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Abstract

The increasing dimension of data sets and resulting parameter spaces in modern statis-

tical models raise demands for new methods of statistical computation for scalability

and efficiency. Model space exploration, in particular, is an increasingly important

and challenging area. This dissertation focuses on graphical and regression model

space exploration arising in statistical models for high-dimensional data.

In contrast to the traditional graphical model space exploration algorithms, which

focus on exploring of the graphical model of all variables, this dissertation develops

and evaluates an innovative concept: local graphical model search. Local graphical

model search algorithms apply to problems where we are interested in a single targeted

gene, Y , among thousands of genes in the gene expression data, for example, and wish

to understand the graphical structure of Y and its neighborhood. Usual (global)

graphical model search methods will not be efficient and precise in such problems. To

implement local graphical model search, this dissertation employs stochastic search

algorithms subject to restrictions on the model space as well as develops a novel

Metropolis-Hasting method referred to as targeted Metropolis-Hastings (TMH). TMH

is empirically compared with the usual Metropolis-Hasting (UMH) algorithm in terms

of local convergence and the convergence of the stationary “local edge” inclusion

distributions. The performances of the methods developed herein are tested with

simulation studies and high-dimensional cardiovascular genomics data.

Variable selection in generalized linear models with many candidate covariates,

is a very challenging problem and widely developed in many applications. Because

current stochastic regression model search algorithms rely on conjugacy, they are not

appropriate for generalized linear models without use of approximation methods for
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the marginal likelihood. This dissertation studies two possible marginal likelihood

approximation methods: variational Bayes and Laplace approximation. These meth-

ods are compared in simulation studies and then applied to the problem of predicting

conception using data on timing of intercourse in the menstrual cycle.

The final topic of this dissertation concerns large-scale modeling of high-dimensional

data in a problem of forecasting click events with content match data in computa-

tional advertising. This challenging problem of modeling and computation generally

arises in internet advertising, and the study discussed in this dissertation is part of

a collaboration with Yahoo! Research. In models that reflect the hierarchy of the

high-dimensional data structure, Kalman filtering and Expectation-Maximization al-

gorithms aid in providing scalability without losing much precision in generating

relevant, applied computational approaches. The studies using both simulated and

real “content match” data sets demonstrate the feasibility, utility and efficacy of the

developed approach.
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Chapter 1

Introduction

Scientific data collected by scientists and researchers is increasingly high-dimensional and

highly structured. From gene expression data in genomics and bioinformatics to Internet

advertising observational studies, the necessary statistical analyses involve both method-

ological and computational challenges. These challenges include requirements of not only in-

ference and forecasting precision, but also scalability and computational efficiency. Bayesian

analysis is ideal in complex and hierarchical modeling for high dimensional data. The devel-

opment of Monte Carlo methods, especially Markov chain Monte Carlo (MCMC), provide

extremely important computational advances in the exploration of complex posterior distri-

butions for high-dimensional statistical models. Other computational advances, including

parallel and cluster computing, have also given statisticians and computer scientists freedom

to apply stochastic simulation methods as well as advanced search algorithms to implement

increasingly realistic statistical models.

Due to the challenges from high-dimensional statistical models, model space exploration

becomes an important area in statistical analysis. In many practical problems, there are

usually more than one model under consideration for the observed data. Sometimes, the

high dimension of the problem results in very large model space. The Bayesian approach

to model space exploration proceeds by assigning prior probabilities to all models under

consideration, and calculates the posterior probabilities of the models conditional on the

data. The set of posterior probabilities is then used as a criteria in model selection and

search. This dissertation addresses a number of computational problems in model space

exploration. Two statistical modeling areas are discussed: graphical models and regression

models.

Graphical models, with their origin in statistical physics (Gibbs, 1902), genetics (Wright,
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1921, 1923, 1934), economics and social sciences (Wold, 1954; Blalock, 1971), and several

other scientific areas, provide useful graphical and visual representations of the conditional

independence relationships among a set of variables. The core idea of graphical models

relies on the conditional independence of random variables (Dawid, 1979, 1980; Dawid and

Lauritzen, 1993) and the Markov property (Dawid and Lauritzen, 1993; Lauritzen, 1996);

hence, a factorization of the full joint distribution of a set of variables corresponds to a

decomposition of a graph, with a 1-1 mapping of nodes to the variables. Chapter 2 gives

a review of the basic concepts of graphical models and approaches to Bayesian undirected

graphical model search and selection, including the use of MCMC sampling methods and

parallel computing for parallelized stochastic model search (Hans, 2005; Hans et al., 2007;

Jones et al., 2005).

Chapter 3 and 4 introduce and develop new concepts, methods, and computational

strategies for a new approach called “local graphical model search.” The core idea of local

graphical model search is, when interest lies in predicting and evaluating a relatively small

subset of a very large number of original variables, developing full multivariate analysis of all

variables is necessary but raises challenging questions of both statistical and computational

efficiencies. Chapter 3 addresses this general problem of properly understanding “local

graphical model structure” in the context of needing to explore the “global model” due to

uncertainty about which variables live in the “local neighborhood” of interest. Specifically,

Chapter 3 discusses the simple idea of exploring graphs that include only edges incident

to the target variable, or connecting two variables living in the “local neighborhood.” As

a further development, Chapter 4 develops innovations including a innovative MCMC ap-

proach - referred to as “Targeted Metropolis-Hasting” (TMH) methodology. This is dis-

cussed theoretically in terms of its properties and convergence rates compared with usual

Metropolis-Hastings methods in graphical model search, empirically, and practically. In

addition to simulation studies in both chapters, the methods are applied to local graphical

modeling studies in cardiovascular genomics, in particular, a study of identifying statistical
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association structure among genes related to atherosclerotic disease risk (Seo et al., 2007).

Compared to graphical models, regression models are currently more widely used in

many scientific fields. In regression modeling with high-dimensional covariates, variable

selection, a special case of model selection, is a key issue (George, 2000; Miller, 2002). In

the context of linear models, plenty of different approaches has been proposed, applied, and

discussed, such as Zellner (1986), George and McCulloch (1993), George and McCulloch

(1997), Clyde and George (2004), and Hans et al. (2007). A more generalized class of linear

models, generalized linear models (GLM) (McCullagh and Nelder, 1989), has also recently

involved model uncertainty and variable selection problems, such as Raftery (1996), Chen

et al. (1999), Dellaportas and Forster (1999), Ntzoufras et al. (2000), and Hans et al. (2007).

Developments in Chapter 5 are motivated by data drawn from the European Study of Daily

Fecundability (ESDF), where the focus is on analyzing the relationship between intercourse

timing and fecundability (Dunson et al., 1999; Wilcox et al., 2000; Dunson et al., 2002). The

problem of many potential covariates requires some form of variable selection model search.

Stochastic model search algorithms (Hans, 2005; Hans et al., 2007), even when running in

parallel, are improved by efficient methods of computing marginal likelihoods for each can-

didate model. In generalized linear models, some form of marginal likelihood approximation

is therefore needed. Chapter 5 compares variational Bayes methods (Jaakkola and Jordan,

2000) with Laplace approximations (DiCiccio et al., 1997; Hans, 2005) for approximating

marginal likelihoods in logistic regression models. Laplace approximations are often found

to be surprisingly better than variational Bayes methods, especially in view of a well-known

fact that variational Bayes methods tend to underestimate posterior variances (Wang and

Titterington, 2005; Consonni and Marin, 2007). This comparison is illustrated in simulation

studies and finally, in the application to the problem of predicting conception using data

on timing of intercourse in the menstrual cycle.

Chapter 6 concerns an applied research study with goals and challenges related to those

of Chapter 5. Specifically, Chapter 6 discusses inference and forecasting problems in multi-
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level hierarchical models, with a focus on logistic regression models with random effects

(Lindley, 1971, 1972; Lindley and Smith, 1972; Laird and Ware, 1982; Gelman and Hill,

2007) where the data set is massive and the set of random effects parameters is high-

dimensional. This research is motivated by the problem referred to as “content match” in

Internet advertising (Agarwal et al., 2007), where millions of observations are generated

every month. The goal is to rank advertisements in terms of relevance when a user visits a

publisher web page. I assume historical click-feedback is a proxy of relevance and develop

regression models to estimate click-through rates when an advertisement is shown on a web-

page at a particular position. Chapter 6 develops approaches that use the information from

the page and advertisement taxonomies to build generalized, multi-level variance component

models. Due to the massive and continuously increasing data sets involved, traditional

statistical inference approaches such as Pinheiro and Bates (2000), Breslow and Clayton

(1993), and Rodriguez and Goldman (2001), are not applicable as the required computations

(e.g. matrix inversions) do not scale. I use creative approximations and Kalman filtering

methods to reduce computations to feasible implementations. Studies using both simulated

and real Yahoo! data sets demonstrate the feasibility, utility, and efficacy of the approaches

and methods developed in Chapter 6.

In summary, this dissertation describes and discusses approaches to model selection, in-

ference, and forecasting problems with high-dimensional and massive data sets. Extensions

and future potential research directions are presented in Chapter 7.
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Chapter 2

Gaussian Graphical Models

Graphical models provide graphical and visual representations of the conditional indepen-

dence properties of a vector of random variables under a specified joint distribution. When

the dimension of the vector is large, graphical models can provide useful insights via the

break down of the high-dimensional joint distribution into components related to various

low-dimensional joint distributions of subsets of the variables. As background, this chapter

introduces the basic concepts of graphical modeling and Bayesian graphical model search

and selection. This is followed by discussion of graphical model search algorithms for high-

dimensional data, including approaches using shotgun stochastic search algorithms (SSS)

as well as Markov chain Monte Carlo (MCMC) methods.

2.1 Basic Concepts and Notations of Graphical Mod-

els

A graphical model of a probability distribution provides a graphical representation of the

implied conditional independencies (Whittaker, 1990; Lauritzen, 1996; Jones et al., 2005;

Carvalho, 2006). To begin, some graph theory notations are defined in the following list.

• Vertex : A vertex in a graphical model, also known as a node , corresponds to a random

variable (1-1 mapping) under a joint distribution of a vector of random variables. The

set of vertices is denoted by V .

• Edge : An element of V × V .

• Graph : A graph G consists of a set of vertices (V ) and a set of edges (E), and each
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edge in set E joins two vertices in V . As a result, G can be denoted as G = (V,E).

|V | is referred to as the size of G.

• Path : A sequence of vertices, where each pair of consecutive vertices are connected

by an edge.

• Subgraph : A graph G′ = (V ′, E′) is a subgraph of G = (V, E), which is denoted as

G′ ⊆ G, if V ′ ⊆ V and E′ ⊆ E.

• Directed/undirected edge : An edge joining vertices a and b is called an undirected

edge if (a, b) ∈ E as well as (b, a) ∈ E, and an arrow pointing from a to b is called a

directed edge if (a, b) ∈ E but (b, a) /∈ E.

• Directed/undirected graph : A graph G is called an undirected graph if all of the edges

in E are undirected, and directed graph if each edge is directed.

• Parent/child : For a directed edge (a, b), a is said to be a parent of b, and b a child of

a. The set of parents of a is denoted as pa(a), and the set of children of a is denoted

as ch(a).

• Neighbor : Two vertices a and b are adjacent or neighbors, if undirected edge (a, b) ∈
E. The set of a’s neighbors in G is denoted as ne(a).

• Complete graph : A graph (subgraph) is complete if every pair of vertices is connected

by a directed or undirected edge.

• Clique : A complete subgraph with maximal size is called a clique .
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2.2 Undirected Graphical Models

2.2.1 Decomposition of a Graph

From now on G is assumed to be an undirected graph. For any disjoint subgraphs A, B,

and C, if C is complete, A ∪ B ∪ C = G, and any path from a vertex in A to a vertex

in B goes through C, then C is a separator of A and B. (A, B,C) form a decomposition

of G. If neither A nor B is empty, the decomposition is proper. Iteratively, by proper

decomposition and always choosing separators with minimal sizes, one can arrive at a se-

quence of subgraphs that cannot be further decomposed. Each subgraph in the sequence

is a prime component of G. If all the prime components of a graph G are complete, G is a

decomposable graph. Otherwise G is a non-decomposable graph. As an example, Figure 2.1

shows the decomposition process of a non-decomposable graph (Figure 2.1 (a)). The graph

is non-decomposable because one prime component {4, 6, 7, 8} is not complete. Two middle

steps of the decomposition are shown in Figure 2.1 (b) and (c), and graph (d) contains all

the prime components when the decomposition is finished. The graph is decomposed into

four cliques and one non-complete prime component.

Given all the prime components P1, P2, ..., Pk of G, if for any i = 2, ..., k, there exists

a j < i such that the separator Si = Pi ∩ (∪l<iPl) ⊂ Pj , then (P1, S2, P2, ..., Sk, Pk) is

a perfect ordering which represents the graph G. In Figure 2.1, a perfect ordering for

the decomposition of this graph is: {P1, S2, P2, S3, P3, S4, P4, S5, P5}, where P1 = {1, 2, 3},
S2 = {2, 3}, P2 = {2, 3, 4}, S3 = {4}, P3 = {4, 9}, S4 = {3, 4}, P4 = {3, 4, 5, 6}, S5 = {4, 6},
and P5 = {4, 6, 7, 8}.

Now consider p scalar random variables in the vector Y = (y1, ..., yp)′ with a specified

joint distribution. When Y is associated with a graph G, the decomposition of G results

in a mathematical factorization of the full joint distribution of (y1, ..., yp)′. Before showing

this, we first introduce two definitions: The conditional independence of random variables

(Dawid, 1979, 1980; Dawid and Lauritzen, 1993) and the Markov property (Dawid and
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(a) (b)

(c) (d)

Figure 2.1: The decomposition of a non-decomposable graph.
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Lauritzen, 1993; Lauritzen, 1996).

Definition 2.1. (Dawid and Lauritzen, 1993) If X, Y, Z are random variables on a proba-

bility space (Ω, F , P ), and if for any measurable set A in the sample space of X, there exists

a version of the conditional probability P (X ∈ A|Y, Z) which is a function of Z alone, then

X is conditionally independent of Y given Z under P , and can be written as X ⊥⊥ Y |Z.

Consider a subset of vertices in a graph G, which is denoted as S. The set of random

variables in vector Y that corresponds to vertices in S is denoted as YS . The Markov

property on undirected graphs is defined as:

Definition 2.2. (Dawid and Lauritzen, 1993; Lauritzen, 1996) Markov Property on undi-

rected graphs: A distribution P on V is called Markov over G = (E, V ) if for any triple

(A,B, S) of disjoint subsets of V such that S separates A from B in G, YA ⊥⊥ YB|YS.

For a distribution P with the Markov property associated with a graph G, we can

decompose G into a perfect ordering (P1, S2, P2, ..., Sk, Pk) as described. Then, iteratively

(Hammersley and Clifford, 1968),

p(Y|G) =

∏
Pi∈P p(YPi |G)∏
Si∈S p(YSi |G)

. (2.1)

As a factorization of the full joint distribution of Y = (y1, ..., yp)′, equation (2.1) plays

an important role in graphical models. For example, in the Gaussian case, instead of

requiring the huge number of parameters implied by a high-dimensional inverse Wishart

prior on the covariance of Y , we are now able to decrease the number of parameters by

using sets of lower-dimensional inverse Wishart priors on the variance matrices of each of

the prime components and separators, based on hyper-inverse Wishart distributions (Dawid

and Lauritzen, 1993).
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2.2.2 Undirected Gaussian Graphical Model Selection

Bayesian model comparison and selection involves computing the marginal posterior proba-

bilities of the models given the observed data. For convenience, we call the models that have

the highest posterior probabilities the “best” or “top” models, and use the term “score”

to represent values that are proportional to the posterior probabilities after taking an ex-

ponential transformation. In the case when each model corresponds to a graph G, we are

interested in posterior probabilities

p(G|Y1:n) ∝ p(Y1:n|G)p(G), (2.2)

where Y1:n is p dimensional observed data with sample size equal to n, Y1:n = {y1, ...yn},
with yi a p-dimensional observation.

From now on we take G to be decomposable. We see from equation (2.2) that, we need

to specify the marginal likelihood p(Y1:n|G) and the prior over the graph G respectively.

Here, assume data Y1:n are random samples from a multivariate Gaussian distribution with

mean µ and variance matrix Σ, i.e., (Y1:n|µ,Σ) ∼ N(µ,Σ). Furthermore, without loss of

generality, let µ = 0. Then,

p(Y1:n|G) =
∫

ΣG|G
p(Y1:n|ΣG)p(ΣG|G)dΣG. (2.3)

Following equation (2.1), p(Y1:n|ΣG) = p(Y1:n|ΣG, G) has the same Markov property and

factorizes as

p(Y1:n|ΣG) =

∏
Pi∈P p(Y1:n,Pi |ΣPi)∏
Si∈S p(Y1:n,Si |ΣSi)

, (2.4)

where Y1:n,Pi (or Y1:n,Si) is a submatrix of the sample matrix Y1:n with the same n rows,

and with column j of Y1:n in Y1:n,Pi (Y1:n,Si) if and only if j ∈ Pi (Si). Also, in equation

(2.4), ΣPi (or ΣSi) is the component-marginal covariance matrix of Y1:n,Pi (or Y1:n,Si).

Wermuth (1976) showed that the precision matrix Ω = Σ−1 has the elements Ωij =

Ωji = 0 if and only if (i, j) /∈ E(G). To specify the prior of the covariance matrix ΣG
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associated with G, Dawid and Lauritzen (1993) introduced a family of Markov distributions

for decomposable graphs, which are called the hyper-inverse Wishart (HIW) priors, denoted

by HIW (G, δ,Φ). Here, δ is the positive degree-of-freedom parameter and Φ is the positive

definite location matrix. As in equation (2.1) and (2.4), the density of the HIW distribution

HIW (G, δ,Φ) also decomposes as

p(ΣG|G) =

∏
Pi∈P p(ΣPi |G)∏
Si∈S p(ΣSi |G)

, (2.5)

where ΣPi has an inverse-Wishart prior IW (δ,ΦPi) with the form (Giudici, 1996)

p(ΣPi |G) =
|ΦPi

2 |
�

δ+|Pi|−1

2

�

Γ|Pi|
(

δ+|Pi|−1
2

) |ΣPi |−
δ+2|Pi|

2 exp{−1
2
tr(ΦPiΣ

−1
Pi

)}, (2.6)

and where Γk(a) is the multivariate gamma function

Γk(a) = π
k(k−1)

4

k−1∏

i=0

Γ
(

a− i

2

)
. (2.7)

Also, each p(ΣSi |G) has the same form as equation (2.6) with Si substituting Pi.

Since G is decomposable, all the prime components in G are complete. The decom-

posability guarantees the fact that, while G determines which elements of Σ appear in

the density of Y1:n through the component densities in equation (2.5), those entries of Σ

that do appear (e.g. entries in ΣPi for some i) are only constrained to form full-rank low-

dimensional multivariate Gaussian distributions on the clique level. Grone et al. (1984)

showed that the other elements in Σ are uniquely determined as functions of these free

elements.

Since the hyper-inverse Wishart prior for Σ – HIW (G, δ,Φ) is conjugate, the posterior is

HIW (G, δ∗,Φ∗), where δ∗ = δ +n and Φ∗ = Φ+
n∑

i=1
yiy

′
i. Further, the marginal likelihood
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of Y1:n given the graph can be written as a function of the inverse Wishart normalizing

constants

p(Y1:n|G) = (2π)−np/2 h(G, δ,Φ)
h(G, δ∗,Φ∗)

, (2.8)

where

h(G, δ,Φ) =

∏
Pi∈P |

ΦPi
2 |

�
δ+|Pi|−1

2

�
Γ|Pi|

(
δ+|Pi|−1

2

)−1

∏
Si∈S |

ΦSi
2 |

�
δ+|Si|−1

2

�
Γ|Si|

(
δ+|Si|−1

2

)−1
. (2.9)

For the choice of Φ, Jones et al. (2005) set Φ = τI, where they also discussed the choices

of τ and δ. In subsequent examples, we normally follow their settings and instructions for

Φ and δ.

When G is non-decomposable, the entries of Σ in any non-complete prime component

Pi will have local constraints because of the missing edges. To solve that, Roverato (2002)

generalized the inverse-Wishart prior on the cliques to define a suitable density for the non-

complete prime components. Although this generalized HIW prior is still conjugate, the

non-complete prime components that come into the product in the form of h(G, δ,Φ) and

h(G, δ∗,Φ∗) do not have closed forms. Atay-Kayis and Massam (2005); Roverato (2002);

Dellaportas et al. (2003) proposed different Monte Carlo methods for estimating the inverse

Wishart normalizing constants in equation (2.8). Jones et al. (2005) discussed the choices

of these methods, and adopted the method presented by Atay-Kayis and Massam (2005) to

form their unrestricted (not restricted to decomposable) graphical model search.

The prior of the graph G is usually set to control the sparsity of the graph, where “spar-

sity” means the number of edges in the graph. A uniform prior over all the decomposable

graphs, where each graph in the model space has the same prior probability, leads to the

“medium” number of edges a priori to be around p(p − 1)/4 (Jones et al., 2005). For a

very high-dimensional data, this uniform prior may be not useful because the inclusion of

the spurious edges is not penalized enough. Wong et al. (2003) developed a prior where

the accumulated prior probability for all the graphs with the same number of edges is the
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same. In this dissertation I use the same prior following Jones et al. (2005), which is called

a Bernoulli prior, having the form as

p(G) = β|E|(1− β)(
p
2)−|E|. (2.10)

For each edge in a decomposable graph, the prior probability for this edge to be included in

the graph is around β. If it is not restricted to decomposable graphs, the prior probability

is exactly β. It is therefore easy for people to set up a prior to reflect their prior knowledge

of the sparsity of the graph, by choosing a proper value of β. Since the choice of β usually

requires rationale, Chapter 7 discusses an alternative prior with more freedom, where each

edge between any pair of nodes i and j in G can have its own prior inclusion probability

βij , with a hyper prior of βij .

2.3 Graphical Model Search Algorithms

When the graphical model of the observed data (Y1:n) is unknown (which is usually the

case), and the graphical space is large (e.g., if the dimension of Y1:n is 1000, then there

are 2(1000
2 ) possible models in the undirected graphical model space), an efficient search

algorithm is required to search for graphs in high probability regions of this huge space. A

number of approaches have been proposed for both undirected and directed graphical models

(Castelo and Roverato, 2006; Dobra and West, 2004). In this and subsequent chapters

we focus on MCMC algorithms (Madigan and York, 1995; Dellaportas and Forster, 1999;

Giudici and Castelo, 2003; Armstrong et al., 2005) and shotgun stochastic search algorithms

(SSS) (Jones et al., 2005; Hans, 2005; Hans et al., 2007) for undirected graphical models.

A typical MCMC method is the add-delete Metropolis-Hastings sampler (Metropolis

et al., 1953; Hastings, 1970), where for each iteration the proposal randomly decides to add

or delete an edge first, and then randomly samples one proper edge to be added to or deleted

from the current graph. As an algorithm which aims to sample the graphs in the model

13



space, MCMC is usually not efficient enough in “large p” problems. Hans (2005) and Hans

et al. (2007) proposed shotgun stochastic search algorithm (SSS) as an alternative way to

search for top regressors in both Gaussian and generalized linear regression models, and

Jones et al. (2005) applied the same algorithm to graphical model search. This algorithm

is described as follows:

Step 1: Start from a graph G.

Step 2: Running in parallel, visit all the neighbor graphs of G (graphs that differ by

one edge), compute their posterior probabilities given the observed data Y1:n, and record

them if they are in the top K model list among all graphs so far visited.

Step 3: Randomly select one new graph to update the current graph G from all the

neighbor graphs of G. The probability of choosing one specific model G′ is proportional to

p(G′|Y1:n)α, where α is an annealing parameter.

Step 4: Go back to Step 2 and iterate.

Different from the Metropolis-Hastings (MH) sampler, SSS is not an MCMC sampling

method. While the MH sampler aims to sample the distribution over the graphical model

space, SSS aims to search for graphs in high probability regions of the model space. At

each iteration, SSS visits all the neighbors of the current graph, and record the ones with

high posterior probabilities. In contrast, the Metropolis-Hastings sampler proposes and

visits only 1 graph each iteration, and randomly decides to accept or reject the move by

the acceptance ratio. The idea of SSS to visit far more graphs per iteration than MH,

brings better efficiency in finding “top” graphs but also computational burdens. However,

this computational problem is solved by the inherent parallelizability of SSS. By running

in parallel, SSS can visit different many graphs per iterate and swiftly identify regions of

models with high posterior probabilities. Jones et al. (2005) showed that, to find the same

top graph, SSS typically substantially dominates MCMC both in terms of numbers of graphs

visited and running time.

14



Chapter 3

Local Graphical Model Search

The literature in the graphical model field up to now usually focuses on the graphical

structures of all the nodes (variables) included in the data, which I refer to as global graphical

models in this dissertation. For example, Jones et al. (2005) explored search over global

undirected Gaussian graphical models using MCMC and SSS methods. However, as opposed

to the global search approaches developed in literature, we are now interested in learning the

local graphical structure around a specific target variable of interest. I refer to this context

as local graphical model search. This focuses on the graphical model structure of one target

variable (Y ) and its neighborhood, with less emphasis on the conditional independence

structure elsewhere in the graph. Some questions of interest are then: which variables are

neighbors of variable Y in the graphical model; and, if we call the graphical model structure

of Y and ne(Y ) a local graphical model, what are the “top” local graphical models found in

the search?

Here I list several definitions of concepts that are used throughout this dissertation.

• Global graphical model: A graphical model that contains all the variables in the data.

• Local edge: An edge that is incident to the targeted variable Y , or connects two nodes

from ne(Y ).

• Non-local edge: An edge that is not a local edge.

• Local graphical model: The subgraph of a global graphical model, with {Y } ∪ ne(Y )

as the set of vertices, and the local edges.

The first section of this chapter illustrates the motivations to develop local graphical

model search approaches, and the differences from variable selection in regression models.
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Next, I explain the general ideas as well as some problematic issues. This is followed by

a simple local graphical model search approach based on shotgun stochastic search (Hans,

2005; Hans et al., 2007). Finally, I study application in analysis of a cardiovascular gene

expression data set.

A related set of ideas and approaches I refer to as ”Targeted Metropolis-Hasting” are

proposed and discussed in Chapter 4. Chapter 4 also includes several examples of real data

analyses using the novel Targeted Metropolis-Hastings method.

3.1 Motivations

3.1.1 The Problems with Global Graphical Model Search

There are many reasons for developing local graphical model search methods, as an alterna-

tive to directly using global graphical model search approaches. Generally speaking, global

graphical model search approaches are often unable to explore model uncertainty about

specific, local regions of interest to a sufficient extent. In many scientific problems, the data

may be very high-dimensional, but we are primarily interested in only a few variables and

others that might associate with them. In these cases, global graphical model search lacks

computational efficiency, because mostly the search algorithms add or delete edges that do

not interest us.

To be specific, assume X is the set of all the other variables except Y , XN is the

set of Y ’s neighbors, and X−N is the set of other variables, so data Y1:n = {Y,X} =

{Y, X,X−N}. Then

p(Y, X|G) = p(Y, XN |G)p(X−N |XN , G). (3.1)

Given the sparsity prior of G introduced in equation (2.10),

p(G|Y,X) ∝ p(Y,XN |G)p(X−N |XN , G)p(G). (3.2)
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In many scientific problems related to graphical models, while |X| is very large, |XN |
in Equation (3.1) is small because of the sparsity assumption of graphical models. In such

situations, the term p(X−N |XN , G) will dominate p(Y, XN |G) in both equation (3.1) and

(3.2). In equation (3.1), the domination can happen because |XN | is much smaller than

|X−N |. Example 3.1 illustrates a case where the marginal likelihood of a global graphical

model with only true local edges can be smaller than the marginal likelihood of a model

with only true non-local edges. Since the dimension of a local graph is often small in a

high-dimensional problem, the influence the local edges can have to the marginal likelihood

is also usually small. The non-local edges represented by term p(X−N |XN , G), play a

much more important role in the marginal likelihood of G.

Example 3.1. Assume Figure 3.1 (a) is the true graph for some simulated data, with

7-dimensional multivariate Gaussian distribution. For this data, there are two different

graphical models (b) and (c); (b) contains the true local edges {(Y, x1), (Y, x2), (x1, x2)},
with the rest of the graph null. (c) contains the true non-local edges, but without any local

edges. The global graphical model (b) may have a lower marginal likelihood than (c), because

p(X−N |XN , G) dominates equation (3.1).

Through equation (3.2), it can be seen that the sparsity prior of G also contributes

to the domination. In a very high-dimensional problem, although the marginal likelihood

already involves penalties on the number of edges in a graph, the sparsity prior of G is

usually desirable to further avoid the inclusion of spurious edges in the model. Since the

sparsity prior of G introduced in equation (3.2) penalizes the number of edges in the graph,

the “top” global graphs, found by global graphical model search, may tend to include many

significant non-local edges instead of some less significant local edges. Hence, those local

edges are omitted by global graphical model search.

To show that the global graphical model search methods may fail to find the “top” local

graphical models as discussed above, I give a simulation example.
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(a)

(b)

(c)

Figure 3.1: The graphs for Example 3.1. Graph (a) is the true graph. Even when

(b) contains the true local edges, the global graphical model (b) may have a lower

posterior probability than (c), because here (c) has the true non-local edges.
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(a) (b)

Figure 3.2: Global graphical model search results using a simulated data. Set graph

(a) to be a part of the “true” graph with 100 nodes, and (b) is a part of the highest

probability graph found by global graphical model search (SSS).

Example 3.2. Data with p = 100 variables and n = 100 samples are simulated based on a

known “true” graph. In Figure 3.2, graph (a) shows a part of the “true” graph. I set the

target variable Y to have weak correlation with two nodes “2” and “3” (Corr(Y, 2) = 0.10,

Corr(Y, 3) = 0.13). By setting the sparsity prior parameter β = 0.02, the global graphical

model search (SSS) is not able to identify those two edges in the “top” 50 graphs. In Figure

3.2, graph (b) shows a part of the graph with the highest posterior probability.

Example 3.2 shows that practically global graphical model search may fail to find local

edges because of the domination of the non-local parts of the graph. Another problem with

global graphical model search is that, after the search finishes, it is usually summarized by

reporting the “top” global graphical models found during the search. However, most of the

“top” global models may contain the same local graphical model, in the sense that both of

ne(Y ) and the local edges are the same. For example, in Example 3.2, in all the “top” 50

global graphical models, Y is disconnected with any node. It is then very difficult to assess
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the local model uncertainties from the “top” global models and their posterior probabilities.

3.1.2 Comparison with Regression Model Search

There are a lot of similarities between local graphical model search and regression model

search. For example, they both care about one target (response) variable Y , and they both

try to identify variables that are neighbors of Y or predict Y . However, there are key

differences, which motivate further studies into local graphical model search methods.

Let Gi be a local graphical model, with a set of neighbors of Y and the corresponding

local edges. Let Ri denote a regression model, with a set of covariates XRi
. For regression

model search

p(Ri|Y,X) ∝ p(Y,X|Ri)p(Ri) = p(Y |XRi , Ri)p(X|Ri)p(Ri). (3.3)

In regression models, people usually treat the design matrix X as given and assume

p(X|Ri) = p(X|Rj), where Ri and Rj are both regression models with different sets of

predictors of Y . Therefore,

p(Ri|Y, X) ∝ p(Y |XRi , Ri)p(Ri). (3.4)

The Bernoulli prior of Ri can be defined as

p(Ri) ∝ β|Ri|(1− β)p−1−|Ri|. (3.5)

In contrast, for the local graphical model search

p(Gi|Y,X) ∝ p(Y,X|Gi)p(Gi) = p(Y |XNi , Gi)p(X|Gi)p(Gi). (3.6)

Since X are now assumed to have a multivariate Gaussian distribution, and two different

local graphical models Gi and Gj contain different local edges, p(X|Gi) 6= p(X|Gj). There-

fore, the expression for p(Gi|Y,X) cannot be simplified as is in the regression model search.

Moreover, if we are also using the Bernoulli prior here,

p(Gi) ∝ β|E(Gi)|(1− β)p(p−1)/2−|E(Gi)|, (3.7)
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then the priors also introduce differences.

In summary, the regression models focus on predicting Y , while not showing any inner

structure of the joint distribution of the predictor variables connected to Y . In contrast,

local graphical model search not only finds Y ’s neighbors, but also cares about the local

graphical structure around Y , i.e., the interdependencies among the sets of neighbors of Y .

3.2 Some Problems

In this section I discuss some problematic issues with local graphical model search. I start

by defining the posterior probability of a local graphical model given the data. The natural

definition is

p(GL|Y1:n) =
∑

Gi⊇GL

p(Gi|Y1:n), (3.8)

where GL is one local graphical model, and Gi’s are all the global graphical models which

contain the same local graphical structure GL (denoted as Gi ⊇ GL).

This definition encounters problems when two different GL’s contain different numbers

of nodes. For example, if GL1 includes three nodes, (Y, x1, x2), and GL2 includes four nodes,

(Y, x1, x2, x3), then the number of Gi1’s (GL1 ⊆ Gi1) in the summation in equation (3.8)

will be different from that of Gi2’s (GL2 ⊆ Gi2). Since p(Gij |Y1:n)’s are comparable, and the

numbers of p(Gij |Y1:n) (j=1 or 2) which come to the summation are different, p(GL1|Y1:n)

and p(GL2|Y1:n) become incomparable.

It is not clear how to resolve this basic problem. Redefinition of p(GL|Y1:n) might be

a possible approach, but I prefer to sidestep the problem by doing the search in a global

graphical model framework, and then appropriately refocusing on local models. These

details will be explained shortly. Also, although such a definition of p(GL|Y1:n) will lead to

this comparability problem, it can be used in the convergence analysis of “Target Metropolis-

Hastings” methods, as introduced in Chapter 4.
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A naive view of the local model search problem would aim to add or delete local edges

to search for “top” local graphical models without reference to the non-local component of

the model. However, Example 3.3 shows that this does not work because there is no way

to know the local updates of p(G|Y1:n) after adding or deleting one local edge in the graph

without knowing the non-local edges.

Example 3.3. Suppose we are in the midst of the search (Figure 3.3), and the current

local graph consists of four nodes: Y , x1, x2 and x3. All the other non-local edges, such as

(x4, x7), are of unknown status. Now if the proposal is to connect x4 with Y , then there are

many situations to enumerate and consider to obtain the likelihood ratio p(X,Y |G′)
p(X,Y |G) . Figure

3.3 gives us two of those situations: (a) is one case in which x4 is actually not incident to

any of Y ’s neighbors, whereas (b) has x4 and x1 connected. The likelihood ratios for those

two situations are as follow:

If (x1, x4) ∈ E(G): p(X,Y |G′)
p(X,Y |G) = p(x4,Y )

p(x4)p(Y ) ,

and if (x1, x4) /∈ E(G): p(X,Y |G′)
p(X,Y |G) = p(x4,x1,y)p(x1)

p(x4,x1)p(x1,Y ) .

In Example 3.3, if it is unknown during the search whether (x1, x4) ∈ E(G), then the

likelihood ratio can not be computed if we wish to make a proposal to connect x4 to Y . In

fact, we need to know whether the edges (x4, x1), (x4, x2) and (x4, x3) exist, to compute

this likelihood ratio. However, if we wish to set up proposals about those edges, we need

more information of the neighborhood of x1, x2 and x3.

More generally, suppose in the current local graph, some variable v is proposed to con-

nect with the target variable Y during the search. Then, the likelihood ratio ρ = p(X,Y |G′)
p(X,Y |G)

relies on the edges between the neighbors of Y and v. If some or all of the edges between

those nodes are of unknown status, then we can not evaluate the ratio ρ. Therefore, it is

impossible to implement local graphical model search without any knowledge, assumption,

or search effort on the non-local parts of the graph.
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(a) (b)

Figure 3.3: Figure (a) is an example when variable x4 is proposed to connect Y at

some iteration during global graphical model search. Figure (b) contains the same

edges with (a) but x4 is incident to x1 in (b).

3.3 SSS in Local Graphical Model Search

Example 3.3 shows a basic fact: the appropriate local graphical model search requires

knowledge, assumptions or search efforts on the non-local parts of the graph. Assume that

we know a priori the true graph of X: we could then run SSS to add or delete the neighbors

of Y , while keeping the known edges unchanged. This is very similar to the SSS used in

regression models (Hans, 2005; Hans et al., 2007).

Example 3.1. (continued) I have shown the global graphical model search may have

problems in this example if we want to find the “top” local models. Now I assume that the

graph (b) in Figure 3.1 (which is the same as the graph (b) in Figure 3.4) has the true

graphical model of X. In this case, we can run SSS directly to search for the neighbors of

Y . We do not need to change any edges that are not incident at Y because we know them

beforehand. Figure 3.4 shows that there are now no longer any “domination” problems

illustrated in Section 3.1.
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(a) (b)

Figure 3.4: When using a fair Bernoulli prior or a sparse Bernoulli prior that only

penalizes the number of Y ’s neighbors, there is no “domination” problem now in this

example. If graph (a) has the true local graphical structure, and (b) does not, then

(a) has a higher posterior than (b) given the data with a large enough sample size.

However, it is not always realistic to assume that we know the true graph of X; the

dimension of X can be large, and in any case there is rarely a notion of a real “true” graph.

One suggestion (an idea developed in discussion with Dobra, A.) is to consider the simple

assumption that all the non-local edges are null during the search. Define a graph G′ to be

a “local neighbor” of G if G′ is one of the graphs attained by adding a local edge, deleting

an edge between two nodes in ne(Y ), or deleting all the edges incident to one node in ne(Y )

in G. The search algorithm using SSS to explore such graphs is as follows:

Step 1: Start from a null graph.

Step 2: Randomly select one new graph to update the current graph G from all the

local neighbors of G. The probability of choosing one specific model G′ is proportional to

p(G′|Y1:n)α, where α is an annealing parameter.

Step 3: Go back to Step 2 and iterate.

Recall that we defined local edges to be either edges incident to the target variable
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Y , or edges between the nodes in ne(Y ). In fact, the “local edges” could also be defined

differently. For example, if we are not only interested in the local graphical structure of

Y and its neighbors, but also curious about the neighbors of nodes in ne(Y ), then the

definition of the “local edges” could be extended to the edges that are incident to Y or

ne(Y ), or the edges that join the neighbors of nodes in ne(Y ). The details of this more

extensive local neighborhood idea is discussed further in section 7.1.1.

3.4 Cardiovascular Genomics Data Analysis

Seo et al. (2007) presented a case study of mice and human cardiovascular genomics, using

DNA microarray gene expression data sets. The study focused on atherosclerosis – a disease

that “hardens” arterial blood vessels and causes atheromatous plaques, and eventually

stenosis (narrowing) of the artery, and possibly plaque ruptures. The original data set had

22215 gene probsets and 211 samples, including 89 mice samples, and 122 human samples.

The mice experiments were well designed, with mice cross-classified by four risk factors: the

genetic factor related to ApoE (Apolipoprotein E), and factors age, gender and dietary fat

content (each at two levels). The 22215 genes probesets were first reduced to 7381 probesets

on the mice array that have homologues on the Affymetrix HU95av2 human array used in

Seo et al. (2004). Then these 7381 probesets are further reduced to 4287 probsets by

removing those showing little or no variation above noise levels in the mice data set.

Considering all levels of interactions, the mice samples were classified into 16 design

groups. For each group, (e.g., the “extreme disease” group with the ApoE knockout, older,

Western diet mice that have advanced atherosclerosis), they built a multivariate ANOVA

model, with coefficients subject to sparsity priors, as in Lucas et al. (2006). The evaluation of

genes showing high posterior probabilities on regression effects related to the design factors

enabled identification of atherosclerotic risk related genes. A weighted linear combination

of some of those genes (metagene) was then projected onto the corresponding human gene
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expression data to obtain the so-called “projected risk signature” on each human sample.

The list of 19 gene probsets that generate the risk signature is in Appendix A, by weight.

On the whole human gene expression data, Seo et al. (2007) also fitted a Bayesian latent

factor model (Carvalho et al., 2008) to obtain 13 estimated factors representing key aspects

of variation in expression patterns across the human data. I consider two analysis contexts.

First, a small data analysis with the target variable being the projected risk signature of

the “extreme disease” group across the human samples, and the 13 factors from BFRM as

the X variables. Second, a much larger problem in which the target variable is still the risk

signature, but now X represents all the 4287 gene probsets.

3.4.1 Projected risk signature and 13 factors from BFRM

In this subsection, the projected risk signature of the ”extreme disease” group is set as the

target variable Y , and the 13 factors by BFRM are set as X. I compare the SSS algorithm

in local graphical model search with SSS in regression model search. First, regression model

search is discussed. The data is assumed to have a multivariate normal distribution, and

the prior probability of each predictor being included in the model is 1/13, i.e., on average,

there is only one predictor a priori in the regression model. By running SSS for 5,000

iterations, I obtain the top 5 models listed in Table 3.1.

Although I use a very sparse prior, the resulting “top” models are still not that sparse.

To prove it is not over-fitting, I reran with prior variable inclusion probability of 0.001, the

top models still have 5 to 6 predictors. This shows that the projected risk signature is very

closely related to the factors.

I then ran the local graphical model search by SSS within the decomposable graphical

model space as described by Section 3.3, and using the assumption that all the non-local

edges are null. For comparability with the regression search, I also set the prior probability

of edge inclusion at 1/13. I also set δ = 2.0, τ = 1.0. Figures 3.5 to 3.7 display the “top”
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Rank Score Model

1 −144.44 1 2 3 4 7 9 13

2 −146.36 1 2 3 4 7 9 11 13

3 −147.53 1 2 3 4 5 7 9 13

4 −148.00 1 2 3 4 7 8 9 13

5 −148.55 1 2 3 4 6 7 9 13

Table 3.1: 13 factors data: The top 5 models selected by SSS in the regression

models.

3 local graphical models obtained by running for 2,000 iterations.

It is not surprising that the neighbors of Y selected in the “top” models in the local

graphical model search are almost the same as the predictors of Y chosen in the regression

models. However, as discussed in Section 3.1.2, the local graphical model search can find

the conditional independence structure of Y ’s neighbors/predictors, while the regression

models cannot do that.

Seo et al. (2007) mentioned and discovered that factors 3 and 4 appear to relate to

atherosclerotic risk, by investigating and identifying risk-related genes heavily loaded in the

factors, and by studying the variation of those factors across the samples. In contrast, in

my analysis, both the top regression models and local graphical models found indicate that

the risk signature is highly directly related to at least factors 1, 2, 3, 4, 9, and 13. I also

confirm the relevance of factors 3 and 4, while elaborating on potential interconnections via

the local graphs with highest posterior probabilities.

3.4.2 Projected risk signature and the human gene probsets

To test the performance of the SSS in local graphical model search for large data sets, I now

set X to be the human gene probsets (122 × 4287), while keeping Y as be the projected
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Figure 3.5: 13 factors data: The top 1 decomposable model of the local graphical

model search using SSS. The score is −3961.84.

Figure 3.6: 13 factors data: The top 2 decomposable model of the local graphical

model search using SSS. The score is −3962.34.
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Figure 3.7: 13 factors data: The top 3 decomposable model of the local graphical

model search using SSS. The score is −3962.36.

risk signature. Following Jones et al. (2005), I set the sparsity prior probability of edge

inclusion as 2/4287 = 4.67e− 4, i.e., a priori the expected number of edges in the graph is

close to 4288. I also set δ = 2.0, τ = 1.0.

By running local graphical model search by SSS for enough iterations, I noticed that

inevitably, the top models contain thousands of neighbor nodes of Y . This is far from

satisfactory, as the signature is generated by only 19 genes listed in Appendix A. However,

it is in fact not surprising: Once a variable is selected to be a neighbor of Y , and connected

to some other neighbors of Y which are strongly related to this variable, deleting it from

the neighborhood of Y may become very difficult. This is because doing so may also

involve deleting all the significant edges between this variable and the other neighbors of

Y . A graph with many significant edges between the neighbors of Y can have a very high

posterior probability, although many neighbors selected actually very weakly relate to Y .

As a result, it is natural to set up a constraint on the maximum number of neighbors Y

can have in the model to keep the local graph to a reasonable size. One possible constraint,
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which I use here, is constraining the maximum number of Y ’s neighbors to be 20, according

to the number of gene probesets that generates this risk signature (19 of them). By this

setting it is possible to learn more reasonable top local graphical models.

I ran SSS for 1 million iterations, and recorded the top 50 local models. All the top

models contain the same set of neighbors of Y , but with different graphical structure. Across

these 50 models, the neighbors of Y selected are listed in Appendix B. Note that only 7

of the 19 genes generating the target variable signature are selected in ne(Y ). For one,

tumor necrosis factor-alpha-dependent vascular adhesion molecule 1 (VCAM-1), the third

gene probset in the 19 genes list, is not in ne(Y ). Dansky et al. (2001) pointed out that

VCAM-1 plays a pivotal role in the initiation of atherosclerosis and adhesion of monocytes

to arterial endothelium. Seo et al. (2007) also noticed higher level VCAM-1 among old

mice with ApoE and those on the western diet. Here, although VCAM-1 does have a high

correlation with the risk signature and is involved in top models for the first hundreds of

iterations, it is then replaced by other gene probsets because they seem to have stronger

conditional association with Y in the context of strong associations with the other neighbors

of Y selected. This shows a key property of the local graphical model search: the target

variable is no longer the only factor in the model selection; the search considers the whole

graphical structure of the target variable and its neighbors. More biological insights are

discussed in Section 3.5.

Figures 3.8, 3.9 and 3.10 give the top 3 local graphical models found by SSS in 1 million

iterations. They all have the same set of neighbors of the projected risk signature, but with

some differences in local edges. Note that with such a high dimensional problem, any “top

model” must be properly recognized as local modes in the posterior over graphs.

To show the efficiency of the local graphical model search, I also tried global graphical

model search (SSS algorithm) for this data. Unfortunately, due to the high dimension of

the data, for each iteration of SSS, around 9 million graphs have to be evaluated in parallel,

which means for only 10 iterations it takes more than an hour to finish using a distributed,
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Figure 3.8: Human gene probsets data: The top 1 decomposable model of the local

graphical model search using SSS. The score is −752751.02. This model is found at

iteration 678444. The descriptions of variables are in Appendix B.

cluster analysis on 50 cpu cores. In contrast, local graphical model search using SSS takes

only 4 seconds to finish 10 iterations with 50 cpu cores.

I also implemented regression model search via SSS to identify top regression models

with predictors of Y . The average prior number of predictors in the model is set to be 20,

and SSS is run for 100,000 iterations. The 16 predictors included in the top 10 models are

listed in Appendix C, and Table 3.2 shows the top 10 models as well as the scores. It is

very interesting to see that 11 of the 16 predictors in Table 3.2 are included and mostly

highly ranked in the 19 genes list that generate the projected risk signature, and 10 of

them are in the 20 genes list that are selected as neighbors of the signature across the

top 50 local graphical models. Specifically, the 9 highest ranked genes except CD68 (6th

ranked) from the risk signature are included at least once in the top 10 models (osteopontin

and VCAM1 are included in all of the top models), while only osteopontin (ranked 1st),

CD53 glycoprotein (ranked 5th), HLA-DRB1 (ranked 8th) and HLA-DQB1 (ranked 9th)
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Rank Score Model

1 38.88 1 3 4 6 9 12

2 38.73 1 2 3 4 6 9 12

3 37.45 1 3 9 11 12

4 36.86 1 3 6 9 12

5 35.99 1 3 6 9 11 12

6 35.79 1 3 6 8 9 12

7 35.65 1 3 11 12 14

8 35.61 1 2 3 11 12 15

9 35.35 1 3 5 10 13

10 35.04 1 3 5 7 13 16

Table 3.2: Human gene probsets data: The top 10 models selected by SSS in the

regression models.
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Figure 3.9: Human gene probsets data: The top 2 decomposable model of the local

graphical model search using SSS. The score is −752753.61. This model is found at

iteration 678444. The descriptions of variables are in Appendix B.

are included in Y ’s neighbors in the top local graphical models. As I discussed before, due

to the high collinearity among the genes, all these selected neighbor genes may not predict

Y as well as the 2nd - 4th ranked genes (e.g. VCAM-1). However, those highly ranked genes

are not selected in the top local graphical models since they do not interact much with the

other neighbors of Y so as to contribute substantially to the scores of the local graphs. Also,

there are three genes identified that are included in both the top 10 regression models and

the top local graphical models but that are not among the 19 genes in the risk signature;

again, this arises due to collinearity among the genes. Although the risk signature is not

generated by those two genes, the high collinearity among the genes and the randomness

involved in the Gaussian model lead the two genes to predict Y and interact with the other

variables in ne(Y ) better than the genes that are not selected.
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Figure 3.10: Human gene probsets data: The top 3 decomposable model of the local

graphical model search using SSS. The score is −752753.78. This model is found at

iteration 812874. The descriptions of variables are in Appendix B.

3.5 Biological Discussion

I refer to the literature in cardiovascular genomics for biological insights related to the top

local graphical models found in Section 3.4.2. By SSS and assuming that all the non-local

edges are null, I have found 20 genes that are candidate neighbors of the projected risk

signature. Compared to regression modeling, the top local graphical models also give local

graphical structures of the neighbors and Y . In this section, I discuss several interesting

genes that are neighbors of Y across the set of 50 top graphs.

Osteopontin (minpontin in the mice genome), highest ranked in the gene list of the pro-

jected risk signature and also selected in ne(Y ) in the “top” 50 local graphical models, plays

a major role in cardiovascular diseases and particularly in atherosclerosis. Giachelli et al.

(1995) indicated that osteopontin, in both mice and human vascular diseases, contributes

to the mediating processes of cellular adhesion and migration, and via its integrin-type re-
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ceptors, contributes to vascular remodeling in plaque formation and development. Seo et al.

(2007) noticed significantly increased expression levels of osteopontin in aged mice groups

and Western diet mice groups separately, and more so for the group with both risk factors.

It is well known that osteopontin is closely associated with atherosclerosis.

Human leukocyte adhesion protein (LFA-1/Mac-1) is formed by the integrin beta chain

beta 2 (ITGB2, also known as CD18) combined with the alpha L/M chain. CD18 is a

subunit of intercellular adhesion molecule-1 (ICAM-1). Nageh et al. (1997) tested the role

of leukocyte and endothelial cell adhesion molecules (CAMs) in atherosclerosis in mice, and

found that pharmaceutical reduction of the expression or function of the CAMs such as

ICAM-1, P-selectin and CD18 may protect against atherosclerosis in mice. Kitagawa et al.

(2002) supports these findings, where their studies on ApoE-knockout mice suggested that

inhibition of ICAM-1 can delay the progression of atherosclerosis. A summarized discussion

of the role of ICAM-1 and VCAM-1 in atherosclerosis can be found in Ballantyne and

Entman (2002).

Human complement component 2 (C2) is an integral part of the classical pathway of

the complement system. The complement system is part of the larger immune system, and

it is a major way for the body to respond to infection. It is known that the components of

the complement system are associated with atherosclerosis. By studying patients with C2

deficiency in Sweden, Jönsson et al. (2005) found that hereditary deficiency of C2 is related

to frequent occurrence of invasive infection, atherosclerosis, and rheumatic disease.

Homo sapiens lysosomal acid lipase (LIPA lipase A, lysosomal acid, cholesterol esterase

(Wolman disease)), also known as LAL, has been known to be involved in catalyzing the hy-

drolysis of cholesteryl esters and triglycerides, and this activity is associated with atheroscle-

rosis. Zschenker et al. (2006) showed that a deficiency of LAL causes an accumulation of

lipids in the cells and pre-mature atherosclerosis. They also discussed the influence of over-

expressed LAL in atherosclerosis. Similarly, Seedorf et al. (1995) found that a novel variant

LAL is associated with Cholesterol ester storage disease (CESD), which is a disease related
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to atherosclerosis.

There are four major histocompatibility complex (MHC) Class II genes selected as neigh-

bors of Y in “top” local graphical models. The MHC plays a critical role in the immune

system, by controlling the immune response through recognition of “self” and “invader.”

HLA-DQB1 (major histocompatibility complex, class II, DQ beta 1), HLA-DRB1 (major

histocompatibility complex, class II, DR beta 1), and HLA-DMB (major histocompatibil-

ity complex, class II, DM beta), belong to HLA class II beta chain paralogues. Another

neighbor gene, HLA-DMA (major histocompatibility complex, class II, DM alpha), belongs

to HLA class II alpha chain paralogues. HLA-DMA and HLA-DMB belong to the same

class II molecule, where DMA is an alpha chain, and DMB is a beta chain, both anchored

in the membrane. This connection is also reflected by the top local graphical models:

HLA-DMA (labeled 7th in Appendix B) and HLA-DMB (labeled 11th) are connected and

form a clique with Y and LAPTM5 (lysosomal associated multispanning membrane protein

5). HLA-DRB1 alleles, especially DRB1*0404 allele, are believed to be implicated in the

development of endothelial dysfunction, which is associated with atherosclerosis by study-

ing patients with rheumatoid arthritis or severe aortoiliac occlusive disease (Gonzalez-Gay

et al., 2004; Mas et al., 2005).

Finally, human Ia-associated invariant gamma-chain gene (CD74) is a membrane pro-

tein that works as an MHC class II chaperone. Although it is not directly associated to

atherosclerosis, it belongs to MIF-induced monocyte adhesion, where MIF (macrophage

migration inhibitory factor (glycosylation-inhibiting factor)) is identified as an important

regulator of atherosclerosis with exceptional chemokine-like functions (Schober et al., 2008;

Bernhagen et al., 1997). The relationship of CD74 and atherosclerotic vascular disease was

also shown by Seo et al. (2007), where CD74 was selected in most highly significant gene

sets for ApoE. Age group (23 genes in total).
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3.6 Computational Aspects

The shotgun stochastic search algorithm for local graphical model search, introduced in this

chapter, has been implemented in parallel by C++ language with Message Passing Inter-

face (MPI). MPI contains message passing libraries that are widely used as a standard in

distributed memory, message passing, and parallel computing programs. The introduction

of MPI can be found in http://www-unix.mcs.anl.gov/mpi/ .

This code of local graphical model search by SSS can be downloaded from my home

page http://www.stat.duke.edu/∼lz9, and it can be successfully executed in the Duke Shared

Cluster Resource (DSCR), where some of the machines are provided by Computational

Science, Engineering and Medicine (CSEM) at Duke University. More information about the

DSCR can be found at http://www.csem.duke.edu/pmwiki/pmwiki.php/Dscr/HomePage.
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Chapter 4

Targeted Metropolis-Hastings Methods

In this chapter, I introduce Targeted Metropolis-Hastings methods (TMH) for local graph-

ical model search. TMH is based on the usual Metropolis-Hastings methods (UMH, intro-

duced in Section 2.3). The motivation for developing TMH is to accelerate the local model

sampling process when the global model space is enormous, while avoiding the assumption

that all the non-local edges are null. We begin this chapter by describing TMH. This is

followed by several simulation studies that compare TMH to UMH. In addition, theoreti-

cal explanations of performance are given. Finally, TMH and UMH are compared in local

graphical model search on several real data sets.

4.1 Introduction

Example 3.3 highlighted the fact that local graphical model search needs information about

the non-local parts of the graph. In Section 3.3 this issue is avoided using a simple method

that assumes that all the non-local edges are null before the search starts. To avoid making

this BIG assumption, we can recognize the need to appropriately focus on the non-local

edges during the search, but to somehow limit the time and effort spent in non-local regions.

The question is now how to do this.

Assume the graph is sparse and has 1000 nodes. During the standard UMH sampling

under the 50:50 edge inclusion versus deletion proposal, UMH proposes on average only one

local edge to add or delete for every 500 iterations. Hence, if we run UMH for 1 million

iterations, at best the chain can visit only 2000 local models. However, we have at least

hundreds of thousands local models under consideration in this example. Therefore, it is

natural to think about modifying UMH to have more proposal freedom: the probability
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of proposing a local edge can be changed by users for different purposes. This concept is

named “Targeted Metropolis Hasting” (TMH).

The specific implementation of TMH studied here begins with any initial state, e.g.,

the null model or full model, and at each iteration it proposes to add or delete 1 randomly

chosen local edge with probability λ (λ > 0.5), or 1 randomly chosen non-local edge with

probability 1 − λ. When λ is high, the “targeted” proposal favors local graphs, but the

Markov chain is still irreducible and aperiodic on the global space.

At a specific iteration of the MH, assume the current graph is G, and the MH proposal

proposes a certain move to change the graph from G to G′. The acceptance probability of

the proposal ρ(G,G′) at this iteration is

ρ(G,G′) = min
{

p(G′|Y1:n)
p(G|Y1:n)

q(G|G′)
q(G′|G)

, 1
}

, (4.1)

where q(G′|G) (q(G|G′)) is the probability of the graph G′ (G) to be proposed given the

current graph G (G′). For UMH, the computation of of q(G′|G) and q(G|G′) is straight

forward. However, for TMH given a specific λ, q(G′|G) and q(G|G′) can be very different

in various situations (see Appendix D). T (G,G′), the transition probability from graph G

to G′ is

T (G,G′) = ρ(G,G′)q(G′|G). (4.2)

To study the convergence to the stationary distribution of a certain Markov chain, the

total variation distance as a measure is typically used.

Definition 4.1. Letting πn(G) denote the probability of visiting graph G at step n of the

Markov chain, starting from the initial distribution π0, and letting π denote the stationary

distribution, the total variation distance at step n in the finite and discrete graph space is

defined as

‖ πn − π ‖TV =
1
2

∑

G

|πn(G)− π(G)|. (4.3)
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Figure 4.1: The 8 states for a 3-node graphical model example.

If the transition matrix T for each step of the chain is fixed, πn = π0T
n. The time a

Markov chain takes to converge to the stationary distribution is called the mixing time.

The mixing time is obtained from the total variation distance.

Definition 4.2. For ε > 0, the mixing time τ(ε) is defined as

τ(ε) = min{n :‖ πn′ − π ‖TV≤ ε,∀n′ ≥ n}. (4.4)

The mixing time can be bounded and associated to the transition matrix by the following

theorem:

Theorem 4.1. (Jerrum et al., 1986; Randall, 2006) Let π∗ = minG π(G). For all ε > 0

the mixing time τ(ε) satisfies

|λ1|
2(1− |λ1|) log

(
1
2ε

)
≤ τ(ε) ≤ 1

1− |λ1| log
(

1
π∗ε

)
,

where λ1 here denotes the eigenvalue of the transition matrix with the second largest absolute

value (the largest eigenvalue is 1).

To illustrate TMH, I give a 3-node example, with nodes indexed Y , x1 and x2. The

model space hence contains 23 = 8 global models. Figure 4.1 shows in detail all the states
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of the graph. In this example, we let all the states have equal posterior probabilities (1/8).

Denote ρij to be the acceptance probability from graph i to j, and Tij to be the transition

probability from graph i to j. Then, the TMH transition matrix T = {Tij} becomes

T =




0 λ/2 λ/2 1− λ 0 0 0 0

λ/2 λ/2− 1/4 0 0 1/4 1− λ 0 0

λ/2 0 λ/2− 1/4 0 1/4 0 1− λ 0

1− λ 0 0 0 0 λ/2 λ/2 0

0 1/4 1/4 0 1/6 0 0 1/3

0 1− λ 0 λ/2 0 λ/2− 1/3 0 1/3

0 0 1− λ λ/2 0 0 λ/2− 1/3 1/3

0 0 0 0 1/3 1/3 1/3 0




.

Tij is calculated like the following examples:

ρ25 = min

{
1,

π(2|5)
π(5|2)

}
= min

{
1,

1/4
λ/2

}
= min

{
1,

1
2λ

}
=

1
2λ

⇒ T25 = π(5|2)ρ25 =
1
4
,

and

ρ52 = min

{
1,

π(5|2)
π(2|5)

}
= min

{
1,

λ/2
1/4

}
= min {1, 2λ} = 1

⇒ T52 = π(2|5)ρ52 =
1
4
.

For this transition matrix T , when λ = 0.9, λ1 = −0.8307. When λ = 0.99, λ1 = 0.8893.

When λ = 0.999, λ1 = 0.9059. By theorem 4.1, I plot both the lower and upper bounds of

the mixing time for the three different λ’s in Figure 4.2.

Figure 4.2 shows that the TMH method slows down the global mixing rate when λ is

high, although the global mixing time actually is not monotonically increasing in λ (λ1 is
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Figure 4.2: The lower and upper bounds of the mixing time for the three different

λ’s. The blue lines correspond to λ = 0.9, the red lines correspond to λ = 0.99, and

the purple lines correspond to λ = 0.999.

sometimes positive and sometimes negative). Also, in this 3-node example, some simulation

work can be done to show that TMH converges. Figure 4.3 shows the frequencies of visiting

each state by the TMH methods when running for different iterations with λ = 0.99.

Therefore, since TMH is a more “targeted” method, it is not surprising that TMH

slows down the global mixing rate compared to UMH. However, the performance of TMH

in sampling local models is the primary concern here, since this dissertation is focused on

local models. Also, it is important to propose a way to summarize the sampling results

from either TMH or UMH for communication. With this example, I show some preliminary

simulation results in Table 4.1.

Since every state in the model space has the same probability, the stationary proba-

bilities of the edges (Y, x1), (Y, x2), and (x1, x2) are all 0.5. Therefore, in Table 4.1, the

probability of choosing edge (x1, x2) converges slower than that of choosing edges (Y, x1)

or (Y, x2). This is because (x1, x2) is mostly a non-local edge, while both (Y, x1) and

(Y, x2) are always local edges. Also, the marginal joint probability of (Y, x1) and (Y, x2)
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(a) (b) (c)

Figure 4.3: The frequencies of visiting each of the 8 states by TMH after (a) 100,

(b) 1000, and (c) 10000 iterations when the number of burn-in iterations equals 10,

and λ = 0.99.

Edges 100 iterations 1000 iterations 10000 iterations

(Y, x1) (0.36,0.63) (0.462,0.539) (0.488,0.513)

(Y, x2) (0.37,0.63) (0.459,0.539) (0.488,0.513)

(x1, x2) (0.135,0.85) (0.381,0.614) (0.461,0.540)

Acc Rate (0.80,0.94) (0.85,0.90) (0.87,0.88)

Table 4.1: The 95% credible interval for the percentage of time that the edges

(Y, x1), (Y, x2), and (x1, x2) are in the graph respectively, after 100, 1000, and 10000

iterations. The credible interval of the acceptance rates for different iterations are

also shown in the table. Here λ = 0.99
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converges faster than that of choosing the other two pairs of edges, ((Y, x1), (x1, x2)) and

((Y, x2), (x1, x2)) for essentially the same reason.

4.2 Local Convergence in Targeted Metropolis-Hastings

Methods

In this section, I discuss the concept of the local convergence, which is used to compare the

performance of TMH and UMH in local graphical model search.

First, we call a set of global graphical models Sl = {G|Gl ⊆ G} a local model state

(group), where Gl is a local graphical model, and all G’s in Sl are the graphs that contain

the same local subgraph Gl. Then,

p(Sl) =
∑

G⊆Gl

p(G). (4.5)

As mentioned before in Section 3.2, since the Sl’s have different sizes when the dimen-

sions of Gl’s are different, the p(Sl)’s become incomparable. Here, however, the p(Sl)’s can

be used for local convergence instead of being used as scores of local model states during

the search. Note that both TMH and UMH sample the local model states. As a result, for

every step of the Markov chain, we can compare the total variation distances between the

current distribution of the local model states and the stationary distribution. Mathemati-

cally, if we start the Markov chain with an initial distribution of the local model states π0

(row vector), and the transition matrix on the local model space at step i is Ti, then after

n steps, the distribution becomes πn = π0

n∏
i=1

Ti. Note that the transition matrix on the

local model space keeps changing whether or not it is using TMH or UMH, because for the

model spaces that contains multiple global graphical models, the proposal probability from

one model state to another relies on the current distribution of the global models in the

global model state space.
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Assume that the stationary distribution of visiting local states is π, then after n steps

of the Markov Chain, the total variation distance becomes:

‖ πn − π ‖TV =
1
2

∑

l

|πn(Sl)− π(Sl)|, (4.6)

where l is the index of the local model states.

We can compare the performance of TMH and UMH in local convergence by comparing

the decreasing curves of the total variation distances versus the steps. Two experiments for

this comparison are implemented: one is using a 10-node graph, and the other is using a

100-node graph.

4.2.1 A 10-node Graph Experiment

This section describes the experiment with a 10-node graph. To limit the total number of

the local model states, I assume that the target variable Y can have at most 2 neighbors, and

every graphical model that satisfies such an assumption has a uniform posterior probability.

In this case, there are
(
p−1
2

) ∗ 2 + (p − 1) + 1 = p2 − 2p + 2 = 82 local model states. The

corresponding stationary probabilities of the local model states in which Y has no neighbors

or just 1 neighbor are about 0.0217, and the stationary probabilities of the local model

states in which Y has 2 neighbors is about 0.0109. By running both TMH and UMH in

this example, I compare their performance in convergence to the stationary distribution of

the local model states.

Recall that the transition matrix on the local model space keeps changing; it is very

difficult to write it down analytically. As a result, at each transition step n, I estimate πn by

simulating 100,000 independent chains in parallel, all starting from the null graph. Clearly,

this involves a massive computational effort at each step n, but is an easy and effective way

to estimate the transition probabilities.

Figures 4.4-4.10 show the comparison of TMH and UMH in terms of total variation
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Figure 4.4: The total variation distances versus the steps of the Markov Chain

(p=10). Two different sampling methods are used: TMH (λ=0.999 red curve) and

UMH (blue curve).

Figure 4.5: The total variation distances versus the steps of the Markov Chain

(p=10). Two different sampling methods are used: TMH (λ=0.9 red curve) and

UMH (blue curve).

46



Figure 4.6: The total variation distances versus the steps of the Markov Chain

(p=10). Two different sampling methods are used: TMH (λ=0.8 red curve) and

UMH (blue curve).

Figure 4.7: The total variation distances versus the steps of the Markov Chain

(p=10). Two different sampling methods are used: TMH (λ=0.7 red curve) and

UMH (blue curve).
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Figure 4.8: The total variation distances versus the steps of the Markov Chain

(p=10). Two different sampling methods are used: TMH (λ=0.6 red curve) and

UMH (blue curve).

Figure 4.9: The total variation distances versus the steps of the Markov Chain

(p=10). Two different sampling methods are used: TMH (λ=0.5 red curve) and

UMH (blue curve).
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Figure 4.10: The total variation distances versus the steps of the Markov Chain

(p=10). Two different sampling methods are used: TMH (λ=0.1 red curve) and

UMH (blue curve).

distances from the stationary distribution in the local model space. When λ is big enough

(e.g. greater than 0.5), TMH converges faster than UMH in the first tens of iterations.

Afterwards, UMH starts to dominate. The closer λ is to 1, the faster TMH converges in the

first several iterations, and the slower afterwards. When λ is close to the average local move

proposal probability of UMH, the two curves become almost the same. When λ decreases

further, TMH is worse than UMH from the beginning to the end.

4.2.2 A 100-node Graph Experiment

To further explore the local convergence performances of TMH and UMH, another simu-

lation experiment was run with a graph of 100 nodes. To limit the number of local model

states, the target variable Y was constrained to have at most 2 neighbors from the nodes

set {x1, ..., x9}. Also, every global graphical model that satisfies such a constraint has the

same posterior probability.
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Figure 4.11: The total variation distances versus the steps of the Markov Chain

(p=100). Two different sampling methods are used: TMH (λ=0.9 blue curve) and

UMH (red curve).

As a result, there are 82 local model states, with stationary probabilities of 0.0217 if Y

has 0 or 1 neighbors, and of 0.0109 if Y has 2 neighbors. By simulating 100,000 independent

chains, all starting from the null graph, I obtained estimates of the total variation curves

of UMH and TMH for different values of λ.

Figures 4.11-4.15 show the simulation results for λ = 0.9, 0.8, 0.7, 0.6, and 0.1. The

curves look quite similar to those in the 10-node experiment, except that now TMH can

dominate UMH for the first thousands of iterations. Intuitively, I expect in a 1000-node

simulation experiment with similar settings that TMH will dominate UMH in the first

hundreds of thousands of iterations.

On a log scale, the total variation distance curves become close to linear after about 2000

iterations. The mathematical explanations are in the following Section 4.3. If considering

the two curves as linear, TMH has a greater absolute value of the intercept than UMH,

but UMH has a sharper slope, which explains the initial dominance of TMH, and why it is
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Figure 4.12: The total variation distances versus the steps of the Markov Chain

(p=100). Two different sampling methods are used: TMH (λ=0.8 blue curve) and

UMH (red curve).

Figure 4.13: The total variation distances versus the steps of the Markov Chain

(p=100). Two different sampling methods are used: TMH (λ=0.7 blue curve) and

UMH (red curve).
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Figure 4.14: The total variation distances versus the steps of the Markov Chain

(p=100). Two different sampling methods are used: TMH (λ=0.6 blue curve) and

UMH (red curve).

Figure 4.15: The total variation distances versus the steps of the Markov Chain

(p=100). Two different sampling methods are used: TMH (λ=0.1 blue curve) and

UMH (red curve).
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Figure 4.16: The logarithm of the total variation distances versus the steps of the

Markov Chain (p=100). Two different sampling methods are used: TMH (λ=0.9 red

curve) and UMH (blue curve).

dominated by UMH afterwards. The corresponding plots after the logarithm transformation

of the total variation are in Figures 4.16-4.20.

Given the fact that TMH converges faster initially than UMH, but not afterwards, it

is natural to think of starting with TMH for the first hundreds of iterations (to get the

intercept advantage of TMH), and then switching to UMH (suddenly or gradually). Ideally,

this idea can combine the advantages of both methods, i.e., the intercept of TMH and the

slope of UMH after the logarithm transformation. Figure 4.21 shows the simulation results

of this idea. Unfortunately, this idea does not work as well as my intuition suggests. This is

because the transition matrix on the local model space actually keeps changing, regardless

of whether we are using TMH or UMH. In contrast to the usual Markov chain, the transition

matrix on the local model space depends on the current distribution of the global models,

at each MC iterate. For an instance, in the 3-node example analyzed in Section 4.1, one

can divide the 8 global states listed in Figure 4.1 into 5 local model states: {1, 4}, {2, 6},
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Figure 4.17: The logarithm of the total variation distances versus the steps of the

Markov Chain (p=100). Two different sampling methods are used: TMH (λ=0.8 red

curve) and UMH blue curve).

Figure 4.18: The logarithm of the total variation distances versus the steps of the

Markov Chain (p=100). Two different sampling methods are used: TMH (λ=0.7 red

curve) and UMH (blue curve).
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Figure 4.19: The logarithm of the total variation distances versus the steps of the

Markov Chain (p=100). Two different sampling methods are used: TMH (λ=0.6 red

curve) and UMH (blue curve).

Figure 4.20: The logarithm of the total variation distances versus the steps of the

Markov Chain (p=100). Two different sampling methods are used: TMH (λ=0.1 red

curve) and UMH blue curve).
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Figure 4.21: The logarithm of the total variation distances versus the steps of the

Markov Chain (p=100). Three different sampling methods are used: TMH (λ=0.9

red curve), UMH (blue curve), and TMH→UMH (λ=0.9, switch point: iteration 200,

Purple curve)
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{3, 7}, {5}, and {8}. At a specific step k of the chain, the transition probability from the

local model states {1, 4} to {2, 6} obviously relies on the current distribution of the global

model 1, 2, 4, and 6. That is the key reason why switching from TMH to UMH is not

uniformly successful. Intuitively the current distribution of the global models obtained by

TMH does not quite “fit” the UMH method, and needs time to readjust.

4.2.3 Theoretical Explanations

In this section I give a theoretical explanation of the experiments in Section 4.2 using the

spectral decomposition. Recall that for a local model state Sl we define p(Sl) =
∑

G∈Sl

p(G),

and the corresponding stationary distribution is

π(Sl) =
∑

G∈Sl

π(G). (4.7)

Denote the initial distribution on the global model space by π0, and the transition

matrix on the global model space by T . At step k, the spectral decomposition of πk is

πk = (T k)T π0 = π +
n∑

i=2

λk
i lir

T
i π0, (4.8)

where li and ri are respectively the left eigenvector and the right eigenvector of T , and the

λi’s are the eigenvalues of T . For any function f on the global model space, we have

fT πk = fT π +
n∑

i=2

λk
i (f

T li)(rT
i π0). (4.9)

Here

πk(Sj) =
∑

G∈Sj

πk(G) = fT
j πk = fT

j π +
n∑

i=2

λk
i (f

T
j li)(rT

i π0), (4.10)
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where fj is a vector with 1’s and 0’s. In fact, fT
j π = π(Sj). Define fT

j li = βij so that

πk(Sj) = π(Sj) +
n∑

i=2

λk
i βij(rT

i π0). (4.11)

Then, the total variation distance between πk and the stationary distribution π is

‖ πk − π ‖TV =
1
2

m∑

j=1

|
n∑

i=2

λk
i βij(rT

i π0)|, (4.12)

Which, when k is very large, implies

‖ πk − π ‖TV≈ |λ2|k
2

m∑

j=1

|β2j(rT
2 π0)|. (4.13)

Equation (4.13) explains why the log total variation curve is close to linear in iterations

after many steps of the chain. Obviously, compared to TMH, UMH has a greater value of

|λ2| in those simulation examples, but TMH has a greater intercept of the “line”, which is

determined by the term
m∑

j=1
|β2j(rT

2 π0)|.

Both the experiments implemented and theoretical explanations indicate that TMH has

a faster local convergence rate than UMH initially in the sampling process, where the time

of the TMH dominance increases as the dimension of the problem increases. In a very high-

dimensional problem, TMH obviously is far more efficient than UMH because convergence

becomes rather difficult for both methods and in the limited running time TMH usually

maintains dominance. Another point to note is that the simulation results may be different

if the graphs no longer have uniform probabilities, since the transition matrix T also changes

under different stationary distributions.
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4.3 Local Edge Inclusion Probabilities

4.3.1 Motivation and Definitions

Given a set of graphs sampled by either TMH or UMH, it is necessary to decide how to

summarize the results for communication. For example, given a gene expression data set,

biologists may wonder what the local graph around some targeted gene looks like; showing

the “top” graphical models is one possibility. However, as discussed in Section 3.1.1, the

posterior probabilities of the global graphical models can be dominated by the non-local

parts of the graphs. Also, following Jones et al. (2005), Metropolis-Hastings methods are

not well designed to find “top” graphs. As a result, other summaries are of interest.

It is natural to think about aggregating the global graph samples into the local graph

visiting frequencies by equation (4.1), and then reporting the most frequently visited local

graphs. However, as mentioned in both Section 3.2 and 4.2, for different dimension of

Gl’s, the p(Sl)’s are incomparable and hence so are the visiting frequencies of the local

graphs. One might suggest discounting the visiting frequency of one local graph by the

total number of possible global graphs containing this local graph, but this seems artificial

and lacks theoretical support.

Another way to summarize the samples of graphs is to compute the edge inclusion

probabilities. In the variable selection literature, posterior variable inclusion probabilities

are key posterior summaries. Formally, with the data Y1:n, and a set of models Γ, the

posterior inclusion probability for variable i is defined as

p(i) =
∑

γ∈Γ

p(γ|Y1:n)I(γi = 1), (4.14)

where I(γi = 1) is an indicator function that is equal to 1 when variable i is in the model

γ, and 0 otherwise. In linear regression, Barbieri and Berger (2004) defined the median

probability model to be the model consisting of those variables whose posterior inclusion
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probability is at least 0.5. They also proved that, for variable section in normal linear

models, the optimal predictive model is often not the model with the highest posterior

probability, but the median probability model.

Similar to the variable inclusion probability, we can define the edge (i, j) inclusion

probability in global graphical models as

p(i, j) =
∑

G

p(G|Y1:n)I((i, j) ∈ E(G)). (4.15)

For local graphical model search, we do not care about the edge inclusion probability of the

non-local edges. Therefore, the local edge inclusion probability is defined as follows:

If i = Y or j = Y ,

pL(i, j) =
∑

G

p(G|Y1:n)I((i, j) ∈ E(G)), (4.16)

otherwise

pL(i, j) =

∑
G

p(G|Y1:n)I((i, j) ∈ E(G))I((i, Y ) ∈ E(G))I((j, Y ) ∈ E(G))
∑
G

p(G|Y1:n)I((i, Y ) ∈ E(G))I((j, Y ) ∈ E(G))
. (4.17)

We can similarly define the mean probability local graphical model to be the local graph-

ical model consisting of those local edges whose posterior inclusion probability is at least

0.5. Formally, if we denote the mean probability local graphical model as GM , any edge

(i, j) ∈ E(GM ) if and only if pL(i, j) > 0.5.

Summaries of the TMH/UMH sampling results by the local edge inclusion probabilities

are clearly intuitively attractive, although also clearly not sufficient. For example, if x1 and

x2 are highly correlated, the local edge inclusion probabilities pL(Y, x1) and pL(Y, x2) may

be both 0.49, and the pairwise local edge inclusion probability pL((Y, x1), (Y, x2)) may be

0. The mean probability local graphical model does not include either edge, when in fact

we should include one of them. Therefore, it is also important for the users to look at the
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pairwise, or even multi-way local edge inclusion probabilities from the sample (Chipman

et al., 2001; Clyde and George, 2004).

4.3.2 Simulation Study

Convergence properties of the local edge inclusion probabilities may be different from the

local convergence studied in section 4.2. Equation (4.16) consists of two terms: the posterior

distribution of a graph given the data, and an indicator of whether an edge is in the graph.

Intuitively, UMH is better than TMH in simulating samples from the posterior distribution

of the graph space, but TMH can accelerate this sampling process by picking representative

graphs while losing some precision globally.

At iteration n, we can collect all the samples drawn from the first to the nth iteration,

and compute the estimated edge inclusion probabilities from those samples. Then, by

knowing the true edge inclusion probabilities in simulated examples, the mean squared error

(MSE) may be computed to compare the convergence performance of TMH and UMH.

A simulation study is constructed similar to that in Section 4.2. First, assume that

there are 10 nodes in the graph, including the target variable Y . The graphs are a priori

known to have equal probability. Hence for any edge (i, j), the true value of pL(i, j) = 0.5.

Figure 4.22 shows the experiment with p = 10 and λ = 0.9. The x-axis is the number of

iterations, and the y-axis is MSE. I run both TMH and UMH for 10000 iterations from

a null graph, and for each iteration collect all the samples drawn, then compute the edge

inclusion probabilities as well as MSE. The above experiment is repeated for 100 times the

average is taken. As a result, for either TMH and UMH, a smooth MSE decreasing curve

is obtained. In Figure 4.22, TMH converges faster than UMH in the sense of edge inclusion

probabilities. Figures 4.23 and 4.24 give a “zoom-in” view of Figure 4.22 to show the curves

of TMH and UMH in the intervals of iterations (5000, 10000) and (90000, 100000).

Similarly, I also look at how these results change when λ is changed. Figure 4.25 is
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Figure 4.22: The MSE of the edge inclusion probabilities converging to the truth

by TMH and UMH (p=10). TMH (λ=0.9 red dashed curve), UMH (blue curve).

Figure 4.23: The “zoom-in” plot of Figure 4.22 in the interval of iterations (5000,

10000).
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Figure 4.24: The “zoom-in” plot of Figure 4.22 in the interval of iterations (90000,

100000).

drawn by setting λ = 0.6. Clearly, The TMH curve is closer to the UMH curve in this

plot compared to the case when λ = 0.9. This is mainly because the graphs are uniformly

distributed, and TMH with larger λ has an advantage of proposing local edges. Again, if

the graphs did not have equal probabilities, TMH would not have such a clear advantage

all the time, because it is only considered as a fast approximation of UMH.

It is also necessary to look at the convergence of the pairwise edge inclusion probabilities.

Figure 4.26 shows the result from the experiment where p = 10, λ = 0.9, and considers all

the pair of edges that are both incident to the target variable Y (so in total 9 × 8/2 = 36

pairs). The conclusion obtained is similar to the one from the edge inclusion probabilities.

Another experiment with p = 100 and λ = 0.9, the same as the settings in the 100-node

experiment in Section 4.2, tests the performance of the two methods when also assuming

the graphs are uniformly distributed. Figure 4.27 indicates that TMH now converges much

faster than UMH in the sense of edge inclusion probabilities. This plot supports the view
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Figure 4.25: The MSE of the edge inclusion probabilities converging to the truth

by TMH and UMH (p=10). TMH (λ=0.6 red dashed curve), UMH (blue curve).

that when there is a large number of nodes in the graph, TMH should be preferred to UMH.

4.4 Simulated Data from Jones et al. (2005)

To test the local model sampling performances by TMH and UMH, in this section I use a

15-node data set from Jones et al. (2005) that was inspired by patterns of daily currency

exchange fluctuations against the U. S. dollar. The underlying true graph is presented in

Figure 4.28. The data set contains 250 observations. By global graphical model search

(SSS), and setting δ = 3, τ = 0.0004, and sparsity parameter β = 0.1429, Jones et al.

(2005) gave the decomposable global graph with the highest posterior probability as shown

in Figure 4.29.

For local graphical model search, I take node 7 as the target variable Y . Figures 4.30 and
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Figure 4.26: The MSE of the pairwise edge inclusion probabilities converging to

the truth by TMH and UMH (p=10). TMH (λ=0.9 red dashed curve), UMH (blue

curve).

Figure 4.27: The MSE of the edge inclusion probabilities converging to the truth

by TMH and UMH (p=100). TMH (λ=0.9 red dashed curve), UMH (blue curve).
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Figure 4.28: Simulation example from Jones et al. (2005). The true underlying

decomposable graph on 15 nodes simulated example.

4.31 show the local edges whose edge inclusion probabilities are bigger than 0.5, respectively

obtained by TMH (λ = 0.9) and UMH in 100K iterations plus 10K burn-in. Note that δ,

τ , and the sparsity prior remains the same as Jones et al. (2005). It is not surprising that

both TMH and UMH obtain almost the same local graphical structure around Y as the

top global model, although the edge connecting node 6 and node 7 is only included with

probability around 0.6. Because of the small size of this data set, it is very easy for both

TMH and UMH to find the local graphical structure.

4.5 Cardiovascular Genomics Data Analysis

Following the cardiovascular genomic data analysis in Section 3.4, in this section I use the

same data to test the performances of TMH and UMH. Again I set δ = 2.0, τ = 1.0. First, I

analyze the 13 factors data with the target variable projected risk signature. This is followed
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Figure 4.29: Simulation example from Jones et al. (2005). The top decomposable

global graph on 15 nodes simulated example.

by a discussion of TMH and UMH in an analysis of the full, large cardiovascular genomics

data set with the same targeted variable Y . I show that TMH is still not converging fast

enough to deal with very high-dimensional data sets.

4.5.1 Projected risk signature and 13 factors from BFRM

I use the same prior of graph as Section 3.4, i.e., the prior probability of every edge being

connected is 1/13. Intuitively, compared to the top models obtained in Section 3.4 I expect

the mean probability local models found by TMH or UMH to be sparser because they allow

non-local edges to exist. For TMH, λ is set to be 0.9, and I run TMH and UMH for 100,000

iterations plus 10,000 burn-in iterations. The local edges with inclusion probabilities bigger

than 0.1 are shown in Figure 4.32 and 4.33. Note that both TMH and UMH select factors

1, 3, 4, 7 and 9 in the mean probability models, while the other three factors selected by
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Figure 4.30: The local edges found by TMH on 15 nodes simulated example (λ = 0.9,

edge inclusion probabilities bigger than 0.5).

SSS (factor 2, 6, 13) have less significant inclusion probabilities.

4.5.2 Projected risk signature and the human gene probesets

Similar to Section 3.4.2, I also applied TMH and UMH to the 122× 4287 human gene data

set with the projected risk signature as the target variable. Unfortunately, both TMH and

UMH fail to find a local edge with inclusion probability greater than 0.1 after 1 million

iterations, mainly because of slow convergence and high collinearity among the genes. This

slow convergence property is due to the intrinsically slow convergence of Metropolis-Hastings

methods (Jones et al., 2005) in high-dimensional problems. For UMH, the non-convergence

is not surprising: This is the reason that TMH is motivated and developed. For TMH,

there is one main problem of the targeted proposal. In such a high-dimensional problem,

the TMH adding edge proposal with a high λ tends to mainly focus on proposing to add an
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Figure 4.31: The local edges found by UMH on 15 nodes simulated example (edge

inclusion probabilities bigger than 0.5).

edge incident to Y , and spend very little time on proposing edges connecting the current

neighbors of Y . For example, assume that ne(Y ) consists of 7 neighbors at a certain

iteration, the probability of proposing an edge connecting two nodes in ne(Y ) is only about

7 ∗ 6/2/((4287 − 7) + 7 ∗ 6/2) = 0.0049. As a result, during the TMH sampling, the

graph usually contains very few local edges that connect neighbors of Y . This may be one

important reason of the slow convergence.

To address this slow convergence problem of both UMH and TMH, one idea is to start

the Markov Chain with a ”better” local graph instead of the null graph. One way to realize

this is to run regression modeling SSS for a small number of iterations to find out the

top set of predictors, and use them to form an initial graph as a starting point of UMH

(TMH). For this human gene probsets data, we have the top regression model found by SSS

in 100,000 iterations in Section 3.4, consisting of predictors {1, 3, 4, 6, 9, 12} in Appendix

C. Two corresponding initial graphs has been tested, one is a graph with only 6 edges
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Figure 4.32: The local edges found by TMH on 13 factors data (λ = 0.9, edge

inclusion probabilities bigger than 0.1)

{(Y, 1), (Y, 3), (Y, 4), (Y, 6), (Y, 9), (Y, 12)}, and the other one is a graph composed by a full

subgraph of the vertices set {Y, 1, 3, 4, 6, 9, 12} and a null subgraph of all the other vertices.

Unfortunately, both initial graphs do not change the non-convergence of TMH, as all the 6

pre-selected neighbors of Y are removed from the graph in hundreds iterations of TMH.

4.6 Summary Comments

In this chapter I have introduced a new type of Metropolis-Hastings proposal: Targeted

Metropolis-Hastings for local graphical model search. I compared TMH with UMH in local

convergence rates, and found out empirically that initially TMH converges to the local

stationary distribution much faster than UMH (the bigger λ is, the faster TMH will converge

initially), while afterwards, UMH dominates TMH in the convergence rate. To summarize

the sampling graphs, I suggested to look at the local edge inclusion probabilities, and select
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Figure 4.33: The local edges found by UMH on 13 factors data (edge inclusion

probabilities bigger than 0.1).

the ones with significant inclusion probabilities. In simulation studies, I found that TMH

converges faster than UMH in the sense of MSE of the edge inclusion probabilities. Finally,

I applied both TMH and UMH methods to three real data sets, where I found that both

methods work well when p is small (e.g. p = 15), but converge very slowly when p is large

(e.g. p = 4287). The further acceleration of TMH convergence is an open question.
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Chapter 5

Variational Bayes Model Selection: An

Improvement Over Laplace?

Increasingly, statisticians are faced with the problem of identifying interesting subsets of pre-

dictors from among a large number of candidates. Existing methods for variable selection,

such as MCMC sampling, tend to explore the model space too slowly in large dimensions.

Shotgun stochastic search (SSS) algorithms (Hans, 2005; Hans et al., 2007) have been pro-

posed as an efficient alternative. As current SSS algorithms rely on conjugacy, they are

not appropriate for generalized linear models without use of approximation methods. This

chapter compares the frequently used Laplace approximation with two alternatives based

on Variational Bayes methods. The comparison is illustrated using several simulated data

examples and an application to the problem of predicting conception using data on timing of

intercourse in the menstrual cycle. This application also illustrates the problem of selection

of interactions.

5.1 Introduction

As the collection of massive amounts of information becomes more routine, there is a critical

need for more efficient methods for identifying promising subsets of variables from among the

very many candidates one is typically faced with. This problem occurs not only in genomics

and bioinformatics studies, where it has received the most focus, but also in epidemiologic

studies. For example, the application motivating this chapter focuses on using data on the

timing of intercourse in the menstrual cycle to predict conception. The data consist of daily

records of intercourse across the menstrual cycle and an indicator of conception status for
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women enrolled in a European study (Dunson et al. (2002)). Although the fertile interval

of the menstrual cycle is only 5-6 days for most women (Dunson et al. (1999)), the timing

of the fertile days is highly uncertain (Wilcox et al. (2000)). Hence, there are many days

in the menstrual cycle during which intercourse can potentially result in a pregnancy. In

addition, potential interactions lead to a very high-dimensional set of candidate models.

One widely used approach for accommodating uncertainty in subset selection in linear

regression models is the stochastic search variable selection (SSVS) algorithm originally

proposed in George and McCulloch (1993), with numerous modifications later considered

(George and McCulloch (1997); Ishwaran and Rao (2005); Casella and Moreno (2006)).

SSVS algorithms rely on using a mixture prior for the regression coefficients, with one

component concentration at 0, allowing a predictor to effectively drop out of the model.

Gibbs sampling is then used to sample from the conditional posterior distributions of the

coefficients, resulting in stochastic changes to the variables included in the model across

the MCMC iterates. Such algorithms are very effective in modest sized models, but tend

to explore the model space too slowly as the number of candidate variables increases.

Motivated by this problem, Hans (2005) and Hans et al. (2007) proposed a new re-

gression model search algorithm named Shotgun Stochastic Search (SSS), with Jones et al.

(2005) applying this approach to graphical models (Section 2.3). Compared to the variety

of alternative methods available (reviewed by Dellaportas et al. (2002)), Hans et al. (2007)

argue that SSS is more efficient at rapidly identifying the models with the highest posterior

probabilities in large model spaces. It is interesting to extend the SSS beyond linear re-

gression to broader classes of regression models, such as generalized linear models (GLMs).

Hans (2005) and Hans et al. (2007) proposed to use Laplace approximation for marginal

likelihood approximations in GLM, and used SSS to search in the model space. Ntzoufras

et al. (2003) proposed a reversible jump MCMC algorithm for posterior computation in

GLMs when there is uncertainty in the predictors to be included. In recent work, Wang

and George (2007) proposed an adaptive Bayesian criterion for variable selection in GLMs,
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relying on an integrated Laplace approximation to allow rapid computation.

My initial goal is to consider applications of SSS algorithms to GLM variable selection

in massive dimensions, with a particular emphasis on logistic regression models motivated

by the fertility application. For subject i (i = 1, . . . , n), let yi denote the binary response

variable and let xi = (xi1, . . . , xip)′ denote a p × 1 vector of candidate predictors, with γj

a 0/1 indicator that the jth predictor is included in the model and xγ,i = {xij : γj = 1}
denoting the subset of included predictors. Then, the logistic regression model can be

expressed as

logit{Pr(yi = 1 |xi,γ)} = x′γ,iβγ , (5.1)

where logit(x) = ln( x
1−x), and βγ is a vector of the unknown regression coefficients in the

model indexed by γ.

Letting π(γ) denote the prior probability of model γ, the posterior model probability is

p(γ |Y , X) =
p(γ) p(Y |X, γ)

p(Y |X, γ)
,

where the marginal likelihood of the data under model γ is

p(Y |X, γ) =
∫

p(Y |Xγ , βγ)p(βγ)dβγ , (5.2)

which is not available analytically in most cases. In logistic regression, the marginal likeli-

hood is expressed as the integral of the Bernoulli likelihood under the logistic model over

the prior distribution for the coefficients, which does not have a closed form.

To complete a Bayesian specification of the model uncertainty problem, explicit choices

are required for the prior probability of model γ and for the prior distribution on the

coefficients within that model βγ , for all γ ∈ Γ, with Γ the list of models corresponding to

all possible subsets of variables. The standard choice of prior for γ corresponds to

p(γ) =
p∏

j=1

φ1(γj=1)(1− φ)1(γj=0), (5.3)
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where 1(·) is a 0/1 indicator function, and φ is potentially given a beta hyperprior to allow

the data to inform more strongly about model size.

In conducting a high-dimensional model search, it is necessary to rapidly estimate or

approximate the marginal likelihood for massive numbers of models. There are many

simulation-based methods that can be used for estimating the marginal likelihood and/or

Bayes factors for comparing a small number of competing models (Gelfand and Smith

(1990); Gelfand and Dey (1994); Verdinelli and Wasserman (1995); Chib (1995); DiCic-

cio et al. (1997); Gelman and Meng (1998); Han and Carlin (2001); Chib and Jeliazkov

(2001)). However, most approaches require substantial numbers of samples within each

model to produce an accurate estimate, so are impractical in conducting a model search.

Hence, it is necessary to focus on marginal likelihood approximations that can be cal-

culated very quickly. The Laplace approximation provides a convenient and widely used

approach, which often performs well (Tierney and Kadane (1986)). DiCiccio et al. (1997)

provide the details of the Laplace approximation to the marginal likelihood. Raftery (1996)

use the Laplace approximation for Bayesian model selection in GLMs, while Hans (2005);

Hans et al. (2007) combined this approach with SSS. There are also other alternatives for

estimating the marginal likelihood in logistic regression. Jaakkola and Jordan (2000) pro-

posed a variational Bayes (VB) approach to approximate the posterior of β by a variational

transformation of the logistic function. Their paper suggests two different VB methods.

It is widely believed in the machine learning community that the VB approach provides

an improvement over the Laplace approximation. Srebro and Jaakkola (2003) pointed out

that for the Taylor expansion, the iterative improvement of the approximation is not always

monotonic, resulting in no guarantee of convergence. They also claimed that the VB method

is more robust and the convergence is guaranteed. However, Wang and Titterington (2005);

Consonni and Marin (2007) proved that “the covariance matrices from the variational Bayes

approximations are usually ’too small’ compared with those for the maximum likelihood

estimator”. My initial motivation was to apply the VB method in the high dimensional
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variable selection setting to improve upon Laplace-based methods, though I found that

Laplace consistently outperformed VB in logistic regression.

I first introduce the Laplace and VB methods, and describe their use in applying the

shotgun stochastic search algorithm to high-dimensional variable selection. This is followed

by two simulation studies; the first compares accuracy of the marginal likelihood approxima-

tions, and the second assesses predictive performance using VB or Laplace model averaging.

Finally, I implement the SSS algorithm with VB and Laplace for the fertility data set.

5.2 Marginal Likelihood Approximations

5.2.1 Laplace Method

In this subsection, I provide a brief review of the Laplace approximation to the marginal

likelihood in logistic regression. Re-expressing marginal likelihood (5.2) in the form

∫
log

[
exp

{
p(Y |Xγ , βγ) p(βγ) dβγ

}]
,

expanding the exponential function using Taylor series, and keeping the items up to the

second order, we have the estimator

p̂(Y |Xγ) = (2π)(kγ+1)/2|Σ̂γ |1/2 p(Y |Xγ , β̂γ)p(β̂γ), (5.4)

where kγ is the size of model γ, Σ̂−1
γ is the approximate posterior covariance matrix

Σ̂γ
−1

= − ∂2

∂β̂i∂β̂j

[
log

{
p(Y |Xγ , β̂γ)p(β̂γ)

}]
, (5.5)

and β̂γ is the posterior mode under model γ

β̂γ = argmaxβγ

{
p(Y |Xγ , βγ)p(βγ)

}
. (5.6)
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To find the posterior mode, βγ , for a logistic regression, a simple Newton-Raphson algo-

rithm can be used, with Raftery (1996) suggesting a one-step approximation that allows use

of maximum likelihood estimates. Here, I instead iterate the algorithm until convergence. If

the prior of βγ is N(0, τIkγ+1), the algorithm is based on the following updating equation:

β
(t+1)
γ = β

(t)
γ −G(β(t)

γ )−1g(β(t)
γ ), (5.7)

where

G(βγ) =
1
τ
Ik+1 −

n∑

i=1

xγ,ix
′
γ,iφγ,i(1− φγ,i),

g(βγ) = −βγ

τ
+

n∑

i=1

(yi − φγ,i)xγ,i,

φγ,i =
1

1 + exp(−x′γ,iβγ)
. (5.8)

Iterative updating of βγ tends to converge within a few iterations, so that the approximation

to the marginal likelihood under model γ, p̂(Y |Xγ) can be obtained very quickly.

5.2.2 Variational Bayes Approximations

In this section, I describe two VB approaches to approximate the logistic regression marginal

likelihood. The first approach was suggested by Jaakkola and Jordan (2000), while the

second approach is also briefly introduced in their paper, though they present it as less

appealing than the first approach.

Approach I

By Bayes’ Theorem,

p(Y |Xγ) =
p(Y |Xγ ,β∗γ)p(β∗γ)

p(β∗γ |Y , Xγ)
, (5.9)
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where β∗γ is any vector in <kγ . Expression (5.9) is commonly used in estimating mar-

ginal likelihoods via Monte Carlo sampling (e.g. Chen (2005); Chib and Jeliazkov (2001)).

Following Jaakkola and Jordan (2000), for any single observation yi, we have

p(yi|xγ,i,βγ) ≥ p(yi|xγ,i,βγ , ξ) = g(ξ) exp{(Xi − ξ)/2 + λ(ξ)(X2
i − ξ2)}, (5.10)

where g(ξ) = (1 + e−ξ)−1, λ(ξ) = [1/2− g(ξ)]/(2ξ), and Xi = (2yi − 1)x′γ,iβγ .

The inequality in (5.10) holds for any ξ. Because p(yi|xγ,i, βγ , ξ) has a quadratic form,

when the prior of βγ is Gaussian, the posterior p(βγ |xγ,i, yi, xγ,i, ξ) is also Gaussian. Po-

tentially, one can choose ξ so that p(βγ |xγ,i, yi,xγ,i, ξ) provides a good approximation to

p(βγ |xγ,i, yi,xγ,i). From (5.10),

∫
p(yi|xγ,i, βγ , ξ)p(βγ)dβγ ≥

∫
p(yi|xγ,i, βγ , ξ)p(βγ)dβγ . (5.11)

Hence, the best possible approximation to the posterior utilizing the bound in (5.10) is

achieved by choosing the value of ξ that maximizes the right hand side of this inequality.

This maximization can proceed via the Jaakkola and Jordan (2000) EM algorithm. Letting

N(µγ,0,Σγ,0) denote the prior for βγ , initializing i = 0, and choosing an arbitrary positive

starting point for ξ, the algorithm iterations through the following steps for i = 1, . . . , n:

1. Apply the following updating equations:

Σ−1
γ,i = Σ−1

γ,i−1 + 2|λ(ξ)|xγ,ix
′
γ,i (5.12)

µγ,i = Σγ,i

{
Σ−1

γ,i−1µγ + (yi − 1/2)xγ,i

}
(5.13)

2. Update ξ by:

ξ2 = x′γ,iΣγ,ixγ,i + (x′γ,iµγ,i)2 (5.14)

Go back to Step 1 and repeated until convergence (Jaakkola and Jordan (2000) claim

6-7 iterations is sufficient).
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3. Let i = i + 1 and go to step 1 until all subjects are added.

The estimated posterior p(βγ |Y , Xγ) d= N(βγ ; µγ,n,Σγ,n). In using this VB approximation

to the posterior to obtain an approximation to the marginal likelihood via (5.9), I find

substantial sensitivity to the value of β∗γ . Such sensitivity has been noted in previous use

of (5.9) in approximating marginal likelihoods, and I follow common practice in using the

posterior mean of β. This is convenient, as the posterior mean conveniently corresponds

to µγ,n, the value obtained at the final iteration of the above EM algorithm. I refer to the

resulting estimator of the marginal likelihood as the VB1 estimator.

Approach II

By the variational transformation (5.10), we can also obtain

p(Y |Xγ) ≥ p(Y |Xγ , ξ) =
∫ n∏

i=1

p(yi|xγ,i, βγ , ξi)p(βγ)dβγ . (5.15)

The right hand side of the inequality (5.15) provides an alternative estimator of the marginal

likelihood, with the vector ξ chosen to maximize the lower bound. As in Section 5.2.2

Approach I, the EM algorithm can be used to estimate the optimal value of ξ. Initializing

ξ, the algorithm iterates as follows until convergence:

1. Update the estimated posterior covariance and mean as

Σ−1
γ = Σ−1

γ,0 + 2
n∑

i=1

|λ(ξi)|xγ,ix
′
γ,i

µγ = Σγ

{
Σ−1

γ,0µγ,0 +
n∑

i=1

(yi − 1/2)xγ,i

}

2. Update the variational parameters ξ by:

ξ2
i = xT

γ,iΣγxγ,i + (x′γ,iµγ)2, i = 1, . . . , n, (5.16)
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After convergence, the approximation to the marginal likelihood is then

p(Y |Xγ , ξ) =
n∏

i=1

g(ξi) exp
{
− 1

2

n∑

i=1

ξi −
n∑

i=1

λ(ξi)ξ2
i

} |Σγ

∣∣1/2

|Σγ,0

∣∣1/2

exp
{

µ′γΣ−1
γ µγ − µ′γ,0Σ

−1
γ,0µγ,0

2

}
. (5.17)

I refer to this estimator as VB2. Jaakkola and Jordan (2000) proposed this approach as

an alternative to VB1, but believed that VB1 is cleaner because optimizing the variational

parameters sequentially instead of jointly is usually better. However, I find that VB2 has

the advantage of producing a much more stable estimator of the marginal likelihood than

VB1, which has a disturbing degree of sensitivity to β∗γ . VB2 does take longer to compute,

particularly in cases involving large number of subjects, which implies a high-dimensional

ξ.

5.3 Shotgun Stochastic Search for Regression Mod-

eling

Hans (2005) and Hans et al. (2007) proposed the Shotgun Stochastic Search (SSS) algorithm

as an alternative to SSVS for searching for high posterior probability models in cases in

which the model space is defined by all possible subsets of a high-dimensional vector of

predictors. Let γ ′ ∈ η(γ) denote the subset of Γ corresponding to those models in a

neighborhood of γ, defined to consist of all those model obtained by adding or deleting a

single predictor or substituting the predictor for another from among the candidates.

Similar to SSS algorithm for graphical model search (Section 2.3), the SSS algorithm

for regression modeling searches the model space by iterating through the following steps a

large number of times after choosing an initial model γ:
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1. Proceeding in parallel, calculate scores for all models in η(γ), the neighborhood of

the current model γ, with these scores defined to be proportional to p∗(γ |Y ,Xγ) =

p(γ)p̂(Y |Xγ), where p̂(Y |Xγ) is an estimate of the marginal likelihood under model

γ. Note that one cannot calculate the posterior model probability p(γ |Y , Xγ) as

the normalizing constant involves summing over all possible subsets.

2. Randomly select one new model γ ′ from η(γ) by sampling with probabilities propor-

tional to p∗(γ |Y ,Xγ)α, where α ∈ [0, 1] is an annealing parameter.

By using annealing, with the annealing parameter tuned based on the problem, one limits

the tendency of SSVS algorithms to remain for long intervals in local regions of the model

space. Empirically, the SSS algorithm has proven very efficient at finding the top models

compared to MCMC methods.

5.4 Simulation Analysis

Unfortunately, it is very difficult to compare the three methods described in Section 5.2

(Laplace, VB1, VB2) theoretically. If the marginal likelihoods were analytically tractable,

then one would not need these approximation methods, and it has proven difficult to theo-

retically justify the tightness of the VB lower bounds, as this is entirely problem dependent.

Hence, I rely on simulations to assess relative performance. In assessing accuracy of the

marginal likelihood approximations, one challenge is that we lack knowledge of the exact

marginal likelihoods even for simulated data. To address this problem, I follow the approach

of implementing importance sampling for a very large number of samples, with the resulting

estimated marginal likelihood used as the gold standard. I also tried a number of recently

proposed Monte Carlo methods for estimating the marginal likelihood, but found that alter-

native approaches often did not converge to the same estimate even when using a 100,000s

of samples. In contrast, one could easily judge convergence of importance sampling, and

collect sufficient numbers of samples to produce a highly-accurate estimate.
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In Section 5.4.1, I assess the relative performance of Laplace, VB1 and VB2 in esti-

mating marginal likelihood for logistic regression models in different simulated data sets.

In Section 5.4.2, I then compare predictive performance of Bayesian model averaging using

posterior model probabilities estimated under the three different approaches.

5.4.1 Accuracy of Marginal Likelihood Estimation

Let g(βγ) correspond to the multivariate t distribution, with low degrees of freedom (ν = 3)

and with the mean and variance chosen as the VB2 approximated posterior mean and

variance. Then, rewrite p(Yγ |Xγ) in (5.2) as

p(Y |Xγ) =
∫

p(Y |Xγ , βγ)p(βγ)
g(βγ)

g(βγ)dβγ . (5.18)

By simulating samples of βγ from g(βγ), the marginal likelihood can be estimated by

p(Y |Xγ) ≈
N∑

i=1

p(Y |Xγ , β
(i)
γ )p(β(i)

γ )

g(β(i)
γ )

, (5.19)

where β
(i)
γ is the ith sample from g(β). I use N = 100, 000 samples, since I find this

empirically to give a highly accurate estimate of the marginal likelihood.

In assessing accuracy of Laplace, VB1 and VB2 approximations, I simulated data sets

under three different cases in which there were 6 candidate predictors, with the size of

the true model equal to 1, 3, or 5 predictors. For each case, I simulated 100 data sets

having n = 50 samples per data set, with the coefficients for the predictors that were

included sampled independently from N(0, 42). For one simulated data set for each model

size, I used importance sampling (IS), Laplace, VB1 and VB2 to estimate the marginal

likelihoods under each of the 26 = 64 possible models, and I then sorted the models by the

marginal likelihood estimates based on IS.

Figure 5.1 plots the IS, Laplace, VB1 and VB2 estimated log marginal likelihoods under

the 64 sorted models in the model size 1 simulations, while Figures 5.2 and 5.3 presents
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the corresponding results for the size 3 and size 5 simulations, respectively. Because the

IS estimate was considered indistinguishable from the true marginal likelihood, all three

plots indicate that the Laplace approximation is very close to the true marginal likelihood.

Interestingly, the VB methods tend to be highly accurate for models with relatively low

marginal likelihoods, but tend to substantially underestimate the marginal likelihood for

good models. For example, when there is only one predictor, the 32 models that do not

include the true predictor have a low marginal likelihood, and all the three approximation

methods have very similar estimates to the importance sampling results. On the other

hand, for the other 32 models that include the true predictor, the VB1 and VB2 estimates

are both poor.

To avoid randomness from one data set, I have also tested the marginal likelihood

estimation performance by different methods on all 100 data sets. The results are very

similar to what I have shown in Figure 5.1, 5.2, and 5.3. As an example, Figure 5.4 shows the

difference between the highly accurate IS estimate and the three fast approximate estimates

averaging over the 100 simulated data sets in the model size 3 case. For each data set, I

sort all the possible models by their estimated marginal likelihood by importance sampling,

and compute the difference between importance sampling and the other three methods.

Then for each rank of the model, I take the average of the differences. We can see from

the plot that although Laplace approximation is underestimating a little bit the marginal

likelihood, its estimation line is almost parallel to the estimation line made by importance

sampling, which makes the model selection by Laplace approximation more robust. For the

two variational methods, as I have addressed before, their estimation precision both become

worse as the model becomes better, while VB2 is better than VB1.

5.4.2 Prediction Performance by Bayesian Model Averaging

When the model space is large, there are typically many models with similar posterior

probabilities, so that it is not ideal to base prediction on a single selected model, and model
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Figure 5.1: The estimated log-marginal likelihoods under importance sampling (IS),

Laplace and the two variational Bayes methods (VB1, VB2) in a simulation case in

which the true model size is 1. The models are ordered to be increasing in the IS

estimated marginal likelihood.
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Figure 5.2: The estimated log-marginal likelihoods under IS, Laplace, VB1 and VB2

when the true model size is 3.
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Figure 5.3: The estimated log-marginal likelihoods under IS, Laplace, VB1 and VB2

when the true model size is 5.

86



0 10 20 30 40 50 60

−
2.

5
−

2.
0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

100 datasets, True model size=3

Model index

Lo
g 

M
ar

gi
na

l L
ik

el
ih

oo
d 

D
iff

er
en

ce

IS
Laplace
VB1
VB2

Figure 5.4: The average difference between the log-marginal likelihood estimated

by IS and the estimates under Laplace, VB1 and VB2 for the 100 simulated data sets

when the true model size is 3.
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averaging is recommended. In particular, given predictors X∗ for a new set of subjects, the

model-averaged predictive distribution of y∗ is

p(y∗|X∗,Y ,X) =
∑

γ∈Γ

p(y∗|X∗
γ)p(γ|Y , X). (5.20)

In binary data, when p(yn+1|xn+1, Y , X) > 0.5, subject n+1 is predicted to have yn+1 = 1

and otherwise the subject is predicted to have yn+1 = 0.

To test the predictive performance of the three methods, I simulate a data set with

200 potential predictors and 500 samples, with the size of the true model to be 9. After

using SSS to search for the top 50 models for each marginal likelihood estimation method, I

implement model averaging to do out-of-sample predictions for an additional 2000 samples.

The results show that the Laplace approximation has a misclassification rate of 307/2000,

while both VB1 and VB2 have a misclassification rate of 305/2000. In contrast, conducting

prediction based on maximization of the true logistic regression model resulted in a rate

of 308/2000. Hence, all three methods did as well as a frequentist analysis under the true

model.

The average of the estimated posterior probabilities of yi = 1 (yi = 0) for subjects in

the test sample with yi = 1 (yi = 0) was 0.728 (0.803) under the Laplace approximation

and 0.709 (0.781) for both VB1 and VB2. Furthermore, the sum of the square of the

difference between the true probabilities of yi = 1 and the estimated probabilities by Laplace

approximation, VB1, and VB2 are 6.837, 11.21, and 11.23, respectively. Hence, there is some

gain in predictive performance for the Laplace approximation relative to the VB approaches

in a high dimensional logistic regression setting.
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5.5 Daily Fecundability Data Analysis

5.5.1 Description of Data and Scientific Problem

I now apply SSS with the three different approximation methods to build a predictive model

for the probability of conception in a menstrual cycle based on daily records of intercourse

timing. Data were drawn from the European Study of Daily Fecundability (ESDF), which

followed women using the sympto-thermal method of natural family planning, collecting

daily data on intercourse and basal body temperature. I focus on intercourse data in a 19

day window indexed relative to the last day of hypothermia, which is a commonly used

marker of the ovulation day that can be obtained based on the basal body temperature

charts. The 19 day window started 12 days prior to the marker of ovulation and ended 6

days after, which means that ovulation corresponds to day 13. Intercourse data consisted

of a 0/1 indicator of intercourse for each day in each menstrual cycle under study.

Scarpa and Dunson (2007) used Bayesian variable selection combined with a decision-

theoretic analysis to identify optimal rules for timing intercourse to achieve conception.

Their analysis focused on simple rules based on the timing in the cycle, allowing for an

interaction with timing and the effect of the mucus score on the probability of conception.

However, given the use of typical SSVS methods in their analysis, it was not computation-

ally possible to consider models that allow for interactions. In particular, although it is

typically assumed that sperm introduced on different days commingle and then compete

independently in attempting to fertilize the ovum, it is quite possible biologically that the

independent competing risks assumption is not fully accurate. However, in allowing interac-

tions between the effects of intercourse on different days, one obtains an enormous number

of possible regression models.

The European data base is particular suited to exploring different models, because it

is very large compared to typical prospective studies of fecundability and collected quite

detailed records. Data were available for 2832 cycles from 660 different couples. Previous
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analyses of day-specific conception probabilities have focused on simple, biologically-based

competing risk models, which require conception probabilities to be zero if no intercourse

is reported within the potentially fertile interval of the cycle (refer, for example, to Dunson

and Stanford (2005)). Here, I instead focus on a logistic regression model and avoid the

assumption that no reported intercourse implies zero conception probabilities, motivated

by the fact that intercourse will be unreported some of the time. For example, most studies

of this type have at least a few “immaculate conceptions” in which conception occurs in

cycles with no reported intercourse.

5.5.2 High-dimensional Logistic Regression

I build a standard logistic regression model to study the relationship between intercourse and

women’s conception time. The response variable Y is set as the binary conception variable,

and X consists of the 19-day intercourse variable, and all the second-order interactions

between them. As a result, in total there are 190 potential predictors of Y in my logistic

regression model. The prior of βγ is N(0, Iγ), which corresponded to a ridge regression

shrinkage prior that expressed my view that the coefficients for the included predictors

should have a low probability of falling outside of the interval within ±2 of 0. To set the

sparsity prior for model selection, I assume apriori that on average there are 10 predictors

in the model (φ = 10/190), and the annealing parameter for SSS is 1. For all the 2832

observations, I run SSS in parallel for 10,000 iterations using 50 CPU cores, and record the

top models by the three marginal likelihood approximation methods. The top 5 models

found by each method are listed in Table 5.1. We can also notice in the table that Laplace

approximation is the fastest of the three approximation methods.

Dunson et al. (1999) reported that the probability of conception is near zero unless

intercourse occurs in a six day fertile interval ending on the day of ovulation. This result

is consistent with days 8-13 being included in the model for the conception probability. To

my knowledge, all previous analyses of day-specific conception probabilities have assumed
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Method Top 5 Models Score Running Time (s)

−2.70 + 0.66D9 + 1.27D10 + 1.42D11 + 1.00D12

−0.80D(9,10) − 0.78D(10,11) − 1.11D(11,12) -1147.41

−2.67 + 0.41D9 + 1.02D10 + 1.47D11 + 1.04D12

+0.59D(6,8) − 0.84D(10,11) − 1.21D(11,12) -1147.59

−2.71 + 0.66D9 + 1.24D10 + 1.39D11 + 1.00D12

Laplace +0.58D(8,13) − 0.81D(9,10) − 0.79D(10,11) − 1.12D(11,12) -1147.65 2140

−2.72 + 0.66D9 + 1.25D10 + 1.40D11 + 0.99D12

+0.65D(3,14) − 0.82D(9,10) − 0.78D(10,11) − 1.10D(11,12) -1147.75

−2.73 + 0.89D9 + 1.23D10 + 1.37D11 + 1.19D12

−0.75D(9,10) − 0.66D(9,12) − 0.75D(10,11) − 1.05D(11,12) -1147.97

−2.33 + 0.88D10 + 1.25D11 + 0.93D12

+0.61D(3,9) − 0.71D(10,11) − 1.08D(11,12) -1153.32

−2.40 + 0.52D9 + 1.03D10 + 1.18D11 + 0.87D12

−0.69D(9,10) − 0.63D(10,11) − 0.99D(11,12) -1153.55

−2.35 + 0.86D10 + 1.22D11 + 0.92D12 + 0.59D(3,9)

VB1 +0.53D(8,13) − 0.72D(10,11) − 1.08D(11,12) -1153.79 9304

−2.36 + 0.54D9 + 0.87D10 + 1.02D11 + 0.89D12

−0.77D(9,10) − 1.07D(11,12) -1153.82

−2.43 + 0.74D9 + 1.01D10 + 1.13D11 + 1.04D12

−0.63D(9,10) − 0.65D(9,12) − 0.60D(10,11) − 0.93D(11,12) -1153.86

−2.70 + 0.66D9 + 1.27D10 + 1.42D11 + 1.00D12

−0.81D(9,10) − 0.79D(10,11) − 1.11D(11,12) -1148.84

−2.73 + 0.66D9 + 1.22D10 + 1.42D11 + 1.01D12

+0.57D(6,8) − 0.79D(9,10) − 0.74D(10,11) − 1.16D(11,12) -1149.17

−2.69 + 0.67D9 + 1.03D10 + 1.41D11 + 1.23D12

VB2 −0.71D(9,12) − 0.83D(10,11) − 1.09D(11,12) -1149.19 72020

−2.60 + 1.06D10 + 1.51D11 + 1.08D12 + 0.70D(3,9)

−0.88D(10,11) − 1.22D(11,12) -1149.20

−2.67 + 0.70D9 + 1.00D10 + 1.20D11 + 1.03D12

+0.62D(6,8) − 0.89D(9,10) − 1.25D(11,12) -1149.28

Table 5.1: The top 5 models of the daily fecundability data obtained by SSS and

the three marginal likelihood approximation methods.
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Variables Laplace VB1 VB2

9 0.83 0.53 0.69

10 1.00 1.00 1.00

11 1.00 1.00 1.00

12 1.00 1.00 1.00

13 0.18 0.12 0.15

(3 9) 0.12 0.21 0.15

(3 14) 0.27 0.22 0.15

(6 8) 0.28 0.22 0.30

(6 14) 0.06 0.05 0.13

(8 13) 0.22 0.15 0.18

(9 10) 0.71 0.41 0.47

(9 12) 0.28 0.27 0.33

(10 11) 0.78 0.62 0.77

(10 13) 0.14 0.11 0.09

(11 12) 1.00 1.00 1.00

Table 5.2: Marginal inclusion probabilities of the key variables, obtained by the

scores of the top 50 models.
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independent competing risks, which does not allow interactions between intercourse acts

occurring on different days. Interestingly, my results suggest that a narrower four day

fertile interval ending one day prior to the estimate day of ovulation is appropriate (days 9,

10, 11 and 12), but with interactions of intercourse occurring between days (9,10), (10,11),

and (11,12). As shown in Table 5.1, these interactions are negative so that the log odds of

conception increases substantially more with the first intercourse act occurring on a highly

fecund day, and subsequent acts on high fertility days have less of an impact. The size

of the model does depend somewhat on the chosen sparsity prior, and if I choose a prior

favoring larger model sizes I tend to include days 8 and 13 along with several additional

interaction terms. Such a model may not be sparse enough for accurate predictions. Note

also from Table 5.2 that the three interactions all have high marginal inclusion probabilities.

Note that several of the top models also select other interactions, such as (6,8) and (8,13),

with the main effects not included in the model. This is biologically reasonable, since one

may require more than one intercourse act to obtain a sizeable conception probability if

intercourse only occurs on the edge of the fertile interval.

To assess the model selection performance of the three methods, I use cross-validation

to compare the three methods. First, 10% of the data, which mean 283 observations, are

randomly picked out to form the test data. For the other 2549 observations, I try different

sample size of the training data, i.e., randomly select 1416, 1699, 1982, 2266 and 2549

observations (50% - 90% of the total 2832 cycles) to form 5 individual training data sets.

To compare different approximation methods for different sizes of the training data sets,

I first use SSS to do the model selection, and then use Bayesian model averaging on the

top 50 models to obtain predictive probabilities of conception for the test data. The other

settings such as priors are the same as the analysis for the full data.

In this cross-validation analysis, it is not suitable to use 0.5 threshold to make prediction

on Y based on the predictive probabilities, because the percentage of 1’s in the population is

so low (about 0.153), otherwise it may give a prediction set with all 0’s. Instead, I compare
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Method (True Value) 50% 60% 70% 80% 90%

Laplace (Y=1) 0.1987 0.2047 0.2091 0.2108 0.2025

VB1 (Y=1) 0.2023 0.2101 0.2141 0.2168 0.2105

VB2 (Y=1) 0.1977 0.2047 0.2083 0.2104 0.2021

Laplace (Y=0) 0.1347 0.1348 0.1399 0.1415 0.1451

VB1 (Y=0) 0.1465 0.1459 0.1520 0.1541 0.1577

VB2 (Y=0) 0.1337 0.1346 0.1397 0.1413 0.1448

Table 5.3: The mean predictive probabilities of conception for true values of response

that are equal to 1 or 0 in the test data respectively. Different training sample sizes

are tried (50% - 90%).

the mean predictive probabilities of conception given the true value of Y in the test data

for different sizes of the training data, and different approximation methods (Table 5.3).

From Table 5.3, the VB approximations have similar performance to Laplace in terms

of prediction. This is because VB1 and VB2 order the models almost correctly, but just

under-estimate the marginal likelihoods for the better models, flattening out the posterior

probabilities across the better models. This may have a modest impact on predictive per-

formance that may not show up compellingly in the cross validation exercise, but clearly

in the previous simulation analysis. Laplace is closer to VB2 than VB1 here, which is

also shown by marginal likelihood approximations in simulation studies. Furthermore, it is

quite intriguing that Laplace and VB2 usually gives lower mean predictive probabilities of

conception than VB1, and the predictive probabilities using training data with sizes from

50% to 80% keep increasing in each row. Note that the low prediction accuracy shown in

Table 5.3 is not at all surprising due to the very high degree of unexplained heterogeneity

that is characteristic of fecundability data.
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5.6 Conclusion

This chapter’s work was originally motivated by the goal of using variational Bayes approx-

imations to improve methods for high-dimensional model selection and averaging. The VB

approaches have been increasingly widely used in machine learning applications, and have

conceptual appeal in resulting from maximization of a formal lower bound on the marginal

likelihood. Although the tightness of the lower bound is in general quite difficult to assess

theoretically, the good performance of VB procedures in various predictive settings has

been reassuring. However, to my knowledge, the performance of VB relative to traditional

Laplace methods of estimating the marginal likelihood with the goal of model selection has

not been assessed.

In the setting of logistic regression model selection, this chapter uses simulations to

compare the accuracy of Laplace and two types of VB approximations (VB1, VB2). I

find that Laplace is highly accurate, while VB1 and VB2 have a disturbing tendency to

under-estimate the marginal likelihood for high posterior probability models. When the

goal is model selection or accurate estimate of posterior model probabilities, this type of

under-estimation is particularly troubling, since one will under-estimate the probabilities

for good models and over-estimate the probabilities for bad models. On the positive side,

the VB approaches do tend to rank the models appropriately; it is only the scores that are

misestimated. Perhaps for this reason, I have observed only a slight decrease in predictive

performance for the VB approaches relative to Laplace in settings with few important

predictors and a high-dimensional set of candidates.

The performance of the VB approach is critically dependent on the accuracy of the

product factorization of the joint posterior. This gives us a clue as to the reason for my

results. In particular, it is my expectation in the variable selection setting that the product

factorization provides a good approximation for bad models, since bad models correspond to

exclusion of important predictors and inclusion of predictors that actually have no impact.

However, I expect that the approximation breaks down when several important predictors
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are included and the coefficients for these predictors are correlated a posteriori, as one would

typically expect in regression models. Because the implementation of VB methods is so tied

to the product factorization, it is difficult to entirely eliminate this problem. However, one

strategy is to attempt a factorization under a parameterization chosen to reduce posterior

dependence.
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Chapter 6

Kalman Filtering for Multi-level

Hierarchical Models

Multi-level hierarchical models provide an attractive framework for estimation of the density

of a response variable aggregated at multiple resolutions. These models provide improved

bias-variance tradeoff by smoothing high-variance estimates at finer resolutions using data

at coarser resolutions. Although such models are popular in statistics, model fitting presents

a formidable challenge, especially for data sets aggregated into large hierarchies. I address

this by a novel model fitting algorithm based on a multi-scale Kalman filter that is both

scalable and easy to implement. The method is illustrated through simulation studies and

analysis of real world data sets in health care and online advertising.

6.1 Introduction

In many real-world applications, one is interested in estimating the probability density of a

response variable that is naturally grouped at multiple resolutions through a hierarchy. One

key goal is to make inference at the finest resolution, i.e., the leaf nodes, a large fraction of

which have small sample sizes and hence would lead to high-variance estimates if analyzed

separately. Bayesian modeling that links parameters across nodes and naturally induces

shrinkage estimation, exploits the natural grouping of data and is a natural method of

choice. Such models are sometimes referred to as multi-level hierarchical models in the

statistics literature (Gelman and Hill, 2007). However, existing methods to fit these models

are not scalable to large hierarchies. In this chapter, I provide an algorithm based on a

multi-scale Kalman filter that is simple to implement and scalable.
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According to Stein (1956) and James and Stein (1961), the central idea of shrinkage is

to smooth unreliable estimates by “borrowing strength” across estimates. In a Bayesian

framework, this is accomplished by assuming node-specific parameters follow a prior across

nodes, defining them as random effects. When data is organized as a hierarchy, it is nat-

ural to assume a multi-level prior wherein parameters of children nodes are assumed to be

drawn from a distribution centered around the parameter of the parent. This bottom-up,

recursive modeling assumption provides a posterior whose estimates at the finest resolution

are smoothed using data on the lineage path of the node in the hierarchy (Lindley, 1971,

1972; Lindley and Smith, 1972). The fundamental assumption is that the hierarchy, deter-

mined from domain knowledge, provides a natural clustering to account for latent processes

generating the data which, when incorporated into the model, can improve predictions.

Since the pioneering work of Laird and Ware (1982), these models have been widely and

successfully used in applications in biology, epidemiology, the social sciences and elsewhere

(see, for example, Gelman and Hill (2007)). In machine learning and data mining, these

models have been used sporadically but are increasingly receiving more attention (see, for

example, Dudik et al. (2007); Agarwal et al. (2007) and references therein).

Although multi-level hierarchical (MLH hereafter) models are intuitive, parameter esti-

mation presents a formidable challenge, especially for applications such as online advertising

and web search where data is often grouped into large hierarchies constructed and carefully

tweaked by humans. For Gaussian responses, the computational bottleneck is the inversion

of a dense covariance matrix whose order depends on the number of nodes, and this is expen-

sive for large problems. For non-Gaussian responses (e.g binary data), the non-quadratic

nature of the log-likelihood adds an additional step of approximating an integral whose

dimension depends on the number of nodes in the hierarchy. This is a very active area of

research in statistics with several approximation approaches being proposed such as Pin-

heiro and Bates (2000), Breslow and Clayton (1993), and Rodriguez and Goldman (2001).

For matrix inversion, techniques based on sparse Cholesky factorization of the covariance
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matrix have been recently proposed in Pinheiro and Bates (2000). For non-Gaussian mod-

els, solutions to the integral problem based on high order Taylor series approximations

have been shown to provide accurate results (Raudenbush et al., 2000). However, these

techniques involve algebra that is often non-intuitive and difficult to implement. A more

natural computational scheme that exploits the structure of the model is based on Gibbs

sampling (Gelfand and Smith, 1990); this is, however, often slow to converge, especially in

large problems. In this chapter, I provide a scalable fitting procedure based on multi-scale

Kalman filtering that directly exploits the hierarchical structure of the problem. Other than

scalability, my fitting procedure is easy to understand and implement.

In Section 6.2, I describe and illustrate the Gaussian MLH and the new fitting algorithm;

the model is then applied to a simulated data set. In Section 6.3, I introduce the non-

Gaussian MLH and describe approximations and bias correction techniques along with the

analysis of a real epidemiological data set. In Section 6.4, I illustrate the technique further

in analysis of an online advertising application. I conclude with a discussion in Section 6.5.

6.2 MLH for Gaussian Responses

Assume we have a hierarchy T consisting of L levels (root is level 0), and for which mj , j =

0, · · · , L, denotes the number of nodes at level j. Denote the set of nodes of level j in the

hierarchy T as Tj . For node r in T , denote the parent of r as pa(r), and the ith child of

the node r as ci(r). If some node r′ is a descendent of r, we say r′ ≺ r. Since the hierarchy

has L levels, TL denotes the set of leaves in the hierarchy. Let yir, i = 1, · · · , nr denote the

ith observation at leaf node r, and xir denote the p-dimensional vector of known covariates

(features) associated with yir. Note that throughout this chapter, for simplicity, all the

observations are assumed to be at the leaf nodes (level L). A more general case where each

node in the hierarchy contains observations can be easily obtained using my algorithm.
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Notation Interpretation

Tj Level j of the hierarchy T

mj The number of nodes at level j in T

q The total number of nodes in T

pa(r) The parent node of node r in T

ci(r) The ith child node of node r in T

nr The number of observations at leaf node r

yir The ith observation (response) at leaf node r

Y {yir, i = 1, · · · , nr, r ∈ T}
xir The ith observation (p-dimensional covariates) at leaf node r

X {xir, i = 1, · · · , nr, r ∈ T}
β The regression parameter vector associated with X

φj
r The random effect parameter at node r at level j

φ {φj
r, r ∈ T, j = 1, · · · , L}

V The residual variance of yir, if yir has a Gaussian model

γj The variance of φj
r for all the nodes at level j

γ {γ1, · · · , γL}
φj

r|r The mean of φj
r|{yir′ , i = 1, · · · , nr′ ,∀r′ ≺ r}

σj
r|r The variance of φj

r|{yir′ , i = 1, · · · , nr′ ,∀r′ ≺ r}
φ̂j

r The mean of φj
r|{yir′ , i = 1, · · · , nr′ ,∀r′ ∈ TL}

σj
r The variance of φj

r|{yir′ , i = 1, · · · , nr′ ,∀r′ ∈ TL}

Table 6.1: A list of the key notations.
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Consider the Gaussian MLH defined by,

yir|φL
r ∼ N(x

′
irβ + φL

r , V ), (6.1)

where β is a regression parameter vector, and φj
r, parameter at node r and level j, is a

random effect with joint distribution defined implicitly by the set of hierarchical conditional

distributions p(φj
r|φj−1

pa(r)) across the levels of the hierarchy, where φ0
0 = 0, and pa(r) denotes

the parent of node r at level j − 1. The form of p(φj
r|φj−1

pa(r)) is assumed to be,

φj
r|φj−1

pa(r) ∼ N(φj−1
pa(r), γj); j = 1, · · · , L, (6.2)

where γ = (γ1, · · · , γL) is a vector of level-specific variance components that control the

amount of smoothing. This specification of MLH is referred to as the centered parametriza-

tion and is often used in a fully Bayesian framework (Sahu and Gelfand, 1999).

An equivalent formulation of MLH in the literature is obtained by attaching independent

random variables bj
r ∼ N(0, γj) to the nodes and replacing φL

r in (6.1) by the sum of the

bj
r parameters along the lineage path from root to leaf node in the hierarchy. We denote

this compactly as z′rb, where b is a vector of bj
r for all the nodes in the hierarchy, and

zr is a vector of 0/1’s turned on for nodes in the path of node r. More compactly, let

y = {yir, i = 1, · · · , nr, r ∈ T}, and X as well as Z be the corresponding matrix of vectors

xir and zr for i = 1, · · ·nr and r ∈ T , then y ∼ N(X
′
β + Zb, V I) with b ∼ N(0, Ω(γ)).

The problem is to estimate the unknown parameters (βp×1, bq×1, γL×1) where q =
∑L

j=1 mj .

The likelihood L(β,Ω, V |y) can be written as

L(β,Ω, V |y) =
∫

p(y|β, b, V )p(b|Ω)db. (6.3)

For Gaussian responses, equation (6.3) can be integrated out as a closed form. The

main computational bottleneck in obtaining the MLE is computing the Cholesky factor

of a q × q matrix (Z
′
Z + Ω−1), which is computationally expensive for large values of
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q (Pinheiro and Bates, 2000). Existing state-of-the-art methods are based on the sparse

Cholesky factorization. I provide a more direct way to solve this problem using a Kalman

filter whose complexity is linear in q and cubic in the fan-outs at the nodes of the tree. I also

note that my methods apply if the random effects are vectors and enter into equation (6.2)

as a linear combination of some covariate vector. In this paper, I illustrate through a scalar.

6.2.1 Model Fitting

Throughout, I work with the centered parametrization introduced above. The heart of

the fitting algorithm is computing the conditional posterior distribution of φ = {φj
r, r ∈

T, j = 1, · · · , L} given (β, V,γ) and p(φj
r|φj−1

pa(r)) in equation (6.2) as the prior. Since the

parameters V and γ are unknown, one can put hyper-priors on those parameters and use

a fully Bayesian approach with MCMC sampling methods to obtain posterior samples.

However, the problems of interest in this chapter have massive scales, and the hierarchy

often contains a number of nodes. For this reason, the MCMC sampling methods are

computationally very expensive, and can hardly be used with large scale data sets. By

treating φ as missing data, we may choose to obtain the maximum likelihood estimates of

the unknown parameters V and γ using the EM algorithm (Dempster et al., 1977), which

is much faster without losing substantial precision. My algorithm can also be applied to a

Bayesian framework; e.g., with a vague prior on V (π(V ) ∝ 1/V ) and a mild quadratic prior

on γj (π(γj |V ) ∝ V/(V +γj)2). In that case, the EM algorithm finds the posterior modes of

V and γ despite that, for massive data sets, the influence of the priors are quite minor and

the posterior modes are approximately equal to the maximum likelihood estimates. Note

that the model fitting algorithm using EM described in the following section, has to be run

for multiple iterations until convergence.

I now describe the Kalman filter, which is used in the inner loop of the EM algorithm, for

computing the conditional posterior of φ. As in temporal state space models, the Kalman
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filter consists of two steps - Filtering : where one propagates information from leaves to the

root and Smoothing : where information is propagated from root all the way down to the

leaves.

Filtering:

Denote the current estimates of the parameters β, γ and V as β̂, γ̂, and V̂ . Define

eir = yir − x
′
irβ̂ to be the residuals, and also, V ar(φj

r) = Σj =
∑j

i=1 γ̂i, r ∈ Tj . Denote the

conditional posterior distribution φL
r |{yir, i = 1, · · · , nr} ∼ N(φL

r|r, σ
L
r|r), for each leaf node

r. The first step is to update φL
r|r and σL

r|r for all φL
r parameters at the leaf nodes using the

standard Bayesian update formula for Gaussian models given by,

φL
r|r =

ΣL

nr∑
i=1

eir

V̂ + nrΣL

, (6.4)

σL
r|r =

ΣLV̂

V̂ + nrΣL

. (6.5)

Next, the posteriors φj
r|{yir′ , i = 1, · · · , nr′ ,∀r′ ≺ r} ∼ N(φj

r|r, σ
j
r|r), are recursively

updated from j = L − 1 to j = 1, by shrinking the parent towards each child and then

combining the information. To provide intuition about the step, it is useful to invert the

state equation (6.2) and express the distribution of φj−1
pa(r) conditional on φj

r. Note that,

φj−1
pa(r) = E(φj−1

pa(r)|φj
r) + (φj−1

pa(r) − E(φj−1
pa(r)|φj

r)). (6.6)

Simple algebra gives the conditional expectation and variance of φj−1
pa(r)|φj

r. Hence,

φj−1
pa(r) = Bjφ

j
r + ψj

r , (6.7)

where Bj =
∑j−1

i=1 γ̂i/
∑j

i=1 γ̂i, is the correlation between any two siblings at level j and

ψj
r ∼ N(0, Bj γ̂j). The update steps are given below.
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First, a new prior is obtained for the parent node based on the current estimate of each

child by plugging-in the current estimates of a child into equation (6.7). For the ith child

of node r,

φj−1
r|ci(r)

= Bjφ
j
ci(r)|ci(r)

, (6.8)

σj−1
r|ci(r)

= B2
j σj

ci(r)|ci(r)
+ Bj γ̂j . (6.9)

Here I assume that r is at level j − 1, and ci(r) is at level j. Next, we combine information

obtained about the parent from all its children.

φj−1
r|r = σj−1

r|r

kr∑

i=1

(φj−1
r|ci(r)

/σj−1
r|ci(r)

), (6.10)

1/σj−1
r|r = Σ−1

j +
kr∑

i=1

((1/σj−1
r|ci(r)

)− Σ−1
j ), (6.11)

where kr is the number of children of node r at level j − 1.

Smoothing:

In the smoothing step, parents propagate information recursively from root to the leaves to

provide us with the posterior of each φj
r based on the entire data. Denoting the posterior

mean and variance of φj
r given all the observations by φ̂j

r and σj
r respectively, the update

equations are given below.

For level 1 nodes, set φ̂1
r = φ1

r|r, and σ1
r = σ1

r|r.

For node r at other levels,

φ̂j
r = φj

r|r + σj
r|rBj(

ˆ
φj−1

pa(r) − φj−1
pa(r)|r)/σj

pa(r)|r, (6.12)

σj
r = σj

r|r + σj
r|rB

2
j (σj−1

pa(r) − σj−1
pa(r)|r)/σj2

pa(r)|r, (6.13)

and set,

σj,j−1
r,pa(r) = σj

r|rBjσ
j−1
pa(r)/σj−1

pa(r)|r. (6.14)
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For a more detailed derivation of these expressions, see Huang and Cressie (2000). The

algorithm outlined above is called the multi-scale Kalman filter (Chou et al., 1994). The

computational complexity of the algorithm is linear in the number of nodes in the hierarchy

and for each parent node, I perform an operation which is cubic in the number of children.

Hence, for most real life hierarchies, the complexity is essentially linear in the number of

nodes.

Expectation Maximization:

To estimate all parameters simultaneously, I take recourse to the EM algorithm (Demp-

ster et al., 1977) which assumes the φ parameters to be the missing latent variables. The

expectation step consists of computing the expected value of complete log-likelihood with

respect to the conditional distribution of missing data φ obtained using the multi-scale

Kalman filter algorithm. The maximization step obtains revised estimates of other para-

meters by maximizing the expected complete log-likelihood. The expressions are,

V̂ =
∑

r∈TL

nr∑
i=1

(eir − φ̂L
r )2 + nrσ

L
r

∑
r∈TL

nr
. (6.15)

For j = 1, · · · , L,

γ̂j =

∑
r∈Tj

(σj
r + σj−1

pa(r) − 2σj,j−1
r,pa(r) + (φ̂r

j − ˆφpa(r)
j−1

)2)

|mj | . (6.16)

Updating β̂:

I use the posterior mean of φ obtained from the Kalman filtering step, to compute the

ordinary least square estimate of β in equation (6.17). β can also be considered to have a
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non-informative uniform prior on the real space (although non-proper) and equation (6.17)

represents the posterior mean of β. Specifically,

β̂ = (X ′X)−1X ′(Y − φ̂L), (6.17)

where φ̂L is the vector of φ̂L
r corresponding to each observation yir at different leaf node r.

6.2.2 Simulation Performance

I provide a check of my model fitting algorithm through a simulation study where the

structure of the hierarchy is derived from a real data set in Rodriguez and Goldman (1995,

2001). I describe the actual epidemiological data set (which will be analyzed in Section 6.3)

and the simulated one I created to test my fitting procedure on the Gaussian model. The

data focus on 2449 Guatemalan children who belong to 1558 families who, in turn, live in

161 communities. The response variable of interest is binary with a positive label assigned to

a child if he/she received a full set of immunizations. The actual data contains 15 covariates

capturing individual, family, and community level characteristics as shown in Table 6.3. For

my simulation study, I consider only three covariates, with the coefficient vector β set with

entries all equal to 1. I simulated Gaussian response as follows: yir|b ∼ N(x
′
irβ+b1

r +b2
r, 10)

where b1
r ∼ N(0, 4), and b2

r ∼ N(0, 1). I simulated 100 data sets and compared the estimates

from the Kalman filter to the one obtained from standard routine lme4 in the statistical

software R. Each point in Figure 6.1, 6.2, and 6.3 represents one simulated data set,

the x-axis represents the parameter estimates from my model fitting algorithm by Kalman

filtering, and the y-axis represents the estimates from “lmer.” Each line in the plots is a

45◦ line that passes through the origin. The more similar the parameter estimates for one

data set by the two methods are, the closer the corresponding point in each plot is to the

line. Results in Figure 6.1, 6.2, and 6.3 clearly show my method provides estimates that are

close to the one obtained from lme4 for the Gaussian model. The EM method converged

rapidly and required at most 30 iterations.
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Figure 6.1: Comparison of β estimates in Gaussian MLH model using Kalman filter

and “lmer” for 100 simulated data sets.
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Figure 6.2: Comparison of the variance components in Gaussian MLH model using

Kalman filter and “lmer” for 100 simulated data sets.
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Figure 6.3: Comparison of V estimate in Gaussian MLH model using Kalman filter

and “lmer” for 100 simulated data sets.
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6.3 MLH for Non-Gaussian Responses

When the assumption of a Gaussian distribution for the response variable is not appropriate

(e.g., in the epidemiological data the response variable is binary), generalized linear models

(McCullagh and Nelder, 1989) provides a natural modeling framework to build MLH. For

the sake of illustration, I only consider the case of binary response in this chapter but other

distributions like Poisson, Gamma can be easily handled.

Let yir ∼ Bernoulli(pir), i.e. P (yir) = pyir
ir (1 − pir)1−yir . Let θir = log pir

1−pir
be the

log-odds. The MLH logistic regression is defined as:

θir = x
′
irβ + φL

r , (6.18)

with the same multi-level prior as described in equation (6.2). The normal multi-level prior

on the φ parameters with a logistic likelihood does not provide a closed form Gaussian

conditional posterior for the φ parameters as in the case of a Gaussian likelihood, this

makes the computation more difficult. Several approximations have been suggested in the

literature. These include quadratic approximations of the complete data likelihood (joint

likelihood of y and φ) to enforce a Gaussian like computation. The notable ones in this

category are the marginal quasi-likelihood (MQL-1, MQL-2) methods of Goldstein (1991),

penalized quasi-likelihood (PQL-1) method of Breslow and Clayton (1993), an enhancement

of PQL called PQL-2 method of Goldstein (1991). As in the Gaussian case, inversion of a

large q × q matrix is computationally expensive for such approximations. Rodriguez and

Goldman (2001) compared the performance of MQL-1, MQL-2, PQL-1, and PQL-2 with

more accurate but slow procedures based on adaptive quadrature and Gibbs sampling.

They demonstrated that methods based on simple quadratic approximations may lead to

bias in the estimates. A bootstrap procedure to correct for the bias was also described in

Kuk (1995). I directly refer to Table 6.2 presented in Rodriguez and Goldman (2001) that

shows estimates for the binary MLH model of Guatemalan data by naive logistic regression

model without random effects (column “logit” in the table), MQL, PQL, and bootstrap
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corrections to PQL-1 estimates (PQL-B). They also compared the results with maximum

likelihood estimates via Gauss-Hermite quadrature, as well as Bayesian estimates obtained

via Gibbs Sampling using non-informative priors.

I note that the main objective of all the above mentioned approximations is statistical

inference for β, while my focus is providing a scalable methodology to estimate the predic-

tive distribution of a response variable grouped at multiple resolutions via a hierarchy. I

take recourse to Taylor series and variational Bayes (Jaakkola and Jordan, 2000) approx-

imations coupled with the Kalman filtering algorithm to achieve scalability. Surprisingly,

variational Bayes performs poorly providing estimates that are badly biased. For Taylor

series approximation, the estimates are much better but the bias is still present; estimating

variance components through a grid search via cross-validation works well in my empirical

evaluation. For problems involving a hierarchy with large number of variance components,

cross-validation may become computationally expensive; the bootstrap correction procedure

may be attractive in such scenarios. I describe my approximation and the bias correction

procedures from Kuk (1995) below.

6.3.1 Approximation Methods

For logistic regression, the log-likelihood of the complete data (y and φ) is not quadratic.

Let ηir = xirβ̂+φ̂L
r , where β̂, φ̂L

r are current estimates of the parameters in our algorithm. I

do a quadratic approximation of the log-likelihood through a second order Taylor expansion

around ηir as in Srebro and Jaakkola (2003). This enables us to do the calculations as in

the Gaussian case with the response yir being replaced by Zir where

Zir = ηir +
2yir − 1

g((2yir − 1)ηir)
, (6.19)

and g(x) = 1/(1 + exp(−x)). Approximately,

Zir ∼ N(x′irβ + φL
r ,

1
g(ηir)g(−ηir)

). (6.20)
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Effects Logit MQL-1 MQL-2 PQL-1 PQL-2 PQL-B Maximum Gibbs

likelihood

Fixed effects

Individual

Child age ≥ 2 years 0.95 0.93 1.11 0.98 1.44 1.80 1.72 1.84

Mother age ≥ 25 years -0.08 -0.08 -0.10 -0.09 -0.16 -0.19 -0.21 -0.26

Birth order 2-3 -0.08 -0.09 -0.11 -0.10 -0.19 -0.15 -0.26 -0.29

Birth order 4-6 0.09 0.13 0.15 0.13 0.17 0.27 0.18 0.21

Birth order ≥ 7 0.15 0.19 0.23 0.20 0.33 0.39 0.43 0.50

Family

Indigenous, no Spanish 0.28 -0.04 -0.05 -0.05 -0.13 -0.06 -0.18 -0.22

Indigenous Spanish 0.22 0.01 0.01 0.00 -0.05 0.03 -0.08 -0.11

Mother’s education primary 0.25 0.21 0.25 0.22 0.34 0.42 0.43 0.48

Mother’s education secondary 0.30 0.22 0.27 0.23 0.34 0.46 0.42 0.46

or better

Husband’s education primary 0.29 0.28 0.34 0.30 0.44 0.57 0.54 0.59

Husband’s education secondary 0.21 0.25 0.31 0.27 0.41 0.47 0.51 0.55

or better

Husband’s education missing 0.03 0.02 0.02 0.02 0.01 0.07 -0.01 0.00

Mother ever worked 0.25 0.19 0.24 0.20 0.31 0.37 0.39 0.42

Community

Rural -0.50 -0.47 -0.57 -0.50 -0.73 -0.93 -0.89 -0.96

Proportion indigenous, 1981 -0.78 -0.64 -0.78 -0.67 -0.95 -1.21 -1.15 -1.22

Random effects

Standard deviations γ

Family — 0.63 0.72 0.73 1.75 2.69 2.32 2.60

Community — 0.53 0.55 0.56 0.84 1.06 1.02 1.13

Table 6.2: Estimates for the binary MLH model of complete immunization, all the

results from Rodriguez and Goldman (2001).
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Now denote eir = Zir − x′irβ̂, and the approximated variance of Zir as Vir. Analogous to

equation (6.4) and (6.5), the resulting filtering step for the leaf nodes becomes:

φL
r|r = σL

r|r
nr∑

i=1

eir

Vir
, (6.21)

σL
r|r = (

1
ΣL

+
nr∑

i=1

1
Vir

)−1. (6.22)

The step for estimating β becomes:

β̂ = (X ′WX)−1X ′W (Z − φ̂L), (6.23)

where W = diag( 1
Vir

). All the other computational steps remain the same as in the Gaussian

case.

For logistic regression, one could also use the variational Bayes (VB hereafter) method

described in Jaakkola and Jordan (2000). The VB approximation provides a lower bound

to the predictive log-likelihood that approaches the actual one monotonically with each

iteration. In general, VB tends to provide a more robust algorithm compared to quadratic

approximations. In our context, the only detail that changes is the definition of Zir in

equations (6.19) and (6.20). In fact, for VB the Zir are defined as follows.

Zir =
(2yir − 1)ηir

tanh(ηir/2)
, (6.24)

then approximately,

Zir ∼ N(x′irβ + φL
r ,

2tanh(ηir/2)
ηir

). (6.25)

Surprisingly, the VB method badly underestimates the γ’s compared to the Taylor approx-

imation. On closer scrutiny I found the VB to always provide smaller estimates of the

posterior variance σr|r relative to Taylor, this propagates all the way in the entire hierarchy

and across iterations. Similar observations on VB have been made recently by Wang and
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Titterington (2005); Consonni and Marin (2007) in the context of a different model, and

also discussed in Chapter 5.

6.3.2 Bias correction

Table 6.3 shows estimates of parameters obtained from our approximation method in the

column titled KF . As evident, the estimates are very close to PQL-1 estimates in Table 6.2,

thus biased compared to the ones obtained using the slow Gibbs sampler. I corrected the

bias in the estimates by modifying the procedure outlined in Kuk (1995); described in

Algorithm 1. In the table, θ denotes the unknown parameters β and γ. The initial estimates

θ̃ are the ones obtained from my EM algorithm using Taylor series approximation. At each

iteration, I simulate M new data sets and get new estimates of the parameters by re-running

my algorithm, this provides a bias correction and the procedure is repeated several times.

As evident, this is an expensive procedure but is easily parallelizable. In general, a value

of M = 50 with about 100 − 200 iterations worked well for us. For my online advertising

application (described in Section 6.4) where one needs to process large volumes of data that

may not even fit into memory, the Map-Reduce (Dean and Ghemawat, 2004) paradigm

provides an attractive computational framework to implement the parallel computation.

The bias corrected estimates are reported under KF-B in Table 6.3. The estimates after

bootstrap correction are closer to the estimates obtained from Gibbs sampling.

It is customary to estimate parameters like the γ parameters using a tuning hold-out

set. For instance, such a strategy was adopted in Dudik et al. (2007) in the context of

training a hierarchical MaxEnt model. To test the performance of such a strategy, I created

a two-dimensional grid for (
√

γ1,
√

γ2) for the epidemiological Guatemalan data set ranging

in [.1, 3] × [.1, 3] and computed the log-likelihood on a 10% randomly sampled hold-out

data; the surface plot is shown in Figure 6.4. For each point on the two-dimensional grid, I

estimated the other parameters φ and β, using our EM algorithm that does not update the

value of γ. The estimates at the optimal value of γ are shown in Table 6.3 under KF-C. The
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Algorithm 1 The bootstrap procedure

Obtain θ̃ as an initial estimate of θ. Bias b(0) = 0.

for i = 1 to N do

θ̂ = θ̃ − b(i).

for j = 1 to M do

Use θ̂ to simulate new data j, by simulating φ and the corresponding Y .

For data j, obtain an new estimate of θ as θ̃(j).

end for

b(i+1) = 1
M

M∑
j=1

θ̃(j) − θ̂.

end for

estimates are better than KF but worse than KF-B. Hence, KF-B is recommended when

computing resources are available (especially multiple processors) and running time is not

a big constraint; when runtime is a big issue I recommend simple grid search using a small

number of points around the initial estimate. For problems with large number of tweaking

parameters, efficient grid search may be as expensive as a bootstrap correction.

6.4 Content Match Data Analysis

Web advertising supports a large swath of today’s Internet ecosystem and has become a

billion dollar business. Some of these advertisements are textual and some are graphi-

cal. Contextual advertising or Content Match (CM) refers to the placement of commercial

textual advertisements within the content of a generic web page, while Sponsored Search

(SS) advertising consists in placing advertisements on result pages from a web search en-

gine, with advertisements driven by the originating query. In contextual advertising usually

there is a commercial intermediary, called an ad-network, in charge of optimizing the adver-

tisement selection with the twin goal of increasing revenue (shared between publisher and
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Effects KF KF-B KF-C Gibbs

Fixed effects

Individual

Child age ≥ 2 years 0.99 1.77 1.18 1.84

Mother age ≥ 25 years -0.09 -0.16 -0.10 -0.26

Birth order 2-3 -0.10 -0.18 -0.25 -0.29

Birth order 4-6 0.13 0.25 0.10 0.21

Birth order ≥ 7 0.20 0.36 0.21 0.50

Family

Indigenous, no Spanish -0.05 -0.11 0.02 -0.22

Indigenous Spanish 0.00 0.01 0.02 -0.11

Mother’s education primary 0.22 0.44 0.32 0.48

Mother’s education secondary 0.23 0.44 0.27 0.46

or better

Husband’s education primary 0.30 0.53 0.39 0.59

Husband’s education secondary 0.27 0.48 0.35 0.55

or better

Husband’s education missing 0.02 0.04 -0.08 0.00

Mother ever worked 0.21 0.35 0.24 0.42

Community

Rural -0.50 -0.91 -0.62 -0.96

Proportion indigenous, 1981 -0.67 -1.23 -0.89 -1.22

Random effects

Standard deviations γ

Family 0.74 2.40 1.92 2.60

Community 0.56 1.05 0.81 1.13

Table 6.3: Estimates for the binary MLH model of complete immunization (Kalman

Filtering results)
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ad-network) and improving user experience. Typically the ad-network and the publisher

are paid only when the user clicks on an advertisement.

In this section I analyze data generated by a content match system where every showing

of an advertisement on a web page (called an impression) constitutes an event. The goal

is to place suitable advertisements on a given page to maximize long-term revenue to the

ad-network. Since clicks generate revenue, it is tempting to build a predictive model for

click-rates based on features derived from pages and advertisements. However, an algo-

rithm that optimizes click rates alone may not produce relevant advertisements on pages

unless the serving scheme is subject to constraints (e.g. one cannot serve washing machine

advertisements on golf pages). Devising a serving scheme purely based on clicks may be

detrimental in the long-run (e.g. a small fraction of bad quality but enticing advertisements

may produce large number of clicks in the short run and may skew away the click model

from relevance; this may hurt the system in the long run). I build a model that combines

semantic information about (page,advertisement) pairs with click feedback as follows.

Pages and advertisements are classified into two separate large seven-level content hi-

erarchies that are constructed based on editorial inputs. For each page or advertisement,

there are usually more than one possible classifications. I work with the top path, but note

that multiple membership can be easily handled in my case by slight modification of the

likelihood. Instead of using the two original hierarchies of page and advertisement, I formed

a new hierarchy (a pyramid) by taking the cross product of the two hierarchies. This is

used to estimate smooth click-rates of (page,advertisement) pairs.

6.4.1 Training and Test Data

Although the page and advertisement hierarchies consist of 7 levels, classification is often

done at coarser levels by the classifier. In fact, the average level at which the classification

took place was 3.8. To train my model, I only consider the top 3 levels of the original

hierarchy. Pages and advertisements that are classified at coarser levels are randomly as-
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signed to the children nodes. Overall, the pyramid has 441, 25751 and 241292 nodes for

the top 3 levels. Since the original data is incredibly massive, a sampling scheme from the

original data is required. To train my model, I include all “slates” (set of advertisements

shown together on a page) that had at least one click. Among the large fraction of slates

with no clicks, I randomly sample .1% to be included in the sample. Thus, non-clicks that

accompany clicks get much higher weight. A sampling scheme better than random (e.g.

heavily downsample non-clicked slates for non-clickers) can be constructed but beyond the

scope of this chapter. The training data were collected by confining to a specific subset

of data which is sufficient to illustrate my methodology but in no way representative of

the actual publisher traffic received by the ad-network under consideration. The training

data I collected after sampling as described above over 23 days consisted of approximately

11M binary observations with approximately 1.9M clicks. The test set consisted of 1 day’s

worth of data with approximately .5M observations. I randomly split the test data into 20

equal sized partitions to report my results. The covariates include the position at which

an advertisement is shown; ranking advertisements on pages after adjusting for positional

effects is important as the positional effects introduce strong bias in the estimates (a bad

advertisement shown at a lucrative position often has better click-throughs than a good ad-

vertisement shown at an unimportant position). In the training data a large fraction of leaf

nodes in the pyramid (approx 95%) have zero clicks, this provides a good motivation to fit

the binary MLH on this data to get smoother estimates at leaf nodes by using information

at coarser resolutions.

6.4.2 Results

Since almost 95% of nodes at level 3 in the pyramid have 0 clicks, the naive regression

model using leaf nodes as covariates does not converge (Silvapulle, 1981). I also note that

constructing a metric that will quantify the impact of an algorithm when it is used to

actually serve advertisements is a non-trivial problem; the best way is to run the algorithm
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on live traffic. For the purposes of this chapter, I will report the average test log-likelihood

as a goodness measure of a model. I compare the following models: a) The optimal model

which predicts constant probability for all examples, b) 3 level MLH but without positional

effects, c) top 2 level MLH to illustrate the gains of using information at a finer resolution,

and d) 3 level MLH with positional effects to illustrate the generality of the approach; one

can incorporate both additional features and the hierarchy into a single model. Figure 6.5

shows the distribution of average test likelihood on the partitions. As expected, all variations

of MLH are better than the constant model. The MLH model which uses only 2 levels is

inferior to the 3 level MLH while the general model that uses both covariates and hierarchy

is the best.

6.5 Conclusion

In applications where data is aggregated at multiple resolutions with sparsity at finer res-

olutions, multi-level hierarchical models provide an attractive class to reduce variance by

smoothing estimates at finer resolutions using data at coarser resolutions. However, the

smoothing provides a better bias-variance tradeoff only when the hierarchy provides a nat-

ural clustering for the response variable and captures some latent characteristics of the

process; often true in practice. I proposed a novel algorithm to fit these models based on a

multi-scale Kalman filter that is both scalable and easy to implement. For the non-Gaussian

case, the estimates are biased but performance can be improved by using a bootstrap cor-

rection or estimation through a tuning set.

120



constant 2 levels 3 levels 3 levels with position

−
2.

65
−

2.
60

−
2.

55
−

2.
50

−
2.

45

av
er

ag
e 

te
st

 lo
g−

lik

Figure 6.5: Average test log-likelihood on different variations of MLH computed on

20 equal sized splits of test data.
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Chapter 7

Final Comments and Extensions

7.1 Extensions of Local Graphical Model Search

7.1.1 Extensive local neighborhood

Chapter 3 and 4 described the local graphical model search problem and the corresponding

solutions. A local graphical model in previous chapters is defined to include edges that are

either incident to the target variable or connecting two neighbors of the target variable. In

Chapter 3, I assumed all the non-local edges remain null during the SSS and applied such an

algorithm to cardiovascular genomics data. However, one may also wish to know the graph-

ical structure of the neighborhood of ne(Y ). For example, in the cardiovascular genomics

data analysis in Section 3.4, after having found glycoprotein (variable 3 in Appendix B) as

one node in ne(Y ), one may also wish to know the local graphical model structure around

glycoprotein. In this case, the algorithm using SSS, introduced and discussed in Chapter

3, has to be changed to a more refined way. If a node a is connected to at least one nodes

in ne(Y ) in the graph, and a 6= Y , a /∈ ne(Y ), we say a is a lv2 neighbor of Y . During the

refined search, assume all the edges remain null, except which are incident to Y or ne(Y )

or connect two lv2 neighbors of Y . Note that these edges, which are set to be null in this

chapter, can also be fixed by results from the preliminary studies. The corresponding new

definition of the “local neighbor” of G for the SSS algorithm with the null non-local edge

assumption becomes:

Definition 7.1. A graphical model G′ is defined as one local neighbor of G if any of the

following is satisfied:
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1. G′ is one of the graphs attained by adding one edge incident to Y or one node in

ne(Y ) in G.

2. G′ is one of the graphs attained by adding one edge connecting two nodes, each in

ne(Y ) or to be one of the lv2 neighbors of Y in G.

3. G′ is one of the graphs attained by deleting one edge incident to Y or one node in

ne(Y ), and cleaning all the resulting non-local edges in G.

4. G′ is one of the graphs attained by deleting one edge connecting two nodes, each in

ne(Y ) or to be one of the lv2 neighbors of Y in G.

By this new definition of “local neighbor”, SSS algorithm can be applied to find the top

local graphical model with lv2 neighbors of Y .

7.1.2 Modified Targeted Metropolis-Hastings Method

Chapter 4 developed a new kind of Metropolis-Hastings method using a targeted proposal,

which focuses on proposing to add or delete local edges during the sampling process. How-

ever, in section 4.5, I also noted that the TMH adding edge proposal is dominated by adding

edges incident to Y , when p is large, which may result in the slow convergence of TMH.

Therefore, one further extension is to slightly modify the TMH proposal so that it is more

“targeted.”

1. Choose to add or delete one edge with probability 1/2.

2. Choose to add or delete one local edge with probability λ, and non-local edge with

probability 1− λ.

3. If adding/deleting a local edge, choose to add/delete an edge incident to Y with

probability δ, and an edge connecting Y ’s neighbors with probability 1− δ.

By adding an extra parameter δ into the proposal, one can control the proportion of

time the proposal adds or deletes an edge incident to the target variable Y , which is now

independent of p. When p is large, the proposal can now spend reasonable time on the
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local edges connecting nodes in ne(Y ). Note that the MH acceptance probability forms

in various cases are more complicated than the original TMH acceptance probabilities in

Appendix D.

7.2 Hierarchical Priors over the Undirected Graph-

ical Models

By Bayes’ Theorem, the posterior probabilities of the graphical models are determined by

two factors: the likelihood of the graphical models conditional on the data and the prior

model probability. Mathematically, if one undirected graph is denoted by G and the data

by Y1:n, we have p(G|Y1:n) ∝ p(Y1:n|G)p(G).

A potential hierarchical prior over undirected graphs is introduced in this section. In

Chapters 3 and 4, Bernoulli priors were used for p(G). The core idea of Bernoulli priors is

to assume that every edge between any pair of nodes have the same prior probability to be

included in the graph. Denote this prior probability as β, then

p(G) = β|E(G)|(1− β)
p(p−1)

2
−|E(G)|, (7.1)

Bernoulli priors are quite convenient, and widely used in literature such as Jones et al.

(2005). The value of β controls the sparsity of the “top” graphs found in the graphical

model search. However, the choice of β actually requires rationale, because by decreasing

or increasing β, one can obtain different “top” graphs with different sparsity. Although

people usually have prior information of the sparsity of the graph, it is ideal if β can be

treated as an unknown parameter with a hyper prior distribution. In this section I use the

idea from Lucas et al. (2006), where they defined a class of hierarchical sparsity priors in

Bayesian factor models and applied the priors in gene expression genomics.

As discussed above, instead of assuming that each edge between any pair of nodes i

and j has the same prior probability β to be included in G, I allow them to have their
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own probabilities of inclusion, which now are denoted as βij parameters. Note that sparsity

plays an important role in graphical model selection and search, hence |E(G)| should be

small relative to p, the dimension of G. The natural hyper prior of βij can be

βij ∼ (1− ρij)δ0(βij) + ρijBe(βij |sr, s(1− r)), (7.2)

where s and r are known parameters, ρij is the probability that βij is not zero, and has its

own hyper prior distribution. To simplify the prior, I assume that all the ρij parameters

are both unknown but equal, and denoted by ρ. Then, the prior of βij can be expressed as

βij ∼ (1− ρ)δ0(βij) + ρBe(βij |sr, s(1− r)). (7.3)

I also assume that ρ has a beta prior distribution ρ ∼ Be(ρ|av, a(1 − v)) with a and v

known. The joint distribution of G, β, and ρ given the data Y1:n is then

p(G,β, ρ|Y1:n) ∝ p(Y1:n|G)p(G|β)p(β|ρ)p(ρ). (7.4)

Integrating out β, equation (7.4) becomes

p(G, ρ|Y1:n) ∝ p(Y1:n|G)p(ρ)
∏

i,j

∫ 1

0
β

eij

ij (1− βij)1−eijp(βij)dβij , (7.5)

where eij = 1 if there is an edge between nodes i and j in G, and eij = 0 otherwise.

Note that when eij = 1, the integral on each βij in equation (7.5) is just E[βij |ρ], and

when eij = 0, it becomes 1 − E[βij |ρ]. By the point-mass mixture prior of βij , we have

E[βij |ρ] = ρr. Therefore, equation (7.5) becomes

p(G, ρ|Y1:n) ∝ p(Y1:n|G)p(ρ)(ρr)|E(G)|(1− ρr)
p(p−1)

2
−|E(G)|. (7.6)

By Denoting K = p(p−1)
2 , and integrating out ρ from p(G, ρ|Y1:n), we can then obtain

the marginal posterior probability of the graph G given the data Y1:n.
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p(G|Y1:n) ∝ p(Y1:n|G)
∫ 1
0 (ρr)|E(G)|(1− ρr)K−|E(G)|p(ρ)dρ

= p(Y1:n|G)
∫ 1
0 (ρr)|E(G)|

K−|E(G)|∑
k=0

(K−|E(G)|
k

)
(−1)K−|E(G)|−k(ρr)K−|E(G)|−kp(ρ)dρ

= p(Y1:n|G)
K−|E(G)|∑

k=0

(K−|E(G)|
k

)
(−1)K−|E(G)|−krK−kE[ρK−k]

∝ p(Y1:n|G)
K−|E(G)|∑

k=0

(K−|E(G)|
k

)
(−1)K−|E(G)|−kr−k Γ(av+K−k)

Γ(a+K−k) .

Therefore, the marginal prior of the graph G is

p(G) ∝
K−|E(G)|∑

k=0

(
K − |E(G)|

k

)
(−1)K−|E(G)|−kr−k Γ(av + K − k)

Γ(a + K − k)
. (7.7)

The prior introduced in equation (7.7) allows each edge to have its own prior probability

to be included in the graph. Also, the marginal posterior p(ρ|Y1:n) implies the posterior

distribution of the probability of any βij being non-zero given the data. If considering ρ

as the sparsity parameter, ρ implies how sparse on average the graphical models should be

given the data. Obviously,

p(ρ|Y1:n) =
∑

G

p(G, ρ|Y1:n), (7.8)

which is not easy to compute because of the huge number of possible graphs if p is very

large. However, this can make us theoretically understand how this prior works within the

whole framework.
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Appendix A

The Gene Probsets Generating the

Projected Risk Signature

• 1. J04765 /FEATURE= /DEFINITION=HUMOSTRO Human osteopontin mRNA,

complete cds

• 2. Cluster Incl. AB006780: Homo sapiens mRNA for galectin-3, complete cds

/cds=(53,805) /gb=AB006780 /gi=2385451 /ug=Hs.621 /len=943

• 3. M30257 /FEATURE= /DEFINITION=HUMCAM1V Human vascular cell adhe-

sion molecule 1 mRNA, complete cds

• 4. Cluster Incl. AA868382: ak41e04.s1 Homo sapiens cDNA, 3 end/ clone=IMAGE-

1408542/clone end=3 /gb=AA868382 /gi=2963827 /ug=Hs.198253 /len=936

• 5. Cluster Incl. M37033: Human CD53 glycoprotein mRNA, complete cds /cds=(93,752)

/gb=M37033 /gi=180142 /ug=Hs.82212 /len=1480

• 6. Cluster Incl. S57235: CD68=110kda transmembrane glycoprotein [human, promono-

cyte cell line U937, mRNA, 1722 nt] /cds=(15,1079) /gb=S57235 /gi=298664 /ug=Hs.226237

/len=1689

• 7. Cluster Incl. X03084: Human mRNA for C1q B-chain of complement system

/cds=(0,687) /gb=X03084 /gi=29537 /ug=Hs.8986 /len=935

• 8. Cluster Incl. M32578: Human MHC class II HLA-DR beta-1 mRNA (DR2.3),

5end /cds=(61,861) /gb=M32578 /gi=188305 /ug=Hs.181366 /len=1216

• 9. Cluster Incl. M81141: Human MHC class II HLA-DQ-beta mRNA (DR7 DQw2),

complete cds /cds=(35,820) /gb=M81141 /gi=188202 /ug=Hs.73933 /len=1171
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• 10. Cluster Incl. M76665: Human 11-beta-hydroxysteroid dehydrogenase (HSD11)

gene /cds=(94,972) /gb=M76665 /gi=179474 /ug=Hs.37012 /len=1375

• 11. M30257 /FEATURE= /DEFINITION=HUMCAM1V Human vascular cell ad-

hesion molecule 1 mRNA, complete cds

• 12. Cluster Incl. J02923: Human 65-kilodalton phosphoprotein (p65) mRNA, com-

plete cds /cds=(74,1957) /gb=J02923 /gi=189501 /ug=Hs.76506 /len=3175

• 13. Cluster Incl. X00442: Human mRNA for haptoglobin alpha(2FS)-beta precursor

/cds=(26,1246) /gb=X00442 /gi=31749 /ug=Hs.75990 /len=1412

• 14. Cluster Incl. U15085: Human HLA-DMB mRNA, complete cds /cds=(233,1024)

/gb=U15085 /gi=557701 /ug=Hs.1162 /len=1362

• 15. Cluster Incl. U51240: Human lysosomal-associated multitransmembrane protein

(LAPTm5) mRNA, complete cds /cds=(75,863) /gb=U51240 /gi=1255239 /ug=Hs.79356

/len=2232

• 16. Cluster Incl. M60315: Human transforming growth factor-beta (tgf-beta) mRNA,

complete cds /cds=(159,1700) /gb=M60315 /gi=339561 /ug=Hs.238991 /len=2923

• 17. X59065 /FEATURE=exon /DEFINITION=HSFGFEX3 H.sapiens FGF gene,

exon 3

• 18. M21121 /FEATURE= /DEFINITION=HUMTCSM Human T cell-specific pro-

tein (RANTES) mRNA, complete cds

• 19. Cluster Incl. W22541: 69B4 Homo sapiens cDNA /clone=(not-directional)

/gb=W22541 /gi=1299374 /ug=Hs.20930 /len=809
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Appendix B

The Neighbors of the Projected Risk

Signature in Top 50 Models

• 1. Cluster Incl. M37033: Human CD53 glycoprotein mRNA, complete cds /cds=(93,752)

/gb=M37033 /gi=180142 /ug=Hs.82212 /len=1480 (No. 5 in generating signature

list)

• 2. Cluster Incl. M63835: Human IgG Fc receptor I gene /cds=(155,1279) /gb=M63835

/gi=180278 /ug=Hs.77424 /len=1437

• 3. Cluster Incl. J02923: Human 65-kilodalton phosphoprotein (p65) mRNA, complete

cds /cds=(74,1957) /gb=J02923 /gi=189501 /ug=Hs.76506 /len=3175 (No. 12 in

generating signature list)

• 4. Cluster Incl. M81141: Human MHC class II HLA-DQ-beta mRNA (DR7 DQw2),

complete cds /cds=(35,820) /gb=M81141 /gi=188202 /ug=Hs.73933 /len=1171 (No.

9 in generating signature list)

• 5. X03663 /FEATURE=cds /DEFINITION=HSCFMS Human mRNA for c-fms

proto-oncogene /NOTE=replacement of probe set 1864 at

• 6. Cluster Incl. M15395: Human leukocyte adhesion protein (LFA-1/Mac-1/p150,95

family) beta subunit mRNA /cds=(72,2381) /gb=M15395 /gi=186933 /ug=Hs.83968

/len=2776

• 7. Cluster Incl. X62744: Human RING6 mRNA for HLA class II alpha chain-like

product /cds=(45,830) /gb=X62744 /gi=36062 /ug=Hs.77522 /len=1079
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• 8. X87212 /FEATURE=cds /DEFINITION=HSCATHCGE H.sapiens mRNA for

cathepsin C

• 9. Cluster Incl. L09708: Human complement component 2 (C2) gene allele b

/cds=(271,2529) /gb=L09708 /gi=2804581 /ug=Hs.2253 /len=2844

• 10. Cluster Incl. X76488: H.sapiens mRNA for lysosomal acid lipase /cds=(145,1344)

/gb=X76488 /gi=434305 /ug=Hs.85226 /len=2599

• 11. Cluster Incl. U15085: Human HLA-DMB mRNA, complete cds /cds=(233,1024)

/gb=U15085 /gi=557701 /ug=Hs.1162 /len=1362 (No. 14 in generating signature

list)

• 12. Cluster Incl. M32578: Human MHC class II HLA-DR beta-1 mRNA (DR2.3),

5end /cds=(61,861) /gb=M32578 /gi=188305 /ug=Hs.181366 /len=1216 (No. 8 in

generating signature list)

• 13. J04765 /FEATURE= /DEFINITION=HUMOSTRO Human osteopontin mRNA,

complete cds (No. 1 in generating signature list)

• 14. Cluster Incl. J02876: Human placental folate binding protein mRNA, complete

cds /cds=(262,1029) /gb=J02876 /gi=182413 /ug=Hs.24194 /len=1211

• 15. Cluster Incl. N90862: zb11b06.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-

301715 /clone end=3 /gb=N90862 /gi=1444189 /ug=Hs.172684 /len=605

• 16. Cluster Incl. X16832: Human mRNA for cathepsin H (EC 3.4.22.16) /cds=(34,1041)

/gb=X16832 /gi=29709 /ug=Hs.76476 /len=1399

• 17. Cluster Incl. U51240: Human lysosomal-associated multitransmembrane protein

(LAPTm5) mRNA, complete cds /cds=(75,863) /gb=U51240 /gi=1255239 /ug=Hs.79356

/len=2232 (No. 15 in generating signature list)
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• 18. Cluster Incl. J03909: Human gamma-interferon-inducible protein (IP-30) mRNA,

complete cds /cds=(40,951) /gb=J03909 /gi=186264 /ug=Hs.14623 /len=1032

• 19. Cluster Incl. M21186: Human neutrophil cytochrome b light chain p22 phago-

cyte b-cytochrome mRNA, complete cds /cds=(28,615) /gb=M21186 /gi=189105

/ug=Hs.68877 /len=687

• 20. Cluster Incl. M13560: Human Ia-associated invariant gamma-chain gene /cds=(795,1493)

/gb=M13560 /gi=184518 /ug=Hs.84298 /len=2080
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Appendix C

The Predictors of the Projected Risk

Signature in Top 10 Models

• 1. J04765 /FEATURE=/DEFINITION=HUMOSTRO Human osteopontin mRNA,

complete cds (No. 1 in generating signature list, also selected as Y ’s neighbor)

• 2. Cluster Incl. AB006780: Homo sapiens mRNA for galectin-3, complete cds

/cds=(53,805) /gb=AB006780 /gi=2385451 /ug=Hs.621 /len=943 (No. 2 in gen-

erating signature list)

• 3. M30257 /FEATURE= /DEFINITION=HUMCAM1V Human vascular cell adhe-

sion molecule 1 mRNA, complete cds (No. 3 in generating signature list)

• 4. Cluster Incl. AA868382: ak41e04.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-

1408542 /clone end=3 /gb=AA868382 /gi=2963827 /ug=Hs.198253 /len=936 (No.

4 in generating signature list)

• 5. Cluster Incl. M37033: Human CD53 glycoprotein mRNA, complete cds /cds=(93,752)

/gb=M37033 /gi=180142 /ug=Hs.82212 /len=1480 (No. 5 in generating signature

list, also selected as Y ’s neighbor)

• 6. Cluster Incl. X03084: Human mRNA for C1q B-chain of complement system

/cds=(0,687) /gb=X03084 /gi=29537 /ug=Hs.8986 /len=935 (No. 7 in generating

signature list)

• 7. Cluster Incl. M32578:Human MHC class II HLA-DR beta-1 mRNA (DR2.3),

5end /cds=(61,861) /gb=M32578 /gi=188305 /ug=Hs.181366 /len=12 (No. 8 in

generating signature list, also selected as Y ’s neighbor)
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• 8. Cluster Incl. M81141: Human MHC class II HLA-DQ-beta mRNA (DR7 DQw2),

complete cds /cds=(35,820) /gb=M81141 /gi=188202 /ug=Hs.73933 /len=1171 (No.

9 in generating signature list, also selected as Y ’s neighbor)

• 9. Cluster Incl. J02923: Human 65-kilodalton phosphoprotein (p65) mRNA, complete

cds /cds=(74,1957) /gb=J02923 /gi=189501 /ug=Hs.76506 /len=3175 (No. 12 in

generating signature list, also selected as Y ’s neighbor)

• 10. Cluster Incl. U15085: Human HLA-DMB mRNA, complete cds /cds=(233,1024)

/gb=U15085 /gi=557701 /ug=Hs.1162 /len=1362 (No. 14 in generating signature

list, also selected as Y ’s neighbor)

• 11. Cluster Incl. U51240: Human lysosomal-associated multitransmembrane protein

(LAPTm5) mRNA, complete cds /cds=(75,863) /gb=U51240 /gi=1255239 /ug=Hs.79356

/len=2232 (No. 15 in generating signature list, also selected as Y ’s neighbor)

• 12. Cluster Incl. X62744: Human RING6 mRNA for HLA class II alpha chain-like

product /cds=(45,830) /gb=X62744 /gi=36062 /ug=Hs.77522 /len=1079 (Selected

as Y ’s neighbor)

• 13. Cluster Incl. N90862: zb11b06.s1 Homo sapiens cDNA, 3 end /clone=IMAGE-

301715 /clone end=3 /gb=N90862 /gi=1444189 /ug=Hs.172684 /len=605 (Selected

as Y ’s neighbor)

• 14. Cluster Incl. M21186: Human neutrophil cytochrome b light chain p22 phago-

cyte b-cytochrome mRNA, complete cds /cds=(28,615) /gb=M21186 /gi=189105

/ug=Hs.68877 /len=687 (Selected as Y ’s neighbor)

• 15. M16592 /FEATURE=mRNA /DEFINITION=HUMHCKB Human hemopoietic

cell protein-tyrosine kinase (HCK) gene, complete cds, clone HK24 Cluster Incl.
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• 16. J04131:Human gamma-glutamyl transpeptidase (GGT) protein mRNA, complete

cds /cds=UNKNOWN /gb=J04131 /gi=183137 /ug=Hs.135 /len=2535
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Appendix D

Acceptance Probabilities in the Targeted

Metropolis-Hastings Methods

In Metropolis-Hasting Methods, the acceptance probability ρ(G, G′) is defined by

ρ(G,G′) = min {p(G′|Y1:n)
p(G|Y1:n)

q(G|G′)
q(G′|G)

, 1}, (D.1)

where q(G′|G) (q(G|G′)) is the probability of the graph G′ (G) to be proposed given the

current graph G (G′).

This appendix discusses the conditional densities q(G|G′) and q(G′|G) for different cases

in Targeted Metropolis-Hasting methods. In every iteration, I set the probability to add or

delete an edge to be 0.5, if either proposal is possible. Also, assume there are currently k

variables in ne(Y ), with p− k − 1 variables out of ne(Y ). Among those k variables and Y ,

assume there are l local edges, with the total number of edges in the current graph G being

e.

First of all, we discuss q(G|G′) as well as q(G′|G) when adding one edge between nodes

i and j. Without losing much precision, I assume that this adding proposal does not violate

the decomposability of the graph. All the different cases are:

1. It is a local edge (either i or j is target variable Y , or both i and j are currently in

ne(Y )).

(1) Both i and j are currently Y ’s neighbors (l 6= 0 and e < p(p−1)
2 − 1).

q(G|G′)
q(G′|G)

=
(k+1)k

2 − l + p− k − 1
l + 1

.
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(2) Either i or j is target variable Y (l 6= 0, e < p(p−1)
2 − 1, and k 6= p− 2). Set Y = i

for convenience. When we add j to Y , all of the edges connecting j and the other

neighbors of Y will become local edges. Denote the number of those edges as lj .

q(G|G′)
q(G′|G)

=
(k+1)k

2 − l + p− k − 1
l + lj + 1

.

(3) Either i or j is target variable Y , and k = p− 2.

q(G|G′)
q(G′|G)

=
(k+1)k

2 − l + p− k − 1
λ(l + lj + 1)

.

(4) When l = 0, there is no way to delete a local edge. Therefore, in this case,

q(G|G′)
q(G′|G)

=
(k+1)k

2 − l + p− k − 1
2(l + 1)

.

(5) When e = p(p−1)
2 − 1, the graph is full but one edge.

q(G|G′)
q(G′|G)

=
2( (k+1)k

2 − l + p− k − 1)
(l + 1)

,

or:

q(G|G′)
q(G′|G)

=
2( (k+1)k

2 − l + p− k − 1)
(l + lj + 1)

,

or:

q(G|G′)
q(G′|G)

=
2( (k+1)k

2 − l + p− k − 1)
λ(l + lj + 1)

.

2. It is not a local Edge. (When k = p− 1, this cannot happen!)

(1) When 0 < e− l < (p−k−1)(p−k−2)
2 + (p− k − 1)k − 1,

q(G|G′)
q(G′|G)

=
(p−k−1)(p−k−2)

2 + (p− k − 1)k − e + l

e− l + 1
.
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(2) When e− l = 0,

q(G|G′)
q(G′|G)

=
(p−k−1)(p−k−2)

2 + (p− k − 1)k − e + l

2(e− l + 1)
.

(3) When e− l = (p−k−1)(p−k−2)
2 + (p− k − 1)k − 1,

q(G|G′)
q(G′|G)

=
(p− k − 1)(p− k − 2) + 2(p− k − 1)k − 2e + 2l

(e− l + 1)
.

Now we discuss the case of deleting one edge between nodes i and j. I also assume that

this deleting proposal does not violate the decomposability of the graph.

1. It is a local edge.

(1) Both i and j are currently in ne(Y ) (l 6= 1 and e < p(p−1)
2 ).

q(G|G′)
q(G′|G)

=
l

(k+1)k
2 + p− k − l

.

(2) Either i or j is target variable Y (l 6= 1, e < p(p−1)
2 , and k 6= p− 1). Set Y = i for

convenience. When we delete the edge (Y, j), all of the edges connecting j and the

other neighbors of Y will become non-local edges. Denote the number of those edges

as lj .

q(G|G′)
q(G′|G)

=
l

k(k−1)
2 + p− k − l + 1 + lj

.

(3) Either i or j is target variable Y , and k = p− 1.

q(G|G′)
q(G′|G)

=
λl

k(k−1)
2 + p− k − l + 1 + lj

.

(4) When l = 1, the proposal deletes the last edge of the graph (Y, i).

q(G|G′)
q(G′|G)

=
2l

k(k−1)
2 + p− k − l + 1 + lj

.
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(5) When e = p(p−1)
2 , the proposal deletes an edge from a full graph.

q(G|G′)
q(G′|G)

=
l

(k + 1)k + 2p− 2k − 2l
,

or:

q(G|G′)
q(G′|G)

=
l

k(k − 1) + 2p− 2k − 2l + 2 + 2lj
,

or:

q(G|G′)
q(G′|G)

=
λl

k(k − 1) + 2p− 2k − 2l + 2 + 2lj
.

2. It is not a local edge.

(1) When 1 < e− l < (p−k−1)(p−k−2)
2 + (p− k − 1)k,

q(G|G′)
q(G′|G)

=
e− l

(p−k−1)(p−k−2)
2 + k(p− k − 1)− e + l + 1

.

(2) When e− l = 1,

q(G|G′)
q(G′|G)

=
2(e− l)

(p−k−1)(p−k−2)
2 + k(p− k − 1)− e + l + 1

.

(3) When e− l = (p−k−1)(p−k−2)
2 + (p− k − 1)k,

q(G|G′)
q(G′|G)

=
e− l

(p− k − 1)(p− k − 2) + 2k(p− k − 1)− 2e + 2l + 2
.
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