data from the NIMH Collaborative Study | Center B



129Center Recurrence Status Therapy3 9.000 1 13 3.286 1 13 30.000 1 13 7.143 1 13 31.000 1 13 17.286 1 13 0.143 1 13 79.000 0 13 27.571 1 23 49.143 1 23 16.714 1 23 32.571 0 23 206.000 0 2Table B.3: Data from the NIMH Collaborative Study | Center CCenter Recurrence Status Therapy4 3.286 1 14 19.714 1 14 8.000 1 14 71.714 1 14 63.714 1 14 36.286 1 14 8.143 1 14 16.000 1 14 37.857 1 14 11.143 1 14 44.000 1 14 0.286 1 14 96.286 0 14 50.857 0 1Table B.4: Data from the NIMH Collaborative Study | Center D (I)



130Center Recurrence Status Therapy4 102.571 0 14 165.000 0 14 124.571 0 14 68.000 0 14 39.571 0 14 131.000 0 14 42.000 0 14 115.000 0 14 77.857 0 14 12.429 0 14 22.000 0 14 16.143 1 24 4.429 1 24 21.000 1 24 16.143 1 24 50.571 1 24 3.429 1 24 13.429 1 24 92.714 1 24 1.571 0 24 126.714 0 24 13.000 0 24 155.000 0 24 39.571 0 24 112.571 0 24 115.571 0 24 28.000 0 24 38.000 0 24 111.571 0 24 26.000 0 24 108.000 0 24 106.714 0 24 55.000 0 24 75.000 0 24 52.714 0 24 86.000 0 24 34.517 0 2Table B.5: Data from the NIMH Collaborative Study | Center D (II)



131Center Recurrence Status Therapy5 5.429 1 15 6.286 1 15 5.286 1 15 3.429 1 15 6.571 1 15 1.000 1 15 0.857 1 15 4.714 1 15 46.286 1 15 0.571 1 15 6.429 1 15 0.000 1 15 20.857 1 15 18.286 1 15 2.000 1 15 67.000 0 15 45.000 0 15 3.429 1 25 1.000 1 25 50.286 1 25 16.857 1 25 0.571 1 25 22.143 1 25 31.857 1 25 22.000 1 25 13.429 1 25 5.000 0 25 15.000 0 25 128.143 0 25 109.571 0 25 106.000 0 25 9.143 0 25 102.000 0 25 104.000 0 25 105.143 0 2Table B.6: Data from the NIMH Collaborative Study | Center E



Appendix CComputer ProgramsThis appendix contains the programs used in numerical integration and theGibbs sampling algorithms. These programs were written in FORTRAN 77using the following IMSL subroutines and functions for random number gen-erators and calculation:� drnun { subroutine for Uniform [0; 1] generation� drnnoa { subroutine for Normal (0; 1) generation� drngam { subroutine for Gamma(a, 1) generation� dgamma { function for �(x)� dlgams { function for ln(�(x))C.1 Numerical Integration in Chapter 3C this is for calculating p(v|data), p(\lambda_1|data)integer d1,d2real*8 t1,t2,x,s,a,b,y,v(3000),c,l(2000)132



133real*8 y1,s1,s2,c2read *, d1,d2,t1,t2 ! the sufficient statisticsa=2.0b=20.0C First is for p(v|data)s=0.0do 10 i=1,3000x=-3.+0.0014*iy=d2*x-x*x*0.5-(a+d1+d2)*dlog(b+t1+t2*dexp(x))v(i)=dexp(y)s=s+v(i)10 continuec=1.0/(s*0.0014) ! normalizing constantdo 20 i=1,3000x=-3.0+0.0014*iv(i)=v(i)*cprint '(2f15.5)', x, v(i)20 continueC Forrowing is For Posterior of Lambda_1do 30 i=1,2000x=0.00008+(i-1)*0.0001s=0.0do 40 j=1,3000y=-3.0+(j-1)*0.0013s=s+dexp(d2*y-y*y*0.5-x*t2*dexp(y))40 continues1=s*c*0.0013y1=(a+d1+d2-1.)*dlog(x)-(b+t1)*x+450.0l(i)=s1*dexp(y1)s2=s2+l(i)30 continuec2=1.0/(s2*0.0001)do 50 i=1,2000x=0.00008+(i-1)*0.0001l(i)=l(i)*c2print '(2f15.5)', x, l(i)50 continueend



134C.2 Numerical Methods in Hierarchical ModelThis section contains programs in the hierarchical model used in a multicentertrial.C.2.1 Gibbs SamplingThe following Fortran program does Gibbs sampling in a multicenter trial.C This is for doing Gibbs sampling in a multicenter trialC m --- the number of centersC u(i,j) is the number of uncensored observations in center iC on treatment j (-- d(i,j) in chapters 4,5,6 )C n(i,j) is the total number of observations in center i onC treatment jC t(i,j) is the total exposure time observed in center i onC treatment jC prior of mu is N(0,1)C prior of b is gamma(c,d)C prior of sigma^2 is IG(aa,bb)C a1(i), a2(i) are the parameters of the gamma dis. for lambda_i1C a1(m+1), a2(m+1) are the parameters of the gamma dis. for bC y(i) is lambda_i1, z(i) is v(i), sig is sigma^2parameter(m=22,mm=2000)integer u(m,2), ll,lreal*8 y(m+1), z(m), t(m,2), mu, sig, mvreal*8 s, f, f1, w, v, vhat, x0, x1, dd, errreal*8 a1(m+1),a2(m+1),a,c,d, aa, bb, z1, z2real*8 drngam, drnnoa, drnunexternal drngam, drnnoa, drnunC ut: sum of u(i,1)a=6.0c=4.0d=0.075 ! prior of b is gamma(c,d)a1(m+1)=m*a+c



135aa=3.0bb=.32 ! prior of sig is inverse gamma(aa,bb)do 10 i=1,mread *, u(i,1),t(i,1),u(i,2),t(i,2)10 continuedo 5 i=1,ma1(i)=a+u(i,1)+u(i,2)5 continuedo 100 ll=1,mm ! ll is the count of Gibbs samplingdo 20 k=1, ma2(k)=20.0 ! initial valuecall drngam(1,a1(k),y(k))y(k)=y(k)/a2(k)call drnnoa(1, z(k))20 continuecall drngam(1, c, y(m+1))y(m+1)=y(m+1)/dcall drnnoa(1,mu) ! inisial mu from N(0,1)call drngam(1,aa, sig)sig=bb/sig ! prior of sig: Inverse G(aa,bb)do 101 l=1,30 ! l is the number of iterationsa2(m+1)=0.0mv=0.0do 65 i=1,ma2(i)=t(i,2)*exp(z(i))+t(i,1)+y(m+1)call drngam(1,a1(i),y(i))y(i)=y(i)/a2(i)a2(m+1)=a2(m+1)+y(i)C following is the process of sampling v(i) with rejection methodC first is to find the mode of a normal distribution and theC envelop function of the conditional distribution of v(i)C f is the logrithm of the factor function in the conditionalC distribution of v(i)C f1 is the logrithm of the envelop functionx0=-0.125 z1=x0+y(i)*t(i,2)*sig*exp(x0)-mu-u(i,2)*sigz2=1.0+y(i)*t(i,2)*sig*exp(x0)x1=x0-z1/z2



136err= abs(x1-x0)if ( err .le. .000001) goto 35x0=x1go to 2535 vhat=x1 ! vhat is the modedd=u(i,2)-(vhat-mu)/sig30 call drnun(1,w)call drnnoa(1,v)v=vhat+v*sqrt(sig)f1=dd*(vhat-1.0-0.5*(v-vhat)**2-(v-vhat)**3/6.0)f=dd*v-t(i,2)*y(i)*exp(v)if (f-f1 .lt. log(w)) go to 30z(i)=vmv=mv+v65 continuea2(m+1)=a2(m+1)+dcall drngam(1,a1(m+1),y(m+1))y(m+1)=y(m+1)/a2(m+1)mv=mv/(sig+m)call drnnoa(1,mu)mu=mv+mu*sqrt(sig/(sig+m))s=0.0do 40 k=1, ms=s+(z(k)-mu)**240 continuecall drngam(1, aa+0.5*m, sig)sig=(bb+0.5*s)/sig101 continueprint '(7f10.5)', (y(i),i=1,7)print '(7f10.5)', (y(i),i=8,14)print '(8f9.5)', (y(i),i=15,22)print '(7f10.5)', (z(i),i=1,7)print '(7f10.5)', (z(i),i=8,14)print '(8f9.5)', (z(i),i=15,22)print '(3f14.8)', y(m+1), mu, sig100 continueend



137C.2.2 Posterior density of viFollowing is the program of calculating the posterior density functions of vi0s.C this is to calculate posterior density in multicenter trialC for the posterior of the v_i's -- log hazard ratio in each centerC c(m,mm) are the normalizing constant for the conditional densityC of v_i'sC m --- the number of centers,C mm --- the sample size in Gibbs SamplingC y(i,j) --- j-th observation of lambda_i1 in Gibbs samplingC z(i,j) --- j-th observation of v_i in Gibbs samplingC sig(j) --- j-th observation of sigma^2 in Gibbs samplingC fv(i) --- posterior density function of v_iparameter(m=22,mm=2000)real*8 y(m,mm),z(m,mm),b(mm),mu(mm),sig(mm),c(m,mm)real*8 fv(m)integer d(m,2)real*8 t(m,2),x,a,w,sa=15.0do 5 i=1,m ! read in sufficient statisticsread *, d(i,1),t(i,1),d(i,2),t(i,2)5 continuedo 10 k=1,mm ! read in the Gibbs samplerread *, (y(i,k), i=1,7)read *, (y(i,k), i=8,14)read *, (y(i,k), i=15,22)read *, (z(i,k), i=1,7)read *, (z(i,k), i=8,14)read *, (z(i,k), i=15,22)read *, b(k),mu(k),sig(k)10 continuedo 20 i=1,m ! calculate normalize constant for v_i'sdo 30 j=1,mms=0.0do 40 k=1,5000x=-3+(k-1)*.001w=-.5*(x-mu(j))**2/sig(j)+d(i,2)*x-y(i,j)*t(i,2)*dexp(x)s=s+dexp(w+45.0)40 continue



138c(i,j)=5000.0/(s*5.0)30 continue20 continuedo 50 i=1,2751x=-3.0+(i-1)*.002do 60 j=1,mfv(j)=0.0do 70 k=1,mmw=-0.5*(x-mu(k))**2/sig(k)+d(j,2)*x& -y(j,k)*t(j,2)*dexp(x)+45.0fv(j)=fv(j)+c(j,k)*dexp(w)70 continuefv(j)=fv(j)/mm60 continueprint '(8f9.4)', x,(fv(kk),kk=1,7)print '(8f9.4)', (fv(kk),kk=8,15)print '(7f9.4)', (fv(kk),kk=16,22)50 continueendC.2.3 Posterior density of �i1Following is the program of calculating the posterior density functions of �i10s.C this is to calculate posterior density of lambda_i1's in aC multicenter trial with a hierarchical modelC n --- number of points at which density function is calculatedC m --- the number of centers,C mm --- the sample size in Gibbs SamplingC y(i,j) --- $j$th observation of lambda_i1 in Gibbs samplingC z(i,j) --- $j$th observation of v_i in Gibbs samplingC sig(j) --- $j$th observation of sigma^2 in Gibbs samplingC flam(i) --- posterior density function of $\lambda_{i1}$parameter(m=22,mm=2000,n=800)real*8 y(m,mm),z(m,mm),b(mm),mu(mm),sig(mm),flam(m)integer d(m,2),u(m)real*8 t(m,2),a,w,w1,logal,s,xreal*8 dlgams, dgamma



139external dlgams, dgammaa=15.0do 5 i=1,m ! read in sufficient statisticsread *, d(i,1),t(i,1),d(i,2),t(i,2)u(i)=d(i,1)+d(i,2)5 continuedo 10 k=1,mm ! read in the Gibbs samplerread *, (y(i,k), i=1,7)read *, (y(i,k), i=8,14)read *, (y(i,k), i=15,22)read *, (z(i,k), i=1,7)read *, (z(i,k), i=8,14)read *, (z(i,k), i=15,22)read *, b(k),mu(k),sig(k)10 continuedo 20 i=1,nx=0.002+i*.298/800.do 40 j=1,mflam(j)=0.0call dlgams(a+u(j),logal,s)do 50 k=1,mmw=b(k)+t(j,1)+t(j,2)*dexp(z(j,k))w1=dlog(w)-x*w+(a+u(j)-1)*dlog(x*w)-logalflam(j)=flam(j)+dexp(w1)50 continueflam(j)=flam(j)/mm40 continueprint '(8f9.4)', x,(flam(kk),kk=1,7)print '(8f9.4)', (flam(kk),kk=8,15)print '(7f9.4)', (flam(kk),kk=16,22)20 continueendC.2.4 Posterior density of bFollowing is the program of calculating the posterior density function of b.C this is to calculate the posterior density of b



140C n --- number of points at which density function is calculatedC m --- the number of centers,C mm --- the sample size in Gibbs SamplingC y(i,j) --- $j$th observation of lambda_i1 in Gibbs samplingC z(i,j) --- $j$th observation of v_i in Gibbs samplingC sig(j) --- $j$th observation of sigma^2 in Gibbs samplingC fb --- posterior density function of bparameter(m=22,mm=2000,n=2000)real*8 y(m,mm),z(m,mm),b(mm),mu(mm),sig(mm)real*8 x, fb, sum, gamma,dlgamsreal*8 sd,ss,a,c,a1,b1,d,s,loga1external dgamma,dlgamsa=6.0c=4.0d=0.075a1=m*a+ccall dlgams(a1,loga1,s)do 10 k=1,mm ! read in the Gibbs samplerread *, (y(i,k), i=1,7)read *, (y(i,k), i=8,14)read *, (y(i,k), i=15,22)read *, (z(i,k), i=1,7)read *, (z(i,k), i=8,14)read *, (z(i,k), i=15,22)read *, b(k),mu(k),sig(k)10 continuedo 20 i=1,nx=20+(i-1)*.15fb=0.0do 30 k=1,mmsum=0.0do 40 j=1,msum=sum+y(j,k)40 continueb1=d+sumss=a1*log(b1)+(a1-1.0)*dlog(x)-b1*x-loga1fb=fb+dexp(ss)30 continuefb=fb/mmprint '(2f20.10)',x,fb



14120 continueendC.2.5 Posterior density of �Following is the program of calculating the posterior density function of �.C this is to calculate posterior density of muC m --- the number of centers,C mm --- the sample size in Gibbs SamplingC y(i,j) --- $j$th observation of lambda_i1 in Gibbs samplingC z(i,j) --- $j$th observation of v_i in Gibbs samplingC sig(j) --- $j$th observation of sigma^2 in Gibbs samplingC fmu --- posterior density function of muparameter(m=22,mm=2000)real*8 y(m,mm),z(m,mm),b(mm),mu(mm),sig(mm)real*8 fmu,avegreal*8 sd,x,ssdo 10 k=1,mm ! read in the Gibbs samplerread *, (y(i,k), i=1,7)read *, (y(i,k), i=8,14)read *, (y(i,k), i=15,22)read *, (z(i,k), i=1,7)read *, (z(i,k), i=8,14)read *, (z(i,k), i=15,22)read *, b(k),mu(k),sig(k)10 continuedo 50 i=1,1500x=-1.5+i*.0015fmu=0.0do 60 k=1,mmaveg=0.0do 70 j=1,maveg=aveg+z(j,k)70 continueaveg=aveg/(m+sig(k))sd = sig(k)/(sig(k)+m)



142ss = -0.5*(x-aveg)*(x-aveg)/sdfmu=fmu+dexp(ss)/sqrt(sd)60 continuefmu=fmu/(sqrt(2*3.141596)*mm)print '(2f15.6)',x,fmu50 continueendC.2.6 Posterior density of �2Following is the program of calculating the posterior density function of �2.C this is to calculate posterior density of sigma^2C n --- number of points at which density function is calculatedC m --- the number of centers,C mm --- the sample size in Gibbs SamplingC y(i,j) --- j-th observation of lambda_i1 in Gibbs samplingC z(i,j) --- j-th observation of v_i in Gibbs samplingC sig(j) --- j-th observation of sigma^2 in Gibbs samplingC fsig --- posterior density function ofsigma^2parameter(m=22,mm=2000,n=2000)real*8 y(m,mm),z(m,mm),b(mm),mu(mm),sig(mm)real*8 fsig,mean,dgamma,sreal*8 w,x,w1,u,s1,dlgams, logalexternal dgamma,dlgamsu=3.0 ! parameters in prior of sigma^2w=.32call dlgams(u+.5*m,logal,s1) ! calculate log-gamma(u+.5*m)do 10 k=1,mm ! read in the Gibbs samplerread *, (y(i,k), i=1,7)read *, (y(i,k), i=8,14)read *, (y(i,k), i=15,22)read *, (z(i,k), i=1,7)read *, (z(i,k), i=8,14)read *, (z(i,k), i=15,22)read *, b(k),mu(k),sig(k)10 continue



143do 50 i=1,nx=0.001+(i-1)*.001fsig=0.0do 60 k=1,mmmean=0.0do 70 j=1,mmean=mean+(z(j,k)-mu(k))**270 continuew1=mean*0.5+ws = (u+0.5*m)*dlog(w1)-w1/x -logal-(u+.5*m+1)*dlog(x)fsig=fsig+dexp(s)60 continuefsig=fsig/mmprint '(2f20.8)',x,fsig50 continueendC.2.7 Predictive Survival FunctionsFollowing is the program of calculating the predictive survival functions oneach therapy at every center.C this is the program of calculating the predictive survival functionsC m --- the number of centersC mm --- the sample size in Gibbs SamplingC y(i,j) --- j-th observation of lambda_i1 in Gibbs samplingC z(i,j) --- j-th observation of v_i in Gibbs samplingC sig(j) --- j-th observation of sigma^2 in Gibbs samplingC s1(i) --- predictive survival function on therapy 1 at center iC s2(i) --- predictive survival function on therapy 2 at center iparameter(m=22,mm=2000)real*8 y(m,mm),z(m,mm),b(mm),mu(mm),sig(mm)real*8 x, s1(m),s2(m)do 10 k=1,mm ! read in the Gibbs samplerread *, (y(i,k), i=1,7)read *, (y(i,k), i=8,14)read *, (y(i,k), i=15,22)



144read *, (z(i,k), i=1,7)read *, (z(i,k), i=8,14)read *, (z(i,k), i=15,22)read *, b(k),mu(k),sig(k)10 continuedo 20 j=0,720x=j*0.1do 30 k=1,ms1(k)=0.0s2(k)=0.0do 15 i=1,mms1(k)=s1(k)+dexp(-x*y(k,i))s2(k)=s2(k)+dexp(-x*y(k,i)*dexp(z(k,i)))15 continues1(k)=s1(k)/mms2(k)=s2(k)/mm30 continueprint '(8f9.4)', x,(s1(k),k=1,7)print '(8f9.4)', (s1(k),k=8,15)print '(7f9.4)', (s1(k),k=16,m)print '(8f9.4)', (s2(k),k=1,8)print '(8f9.4)', (s2(k),k=9,16)print '(6f9.4)', (s2(k),k=17,m)20 continueend
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