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Abstract

The problem of comparing two therapies with survival data is considered from a
Bayesian point of view. Survival times on each therapy are assumed to have an
exponential distribution. The posterior distribution of the log hazard ratio of
the experimental therapy to the standard therapy is the basis of inference. Two
models are proposed in this dissertation. The first assumes center homogeneity
and the second uses a Bayesian hierarchical model for heterogeneity of therapy
effects among different centers in a multicenter trial. Center heterogeneity in a
multicenter trial is explored in terms of the posterior distributions of the first
and second stage parameters as well as the predictive distributions of survival
time on each therapy at every center. Posterior distributions of parameters
in the first model are derived by doing numerical integration on univariate
functions. Posterior distributions of parameters in the second model are derived
by using a sampling based algorithm, called Gibbs sampling.

Sensitivity of results to the prior belief is examined by doing the analysis
on some different prior distributions. In the first model, stress is given to the
prior variance of the log hazard ratio. In the second model, stress is given to
the prior belief of the center heterogeneity.

Two clinical trials are analyzed in this dissertation as examples. One is a



i

phase III clinical trial conducted by Cancer and Leukemia Group B to test two
therapies for treatment of patients with stage III non-small cell lung cancer.
The other is a NIMH-PRB Collaborative Study of Long-Term Maintance Drug

Therapy in Recurrent Affective Illness.
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Chapter 1

Introduction

1.1 Statement of the Problem

Clinical trials are designed to assess the efficacy of therapies. Usually, data
from patients treated with experimental therapies are compared to data from
patients treated with standard therapies or placebos. In many clinical trials,
the primary endpoint occurs when a patient dies or when some other specified
event happens. In this dissertation, we are interested in the length of time
that it takes for a particular event to occur in the individual patient. If the
event is death, then it is the patient’s survival time that interests us. In these
kinds of clinical trials, some individuals do not experience the event during their
observation period, so we can only observe them during the time that they stay
in the trial. The data on such individuals are said to be right censored. Right
censoring occurs when the individual under observation has not experienced
the event at the end of the study when the statistical analysis is performed,
when the individual withdraws from the study, or when the individual moves

and is lost to follow up.

Clinical trials may be conducted in one or more medical centers. Although



it may be reasonable to assume that all the patients in a single center are

exchangeable, patients at different centers may not be.

In clinical trials conducted at different medical centers, there may be differ-
ences in inclusion and exclusion criteria or in the way such criteria are applied.
For example, a patient with a large tumor may be admitted to a cancer trial

at one medical center, but not at another.

Many clinical trials are multicenter trials. Conducting these trials at more
than one center allows researchers to evaluate the efficacy of a therapy in a va-
riety of patients and centers. Moreover, it might be difficult or even impossible
for a single center to recruit the required number of patients in a given time

period, especially for some rare diseases.

It is important for us to recognize the differences between centers when we
analyze data from a multicenter trial, especially when the results vary sub-
stantially from center to center. In modeling this kind of data, we can not
assume that the observations from all the centers are exchangeable. Fleiss
(1986) discussed the controversy about the appropriate analysis of data from
a multicenter clinical trial. He posited that pooling in the sense of averaging
within-clinic differences is almost always justified, and pooling in the sense of
throwing together all the data is only rarely justified.

One way to pool the data from all these different centers is to use a hier-
archical model, with the idea that these centers are a random sample from a
population of centers. (This is a random-effects as opposed to a fixed-effects
model.) Such a hierarchical structure takes advantage of the information from
all centers to estimate the efficacy of therapy in individual centers and the

center population. In this dissertation, I will propose a full Bayesian model for



analyzing a clinical trial without center differences and a full Bayesian hierar-
chical model for analyzing a multicenter clinical trial with center differences.

The models will be applied to some clinical trial data.

1.2 Literature Review

For comparing survival distribution functions, Mantel (1966) first proposed the
log rank test based on the work of Mantel and Haenszel (1959). The test is
a nonparametric method of comparing survival distribution functions, it has

been a commonly used classical method in survival analysis.

One of the earliest works with Bayesian hierarchical models is that of Lind-
ley and Smith (1972). They analyzed the usual linear regression model, using a
Bayesian hierarchical model. In the first stage of the hierarchy, observations are
assumed to have independent normal distribution, given first stage parameters.
Moreover there is a linear regression relationship between the observations and
the first stage parameters. In the second stage of the hierarchy, the first stage
parameters are assumed to have independent normal distributions, given sec-
ond stage parameters; and there is a linear regression relationship between the
second-stage parameters and the first-stage parameters. In the third and final
stage of the hierarchy, the relationship between the second-stage parameters
and the third-stage parameters is also a linear regression. Lindley and Smith
derived the posterior distribution of the first-stage parameters analytically, and
they used the model in some examples.

Chakrovorti and Grizzle (1975) proposed a mixed-effects model to analyze
data from multicenter experiments for a continuous treatment response. Using

a normal linear model, they treated treatment effects as fixed factors; they



assumed that clinic effects and clinic by treatment effects were random. Maxi-
mum likelihood estimates and likelihood ratio statistics were used as the basis

of inference.

Hierarchical models have been used to analyze clinical trial data for many
years. Skene and Wakefield (1990) presented an application for discrete data,
and DuMouchel (1990) presented an application for normal data. Berry and
Berry (1993) used a Bayesian hierarchical model in a multi-study of binary
data. In the first stage, they assumed that the distribution of the observations
in each study was binomial. In the second stage, they assumed that the success
probabilities in each study were exchangeable and had a beta distribution with
unknown parameters. In the third stage, the parameters in the beta distribu-
tion were assumed to have a known prior distribution. Berry and Berry derived
the posterior distributions of the success probabilities in each study and the
parameters in the beta distribution. These distributions provided information

about each individual study and the heterogeneity between the studies.

In recent years, researchers have developed applications for continuous but
not normal distributed data. Perhaps the first work applying hierarchical mod-
els to continuous time survival data is that of Clayton (1991). He used a
Bayesian hierarchical model termed a “Bayesian Frailty Model” to model the
heterogeneity between subgroups in the proportional hazards model. In the
proportional hazards model, the hazard function for an individual character-

ized by covariate vector z is denoted

A(1]2) = Ao(t)eap(5"2).

The baseline hazard function, Ag(?), is modeled nonparametrically, whereas the

second factor on the right-hand side is modeled parametrically.



Stangl (1991) used an exponential-gamma hierarchical model to analyze
continuous time survival data in a multicenter study aimed at comparing two
interventions. In the first stage, she assumed that survival time under one in-
tervention in each center had an exponential distribution. In the second stage,
Stangl assumed that the hazard rates from all centers in each intervention were
exchangeable gamma random variables, and that the hazard rates for different
treatments were independent. She applied both empirical and nonempirical
Bayesian methods to the model. Stangl extended the general exponential dis-
tribution to mixture exponential and changepoint exponential distributions for
survival time in the first stage in her other models, and she compared those
different models by applying them to a multicenter trial data set.

Robert Gray (1993) used a Bayesian method to investigate the amount
of center variation in a multicenter clinical trial with a censored failure time
endpoint. He used a hierarchical structure to model the center effects in a
proportional hazards model. In the first stage, he modeled failure time as
a piecewise exponential distribution. In the second stage, he assumed that
the constant hazard rates in each interval were lognormally distributed, and he
took some covariates into account by using the Cox proportional hazard model.
The jumps of log hazard rates in each interval are assumed to be exchangeable
and normally distributed, and so are the log hazard ratios for the treatments
and the coefficients of the covariates in the Cox proportional model. Gray then
derived the numerical results of the posterior distributions.

Another Bayesian hierarchical model for a multicenter trial is proposed in
this dissertation. In the first stage, exponential distributions are assumed for
survival times. In the second stage, the hazard rate of the standard therapy

and the log hazard ratio of the experimental to the standard therapy at differ-



ent centers are assumed to be samples from a center population. This model
connects different centers and the two therapies together, the inference on each
therapy will use the information on the therapy as well as the information on
the other therapy at all centers. Modelling the log hazard ratios in the second
stage of the hierarchy makes the inference about them in the center population

very straightforward.

1.3 Outline of Dissertation

In Chapter 2 of this dissertation, I will introduce a general Bayesian model for
comparing two therapies in a clinical trial that was conducted in one medical
center, or that was conducted in multicenters but ignored possible heterogene-
ity between different centers. Survival time on each therapy will be modeled
with an exponential distribution. I will model the log hazard ratio directly. I
will present general procedures for deriving posterior distribution and predic-

tive distribution.

In Chapter 3, a phase I11 clinical trial of non-small cell lung cancer (NSCLC)
will be introduced, this study was conducted by the Cancer and Leukemia
Group B (CALGB). I will apply the model proposed in Chapter 2 to this trial,
present the numerical results of the posterior distributions and the predictive
distributions, and discuss the sensitivity to prior distributions.

In Chapter 4, a general Bayesian hierarchical model for modeling hetero-
geneity between centers in a multicenter clinical will be introduced. 1 assume
that the survival time on each therapy at every center has an exponential dis-
tribution, and that the hazard rate of the standard therapy and the log hazard

ratio of the experimental therapy to the standard therapy in each center are



a sample from a larger population. 1 will present the general procedures of
deriving posterior distribution of the parameters in each individual center and
the population. The Gibbs sampling technique will be applied for getting the

posterior distributions.

In Chapter 5, the hierarchical model proposed in chapter 4 will be applied
to the data from the NSCLC trial sponsored by CALGB. I will model the
heterogeneity between different centers and estimate the parameters in each
individual center and the center population. I will present the results derived
from different prior distributions to explore the impact of prior distribution on
posterior distribution.

In Chapter 6, the model in chapter 4 will be applied to a NIMH-PRB
Collaborative Study of Long-Term Maintenance Drug Therapy in a Recurrent
Affective Illness. I will present the numerical results of the posterior distribu-
tions of the parameters in each individual center and the center population.
I will also present the predictive survival functions for each therapy in all in-
dividual centers. Finally, to check the sensitivity to prior distributions, I will

present the results of some different prior distributions.



Chapter 2

A Bayesian Model for Comparing
Two Therapies

2.1 Introduction

This chapter consists of a Bayesian model designed without concern for differ-
ences between centers. This model can be applied to a single-center clinical
trial or a multicenter clinical trial in which the number of patients in the indi-
vidual centers is small. How long a patient survives on a therapy or how long
it takes for a disease to recur is of major interest in this kind of trial. Quite
often, some observations will be right censored. The main goal of the trial is to
compare the efficacy of two therapies, recognizing that often the efficacy of a

given therapy is measured by how long a patient can survive on that therapy.

2.2 Statistical Model

It is assumed that survival times on each therapy are exchangeable with an
exponential distribution, and that each therapy has a constant hazard rate. Let

A1 and Ay be the hazard rates for the standard therapy and the experimental



therapy respectively. The hazard rate completely determines the exponential
distribution; a greater hazard rate means a shorter survival time. To compare
the efficacy of the two therapies is to compare A; and As.

Let t;;, denote the length of time until the event or censoring occurs on the

kth patient assigned therapy j in the trial. The density of ¢ is:

FtlXy) = NeMln, j=1,2

where j = 1 corresponds to the standard therapy, and j = 2 corresponds to
the experimental therapy.

Let v stand for the log hazard ratio of experimental therapy to standard
therapy: v = In(A2/A1). Parameter v is positive or negative depending on
whether the standard or the experimental therapy is better (in the sense of
having smaller hazard rate), and the value of v represents the degree of differ-
ence between the two therapies. The larger the |v|, the greater the difference
between the two therapies. For example, [v| = In2 = 0.7 implies that the mean
survival time on one therapy is twice that on the other therapy.

Az is determined by A; and v through relation Ay = A1e?, so (Ay, v) forms
a full parameter space for this model.

Assume our observations are (¢, 0%), kK =1,....,n;, 7 = 1,2, where é;; is
the status at the observing.

0 if ¢, is right censored
Ok =
1 otherwise
If ;1 is a censored point, then the corresponding observation’s contribution to

the likelihood function is the survival function S(#;,) = 1 — F(t;) = e~ lr,
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The likelihood function of A; and v is
L(M,vldata) = T ILZ, f(tk, 85klX;)

= H?:lnzjzl)‘jjke_Ajtjk

= H?Zl)\jz:il Sk =2 3 0Ly tin
)\;ll e‘AlTl)\gz’e_A?T?

= Jhtd eV exp[— M (T + Tye)]

where d; = 3,2, 6;x, j = 1,2 is the total number of uncensored observations

on therapy j, and T; = Y}2, t;x, j = 1,2 is the total exposure time observed

on therapy j. Sufficient statistics for (A1, v) are d;,T;,5 = 1,2.

2.3 Prior Distributions

Prior probability distributions of A; and v represent our knowledge about A\
and v before the clinical trial. When much knowledge about Ay and v is avail-
able, the prior distributions are quite concentrated. If our knowledge about A\;
and v is slight, then the prior distributions are disperse.

In prior distributions, A; and v are assumed to be independent. A conjugate

prior distribution for A is a gamma distribution:
Fla,b) o Ag=t e

Usually, there is historical information about the standard therapy. For ex-
ample, we might know the median or mean survival time, as well as survival
rate up to a certain time for the patients treated with the standard therapy

in previous studies. It is possible that historical and current patients are not
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exchangeable (Lin, 1993), so we only use the information from historical pa-
tients to build our prior distribution, we do not use historical patients in our
likelihood function. Parameters ¢ and b are chosen by assessing the historical
information, so that Gamma(a,b) distribution represents prior belief about A;.

In this model, prior distribution of v is N(0,0?), and v = 0 corresponds
to Ay = Ag. Prior belief about the relative efficacy of the two therapies is
symmetric about zero. The value of o reflects the degree of our prior knowledge
about v; a small o indicates a firm belief in the relative efficiency of the two
therapies. When o is varied to address sensitivity, a larger o represents more
open-mindedness concerning the relative efficiency of the experimental therapy
to the standard therapy in the sense that the data then have a greater impact

on the posterior distribution.

2.4 Posterior Distributions

The joint posterior density of A, and v is
fOusvldata) o f(,0)L(\, vldata)
 f(M)f(0) LA, o]data)
s NTLemhh e I gyl (T 4 Thet)

o NiFhrd Lo by =5z 0 nl A(b+ Ty + The)]

So the posterior density of v is

f(v|data) = /OOO F(, ol data)dh,

02

X ed”e_ﬁ /OOO )\?+d1+d2_1€l’p[—)\1(b + T1 + Tge“)]d)\l
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vldata) = ¢
f( | ) (b—I—T1+T2€U)a+d1+d2

where ¢ is the normalizing constant.

Noticing
fv,data) o f(A, ) f(data|hy, v)
< f(M)f(datal),v)

o AiTlemPMNET R egpl N (T + The)]

. )\%+d1+d2—1€xp[—)\1(b + Tl + TQGU)]

SO

b T The? a+dy+do
( + 14y + 1€ ) )\a+d1+d2_1€$p[—)\1(b+ Tl + TZGU)] ’

M|v, data) =
f( 1|v7 aa) F(Cl—|—d1—|—d2) 1

a Gamma(a + dy + dg, b+ Ty + Tye?) distribution.

The posterior density of A is
Fh|data) = /Oo F(O, vldata)do
= /Oo f(Alv, data) f(v|data)dv
c 2

_ )\a—|—d1+d2—1 —/\1(b+T1) /OO — v— )\ T v d
ot d Ty ¢ € _Ooeilip[ (202‘|‘ 1T2e”)]dv

Numerical integration in one dimension is required for calculating f(v|data)

and f(Ai|data). The integrating functions are smooth and unimodal. Simp-
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son’s rule will be used to do the numerical integration in the example in the

next chapter.

2.5 Predictive Survival Functions

The predicted survival function for each therapy is of particular interest to
new patients who need to choose a therapy. Let X; and X, denote the survival
time of new patients treated with therapy 1 and therapy 2, respectively. The
predicted survival functions for the two therapies are
Sl(t) = P(Xl > t|data)
= fooo P(Xl > t|)\1)f()\1|data)d)\1

= fooo e‘Altf()\1|data)d)\1

Sz(t) = P(X2 > t|data)
= ffooo fOOO P(XQ > t|)\17 v)f(v, )\1|data)d)\1dv

J2 5 e o, A [data)d A dv



Chapter 3

Study of a NSCLC Trial

3.1 Introduction

3.1.1 Purpose of the Study

In this chapter, we present a case study of a phase III clinical trial conducted by
Cancer and Leukemia Group B (CALGB) to test two therapies for treatment
of patients with stage III non-small cell lung cancer (NSCLC). Lung cancer is
generally subdivided into two categories, based on the cell type determined at
diagnosis. The first type, small cell (or oat cell) anaplastic carcinoma, accounts
for roughly 30% of all lung cancers. Most other cell types are classified as
NSCLC, which includes adenocarcinoma, squamous cell carcinoma, and large
cell anaplastic carcinoma. All cancers are usually classified further according to
the extent or stage of disease, so that therapies may be tailored to the particular
disease stage. Patients with NSCLC who have extensive disease in the chest
but no demonstrable distant metastases are defined as having stage IIT NSCLC.

Such patients are not generally considered curable by surgery alone.

For many years, radiotherapy (RT) alone had been the standard treatment

14
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of choice for these patients. In attempting to improve survival time in these
patients, clinical researchers in the early 1980s considered the possibility that
RT alone might not be sufficient to eradicate micrometastatic disease, and
they accumulated some considerable evidence that indicated that platinum-
based chemotherapy (CT) increased the survival time of patients who had
more advanced disease. Therefore, these researchers proposed that CT be

administered in conjunction with standard RT.

The study presented in this chapter was designed to compare the standard
treatment (RT only), which consists of RT delivered over six weeks to the
original tumor volume and involved regional lymph nodes, to an experimental
treatment (CT+RT), which employs five weeks of cisplatin plus vinblastine

prior to the RT.

3.1.2 Design of the Study

The patient population for this study was limited to patients with documented
regional stage I1I NSCLC. Patient eligibility criteria included no prior CT, RT,
or total resection; performance status of 0 or 1; and weight loss of less than
5% in the three-month interval prior to study entry. It also imposed standard
CALGB eligibility criteria for laboratory values, other diseases, and so on.
Details of the eligibility and other clinical aspects of this study are outlined in
Dillman et al. (1990).

The trial was a prospective, randomized, nonblinded study. The central
office of the CALGB stratified patients according to historic type to ensure a
balanced distribution between therapy groups, and then randomly assigned the

patients to receive either RT only or CT+RT. For the RT only group, radiation
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therapy was started within five days after entry, and the first day of therapy
was defined as day 1. For the CT4+RT group, chemotherapy was started on day
1 and stopped on either day 29 or day 36; and radiation therapy was started

on day 50.

The primary study objective was to compare the overall survival time for
the two therapy groups. The original fixed sample size for this trial was 240
patients (120 patients in each therapy group). This sample size was calculated
to provide 80% power to detect a hazard ratio of 1.5:1, assuming that the
logrank test would be used at a two-side significance level of o = 0.05. If
survival times are assumed to be distributed exponentially, a 1.5:1 hazard ratio
represents a 50% increase in median survival time in one therapy group over

another.

3.1.3 Analysis of Survival Time

Patients were enrolled from May 1984 to May 1987. Although the trial was
designed as a fixed sample size study, several interim analyses were performed
and the trial was terminated early in response to a therapy difference emerging
over time. When the first interim analysis was performed in the fall of 1985,
the sample size (10 deaths in 50 eligible patients) was too small and the fol-
lowing time was too short to allow any meaningful comparison of survival time
by therapy. Four more interim analyses were performed in March 1986, Au-
gust 1986, October 1986 and March 1987. In these analyses, the logrank test
was used to compare the two survival curves, and truncated O'Brien-Fleming
boundary level for each p-value was adopted in decision making. The Kaplan-
Meier plot for the two therapy groups at each interim analysis is presented in

Figure 3.1, and Table 3.1 lists the observed p-values and boundary significance
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Analysis Logrank p-value Boundary Decision
1st Interim - 0.0013 Keep open
2nd Interim 0.021 0.0013 Keep open
3rd Interim 0.0071 0.0013 Keep open
4th Interim 0.0015 0.0013 Keep open
5th Interim 0.0015* 0.0013 Close

* After adjusting covariates with Cox model, p-value is 0.0008

Table 3.1: Observed p-values and the boundary at the interim analyses

levels used in the monitoring process.

Results of the March 1987 interim analysis convinced the CALGB re-
searchers to close the trial to further accrual. At that time, 155 eligible patients
had been accrued and follow-up data were available for 105 patients. After the
trial stopped enrolling new patients, the enrolled patients were followed up
until the summer of 1992. We will analyze the data observed in 1992 as the

most recent analysis.

3.2 Bayesian Analysis of the NSCLC Study

3.2.1 The Model

In this section, I will apply the model proposed in Chapter 1 to this trial, and
perform interim analyses and an analysis of the information gathered in 1992.
The primary interest is to compare efficacies of the two therapies.

It is assumed that survival times for each therapy are distributed exponen-
tially with hazard rates A;, j = 1,2. Here, y = 1 corresponds to the RT only
therapy, and j = 2 corresponds to the CT+RT therapy. Parameter v denotes
the log hazard ratio: v = In(Ay/A1). Posterior distributions of A\; and v are

derived at each interim analysis and as of 1992. The prior distributions of Ay
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On RT On CT4+RT

Analysis Time | ny | d; Ty ny | dy 15
1st Interim 251 7 122.03 |25 | 3 164.43
2nd Interim |41 | 12| 240.63 | 38 | 4 341.07
3rd Interim | 41 | 20 | 298.53 | 47 | 14 | 432.77
4th Interim | 46 | 24 | 375.97 | 49 | 18 | 532.67
5th Interim | 51 | 32 | 441.83 | 54 | 24 | 611.13
as of 1992 77|71 1135.70 | T8 | 65 | 1737.60

Table 3.2: Available information at time of analysis

and v are Gamma(a,b) and N(0,0?), respectively.

3.2.2 Data

The data from the study, with information up to 1992, are presented in Ap-
pendix A. In the model, sufficient statistics of (A\y, v) are d;,T;, j = 1,2, which,
respectively, represent the total number of deaths and the total exposure time
observed on each therapy. Table 3.2 displays the sufficient statistics and the
total number of patients enrolled on each therapy (n;) at the times of the five

interim analyses and as of June 1992. The time unit is one month.

3.2.3 Choice of Prior Distributions

Parameters a, b and ¢? in prior distributions need to be specified. The prior
distribution reflects our knowledge of the parameters A\ and v prior to the
trial. Available historical information about A and v are used to determine

their prior distribution.

Note that the prior distribution function of survival time on RT therapy is

fltlab) = [T MO a,b)dny



20

00 b
— )\ — A1t )\a—l —/\ﬂ)d)\
/0 Tt ¢ !
ba

— &0 A\¢ —/\1(b—|—t)d)\
['(a) /0 1 !

b ['(a+1)

I'(a) (b+1)"™

ab”®

(b _I_ t)a—l—l

Prior survival function on RT therapy is

Sy(t]a,b) = /toofl(:z;|a,b)d:z;

o b
= / 7a at1 dl‘
t (b+x)

Evidence available before this trial suggests that the median survival time
on RT is 8 to 10 months, with a two-year survival rate of 10 to 20 percent and a
three-year survival rate of 5 to 10 percent (Perez et al., 1987). In this chapter,
parameter values ¢ = 2 and b = 20 are chosen to approximate the historical
information. These parameter values set the prior median survival time to 8.3
months, two-year survival rate to 20 percent and three-year survival rate to 13
percent. So, the prior distribution of A\; is Gamma(2,20).

o?, the prior variance of v, reflects the variation of our prior belief of v. A
large o reflects a prior belief of a possible large difference between the two ther-
apies, and 1t represents open-mindedness concerning the effect of adding CT
to RT in the sense that the data then have a greater impact on the posterior

distribution, A small o reflects a prior belief of only a small difference between
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MLE v Al

Analysis Time | vmre | Mvre v 52 A &31
1st Interim —1.146 | 0.057 | —0.883 | 0.288 | 0.050 | 0.00036
2nd Interim | —1.447 | 0.050 | —1.176 | 0.221 | 0.045 | 0.00018
3rd Interim | —0.728 | 0.067 | —0.680 | 0.106 | 0.064 | 0.00020
4th Interim | —0.636 | 0.064 | —0.607 | 0.087 | 0.062 | 0.00016
5th Interim | —0.612 | 0.072 | —0.586 | 0.067 | 0.070 | 0.00015

as of 1992 —0.514 | 0.063 | —0.509 | 0.028 | 0.062 | 0.00005

Table 3.3: MLE, posterior modes and variances of v and A\; at times of analyses

the two therapies. Since our prior belief is that adding CT to RT might be
profitable, o is set to 1 first. Different values of o will be considered to see
the sensitivity. N (0, 1) distribution for v is a quite disperse prior distribution
and a rather open-minded choice. Data will strongly influence the posterior
distribution. For example, the trial was designed to detect a log hazard ratio of
—In(1.5) = —0.41, and —0.41 is close to the middle of a standard normal dis-
tribution. Choosing a value of o larger than 1 leaves the conclusions essentially

unchanged from assuming o = 1.

3.2.4 Posterior Distributions

Results of analysis are presented in the following tables and figure. Table 3.3
displays the maximum likelihood estimators (MLE), posterior modes (¢ and
5\1) and variance (62 and &§1) of v and A at the times of the analyses. Table
3.4 displays posterior probabilities of v < 0, v < —0.25 and v < —0.5 at times
of the analysis. Figure 3.2 shows the marginal posterior densities of v and Ay
at the five interim analyses and as of 1992.

From those tables and the figure, one can see how our beliefs about the

parameters changed as the trial went on. They clearly shown that the posterior
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Some Probabilities of v
Analysis Time | P(v < 0| D) | P(v < =025|D) | P(v < =0.5| D)

Prior 0.500 0.401 0.309
1st Interim 0.976 0.911 0.794
2nd Interim 0.997 0.984 0.940
3rd Interim 0.987 0.916 0.720
4th Interim 0.985 0.895 0.650
5th Interim 0.990 0.909 0.637
as of 1992 0.999 0.939 0.523

Table 3.4: Some posterior probabilities of v

variance of v decreased as the trial went on, and that the posterior variance of
v in the 1992 analysis is about 10 times smaller than that in the first interim
analysis. As the trial went on, more and more information was obtained, the
posterior density of v got more and more concentrated. The posterior density
of v is mainly concentrated on the left side of v = 0 at any time of analysis, so

the information about v consistently indicates that v is very likely negative.

The posterior densities of A\; in the interim analyses have fluctuated some-
what. This is apparent in the plottings of the densities of A; and the posterior
variances of A;; and it suggests that the new information in the interim analy-
ses might not very consistent with previous information, because in the interim
analyses, only a small number of observations were uncensored, and not much
information was available. The posterior density of A; in the analysis of 1992
is much more concentrated than those in the interim analyses because much
more complete information was obtained in 1992.

There were many more early deaths in the RT group than in the CT+RT
group. In the first interim analysis, seven out of 25 patients in the RT only

group had died, whereas three out of 25 patients in the CT4+RT group had
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died. In the second interim analysis, 12 out of 41 patients receiving RT only
had died, whereas only 4 out of 38 patients receiving CT+RT had died. This
suggests that a patient’s chances of surviving are a lot better with the CT4+RT
than with the RT alone. This can be seen from the posterior densities of v in
these interim analyses.

The posterior modes of v at the first and second interim analysis times are
small, especially at the second interim analysis time when v = —1.176. In the
model, v = —1.176 means a 224% increase in median or mean survival time
with CT4+RT over RT only. Because there was less information in the first
and second interim analyses, the densities of v were relatively flat. The mode
of v increased in the later analyses because more deaths were observed in the
CT+RT group. Evidence at any given time suggested that patients would be
better off on the CT+RT regimen than on the RT only regimen because the

posterior probability of v < 0 is very close to 1 at any time of analysis.

3.2.5 Predictive Survival Functions

Patients with this disease would like to know how well they will respond on each
therapy and which therapy will help them survive longer. Table 3.5 displays the
predictive mean survival times on the two therapies at the times of analyses.
Figure 3.3 presents the predictive survival functions on each therapy at the
times of analyses.

Because of the discrepancy between the results from the two therapies at the
early interim analysis times, the difference between the predictive mean survival
time on the two therapies is large at early interim analyses. The difference was

greatest (57.6 months) at the time of the second interim analysis because the
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Mean Survival (month)
Analysis Time RT CT4+RT
1st Interim 17.9 52.9
2nd Interim 20.1 7.7
3rd Interim 15.6 31.5
4th Interim 16.2 30.2
5th Interim 14.2 25.9
as of 1992 16.2 27.0

Table 3.5: Predictive mean survival time at time of analysis

largest difference between the data on the two therapy groups occurred then.
In Figure 3.3, the predictive survival function for the CT+RT group is always
above that for the RT only group. These plots indicate that at any time point,
the probability of a patient in the CT+RT group would survive to that time
point is always greater than that of a patient in the RT only group. The
difference between the two survival functions was large in the early interim
analyses, especially in the second interim analysis. The difference between the
two survival functions and the two predictive mean survival times decreased in

later analyses and became stable.

3.2.6 Sensitivity to Prior Distributions

Since the log hazard ratio is unlikely to have a large absolute value, the N(0,1)
prior distribution of v is quite disperse. The choice of o = 1 in the N(0,c?)
prior distribution of v is quite open-minded; that means that the data play
a crucial role in making an inference about v. Choosing the N(0,a?) prior
distribution for v shows that we are neutral concerning the effect of adding CT
to RT, and the value of o reflects our degree of confidence about this concern.

A larger o represents more open-mindedness in the sense that the data then
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have a greater impact on the posterior distribution.

All priors in the N(0,0?) family have the same probability of v < 0 (CT is
a beneficial add-on) as of v > 0 (CT detrimental). This symmetry may not be
appropriate, because C'T was not regarded a priori as likely to be detrimental.
However, the likelihood function concentrates on v < 0. So, the fact that half
the prior probability is associated with v > 0 turns out to be unimportant.
An open-minded prior means that if early data point to CT being effective,
the posterior probability of v<0, say, may be quite large. For someone with
an open-minded prior, this is appropriate; but it is not appropriate if the
effectiveness of CT is questionable. If o is very small, then our prior belief that
CT+RT is as good as RT alone is strong, and early data would not change this

belief much.

Figure 3.4 shows how P(v < 0] D), P(v < —0.25| D) and P(v < —0.5| D)
change when o varies. We can see from the figure that the posterior proba-
bilities have a larger variation for a smaller o, and the variation decreases as
o increases. The variation is larger at the earlier analysis times than at the
later analysis times, because when more data is available, the prior distribution

becomes less impact on the posterior distribution.

3.2.7 What If the Trial Had Not Been Stopped Early

The trial became controversial because it was stopped early. A very important
question raised is, what would the trial have concluded if it had not been
stopped in 19871 Obviously, no one can be certain. An advantage of the
Bayesian approach is that all uncertainties have probabilities. One can find

the distribution of lifetimes that would have been concluded had the trial
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continued to its originally planned size. This distribution can be found at
any time. The most interesting times during the conduct of a trial occur at
the interim analyses. From our perspective, the present is the most interesting
time. So, the predictive distributions conditioned on information available

today are calculated.

According to its design, the trial was to stop once 240 patients had been
accrued or a total of 190 deaths had occurred. In the simulations to be de-
scribed, the 240th patient was always admitted before the 190th death oc-
curred, so the former criterion is really the only effective one. In 1987, when
the trial stopped, 155 patients had been admitted. These patients are included
in the “as of 1992”7 analysis. According to the predictive distribution based
on the information from the 155 patients in 1992, I simulated the information
that would be available in June 1992 had an additional 85 patients accrued
(uniformly over the 17 months between April 1987 and September 1988), for a
total of 240.

Figure 3.5 displays simulated values of P(v < 0]240 pts), P(v < —0.25|240 pts)
and P(v < —0.50|240 pts). In each case, the mean is the actual current value of
the corresponding probability, which is based on the data for the 155 patients
in the “as of 1992” analysis of Table 3.4. The histogram for P(v < 0]240 pts)
makes it clear that the strong conclusion that CT is beneficial is unlikely to
have changed even with an increase in sample size of 55 percent. The second
histogram, that for P(v < —0.25|240 pts), evinces greater variability, indicat-
ing that this quantity is somewhat less predictable, but it is still very likely that
v would be less than —0.25. The third histogram shows still more variability
for P(v < —0.5|240 pts).
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Figure 3.5: Histogram of simulated posterior probabilities of v
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Figure 3.6 displays simulated values of the mean survival times for the two
therapy groups. From this figure, one can conclude that the mean advantage
in survival time of about 11 months would not change much had an additional

85 patients accrued.



Mean Survival Time Based on 240 Patients

A = Current Mean

RT only
CT+RT

15 20 25 30 months

Figure 3.6: Histogram of predictive mean survival time

32



Chapter 4

A Bayesian Hierarchical Model for
Multicenter Trial

4.1 Introduction

Center differences in a multicenter clinical trial are examined in this chapter.
A multicenter trial applies therapies to a wider range of centers and patient
groups than a trial at a single center does. Different medical centers might have
different characteristics, so that their patients’ response to one therapy might
be different at different centers. I will describe a general Bayesian hierarchical
model for analyzing a multicenter clinical trial data, and in section 3, I will
briefly introduce the Gibbs sampling technique that will be used for calculating
posterior marginal densities.

In this chapter, a multicenter trial is conducted to compare two therapies.
Observations are patients’ survival times. Fxponential distributions will be
used for survival times. Our goal is to compare the efficacies of the two thera-

pies in the presence of a possible center effect.
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4.2 Statistical Model

In a multicenter trial of two therapies, data are a combination of I x 2 sub-
groups, where [ is the number of medical centers that participated in the trial.
For each center, there are two subgroups of data that correspond to the two
therapies. In the hierarchical model proposed in this chapter, survival times
are modeled in the first level of the hierarchy. In the second level, parameters
for individual centers are modeled to be a sample from a center population. In

the third level, the parameters in the center population are modeled.

Let t;;1 be the survival time of the kih patient on therapy j in center ¢,

v=1,---,1, 9 =12 k=1,--- n;. In the first stage, {;;; has distribution:

toelhi) = )\i,e—/\i]ti]k7 i:1,--',]
J J J

where 7 = 1 corresponds to the standard therapy, and 57 = 2 corresponds to
the experimental therapy. A; and A3 are the two hazard rates in center .
Comparing the two therapies in center ¢ is to compare A\;; and A\;. Let v; =
In(Aiz/ A1) — the log hazard ratio in center ¢, ¢ = 1,---,[. Parameter v; is
positive or negative depending on whether the standard or the experimental
therapy is better (in the sense of having smaller hazard rate) in center ¢, and
the value of v; represents the degree of difference between the two therapies in
center 7. A5 is determined by A;; and v; through relation Ay = A1e”. So (A,
v;),t =1,---, I, form a full parameter space in the first level of this hierarchical

model.

In the second level, A\;;, e = 1,-- -, [ are assumed to be exchangeable with a
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gamma distribution; and v;, ¢ = 1,---, [ are assumed to be exchangeable with

a normal distribution.

Ait|(a, b) i Gamma(a,b)

T(A\ila,b) oo A Tebta i=1,, 1
vil(p,0?) F N(p,o?) i=1,--,1

Ait’s and v;'s are independent.

In the third level, parameters are assumed as

a is known
b ~ Gamma(c,d)

FB) o e
po~ N(0,1)

o~ IG(u,w) (Inverse Gamma)

f(o?) o (of) e

b, ;1 and o? are independent. ¢, d,u and w are known parameters.

Assume that the observations are (1,5, 6;;1), where 6,5 is the status at the
time of the observation.
0 if ¢;;5 1s right censored

7
Oijk = J=12
1 otherwise k=1,
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The likelihood function in center ¢ is
Li(Aa,vildata) = TE_ T2 f(Fijk, 0cjrl Aij)
- H?:1HZE1)‘%M€_AMW

iy 6 7,
= H?_l)\%:kﬂ S’Jke_/\ij Dk tigk

— ;llzl e—raTa )\?212 e~ ri2Tiz

— )\;lln +di2 edizviexp[_)\ﬂ(Tﬂ T Ti2€vi)]

where
_ gy
dij = 352y 0ijk

Ty

TZ] — k:ltljk7 ]:1727Z:177]

are the total number of uncensored observations and total exposure time on

therapy j in center ¢, 3 = 1,2, 1 =1,---,1.

Y

The likelihood function is
LA v, b, p,0|data) = T L,
Hi[:l)\?lil +dio edizviexp[_)\ﬂ(Tﬂ T Ti2€vi)]

where A: ()\11,"',)\11)7 v = (vl,---,vj).

The sufficient statistics for those parameters are d;;, Ti;, j = 1,2, ¢ =

1.

A

4.3 Gibbs Sampling

In a high dimensional problem, to calculate the marginal posterior distributions

of parameters once involved numerical integration. Geman and Geman (1984)
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introduced a method of estimating the marginal posterior distributions of ran-
dom variables using the full conditional distributions, and their method was
further developed by Gelfand and Smith (1990) into a popularly used method

called Gibbs sampling technique.

Suppose we have m random variables, Xy, -+, X,,, and know the full con-
ditional distributions f(X;|X;,7 # ¢),e = 1,---,m. We need to find their
marginal distributions. To do Gibbs sampling, we begin with m arbitrary start-
ing values X?, -+ X9 for the m random variables. First, we update X? by a
random observation X from the full conditional distribution f(X;|X?,--, X2).
Next, X7 is updated by a random observation X3 from the full conditional dis-
tribution f(X3| X}, X9,---, X2). The process is continued for X3, - -+, X,, until
X? is updated by a random observation X! from the full conditional distri-

bution f(X,.|X{, -+, X}:_;). XV, -+, X0 is updated by X{, -+, X}, and we

b m

repeat the entire process S times, updating X:™' by a random observation
X¢ from the full conditional distribution f(X;|X7, -+, X2, X2, X7
at the s-th iteration. Under mild regularity conditions, Geman and Geman

showed that as s — oo, this joint sample tends in probability distribution to

a variable with the joint distribution f(Xi, Xy, -+, X,,). So (X7, X5,---, X2)

can be regarded as a random observation from the joint distribution. We do

this sampling R times to get R m-tuples (XI(T), XQ(T), L, XY e =1,2,- R,

and to approximate the marginal density of f(X;) by the finite mixture density
1 R

f(XZ) = EZ.]C(XZ|X1(T)7 e 7Xz(i)17Xz(:—)17 e 7X(T))

r=1

Because of the hierarchical structure, the full posterior conditional distribu-

tions are relatively easy to be derived in a hierarchical model. The Gibbs
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sampling technique greatly simplifies the process of calculating marginal pos-

terior distributions in a hierarchical model.

4.4 Full Posterior Conditional Distributions

To do statistical inference on the parameters \;;, vy, 1 = 1,---, I, b, pand o2, I
applied the Gibbs sampling technique in such a high dimensional problem to get
posterior marginal distributions. First, I must derive full posterior conditional
distributions. In the following conditional distributions, “all’ refers to all these
parameters, and “others” refers to all the other parameters except the one

whose conditional distribution is being derived.
The full posterior conditional distributions are
f(Air |others,data) o< f(Aa]a,b)f(data]all)
o Atebha )\f{1+di2 expl—Ain (T + Tine™)]
o )\?1+di1+di2_le:1;p[—)\¢1(b + Ty + Tine¥)]
(A |others,data) ~ Gamma(a+ diy + dig, b+ T + Tine®)

f(v;|others,data) o f(v;|p,c?)f(dataall)

x e—%edﬁuie—xﬂmew
f(blothers,data) o< f(b)f(A1,..., An|a, b) f(datalall)

o< fOIL f(Ai | a,b)

o beLe—dbplag=bY i A

I
x b[a-|—c—le—b(d-|—zi:1 Ai1)

(b|others,data) ~ Gamma(la+ c,d+ 1 \i)



flp|others,data) o

(p| others,data) ~

f(c?|others,data) o

(c? | others,data) ~

In all these conditional distributions, Ais, ¥'s, y's and o?'s are gamma, normal

F()f (01, oy v | 1 0%) f(data | all)

FGTy f (i | i, 0?)

M2 Zf:l (M_vi)2
e 2 e 202
I 2
(n— Z’flj -)
A5E57)
N 25:1“ o?
(S5 757)

Flo* Iy f(vi | p, 0%) f(datalall)

Zle (v;—1)?

(02)—(u+1)e—:—2(02)—1/26— 357

I
wtg Zi:l (vi=w?
2

a

(02)—(u+§+1)6—

IGu+ L w+ sl (v —p))
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and inverse gamma distributions. It is easy to sample from these distributions.

The full posterior conditional distributions of v;’s are not among those well

defined distribution families, and the rejection method (Devroye, 1986) needs

to be used for getting a random sample of v; from the posterior conditional

distribution of f(v;|others,data). Applying the Gibbs sampling technique, we

can estimate the posterior distributions f(\;|data), f(vi|data), ¢ = 1,---,1,

f(bldata), f(pu|data) and f(o?|data).
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4.5 Choice of Prior Distributions

When one specifies The parameters in the third level of the hierarchical model,
they will reflect the prior belief about the hazard rates of the standard therapy,
the relative therapy effects, and their heterogeneity across centers. To choose
their values for a real problem, one needs to use the knowledge about the
therapies before the trial. Prior knowledge about the standard therapy is

usually expressed on A;;, the marginal prior distribution of A;; is

Ouled) = [ F(Aila,b)f(ble. d)db

_ o bt a1 gy 4° b= gy,
o I'(a) I'(¢)
aor

_ o ba-l—c—l —b(d—l—/\il)db
T(a)l(c) /0 ‘

dT(a+c) !
L(a)l(e) (d+ xn)"™

prior mode of A;y is A\jy = (“;l_ll)d7 i=1,---,1.
The prior means of A\;1,v;, 1 =1,---,1 are

EQile,d) = B(E(\alb)le, d)

= B} led)

ad
c—1

E(vlu,w) = B(E(ulp,0”)uw)

= E(plu,w)
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4.6 Predictive Survival Functions

Information on the patients in the trial is analyzed to compute the predicted
survival functions for each therapy in every center participated in the trial.
Let X;; and X3 denote the survival times of a new patient on therapy 1 and
therapy 2 in center 7. The predictive survival functions on the two therapies

in center 2, ¢ =1,---, [ are
Sa(t) = P(X;y >tl|data)
= oo P(Xi1 > t|Aa)f(Aix | data)dhq
= e‘A“tf()\ﬂ | data)d\q
After applying Gibbs sampling technique, we have a random sample from

any marginal or joint posterior distribution. We can calculate the above pre-

dictive survival function by applying Monte Carlo integration method.



Chapter 5

The NSCLC Study with a
Hierarchical Model

5.1 Introduction

In Chapter 3, the phase III clinical trial conducted by CALGB for comparing
two therapies was presented. It was multicenter trial, but we regarded all the
observations in one therapy group as exchangeable, ignoring possible center
heterogeneity.

In this chapter, I will consider center heterogeneity. The model proposed
in Chapter 4 will be used to analyze the trial data. Analysis will focus on the
information available in 1992.

In the CALGB trial, the standard therapy was radiotherapy (RT) alone,
and the experimental therapy was chemotherapy followed by radiotherapy
(CT+RT). By May 1987, the trial accrued a total of 155 patients, and 22
medical centers participated in the trial. The total number of patients in each
of these centers varied from 1 to 22. Many centers had only a few patients

each.
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Center i dil TZ 1175 dig TZ'Q
1 1 0 83.77 1 1 16.53
2 4 3 87.23 1 1 9.47
3 12 12 189.73 | 10 7 323.37
4 11 10 203.80 11 10 | 200.67
) 2 2 16.60 1 1 48.07
6 3 2 44.33 4 3 103.70
7 4 4 26.67 3 2 82.23
8 2 2 22.777 2 2 26.03
9 2 2 24.50 2 1 81.43
10 4 3 83.40 4 4 56.43
11 6 6 59.93 6 3 211.97
12 1 1 2.30 3 3 33.70
13 7 6 147.77 11 11 106.00
14 6 6 40.90 7 7 110.17
15 1 1 3.57 1 1 47.83
16 3 3 27.40 3 3 45.97
17 1 1 8.30 1 0 56.67
18 1 1 1.27 2 2 18.53
19 3 3 33.93 3 2 91.03
20 2 2 10.03 0 0 0
21 0 0 0 1 1 12.03
22 1 1 17.50 1 0 55.77

total 77 71 1135.7 | 78 65 | 1737.6

5.2 Data

The sufficient statistics d;;, Ti;, j = 1,2, ¢

Table 5.1: Sufficient statistics by center
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1,---,1, represent the total

number of uncensored observations and the total exposure time observed on

therapy j in center ¢. j = 1 denotes the patients treated with RT only, and

J = 2 denotes the CT+RT group. Table 5.1 displays d;;, T;; and n;; (the total

number of patients) from all the centers. The time unit is one month. Only

five centers have more than 10 patients.
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5.3 Choice of Prior Distributions

Before applying the hierarchical model introduced in Chapter 4, we must spec-
ify the parameter a in the second level and the parameters in the third level
distributions of the hierarchy. These parameters reflect our prior belief about
the value of the hazard rate for the RT therapy and the log hazard ratio, and
also the heterogeneity between different centers. The first analysis is performed
with values of a,¢,d,u and w that are chosen according to our prior knowl-
edge. Then analyses will be performed with other values for these parameters
to determine the sensitivity of the analysis to the prior distribution.

In this trial, our prior belief is that there would not be a large variation
among the v;’s across centers. That means o is small. So we choose u = 3 and
w = 0.32, which gives an 1G(3,0.32) prior distribution to o?, which has prior

mean and variance of

E(o? |u,w) = L 016

V(e |u,w) = - S = 00256

The gamma distribution of A;; in the second level is conjugate to the ex-
ponential distribution in the first level. From the posterior distribution of A;,
we see that a acts as a prior number of uncensored observations and b is like
the prior total exposure time for the patients treated with RT only. The in-
formation available before this trial suggests that the median survival time on
RT is 8 to 10 months, with a two-year survival rate of 10 to 20 percent and a
three-year survival rate of 5 to 10 percent. This suggests that A, is likely to

be approximately 0.075. We set a at 6, and choose ¢ = 4 and d = 0.075 to
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approximate this information; that gives a Gamma(4,0.075) prior distribution

(a—1)d

=1 = 0.075. Prior distributions are

to b, and the prior mode of \;; is 5\2'1 =

a = 6
b ~ Gamma(4,0.075)
po~ N(0,1)

o’ ~ 1((3,0.32)
Given a and b, expectations of the population mean and variance of A;; are

EXii|a,b) =

o R

V(Ai1]a,b)

T =

Figure 5.1 presents the prior distributions of a/b, a/b*, y and o?.

5.4 Posterior Distributions

The results are presented in the following tables and figures. Figure 5.2 dis-
plays posterior distributions of v; at those 22 centers and a random new center
(Center 23). In the model, v; = 0 indicates A\;; = A;2, and that means the
RT only regimen and the CT+RT regimen perform equally well at center .
In many centers, zero is close to the middle of the posterior distribution of
v;. There is not enough evidence to conclude which therapy is better in many
centers because of small sample sizes in these centers. For the same reason,
the posterior distributions of v; in many centers are disperse. In several cen-
ters with relatively larger sample size, the posterior densities of v; are more

concentrated than in other centers with smaller sample sizes.
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Figure 5.3 displays the posterior distributions of A\;y, ¢ = 1,---,22. Similar
to the posterior distributions of v;, posterior distributions of A;; are disperse
in many centers because of small sample size. In several centers with relative
larger sample size, The posterior distributions of \;; are more concentrated
than in other centers with smaller sample sizes.

Without hierarchical structure, parameters in different individual centers

are independent. The maximum likelihood estimators of v; and A;; are

\ da
IWMLE — T
71

dio /T .
ViMLE — ln(dzj?Tj% Zzlv"'722

In a multicenter hierarchical model, statistical inference about each individ-
ual center not only depends on the information from that center, but also on
the information from all the other centers. Information from the other centers
will affect the inference about that center because of the hierarchical structure.
That is usually called “borrowing strength.” A hierarchical model will pull
the parameters in individual centers to each other. Extreme or small centers

borrow more strength than other centers do.

For a given b, the mode of A;; in population is (¢ —1)/b, when we substitute
b in its posterior mode ?), our estimator of the mode of A\;; in population is
(a — 1)/?) = 0.057. For a given u, the mode of v; in population is g, when
we substitute p in its posterior mode fi, our estimator of the mode of v; in
population is i = —0.472.

Table 5.2 displays individual center log hazard ratios (their MLE), the

posterior mode of v; (9;), the pooled population log hazard ratio (posterior

mode [i), the posterior mean and variance of v;, and the posterior probability
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Center | viyre 0; i E(vi | D) | V(v | D) | P(v; <0|D)
1 00 —0.302 | —0.472 | —0.266 0.442 0.637
2 1.122 | —0.281 | —0.472 | —0.234 0.454 0.636
3 —1.072 | —0.844 | —0.472 | —0.877 0.166 0.931
4 0.015 | —0.202 | —0.472 | —0.173 0.160 0.598
) —1.756 | —0.680 | —0.472 | —0.777 0.345 0.856
6 —0.444 | —0.574 | —0.472 | —0.607 0.268 0.817
7 —1.819 | —=0.776 | —0.472 | —0.854 0.284 0.898
8 —0.134 | —0.298 | —0.472 | —0.295 0.327 0.636
9 —1.894 | —0.828 | —0.472 | —0.943 0.338 0.909
10 0.678 | —0.106 | —0.472 | —0.080 0.264 0.537
11 —1.956 | —1.079 | —0.472 | —1.152 0.255 0.963
12 —1.586 | —0.222 | —0.472 | —0.201 0.306 0.619
13 0.938 0.323 | —0.472 0.385 0.210 0.270
14 —0.837 | =0.397 | —0.472 | —0.373 0.199 0.719
15 —2.595 | —0.679 | —0.472 | —0.772 0.352 0.850
16 —0.517 | =0.339 | —0.472 | —0.339 0.273 0.699
17 —00 —0.895 | —0.472 | —1.060 0.410 0.931
18 —1.987 | —0.227 | —0.472 | —0.201 0.352 0.605
19 —1.392 | —0.738 | —0.472 | —0.818 0.294 0.874
20 — —0.473 | —0.472 | —0.474 0.572 0.743
21 — —0.348 | —0.472 | —0.337 0.422 0.681
22 —00 —0.868 | —0.472 | —1.025 0.412 0.921

Table 5.2: The MLE, posterior mode, pooled population mode, posterior mean,
variance of v; and P(v; < 0|D) from all centers

of v; < 0 for each center.

The parameters for each individual center are pulled toward each other,

as 1s clearly shown in columns 2 to 4 in Tables 5.2. For all the centers that

their center MLE of v; (column 2) is greater than the pooled population log

hazard ratio (column 4), the posterior modes of v; in these centers are pulled

down from their center’s log hazard ratio. For all centers with MLE of v; is less

than the pooled population value, the posterior mode of v; in these centers are

pulled up from their center’s log hazard ratio. The center-to-center variation
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between the posterior modes of v; is much less than that between the MLEs
of v;, because the hierarchical model connects v; in individual centers together

and pulls them closer.

Table 5.3 shows the individual center hazard rates on the RT therapy (their
MLE), the posterior mode of A; (5\2'1), the pooled population hazard rate ((a —
1)/?)), and the posterior mean and variance of A\;;. In the same manner as the
v;'s, the individual center hazard rates on the RT therapy are pulled toward
the pooled population hazard rate on the RT therapy. For all the centers
that their center MLE of \;; are greater than the pooled population value,
their posterior modes of A\;; are pulled down toward the pooled population
value. For all the centers that their center MLE of A\;; are less than the pooled
population value, their posterior modes of A\;; are pulled up toward the pooled
population vale. The variation between the posterior modes of \;; in different
centers is much less than that between the MLE of A;; in different centers,

because the hierarchical model connects A;; in different centers together and
pulls them closer.

Let us now see how this shrinkage happens at some individual centers. In
center 1, there are two patients, one treated with RT only and one receiving
CT+RT. The latter patient died after 16.5 months in the study, and the former
patient was still alive after 83.8 months in the study. Based only on the infor-
mation from center 1, it seems that patients can survive much longer on a RT
only regimen than on a CT4+RT regiman, and that the maximum likelihood

estimators of vy and Ay are

VIMLE = 1-67 )\llMLE =0

However, in the hierarchical model, the evidence from the other centers suggests
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Center | Aiwrge Al (a—1)/b | EQa|D) | V(A |D)
1 0 0.031 0.057 0.037 0.00021
2 0.034 0.047 0.057 0.054 0.00032
3 0.063 0.055 0.057 0.059 0.00028
4 0.049 0.052 0.057 0.055 0.00027
) 0.120 0.058 0.057 0.068 0.00070
6 0.045 0.048 0.057 0.056 0.00046
7 0.150 0.069 0.057 0.077 0.00076
8 0.088 0.064 0.057 0.074 0.00074
9 0.082 0.050 0.057 0.060 0.00055
10 0.036 0.050 0.057 0.056 0.00036
11 0.100 0.059 0.057 0.067 0.00054
12 0.435 0.069 0.057 0.082 0.00108
13 0.041 0.054 0.057 0.058 0.00035
14 0.147 0.081 0.057 0.091 0.00096
15 0.280 0.055 0.057 0.068 0.00080
16 0.109 0.068 0.057 0.078 0.00078
17 0.012 0.047 0.057 0.058 0.00062
18 0.787 0.069 0.057 0.083 0.00109
19 0.088 0.055 0.057 0.065 0.00059
20 0.200 0.068 0.057 0.081 0.00098
21 — 0.057 0.057 0.071 0.00090
22 0.057 0.043 0.057 0.054 0.00052

Table 5.3: The MLE, posterior mode, pooled population mode, posterior mean
and variance of \;; from all centers
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that patients survive longer when treated with CT4RT than when treated with
RT only. The posterior mode of vy is 03 = —0.302, it is shrunk toward the
pooled population log hazard ratio from the individual center value vy =
1.6, and the posterior distribution of vy indicates that vy is more likely to be
negative than to be positive (P(v1 < 0|D) = 0.637).

Because center 1 is a small center, the posterior distribution of vy is greatly
affected by the information from the other centers. Similar shrinkage happens
to Ai1, and its posterior mode of 0.021 shrank toward the pooled population
hazard rate for patients receiving RT only. This kind of strong “strength bor-
rowing” happens in many other small centers, too.

Take center 3 as an example of the large centers. Center 3 has 12 patients
treated with RT only and 10 patients received CT+RT. the sufficient statistics

are

d31 — 12, T31 — 18973, d32 — 7, T32 — 32337

Based on the information from this center, the maximum likelihood estimators
of v3 and A3, are

USMLE — —107, )‘31MLE = 0.063

vspnp 18 very small, and vy = —1.07 means that the mean survival time for
patients treated with CT4+RT is as much as 2.9 times that of those received RT
only. Evidence from the other centers suggests that the population log hazard
ratio would not be so small, so the hierarchical model pulled vs up toward
the pooled population log hazard ratio. The resulting posterior mode of v
is —0.844, up from its individual center value. For Asq, its MLE is above the
population hazard rate for patients treated with RT only, but information from

other centers pulled As1 toward the population value. The resulting posterior
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mode is 0.055, down from the individual center value. Since center 3 has a
relatively larger number of patients, the inference about this center is relatively
stronger, and the posterior variances of v; and A;; in this center are smaller

than those in small centers.

Let us now look at another large center. Center 13 has 7 patients on the RT
only regimen and 11 patients on the CT4+RT regimen. The sufficient statistics
are

d1371 — 6, T1371 — 14777, d1372 — 11, T1372 = 1060

Based on the information in this center, the maximum likelihood estimators of
v1z and A3 are

VISMLE — 0938, )\1371MLE = 0.041

vispng 18 far greater than the pooled population log hazard ratio, which in-
dicates that a patient’s mean survival time on CT+RT is less than that on
RT only. v13 = 0.938 means that in center 13 a patient’s mean survival time
on CT+RT is only 39% of that on RT only. After borrowing strength from
other centers, vy3 is pulled down toward the pooled population log hazard ra-
tio. The posterior mode of vy3 is 0.323, down from its individual center value.
v13 = 0.323 means that in center 13 a patient’s mean survival time on CT+RT
is about 72% of that on RT only. The individual center value of A;3; is below
the pooled population value, but information from other centers pulled A;37 up
toward the population value. The posterior mode of A3 is 0.054, up from the
MLE of Ai31.

The solid curves in Figure 5.4 show posterior distributions of population
parameters a/b, a/b*, p and o* The posterior distributions of a/b and p

are much more concentrated than their prior distributions, indicating that the
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Parameter Mode Mean Variance
alb 0.066 0.068 0.00011
a/b? 0.00114 | 0.00079 | 6.62 x 1078

L —0.472 | —0.473 0.075
o? 0.304 0.514 0.102

Table 5.4: Posterior mode, mean and variance of a/b, a/b*, yu and o*

study contains much information about these parameters. Table 5.4 displays
the posterior mode, mean and variance of a/b, a/b* p and o*. The posterior
mode of g is —0.472. p = —0.472 corresponds to a 60% increase in mean
survival time for the population on CT+RT compared to the population treated
only with RT. With posterior probability P(x < 0|D) = 0.963, it is very likely

that the population mean of v; is negative.

5.5 Inference in Large Centers

The five centers that have the most patients are centers 3, 4, 11, 13 and 14.
The posterior variances of v; in these centers are smaller than those in other
centers. Figure 5.5 displays the posterior distributions of v; and A;; in these
five centers. This figure shows the degree of heterogeneity among these large
centers. The posterior distributions of these v;'s demonstrate some variation.
The posterior modes of v; in these centers vary from —1.079 to 0.323, and the
posterior variances of v; in these centers vary from 0.160 to 0.255. The v;’s
in center 3 and 11 are very likely to be negative (P(vs < 0/D) = 0.931 and
P(v11 < 0|D) = 0.963), whereas vy3 is likely to be positive (P(vi3 > 0|D) =
0.730), Thus, the CT+RT regimen is very likely to be more effective than the

RT only regimen in centers 3 and 11, whereas the RT only regimen is likely
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to be more effective than the CT+RT regimen in center 13. Center 13 is the
only center whose v; is more likely to be positive than negative, which means
that center 13 is the only center in which it is likely that the RT only regimen

performs better than the CT4+RT regimen.

There is less heterogeneity among the \;'s at these centers than there is
among the v;/s. The posterior modes of A;; at these centers vary from 0.052 to
0.081, and the posterior variances of A;; at these centers vary from 0.00027 to
0.00096. The posterior distributions of A\;; at centers 3, 4, 11 and 13 are very
close, the posterior modes of \;; at these four centers change only from 0.052 to
0.059, and the posterior variances of A;; at these four centers vary from 0.00027
to 0.00054. The posterior distribution of A\;; in center 14 is quite different from
those at the other four centers, the posterior mode of \;; at center 14 is much
greater than those at the other four centers, and the posterior distribution of
Ai at center 14 is flatter than those at the other four centers. Therefore, it
is quite likely that the hazard rate on the RT only at centers 3, 4, 11, and 13
are very close, and that the \;; at center 14 is greater than those at the other
four centers, which means that the RT only regimen performed equally well at
centers 3, 4, 11, and 13, and it performed better at those four centers than in

center 14.

5.6 Predictive Survival Functions

The predictive survival functions for patients treated with each therapy are
always among the things that a new patient wants to know. Figure 5.6 displays
the predictive survival functions on RT only and CT4+RT at all 22 centers and

a new random center (Center 23).
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There are some variations among the different centers for the difference
between the two survival functions at each center. The survival function for
patients on CT+RT is always greater than that for those on RT only at all the
centers except center 13. There is a large difference between the two survival
functions at centers 3, 5,7, 9, 11, 15, 17, 19 and 22, because the v;’s for these
centers are small. For example, in center 3, the probability of surviving up to
two years on the RT only regimen is 0.263, whereas it is 0.547 on the CT+RT
regimen. At center 11, the two-year survival probability is 0.229 on the RT
only regimen and 0.579 on the CT+4RT regimen. The difference between the
two survival functions on the two therapies is greatest at center 11, because

22.

vy 18 likely to be the smallest among all the v;, ¢ =1,---,

Center 13 is a relatively large center, and it is the only center at which
the RT only regimen likely performs better than the CT4+RT regimen. The
reason could be the randomness in sampling; or it might be that the patients
who received CT+RT were in worse condition than those treated with the RT
therapy; or perhaps, center 13 performed the therapies slightly differently from
the other centers etc. Certainly, a careful review of the patients at center 13
and how this center performs the therapies should be performed.

Table 5.5 displays the predicted survival probabilities of six months, one
year, two years and three years on the RT therapy in all centers.

Table 5.6 displays the predicted survival probabilities of six months, one

year, two years and three years for patients treated with the CT4+RT therapy

at each center.



Predicted survival probability
Center | six months | one year | two years | three years
1 0.806 0.654 0.439 0.302
2 0.729 0.537 0.300 0.173
3 0.706 0.504 0.263 0.142
4 0.723 0.527 0.288 0.162
5 0.671 0.459 0.228 0.120
6 0.717 0.522 0.289 0.168
7 0.637 0.415 0.187 0.091
8 0.647 0.428 0.199 0.098
9 0.704 0.505 0.271 0.154
10 0.718 0.521 0.284 0.161
11 0.675 0.464 0.229 0.120
12 0.622 0.400 0.180 0.088
13 0.712 0.514 0.276 0.155
14 0.595 0.365 0.149 0.067
15 0.672 0.463 0.234 0.127
16 0.634 0.412 0.185 0.090
17 0.710 0.515 0.285 0.167
18 0.618 0.394 0.174 0.083
19 0.680 0.472 0.239 0.128
20 0.623 0.400 0.178 0.086
21 0.666 0.455 0.227 0.122
22 0.730 0.542 0.312 0.189

Table 5.5: Predicted survival probability on the RT therapy
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Predicted survival probability
Center | six months | one year | two years | three years
1 0.818 0.686 0.505 0.387
2 0.742 0.577 0.376 0.262
3 0.851 0.730 0.547 0.419
4 0.742 0.564 0.344 0.221
5 0.804 0.660 0.464 0.340
6 0.812 0.671 0.475 0.349
7 0.800 0.652 0.452 0.327
8 0.685 0.498 0.292 0.185
9 0.848 0.722 0.549 0.427
10 0.706 0.519 0.306 0.194
11 0.863 0.751 0.579 0.456
12 0.650 0.452 0.247 0.148
13 0.596 0.380 0.176 0.091
14 0.682 0.485 0.268 0.161
15 0.803 0.658 0.464 0.342
16 0.696 0.508 0.296 0.187
17 0.864 0.755 0.590 0.474
18 0.639 0.445 0.245 0.149
19 0.818 0.680 0.486 0.361
20 0.710 0.538 0.343 0.237
21 0.711 0.536 0.334 0.225
22 0.870 0.765 0.605 0.491

Table 5.6: Predicted survival probability on the CT+RT therapy
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5.7 Sensitivity to Prior Distributions

5.7.1 Three Prior Distributions

In previous sections, the analyses are based on the set of prior distributions

given in section 5.3, with parameters
a=6,c=4, d=0.075, u=3, w=0.32

The set of prior distributions is labeled as Prior 1. In this section, analyses will
be done based on some different prior distributions to see how prior distribu-
tions affect analysis result. We choose two other sets of prior distributions,
which will be called Prior II and Prior III. The three sets of prior distributions
represent different beliefs in the degree of heterogeneity among the different
centers.

In Prior II, the parameters are chosen such that our prior belief about
center heterogeneity is vague. We choose a small ¢ and uniform distributions

for 1/b and 2. 1/b has a uniform prior is equivalent to that b has a prior of

p(b) oc 1/b*. Prior IT is

1
p(b) 0 b>0

@~ N(0,1)

p(0?) o constant, o> 0

The prior distributions of b and ¢? are improper distributions. With this prior,
our belief about the the center heterogeneity is flat, and we are open-mind

about it.
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In Prior III, the parameters are chosen such that our prior belief is that

centers are likely homogeneous. The parameters are
a=15, ¢=6, d=0.0375, uv=5 and w=0.25
that is

a = 15
b ~ Gamma(6,0.0375)
@~ N(0,1)

o2 ~ I1G(5,0.25)

which sets the prior mean of a/b, a/b?, and the prior mean and variance of o?

to be
a ad
F(- d) = = 0.112
(b|c7 ) C—l 0 5
a ad?
F(=|e,d) = ——— = 0.001
(pled = =g = 0000
BE(o*|u,w) = —— = 0.0625
u—1
w?
V(o? |u,w) = 5 = 0.0013
(u—1)"(u—2)

For comparison, Figure 5.7 displays the prior distributions of a/b, a/b*, u and
o? in Prior I and Prior III. The distributions of population mean a/b in Prior
I and Prior III are very close, and the distributions of population mean g
are identical in Prior I and Prior III. The distributions of center population

variances a/b* and o* are quite different in Prior I and Prior III.
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5.7.2 Results

In this section, the posterior distributions based on Prior II and Prior III will
be presented. Results based on all the three sets of prior distributions will be

compared.

Prior I1

Dotted curves in Figures 5.8 and 5.9 display the posterior distributions of v;
based on Prior II for all centers. The prior distributions of 1/b and o? are flat
in Prior 11, so the “strength borrowing” is not strong in this case. The posterior
distribution of v; is relatively flat for every center, and there is a relatively

large discrepancy among these posterior distributions of v; for all centers.

Table 5.7 displays the individual center v; (MLE), posterior mode of v;
(0;), pooled population mode (fi), posterior mean, posterior variance of v,
and posterior probability of v; < 0 based on Prior II for all the centers. The
individual center log hazard ratio shank toward the pooled population value by
borrowing strength from other centers, but this shrinkage is not strong, because
the prior distribution of a* is flat. The posterior probability P(v; < 0| D) varies
from 0.202 in center 13 to 0.955 in center 11; however, P(v; < 0|D) is close to
0.5 in many centers, so for many centers, there seems to be no strong evidence
to conclude that either therapy is better. Because the number of patients is
very small at many centers, and because there is not strong strength borrowing,
there is no enough information to conclude which therapy performs better at

those centers.

The dotted curves in Figures 5.10 and 5.11 display posterior distributions

of A\;1 based on Prior II for all centers. Table 5.8 displays the individual center
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Center | v;pne 0; i E(v; | D) | V(v | D) | P(v; < 0|D)
1 00 0.108 | —0.459 0.074 0.903 0.440
2 1.122 0.095 | —0.459 0.034 0.855 0.455
3 —1.072 | —0.957 | —0.459 | —0.946 0.241 0.895
4 0.015 | —0.093 | —0.459 | —0.028 0.250 0.531
) —1.756 | —0.914 | —0.459 | —0.994 0.606 0.816
6 —0.444 | —0.567 | —0.459 | —0.553 0.501 0.706
7 —1.819 | —1.043 | —0.459 | —1.098 0.467 0.867
8 —0.134 | —0.128 | —0.459 | —0.165 0.576 0.539
9 —1.894 | —1.132 | —0.459 | —1.204 0.563 0.881
10 0.678 0.205 | —0.459 0.232 0.427 0.389
11 —1.956 | —1.427 | —0.459 | —1.435 0.379 0.955
12 —1.586 | —0.104 | —0.459 | —0.076 0.557 0.522
13 0.938 0.581 | —0.459 0.809 0.374 0.202
14 —0.837 | —0.501 | —0.459 | —0.445 0.325 0.708
15 —2.595 | —0.896 | —0.459 | —0.967 0.636 0.813
16 —0.517 | —0.258 | —0.459 | —0.276 0.460 0.574
17 —00 —1.411 | —0.459 | —1.442 0.640 0.922
18 —1.987 | —0.042 | —0.459 | —0.054 0.639 0.486
19 —1.392 | —0.937 | —0.459 | —0.986 0.491 0.835
20 — —0.456 | —0.459 | —0.428 1.293 0.647
21 — —0.157 | —0.459 | —0.205 0.845 0.533
22 —00 —1.316 | —0.459 | —1.376 0.659 0.911

Table 5.7: The MLE, posterior mode, pooled population mode, posterior mean,

variance of v; and P(v; < 0|D) based on Prior Il in all centers



Center | Aiwrge Al (a—1)/b | EQa|D) | V(A |D)
1 0 0.018 0.047 0.026 0.00020
2 0.034 0.040 0.047 0.047 0.00037
3 0.063 0.055 0.047 0.060 0.00040
4 0.049 0.047 0.047 0.052 0.00037
) 0.120 0.053 0.047 0.072 0.00136
6 0.045 0.039 0.047 0.052 0.00072
7 0.150 0.068 0.047 0.087 0.00152
8 0.088 0.056 0.047 0.074 0.00130
9 0.082 0.045 0.047 0.061 0.00101
10 0.036 0.040 0.047 0.048 0.00047
11 0.100 0.062 0.047 0.074 0.00096
12 0.435 0.060 0.047 0.087 0.00245
13 0.041 0.042 0.047 0.050 0.00048
14 0.147 0.086 0.047 0.103 0.00196
15 0.280 0.047 0.047 0.072 0.00171
16 0.109 0.064 0.047 0.080 0.00144
17 0.012 0.037 0.047 0.059 0.00122
18 0.787 0.063 0.047 0.070 0.00233
19 0.088 0.052 0.047 0.068 0.00105
20 0.200 0.070 0.047 0.093 0.00200
21 — 0.044 0.047 0.070 0.00176
22 0.057 0.033 0.047 0.050 0.00085
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Table 5.8: The MLE, posterior mode, pooled population mode, posterior mean

and variance of \;; based on Prior Il in all centers

Air (MLE), posterior mode of A; (5\2'1), pooled population mode ((a — 1)/?)),

posterior mean and variance of \;; at each center. The individual center hazard

rate was pulled toward the pooled population value by borrowing strength from

other centers. The posterior mode of \;; varies from 0.018 in center 1 to 0.086

in center 14. The posterior distribution of A;; is relatively concentrated in

some centers at which there is a relatively large number of patients. There is

a relatively large discrepancy among these posterior distributions of A\;; at the

different centers.
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Parameter Mode Mean Variance
alb 0.065 0.069 0.00022
a/b? 0.00126 | 0.00168 | 5.65 x 107

L —0.459 | —0.457 0.130
o? 1.087 1.578 0.783
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Table 5.9: Posterior mode, mean and variance of a/b, a/b*, i and o? based on

Prior 11

The dotted curves in Figure 5.12 display posterior distributions of a /b, a/b?,
¢ and o? based on Prior II. Table 5.9 displays the posterior mode, mean and

2. The first two rows represent the population

variance of a/b, a/b*, y and o
mean and variance of A\;1, and the last two rows represent the population mean
and variance of v;. The posterior mode of a/b is 0.065, which corresponds to a
15.4-month mean survival time on the RT only regiman. The posterior mode

of pis —0.459, which corresponds to a 58% increase in the mean survival time

for the patients on therapy 2 over the patients on therapy 1.

Prior II1

The solid curves in Figures 5.8 and 5.9 show the posterior distributions of v;
based on Prior III for all centers. The values of a/b* and o2 are small in Prior
ITI, so the strength borrowing is very strong in this case, and the posterior
distribution of v; is relatively concentrated in every center. The posterior
densities of v; in all centers are very close, and the variations between those
posterior densities are very small.

Table 5.10 displays the individual center v; (MLE), posterior mode of v;
(0;), pooled population mode (fi), posterior mean, posterior variance of v;,

and posterior probability of v; < 0 based on Prior III for all centers. The



density

density

30 40

20

10

15

1.0

0.5

0.0

on Prior |

0.0 0.10
a/b

] _onPrior | _

_.onPrior Il

on Prior 111

2 -1 0 1 2
mu

density

density

5000

3000

0 1000

on Prior |

0.0 0.002

a/b"2

on Prior |

sigma’2

Figure 5.12: Posterior distributions of a/b, a/b*, u and o?

74

0.004



75

individual center log hazard ratio shrank toward the pooled population value
by borrowing strength from other centers, and that shrinkage was very strong.
The individual center MLE of v; varies from —2.595 to 1.122 (except in the
centers without MLE or with an infinity MLE), and the posterior mode of v;
varies only from —0.787 to 0.002. P(v; < 0|D) is far above 0.5 in all centers
except center 13, which indicates that therapy 2 performs better than therapy 1
in all the centers except center 13. The posterior variance of v; is small for all

the centers because of much strength borrowing.

The solid curves in Figures 5.10 and 5.11 display the posterior distributions
of A\;; based on Prior III for all centers. Table 5.11 shows each individual
center hazard rate (MLE), posterior mode of A; (5\2'1), pooled population mode
((a — 1)/?)), posterior mean and variance of A;;. The individual center hazard
rates were pulled toward each other by borrowing strength, and this shrinkage
is strong. The individual center MLE of \;; varies from 0 to 0.787, and the

posterior mode of \;; varies only from 0.045 to 0.074. The posterior variance

of A;; is small in all centers.

The solid curves in Figure 5.12 display posterior distributions of a/b, a/b?,
¢ and o? based on Prior III. Table 5.9 shows the posterior mode, mean and

2. The first two rows represent the population

variance of a/b, a/b*, y and o
mean and variance of A;, the last two rows represent the population mean
and variance of v;. The posterior variances of these parameters are small.
The posterior mode of a/b is 0.063, which corresponds to a 15.9-month mean

survival time. The posterior mode of y is —0.485, which corresponds to a 62%

increase in mean survival time for patients on therapy 2 over those on therapy

1.
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Center | v;pne 0; i E(v; | D) | V(v | D) | P(v; < 0|D)
1 00 —0.426 | —0.485 | —0.400 0.202 0.811
2 1.122 | —0.409 | —0.485 | —0.370 0.211 0.798
3 —1.072 | —=0.712 | —0.485 | —0.752 0.108 0.963
4 0.015 | —0.320 | —0.485 | —0.302 0.101 0.783
) —1.756 | —0.557 | —0.485 | —0.602 0.177 0.906
6 —0.444 | —0.534 | —0.485 | —0.559 0.141 0.894
7 —1.819 | —0.593 | —0.485 | —0.642 0.155 0.918
8 —0.134 | —0.392 | —0.485 | —0.362 0.179 0.787
9 —1.894 | —0.639 | —0.485 | —0.710 0.175 0.947
10 0.678 | —0.311 | —0.485 | —0.271 0.154 0.736
11 —1.956 | —0.787 | —0.485 | —0.874 0.153 0.975
12 —1.586 | —0.341 | —0.485 | —0.295 0.170 0.749
13 0.938 0.002 | —0.485 0.061 0.147 0.477
14 —0.837 | —0.366 | —0.485 | —0.352 0.117 0.791
15 —2.595 | —0.555 | —0.485 | —0.599 0.176 0.901
16 —0.517 | =0.390 | —0.485 | —0.369 0.155 0.813
17 —00 —0.657 | —0.485 | —0.751 0.203 0.958
18 —1.987 | —0.363 | —0.485 | —0.313 0.192 0.761
19 —1.392 | —0.597 | —0.485 | —0.647 0.155 0.927
20 — —0.476 | —0.485 | —0.469 0.234 0.848
21 — —0.426 | —0.485 | —0.399 0.204 0.825
22 —00 —0.648 | —0.485 | —0.739 0.203 0.942

Table 5.10: The MLE, posterior mode, pooled population mode, posterior
mean, variance of v; and P(v; < 0|D) based on Prior Il in all centers



Center | Aiwrge Al (a—1)/b | EQa|D) | V(A |D)
1 0 0.045 0.061 0.049 0.00018
2 0.034 0.054 0.061 0.058 0.00022
3 0.063 0.056 0.061 0.058 0.00017
4 0.049 0.057 0.061 0.059 0.00017
) 0.120 0.059 0.061 0.065 0.00032
6 0.045 0.054 0.061 0.059 0.00025
7 0.150 0.063 0.061 0.069 0.00033
8 0.088 0.064 0.061 0.069 0.00034
9 0.082 0.055 0.061 0.060 0.00028
10 0.036 0.056 0.061 0.061 0.00023
11 0.100 0.058 0.061 0.062 0.00026
12 0.435 0.066 0.061 0.073 0.00040
13 0.041 0.061 0.061 0.064 0.00022
14 0.147 0.074 0.061 0.079 0.00037
15 0.280 0.058 0.061 0.064 0.00034
16 0.109 0.066 0.061 0.071 0.00034
17 0.012 0.054 0.061 0.059 0.00030
18 0.787 0.066 0.061 0.072 0.00041
19 0.088 0.058 0.061 0.063 0.00028
20 0.200 0.064 0.061 0.070 0.00039
21 — 0.060 0.061 0.067 0.00037
22 0.057 0.052 0.061 0.057 0.00027
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Table 5.11: The MLE, posterior mode, pooled population mode, posterior
mean and variance of A;; based on Prior IlI in all centers

Parameter Mode Mean Variance
alb 0.063 0.064 0.00011
a/b? 0.00025 | 0.00028 | 6.97 x 10~

L —0.485 | —0.469 0.050
o? 0.071 0.185 0.023

Table 5.12: Posterior mode, mean and variance of a/b, a/b* p and o? based

on Prior III
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5.7.3 Comparison of the Three Prior Distributions

When we compare the posterior distributions derived from the three sets of
prior distributions that we chose, we can see how the posterior distributions
are affected by the prior distributions. By comparing the corresponding plots
from Figure 5.8 to Figure 5.12, we can see that the shrinkage of the individual
center parameters increased as the priors changed from Prior 11 to Prior I, and
from Prior I to Prior III. Prior belief in center heterogeneity has a strong impact
on the posterior distributions of the individual center parameters. It also has
a strong impact on the posterior distributions of the population variances of
v; and A;1, but it does not have a strong impact on the posterior distributions
of the population means of v; and A;; — these were clearly shown in those

posterior distribution figures.

By comparing corresponding numbers from Table 5.2 to Table 5.12, we can
see the range of the posterior mode of the individual center parameters changes
with the variation of prior belief in center heterogeneity. The range of the
posterior mode of v; across the centers is 2.008 based on Prior II, it decreased
to 1.302 based on Prior I, and it further decreased to 0.789 based on Prior
ITI. The range of the posterior mode of A;; across the centers is 0.068 based
on Prior II, it decreased to 0.050 based on Prior I, and it further decreased to
0.029 based on Prior III.

By comparing the corresponding posterior variances of the individual cen-
ter parameters and the population parameters derived from the three prior
distributions, we can clearly see that the posterior variance decreased as prior

belief in center heterogeneity decreased. For example, the posterior variance

of vy is 0.855 based on Prior II, it decreased to 0.454 based on Prior I, and
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it further decreased to 0.211 based on Prior III. The posterior variance of Asq
is 0.00136 based on Prior II, it decreased to 0.00070 based on Prior I, and it
further decreased to 0.00032 based on Prior III. The posterior variance of p is
0.130 based on Prior II, it decreased to 0.075 based on Prior I, and it further
decreased to 0.050 based on Prior III.

5.8 Simulation with Homogeneous Centers

Since many centers have very small number of patients in this trial, someone
might wonder that the differences among the posterior distributions of v; and
A at different centers are resulted from the small sample size. For determining
this, I performed analysis on some simulated data.

In my simulation, there is not center heterogeneity, that is all the v;’s are
equal, and all the A;;’s are equal, too. I used the posterior modes of v and Ay
in Chapter 3 as the values of common v; and A;; respectively in my simulation.

So the two hazard rates in simulation are
A = 0.062, Ajp = A\jpe” =0.037, 1=1,---,22

I simulated the same number of patients in every center on each therapy
as in the trial. For all the simulated patients whose survival time are longer
than 60 months, their survival times are censored at 60 months. I applied the
hierarchical model to the simulated data. Analysis results show that if our
prior belief on the variances of v; and A;; are not concentrated on very small
values, then there are some differences among the posterior distributions of v;
and A;; at different centers. In such small center sample size trial, very strong
prior belief on center homogeneity is needed to protect center homogeneity in

statistical inference.
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Center N1 dn T; N9 d;o T:
1 1 1 10.40 1 1 27.79
2 4 4 75.89 1 1 7.50
3 12 12 144.68 10 10 | 211.12
4 11 10 294.23 11 11 173.17
5 2 2 14.52 1 1 5.03
6 3 3 33.46 4 4 86.97
7 4 4 91.59 3 3 78.77
8 2 2 15.98 2 1 69.24
9 2 1 65.78 2 2 51.06
10 4 4 32.62 4 3 72.02
11 6 6 49.90 6 6 94.34
12 1 1 13.17 3 3 37.69
13 7 7 84.48 11 9 316.52
14 6 6 135.66 7 5 172.42
15 1 1 19.39 1 1 18.59
16 3 3 13.18 3 3 43.76
17 1 1 16.62 1 0 60.00
18 1 1 1.40 2 2 54.45
19 3 3 38.81 3 3 77.02
20 2 2 55.95 0 0 0.00
21 0 0 0.00 1 1 38.42
22 1 1 1.59 1 1 0.94
total 7 75 1209.3 78 71 1696.8

Table 5.13: Sufficient statistics from simulation

I present one simulation result in the following tables and figures. Table
5.13 displays the sufficient statistics from one simulated data.

Prior I in section 5.3 is used in analyzing the simulated data. Figure 5.13
displays the posterior distributions of v; at each center. We still can see some
variation among those posterior distributions. For example, centers 3 and 4
are two large centers, but the posterior distributions of v; at centers 3 and 4
are not very close. Posterior distributions of v; are more concentrated at large

centers than at small centers.
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Figure 5.13: Posterior distribution of v; at each center derived from the simu-
lated data



Center ViMLE 0; P(v; < 0|D)
1 —0.983 —0.418 0.815
2 0.928 —0.280 0.673
3 —0.560 —0.425 0.806
4 0.625 0.040 0.452
) 0.367 —0.272 0.652
6 —0.668 —0.409 0.776
7 —0.137 —0.374 0.774
8 —2.159 —0.604 0.901
9 0.946 —0.332 0.737
10 —1.080 —0.462 0.822
11 —0.637 —0.348 0.756
12 0.047 —0.255 0.677
13 —1.070 —0.657 0.910
14 —0.422 —0.470 0.836
15 0.042 —0.358 0.756
16 —1.200 —0.348 0.754
17 —00 —0.634 0.913
18 —2.968 —0.464 0.819
19 —0.685 —0.442 0.809
20 — —0.379 0.769
21 — —0.458 0.826
22 0.526 —0.235 0.634
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Table 5.14: The MLE, the posterior mode of v;, and P(v; < 0|D) from the

simulated data

Table 5.14 shows the MLE, the posterior mode (9;) of v; and the posterior
probability P(v; < 0|D) at each center. The posterior mode of v; ranges
from —0.657 at Center 13 to 0.040 at Center 4. The posterior probability
P(v; < 0|D) ranges from 0.452 at Center 4 to 0.913 at Center 17. Center 4 is
a large center, but P(vy < 0|D) is below 0.5.

Figure 5.14 displays the posterior distributions of ;1,2 =1,---,22. We see
some variation among those posterior distributions. Posterior distribution of

A;1 1s concentrated in some large centers, whereas it is relatively flat in many
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Center MNAMLE Ait
1 0.096 0.058
2 0.053 0.058
3 0.083 0.071
4 0.034 0.045
5 0.138 0.074
6 0.090 0.063
7 0.044 0.049
8 0.125 0.054
9 0.015 0.040
10 0.123 0.069
11 0.120 0.079
12 0.076 0.065
13 0.083 0.059
14 0.044 0.046
15 0.052 0.056
16 0.228 0.079
17 0.060 0.042
18 0.714 0.061
19 0.077 0.059
20 0.036 0.048
21 — 0.051
22 0.629 0.076

Table 5.15: The MLE and the posterior mode of A;; at each center from the
simulated data

small centers.

A

Table 5.15 shows the MLE and posterior mode (A;1) of A;; at each center.
The range of posterior mode 5\2'1 is 0.039. 5\2'1 changes from 0.040 at Center 9
to 0.079 at Center 11. A;; = 0.040 corresponds to a 25-month mean survival
time at center ¢, whereas A;; = 0.079 corresponds to only a 12.7-month mean
survival time at center 2 in our model.

Figure 5.15 displays the prior and posterior distributions of population pa-

rameters. The posterior distributions of /b and p are much more concentrated
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ulated data
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than their prior distributions, indicating that we learned a lot from the data
for those population means. The posterior distribution of @/b? is much more
concentrated than the prior distribution of a/b?, because the prior distribution
of a/b* is quite disperse. The posterior distribution of ¢ is more disperse than
the prior distribution of o2, and o? is likely to be greater on its posterior dis-
tribution than on its prior distribution. So our inference indicates that there

is certain variation among the v;’s at different centers.

5.9 Summary

In this chapter, we applied the hierarchical model proposed in Chapter 4 to
the NSCLC trial data. Since the trial included many centers that had only a
few patients, many centers borrowed a lot of strength from other centers, and
the posterior distribution is sensitive to the prior distribution of the population
parameters. If our prior belief is that the centers are homogeneous, so will be
our posterior belief. If we are open-minded about the heterogeneity among the
different centers, then each individual center borrows less strength from the
other centers. When centers do not borrow strong strength from other centers,
the centers that have small number of patients do not have much information
on which to make conclusion about center parameters.

In next chapter, I will analyze a data set from a National Institute of Mental
Health collaborative study. In that study, the number of patients at each center

is relatively large.
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Chapter 6

A NIMH Collaborative Study

6.1 Introduction

6.1.1 Purpose of the Study

Depression is a recurrent illness. Psychiatric research has shown that most
patients who experience an initial episode of depression will recover, but will
then go on to suffer one or more recurrences. Medical researchers have long
tried to improve the efficacy of medications designed to prevent the occur-
rence of new episodes of illness. The multicenter clinical trial analyzed here
was conducted to determine the comparative efficiencies of lithium carbonate,
imipramine hydrochloride, and a combination of lithium and imipramine in
preventing the occurrence of unipolar and bipolar affective disorders. For a
detailed description of the Pharmacologic and Somatic Treatments Research
Branch of the National Institute of Mental Health (NIMH-PRB) Collaborative
Study of Long-Term Maintenance Drug Therapy in Recurrent Affective Illness,
see Prien et al. (1984). The following analysis includes only the patients with

unipolar depression.
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6.1.2 Design of the Study

The NIMH-PRB collaborative study had two phases: a preliminary phase and
a maintenance phase. The purpose of the preliminary phase was to control the
index episode, stabilize the patient’s clinical condition, and establish stable
maintenance dose levels of lithium carbonate and imipramine in preparation
for the maintenance phase. Upon patients met specified entrance criteria that
ensured that they were experiencing an acute episode, they received the treat-
ment of choice of the psychiatrist responsible for their care during this prelim-
inary phase of the illness. Approximately 90% of these patients were treated
with imipramine. After their acute symptoms were controlled, these patients
received a combination of both lithium and imipramine. Once the patient
remained on predetermined medication dosages and met specified “wellness”
criteria for two consecutive months, he or she entered the maintenance phase

of the study.

The major experimental phase of the study, The maintenance phase in-
volved two years of double-blind comparison testing which treatment regimen
prolonged the recurrence of affective disorder. The 150 patients who were el-
igible for the maintenance phase of the study were randomly assigned to one
of two groups. One group remained on imipramine; the other group was with-
drawn from imipramine. After randomization, the patients were followed for up
to two years (until the end of the study), or until they experienced a recurrence
of depression. The response variable of interest is time between randomization

and the first recurrence of a depression episode.
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6.1.3 Analysis of Recurrence Time

Five medical centers participated in the collaborative study. Figure 6.1 presents
the Kaplan-Meier estimates of the survival functions for each therapy with all
centers combined. The p-values for testing the homogeneity of these survival
curves over therapy are about 0.0001 for both the logrank test and the Wilcoxon
test. Figure 6.1 clearly showns that the two survival curves diverge at a early
time. At time point about 10 weeks, the difference between the two curves is
large; after that time, the difference remains roughly stable. The data show
that there are many more early recurrences in the off imipramine group than

in the on imipramine group.

6.2 Bayesian Hierarchical Analysis of the
NIMH Collaborative Study

6.2.1 The Model

In this section, I will use the Bayesian hierarchical model proposed in Chapter
4 to analyze the data from the collaborative study. For this study, a pa-
tient’s “survival time” refers to the time until the patient suffers a recurrence
of depression. The standard therapy is the off imipramine therapy, and the
experimental therapy is the on imipramine therapy. The goal is to determine
the relative efficacy of the two therapies, and to discover the heterogeneity

among the different centers.
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Center 1 dil TZ 1175 dig TZ
A 11 6 498.86 | 15 3 1205.43
B 10 6 390.72 | 15 6 769.86
C 8 7 176.86 3 3 332.00
D 25 12 1367.29 | 26 8 1503.37
E 17 15 240.00 | 18 9 845.57
total 71 46 2673.73 | 79 29 | 4656.23

Table 6.1: Sufficient statistics by center

6.2.2 Data

Appendix B presents the data from the five centers. In the hierarchical model,
dij, Tij, v =1,---,5, y = 1,2 form the sufficient statistics. d;; is the number
of patients who experienced a recurrence of depression on therapy j in center
t; and T5; is the total time observed for all the patients on therapy j in center ¢,
t=1,---,5, y = 1,2. Here, 7 = 1 corresponds to the off imipramine therapy,
and j = 2 corresponds to the on imipramine therapy. Table 6.1 displays these
sufficient statistics and the total number of patients by center-therapy (n;;).

The time unit is one week.

6.2.3 Choice of Prior Distributions

Parameters a, ¢, d, u and w need to be specified for applying the model to the
data. The gamma distribution of A;; in the second level of hierarchy is con-
jugate to the exponential distribution in the first level of hierarchy. From the
posterior distribution of A;;, one see that a acts as a prior uncensored number
of observations and b is the prior total exposure time on the off imipramine
therapy. The values of a, ¢ and d can be chosen according to some prior in-

formation about the off imipramine therapy. These parameter values not only
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represent our prior belief about the hazard rate on the off imipramine therapy,
but also represent our prior belief about the center heterogeneity among those
Ai's in different centers. Note that V(A |a,b) = a/b*. For fixed a, if our
choice of ¢ and d makes b likely to be large, then our prior belief is that center
heterogeneity is small.

The second level parameter o?

represents the center heterogeneity among
those log hazard ratio v;s at different centers. A smaller o2 reflects less center
heterogeneity, and a larger o reflects larger center heterogeneity among those
v’s at different centers. The prior distribution of o2 reflects our prior belief of
this heterogeneity.

The available prior information about the off imipramine therapy is from
the history of those patients treated with the therapy, which suggested that
the recurrence occurred mainly between 8 and 122 weeks, and the weighted

average of the mean recurrence times across centers was 25 weeks.

We choose @ = 3, ¢ = 4. Note that

EQa) = E(E(Ai]a,b)))

and given A;1, the mean survival time on the off imipramine therapy is 1/A;.
We choose d such that the value of the prior E(\;) is the reciprocal of the

weighted average of mean recurrence time, that is
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The following values for a, ¢ and d are chosen:
a=3, ¢c=4 d=0.04
The mean and variance of A;; are

EXii|a,b) =

o R

V(Ai]a,b) =

T =

Air's mean a/b has its prior distribution

flz|a,e,d) = F?Z)(%)C_le_i_a-i
)

and A;1's variance a/b* has its prior distribution

forloed) = fo (%f

NG R

2I'(¢) xlte/2

B

Va
2a\/x

We chose a relatively flat prior distribution of v; in this study, the values of u

and w are chosen as:

u=4, w=1.5

which set the prior mean and variance of o2 to be

E(o?|u,w) = = 0.5

V(o |u,w) = - = 0.125
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Center A B C D E
P(v; <0]D) | 0.986 | 0.915 | 0.962 | 0.889 | 0.991

Table 6.2: Posterior probability of v; < 0 in all centers

Figure 6.2 displays these prior distributions. The first row shows the dis-
tributions of the mean and variance of A\;; — a/b and a/b? respectively. The
second row displays the distributions of the population mean and variance of

v; — p and o? respectively.

6.2.4 Posterior Distributions

The posterior distributions of v; (¢ = 1,---,5) are displayed in the first plot
of Figure 6.3. From this figure, one can see that the domain of the posterior
density of v; is mainly at the left of v; = 0 at each center. Table 6.2 shows the
posterior probabilities of v; < 0; those probabilities are high, which suggests
that in all the centers the on imipramine therapy prevents the recurrence of
depression longer than the off imipramine therapy does. At some different
centers, the posterior distributions of v; are quite different, so the relative
improvement of on imipramine over off imipramine are likely to be different
across centers.

Table 6.3 displays individual center log hazard ratio (MLE), posterior mode
of v; (0;), pooled population log hazard ratio (posterior mode fi), posterior
mean and variance of v; at each center. The table clearly shows that the
parameters at each individual centers are shrunk toward the pooled population
value through borrowing strength from other centers. The individual center

log hazard ratios for centers A, C and E fell below the pooled population log
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Center | viyre 0; [ E(vi | D) | V(v; | D)
A —1.575 | —1.428 | —1.045 | —1.462 0.274
B —0.678 | —0.942 | —1.045 | —0.941 0.239
C —1.477 | —1.215 | —1.045 | —1.263 0.285
D —0.500 | —=0.799 | —1.045 | —0.797 0.187
E —1.770 | —1.405 | —1.045 | —1.404 0.174

Table 6.3: The MLE, posterior mode, pooled population mode, posterior mean
and variance of v;

hazard ratio, and the posterior modes of v; at these centers were shrunk up
toward the population value. At centers B and D, the individual center v;’s
were above the pooled population value, and their posterior modes were shrunk
down toward the pooled population value. The range of the MLE of individual
center v; is 1.27 (from —1.77 at center E to —0.5 at center D), and the range
of posterior modes of v; decreased greatly to 0.629 (from —1.428 at center A
to —0.799 at center D). This decrease occurred because the hierarchical model

connected individual center parameters together, and pulled them close.

The inference about the posterior distribution of v; at each center borrowed
strength from the other centers. The posterior mode 0; reaches its maximum
—0.799 at center D. In the model, v; = —0.799 corresponds to A;; /Ay = %7 =
2.22. which represents a 122% increase in median and mean survival time on
therapy 2 over therapy 1 at center :. The ¢; reaches its minimum —1.428
at center A. When v; = —1.428 corresponds to A;1/A;p = €' = 417, it
represents a 317% increase in median and mean survival time on therapy 2 over
therapy 1 at center ;. So the posterior distributions of v; in individual centers
suggest that the on imipramine therapy can prolong the time of recurrence

of depression better than the off imipramine therapy does, but the average
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relative increase of recurrence time for patients received the on imipramine
therapy varies from center to center, ranging from 122% at center D to 317%
at center A.

The posterior distributions of Ay (2 = 1,---,5) displayed in the second plot
of Figure 6.3 show a large variation. The domains of the posterior densities
of A\;1 at centers D and E shared only a tiny area. The evidence strongly sug-
gests that the hazard rate of the off imipramine therapy changes from center
to center. Center D and E are the two largest centers, but the posterior distri-
bution of A;; is relatively concentrated at center D and relatively flat at center
E, because there is a larger discrepancy on the observations at center E than
at center D. The posterior distributions of A;; at these two centers strongly
indicate that the A;; at center D is much less than that at center E, so the
survival time on the off imipramine therapy at center D is much longer than
that at center E.

Table 6.4 displays the individual center hazard rate (MLE), posterior mode
of M1, (5\2'1), pooled population hazard rate ((a — 1)/?)), posterior mean and
variance of A;; at each center. Just like the log hazard ratios, the hazard rates
at each individual centers are pulled toward each other through borrowing
strength from other centers. At centers A, B and D, the MLE of individual
center hazard rates were below the pooled population hazard rate, and the
posterior modes of A;;, at these centers were shrunk up toward the pooled
population value. At centers C and E, the MLE of individual center hazard
rates were above the pooled population hazard rate, the posterior modes of A;;
at these center were shrunk down toward the pooled population value. The
range of MLE of A\;; across centers is 0.054 (from 0.009 at center D to 0.063 at

center E), and the range of the posterior mode of \;; across centers decreased
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Center MNAMLE Al (a—1)/b E(A1|D) | V(Aa|D)
A 0.012 0.012 0.016 0.013 0.000022
B 0.015 0.016 0.016 0.018 0.000042
C 0.040 0.028 0.016 0.032 0.000124
D 0.009 0.010 0.016 0.010 0.000009
E 0.063 0.044 0.016 0.047 0.000208

Table 6.4: The MLE, posterior mode, pooled population mode, posterior mean
and variance of A\

greatly to 0.033 (from 0.010 at center D to 0.044 at center E). This decrease
occurred because the hierarchical structure connected the A;; at the different
centers together, and pulled them close. Thus, the inference about a center’s
A1 borrowed strength from other centers. The posterior mode 5\2'1 reaches its
minimum 0.010 at center D, and A;; = 0.010 corresponds to a 100-week mean
survival time on therapy 1 at center ¢. The Ain reaches its maximum 0.044
at center E, and A;; = 0.044 corresponds to a 22.7-week mean survival time
on therapy 1 at center :. The posterior distributions of A;; at the individual
centers indicate that there is a large difference among the hazard rates of the
off imipramine therapy at different centers.

Figure 6.4 shows the posterior distributions of the population mean and
variance of A\;; and v;. The first row displays the posterior distributions of the
population mean and variance of A\;; — a/b and a/b? respectively. The second
row shows the posterior distributions of the population mean and variance of
v; — p and o? respectively.

Table 6.5 presents the posterior mode, mean and variance of b, u and o?.
The posterior mode of p is —1.045, which is the mode of population log hazard

ratio. €'%%® = 2.84, so in the population, the mean survival time of patients
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Parameter Mode Mean Variance
alb 0.024 0.027 0.0000580
a/b? 0.0001609 | 0.0002591 | 2.6 x 1078

L —1.045 —1.038 0.188
o? 0.313 0.476 0.067

Table 6.5: Posterior mode, mean and variance of a/b, a/b*, yu and o*

receiving the on imipramine therapy is about 2.84 times that of those on the
off imipramine therapy. The posterior probability P(u < 0] D) = 0.989, which
means that it is almost certain that the mean of v; across centers is negative.
The posterior density functions of a/b and p are much more concentrated
than their prior density functions, indicating that the study contains much
information about these parameters. The posterior density functions of a/b?
and o? did not change much from those of their prior distributions, and the
data did not change our belief much about the variation among the v;’s and

Ait's at different centers.

6.2.5 Predictive Survival Functions

New patients who can choose a therapy are primarily interested in how well
they will respond to the two therapies. Using the posterior distributions of the
parameters at each center, we can calculate the predictive survival function for
each therapy at every center. Figure 6.5 shows the predictive survival functions
for each center. The survival functions for the two therapies differ from center
to center, but patients at all centers always have a higher survival probability
on the on imipramine therapy than on the off imipramine therapy at point

in time. The area between the two curves represents the improvement of the
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mean survival time between the two therapies, which is large at all the centers.
The heterogeneity among the different centers is clearly shown in the figure.
For example, the solid curve at center D is very different from that at center
E, which indicates that the survival probability on the off imipramine therapy

at center E is very different from that at center D.

Table 6.6 displays the predicted survival probabilities at time of half-year,
one-year, two-years and three-years for the patients on the off imipramine ther-
apy. Table 6.7 displays the predicted survival probabilities at time of half-year,
one-year, two-years and three-years for the patients on the on imipramine ther-
apy. Comparing different rows in these tables, we see the heterogeneity between
different centers for the same therapy. For instance, the predicted one-year sur-
vival probability for patients on the off imipramine therapy is 0.590 at center
D, whereas it is only 0.114 at center E. For another example, the predicted two-
year survival probability for patients on the on imipramine therapy is 0.715 at
center A, whereas it is only 0.331 in center E. Comparing corresponding rows
in these two tables, we see the increase in survival probabilities for patients the
on imipramine therapy over those on the off imipramine therapy. For example,
the predicted two-year survival probability at center F is 0.114 for patients on
the off tmipramine therapy, and it increased to 0.551 for patients on the on
imipramine therapy.

Table 6.8 shows the predicted mean survival times on the two therapies
at each center. At every center, we a very large increase in predicted mean
survival time for patients on the off imipramine therapy compared to those on

the on imipramine therapy.
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Predicted survival probability
Center | half-year | one-year | two-year | three-year
A 0.723 0.529 0.392 0.293
B 0.632 0.410 0.272 0.185
C 0.443 0.212 0.107 0.057
D 0.766 0.590 0.457 0.356
E 0.318 0.114 0.045 0.019
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Table 6.6: Some predicted survival probabilities on the off imipramine therapy

Predicted survival probability
Center | half-year | one-year | two-year | three-year
A 0.916 0.841 0.775 0.715
B 0.814 0.671 0.560 0.472
C 0.758 0.592 0.472 0.382
D 0.870 0.762 0.670 0.593
E 0.732 0.551 0.423 0.331

Table 6.7: Some predicted survival probabilities on the on imipramine therapy

Predicted Mean Survival
Center | off imipramine | on imipramine
A 89.8 420.0
B 63.3 169.6
C 34.6 132.2
D 105.7 248.6
E 23.8 107.4

Table 6.8: The predicted mean survival time (weeks)
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6.3 Sensitivity Analysis

6.3.1 Three Prior Distributions

In this section, I will analyze the data with some different prior distributions to
see how prior distribution affects the analysis results. Prior I refers to the set
of prior distributions used previously. Prior II and Prior 1II are two other sets
of prior distributions. The three sets of prior distributions represent different
beliefs in the degree of heterogeneity among different centers.

Prior IT has a small @ and uniform distributions for 1/b and o2, it represents
disperse prior distributions for v; and A;; in center population. 1/b has a

uniform prior is equivalent to that b has the prior p(b) oc 1/b%. So, Prior 11 is

a = 3
p(b) 0 b>0
po~ N(O,1)

p(0?) o constant, o> 0

The prior distributions of b and o? are improper distributions. In this prior,
our belief about the the center heterogeneity is vague. Consequently, data will

have strong impact on the inference about center heterogeneity.

In Prior III, our prior belief is that there is only a small variation among

centers. The parameter values are
a=10, ¢=3, d=0.008, u=5 and w=0.8

that is
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b ~ Gamma(3,0.008)
po~ N(0,1)

o2 ~ 1G(5,0.8)

which sets the prior mean of a/b, a/b* and prior mean and variance of o to be

a ad
E(S|e,d) = = 0.04
(b|c7 ) C—l 00
E(=|e,d) = e 0003
2 Y T e—2)
E(o?|u,w) = wl = 0.20
u_
w2
Vie? |u,w) = 13 = 0.0133
U — U —

For comparison, Figure 6.6 displays the prior distributions of a/b, a/b*, u and

o2 in Prior I and Prior III.

6.3.2 Results

In this subsection, the posterior distributions and other results based on Prior
IT and Prior IIT will be presented. We will compare all the results based on the

three sets of prior distributions.
Prior II

The first graph in Figure 6.7 displays posterior distributions of v; based on
Prior IT,7 = 1,-- -, 5. Because the prior distributions of 1/b and o?* are flat, the
strength borrowing is not strong in the inference. The posterior distribution of

v; 1s relatively flat at all the centers, and there is a relatively large discrepancy
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Center A B C D E
P(v; <0]D) | 0.965 | 0.806 | 0.912 | 0.799 | 0.976

Table 6.9: Posterior probability of v; < 0 based on Prior 11

Center | vimLe 0; [ E(vi | D) | V(v; | D)
A —1.575 | —1.463 | —0.908 | —1.545 0.381
B —0.678 | —0.838 | —0.908 | —0.783 0.332
C —1.477 | —1.182 | —0.908 | —1.251 0.403
D —0.500 | —0.682 | —0.908 | —0.645 0.243
E —1.770 | —1.451 | —0.908 | —1.434 0.224

Table 6.10: The MLE, posterior mode, pooled population mode, posterior
mean and variance of v; based on Prior 11

among these posterior distributions. Table 6.9 displays the posterior probabil-
ity of v; < 0 for all the centers. At some centers, such as centers A and E,
there is strong evidence that indicates that v; is negative. At other centers,
such as center B and D, we are less certain that v; is negative. It is still likely
that v; is negative at all the centers, because the probability P(v; < 0] D) is

far above 0.5 in all centers.

Table 6.10 shows the individual center log hazard ratio (MLE), posterior
mode of v; (¢;), pooled population log hazard ratio (fi), posterior mean and
variance of v; in each center based on Prior II. Column 2 to column 4 still
indicate that the individual center log hazard ratios were shrunk toward the
pooled population log hazard ratio. The posterior mode of v; varies from
—1.432 at center A to —0.680 at center D, which respectively correspond to a
319% and a 97% increase in mean and median survival time on therapy 2 over

therapy 1.
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Posterior densities of v_i based on Prior Il

Q|
o
2
m -
c
o)
© <
>
o
o
Q|
o
>
=
U) -
C
(]
T <
>
o
O T T T T T T
-4 -3 -2 -1 0 1
Vi

Figure 6.7: Posterior distribution of v; based on Prior I and Prior III



110

Center MNAMLE Al (a—1)/b E(A1|D) | V(Aa|D)
A 0.012 0.012 0.019 0.013 0.000027
B 0.015 0.015 0.019 0.017 0.000054
C 0.040 0.028 0.019 0.032 0.000152
D 0.009 0.009 0.019 0.010 0.000011
E 0.063 0.042 0.019 0.047 0.000263

Table 6.11: The MLE, posterior mode, pooled population mode, posterior
mean and variance of A;; based on Prior 11

The first plot of Figure 6.8 displays the posterior distributions of A;; (¢ =
1,---,5) based on Prior II. Asin the v;’s, we see a large variation among the five
posterior distributions of A;;. These posterior distributions were relatively flat;
and the posterior distribution of A;; at center E was extremely flat, because
there was a large discrepancy among the observations at that center. The flat

prior distributions on 1/b and ¢ made each center borrow little strength from

other centers.

Table 6.11 displays the individual center hazard rate (MLE), posterior mode
of A\ (5\2'1), pooled population hazard rate ((a — 1)/?)), posterior mean and
variance of A\;; in each center based on Prior II. At centers C and E, the MLEs
of individual center A;; are far above the pooled population value, and the
posterior modes of \;; at these centers were shrunk down toward the population
value. In this flat prior distribution case, only in very extreme centers, the At
were shrunk to that about the population value. The posterior mode of A;;
varies from 0.009 at center D to 0.042 at center E, which correspond to a 111.1-
week and a 23.8-week mean survival time, respectively, on the off imipramine

therapy.
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Posterior densities of lambda_il based on Prior Il
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Parameter Mode Mean Variance
alb 0.0288 0.0276 0.001617
a/b? 0.0002763 | 0.0002860 | 2.2 x 107

L —0.908 —0.745 0.440
o? 0.348 3.234 15.23

Table 6.12: Posterior mode, mean and variance of a/b, a/b*, i and o* based
on Prior II

The dotted curves in Figure 6.9 show the posterior distributions of popula-
tion parameters a/b, a/b?, p and o* based on Prior II. Our prior distributions
of a/b and o2 are uniform distributions; and the prior distribution of y is flat
too. The posterior distributions of a/b and g are much more concentrated than
their prior distributions, but the posterior density of o2 is still relatively flat.
Thus, the data we observed provided much information on population means
a/b and p, but they did not provide much information about 2.

Table 6.12 shows the posterior mode, mean and variance of the popula-
tion mean and variance of )\;; and v; based on Prior II. The first two rows
represent the population mean (a/b) and variance (a/b*) of A;;. p and o2 are
the population mean and variance of v;. The posterior mode of p is —0.908,
which corresponds to a 148% increase in mean survival time on therapy 2 over

therapy 1 in the population.
Prior III

The second plot in Figure 6.7 displays the posterior distributions of v; based
on Prior ITI, 2 = 1,---,5. Since Prior III only assumes very little center hetero-
geneity, the strength borrowing is very strong, and we only see little variation
among these posterior distributions. The posterior density curves of v; at cen-

ter B, C, D and E are very close; and the posterior density curve of v; in center
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Center A B C D E
P(v; <0]D) {0.999 | 0.979 | 0.984 | 0.968 | 0.992

Table 6.13: Posterior probability of v; < 0 based on Prior 111

Center | vimLe 0; [ E(vi | D) | V(v; | D)
A —1.575 | —1.360 | —1.052 | —1.403 0.181
B —0.678 | —1.002 | —1.052 | —1.013 0.160
C —1.477 | —1.090 | —1.052 | —1.114 0.200
D —0.500 | —0.951 | —1.052 | —0.962 0.135
E —1.770 | —=1.151 | —1.052 | —1.161 0.129

Table 6.14: The MLE, posterior mode, pooled population mode, posterior
mean and variance of v; based on Prior 111

A shifted to the left a bit compared to the others. These curves suggest that
centers B, C, D and E have almost the same log hazard ratio, and center A
has a smaller log hazard ratio than other centers. Table 6.13 displays posterior
probabilities of v; < 0 at each center, and those posterior probabilities strongly
suggest that v; is negative for all the centers, which means that patients on

therapy 2 survive longer than those on therapy 1 at all the centers.

Table 6.14 shows the individual center log hazard ratio (MLE), posterior
mode of v; (¢;), pooled population log hazard ratio (fi), posterior mean and
variance of v; at each center based on Prior III. From column 2 to column 4, we
can see that the individual center log hazard ratio at each center was strongly
shrunk toward the population value. The posterior mode of v; changes from
—1.259 at center A to —0.982 at center B, which correspond to a 252% and a
167% increase, respectively, in mean survival time on therapy 2 over therapy

1.
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Center MNAMLE Al (a—1)/b E(A1|D) | V(Aa|D)
A 0.012 0.014 0.019 0.015 0.000018
B 0.015 0.018 0.019 0.019 0.000027
C 0.040 0.024 0.019 0.027 0.000056
D 0.009 0.012 0.019 0.012 0.000008
E 0.063 0.033 0.019 0.034 0.000077

Table 6.15: The MLE, posterior mode, pooled population mode, posterior
mean and variance of A;; based on Prior III

The second graph of Figure 6.8 displays posterior distributions of A\;y (i =
1,---,5) based on Prior IIl. Because of the strong strength borrowing, the
posterior distribution of A;; is relatively less flat. We can still clearly see some
variation among these posterior density curves. Centers D and E are two
centers with extreme \;y’s, and the posterior density curves of \;; at the two

centers shared only a small area.

Table 6.15 shows the individual center hazard rate (MLE), posterior mode
of A\ (5\2'1), pooled population hazard rate ((a — 1)/?)), posterior mean and
variance of A;; at each center based on Prior III. From column 2 to column
4, we can see that the individual center \;; was strongly shrunk toward the
population value. The posterior mode of A\;; changes from 0.013 at center D
to 0.026 at center E, which correspond to a 76.9-week and a 38.5-week mean
survival time respectively. The mean survival time doubles from center E to

center D.

Table 6.16 displays the posterior mode, mean, and variance of the popu-
lation mean and variance of A;; in its second and third rows. The posterior
mode, mean and variance of u and o? are displayed in the last two rows of

the table. We see very small values for a/b* and o*, which indicate strong
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Parameter Mode Mean Variance
alb 0.021 0.023 0.0000228
a/b? 0.0000406 | 0.0000528 | 5.4 x 10~1°

L —1.052 —1.068 0.122
o? 0.139 0.209 0.014

Table 6.16: Posterior mode, mean and variance of a/b, a/b*, i and o* based

on Prior III

center homogeneity. The posterior mode of p is —1.037, which corresponds to
a 182% increase in mean survival time on the on imipramine therapy over the

off imipramine therapy.

6.3.3 Comparison of the Three Prior Distributions

When we compare the posterior distributions derived from the three sets of
prior distributions that we chose, we can see how the posterior distributions
are affected by the prior distributions. By comparing the corresponding plots
in the graphs from Figure 6.3 to Figure 6.9, we can see that the shrinkage of
the individual center parameters increased as the priors changed from Prior II
to Prior I, and from Prior I to Prior III. As we expected, the posterior dis-
tributions of individual center parameters derived from a flatter prior are less
homogeneous and less concentrated. Prior belief in the center heterogeneity
has strong impact on the posterior distributions of individual center parame-
ters, but it has a relatively lighter impact on the posterior distributions of the
population mean of the individual center parameters.

When we compare the corresponding numbers in the tables from Table 6.3
to Table 6.16, we can see that the range of the posterior modes of individual

center parameters changes with the variation of prior belief in center hetero-
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geneity. The range of posterior modes of v; from center to center is 0.752 based
on Prior II, it decreased to 0.629 based on Prior I, and it further decreased to
0.277 based on Prior III. A similar thing happens to A;1; the range of posterior
modes of A\;; from center to center is 0.033 based on Prior Il and Prior I, but

it decreased to 0.013 based on Prior I1I.

By comparing the corresponding posterior variances of the individual cen-
ters and population parameters derived from the three sets of prior distribu-
tions, we can clearly see that the posterior variance decreased as the prior
variation between centers decreases. For example, the posterior variance of v;
at center A is 0.381 based on Prior II. It decreased to 0.274 based on Prior I,
and it further decreased to 0.181 based on Prior III. For other examples, the
posterior variance of A;; in center C is 0.000152 based on Prior II, it decreased
to 0.000124 based on Prior I, and it further decreased to 0.000056 based on
Prior ITI. The posterior variance of population parameter p is 0.440 based on
Prior II, it decreased to 0.188 based on Prior I, and it further decreased to

0.122 based on Prior III.

The data of this study strongly suggest that there is a certain center het-
erogeneity between different centers, even when it is our prior belief that there
is only very small center heterogeneity (Prior I11), the posterior distributions
still showed a strong heterogeneity on the center hazard rate A;; for patients

on the off imipramine therapy.
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Variable Codes

Center: Medical Center

Time: Months until a death

Status: A= Alive

D= Death

Therapy: 1=RT

2=CT+RT



Center

Time

Status

Therapy

—_

= = QO Q0 W W W W W W WwwWwWwWwWwwWww W WwwwwwwoNothntNnNne—

83.77
16.53
4.40
7.57
62.50
12.77
9.47
10.67
13.23
6.10
45.40
8.57
10.47
21.43
2.27
2.73
16.23
19.73
32.90
23.00
18.13
62.37
18.53
3.97
59.03
10.97
66.07
6.27
55.03
44.13
8.53

OO0 0,0000000000000000000 000

—_

= DN DN DN DN DN DN DN DN DN e e e e e e e e = DN DN

Table A.1: Data from the NSCLC Study — Part 1
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Center

Time

Status

Therapy

e

e e e = e TR T = T s B L B ST St S S S S S S ST U S S SN NN T

19.93
4.23
23.30
4.50
18.10
15.83
9.67
42.47
13.10
4.03
62.40
9.80
6.70
16.53
8.33
11.67
12.83
8.73
3.90
55.73
1.27
15.33
48.07
31.20
2.60
10.53
18.93
39.47
40.27
5.03
6.00

OO0 0000000000000 0000 00000300

—_

NN DNDN = RN DN DNDNDDDDNDNNDNDND DN NN DN - /= = ===

Table A.2: Data from the NSCLC Study — Part 2
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Center | Time | Status | Therapy
7 6.77 D 1
7 1.23 D 1
7 12.67 D 1
7 4.50 D 2
7 11.40 D 2
7 66.33 A 2
8 12.63 D 1
8 10.13 D 1
8 7.00 D 2
8 19.03 D 2
9 15.00 D 1
9 9.50 D 1
9 28.83 D 2
9 52.60 A 2
10 0.37 D 1
10 7.50 D 1
10 64.87 A 1
10 10.67 D 1
10 20.67 D 2
10 13.73 D 2
10 6.47 D 2
10 15.57 D 2
11 19.77 D 1
11 8.13 D 1
11 7.67 D 1
11 4.83 D 1
11 5.33 D 1
11 14.20 D 1
11 57.43 A 2
11 69.13 A 2
11 52.67 A 2

Table A.3: Data from the NSCLC Study — Part 3
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Center | Time | Status | Therapy
11 23.43 D 2
11 1.83 D 2
11 7.47 D 2
12 2.30 D 1
12 6.57 D 2
12 21.20 D 2
12 5.93 D 2
13 6.90 D 1
13 31.93 D 1
13 15.20 D 1
13 73.43 A 1
13 10.83 D 1
13 6.10 D 1
13 3.37 D 1
13 17.23 D 2
13 6.33 D 2
13 20.47 D 2
13 2.70 D 2
13 16.40 D 2
13 13.30 D 2
13 7.97 D 2
13 5.20 D 2
13 3.13 D 2
13 6.07 D 2
13 7.20 D 2
14 7.63 D 1
14 2.97 D 1
14 6.87 D 1
14 16.87 D 1
14 3.63 D 1
14 2.93 D 1

Table A.4: Data from the NSCLC Study — Part 4
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Center | Time | Status | Therapy
14 16.87 D 2
14 46.90 D 2
14 7.53 D 2
14 0.20 D 2
14 10.03 D 2
14 14.57 D 2
14 14.07 D 2
15 3.57 D 1
15 47.83 D 2
16 2.40 D 1
16 8.90 D 1
16 16.10 D 1
16 17.47 D 2
16 9.43 D 2
16 19.07 D 2
17 8.30 D 1
17 56.67 A 2
18 1.27 D 1
18 9.50 D 2
18 9.03 D 2
19 10.27 D 1
19 0.27 D 1
19 23.40 D 1
19 73.93 A 2
19 10.10 D 2
19 7.00 D 2
20 2.87 D 1
20 7.7 D 1
21 12.03 D 2
22 17.50 D 1
22 55.77 A 2

Table A.5: Data from the NSCLC Study — Part 5
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Variable Codes
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Center:

Time:

Status:

Therapy:

Medical Center

Weeks until a recurrence

0= Censored

1= Recurrence

1=0ff Imopramine

2=0n Imopramine



Center

Recurrence

Status

Therapy

—_

— = e e e e e e e e e e e e e e e e e e e e el e

36.143
49.714
5.000
2.857
55.714
5.571
14.429
104.857
102.429
105.857
16.286
8.429
13.429
27.286
105.143
74.571
102.143
108.857
106.429
105.143
83.000
104.000
83.000
98.000
98.000
88.000

—_

O OO OO OO DO DO OO P HFEF OO

—_

DO DO DN DO DN DN DD DN DD DN DN DD DN DN DN /= == === =

Table B.1: Data from the NIMH Collaborative Study — Center A
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Center

Recurrence

Status

Therapy

[N]

DO DO DD DD DB DN DD DD DD DD DN NN DN DN DN DN DN NN DN DN

1.286
4.000
74.143
0.143
1.429
45.857
2.143
104.857
78.429
78.429
27.143
9.857
42.429
17.429
18.000
66.857
100.000
52.143
78.000
78.857
54.857
78.286
78.143
52.000
15.857

—_

O O OO OO OO OO H M EFERFRFERFOOOO R — o

—_

DO DO DD DD DB DN DD DD BN DD DN NN — — — /=

Table B.2: Data from the NIMH Collaborative Study — Center B
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Center

Recurrence

Status

Therapy

w

W W W W WWWWWwwww

9.000
3.286
30.000
7.143
31.000
17.286
0.143
79.000
27.571
49.143
16.714
32.571
206.000

—_

O O = = O e e e

—_

DO DO DN DN DN — = = e e e

Table B.3: Data from the NIMH Collaborative Study — Center C

Center

Recurrence

Status

Therapy

e

S S Y S S S S S SSN

3.286
19.714

8.000
71.714
63.714
36.286

8.143
16.000
37.857
11.143
44.000

0.286
96.286
50.857

—_

O O = = e e e e e e e

—_

—_ o e e e e e e e e e e

Table B.4: Data from the NIMH Collaborative Study — Center D (I)
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Center

Recurrence

Status

Therapy

e

N S SOy S ST S-S S S ST ST

102.571
165.000
124.571
63.000
39.571
131.000
42.000
115.000
77.857
12.429
22.000
16.143
4.429
21.000
16.143
50.571
3.429
13.429
92.714
1.571
126.714
13.000
155.000
39.571
112.571
115.571
28.000
38.000
111.571
26.000
108.000
106.714
55.000
75.000
52.714
86.000
34.517

jam)

O OO OO oo oo o o Lo Lo oo Lo Lo oo RFEFMHEFPAPEFRAEFPRPRPRPOOOCOOCDOODOD OO

—_

DO DO DD DD DN BB DD DD BN DD DD DD DN DN DD DN NN DN DNNNDNNNEFE =~ /=

Table B.5: Data from the NIMH Collaborative Study — Center D (II)
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Center

Recurrence

Status

Therapy

[

Ct Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot O Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot

5.429
6.286
5.286
3.429
6.571
1.000
0.857
4.714
46.286
0.571
6.429
0.000
20.857
18.286
2.000
67.000
45.000
3.429
1.000
50.286
16.857
0.571
22.143
31.857
22.000
13.429
5.000
15.000
128.143
109.571
106.000
9.143
102.000
104.000
105.143

—_

O O O OO OO OO OO e e e e e e e e e e

—_

DO DO DN DO DD DD DD DN DN DN DNDDNDNDNDNDNDNN /= /= == =B P2 /=2 /=72 =} =} 2=}

Table B.6: Data from the NIMH Collaborative Study — Center E
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Appendix C

Computer Programs

This appendix contains the programs used in numerical integration and the
Gibbs sampling algorithms. These programs were written in FORTRAN 77
using the following IMSL subroutines and functions for random number gen-

erators and calculation:
e drnun — subroutine for Uniform [0, 1] generation
e drnnoa — subroutine for Normal (0, 1) generation

e drngam — subroutine for Gamma(a, 1) generation

dgamma — function for I'(x)

dlgams — function for In(I'(z))

C.1 Numerical Integration in Chapter 3

C this is for calculating p(vl|data), p(\lambda_1|data)

integer di,d2
real*8 t1,t2,x,s,a,b,y,v(3000),c,1(2000)
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real*8 yi1,s1,s82,c2

read *, d1,d2,t1,t2 ! the sufficient statistics
a=2.0
b=20.0

First is for p(vldata)

5=0.0

do 10 i=1,3000

x=-3.40.0014x%1
y=d2*x-x*x*0.5- (a+d1+d2) *dlog(b+t1+t2*dexp(x))
v(i)=dexp(y)

s=s+v (i)

continue

c=1.0/(s%0.0014) ! normalizing constant

do 20 i=1,3000
x=-3.0+0.0014x*i
v(i)=v(i)*c

print ’(2f15.5)°, x, v(i)
continue

Forrowing is For Posterior of Lambda_1
do 30 i=1,2000
x=0.00008+(i-1)*0.0001
5=0.0
do 40 j=1,3000
y=-3.0+(j-1)*0.0013
s=s+dexp(d2*y-y*y*0.5-x*t2*dexp(y))
continue
81=s*c*x0.0013
y1=(a+d1+d2-1.)*dlog(x)-(b+t1)*x+450.0
1(i)=s1*dexp(yl)
82=82+1(1)
continue

c2=1.0/(s2%0.0001)

do 50 i=1,2000
x=0.00008+(i-1)*0.0001
1(i)=1(i)*c2
print ’(2f15.5)’, x, 1(i)

continue

end
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C.2 Numerical Methods in Hierarchical Model

This section contains programs in the hierarchical model used in a multicenter

trial.

C.2.1 Gibbs Sampling

The following Fortran program does Gibbs sampling in a multicenter trial.

C This is for doing Gibbs sampling in a multicenter trial
C m --- the number of centers
C u(i,j) is the number of uncensored observations in center i
C on treatment j (-- d(i,j) in chapters 4,5,6 )
C n(i,j) is the total number of observations in center i on
C treatment j
C t(i,j) is the total exposure time observed in center i on
C treatment j
C prior of mu is N(0,1)
C prior of b is gamma(c,d)
C prior of sigma”2 is IG(aa,bb)
C al(i), a2(i) are the parameters of the gamma dis. for lambda_il
C al(m+1), a2(m+1) are the parameters of the gamma dis. for b
C y(i) is lambda_il, z(i) is v(i), sig is sigma™2
parameter (m=22,mm=2000)
integer u(m,2), 11,1
real*8 y(m+1), z(m), t(m,2), mu, sig, mv
real*8 s, f, f1, w, v, vhat, x0, x1, dd, err
real*8 al(m+1),a2(m+1),a,c,d, aa, bb, z1, z2
real*8 drngam, drnnoa, drnun
external drngam, drnnoa, drnun
C ut: sum of u(i,1)
a=6.0
c=4.0

d=0.075 ! prior of b is gamma(c,d)
al(m+1)=m*a+c
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aa=3.0
bb=.32 ! prior of sig is inverse gamma(aa,bb)

do 10 i=1,m
read *, u(i,1),t(i,1),u(i,2),t(i,2)
10 continue

do 5 i=1,m
al(i)=a+u(i,1)+u(i,2)
5 continue

do 100 11=1,mm ! 11 is the count of Gibbs sampling
do 20 k=1, m
a2(k)=20.0 ! initial value

call drngam(1,a1(k),y(k))
y(k)=y(k)/a2(k)
call drnnoa(1l, z(k))
20 continue
call drngam(1l, c, y(m+1))
y(m+1)=y(m+1)/d
call drnnoa(1l,mu) ! inisial mu from N(0,1)
call drngam(1l,aa, sig)
sig=bb/sig ! prior of sig: Inverse G(aa,bb)

do 101 1=1,30 ! 1 is the number of iterations
a2(m+1)=0.0
mv=0.0
do 65 i=1,m
a2(1)=t(i,2)*xexp(z(i))+t(i,1)+y(m+1)
call drngam(1,a1(i),y(i))
y(1)=y(i)/a2(i)
a2(m+1)=a2(m+1)+y (i)

following is the process of sampling v(i) with rejection method

first is to find the mode of a normal distribution and the
envelop function of the conditional distribution of v(i)

f is the logrithm of the factor function in the conditional
distribution of v(i)

f1 is the logrithm of the envelop function

x0=-0.1
25 z1=x0+y (1) *t(i,2) *sigxexp(x0) -mu-u(i,2) *sig

z2=1.0+y(1)*t(i,2)*sigkexp(x0)
x1=x0-z1/22



35

30

65

40

101

100

err= abs(x1-x0)

if ( err .le. .000001) goto 35
x0=x1
go to 25

vhat=x1 ! vhat is the mode
dd=u(i,2)-(vhat-mu)/sig

call drnun(1,w)

call drnnoa(l,v)

v=vhat+v*sqrt(sig)

f1=dd*(vhat-1.0-0.5%(v-vhat)**2-(v-vhat)**3/6.0)

f=dd*v-t(1,2)*y(i)*exp(v)

if (£-f1 .1t. log(w)) go to 30
z(i)=v

MV=mv+v

continue

a2(m+1)=a2(m+1)+d
call drngam(1l,al(m+1),y(m+1))
y(m+1)=y(m+1)/a2(m+1)

mv=mv/(sig+m)
call drnnoa(l,mu)
mu=mv+mu*sqrt(sig/(sig+m))

s=0.0

do 40 k=1, m
s=s+(z (k) -mu) **2
continue

call drngam(1l, aa+0.5*m, sig)
sig=(bb+0.5%s) /sig

continue
print ’(7£10.5)’, (y(i),i=1,7)
print ’(7£10.5)’, (y(i),i=8,14)
print ’(8£9.5)’, (y(i),i=15,22)
print ’(7£10.5)°, (z(i),i=1,7)
print ’(7£10.5)°, (z(i),1=8,14)
print ’(8£9.5)°, (z(i),i=15,22)
print ’(3f14.8)’, y(m+1), mu, sig
continue

end
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C.2.2 Posterior density of v;

Following is the program of calculating the posterior density functions of v;’s.

QOO0

10

40

this is to calculate posterior density in multicenter trial

for the posterior of the v_i’s -- log hazard ratio in each center
c(m,mm) are the normalizing constant for the conditional density
of v_i’s

m --- the number of centers,

mm --- the sample size in Gibbs Sampling

y(i,j) --- j-th observation of lambda_il in Gibbs sampling
z(i,j) --- j-th observation of v_i in Gibbs sampling
sig(j) --- j-th observation of sigma”2 in Gibbs sampling
fv(i) --- posterior density function of v_i

parameter (m=22,mm=2000)

real*8 y(m,mm),z(m,mm),b(mm) ,mu(mm),sig(mm),c(m,mm)
real*8 fv(m)

integer d(m,2)

real*8 t(m,2),x,a,w,s

a=15.0

do 5 i=1,m ! read in sufficient statistics
read *, d(i,1),t(i,1),d(i,2),t(i,2)

continue

do 10 k=1,mm ! read in the Gibbs sampler

read *, (y(i,k), i=1,7)

read *, (y(i,k), i=8,14)
read *, (y(i,k), i=15,22)
read *, (z(i,k), i=1,7)
read *, (z(i,k), i=8,14)
read *, (z(i,k), i=15,22)
read *, b(k),mu(k),sig(k)
continue
do 20 i=1,m ! calculate normalize constant for v_i’s
do 30 j=1,mm
s=0.0

do 40 k=1,5000
x=-3+(k-1)*.001
w=-.5*%(x-mu(j))**2/sig(j)+d(i,2)*x-y(i,j)*t(i,2)*dexp(x)
s=s+dexp(w+45.0)

continue



30
20

70

60

50

c(i,j)=5000.0/(s%5.0)
continue
continue

do 50 i=1,2751
x=-3.0+(i-1)*.002
do 60 j=1,m
fv(j)=0.0
do 70 k=1,mm
w=-0.5%(x-mu(k))**2/sig(k)+d(j,2) *x
-y(j,k)*t(j,2)*dexp(x)+45.0
fv(j)=tv(j)+c(j,k)*dexp(w)
continue
fv(j)=tv(j)/mm
continue
print ’(8£9.4)°, x,(fv(kk),kk=1,7)
print ’(8£9.4)’, (fv(kk),kk=8,15)
print ’(7£9.4)’, (fv(kk),kk=16,22)
continue

end

C.2.3 Posterior density of \;;
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Following is the program of calculating the posterior density functions of A;'s.

QOO OO0

this is to calculate posterior density of lambda_il’s in a

multicenter trial with a hierarchical model

n --- number of points at which density function is calculated
m --- the number of centers,

mm --- the sample size in Gibbs Sampling

y(i,j) --- $j$th observation of lambda_il in Gibbs sampling
z(i,j) --- $j$th observation of v_i in Gibbs sampling

sig(j) --- $j$th observation of sigma™2 in Gibbs sampling
flam(i) --- posterior density function of $\lambda_{i1}$

parameter (m=22,mm=2000,n=800)

real*8 y(m,mm),z(m,mm),b(mm) ,mu(mm),sig(mm),flam(m)

integer d(m,2),um)
real*8 t(m,2),a,w,wl,logal,s,x
real*8 dlgams, dgamma
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external dlgams, dgamma

a=15.0
do 5 i=1,m ! read in sufficient statistics
read *, d(i,1),t(i,1),d(i,2),t(i,2)
u(i)=d(i,1)+d(i,2)
5 continue

do 10 k=1,mm ! read in the Gibbs sampler
read *, (y(i,k), i=1,7)
read *, (y(i,k), i=8,14)
read *, (y(i,k), i=15,22)
read *, (z(i,k), i=1,7)
read *, (z(i,k), i=8,14)
read *, (z(i,k), i=15,22)
read *, b(k),mu(k),sig(k)
10 continue

do 20 i=1,n
x=0.002+1i%.298/800.
do 40 j=1,m

flam(j)=0.0

call dlgams(a+u(j),logal,s)

do 50 k=1,mm
w=b(&K)+t(j,1)+t(j,2)*dexp(z(j,k))
wl=dlog(w)-x*w+(a+u(j)-1)*dlog(x*w)-logal
flam(j)=flam(j)+dexp(wl)

50 continue
flam(j)=flam(j)/mm
40 continue

print ’(8£9.4)’, x,(flam(kk),kk=1,7)

print ’(8£f9.4)’, (flam(kk),kk=8,15)

print ’(7£9.4)’, (flam(kk),kk=16,22)
20 continue

end

C.2.4 Posterior density of b

Following is the program of calculating the posterior density function of b.

C this is to calculate the posterior density of b



QOO0

10

40

30

n --- number of points at which
m --- the number of centers,

mm --- the sample size in Gibbs
y(i,j) --- $j$th observation of
z(i,j) --- $j$th observation of
sig(j) --- $j$th observation of
fb ---
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density function is calculated

Sampling

lambda_il in Gibbs sampling
v_i in Gibbs sampling
sigma”2 in Gibbs sampling

posterior density function of b

parameter (m=22,mm=2000,n=2000)
real*8 y(m,mm),z(m,mm),b(mm) ,mu(mm) ,sig(mm)

real*8 x, fb, sum, gamma,dlgams
real*8 sd,ss,a,c,al,bl,d,s,logal

external dgamma,dlgams

a=6.0
c=4.0

d=0.075

al=m*a+c
call dlgams(al,logal,s)

do 10 k=1,mm

read
read
read
read
read
read
read

*, (y(i,k), i=1,7)

, (y(i,k), i=8,14)
, (y(i,k), i=15,22)
, (z(i,k), i=1,7)

, (z(i,k), i=8,14)
, (z(i,k), i=15,22)
, b(k),mu(k),sig(k)

continue

do 20 i=1,n
x=20+(i-1)*.15

fb=0.

0

do 30 k=1,mm
sum=0.0
do 40 j=1,m

sum=sum+y (j,k)

continue
bl=d+sum
ss=alxlog(bl)+(al-1.0)*dlog(x)-bl*x-logal
fb=fb+dexp(ss)

continue

fb=fb/mm

print ’(2£20.10)°,x,fb

! read in the Gibbs sampler
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20 continue

end

C.2.5 Posterior density of u

Following is the program of calculating the posterior density function of p.

C this is to calculate posterior density of mu

C m --- the number of centers,

C mm --- the sample size in Gibbs Sampling

C y(i,j) --- $j$th observation of lambda_il in Gibbs sampling
C z(i,j) --- $j$th observation of v_i in Gibbs sampling

C sig(j) --- $j$th observation of sigma™2 in Gibbs sampling

C fmu --- posterior density function of mu

parameter (m=22,mm=2000)

real*8 y(m,mm),z(m,mm),b(mm) ,mu(mm) ,sig(mm)
real*8 fmu,aveg

real*8 sd,x,ss

do 10 k=1,mm ! read in the Gibbs sampler
read *, (y(i,k), i=1,7)

read *, (y(i,k), i=8,14)
read *, (y(i,k), i=15,22)
read *, (z(i,k), i=1,7)
read *, (z(i,k), i=8,14)
read *, (z(i,k), i=15,22)
read *, b(k),mu(k),sig(k)

10 continue

do 50 i=1,1500
x=-1.5+1%.0015
fmu=0.0
do 60 k=1,mm
aveg=0.0
do 70 j=1,m
aveg=aveg+z(j,k)
70 continue
aveg=aveg/(mt+sig(k))
sd = sig(k)/(sig(k)+m)
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ss = -0.5*%(x-aveg)*(x-aveg)/sd
fmu=fmu+dexp(ss)/sqrt(sd)
continue
fmu=fmu/(sqrt (2*3.141596) *mm)
print ’(2f15.6)° ,x,fmu
continue

end

C.2.6 Posterior density of o

Following is the program of calculating the posterior density function of o2.

QOO Q00

10

this is to calculate posterior density of sigma”2

n --- number of points at which density function is calculated
m --- the number of centers,

mm --- the sample size in Gibbs Sampling

y(i,j) --- j-th observation of lambda_il in Gibbs sampling
z(i,j) --- j-th observation of v_i in Gibbs sampling

sig(j) --- j-th observation of sigma”2 in Gibbs sampling

fsig --- posterior density function ofsigma”2

parameter (m=22,mm=2000,n=2000)

real*8 y(m,mm),z(m,mm),b(mm) ,mu(mm) ,sig(mm)
real*8 fsig,mean,dgamma,s

real*8 w,x,wl,u,sl,dlgams, logal

external dgamma,dlgams

u=3.0 ! parameters in prior of sigma”2
w=.32

call dlgams(u+.5%m,logal,s1) ! calculate log-gamma(u+.5%m)

do 10 k=1,mm ! read in the Gibbs sampler
read *, (y(i,k), i=1,7)

read *, (y(i,k), i=8,14)
read *, (y(i,k), i=15,22)
read *, (z(i,k), i=1,7)
read *, (z(i,k), i=8,14)
read *, (z(i,k), i=15,22)
read *, b(k),mu(k),sig(k)

continue



70

60

50

143

do 50 i=1,n
x=0.001+(i-1)*.001
£sig=0.0
do 60 k=1,mm
mean=0.0
do 70 j=1,m
mean=mean+(z(j,k)-mu(k))**2
continue
wl=mean*0.5+w
s = (u+0.5%m)*dlog(wl)-wil/x -logal-(u+.5*m+1)*dlog(x)
fsig=fsig+dexp(s)
continue
fsig=fsig/mm
print ’(2£20.8)’ ,x,fsig
continue

end

C.2.7 Predictive Survival Functions

Following is the program of calculating the predictive survival functions on

each therapy at every center.

QOO0 00

this is the program of calculating the predictive survival functions
m --- the number of centers

mm --- the sample size in Gibbs Sampling

y(i,j) --- j-th observation of lambda_il in Gibbs sampling
z(i,j) --- j-th observation of v_i in Gibbs sampling

sig(j) --- j-th observation of sigma”2 in Gibbs sampling

s1(i) --- predictive survival function on therapy 1 at center i
s2(1) --- predictive survival function on therapy 2 at center i

parameter (m=22,mm=2000)
real*8 y(m,mm),z(m,mm),b(mm) ,mu(mm) ,sig(mm)
real*8 x, si1(m),s2(m)

do 10 k=1,mm ! read in the Gibbs sampler
read *, (y(i,k), i=1,7)
read *, (y(i,k), i=8,14)
read *, (y(i,k), i=15,22)
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, (z(i,k), i=1,7)

, (z(i,k), i=8,14)
, (z(i,k), i=15,22)
, b(k),mu(k),sig(k)

read *
read *
read *
read *
10 continue

do 20 j=0,720
x=]j*0.1
do 30 k=1,m
s1(k)=0.0
s2(k)=0.0
do 15 i=1,mm
s1(k)=s1(k)+dexp(-x*y(k,1i))
s52(k)=82(k)+dexp(-x*y(k,i)*dexp(z(k,1)))
15 continue
81(k)=s1(k)/mm
82(k)=s2(k) /mm
30 continue
print ’(8£9.4)°, x,(s1(k),k=1,7)
print ’(8£9.4)°, (s1(k),k=8,15)
print ’(7£9.4)°, (s1(k),k=16,m)
print ’(8£f9.4)’, (s2(k),k=1,8)
print ’(8£9.4)°, (s2(k),k=9,16)
print ’(6£9.4)°, (s2(k),k=17,m)
20 continue

end
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