
BAYESIAN MODELS AND MACHINE LEARNING WITH

GENE EXPRESSION ANALYSIS APPLICATIONS

by

Ming Liao

Institute of Statistics and Decision Sciences
Duke University

Date:
Approved:

Dr. Mike West, Supervisor

Dr. Ed Iversen

Dr. Feng Liang

Dr. Sayan Mukherjee

Dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy
in the Institute of Statistics and Decision Sciences

in the Graduate School of
Duke University

2005

ABSTRACT

(Statistics)

BAYESIAN MODELS AND MACHINE LEARNING WITH

GENE EXPRESSION ANALYSIS APPLICATIONS

by

Ming Liao

Institute of Statistics and Decision Sciences
Duke University

Date:
Approved:

Dr. Mike West, Supervisor

Dr. Ed Iversen

Dr. Feng Liang

Dr. Sayan Mukherjee

An abstract of a dissertation submitted in partial
fulfillment of the requirements for the degree

of Doctor of Philosophy in the
Institute of Statistics and Decision Sciences in the Graduate School of

Duke University

2005

Abstract

The present thesis is divided into two major parts. The first part focuses on devel-

oping model-based estimates for gene expression indices in the Bayesian framework.

In the application of oligonucleotide expression array technology, reliable estima-

tion of expression indices is critical for “high-level analysis” such as classification,

clustering and regulatory network exploration. A statistical model (Li and Wong,

2001a) has been proposed to develop model-based estimates for gene expression in-

dices and outlier detection. Chapter 1 illustrates an extension of the model in the

Bayesian framework. Proper constraints on model parameters, heavy-tail distribu-

tions for noise, and mixture priors are introduced with the help of Gibbs sampling.

Our model is applied to both artificial probe data and real microarray probe data,

with a demonstration that it is more robust and reliable than the original model.

The second part of the thesis concerns a novel Bayesian models for the problem

of nonlinear regression for prediction. Recently, kernel methods have been intro-

duced and become an increasingly popular tool for various regression, classification

and function estimation problems. They exhibit good generalization performance on

many real-life problems and the approach is properly motivated theoretically. After a

brief introduction to kernel models and methods in Chapter 2, a new class of Bayesian

kernel models is proposed in Chapter 3. First, we derive a novel Bayesian version of

radial basis functions (RBFs) by utilizing the Dirichlet process prior on the distribu-

tion of location variables. This results in Bayesian kernel models as a special case.

To achieve a sparse solution similar to SVMs, we introduce two classes of structured

priors for regression parameters: mixture priors with point masses and Student-t

priors. Orthogonalized kernel models are introduced to achieve better model mixing

and speedup in the computation for problems with large sample sizes n. The problem

iii

of inference on kernel parameters is addressed and a new discrete updating algorithm

is proposed. For all the models introduced in this section, we develop both MCMC

algorithms for fully Bayesian inference and EM algorithms for MAP estimation. Ex-

perimental results on some benchmark data sets show that the performance of our

Bayesian kernel models is among the best of current state-of-art nonlinear models.

Chapter 4 concludes the thesis by summarizing future developments.

iv

Acknowledgements

Several people have contributed advice and guidance as I have developed the research

for this Ph.D. thesis. First of all, I wish to express my appreciation and gratitude to

my advisor Professor Mike West for his advice and support. The present work would

not have been possible without him. It has been a privilege to learn about statistics

and science by working with him. He has given me the necessary independence to

grow as a researcher, many insightful ideas, and a great example of enthusiasm for

science.

I sincerely thank Professors Ed Iversen, Feng Liang and Sayan Mukherjee for

many insightful comments and suggestions that improved this work. In particular,

I would like to thank Professors Ed Iversen and Feng Liang for the invaluable help

during the whole period of my Ph.D. study; and I would like to thank Professor

Sayan Mukherjee for the discussions and help on the kernel methods. I also want to

thank Professors Jennifer Pittman and Adrian Dobra for discussions on microarray

data analysis.

Besides the dissertation work, I would like to thank Professors Mike West, Alan

Gelfand, Dalene Stangl and Ms. Krista Moyle for their understanding and support,

especially in the past one year. I also acknowledge the indispensable help I received

during my years at ISDS from Pat Johnson and Eric Van Gyzen.

Last but not least I thank my wife Yue and my parents Jufang and Zhenghua for

their endless and unconditional support.

v

Contents

Abstract iii

Acknowledgements v

List of Tables x

List of Figures xi

1 Bayesian estimation of gene expression indices 1

1.1 Introduction . 1

1.2 Microarray technology . 2

1.2.1 Introduction . 2

1.2.2 cDNA microarray . 4

1.2.3 Oligonucleotide arrays . 5

1.3 Model-based analysis of gene expression indexes for oligonucleotide
arrays . 7

1.4 Bayesian analysis of gene expression indices 11

1.4.1 Likelihood and priors . 11

1.4.2 Conditional posteriors . 12

1.4.3 Model fitting via MCMC . 13

1.4.4 Mixture priors with point mass 14

1.5 Experimental results . 15

1.5.1 Artificial array data set 1 . 15

1.5.2 Artificial array data set 2 . 17

1.5.3 ER gene . 18

2 Introduction to kernel models 37

vi

2.1 Introduction . 37

2.2 Basis function and kernel extension 37

2.3 Support vector machines . 40

2.3.1 Linear classifier . 40

2.3.2 Nonlinear classifier via kernel extension 41

2.3.3 Soft margin . 43

2.3.4 Related models . 43

2.4 Gaussian processes . 45

2.4.1 Bayesian linear regression . 45

2.4.2 Gaussian processes . 47

2.5 Summary . 49

3 Bayesian kernel models 51

3.1 Introduction and notation . 51

3.1.1 Support vector machines and related models 51

3.1.2 Comparison to relevance vector machine 55

3.1.3 Organization of the chapter 56

3.2 Radial basis functions . 57

3.3 Bayesian RBFs . 60

3.3.1 A Bayesian perspective . 60

3.3.2 New models based on the Dirichlet process prior 63

3.3.3 A novel class of Bayesian kernel models 67

3.3.4 Likelihood . 70

3.3.5 Mixture priors with point mass 71

3.3.6 Student-t priors . 73

vii

3.3.7 Conditional posteriors . 75

3.3.8 Model fitting via MCMC . 76

3.3.9 Posterior predictive distribution 79

3.3.10 Learning with labeled and unlabeled data 80

3.3.11 MAP estimation via EM algorithm 81

3.4 Orthogonalized kernel models . 84

3.4.1 Singular value decomposition of kernel matrix 84

3.4.2 Likelihood and priors . 86

3.4.3 Posteriors . 88

3.4.4 Model fitting via MCMC . 90

3.4.5 Calculation of Bayes’ factors 92

3.4.6 MAP estimation via EM algorithm 95

3.4.7 Interpretation as kernel principal component analysis 97

3.5 Inference on kernel parameters . 100

3.5.1 Fully Bayesian inference . 100

3.5.2 A discrete model for kernel parameters 103

3.5.3 MAP estimation via ECM algorithm 106

3.6 Experimental results . 110

3.6.1 Diabetes in Pima Indians . 111

3.6.2 Leptograpsus crabs . 112

3.6.3 Titanic . 112

3.6.4 Breast cancer . 112

4 Conclusions and future work 132

4.1 Bayesian estimation of gene expression index 132

viii

4.1.1 Random effect models . 132

4.1.2 PM only model . 133

4.1.3 Integration with high-level analysis 135

4.2 Bayesian kernel models . 136

4.2.1 Additive models . 137

4.2.2 Tree models . 138

4.2.3 Mixtures of experts . 140

4.2.4 Robust regression . 142

4.2.5 Nonlinear factor regression models 143

References 147

Biography 157

ix

List of Tables

1.1 Comparison of AD, LW model and the Bayesian model for artificial
array data set 1 . 20

1.2 Table of artificial array data set 2 . 21

1.3 Table of the posterior means of λijs 21

1.4 Comparison of AD, LW model and the Bayesian model for artificial
array data set 2 . 22

3.1 Number of test errors by different classifiers on Pima Indians dataset 114

3.2 Number of test errors by different classifiers on Leptograpsus crabs . 114

3.3 Test errors rate by different classifiers on Titanic 114

3.4 Test errors rate by different classifiers on Breast cancer 115

x

List of Figures

1.1 An overview of procedures for preparing cDNA microarrays 23

1.2 A scanned image produced from a cDNA microarray experiment . . . 24

1.3 An oligonucleotide microarray associates a gene with a set of probe pairs 25

1.4 An illustrative example of probe cell, pixel and GeneChip Probe Array 26

1.5 The probe-specific effects in Oligonucleotide microarrays 27

1.6 Artificial array data set 1 . 28

1.7 The fitted values of ŷijs of the Bayesian model for artificial array data
set 1 . 29

1.8 The fitted values of ŷijs of LW model for artificial array data set 1 . . 30

1.9 Artificial array data set 2 . 31

1.10 The fitted values of ŷijs of the Bayesian model for artificial array data
set 2 . 32

1.11 The fitted values of ŷijs of LW model for artificial array data set 2 . . 33

1.12 ER gene: The first 4 rows are the bar plots of yijs in 4 arrays (2, 15,
17, 18). The last two rows are the posterior means of φ and σ2 . . . 34

1.13 The fitted values of ŷijs of the Bayesian model for ER gene 35

1.14 The fitted values of ŷijs of LW model for ER gene 36

3.1 2-dimensional XOR training data . 116

3.2 2-dimensional XOR test data . 116

3.3 One-dimensional simulations of f(x): F ∼ U(−1, 1) 117

xi

3.4 One-dimensional simulations of f(x): F ∼ DP (F |F0, α) with α = 1 . 117

3.5 One-dimensional simulations to show the effect of different scalar pre-
cision parameters α on f(x): F ∼ DP (F |F0, α) with fixed ρ = 10 . . 118

3.6 One-dimensional simulations to show the effect of different scalar pre-
cision parameters α on f(x): F ∼ DP (F |F0, α) with fixed ρ = 10 . . 119

3.7 One-dimensional simulations with sum of Gaussian kernel and linear
kernel: F ∼ DP (F |F0, α) with fixed ρ = 10 120

3.8 Bayesian kernel models via MCMC: summary of predictive probabili-
ties for the training data in the XOR example 121

3.9 Bayesian kernel models via MCMC: summary of predictive probabili-
ties for the test data in the XOR example 121

3.10 Bayesian kernel models via EM: predictive probabilities for the training
data in the XOR example . 122

3.11 Bayesian kernel models via EM: predictive probabilities for the test
data in the XOR example . 122

3.12 Kernel matrix for the XOR training data 123

3.13 The percentage of variance explained by the SVD factors 123

3.14 Orthogonalized kernel models via MCMC: summary of predictive prob-
abilities for the training data in the XOR example 124

3.15 Orthogonalized kernel models via MCMC: summary of predictive prob-
abilities for the test data in the XOR example 124

3.16 Bayes factors . 125

3.17 Orthogonalized kernel models via EM: predictive probabilities for the
training data in the XOR example . 126

3.18 Orthogonalized kernel models via EM: predictive probabilities for the
test data in the XOR example . 126

xii

3.19 Illustrative example of linear PCA on the data with nonlinear struc-
ture, copied from Schoelkopf (1997) 127

3.20 Illustrative example of kernel PCA, copied from Schoelkopf (1997) . . 127

3.21 Simulations in two-dimensional space: The effect of scale parameters
on f(x) in two-dimensional space . 128

3.22 Estimation of kernel parameters via MCMC 129

3.23 Estimation of kernel parameters via ECM 129

3.24 Bayesian kernel models with the estimation of kernel parameters via
MCMC: summary of predictive probabilities for the training data in
10-dimensional XOR example . 130

3.25 Bayesian kernel models with the estimation of kernel parameters via
MCMC: summary of predictive probabilities for the training data in
10-dimensional XOR example . 130

3.26 Bayesian kernel models with the estimation of kernel parameters via
ECM: predictive probabilities for the training data in the 10-dimensional
XOR example . 131

3.27 Bayesian kernel models with the estimation of kernel parameters via
ECM: predictive probabilities for the test data in the 10-dimensional
XOR example . 131

xiii

Chapter 1

Bayesian estimation of gene expression

indices

1.1 Introduction

With the complete DNA sequences of many genomes already known and the re-

cent release of the complete draft of the human genome (Insua and Muller, 1998;

Consortium, 2001; Venter and et al., 2001), it is important to define these genes, dis-

cover gene functions and the regulatory mechanisms of gene activations. Microarray

technology is a groundbreaking new technology that provides information regarding

gene expression on a genome wide scale. By allowing the simultaneous monitoring of

the expression level of thousands of genes, microarrays have become ubiquitous tools

for the molecular geneticist.

Microarray technology has already seen diverse applications, from understanding

gene regulation and interactions (Brown et al., 2000) to pharmaceutical and clin-

ical research. The availability of this technology also poses challenging questions

regarding data analysis and experimental design. Microarray experiments produce

very large data sets capturing complex biological processes. A systematic and rig-

orous approach to data analysis is therefore critical for interpreting the information

1

provided by microarray experiments. This Chapter will focus on the fundamental

problems of developing robust statistical estimation of gene expression. We start

with a brief introduction to microarray technology and experiments. After an in-

troduction to a model-based analysis of gene expression indexes for oligonucleotide

arrays, we propose a Bayesian model to estimate gene expression indexes robustly.

Experimental results on both artificial data and real gene data are provided.

1.2 Microarray technology

1.2.1 Introduction

Microarray technology is based on the fundamental property of hybridization. Hy-

bridization is the process of base pairing two single strands of nucleic acids (a se-

quence of which is immobilized on a substrate). It provides high sensitivity and

specificity of detection as a consequence of exquisite, mutual selectivity between com-

plementary strands of nucleic acids (Southern and Shchepinov, 1999). A microarray

consists of a dense patterning of thousands of cDNA strands (cDNA microarrays)

or oligonucleotide sequences (synthetic oligonucleotide microarrays) immobilized on

a substrate (usually a glass slide or a nylon membrane). Gene expression experi-

ments are performed after isolating mRNA from cells or tissue of interest, and then

reverse-transcribing this mRNA to cDNA, which is tagged either with a fluorophore

or radioactive P33. The labeled cDNA is then washed over the surface of the mi-

croarray, and allowed to incubate for a period of time. The immobilized sequences in

the microarray are referred to as “probes”, while the cDNA or cRNA representation

of cellular mRNA extracted from the cell are referred to as “target”. During this

incubation phase, hybridization of the test cDNA occurs. For convenience, we say

that each probe corresponds to a “gene”, irrespective of whether it actually repre-

sents a gene of full length, an expressed sequence tag (EST), or DNA from other

2

sources. Scanning of the microarray, using either confocal microscopy or phosphor

imaging techniques, yields quantifiable digital images of the array hybridization ex-

periments. Either fluorescence intensity or the extent of radiolabeling at each spot

is proportional to the amount of target hybridized to each probe. Since the concen-

tration of the probe is large relative to that of the target, hybridization occurs at a

rate which is proportional to the concentration of the target and to the incubation

time (Duggan, 1999). Specific digital image processing procedures take advantage

of the highly regular arrangement of the gene spots on the array to extract the in-

tensity value of each spot (Cheung et al., 1999; Eisen, 1999; Carlisle et al., 2000;

Chen et al., 1997).

In such experiments, florescence levels measured from substrate regions surround-

ing the probe spots are non-zero. This so-called “background signal” results from a

variety of non-specific chemical and physico-chemical reactions between the labeled

biological target sample and the microarray substrate, and represents a form of op-

tical noise. Thus, the measured gene intensity is due to both specific binding of the

gene target to the probe and background labeling. Therefore, appropriate analysis

of background intensity level is important for proper analysis of microarray data. In

experiments using fluorescent dye, local sampling of background intensity is possi-

ble around each DNA probe spot, since the signal is sharply delimited (Chen et al.,

1997).

In radioactive hybridizations, the smoothness of the transition from maximum

signal intensity to background signal intensity makes estimation of local background

difficult. However, the design of arrays for radioactive hybridization often includes

empty spots (i.e. containing no DNA probe) for estimation of background intensity

(Carlisle et al., 2000).

Two classes of microarrays have emerged from two different technological ap-

3

proaches. High density oligonucleotide arrays (Wodicka et al., 1997; Southern, 1998;

Watson et al., 1998; Lipshutz et al., 1999; Hughes et al., 2001) are designed and

synthesized based on sequence information alone. cDNA arrays (Shalon and Brown,

1996; Schena et al., 1996; Watson et al., 1998; Duggan, 1999) exploit cDNA libraries

and amplification technique (Polymerase Chain Reaction (PCR)). We will now de-

scribe the main features of these two approaches.

1.2.2 cDNA microarray

cDNA microarray technology was developed at Stanford university and introduced

in Schena et al. (1995). Production of cDNA microarrays begins with the selection

of the probes to be printed on the microarray. In many cases, these are chosen di-

rectly from databases including GenBank, dbEST, and UniGene. The corresponding

cDNA clones are amplified by a technique, polymerase chain reaction (PCR). cDNA

microarrays are then produced by spotting PCR products (of approximately 0.6-2.4

kb) representing specific genes on a glass slide using high-speed robot. Each mi-

croarray element is generated by the deposition of a few nanoliters of purified PCR

product, typically 100-500 µg/ml. Printing is carried out by a robot that spots each

gene product onto a number of substrates in a serial operation. The set of microarrays

produced in the same robot operation define a ”lot” of highly similar microarrays.

The microarrays are generally divided into grids, all the spots on the same grid are

printed using the same print-tip or pin.

Figure 1.1 shows an overview of procedures for preparing cDNA microarrays.

First, researchers extract total RNA or mRNA produced from two types of cells, for

example, test and control cells. Then, by using a single round of reverse transcription,

the mRNA from the two samples is fluorescently labeled with Cy3 (green) and Cy5

(red), and the target mixture is hybridized to the probes on the glass slides. During

4

the hybridization, if segments of the mRNA representation in the target find their

complementary portion among the samples of cDNA on the glass slide, they will

bind together. When the hybridization is complete, the glass slide is washed and laser

excitement of the glass slide is used to yield a luminous emission that is then measured

by a scanning microscope. Fluorescence measurements are made with a microscope

that illuminates each spot and measures fluorescence for each dye separately, thus

providing a measure of the relative mRNA abundance for each gene in the two cells.

The intensity of the green spot measures the relative mRNA abundance of the gene

in the cell that had reverse-transcribed mRNA labeled with Cy3, while the intensity

of the red spot measures the relative mRNA abundance of the gene in the cell that

had reverse-transcribed mRNA labeled with Cy5. Grey spots denote genes that were

expressed in neither cell type. These measurements provide information about the

relative level of expression of each gene in the two cells. The monochrome images

can be pseudocolored to provide a quantitative measure of the relative expression

of each gene in the two cells. This measure is adjusted to account for background

noise caused by high salt and detergent concentrations during the hybridization or

contamination of the target. Figure 1.2 shows one of these images in which spots

are colored in red, green, yellow and grey. Each spot corresponds to a gene, and

the color of the spot discloses whether the gene is expressed (colored) or not and

the relative level of expression in the two targets. Usually a measurement scale is

provided to associate each color tone with a ratio between expression level in the two

cells (Schena et al., 1995; Brown and Botstein, 1999).

1.2.3 Oligonucleotide arrays

In oligonucleotide microarrays, gene probes are short sequences of nucleotides (typ-

ically between 20 and 60 nucleotides) specific to a particular gene (Lipshutz et al.,

5

1999). Oligonucleotides can be synthesized in situ or can be pre-synthesized and then

deposited on to the substrate. In the in situ synthesis methods, oligonucleotides are

built directly on the substrate. Affymetrix (Santa Clara, CA) generates arrays using

a photolithographic approach where a mercury lamp is used to shine light through

a photolithographic mask on to the surface of the substrate, selectively removing

photo-labile deprotecting groups from the oligonucleotide chain in a stepwise fashion

to create oligonucleotides. The length of oligonucleotides synthesized by this tech-

nique is currently limited to about 25 bases. For gene expression, this can reduce

sensitivity and specificity (Lipshutz et al., 1999). This problem is addressed in a mi-

croarray design including redundancy and mismatch control probes. Redundancy is

achieved through spotting of multiple oligonucleotides of different sequences designed

to hybridize to different regions of the same gene.

On the GeneChip platform, each gene is represented by a number of probe pairs

ranging from 11 in the new Human Genome U133 set to 16 in the Murine Genome

U74v2 set and the Human Genome U95v2. A probe pair consists of a perfect match

(PM) probe and a mismatch (MM) probe. Each PM probe is chosen on the basis

of uniqueness criteria and proprietary, empirical rules designed to improve the odds

that probes will hybridize with high specificity. MM probes are spotted next to each

perfect match gene probe. They are identical to their perfect match partner except

for a single base difference in central position. They are used as a specificity control,

to assess the specificity of the hybridization (Wodicka et al., 1997; Lipshutz et al.,

1999). Figure 1.3 shows a illustrative example of PM/MM structure of GeneChip

arrays. Each cell of an Affymetrix oligonucleotide microarray consists of millions of

samples of a PM or MM probe, and probes that tag the same gene are scattered

across the microarray to avoid systematic bias.

To prepare the target, investigators extract total RNA from a cell or tissue. The

6

mRNA is reverse-transcribed into cDNA, which is made double-stranded and then

converted into cRNA using a transcription reaction that fluorescently labels the tar-

get. Once hybridization has occurred, the microarray is washed and scanned with

a standard laser scanner. The scanner generates an image of the microarray that

is gridded to identify the cells that contain each probe and analyzed to extract the

signal intensity of each probe cell. Figure 1.4 shows an illustrative example of probe

cell, pixel and GeneChip Probe Array. Each probe cell or feature contains millions

of copies of a specific oligonucleotide probe. There are over 250,000 different probes

complementary to genetic information of interest in a single array.

Oligonucleotide sequences can also be synthesized in situ by a process similar to

color ink jet printing. Phosphoramidite (a base synthesis reagent) is delivered robot-

ically to specified locations on the array in successive rounds of synthesis, thereby

creating the desired sequence at each array element (Hughes et al., 2001).

1.3 Model-based analysis of gene expression in-

dexes for oligonucleotide arrays

In Oligonucleotide microarrays, 16 to 20 probe pairs are used to interrogate each

gene, and each probe pair has a Perfect Match (PM) and Mismatch (MM) signal. It

is important to find a reliable way to combine the 16 to 20 probe pairs’ intensities

for a given gene to define a measure of expression index, since the expression index

is the starting point for high-level analyses, such as clustering and classification.

We denote the probe intensities for a given gene as

PMij and MMij, i = 1, ..., n, j = 1, ...,m

with i representing the different arrays and j representing the probe pair number.

The number of arrays n ranges form 1 to hundreds, and the number of probe pairs

7

m ranges from 16 to 20 generally.

The original measure of expression index is the average differences of PM and

MM , as provided by Affymetrix (Lockhart et al., 1996; Wodicka et al., 1997). For

each probe set on each array i, the average differences ADi is defined by

ADi =
1

#A

∑

j∈A

(PMij − MMij),

with A the subset of probes after deleting those extreme measurements which exceed

three standard deviations from the mean. #A is the number of probe pairs in A.

There are variants of average differences measures with different ways of removing

outliers and different ways of dealing with small values and one of these variants

underlies the current MAS 5.0 method commonly used.

Note that another commonly used method, robust multi-array average (RMA)

(Irizarry et al., 2003a; Irizarry et al., 2003b), is not a variant of average differences.

Instead, RMA is based on a statistical model of background adjusted and log trans-

formed PM values. Thus RMA can be considered as a variant of model-based ex-

pression index which will be discussed in the following. In the final Chapter of this

thesis, a Bayesian version of RMA is proposed.

Average difference assumes that all probe pairs used have the same effect on

the expression index. In reality, there are dramatic variations among PM − MM of

different probes in the same array (Li and Wong, 2001a). Analyses of many real probe

data sets show that the variation due to probe effects is larger than the variation due

to arrays. It is also observed that the probe-specific effects are highly reproducible

and predictable as shown in Figure 1.5 (Derived from Li and Wong (2001a)). This

suggests that the probe-specific effects is an essential component of estimation of

expression index.

Li and Wong (2001a) proposed a model-based expression index. Let θi denote

8

the expression index for that gene in the ith sample. Li and Wong’s (LW) model is

defined by

yij = PMij − MMij

= φjθi + εij,

where φj is the probe-specific affinities and εijs are assumed to be i.i.d. normally dis-

tributed errors εij ∼ N(εij|0, σ2). The model parameters θi, φj and σ2 are estimated

via MLE, which includes the interactively explicit outlier removal.

The LW model can be considered as a one-component Probabilistic Principal

Component Analysis (PPCA) (Tipping and Bishop, 1997) model with spherical noise

covariance matrix. Let yi = [yi1, ..., yim]T , φ = [φ1, ..., φm]T and εi = [εi1, ..., εim]T ;

then the model can be rewritten as

yi = φθi + εi,

εi ∼ N(εi|0, Ψ),

Ψ = σ2Im×m.

Though the LW model has been successfully applied in a wide range of applica-

tions, there are several limitations:

• The rationale behind the use of difference of PM and MM is that the specific

hybridization, represented by the intensity of PM probes, should be stronger

than the non-specific hybridization, represented by the intensity of MM probes.

Ideally, all yijs are supposed to be greater than zero. However, values of MM

can be higher than PM values for various reasons, such as cross-hybridization

occurring when the probe sequence has high homology with another unknown

sequence. Due to the fact that there are many of negative values of yij for

real world array data, some values of φ and θ estimated by LW model are

negative. In biological applications, both φ and θ are expected to be positive.

9

It is necessary to impose these constraints on the procedure of model fitting

and find an appropriate way to deal with negative yijs.

• In general, the number of arrays, n, ranges form 1 to hundreds. When only a

small number of arrays are available, the sample sizes could be small compared

to the number of parameters to be estimated. In that case, the gene expression

index estimated by MLE could be unreliable.

• LW model assumes that the variances of error for different probe pairs are the

same. This assumption could be wrong due to the fact that there are dramatic

variations among yijs for different probe pairs. It is more realistic to allow

probe-specific error variance σ2
j in the model, i.e.,

yij = φjθi + εij,

εij ∼ N(εij|0, σ2
j),

which is equivalent to the factor analysis with diagonal covariance matrix:

yi = φθi + εi,

εi ∼ N(εi|0, Ψ),

Ψ = diag(σ2
1, ..., σ

2
m).

• The real world array data could be very noisy due to the cross-hybridization,

image contamination etc. Though LW method remove outliers iteratively (Li

and Wong, 2001a; Li and Wong, 2001b) in the process of model fitting, it is

desirable to generate a model to deal with outliers automatically.

In the following, we will introduce a Bayesian model to address the above prob-

lems.

10

1.4 Bayesian analysis of gene expression indices

1.4.1 Likelihood and priors

To deal with the outliers, we introduce the following model

yij = φjθi + εij, (1.1)

εij ∼ N(εij|0, σ2
j /λij),

where λij is the individual scale parameter for each data. A small value of λij

corresponds to a noisy datum, which implies that the noisy data play minor roles

in model fitting. The priors for λij is an independent inverse gamma

λij ∼ Ga(λij|
k

2
,
k

2
),

with shape parameter k/2. This prior on λij means that the implied priors for error

term εij, on marginalization with respect to the λij, are the independent T priors

with k degrees of freedom. To introduce the robustness, k is generally specified as a

small integer, say k = 2 or 3 (West, 1984).

To impose constraints on θi, φj, we can simply specify the uniform priors in the

range of positive values

φj ∼ U(φj|0,∞),

θi ∼ U(θi|0,∞).

To make the model identifiable, we need to impose constraints on φj. Here we set

the constraint as
∑

j φj = m, so that the estimated θi can be comparable to average

difference directly since

ADi = (
∑

j

yij)/m = θi.

The conjugate prior distribution for σ2 is an inverse gamma distribution,

p(σ−2) = Ga
(
σ−2

∣∣∣n0

2
,
n0

2
σ2

0

)
. (1.2)

11

1.4.2 Conditional posteriors

Given the above likelihood and priors, we have the following full conditional posteri-

ors:

• The conditional posterior for θi is a truncated normal posterior

p(θi|yi, φ, λ, σ2) = N(θi|θ̂i, vi)I(θi > 0),

where

θ̂i = (
∑

j

yijφjλij

σ2
j

)vi,

vi = 1/(
∑

j

φ2
jλij

σ2
j

).

• The conditional posterior for φj is a truncated normal posterior,

p(φj|y, θ, λ, σ2) = N(φj|φ̂j, si)I(φj > 0),

where

φ̂j =

(
∑
i

yijθiλi,j)

σ2
j

sj,

si =
σ2

j

(
∑
i

θ2
i λi,j)

.

• The conditional posterior for σ2
j is an inverse gamma posterior

p(σ−2
j |y, θ, φ, λ) = Ga(σ−2

j |n0 + n

2
,

n0σ
2
0 +

∑
i

(yij − φjθi)
2λi,j

2
).

• The conditional posterior for λi,j is a gamma posterior

p(λi,j|yij, θi, φj, σ
2
j) = Ga(λi,j|

k + 1

2
,
kσ2

j + (yij − φjθi)
2

2σ2
j

).

12

1.4.3 Model fitting via MCMC

Given the above conditional posteriors, it is straightforward to implement the pos-

terior simulation using standard Gibbs sampling, illustrated in detailed below. The

initial values are chosen arbitrarily for each of parameters, and then the samples of

parameters are drawn from their conditional posterior distributions at each iteration.

The components of each MCMC step for our model

yij = φjθi + εij,

εij ∼ N(0, σ2
j /λij),

are as follows:

• Given the current value of φ, λ, σ2, draw θi from the truncated normal posterior

p(θi|yi, φ, λ, σ2) = N(θi|θ̂i, vi)I(θi > 0).

• Given the current value of θ, λ, σ2, draw φj from the truncated normal posterior

p(φj|y, θ, λ, σ2) = N(φj|φ̂j, si)I(φj > 0).

• Given the current value of φ, θ, λ, draw σ2
j from the inverse gamma posterior

p(σ−2
j |y, θ, φ, λ) = Ga(σ−2

j |n0 + n

2
,

n0σ
2
0 +

∑
i

(yij − φjθi)
2λi,j

2
).

• Given the current value of θi, φj, σ
2
j , draw λi,j from the gamma posterior

p(λi,j|yij, θi, φj, σ
2
j) = Ga(λi,j|

k + 1

2
,
kσ2

j + (yij − φjθi)
2

2σ2
j

).

13

1.4.4 Mixture priors with point mass

In real world array data, most of yijs could be negative for a given gene in a given

array, which implies that the gene is not expressed in that sample. In that case,

we can expect the gene expression index θi should be close to zero. Under the

prior specification for θi above, the positively truncated normal posterior does not

concentrate around zero very closely, and the posterior mean could still have a large

value. In the following, we will specify the mixture priors with point mass at zero for

θi to solve this problem.

We assume that the prior for θi is an independent mixture of uniform distribution

and a point mass at zero

θi ∼ (1 − zi)δ0 + ziU(θi|0,∞),

where δ0 is the point mass at zero and zj ∈ {0, 1} is a binary latent variable. In

particular, zi = 0 means that the θj would be so small that it could be estimated as

zero. Otherwise zi = 1 means that the θj would be estimated as a positive value as

above.

We now calculate the conditional posterior distribution for zi. Let

P1 = p(D|zi = 1, φj, θi, σ
2
j , λij) =

∏

j

N(yij|φjθi,
σ2

j

λij

),

P2 = p(D|zi = 0, φj, θi, σ
2
j , λij) =

∏

j

N(yij|0,
σ2

j

λij

),

and π = p(zi = 1). Given the uniform prior for π, the conditional posterior for π is

a beta posterior

p(π|z) ∝ π

P

i

zi

(1 − π)
n−

P

i

zi

, 0 < π < 1.

Let

π∗
i =

πP1

πP1 + (1 − π)P2

.

14

Then the conditional posterior for zi is Bernoulli

zi ∼ Ber(zi|π∗
i).

The above MCMC procedure can be modified as

• Given the current value of φ, λ, σ2 and θi, draw zi from the Bernoulli posterior

zi ∼ Ber(zi|π∗
i)

– For zi = 1, sample θi from the truncated normal posterior

p(θi|yi, φ, λ, σ2) = N(θi|θ̂i, vi)I(θi > 0).

– Otherwise set θi = 0

• Sample φj, σ
2
j , λij in the same way as before.

1.5 Experimental results

In this section, we apply our Bayesian model to three data sets. The first data set is

an artificial array data set with known expression index θi, probe-specific affinities φj

and error variance σ2
j . It is used to explore if the Bayesian model can give the correct

estimation of expression index. The second data set is almost the same as data set 1

except that several outliers are included. It is used to show how the Bayesian model

accommodate outliers. The third data set is the real array data set from Duke breast

cancer studies. Besides the results of our Bayesian model, the average difference and

the results of LW model are also provided for comparisons.

1.5.1 Artificial array data set 1

This data set is an artificial array data set with known expression index θi, probe-

specific affinities φj and error variance σ2
j . Suppose there are 11 samples of one given

15

gene. The gene expression indices in 11 samples are θ =[100, 125, 150, 175, 200, 225,

250, 275, 300, 0,−100]T . The 10th sample is not expressed and the 11th sample is a

“bad” array because θ11 is negative. Suppose there are 6 probe pairs for the given

gene. The probe-specific affinities are φ =[1, 1, 1.5, 2.5, 0, 0]T and the error variances

are σ2 = [1, 9, 1, 1, 1, 1]T . Thus the 5th and 6th probe pairs are “bad” probe pairs

that are supposed to play small roles in estimating the gene expression index, and

the 2rd probe pair has more noise than other probe pairs.

The artificial array data yijs are generated by the following model

yij = φjθi + εij,

εij ∼ N(εij|0, σ2
j).

The bar plots of yijs in 4 arrays (1,5,8,11) are plotted in the first 4 rows of Figure

1.6.

We fit our Bayesian model via MCMC. The MCMC was run for 5,000 iteration

after a burn-in of 1,000. The posterior means of φ and σ2 are shown in the last two

rows of Figure 1.6. Figure 1.7 shows the fitted value ŷij = φjθi for 4 arrays (1,5,8,11),

where the φj and θi are posterior means. The x axis represents the probe pairs, and

the y axis represents the value ŷijs. The blue line shows the original data yijs, while

the red line shows the fitted value ŷijs. Figure 1.8 shows the similar plot for the

results of LW model. As we can see, both LW model and our Bayesian model can

fit the data with positive value (array 1,5,8) very well. While LW mode also tries

to fit the data with negative value (array 11), our Bayesian model gives the fitted

value close to zero since the negative yijs are inferred to be outliers. The first 10

rows of Table 1.1 report the gene expression index estimated by average difference,

LW model and our Bayesian model. Note that the φ in LW model is scaled under

the constraint
∑

φj = m, while the original constraint is
∑

φ2
j = m, thus the scaled

θ is comparable to average differences and the Bayesian model. It shows that both

16

LW model and Bayesian model give estimates that are close to the true values of first

9 samples. While LW model gives negative expression values for the 10th sample

and 11th sample, the Bayesian model provides positive values that are very close to

zero. The last 6 rows of Table 1.1 report the probe-specific affinities estimated by

LW model and the Bayesian model, which shows that both models give estimates

that are close to the true values.

1.5.2 Artificial array data set 2

This data set is an artificial array data set that is generated in the same way as

the artificial array data set 1, except for more intentionally added outliers. The

signs of two data values in each of three previously “good” arrays 1,5,8 are changed

to introduce the outliers. Table 1.2 shows the data yijs in which the outliers are

highlighted, and the bar plot of yijs in 4 arrays (1,5,8,11) are plotted in the first 4

rows of Figure 1.9.

We fit our Bayesian model via MCMC. The MCMC was run for 5,000 iteration

after a burn-in of 1,000. The posterior means of λijs are listed in Table 1.3, in which

the value corresponding to the outliers are highlighted. We can clearly see that the

λijs corresponding to the outliers are extremely small, while the λijs corresponding to

the ordinary data are close to 1. This indicates that our Bayesian model can identify

those outliers automatically, and those outliers have little effect in estimating the

gene expression index.

The posterior mean of φ and σ2 are shown in the last two rows of Figure 1.9.

Figure 1.10 shows the fitted value ŷij = φjθi for 4 arrays (1,5,8,11), where the φj and

θi are posterior mean. The x axis represents the probe pairs, and the y axis represents

the value ŷijs. The Blue line shows the original data yijs, while the red line shows

the fitted value ŷijs. Figure 1.11 shows a similar plot for the results of LW model.

17

As we can see, our Bayesian model can fit the non-outliers very well and recover

the value of outliers, while the LW model fails to fit the data. The first 10 rows

of Table 1.4 report the gene expression index estimated by average difference, LW

model and our Bayesian model. The samples (1,5,8) with the outliers are highlighted.

This shows that both average difference and LW model fail to give proper expression

index estimation, even in the samples (2,3,4,6,7,9) in which there are not outliers,

because they are seriously affected by outliers. Instead, the Bayesian model gives the

estimates that are close to the true value for all 11 samples with or without outliers.

The last 6 rows of Table 1.4 report the probe-specific affinities estimated by LW

model and the Bayesian model. This shows that estimates of LW model are seriously

affected by outliers, while the Bayesian model is robust to the outliers.

1.5.3 ER gene

This data set is from the probe data of ER gene in Duke’s breast cancer study. The

number of samples is 49 and the number of probe pairs is 20. The bar plots of yijs

in 4 random arrays (2, 15, 17, 18) are plotted in the first 4 rows of Figure 1.12.

We fit our Bayesian model via MCMC. The MCMC was run for 5,000 iteration

after a burn-in of 1,000. The posterior means of φ and σ2 are shown in the last two

rows of Figure 1.12. The Figure 1.13 shows the fitted value ŷij = φjθi for 4 arrays

, where the φj and θi are posterior means. The x axis represents the probe pairs,

and the y axis represents the value ŷijs. The Blue line shows the original data yijs,

while the red line shows the fitted value ŷijs. Figure 1.14 shows a similar plot for the

results of LW model. As we can see, both LW mode and our Bayesian model give

similar results for the data with positive value (array 2, 15). While LW mode also

try to fit the data with negative value (array 17, 18), our Bayesian model gives the

fitted value close to zero since the negative yijs are suppose to be outliers. Since the

18

true gene expression index is unknown, the comparison of estimated gene expression

index is not provided.

19

Parameter True value AD LW Bayesian
θ1 100 88.6245 100.2981 100.63
θ2 125 112.4154 126.1608 126.27
θ3 150 130.3252 149.3395 149.22
θ4 175 154.2671 175.6591 176.23
θ5 200 177.9248 200.9446 200.96
θ6 225 196.9750 225.0479 226.4
θ7 250 220.2333 250.7780 251.05
θ8 275 236.7399 273.6411 275.93
θ9 300 265.6442 301.2850 300.67
θ10 0 -0.4543 -1.5188 0.0097826
θ11 -100 -86.9064 -99.6128 0.62201
φ1 1 0.9989 0.9968
φ2 1 1.0067 1.0162
φ3 1.5 1.4987 1.4954
φ4 2.5 2.4960 2.4885
φ5 0 -0.0016 0.0011885
φ6 0 0.0012 0.0019383

Table 1.1: Comparison of AD, LW model and the Bayesian model for artificial array
data set 1: First 10 rows reports the gene expression index estimated by average
difference, LW model and our Bayesian model. Both LW model and Bayesian model
give estimates that are close to the true value for first 9 samples. While LW model
gives negative expression values for the 10th sample and 11th sample, the Bayesian
model provides the positive values that are very close to zero. The last 6 rows report
the probe-specific affinities, which shows that both models give estimates that are
close to the true values.

20

PP 1 PP 2 PP 3 PP 4 PP 5 PP 6
Array 1 100.3 -103 150.7 -249 0.888 0.172
Array 2 125.8 133.7 188.8 312.4 1.317 0.228
Array 3 148.6 148.7 224.5 373.3 -0.42 -0.62
Array 4 175.7 178.1 263.4 437.8 -0.15 -0.09
Array 5 -200 210.5 -301 498.6 0.121 -0.22
Array 6 225.6 222.3 338.6 562.3 -1.47 1.395
Array 7 250.4 255.1 374.3 625.8 -2.24 1.098
Array 8 275 -260 -411 687.7 0.221 -1.01
Array 9 299.5 312.6 449.5 750 0.799 0.897
Array 10 0.138 -14.6 -1.65 0.429 -0.74 0.565
Array 11 -101 -95.9 -149 -250 -1.01 -0.35

Table 1.2: Table of artificial array data set 2: the data set is generated in the
same way as the artificial array data set 1. The signs of two data value in each of
three previously “good” arrays 1,5,8 are changed to introduce the outliers. The rows
correspond to the arrays, and the column correspond to the probe pairs (PP). The
outliers are highlighted in bold font.

PP 1 PP 2 PP 3 PP 4 PP 5 PP 6
Array 1 1.135 0.007 1.371 0 0.717 1.45
Array 2 0.898 1.219 1.268 0.734 0.473 1.354
Array 3 0.676 1.259 1.095 0.936 0.936 0.439
Array 4 0.985 1.372 1.363 0.97 1.206 0.973
Array 5 0 1.127 0 0.996 1.424 0.715
Array 6 0.995 0.958 1.206 0.94 0.27 0.397
Array 7 1.122 1.371 0.848 1.151 0.141 0.675
Array 8 1.107 0.001 0 1.115 1.372 0.202
Array 9 0.926 1.143 1.247 0.944 1.037 0.988
Array 10 1.339 0.607 0.603 1.338 0.768 0.715
Array 11 0 0.028 2E-04 0 0.565 0.992

Table 1.3: Table of the posterior means of λijs: the value corresponding to the
outliers are highlighted in bold font. We can clearly see that the λijs corresponding
to the outliers are extremely small, while the λijs corresponding to the ordinary data
are close to 1.

21

Parameter True value AD LW Bayesian
θ1 100 -0.3026 -48.8568 100.7963

θ2 125 1112.4154 111.4512 126.1475
θ3 150 130.3252 132.1931 149.9907
θ4 175 154.2671 155.4170 176.0978
θ5 200 2.5233 98.0822 200.3695

θ6 225 196.9750 199.2218 226.2214
θ7 250 220.2333 221.9818 251.5120
θ8 275 3.4361 146.9864 276.3694

θ9 300 265.6442 266.5048 301.4039
θ10 0 -0.4543 -0.9590 0.0213
θ11 -100 -86.9064 -88.2880 1.3277
φ1 1 1.0886 1.0163
φ2 1 0.8271 1.0162
φ3 1.5 0.9439 1.4942
φ4 2.5 3.1409 2.4887
φ5 0 -0.0022 0.00065386
φ6 0 0.0017 0.0011624

Table 1.4: Comparison of AD, LW model and the Bayesian model for artificial
array data set 2: First 10 rows report the gene expression index estimated by average
difference, LW model and our Bayesian model. The samples (1,5,8) with the outliers
are highlighted in bold font. The last 6 rows report the probe-specific affinities, which
shows that both models give estimates that are close to the true value. This shows
that estimates of LW model are seriously affected by outliers, while the Bayesian
model is robust to the outliers.

22

Figure 1.1: An overview of procedures for preparing cDNA microarrays: Selected
probes are amplified by PCR and the PCR product is printed to a glass slide using a
high-speed robot. The targets are labelled representations of cellular mRNA obtained
by reverse transcriptions of total RNA extracted from the test and reference cells, and
the pooled target is allowed to hybridize with the cDNA spotted on the slides. Once
the hybridization is completed, the slides are washed and scanned with a scanning
laser microscope able to measure the brightness of each fluorescent spot; brightness
reveals how much of a specific DNA fragment is present in the target

23

Figure 1.2: A scanned image produced from a cDNA microarray experiment: Each
spot represents a gene. Grey spots denote genes that were expressed in neither type
of cell; colored spots identify genes that were expressed in one of the two cells or
both. The color of the spot discloses the relative expression of the gene in the two
cells.

24

Figure 1.3: An oligonucleotide microarray associates a gene with a set of probe
pairs: Each probe pair consists of a perfect match probe (PM) and a mismatch probe
(MM). Each PM probe is 25 bases long and is paired with the MM probe, in which
the central base of the oligonucleotide is inverted. After hybridization of the target
to the probes, the microarray is read with a laser scanner to produce an image and
the intensity of the MM probes is used to correct the intensity of the PM probes.

25

Figure 1.4: An illustrative example of probe cell, pixel and GeneChip Probe Array:
Image is composed of probe cells, which contain probes that appear as pixels. Each
probe cell contains millions of copies of a specific oligonucleotide probe. There are
over 250,000 different probes complementary to genetic information of interest in a
single array.

26

Figure 1.5: The probe-specific effects: The probe-specific effects in Oligonucleotide
microarrays are highly reproducible and predictable: an example derived from Li and
Wong (2001a)

27

Figure 1.6: Artificial array data set 1: The first 4 rows are the bar plots of yijs in
4 arrays (1,5,8,11). The last two rows are the posterior means of φ and σ2

28

Figure 1.7: The fitted values of ŷijs of the Bayesian model for artificial array data
set 1: The x axis represents the probe pairs, and the y axis represents the values of
ŷijs. The blue line shows the original data yijs, while the red line shows the fitted
values of ŷijs.

29

Figure 1.8: The fitted values of ŷijs of LW model for artificial array data set 1: The
x axis represents the probe pairs, and the y axis represents the values of ŷijs. The
blue line shows the original data yijs, while the red line shows the fitted values of
ŷijs.

30

Figure 1.9: Artificial array data set 2: The first 4 rows are the bar plots of yijs in
4 arrays (1,5,8,11). The last two rows are the posterior means of φ and σ2

31

Figure 1.10: The fitted values of ŷijs of the Bayesian model for artificial array data
set 2: The x axis represents the probe pairs, and the y axis represents the values of
ŷijs. The blue line shows the original data yijs, while the red line shows the fitted
values of ŷijs.

32

Figure 1.11: The fitted values of ŷijs of LW model for artificial array data set 2:
The x axis represents the probe pairs, and the y axis represents the values of ŷijs.
The blue line shows the original data yijs, while the red line shows the fitted values
of ŷijs.

33

Figure 1.12: ER gene: The first 4 rows are the bar plots of yijs in 4 arrays (2, 15,
17, 18). The last two rows are the posterior means of φ and σ2

34

Figure 1.13: The fitted values of ŷijs of the Bayesian model for ER gene: The x
axis represents the probe pairs, and the y axis represents the values of ŷijs. The blue
line shows the original data yijs, while the red line shows the fitted values of ŷijs.

35

Figure 1.14: The fitted values of ŷijs of LW model for ER gene: The x axis represents
the probe pairs, and the y axis represents the values of ŷijs. The blue line shows the
original data yijs, while the red line shows the fitted values of ŷijs.

36

Chapter 2

Introduction to kernel models

2.1 Introduction

Kernel models (Schölkopf et al., 1999; Schölkopf and Smola, 2002; Shawe-Taylor and

Cristianini, 2004) have recently been introduced and become increasingly popular

tools for various regression, classification and function estimation problems. They

exhibit good generalization performance on many real-life data sets, and the ap-

proaches are properly motivated theoretically. The most popular kernel models are

support vector machines(SVMs) (Vapnik, 1995; Vapnik, 1998; Schölkopf, 1997) that

are introduced in the field of machine learning, and the Gaussian processes (GPs)

(Rasmussen, 1996; Williams and Barber, 1998; Williams, 1998) that are introduced

in the field of Bayesian statistics. This Chapter includes a brief introduction to both

support vector machines and Gaussian processes. Their strength and weakness are

also discussed.

2.2 Basis function and kernel extension

In standard supervised learning problems, we are given a set of training data D =

(y1,x1, y2,x2, ..., yn,xn), where the output variable yi might be a continuous variable

37

in the setting of regression analysis, or a categorical variable in the setting of clas-

sification. Usually, it is assumed that the training data are an independently and

identically distributed sample from an unknown probability distribution P (X,Y).

We wish to learn a model of dependency of the output variables on the input vari-

ables, so that we can make accurate predictions of y given a new input x. Typically,

our prediction is based on a function f(x) defined over the input space. In the setting

of linear regression, we assume the prediction function f(x) is a linear function of x,

which can be written as

yi = f(xi) + εi,

f(xi) = xi
T β,

εi ∼ N(0, σ2),

where β is a p × 1 vector of regression coefficient parameters.

To extend linear models to nonlinear models, we can try to transform the data

from input space Rp into some high-dimensional feature space H via a nonlinear basis

function φ : Rp → H, and then construct the linear model in H

f(xi) = φ(xi)
T β,

where β is the regression coefficient vector in high-dimensional feature space H.

However, direct computation in such high or infinite feature space is often unreal-

istic. For instance, a d-degree polynomial transformation has (p+d− 1)!/(d!(p− 1)!)

different monomials. In the application of character recognition, a 16×16 pixel input

images and a 5-degree polynomial transformation yield a dimensionality of 1010.

This problem can be overcome by the idea of kernel extension. The basic idea is

to construct a model in where all the computation in feature space H can be done in

the form of dot product (φ(xi) · φ(xj)) without explicit nonlinear mapping φ(·). In

38

some cases, the dot products can be evaluated by a simple kernel function

k(xi,xj) = φ(xi)
T φ(xj).

For example, the polynomial kernel

k(xi,xj) = (xT
i xj)

d

can be shown to correspond to a map φ into the space spanned by all products of

exactly d dimension of Rp (Poggio, 1975; Boser et al., 1992; Burges, 1998). For d = 2

and x ∈R2,e.g., we have

(xT
i xj)

2 = (x2
1i, x

2
2i,

√
2x1ix1i)(x

2
1j, x

2
2j,

√
2x1jx1j)

T

= φ(xi)
T φ(xj),

defining

φ(xi) = (x2
1i, x

2
2i,

√
2x1ix1i)

T .

By using

k(xi,xj) = (xT
i xj + c)d

with c > 0, we can take into account all products of order up to d.

More generally, Mercer’s theorem (Mercer, 1909; Aizerman et al., 1964; Boser et

al., 1992) in the area of functional analysis shows that kernels ks of positive integral

operators give rise to implicit nonlinear mapping maps φs.

There are two major classes of models that take advantages of the idea of kernel

extension: support vector machines(SVMs) and the Gaussian processes (GPs). SVMs

come from the the field of machine learning, especially statistical learning theory,

while GPs come from the field of Bayesian statistics. In the following sections, a

brief introduction to both models is given.

39

2.3 Support vector machines

2.3.1 Linear classifier

To introduce the SVMs, we will begin by a simplest binary classification problem.

From the perspective of statistical learning theory, the motivation for considering

binary classifier SVMs comes from theoretical bounds on the generalizations error

(Vapnik, 1995; Vapnik, 1998). Though we do not give a detailed introduction to the

statistical learning theory here, we note that it has two important features. Firstly,

the upper bound on the generalization error does not depend on the dimension of the

space. Secondly, the error bound is minimised by maximising the margin, i.e., the

minimal distance between the hyperplane separating the two classes and the closest

data points to the hyperplane.

Let us consider a binary classification problem with a set of training data D =

(y1,x1, y2,x2, ..., yn,xn), where the output variable yi is a binary variable yi ∈ {±1}.

A simple linear discriminate function is:

yi = sign(f(xi)), (2.1)

f(xi) = xi
T β,

If the training data set is separable then the data will be correctly classified

yixi
T β > 0 for all i. Since this relation is invariant under a positive rescaling of the

argument inside the sign function, we can define a canonical hyperplane such that

yixi
T β = 1 for the closest points on one side, and yixi

T β = −1 for the closest points

on the other side. So we can rescale the parameter and place the constraints such

that

yixi
T β ≥ 1,

then the SVMs try to find the classifiers with maximum margin, which turns out to

40

be the following optimization problem:

min 1
2
‖β‖2.

s.t. yixi
T β ≥ 1.

(2.2)

This can be reduced to the minimization of primal Lagrangian objective function

L =
1

2
βT β −

n∑

i=1

αi(yixi
T β − 1), (2.3)

where the αi ≥ 0 are Lagrange multipliers. Taking the derivative with respect to β

and equating to zero, i.e., ∂L/ ∂β = 0, we can express β in terms of dual variables,

β =
∑

j

yjαjxj,

which can be put back in the primal Lagrangian (2.3), it then becomes the Wolfe

dual Lagrangian (Bertsekas, 1995)

W (α) =
n∑

i=1

αi −
1

2

n∑

i,j=1

αiαjyiyjxi
Txj, (2.4)

which must be maximized with respect to the αi subject to the constraint:

αi > 0,
n∑

i=1

αiyi = 0.

Then the prediction function f(x) becomes

f(x) =
∑

j

yjαjx
Txj. (2.5)

2.3.2 Nonlinear classifier via kernel extension

From the Wolfe dual Lagrangian (2.4) and prediction function (2.5), we notice that

the data point xi only appears inside an inner product which makes it possible to

41

use the kernel “trick” discussed in Section 2. Specifically, a SVM with nonlinear

prediction function

f(xi) = φ(xi)
T β,

is equivalent to the maximization of Wolfe dual Lagrangian

W (α) =
n∑

i=1

αi −
1

2

n∑

i,j=1

αiαjyiyjφ(xi)
T φ(xi).

Let

k(xi,xj) = φ(xi)
T φ(xj),

which is the inner product in the higher dimensional Hilbert space. With a suit-

able choice of kernel, the data can become separable in feature space despite being

non-separable in the original input space. Feasible kernels implicitly describing this

mapping must satisfy Mercer’s conditions described in more detail in Vapnik (1995)

and Vapnik (1998). The class of mathematical objects which can be used as kernels

is very general and includes a wide range of functions. Some commonly used kernel

functions include the polynomial kernel

k(xi,xj) = (xT
i xj)

d, (2.6)

and Gaussian kernel

k(xj,xi) = exp

(
−ρ2

p∑
h=1

(xhi − xhj)
2

)
. (2.7)

For the given choice of kernel, the learning task therefore involves maximization

of

W (α) =
n∑

i=1

αi −
1

2

n∑

i,j=1

αiαjyiyjk(xi,xj)

42

with respect to the αi subject to the constraints

αi > 0,
n∑

i=1

αiyi = 0.

The prediction function f(x) becomes

f(x) =
∑

j

yjαjk(xi,xj).

2.3.3 Soft margin

Most real life data sets contain noise, and two classes are not linear separable. An

SVM can overfit noise leading to poor generalization. SVMs aim to deal with noise

using soft margins, i.e., adopting a positive slack variable ξi > 0 such that

yixi
T β ≥ 1 − ξi.

Then the learning procedure is to find the classifiers with maximum margin, which

turns out to be the following optimization problem

min 1
2
‖β‖2 + C

∑
ξi,

s.t. yixi
T β ≥ 1 − ξi,
ξi ≥ 0,

(2.8)

where C is a constant. It can then be reformulated to the Wolfe dual in a way similar

to that for hard margin.

2.3.4 Related models

Given the linear prediction function f(xi) = xi
T β, consider optimization problem

(2.8) in the SVMs with soft margin. It is easy to rewrite the optimization problem

as

min
β

1

2C
βT β +

∑

i

[1 − yif(xi)]+, (2.9)

43

where the subscript “+” means the truncated positive function, i.e.,

[x]+ = max(x, 0).

We now view the SVMs in the Bayesian framework. Suppose β has the prior

β ∼ N(β|0, diag(C)),

and define the following likelihood function that is proportional to

p(y|X, β) ∝ exp(−
∑

i

[1 − yif(xi)]+). (2.10)

Then the optimization problem (2.9) is equivalent to finding the maximum a poste-

riori (MAP) estimation of β, i.e., minimizing an objective function

M(β) = − log[p(β)p(y|X,β)]. (2.11)

While (2.10) is not differentiable, we can use the other more commonly used likelihood

functions and transfer the optimization problem to the Wolfe dual Lagrangian form

of optimization and prediction function as in SVMs, and then apply the idea of kernel

extension to the nonlinear classifiers. For example, the normal likelihood function

p(y|X, β) ∝ N(y|XT β, σ2)

results in least squares SVMs introduced in Suykens and Vandewalle (1999), and the

logistic likelihood function

p(y|X, β) ∝ (1 + exp(−yXT β))−1

results in the logistic kernel regression (Hastie et al., 2001). With other likelihood

functions and priors for β, we can develop other nonlinear classifiers in a similar way.

Alternatively, we can define a loss function

L(y, f) = − log p(y|X,β).

44

In SVMs, the loss function is

L(y, f) =
∑

i

[1 − yif(xi)]+.

We can consider the term 1
2C

βT β as a regulation term, so that the objective function

(2.9) in SVMs is the sum of a loss function and a regulation term. Different loss

functions and regulations will result in different models.

A more general model arises from the regularized function estimation problems

in the reproducing kernel Hilbert space (RKHS) (Aronszajn, 1950; Wahba, 1990;

Wahba, 1999). Let Hk be the RKHS generated by kernel K. Then the regularized

function estimation can be solved by minimizing

1

n

n∑

j=1

L(yi, fi) + λ ‖f‖Hk
.

The representer theorem in Wahba (1990) tell us that the solution has the form

f(x) = b +
n∑

j=1

wjk(x,xj),

where b, αi are coefficients and k(xj,x) = 〈φ(xj), φ(x)〉 is the kernel function between

xj and x.

2.4 Gaussian processes

2.4.1 Bayesian linear regression

Let us consider a regression problem with a set of training data D = (y1,x1, y2,x2, ..., yn,xn),

where the output variable yi is a continuous variable. A simple normal linear regres-

45

sion model is

yi = f(xi) + εi, (2.12)

f(xi) = xi
T β,

εi ∼ N(εi|0, σ2).

Let the regression coefficients β have the Gaussian prior

β ∼ N(β|0, Σβ).

Suppose σ2 is known. Then the posterior distribution for β is

p(β|y, X, Σβ, σ2) = N(β|β̂, Vβ),

where

β̂ =
1

σ2
VβXy, (2.13)

and

V −1
β = Σ−1

β +
1

σ2
XXT .

To make a prediction y∗ for a new cases x∗, we can derive the prediction distri-

bution

P (y∗|y) =

∫
P (y∗, β|y)dβ

=

∫
P (y∗|β,y)P (β|y)dβ

=
1

P (y)

∫
P (y∗|β)P (β)P (y|β)dy,

which is analytically tractable because everything inside the integration is Gaussians.

The mean of y∗ is

E(y∗) =
1

σ2
x∗T VβXy.

46

2.4.2 Gaussian processes

In Bayesian linear regression, the uncertainty is described through a probability dis-

tribution over the regression coefficients β. It is also possible to deal directly with

uncertainty with respect to the function values at the points in which we are in-

terested. This is the stochastic process or function space view of the model. A

stochastic process f(x) is a collection of random variables indexed by x. A general

stochastic process is specified by giving the probability distributions of any finite

subset (f(x1), f(x2), ...f(xn)) in a consistent way. Gaussian processes are a subset

of stochastic processes that can be specified by giving only the mean vector and

covariance matrix for any finite subset of points.

We now consider the linear regression problem in the view of Gaussian processes.

Suppose β has the prior

β ∼ N(β|0, Σβ).

Then f = XT β is just a linear combination of Gaussian variables in function space,

which is also a Gaussian processes, since

f ∼ N(f |0, XT ΣβX).

Here C = XT ΣβX be the covariance matrix. We can generalize beyond linear regres-

sion with other covariance matrices C to define the GPs as

f ∼ N(f |0, C).

In the setting of non-linear regression with Gaussian noise, yi = f(xi) + εi, y is

also an Gaussian processes as

y ∼ N(y|0, C + σ2In×n).

To make a prediction y∗ for a new case x∗, we need to calculate the joint distri-

bution of (y1, y2, ..., yn, y∗), then get the conditional distribution p(y∗|y). y+ =

47

(y1, y2, ..., yn, y∗) has joint Gaussian distribution with mean 0 and covariance ma-

trix K+. Let the (n + 1) × (n + 1) matrix K+ be partitioned into a n × n matrix K,

a n × 1 vector k and a scalar k∗

K+ =

(
K k

kT k∗

)
.

Derived from the properties of multivariate Gaussian distributions, the conditional

distribution p(y∗|y) is

p(y∗|y) = N(y∗|kT K−1y,k∗ − kT K−1k.)

In the setting of normal regression, we have

E(y∗) = k(x∗, X)T (C + σ2In×n)−1y

and the variance is

var(y∗) = k(x∗,x∗) − k(x∗, X)T (K + σ2In)−1k(x∗, X).

Now, we are ready to apply the idea of kernel extension in SVM to Bayesian

regression. Note that a zero-mean GPs is solely based on its covariance functions

Cij = c(xi,xj). In the above linear regression as a special example,

c(xi,xj) = xT
i Σβxj.

Formally the covariance function can be any function that will generate a non-

negative definite covariance matrix for any set of points (x1,x2, ...xn). Just like

the kernel functions in SVMs, the covariance functions in GPs can be considered as

the dot product (φ(xi) · φ(xj))

c(xi,xj) = φ(xi)
T Σβφ(xj)

48

where φ(x) is the basis function in high-dimensional, even infinite dimensional feature

space F. Then GPs can be viewed as the Bayesian linear regression on the basis

functions

f(xi) = φ(xi)
T β,

where β is the regression coefficient vector in high-dimensional feature space F.

If the covariance functions c(xi,xj) is known or fixed, it is straightforward to

make inference and prediction based on the training data. In practice, covariance

functions are generally chosen from a parametric family of covariance functions with

a parameter vector θ, and then we need to also make inference on θ. For example, a

commonly used covariance function is

c(xj,xi) = exp

(
−

p∑
h=1

ρ2
h(xhi − xhj)

2

)
, (2.14)

where ρ2
h is an individual scale parameter for each dimension h = 1, 2, ..., p. This

class of covariance functions is closely related to the principle of automatic relevance

determination (MacKay, 1994; MacKay, 1995; Neal and Hinton, 1995). This class of

covariance functions is seldom used in SVMs because it is very hard to make inference

on such complex covariance functions in the frequentist framework. In contrast, it

is relatively straightforward to make a fully Bayesian inference on kernel parameters

in GPs with the help of MCMC. Williams and Rasmussen (1996), Rasmussen (1996)

and Neal (1998) have used MCMC, especially Hybrid Monte Carlo methods (Duane

et al., 1987), to obtain samples of θ. We will apply MCMC to a new class of Bayesian

kernel models in the next Chapter.

2.5 Summary

In this Chapter, we give a brief introduction to the nonlinear kernel models that are

based on the idea of kernel extensions. There are two major classes of kernel models:

49

support vector machines (SVMs) and the Gaussian processes (GPs). SVMs are very

popular recently in the field of machine learning and data mining. GPs have a long

tradition in the field of Bayesian statistics, and have been rediscovered recently for

the purpose of predictive modelling.

Though SVMs and related models have been successfully applied to a wide range

of applications, they do have a number of significant disadvantages. One of major

disadvantages is that SVMs are not probabilistic models, so they can only provide

point estimates instead of proper predictive distributions. Another disadvantage is

that it is difficult for SVMs to get reliable estimates of model parameters, such as

the parameters in the kernel functions. Thus only simple kernel functions with few

tunable parameters are used in SVMs generally, which greatly affects performance in

some real world applications.

Compared to SVM, GPs has have a number of advantages (Williams and Barber,

1998): it is a valid probabilistic model; it is easy to be integrated into other proba-

bilistic models, such as factor analysis, mixture models etc.; it is relatively easy to

build a flexible hierarchical model, especially for the adapting parameters inside the

kernel function, and inference on these parameters is straightforward in the Bayesian

framework.

However, SVM does have one advantage the GPs: the solution is sparse, so it is

possible to develop fast algorithms for large data sets. Instead, GPs have to invert

a n × n covariance matrix, which makes it infeasible for large data set. In the next

Chapter, we propose a new class of Bayesian kernel models, which provides sparse

solutions besides keeping all the benefits of Bayesian learning.

50

Chapter 3

Bayesian kernel models

3.1 Introduction and notation

In standard supervised learning problems, we are given the training data that includes

input X and continuous output y in the setting of regression analysis, or categorical

output z in the setting of classification analysis. Our goal is to find a prediction

function f(x) so that we can make accurate predictions of y or z given a new input

x. Throughout this chapter, we denote X as the p×n design matrix Xp×n; xi as the

p-dimensional vector of ith sample, i.e., the ith column of X; Xj as the jth predictor,

i.e., the jth row of X; and xij as the ith and jth entry of X.

3.1.1 Support vector machines and related models

In Chapter 2, we discussed the support vector machines and related kernel models.

In the setting of binary classification, SVMs make prediction for a new case x based

on the function:

f(x) = φ(x)T β

= b +
n∑

j=1

zjajk(xj,x).

51

where zj are the binary responses, b, αi are model parameters and k(xj,x) =

〈φ(xj), φ(x)〉 is the kernel function between xj and x. Under the framework of maxi-

mum margin classifiers, SVMs try to find the solution by minimizing an error function

on the training set while simultaneously maximizing the margin between two classes.

A more general model can be derived by the regularized function estimation in the

reproducing kernel Hilbert space (RKHS) (Aronszajn, 1950; Wahba, 1990; Wahba,

1999). Let Hk be the RKHS generated by kernel K and g(·) is a cost function. Then

the regularized function estimation can be solved by minimizing

1

n

n∑

i=1

g(zi, f(xi)) + λ ‖f‖Hk
, (3.1)

and, by the representor theorem in Wahba (1990), the solution has the form

f(x) = b +
n∑

j=1

wjk(xj,x). (3.2)

By using the kernel function k(xj,x), we can perform all necessary computation in the

form of dot product 〈φ(xj), φ(x)〉 without the explicit nonlinear mapping φ : Rp → F ,

where F could have a very high, or even infinite, dimensionality.

Though SVMs and related kernel models have been successfully applied to a wide

range of applications, they do have a number of significant disadvantages. One of

major disadvantages is that SVMs are not probabilistic models, so can only provide

the point estimate of ‘hard’ predictions, i.e., 0 or 1. Another related disadvantage is

that it is difficult for SVMs to get the reliable estimate of the model parameters, such

as the parameters in the kernel functions. Thus only simple kernel functions with

a few tunable parameters are used in SVMs generally. A common choice of kernel

function in SVMs and other kernel methods is the Gaussian kernel

k(xj,xi) = exp

(
−ρ2

p∑
h=1

(xhi − xhj)
2

)
, (3.3)

52

where ρ2 is the global scale parameter that is generally pre-selected or chosen by

cross-validation. Though this kernel function works well for many practical problems,

the performance of corresponding kernel models deteriorates severely when many

predictor variables are irrelevant. This deterioration is due to the fact that each

predictor variable is given the same weight to contribute to the kernel function no

matter whether it is relevant or not.

To illustrate this problem, we give a nonlinear binary classification example that

will be used throughout this chapter. We draw 60 samples independently from a

mixture of 4 bivariate Gaussians

xi ∼
4∑

j=1

πjN(xi|uj, Σj),

where

π1 = π2 = π3 = π4 = 0.25,

Σ1 = Σ2 = Σ3 = Σ4 = diag([1, 1]),

u1 = [1, 0]′, u2 = [−1, 0]′, u3 = [0, 1]′, u4 = [0,−1]′.

We set the response zi = 0 for component 1 and component 2 and zi = 1 for compo-

nent 3 and component 4. Thus, the class conditional distribution is

p(xi|ti = 0) =
2∑

j=1

πjN(xi|uj, Σj),

p(xi|ti = 1) =
4∑

j=3

πjN(xi|uj, Σj).

These 60 samples of (xi, zi) are considered as the training data and another 100

independent samples from the above mixture of Gaussians are used as test data to

evaluate the predictive performance. The visualization of this XOR training and

test data is shown in Figure 3.1 and Figure 3.2, where blue ’+’ represents class 0

53

and red ’o’ represents class 1. It is a relatively easy problem for SVMs with the

kernel function (3.3) taking ρ2 = 1. The error rate for test data is 5%. We now

complicate the classification problem by adding 8-dimensional independent Gaussian

noise, x3i, ..., x10i, to the training data, and the data are divided into two classes only

by values of the first two dimension x1i, x2i. Then the performance of SVMs, whose

error rate increase to 45%, deteriorates severely because of the fact that the kernel

function (3.3) is calculated using all 10 dimensional data with the same weight.

A more reasonable kernel function for the problem above is

k(xj,xi) = exp

(
−

p∑
h=1

ρ2
h(xhi − xhj)

2

)
, (3.4)

where ρ2
h is an individual scale parameters for each dimension h = 1, 2, ..., p. This

class of kernel functions is closely related to the principle of automatic relevance

determination (MacKay, 1994; MacKay, 1995; Neal and Hinton, 1995). If ρ2
h is close

to zero, then the corresponding predictor variable Xh will have little effect on the

kernel function. Ideally, the scale parameters ρ2
3, ρ

2
4, ..., ρ

2
10 should be adjusted to be

close to zeros in the above simulation example.

The kernel function (3.4) is seldom used in SVMs and other relative models be-

cause it is very hard to make inference of such complex kernel function in the fre-

quentist framework. In contrast, it is relatively in principal straightforward to make

a fully Bayesian inference of above kernel parameters with the help of MCMC, which

will be shown in section 3.6.

In this chapter, we propose a proper probabilistic kernel model in the Bayesian

framework. Compared to the SVMs, our model can provide more reliable prediction

via full posterior distributions. With the help of MCMC, we can make fully Bayesian

inference on model parameters, even under complex model forms and kernel func-

tions. Our model is also highly flexible and may be extended and applied in various

54

situations, such as regression, binary classification, multi-class classification, robust

regression etc.

3.1.2 Comparison to relevance vector machine

We notice that our model is closely related to the recently proposed relevance vec-

tor machines (RVM) introduced in Tipping (2001) and Bishop and Tipping (2003).

RVM adopts similar prediction functions in SVMs and fits the model in the Bayesian

framework. Though RVM has been shown to have better performance than SVMs,

there are some potential problems in both theory and practice.

• The equation (3.2) comes from the solution of equation (3.1) in a frequentist

framework. RVM simply extracts the form of the equation (3.2) and applies

the Bayesian computation directly. For example, RVM has the following model

form for a normal regression model:

yi = f(xi) + εi, (3.5)

f(xi) =
n∑

j=1

wjk(xj,xi),

εi ∼ N(0, σ2),

and the model parameters are estimated in the Bayesian framework. However,

such direct adoption of the equation (3.2) is not appropriate. In fact, it is not a

proper model from a Bayesian perspective, because the model (3.5) depends on

the sample sizes of training data. In contrast, our model is based on a proper

model form in the Bayesian framework.

• RVM is based on the type-II maximum likelihood estimation with a series of ap-

proximations. First, the marginal posteriors for hyperpriors are approximated

by the delta-function at its mode. Second, in the classification models, the

55

posteriors for prediction are approximated by the second order approximation,

i.e., the Laplace approximation. Both approximations could be very inaccurate

in practice. In contrast, we make fully Bayesian inference with the help of

MCMC, which can provide more reliable estimation.

• RVM doesn’t address the problem of estimation of kernel parameters in complex

kernel functions such as (3.4). In contrast, we can make fully Bayesian inference

of kernel parameters with the help of MCMC.

3.1.3 Organization of the chapter

The remainder of this chapter is organized as follows. Section 2 gives a brief in-

troduction to radial basis functions (RBFs) that is the theoretic foundation of our

model. In Section 3, we derive the Bayesian version of RBFs by utilizing the Dirich-

let process priors on the distribution of location variables, which results in Bayesian

kernel models as a special case. To achieve sparse solutions, we introduce two classes

of structured priors for regression parameters w in Section 4: mixture priors with

zero point masses, and Student-t priors, which result in our Bayesian kernel models.

In Section 5, we introduce the orthogonalized kernel model to achieve better model

mixing and speed-up the computation for problems with large sample sizes n. This

model utilizes the reduced-rank singular value decomposition (SVD) to approximate

the kernel matrix, which can be interpreted as a kernel principle component regres-

sion. We also address the problem of selecting the number of SVD factors via Bayes

factors in this section. In Section 6, we focus on Bayesian inference for kernel param-

eters and propose a new empirical updating algorithm. For all the models introduced

in this chapter, we develop both MCMC algorithms for fully Bayesian inference and

EM algorithms for MAP estimation.

56

3.2 Radial basis functions

We are interested in the regression of a response variable y on a set of predictor

variables X, given the training data set D = (y1,x1, y2,x2, ..., yn,xn). In a linear

regression model, we assume f(X) = E(y|X) is a linear function of X. For example,

a normal linear regression model can be presented as:

yi = f(xi) + εi, (3.6)

f(xi) = xi
T β,

εi ∼ N(0, σ2),

where β is a p × 1 vector of regression coefficient parameters.

To extend the linear model to nonlinear cases, one simple idea is applying basis

expansions, i.e., mapping the data from input space Rp into some high-dimensional

feature space F via a nonlinear basis function φ : Rp → F , then performing linear

algorithm in F , i.e., f(xi) has the following form

f(xi) = φ(xi)
T β (3.7)

=
m∑

j=1

βjφj(xi)

where β is the regression coefficient vector in high-dimensional feature space F.

There are a lot of choices of basis functions, which correspond to a broad range of

models, such as polynomials model, splines, multi-layer perceptrons (MLPs) (Ripley,

1996), multivariate adaptive regression splines (MARS) (Friedman, 1991), generalized

additive models (Hastie and Tibshirani, 1990), etc.

Some of the families of basis functions are defined locally so that a simple model

can be fitted in a region local to the target point x∗, which is the basic idea of

local regression. One special kind of such models is radial basis functions (RBFs)

(Lowe, 1995), which combine the idea of nonlinear mapping via basis expansions and

57

localization via a weighting kernel. RBFs implement the idea by treating the basis

function φj(x∗) as a radial basis function φj(||x∗−uj||), which is parameterized by a

location (center/knot) vector uj located in p-dimensional predictor variables space.

In RBFs, the basis function is only a function of distance of target point x∗ to their

basis location uj. The model can be written as

yi = f(xi) + εi, (3.8)

f(xi) =
m∑

j=1

wjφ(||xi − uj||).

Depending on our a priori assumption on the smoothness of nonlinear mapping,

we can choose many different forms of basis functions (Girosi et al., 1995). Some

common choices include:

• Linear

φ(d) = d

• Cubic

φ(d) = d3

• Thin-plate spline

φ(d) = d2 log d

• Multiquadric

φ(d) = (d2 + c2)1/2

• Gaussian

φ(d) = exp(−cd2)

A basis function is a function of only the distance of target point x∗ to the basis

location uj : ||x∗−uj||, which is not necessarily a good metric for predictive purposes

58

when there are many irrelevant variables in high dimensional input space, just as we

have shown in the previous section. It is straightforward to extend the basis functions

φ(||xi − uj||) to more flexible kernel function k(xi,uj), thus the RBFs becomes:

yi = f(xi) + εi, (3.9)

f(xi) =
m∑

j=1

wjk(xi,uj).

Similar to the selection of the number of hidden neurons in a neural network, an

essential part of RBFs modelling is the selection of m, the number of locations and

the estimation of the locations uj. The frequentist methods include:

• Unsupervised learning. The centers are calculated by clustering method (Moody

and Darken, 1989), such as agglomerative clustering, k−means, self organizing

map (Kohonen, 1995) etc.

• Penalized likelihood. A penalty term is added to the likelihood function for

functional regularization. Classical examples include Akaike information cri-

terion (AIC) (Akaike, 1974), Bayesian information criterion (BIC) (Schwarz,

1978), and minimum description length (MDL) (Rissanen, 1987).

• Predictive assessment. The data is split into the training set and validation

set, then the model is chosen to balance the bias and variance of prediction.

Classical methods include bootstrap, jackknife (Chernick et al., 1985; Efron,

1982), and cross-validation (Stone, 1974).

• Growing and pruning. The number of locations is set by growing and pruning

algorithm. Examples include upstart algorithm (Frean, 1990), cascade correla-

tion (Fahlman and Lebiere, 1990), optimal brain damage (Le Cun et al., 1990)

and the resource allocating network (Platt, 1991).

59

3.3 Bayesian RBFs

Recently, there has been considerable interest in applying the Bayesian framework

and MCMC methods to neural network and radial basis functions. Neal and Hinton

(1995) proves that certain classes of priors for neural networks, in which the number of

hidden neurons tends to infinity, converge to Gaussian processes. Insua and Muller

(1998) and Holmes and Mallick (1998) use the growing and pruning algorithm to

select the number of hidden neurons from a Bayesian perspective. By applying the

reversible jump MCMC (Green, 1995; Richardson and Green, 1997) to MLP and

RBFs, they compute the joint posterior distribution of the model parameters and

the number of hidden neurons.

Here we also address the issue about the number of locations in RBFs from a

Bayesian perspective. The innovations here include use of a Dirichlet Process (DP)

prior (Ferguson, 1983) on the distribution of the location variables without trying

to select their number explicitly. It will be shown that our Bayesian definition,

interpretation and rationale of RBFs is very close to the support vector machine and

smoothing splines from the frequentist perspective.

3.3.1 A Bayesian perspective

From the Bayesian perspective, we can consider u as a random variable which has the

unknown distribution F (·), and x1, ...,xn are i.i.d samples from F. Then the RBFs

(3.8) can be represented as

f(x) =

∫ +∞

−∞

w(u)k(x,u)dF (u), (3.10)

or

f(x) =
+∞∑

i=1

w(ui)k(x,ui)p(ui),

60

which can be considered as an infinite RBF network.

First, we will analyze the model (3.10) in the form of Gaussian processes.

Suppose w(x) has a Gaussian process prior w ∼ N(0, C), where C is the covari-

ance matrix with the elements

ci,j = cov(w(xi), w(xj))

= c(xi,xj).

In (3.10), the latent function f(x) is also a Gaussian process because it is a linear

function of a Gaussian process. The mean of f(x) is zero, i.e.,

E(f(x)) = 0,

and the covariances are

Cov(f(xi), f(xj)) = E(

∫ +∞

−∞

w(u)k(xi,u)dF (f))E(

∫ +∞

−∞

w(v)k(xj, v)dF (v))

(3.11)

=

∫ +∞

−∞

∫ +∞

−∞

E(w(u))E(w(v))k(xi,u)w(v)k(xj,v)dF (v)dF (u)

=

∫ +∞

−∞

∫ +∞

−∞

c(u, v)k(xi,u)k(xj, v)dF (v)dF (u).

As a simple case, we assume that w(x) is a white noise process, the kernel function

k is stationary, and u is uniformly distributed over a region U . Thus we have

f(x) =

∫

U

w(u)k(x − u)du. (3.12)

The function f(x) can be considered as a convolution of a random process with a

smooth kernel k. It is easy to prove that f(x) is also a stationary Gaussian process

with the covariance function

cov(f(xi), f(xj)) =

∫

U

k(xi − u)k(xj − u)du.

61

A related model is illustrated by Higdon (2000) in detail. Instead of modelling f(x)

as a Gaussian process directly, we can construct a new Gaussian process f(x) over a

general spatial or temporal region U by convolving another Gaussian process, with

a smoothing kernel k(s), in which the covariance function cov(w(xi), w(xj)) can be

simple and it is not necessarily a strictly positive function.

This idea is very useful for the situations where data do not provide enough infor-

mation to estimate the covariance function cov(f(xi), f(xj)) of a standard Gaussian

process, but enough information to draw inferences on the simpler covariance function

cov(w(xi), w(xj)). Such situations exist in many inverse problems. A good example

is fluid flow problems (Lee et al., 2002), in which a Markov random field is used to

model w(u).

As an approximation to (3.12),

f(x) =
m∑

j=1

k(x − uj)w(uj)

is still a continuous process while the underlying process is discrete. Such an ap-

proximation on a finite set of basis points can save much computing time since a

close approximation only needs a relatively small number of basis points uj in some

situations.

In the following, we run some simple one-dimensional simulations to show what

f(x) looks like under various assumptions on k and w.

By setting w(u) as a white noise process and F as U(−1, 1), we draw 1,000

samples of w and u to calculate the function f(x). Figure 3.3 show the three samples

of function f(x) by using the Gaussian kernel, i.e.,

k(x,u) = exp
(
−ρ2(x − u)2

)
,

where the kernel parameter ρ has four different values: 0.1, 1, 4, 10.

62

As discussed, with a stationary smoothing kernel k , f(x) is just a stationary

Gaussian process.

Though such a nonparametric Gaussian process model has many appealing fea-

tures, it still suffers from the huge computational cost for large data sets as earlier

discussion. So, we now consider f(x) as a deterministic function of x given all of the

model parameters. To derive the form of f(x), we have to specify F (·). To make f(x)

based on a finite set of knots, we should specify F (·) as a discrete distribution. There

are many possible choices of discrete distribution, and different choices will result

in different models. The family of Dirichlet processes provide a one commonly used

framework for uncertain discrete distributions. In the following, we explore the use

of the Dirichlet process to model F in (3.10) to develop a more accessible analysis.

3.3.2 New models based on the Dirichlet process prior

In this section, we introduce a novel kernel model by using Dirichlet process pri-

ors. Dirichlet processes were first introduced in the area of Bayesian non-parametric

modelling. The early papers include Ferguson (1973), Ferguson (1974) and Antoniak

(1974). The theories and applications of Dirichlet process were further enriched in

Ferguson (1983), introducing the field of Dirichlet process mixture models. With the

advent of Markov chain Monte Carlo methods in 1990s, the computation of Dirichlet

process mixture models and Bayesian non-parametric cluster models were developed

in the papers of Escobar (1994), West et al. (1994), Escobar and West (1995) and

Green and Richardson (1998). In the following, we give a brief introduction to Dirich-

let process priors and basic properties.

A Dirichlet process prior for F , denoted by F ∼ DP (F |F0, α), is determined

by two parameters: F0 is the “baseline” prior and α is the positive scalar precision

parameter. F0 defines the “location” of Dirichlet process prior. The precision pa-

63

rameter determines the concentration of prior for F around the prior “guess” F0, and

therefore measures the “strength of belief” in F0. For large values of α, a sample of

F is likely to be close to F0. For small values of α, a sample of F is likely to put

most of its probability mass on a few atoms. Denoting x1, ...,xn as i.i.d draws from

F , Ferguson (1983) discovered the following result:

x1 ∼ F0(x),

x2|x1 ∼
α

α + 1
F0(x) +

1

α + 1
δx1(x2),

x3|x2,x1 ∼
α

α + 2
F0(x) +

1

α + 2
δx1(x3) +

1

α + 2
δx2(x3),

....

xn|x1, ...,xn−1 ∼
α

α + n − 1
F0(x) +

1

α + n − 1

n−1∑

j=1

δxj
(xn),

where δxj
(xn) denotes a unit point mass at xn = xj. The joint distribution of X =

(x1, ...,xn) is the product of the above conditional components, namely

n∏

i=1

αF0(xi) +
∑i−1

j=1 δxj
(xi)

α + i − 1
,

and the full conditional distribution of (xi|x1, ...,xi−1,xi+1, ...xn), for i = 1, ..., n, is

xi|x1, ...,xi−1,xi+1, ...xn ∼ α

α + n − 1
F0(xi) +

1

α + n − 1

∑

j 6=i

δxj
(xi).

Given that x1, ...,xn are i.i.d draws from F , we know that a new sample u has the

distribution

u|x1, ...,xn ∼ α

α + n
F0(u) +

1

α + n

n∑

j=1

δxj
(u). (3.13)

Thus, given existing samples, the next sample represents a new, distinct value drawn

from F0 with probability α/(α + n), and is otherwise drawn uniformly from among

64

the first n values x1, ...,xn. Based on the properties of DPs, the expectation of a

function g on a new sample u is

E(g(u)|x1, ...,xn) =
α

α + n
EF0(g(u)) +

1

α + n

n∑

j=1

g(xj),

where

EF0 [g(u)] =

∫ +∞

−∞

g(u)dF0(u).

In some cases, those n values will reduce to some kn < n distinct values x∗
1, ...,x

∗
kn

with positive probability. Suppose there are nj occurrences of x∗
j and let Ij be

the index set of those occurrences; thus xi = x∗
j for i ∈ Ij and j = 1, ..., k, with

n1 + n2 + ... + nkn
= n. Correspondingly, (3.13) reduces to the mixture of fewer

components (West, 1992; Escobar and West, 1995):

u|x1, ...,xn ∼ α

α + n
F0(u) +

1

α + n

kn∑

j=1

njδx∗

j
(u). (3.14)

Antoniak (1974) gives the prior for kn induced by the above DPs model. The

prior distribution for kn may be written as

kn|α, n ∼ cn(k)n!αkn
Γ(α)

Γ(α + n)
, (kn = 1, 2, ..., n),

where cn(k) = P (kn|α = 1, n), not involving α. West (1992) gives the asymptotic

distribution of kn. For kn = o(log(n)), kn−1 has a Possion distribution. In particular,

for n moderately large, the expectation of kn is about α ln(1 + n/α), which is an

increasing function of α.

In the following, we show some simple one-dimensional simulations of f(x) based

on the Dirichlet process prior.

65

By setting w(u) as a white noise process and the baseline prior F0 as U(−1, 1),

we draw 1,000 samples of u according to the properties of DPs:

u1 ∼ F0(u),

u2|u1 ∼
α

α + 1
F0(u) +

1

α + 1
δu1(u2),

u3|u1,u2 ∼
α

α + 2
F0(u) +

1

α + 2
δu1(u3) +

1

α + 2
δu2(u3),

....

un|u1, ...,un−1 ∼
α

α + n − 1
F0(u) +

1

α + n − 1

n−1∑

j=1

δuj
(un),

Then we calculate the function f(x) by using the Gaussian kernel, i.e.,

k(x, u) = exp
(
−ρ2(x − u)2

)
.

Figure 3.4 shows the three samples of f(x) when α = 1 and ρ = 0.1, 1, 4, 10

respectively. As we can see, due to the Dirichlet process prior, the function f(x) is

no longer stationary, and it is clearer with large value of ρ. To show the effect of

different scalar precision parameters α on f(x), we draw three samples of f(x) when

kernel parameter ρ is fixed but α = 0, 1, 10, 1, 000 respectively. Figure 3.5 shows such

simulations when the kernel parameter ρ = 10. As we can see, Dirichlet process prior

introduces the non-stationarity. But as we increase the α, we have more confidence

on our baseline prior F0, and f(x) looks more like a stationary Gaussian process.

To better illustrate the effects of different scalar precision parameters α, we as-

sume that the first three samples of u are u1 = −0.5,u2 = 0,u3 = 0.5. Then we

draw the rest of the samples in the same way above. Figure 3.6 shows the different

functions f(x) by different scalar precision parameters α = 0, 1, 10, 1, 000, with kernel

parameter ρ = 10. As we can see, the function f(x) has a high concentration on ini-

tial distinct values for small α. But as we increase the α, u has more distinct values

66

drawn from F0. Thus the baseline prior F0 has more smoothing effects on f(x). It is

consistent with the fact that the asymptotic mean of kn is an increasing function of

α (West 1992). The larger α implies larger number of distinct values.

Besides the Gaussian kernel, we can also use other commonly used kernel func-

tions, e.g., the sum of Gaussian kernel and linear kernel:

k(x,u) = exp
(
−ρ2(x − u)2

)
+ xu.

Figure 3.7 shows the different functions f(x) by different scalar precision parameters

α = 0, 1, 10, 1000 and kernel parameter ρ equals 10.

3.3.3 A novel class of Bayesian kernel models

We now derive a novel class of Bayesian kernel models based on the Dirichlet process

priors. We first consider the posterior predictive distribution of y given a new input

x and a set of observations x1, ...,xn in the setting of normal regression. Supposing

that w(u) is a deterministic function of u and all of model parameters are fixed (we

will discuss inference on w and other parameters later), then the only uncertainty

comes from F . Given F , we write our regression model as

P (y|x,F) =N(y|f(x), σ2),

where

f(x) =

∫ +∞

−∞

w(u)k(x,u)dF (u).

Note that P (y|x1, ...,xn,x,F) =P (y|x,F) since y is conditionally independent of

x1, ...,xn given F . Assuming the new input x is also a sampled from F , the pos-

terior predictive distribution is

P (y|x1, ...,xn,x)=

∫
P (y|x1, ...,xn,x,F)P (F |x1, ...,xn,x)dF (3.15)

=

∫
P (y|x,F)P (F |x1, ...,xn,x)dF

67

Thus the predictive distribution is a very complex mixture of normals; the relevant

density function P (y|x,F) mixed with respect to the posterior uncertainty over F.

A fully Bayesian analysis requires the calculation of above posterior predictive

distribution (3.15) and the inference of DP parameter α which is fully illustrated in

West (1992). However it is impossible to calculate equation (3.15). To simplify our

calculation, we use a “plug-in” approximation for large sample size n.

For a large n, we have two useful properties:

• The posterior density P (F |x1, ...,xn,x) is very concentrated on E(F |x1, ...,xn,x).

Thus we can have the approximation

P (y|x1, ...,xn,x) =

∫
P (y|x,F)P (F |x1, ...,xn,x)dF

≈ P (y|x,E(F |x1, ...,xn,x)).

• Let xn+1 = x. As n increases, E(F |x1, ...,xn,x) approximates to the empirical

CDF of the x1, ...,xn,xn+1, which is denoted as Fn+1. Namely, given that

x1, ...,xn,xn+1, we know that a new sample u has the distribution

u|x1, ...,xn+1 ∼
1

n + 1

n+1∑

j=1

δxj
(u),

and the expectation of a function g on a new sample u is

E(g(u)|x1, ...,xn+1) =
1

n + 1

n+1∑

j=1

g(xj).

In summary, we have the approximation

P (y|x1, ...,xn,x) =

∫
P (y|x,F)P (F |x1, ...,xn,x)dF

≈ P (y|x,E(F |x1, ...,xn,x))

≈ P (y|x,Fn+1),

68

where

P (y|x,Fn+1) =N(y|fn+1(x), σ2),

and

fn+1(x) =

∫ +∞

−∞

w(u)k(x,u)dFn+1(u) (3.16)

=
1

n + 1

n+1∑

j=1

w(xj)k(xj,x).

Thus the prediction function in our Bayesian kernel model becomes fn+1(x) which is

an approximation of infinite RBF network (3.10).

When the n + 1 values x1, ...,xn,xn+1 reduce to some kn < n + 1 distinct values

x∗
1, ...,x

∗
kn+1

, fn+1(x) (3.16) can be rewritten as

fn+1(x) =
1

n + 1

kn+1∑

j=1

njw(x∗
j)k(x∗

j ,x).

Then fn+1(x) is reduced on kn locations.

Note that we assume the new input x is also a sampled from F and is known at

the time of modeling. This can be considered as a learning problem with both labeled

and unlabeled data, which will be discussed in more detail later. However, in the

setting of classical supervised learning problems, the new input x is somehow assumed

to be unknown at the time of modeling. In this case, the posterior distribution of F

does not depend on x. Thus the posterior predictive distribution of y is modified as

P (y|x1, ...,xn,x)=

∫
P (y|x,F)P (F |x1, ...,xn)dF

≈ P (y|x,Fn),

where

P (y|x,Fn) =N(y|fn(x), σ2),

69

and

fn(x) =

∫ +∞

−∞

w(u)k(x,u)dFn(u) (3.17)

=
1

n

n∑

j=1

w(xj)k(xj,x).

In the following, we will stick to the form (3.17) in the setting of classical super-

vised learning problems. This can be considered as a special kind of RBFs, in which

locations are just each training data points. Moreover, this has the exact form of the

representor theorem discussed in the previous chapter. However, there is a funda-

mental difference between the representor theorem and our Bayesian kernel model.

The form of the representor theorem comes from the solution of regularized function

estimation in the Reproducing Kernel Hilbert Space (RKHS). Our parametric ker-

nel model comes from the proper Bayesian modelling of RBFs as a special case of

Dirichlet process priors. One key implication is that it is therefore a coherent model

for all n, and provides immediate access to Bayesian learning.

3.3.4 Likelihood

In the setting of normal regression, we have the kernel regression model from (3.17)

in the following form:

yi = fn(xi) + εi,

fn(xi) =
n∑

j=1

wjk(xj,xi),

εi ∼ N(0, σ2),

where wj = w(xj)/n. Note that the kernel weight wj depends on n, and hence priors

must reflect this dependency.

70

By using the notation of classical linear regression model, we can consider the

kernel matrix K as a n × n design matrix, each column of which corresponds to a

n-dimensional vector ki. We can rewrite our model as

yi = fn(xi) + εi,

fn(xi) = kT
i w,

εi ∼ N(0, σ2),

which is simply a normal linear regression model of y on a set of predictor variables

K.

Given the observed value of y, the likelihood function for w and σ2 is

p(y|K, σ2,w) ∝ exp

{
− 1

2σ2
(w−ŵ)T KKT (w−ŵ)

}
(3.18)

where ŵ is the least-squares vector

ŵ = (KKT)−1Ky.

In the following, we will introduce two classes of structured priors for regression

parameters w. Again, it is important to note the dependence of w on n, though that

is not explicitly reflected in the notation.

3.3.5 Mixture priors with point mass

One of key features of SVMs is the sparsity of its solution, i.e., only few of non-zero

elements in w. Let s ⊂ { x1, ...,xn}, and the prediction function as

fn(x) =
∑

j∈s

wjk(xj,x). (3.19)

Suppose the sizes of s is m , a much smaller number than n; thus the sparse model

depends only a small subset of kernel functions and corresponding training data.

71

In SVMs, the sparsity is achieved by the truncation property of its loss function

(1−zf)+. In the setting of standard regression analysis, the sparsity can be achieved

using subset selection algorithms. For example, Zhu and Hastie (2001) adopt a greedy

forward subset selection algorithm for kernel logistic regression, which is called Import

Vector Machine.

In the Bayesian framework, we can put an hierarchical prior on the regression

coefficients wj for the ‘automatic’ subset selection to achieve the sparsity. In this

subsection, we assume that the prior for wj is an independent mixture of normal

distribution and a point mass at zero, namely

wj|bj ∼ bjδ0 + (1 − bj)N(wj|0, σ2
w/n2),

where δ0 is the point mass at zero, σ2
w is a large value that results in a diffuse prior

for wj and bj ∈ {0, 1} is the binary latent variable. In particular, bi = 1 means that

the wj would be so small that it could be estimated as zero and the corresponding

xj is not included in the model. Otherwise bi = 0 means that the wj would be

estimated as a nonzero value and and the corresponding xj is included. To reflect

our a priori belief that most of wj are 0, i.e., most of bj are 1, we can specify that

πj = p(bj = 1) has a prior heavily concentrated near one, such as πj ∼ Beta(9, 1).

Note that the prior for wj depends on n because of the fact that wj = w(xj)/n, and

thus the canonical hyperparameters to specify, or estimate, are σ2
w and πj.

We now derive the conditional posterior distribution for bi. Let

y
(j)
i = yi −

∑

l 6=j

wlkli

= wjkji + εi,

72

and we can calculate

r =
p(bj = 1|D,w−j, b−j)

p(bj = 0|D,w−j, b−j)
(3.20)

=

σw exp

{
− 1

2σ2

n∑
i=1

(
y

(j)
i

)2
}

p(bj = 1).

√
vw exp

−1

2

 n∑

i=1

“

y
(j)
i

”2

σ2 −

n
P

i=1
y
(j)
i kji

σ2

2

vw

 p(bj = 0)

,

where

1

vw

=

n∑
i=1

k2
ji

σ2
+

n2

σ2
w

.

Then we have the conditional posterior distribution for bi as

bj|D,w−j, b−j ∼ Bern(
r

1 + r
),

which can be plugged into the standard Gibbs sampling procedure to create a se-

quence of bi, wi as follows: First, the samples of bj are drawn from above Bernoulli

distribution. If bj = 1, then wj is set as zero. If bj = 0, then we draw the samples of

wj according to the following conditional posterior distribution:

p(wj|D,w−j, bj = 0) = N(wj|((
n∑

i=1

y
(j)
i kji)n

2/σ2)vw, vw). (3.21)

3.3.6 Student-t priors

As an alternative to the above mixture priors with point mass, a Student-t prior

distribution can be considered as a continuous version of mixture distribution. In

practice, we apply the following hierarchical prior (West, 1984; West, 2003) on the

73

regression coefficients wj :

p(w|X,T)=
n∏

i=1

N(wi|0,
σ2

n2
τ 2
i), (3.22)

= N(w|0,
σ2

n2
T),

where τ 2
i are the prior scale parameters with T = diag(τ 2

1 , τ 2
2 , ..., τ 2

n). Again, it

is important to note that the prior for wj depends on n because of the fact that

wj = w(xj)/n. Also note that we use individual scale parameter τ 2
i for each regression

parameter wi, which allows for different degree of shrinkage in each of the predictor

dimensions. As for the priors for τ 2
i , we specify independent inverse gamma priors

on each of τ 2
i ,

τ−2
i ∼ Ga

(
τ−2
i

∣∣∣∣
k

2
,
k

2
τ 2
0

)
(3.23)

with shape parameter k/2 and scale parameter kτ 2
0 /2. This prior on τ 2

i means that

the implied priors for regression parameters wi, on marginalisation with respect to

the τ 2
i , are the independent T priors with k degrees of freedom. To introduce the

sparsity of w, k is generally specified as a small integer, say k = 2. Thus the posteriors

of some of the wi concentrate around zero, which implies that the associated data

points play little role in the regression. The parameter τ 2
0 controls the overall scale

for the set of τ 2
i . It can be a pre-selected constant or a hyperparameter with its own

hyperprior as

τ 2
0 ∼ Exp(τ 2

0 |a0), (3.24)

where a0 is the quantity to control overall scale of sparsity. To reflect our a priori

belief that most of τ 2
i and corresponding wj are close to 0, we can specify a large a0

such that τ 2
0 has a prior heavily concentrated near zero.

In the setting of normal regression, the conjugate prior distribution for σ2 is an

74

inverse gamma distribution,

p(σ−2) = Ga
(
σ−2

∣∣∣n0

2
,
n0

2
σ2

0

)
. (3.25)

3.3.7 Conditional posteriors

Given the above likelihood and priors, we can get the full conditional posteriors. Un-

der the specified prior (3.22) and likelihood function (3.18), the resulting conditional

posterior for w is a multivariate normal posterior

p(w|D,T, σ2) = N(w|ŵ, Vw), (3.26)

where

ŵ =
n2

σ2
VwKy,

V −1
w

=
n2

σ2

(
T−1 + KKT

)
.

Under the specified prior (3.25), the conditional posterior for σ2 over w is the inverse

gamma,

p(σ−2|D,T,w) = Ga

(
σ−2

∣∣∣∣
n0 + 2n

2
,
n0σ

2
0 + q

2

)
,

where

q = (y−KTw)T (y−KTw)+n2wTT−1w.

In practice, the conditional posterior for σ2 can be marginalised over w to make

MCMC more efficient, which leads to the inverse gamma form

p(σ−2|D,T) = Ga

(
σ−2

∣∣∣∣
n0 + n

2
,
n0σ

2
0 + q

2

)
,

where

q = (y−KT ŵ)T (y−KT ŵ).

75

Thus it is straightforward to draw samples from the joint conditional posterior dis-

tribution p(w,σ−2|D,T) by drawing σ−2 from its posterior marginalised over w, i.e.,

p(σ−2|D,T), followed by a drawing of w given σ−2 from p(w|D,T, σ2).

Under the specified prior (3.23), the conditional posteriors for scale parameter τ 2
i

is an independent inverse gamma posterior

p(τ−2
i |wi, τ

2
0 , D) = Ga

(
τ−2
i

∣∣∣∣
k + 1

2
,
kτ 2

0 + w2
i

2

)
(3.27)

conditionally independent over i.

Under the specified prior (3.24), the conditional posterior for hyperparameter τ 2
0

is a gamma posterior

p(τ 2
0 |T,D) = Ga

(
τ 2
0

∣∣∣∣∣
kn

2
+ 1,

k

2

n∑

i=1

τ−2
i + a0

)
.

3.3.8 Model fitting via MCMC

Given the above conditional posteriors, it is straightforward to implement the poste-

riors simulation using standard Gibbs sampling that is illustrated in detailed below.

The initial values are chosen arbitrarily for each of parameters, and then the sam-

ples of parameters are drawn from their conditional posterior distributions at each

iteration. The components of each MCMC step for a regression model

yi =
n∑

j=1

wjk(xj,xi)+εi,

εi ∼ N(0, σ2),

are as follows:

• Draw σ−2 from its marginal over w posterior

p(σ−2|D,T) = Ga

(
σ−2

∣∣∣∣
n0 + n

2
,
n0σ

2
0 + q

2

)
.

76

• Given the current value of σ−2, draw a vector of w = (w1, w2, ...wn) from the

multivariate normal posterior

p(w|D,T, σ2) = N(w|ŵ, Vw).

• Given the current value of w, draw a new diagonal matrix T = diag(τ 2
1 , τ 2

2 , ..., τ 2
n)

from the n independent gamma posteriors

p(τ−2
i |wi, τ

2
0) = Ga

(
τ−2
i

∣∣∣∣
k + 1

2
,
kτ 2

0 + w2
i

2

)
.

• Given the current value of T = diag(τ 2
1 , τ 2

2 , ..., τ 2
n), draw τ 2

0 from the gamma

posterior

p(τ 2
0 |T) = Ga

(
τ 2
0

∣∣∣∣∣
kn

2
+ 1,

k

2

n∑

i=1

τ−2
i + a0

)
.

For a binary classification model with binary output variable zi ∈ {0, 1}, it

is straightforward to modify the above MCMC algorithm using probit regression

where y = (y1, y2, ..., yn)T are the latent variables. MCMC is run to generate the ap-

proximate samples from the joint posteriors p(y,w,T |z, X) (Albert and Chib, 1993;

Johnson and Albert, 1999). The components of each MCMC steps for a probit re-

gression model

zi =

{
1, if yi ≥ 0,
0, if yi < 0,

yi =
n∑

j=1

wjk(xj,xi)+εi,

εi ∼ N(0, 1),

are then as follows:

77

• Given the previous value of y, draw a vector of w = (w1, w2, ...wn) from the

multivariate normal posterior

p(w|D,T) = N(w|ŵ, Vw).

• Given the current value of w, draw a new diagonal matrix T = diag(τ 2
1 , τ 2

2 , ..., τ 2
n)

from the n independent gamma posteriors

p(τ−2
i |wi, τ

2
0) = Ga

(
τ−2
i

∣∣∣∣
k + 1

2
,
kτ 2

0 + w2
i

2

)
.

• Given the current value of T = diag(τ 2
1 , τ 2

2 , ..., τ 2
n), draw τ 2

0 from the gamma

posterior

p(τ 2
0 |T) = Ga

(
τ 2
0

∣∣∣∣∣
kn

2
+ 1,

k

2

n∑

i=1

τ−2
i + a0

)
.

• Given the current value of w, calculate the vector ŷ = KTw with ith element

ŷi = kT
i w. For i = 1, 2, ..., n, sample new latent variables yi from the indepen-

dent truncated normal posteriors

yi ∼
{

N(yi|ŷi, 1)I(yi < 0), if zi = 0,
N(yi|ŷi, 1)I(yi > 0), if zi = 1.

This is directly, efficiently, performed as follows: let Φ(·) be the standard normal

distribution function and Pi = Φ(−ŷi), and draw a sample vi independently

from U(0, 1). Then, caculate

yi = ŷi + Φ−1[ziPi + vi(zi + (1 − 2zi)Pi)].

In practical numerical computation, we should take special care of the situations

where Pi is close to zero when zi = 0 and Pi is close to one when zi = 1.

78

We fit the model for the XOR example via MCMC taking k = 2 and a0 = 100.

The MCMC was run for 2,000 iteration after a burn-in of 1,000. Figure 3.8 shows the

simple summary of predictive probabilities for the training data. The posterior means

of predictive probabilities pi = Φ(ŷi), with approximate 90% uncertainty interval, are

plotted against posterior means of predictors ŷi = kT
i w. The data are labelled by

case number and color coded – red for 1 and blue for zero. Figure 3.9 shows a similar

summary for the test data. Taking pi = 0.5 (ŷi = 0) as the hard decision boundary,

the error rate for the training data is 0 and the error rate for the test data is 5%,

which is similar to that of SVMs.

3.3.9 Posterior predictive distribution

Now we apply our Bayesian kernel model to a new input x, and wish to predict the

outcome y. We first consider classical supervised learning problems. Suppose we

only have labeled training data D = (y1,x1, y2,x2, ..., yn,xn) at the time of model

training, and we do not have any information about new input x. Thus the built

model is based on labeled training data only. In the setting of normal regression, the

posterior predictive distribution of y is

P (y|D,x) ∝
∫

N(y|
n∑

j=1

wjk(xj,x), σ2)p(w,σ2|D)dwdσ2,

where p(w,σ2|D) is the joint posterior distribution for model parameters integrating

out all of hyperparamters.

With the help of MCMC, the posterior samples of y can be obtained easily. After

drawing (w,σ2) from their joint posterior distribution in each iteration, we draw

y ∼ N(y|
n∑

j=1

wjk(xj,x), σ2).

79

3.3.10 Learning with labeled and unlabeled data

Recently, there has been great interest in the use of unlabeled data for supervised

learning, which is called semi-supervised learning (Bennett and Demiriz, 1998; Blum

and Mitchell, 1998; Joachims, 1999; Szummer and Jaakkola, 2001; Zhu et al., 2003).

In this scenario, we not only have the labeled training data D = (y1,x1, y2,x2, ..., yn,xn),

but also have the unlabeled input data x at the time of model training. In some real

world problems, it is more difficult and expensive to collect fully labeled training data

than unlabeled data. Thus, it is important to incorporate unlabeled data into the

process of model training. Some studies have shown that the unlabeled input data x

could be used to enhance the learning process and improve the prediction.

In the Bayesian framework, it is straightforward to fit the model with both labeled

and unlabeled data by treating the prediction y as a missing value. In Section 3.3.3,

we have already derived the prediction function as

fn+1(x) =
n+1∑

j=1

wjk(xj,x).

We now discuss posterior predictive distribution of y involving uncertainty over model

parameters. Let xn+1 = x, and extend the vector w into a n + 1 dimensional vector

w = [w1, w2, ..., wn, wn+1]
T . In the setting of normal regression, the posterior predic-

tive distribution of y is

P (y|D,x) ∝
∫

N(y|
n+1∑

j=1

wjk(xj,x), σ2)p(w,σ2|D,x)dwdσ2.

Note that the joint posterior distribution for model parameters p(w,σ2|D,x) is not

only based on labeled data D, but also the unlabeled data x. To obtain the posterior

80

samples of y, we draw the samples from its conditional posterior

y|w,σ2, D,x ∼ N(y|
n+1∑

j=1

wjk(xj,x), σ2).

Thus, given the initial value of y, the conditional posterior can be plugged into

the original MCMC procedure.

3.3.11 MAP estimation via EM algorithm

In some cases where we are just interested in the posterior modes of parameters in-

stead of the exact posterior inference, it is unnecessary to run a MCMC that requires

thousands of iterations. For our Bayesian kernel models, the parameters of inter-

ests are the regression parameters w, and other parameters are considered as latent

variables. Thus the maximum a posteriori (MAP) estimate of w can be obtained by

maximizing the marginal posterior p(w|D) with the help of EM algorithm. In this

subsection, we will derive the EM algorithm for the binary probit regression model

with above likelihood and prior specification.

To simplify the EM algorithm, we specify τ 2
0 as a pre-selected constant instead

of an unknown parameter with its own hyperprior. Thus we consider w as the

parameters to be estimated and T = diag(τ 2
1 , τ 2

2 , ..., τ 2
n) and y as the latent variables

or missing data. Let wold be the current value, then the Q function is:

Q(w|wold) = Eold(log p(w|T,y, D))

=

∫
(log p(w|T,y, D))p(T,y|wold, D)dTdy

=

∫
(log p(w,T,y|D))p(T |wold, D)p(y|wold, D)dTdy.

Ignoring the terms that are unrelated to w, the logarithm of the joint posterior

81

density log p(w,T,y|D) can be written as

log p(w,T,y|D) = −1

2

(
(y−KTw)T (y−KTw) + wTT−1w

)
+ constant

= −1

2
(wT KKTw + wTT−1w − yT KTw − wT Ky)+constant

For the E-step of the EM algorithm, we need to calculate the expectation of log p(w,T,y|D)

over T,y and conditional on the current value wold:

Q(w|wold) = Eold(log p(w|T,y, D)) (3.28)

= −1

2
(wT KKTw + wTEold(T

−1)w−Eold(y)T KTw − wT KEold(y))+constant

We must now calculate Eold(T
−1) = diag(Eold(τ

−2
1), Eold(τ

−2
2), ..., Eold(τ

−2
n)) and Eold(y) =

[Eold(y1), Eold(y2), ..., Eold(yn)]. Given the conditional posteriors for τ−2
i as

p(τ−2
i |wi) = Ga

(
τ−2
i

∣∣∣∣
k + 1

2
,
kτ 2

0 + w2
i

2

)
,

we can get the expectation of Eold(τ
−2
i) as:

Eold(τ
−2
i) =

k + 1

kτ 2
0 + (w2

i)
old

.

The conditional posterior for the latent variables yi are independent truncated nor-

mals. Let ŷi = kT
i wold, pi = N(ŷi|0, 1) and Pi = Φ(−ŷi), the expectation Eold(yi)

is

Eold(yi) = ŷi + (2zi − 1)
pi

zi − (2zi − 1)Pi

Thus, the expectation Eold(T
−1) and Eold(y) can be calculated analytically in the Q

function Q(w|wold) for the following M-step.

For the M-step, we must now find the w that maximizes the the Q function

Q(w|wold). For our Bayesian kernel models, the maximization is straightforward

82

given that fact that the Q function (3.28) has the form of a logarithmic multivariate

normal density. Thus, we have

wnew =
(
Eold(T

−1) + KKT
)−1

KEold(y).

In summary, The EM algorithm can be described as follows:

1. Set a initial value for y and T−1, then calculate the initial estimate of w(0) as

w(0) =
(
T−1 + KKT

)−1
Ky.

2. For t = 0, 1, :

(a) E-step: calculate the expectations

Eold(τ
−2
i) =

k + 1

kτ 2
0 + (w2

i)
(t)

.

and

Eold(yi) = ŷi + (2zi − 1)
N(ŷi|0, 1)

zi − (2zi − 1)Φ(−ŷi)

ŷi = kT
i w(t)

As we do in MCMC computation, we should take special care of the situ-

ations where Pi is close to zero when zi = 0 and Pi is close to one when

zi = 1.

(b) M-step: calculate the new estimate of w as

w(t+1) =
(
Eold(T

−1) + KKT
)−1

KEold(y).

(c) Repeat step (a) and step (b) until the log-likelihood converges.

83

We fit the model for the XOR example again via EM algorithm taking τ 2
0 = 1.

Figure Figure 3.10 and Figure Figure 3.11 show the predictive probabilities for the

training data and test data respectively. The point estimate of predictive probabilities

pi = Φ(ŷi) are plotted against the predictors ŷi = kT
i w. The data are labelled by

case number and color coded – red for 1 and blue for zero. Taking pi = 0.5 (ŷi = 0)

as the hard decision boundary, the error rate for the training data is 0 and the error

rate for the test data is 5%, which is similar to that of SVMs.

3.4 Orthogonalized kernel models

Essentially, the above kernel model is a regression model on the kernel matrix K.

In practice, it is not a good modelling strategy to build the regression model on the

kernel matrix K directly, since there is possible multicollinearity in matrix K. For

example, Figure 3.12 shows the kernel matrix for the XOR training dataset whose

data points are reorganized to show the cluster structure of the kernel matrix. The

kernel function is the Gaussian kernel (3.3) with ρ2 = 1. The multicollinearity in the

covariate matrix will cause serious correlation among parameter w1, w2, ..., wn and

bad mixing in MCMC. Moreover, to calculate the conditional posterior distribution

of w shown in (3.26), we have to invert a n × n matrix Vw per every iteration,

which is computationally expensive for large n in the scale of O(n3). To solve these

problems, we use methods similar to those of Bayesian SVD regression (West, 2000;

West et al., 2002; Spang et al., 2002) and build the regression model based on the

reduced-rank approximation to the orthogonalized kernel matrix.

3.4.1 Singular value decomposition of kernel matrix

There are various orthogonalization methods, and different orthogonal bases can lead

to different predictive distributions. For simplicity, we just use the singular value

84

decomposition. For a n × n symmetric matrix K, there exists an orthogonal matrix

F (Basilevsky, 1983) such that

K = F T DF (3.29)

where

• D = diag(d1, d2, ..., dn) is the diagonal matrix of positive singular values, or-

dered as d1 ≥ d2 ≥ · · · ≥ dn ≥ 0; and

• F is the n×n orthogonal matrix with F T F = FF T = I. We can consider F as

the factor matrix with the column fi presenting the n-vector of ith kernel SVD

factor across all n samples.

Then our model can be build on the orthogonal SVD factor fi instead of original

kernel vector ki = F T Dfi. We can rewrite our model as

yi = kT
i w + εi, (3.30)

= fT
i DFw+εi,

= fT
i γ+εi,

where γ =DFw is the implied n-vector of regression parameter for SVD factors.

As discussed previously, the amount of computation needed is in the scale of

O(n3) for the regression on n-dimensional predictor variables, which is infeasible for

datasets with large sample sizes. To reduce the computational cost for large sample

sizes problem, we use the reduced rank approximation to the n×n kernel matrix K.

For a small number m ≤ n, let Dm×m = diag(d1, d2, ..., dm), and Fm×n be the first m

rows of F . We can then approximate the kernel matrix K with

Kn×n = F T
m×nDm×mFm×n.

Let SVD factor fi be the ith column of the factor matrix Fm×n, which is a m-vector.

Then the amount of computation for our regression model (3.30) can be reduced to

85

the scale of O(m3). Note that we can use a much more efficient algorithm (Press and

others, 1992) to calculate the first m principle factors than calculating SVD of n× n

matrix K. To simplify presentation, we will still use the notation of SVD and let D

and F represent Dm×m and Fm×n.

In practice, we find that we can approximate the K setting m ¿ n without

significant decrease in the accuracy of the solution. For example, in the kernel matrix

of XOR training data, the SVD factors with several largest eigenvalues can account

for most of the linear dependence structure. The upper frame of Figure 3.13 provides

display of elements d2
i as a percentage of total

∑n
i=1 d2

i , the lower frame show the

percentage of variance explained by the largest k factors, i.e., (
∑k

i=1 d2
i)/(

∑n
i=1 d2

i).

In our model fitting procedures, we choose the SVD factors with 10 largest eigenvalues

that have already explained 99.5% of linear structure.

3.4.2 Likelihood and priors

Given the observed value of y and X, the likelihood for m-dimensional regression

parameter γ is

p(y|X, γ)= exp

{
−1

2
(γ−γ̂)T (

1

σ2
FF T)(γ−γ̂)

}
, (3.31)

= exp

{
− 1

2σ2
(γ−γ̂)T (γ−γ̂)

}
,

=
m∏

i=1

exp

{
−(γi − γ̂i)

2

2σ2

}
,

where γ̂i is the the ith element of the least-squares vector

γ̂ = Fy.

With the inherent orthogonality of SVD factors, the conjugate priors for γ are

86

independent normal priors

p(γ|X,T)=
m∏

i=1

N(γi|0, σ2τ 2
i), (3.32)

= N(γ|0,σ2T),

where τi are the prior scale parameters with T = diag(τ 2
1 , τ 2

2 , ..., τ 2
m). We use the

individual scale parameter τi for each regression parameter γi, which allow for major

differences among γi, because there are possibly substantial variations in the effects of

factors as discussed in West (2000), West et al. (2002) and Spang et al. (2002). Note

that the independent priors for γi implies a singular normal prior for the regression

parameters w on the original kernel vector ki

p(w|X,T) =N(w|0, Σw)

where the singular precision matrix is

Σ−1
w

= F T DT−1DF

This class of structured prior is call generalized g-priors (West, 2000; West, 2003)

because it extends and generalizes the class of standard g-priors (Zellner, 1986) whose

precision matrix

Σ−1
w

= gF T DDF,

where g is a constant. The motivation behind generalized g-priors is that the priors

shares the structure of likelihood function with additional scale parameter τi that

allow different scaling in each of the orthogonal factor directions.

The specification of priors on the rest of parameters are similar to those in section

3.4. The prior for τ 2
i is an independent inverse gamma prior that is suggested by

conditional conjugacy, i.e.,

τ−2
i ∼ Ga

(
τ−2
i

∣∣∣∣
k

2
,
k

2
τ 2
0

)

87

with shape parameter k/2 and scale parameter kτ 2
0 /2. The τ 2

0 can be a pre-selected

constant or a hyperparameter with its own hyperprior

τ 2
0 ∼ Exp(τ 2

0 |a0),

where a0 is the quantity to control overall scale of sparsity. A large a0 allows that

the posteriors probability of some of regression parameters γi is concentrated at zero,

which implies that the associated factors play little roles in the regression.

In the setting of normal linear regression, the conjugate prior distribution for σ2

is inverse gamma distribution as

p(σ−2) = Ga
(
σ−2

∣∣∣n0

2
,
n0

2
σ2

0

)
.

3.4.3 Posteriors

Given the above likelihood and priors, we can get the full conditional posteriors

that is very similar to those of original Bayesian kernel models in subsection 3.4.4.

In fact, the calculation is simpler due to the the inherent orthogonality of SVD

factors. Under the specified prior (3.32) and likelihood function (3.31), the resulting

conditional posteriors for γ is a simple m independent normal posteriors

p(γ|y,X, T)=N(γ|γ∗,σ2G),

=
m∏

i=1

N(γi|γ∗
i , σ

2gi),

where γ∗
i is the ith element of the posterior mean vector

γ∗ = γ̂
τ 2
i

1 + τ 2
i

,

= Fy
τ 2
i

1 + τ 2
i

,

88

and G = diag(g1, g2, ..., gm) with

gi =
τ 2
i

1 + τ 2
i

.

Note that the implied conditional posteriors for the regression parameters w on

the original kernel vector ki is a singular normal posterior that is not obviously

uniquely defined due to the singularity structure. As shown in West (2000), however,

this seeming identification problem is solved under the specification of fixed prior

mean, here of 0 for γ.

The conditional posterior for the rest of parameters are similar to those in Sub-

section 3.4.4. The marginal conditional posterior for σ2 over γ is an inverse gamma

as

p(σ−2|D,T) = Ga

(
σ−2

∣∣∣∣
n0 + n

2
,
n0σ

2
0 + q

2

)
,

where

q = (y−KT γ∗)T (y−KT γ∗).

Thus it is straightforward to draw samples from the joint conditional posterior dis-

tribution p(γ,σ−2|D,T) by drawing σ−2 from its posterior marginalised over γ, i.e.,

p(σ−2|D,T), followed by a drawing of γ given σ−2 from p(γ|D,T, σ2).

Under the specified prior (3.23), the conditional posteriors for scale parameter τ 2
i

is an independent inverse gamma posterior

p(τ−2
i |γi, τ

2
0 , D) = Ga

(
τ−2
i

∣∣∣∣
k + 1

2
,
kτ 2

0 + γ2
i

2

)
.

Under the specified prior (3.24), the conditional posteriors for hyperparameter τ 2
0

is a gamma posterior

p(τ 2
0 |T,D) = Ga

(
τ 2
0

∣∣∣∣∣
km

2
+ 1,

k

2

n∑

i=1

τ−2
i + a0

)
.

89

3.4.4 Model fitting via MCMC

One of the key advantages of orthogonalized kernel models over original kernel models

is that MCMC based computation may be carried out in m-dimensional regression

parameter space for γ rather than possibly very large n-dimensional regression param-

eter space for w in large sample sizes problem. Moreover, the conditional posteriors

for γ and τ 2
i are independent posteriors due to the inherent orthogonality of SVD

factors, which can provide much better mixing and convergence for MCMC. It is

straightforward to implement the posterior simulation using standard Gibbs sam-

pling that is illustrated in detail below. The initial values are chosen arbitrarily for

each of parameters, and then the samples of parameters are drawn from their condi-

tional posterior distributions at each iteration. The components of each MCMC step

for the regression model

yi = fT
i γ+εi,

εi ∼ N(0, σ2),

are as follows:

• Draw σ−2 from its marginal over γ posterior

p(σ−2|D,T) = Ga

(
σ−2

∣∣∣∣
n0 + n

2
,
n0σ

2
0 + q

2

)
.

• Given the current value of σ−2, draw a vector of γ = (γ1, γ2, ...γm) from the m

independent normal posteriors

p(γi|y,X, T) = N(γi|γ∗
i , σ

2gi).

• Given the current value of γ, draw a new diagonal matrix T = diag(τ 2
1 , τ 2

2 , ..., τ 2
m)

from the m independent gamma posteriors

p(τ−2
i |γi, τ

2
0) = Ga

(
τ−2
i

∣∣∣∣
k + 1

2
,
τ 2
0 k + γ2

i

2

)
.

90

• Given the current value of T = diag(τ 2
1 , τ 2

2 , ..., τ 2
m), draw τ 2

0 from the gamma

posterior

p(τ 2
0 |T) = Ga

(
τ 2
0

∣∣∣∣∣
km

2
+ 1,

k

2

n∑

i=1

τ−2
i + a0

)
.

For a binary classification model with binary output variable zi ∈ {0, 1}, it is

straightforward to modify the above MCMC algorithm using probit regression where

y = (y1, y2, ..., yn)T are the latent variables. MCMC is run to generate the approx-

imate samples from the joint posteriors p(y, γ,T |z, X). The components of each

MCMC steps for the probit regression model

zi =

{
1, if yi ≥ 0,
0, if yi < 0,

yi =
n∑

j=1

wjk(xj,xi)+εi,

εi ∼ N(0, 1),

are as follows:

• Given the previous values of y, draw a vector of γ = (γ1, γ2, ...γm) from the m

independent normal posteriors

p(γi|y,X, T) = N(γi|γ∗
i , gi).

• Given the current value of γ, draw a new diagonal matrix T = diag(τ 2
1 , τ 2

2 , ..., τ 2
m)

from the m independent gamma posteriors

p(τ−2
i |γi, τ

2
0) = Ga

(
τ−2
i

∣∣∣∣
k + 1

2
,
τ 2
0 k + γ2

i

2

)
.

• Given the current value of T = diag(τ 2
1 , τ 2

2 , ..., τ 2
m), draw τ 2

0 from the gamma

posterior

p(τ 2
0 |T) = Ga

(
τ 2
0

∣∣∣∣∣
km

2
+ 1,

k

2

m∑

i=1

τ−2
i + a0

)
.

91

• Given the current value of γ, calculate the vector ŷ = FT γ with ith element

ŷi = fT
i γ. For i = 1, 2, ..., n, sample new vlaue of latent variables yi from

independent truncated normal posteriors

yi ∼
{

N(yi|ŷi, 1)I(yi < 0), if zi = 0,
N(yi|ŷi, 1)I(yi > 0), if zi = 1.

In practice, let Φ(·) be the standard normal distribution function and Pi =

Φ(−ŷi); draw a sample vi independently from U(0, 1), and calculate

yi = ŷi + Φ−1[ziPi + vi(zi + (1 − 2zi)Pi)].

We fit the model for the XOR example via the MCMC taking m = 10, k = 2

and a0 = 100. The MCMC was run for 2,000 iteration after a burn-in of 1,000.

Figure 3.14 shows the simple summary of predictive probabilities for the training

data. The posterior means of predictive probabilities pi = Φ(ŷi), with approximate

90% uncertainty interval, are plotted against posterior means of predictors ŷi = fT
i γ.

The data are labelled by case number and color coded – red for 1 and blue for zero.

Figure 3.15 shows a similar summary for the test data. Taking pi = 0.5 (ŷi = 0) as

the hard decision boundary, the error rate for the training data is 0 and the error

rate for the test data is 1%, which is better than the Bayesian kernel model built on

the kernel matrix directly.

3.4.5 Calculation of Bayes’ factors

One of major concerns in the orthogonalized kernel models is the selection of m, the

number of principal components based on the m largest eigenvalues. In general, we

wish to select a small number to reduce the computational cost and alleviate the over

fitting. However, we may risk excluding some important components that have small

eigenvalues but are highly correlated with the responses. In XOR example, we run

92

the above MCMC analysis when m = 10, and plot the posterior mean of γ in upper

frame of Figure 3.16. We can clearly see that the 4th principal component is most

important for regression though its eigenvalue is much smaller that first 3 principal

components that have already explained majority of linear structure. In practice, it

will be useful to compare the different models with different m and choose the best

model. In the Bayesian framework, we can calculate the Bayes factor

BF =
p(y|Mi)

p(y|Mj)

to compare the two competing models Mi and Mj. Moreover, if we have a collection

of candidate models {M1,M2, ...,Mq}, we can calculate the posterior probability of

model Mi

p(Mi|y) =
p(y|Mi)p(Mi)∑q

j=1 p(y|Mj)p(Mj)
,

then we can use model averaging to make the prediction or calculate other quantity

of interest. As we can see, the key here is to calculate the marginal distribution of y

p(y|Mi) =

∫
p(y|θ,Mi)p(θ|Mi)dθ.

Though it is not a easy problem generally, it is straightforward to estimate the

marginal density in our orthogonalized kernel models since we fit the model via Gibbs

sampling given the close-form full conditional distributions. In the following, we will

apply the idea in Chib (1995) to the binary probit regression model. To simply our

illustration, we suppress the model indicator Mi in our notation to estimate the the

marginal density p(z).

First, we consider the probit regression model with τ 2
0 fixed. By Bayes’ rule, we

have

p(z) =
p(z|γ,T)p(γ,T)

p(γ,T |z) .

93

Since the identity holds true for any value of (γ,T), we can just choose one single

point of (γ,T) from its posterior estimate, e.g., the posterior mean (γ̂, T̂), for the

calculation. To improve computational stability, we calculate it in the log scale

log p(z) = log p(z|γ̂, T̂) + log p(γ̂, T̂) − log p(γ̂, T̂ |z).

The first two terms are available explicitly. We now show how to estimate p(γ̂, T̂ |z)

using the output of Gibbs sampling. Writing

log p(γ̂, T̂ |z) = log p(T̂ |γ̂, z)+ log p(γ̂|z),

we can get p(T̂ |γ̂, z) from the conditional posterior density for T . As for p(γ̂|z), we

can estimate it using the Rao-Blackwellized mixture estimate as

p(γ̂|z)=
∫

p(γ̂|T,y, z)p(T,y|z)dTdy

≈ 1

I

I∑

i=1

p(γ̂|T (i),y(i), z),

where T (i),y(i) are the posterior samples from the output of Gibbs sampling. Thus

our estimate of p(z) in log scale is

log p(z) = log p(z|γ̂, T̂) + log p(γ̂, T̂) − log p(T̂ |γ̂, z)−
(

1

I

I∑

i=1

p(γ̂|T (i),y(i), z)

)
.

Then the marginal density and the corresponding Bayes factor can be calculated after

the exponential transformation.

For XOR example, we run the Gibbs sampler and estimate the p(z) for 10 different

models with m = 1, 2, ..., 10. The lower frame of Figure 3.16 plots the values of

log p(z). It shows a significant increase in m = 4, which implies the importance of

4th principal component in the regression model.

94

If τ 2
0 has its own hyperprior (3.23), the computation is a little complicated but

still feasible. By Bayes’ rule, we have

p(z) =
p(z|γ̂,τ̂ 2

0 , T̂)p(γ̂,τ̂ 2
0 , T̂)

p(γ̂,τ̂ 2
0 , T̂ |z)

.

where

p(γ̂,τ̂ 2
0 , T̂ |z) =p(τ̂ 2

0 |γ̂, T̂ , z)p(T̂ |γ̂, z)p(γ̂|z).

The first term p(τ̂ 2
0 |γ̂, T̂ , z) is available explicitly from the conditional posterior den-

sity for τ̂ 2
0 , and the third term p(γ̂|z) can be estimated by the Rao-Blackwellized

mixture of p(γ̂|T (i), τ̂
2(i)
0 ,y(i), z) as discussed above. As for the second term p(T̂ |γ̂, z),

we have

p(T̂ |γ̂, z)=

∫
p(T̂ |τ 2

0 , γ̂, z)p(τ 2
0 |γ̂, z)dτ 2

0

≈ 1

I

I∑

i=1

p(T̂ |τ̂ 2(i)
0 , γ̂, z),

where τ̂
2(i)
0 ∼ p(τ 2

0 |γ̂, z) which is not available from existing output of Gibbs sampling.

To get these samples, we have to run the Gibbs sampling for an additional I iterations

with only two conditionals , i.e.,

p(τ 2
0 |T, γ̂, z) and p(T |τ 2

0 , γ̂, z).

Thus, with additional sampling required, the final estimate of p(z) can be calcu-

lated.

3.4.6 MAP estimation via EM algorithm

The EM algorithm for MAP estimation of γ is very similar to the that of w in

Subsection 3.4.6. In summary, the EM algorithm can be described as follows:

95

1. Set a initial value for y and T−1, then calculate the initial estimate of γ(0) as

γ(0) =
(
T−1 + I

)−1
Fy.

2. For t = 0, 1, :

(a) E-step: calculate the expectations

Eold(τ
−2
i) =

k + 1

kτ 2
0 + (γ2

i)
(t)

,

and

Eold(yi) = ŷi + (2zi − 1)
N(ŷi|0, 1)

zi − (2zi − 1)Φ(−ŷi)
,

where

ŷi = fT
i γ(t).

(b) M-step: calculate the new estimate of γ as

γ(t+1) =
(
Eold(T

−1) + I
)−1

FEold(y).

(c) Repeat step (a) and step (b) until the log-likelihood converges.

We fit the model for the XOR example again via EM algorithm. Figure 3.17

and Figure 3.18 show the predictive probabilities for the training data and test data

respectively. The point estimate of predictive probabilities pi = Φ(ŷi) are plotted

against the predictors ŷi = fT
i γ. The data are labelled by case number and color

coded – red for 1 and blue for zero. Taking pi = 0.5 (ŷi = 0) as the hard decision

boundary, the error rate for the training data is 0 and the error rate for the test data

is 1%, which is similar to that of MCMC.

96

3.4.7 Interpretation as kernel principal component analysis

Principal component analysis (PCA) (Jolliffe, 1986; Jackson, 1991) is an orthogonal

basis transformation of coordinate system. The new coordinate values are called

principal components. PCA can be performed by solving an eigenvalue system. Start

with standard SVD of p × n data matrix X (Golub and Van Loan, 1989), we have

X = ABF

or

xi = ABfi, for i = 1, 2, ..., n

where

• A is the p×n SVD loading matrix with orthonomal columns so that AT A = I;

• B = diag(b1, b2, ..., bn) is the diagonal matrix of positive singular values, ordered

as b1 ≥ b2 ≥ · · · ≥ bn ≥ 0; and

• F is the n × n orthogonal matrix with F T F = FF T = I. The ith column of

F is denoted as ith factor fi that is a linear combination of original p predictor

variables.

It is often found that a small number of factors are sufficient to represent most

of structure of data and PCA is widely used to reduce the dimensionality or extract

the structure from high-dimensional datasets. However, linear PCA cannot always

detect all important structure in the input space. It is possible that there exists

nonlinear structure in the data, but linear PCA cannot detect it since it is only a linear

combination of original p predictor variables. Figure 3.19 show a simple illustrative

example that clearly show that the linear PCA cannot capture the nonlinear structure

97

in the data. To solve this problem, we can transform the input space Rp into the

feature space F by a nonlinear mapping

φ : Rp → F ,

then perform linear PCA on the feature space

φ(xi) = ABfi, i = 1, 2, ..., n. (3.33)

Hence, the factor fi is a combination of nonlinear transformation of original p pre-

dictor variables, which could hopefully extract interesting nonlinear structures in the

data.

As discussed previously, the feature space F could have a very high, or even

infinite, dimensionality. So it is infeasible to perform PCA on such feature space

directly. Instead, the idea of kernel expansion could be applied to solve this problem.

In the following, we will show how the orthogonalized kernel model can be connected

the PCA on the feature space F .

The kernel matrix K can be decomposed as following

K = F T DF.

Or the ith and jth element of kernel matrix K, kij, can be decomposed as

kij = fT
i Dfj

As we discussed it in the previous chapter, kij can be interpreted as the dot product

of xi and xj in the feature space

kij = k(xi,xj),

= φ(xT
i)φ(xj)

98

where φ(·) is the implicit nonlinear transformation that may or may not be known.

Let D = BT B and plug equation (3.33) into the kernel matrix, we have

kij = k(xi,xj),

= φ(xT
i)φ(xj),

= fT
i BT AT ABfj,

= fT
i Dfj,

which is exactly the SVD of kernel matrix K. Thus the factor fi derived by

the decomposition of kernel matrix can be interpreted as the PCA factor in high-

dimensional feature space. Though φ could be a nonlinear map into possibly high, or

infinite, dimensional space F , we do not need the actual function and mapped pat-

terns explicitly. Instead, all necessary calculations are done by using kernel function

k(xi,xj) in the original input space. This method is called kernel PCA and more

detailed description can be found in Schoelkopf et al. (1997). Figure 3.20 shows

a simple example of the kernel PCA that is equivalent to the linear PCA in the

nonlinear feature space by polynomial transformation.

With this interpretation, our orthogonalized kernel regression model

yi = kT
i w + εi,

= fT
i γ+εi,

can be interpreted as an ordinary linear regression model on factors that are extracted

by nonlinear PCA, i.e.,

φ(xi) = ABfi,

yi = fT
i γ+εi.

Note that this interpretation is different from the Bayesian factor kernel model

that will be discussed in Chapter 4.

99

3.5 Inference on kernel parameters

All computations above are based on the assumption that the parameters in the

kernel K are known or fixed, as is common practice with support vector machines

and other kernel models in the frequentist framework. It will be much more useful

if the kernel parameters can be adjusted adaptively by the model fitting algorithms.

Though it is a difficult task in SVMs, it is relatively easy and straightforward to be

implemented in our Bayesian kernel models with the help of MCMC. In this section,

we will introduce a new MCMC algorithm for the inference on kernel parameters.

We now consider the Gaussian kernel function

k(xj,xi) = exp

(
−

p∑
l=1

ρ2
l (xli − xlj)

2

)
,

where ρ2
l is an individual scale parameter for each dimension l = 1, 2, ..., p. This

class of kernel functions is closely related to the principle of automatic relevance

determination (Neal and Hinton, 1995). The ’relevance’ of each predictor variable Xl

is determined by the corresponding scale parameter ρ2
l . For example, if ρ2

l is close

to zero, then the corresponding predictor variable Xl will have little effects on the

kernel function. The effect of scale parameters on f(x) in two-dimensional space is

shown in Figure 3.21. On the left side ρ2
1 = ρ2

2 = 20 while on the right ρ2
1 = 1 and

ρ2
2 = 20.

3.5.1 Fully Bayesian inference

Note that we use ρ2
l in the kernel function to make sure that it is non-negative.

However, to simplify the computation, we make all the inference on the ρl, assuming

ρl > 0, instead of ρ2
l . We now specify the hierarchical priors for the kernel param-

eters ρ =(ρ1, ρ2, ...ρp)
T in a manner similar to that for the regression coefficients.

100

Specifically, the kernel parameter ρl has the truncated normal prior

ρl|g2
l ∼ N(ρl|0, g2

l)I(ρl > 0), (3.34)

or equivalently,

ρ2
l |g2

l ∼ Ga

(
ρ2

l

∣∣∣∣
1

2
,

1

2g2
l

)
,

where g2
l are the prior scale parameters with G = diag(g2

1, g
2
2, ..., g

2
p). The ρl are

assumed independent. Note that we use individual scale parameter g2
l for each kernel

parameters ρl, which allow for major differences among ρl, because there are possibly

substantial variations in the effects of each predictor dimensions. The prior for g2
l is

an independent inverse gamma prior that is suggested by conditional conjugacy, i.e.,

g−2
l ∼ Ga

(
g−2

l

∣∣∣∣
k

2
,
k

2
g2
0

)

with shape parameter k/2 and scale parameter kg2
0/2. As usual, we can specify that

ρl has a prior concentrated near zero to reflect our a priori belief that many predictors

have small or little effects on the kernel function in the case where there are many

irrelevant predictors.

Under the above priors and likelihood function for normal regression models, the

conditional posterior distribution for ρ is in the form of:

p(ρ|D,w,G) ∝ p(D|w, ρ,G)p(ρ|G)

=
n∏

i=1

N

(
yi

∣∣∣∣∣

n∑

j=1

wjk(xj,xi) , σ2

)
p∏

l=1

p(ρl)

=
n∏

i=1

N

(
yi

∣∣∣∣∣

n∑

j=1

wj exp

(
−

p∑
l=1

ρ2
l (xli − xlj)

2

)
, σ2

)
p∏

l=1

N(ρl|0, g2
l)I(ρl > 0).

The conditional posterior distribution for g2
l is an independent inverse gamma pos-

101

terior

p(g−2
l |ρ2

l , D) = Ga

(
g−2

l

∣∣∣∣
k + 1

2
,
kg2

0 + ρ2
l

2

)
(3.35)

independently over l.

Due to the difficulty of direct sampling from the above conditional posterior dis-

tribution for ρl, we use the Metropolis algorithm to draw the samples of ρl. The

proposal distribution can be a simple random walk. For example, we might use a

proposal distribution such as

J(ρ∗
l |ρl) ∼ N(ρ∗

l |ρl, σ
2
ρg

2
l),

or, equivalently,

J(ρ∗|ρ) ∼ N(ρ∗|ρ, σ2
ρG),

where σ2
ρ can be a pre-specified value or be adjusted adaptively during tuning steps to

meet a range of accept/reject rate. Note that the proposal distribution here depends

on the individual scale parameter g2
l that allows that each ρl to have the individual

“jumping” scales.

In summary, the MCMC steps for kernel parameters are as follows:

• Given the current value of w, G and ρ, to sample a new value of ρnew,

– Sample a candidate point ρ∗ from the proposal distribution

J(ρ∗|ρ) ∼ N(ρ∗|ρ, σ2
ρG).

– Calculate the ratio of conditional posterior densites

r =
p(ρ∗|D,w,G)

p(ρ|D,w,G)
.

102

– if r ≥ 1, set ρnew = ρ∗;

if r ≤ 1, set ρnew =

{
ρ∗, with probability r;
ρ, with probability 1 − r.

• Given the new value of ρnew, draw a new diagonal matrix G = diag(g2
1, g

2
2, ..., g

2
p)

from the p independent inverse gamma posteriors

p(g−2
l |ρ2

l , D) = Ga

(
g−2

l

∣∣∣∣
k + 1

2
,
kg2

0 + ρ2
l

2

)
.

Then those two components can be plugged into the MCMC procedure in Subsec-

tion 3.4.5 and Subsection 3.5.4 to construct the MCMC over the full parameter space.

Note that this MCMC algorithm is independent of the form of kernel functions, so it

can be easily applied to various kernel functions.

3.5.2 A discrete model for kernel parameters

Though the above Metropolis algorithm provides a possible way to make fully in-

ference about ρ, we found that it tends to converge very slowly when p is large. In

practice, we found that the predictive performance of Bayesian kernel models is in-

sensitive to the value of ρl when Xl is relevant, and it is not quite necessary to get

the accurate estimate of ρl. For example, for 2 dimensional XOR data, the Bayesian

kernel model with ρ = (1, 1) and ρ = (0.5, 0.5) gives very similar results. However,

in the situations where many predictors are irrelevant, the performance of Bayesian

kernel models is very sensitive to the exclusion/inclusion of the right predictors. In

such situations, it is more important for us to know if ρ2
l is zero or nonzero than the

exact inference about ρ. We now introduce an empirical discrete updating algorithm

via Gibbs sampling, which converges faster than the Metropolis algorithm without

significant decrease in the predictive accuracy in many practical cases. We do this

using alternative priors for the ρl, as follows.

103

Assume that ρl only has a set of m discrete values that are pre-selected, ρl ∈

{h1, h2, ..., hk, ..., hm}. Specify the prior for ρl as a discrete distribution on those

points, namely

ρl ∼
m∑

k=1

πkδ(ρl − hk)

where δ(x) is the point mass function at zero. The prior point mass πi = p(ρl = hi)

can be specified to be proportional to the continuous prior density (3.34) to introduce

the sparsity of ρ, as

πk ∝ g−1
l exp

(
− h2

k

2g2
l

)
.

Let us consider the situation of choosing the value of ρl in one specific dimension given

other kernel parameters ρ−l = {ρ1, ρ2, ..., ρl−1, ρl+1, ..., ρp} in the Gaussian kernel

function. We define

k(−l)(xi,xj) = exp

(
−∑

u6=l

ρ2
u(xui − xuj)

2

)
,

so that the full kernel can be written as :

k(xj,xi) = k(−l)(xi,xj) exp
(
−ρ2

l (xli − xlj)
2
)
.

In the setting of normal regression, we have the likelihood function

p(yi|ρl = hk, ρ−l,w, σ2) = N

(
yi

∣∣∣∣∣

n∑

j=1

wjk
(−l)(xi,xj) exp

(
−h2

k(xli − xlj)
2
)
, σ2

)
.

For each possible choice ρl = hk, where k = 1, ...,m, we calculate

rk =
n∏

i=1

p(yi|ρl = hk, ρ−l,w, σ2)πk,

=
n∏

i=1

N

(
yi

∣∣∣∣∣

n∑

j=1

wjk
(−l)(xi,xj) exp

(
−h2

k(xli − xlj)
2
)
, σ2

)
πk.

104

Let r0 =
∑m

j=1 rj, then the conditional posterior probability of ρl = hk is

p(ρl = hk|D, ρ−l,w, σ2) =
rk

r0

, (3.36)

and the corresponding conditional posterior for ρl is

ρl ∼
m∑

k=1

rk

r0

δ(ρl − hk).

In summary, the Gibbs sampling components for kernel parameters will create a

sequence of {ρ1, ρ2, ..., ρp} through the following steps

• Given the current value of w, G and ρ, for l = 1, 2, ..., p,

– for k = 1, 2, ...,m, calculate

πk = g−2
l exp

(
− h2

k

2g2
l

)

and

rk =
n∏

i=1

N

(
yi

∣∣∣∣∣

n∑

j=1

wjk
(−l)(xi,xj) exp

(
−h2

k(xli − xlj)
2
)
, σ2

)
πk.

– let r0 =
∑m

j=1 rj, draw a sample v ∼ U(0, 1).

– if (
∑k

j=1 rj)/r0 ≤ v ≤ (
∑k+1

j=1 rj)/r0, set ρl = hk.

• Given the new value of ρ, draw a new diagonal matrix G = diag(g2
1, g

2
2, ..., g

2
p)

from the p independent inverse gamma posteriors

p(g−2
l |ρ2

l , D) = Ga

(
g−2

l

∣∣∣∣
k + 1

2
,
kg2

0 + ρ2
l

2

)
.

105

Then above two components can be plugged into the MCMC procedures in Sub-

section 3.4.5 to construct the MCMC over full parameter space.

For the XOR data, we add 8-dimensional random noise, x3i, ..., x10i, to the training

data to test if our algorithm can identify the irrelevant features. We set

{h1, h2, ..., hm} = {0, 0.2, 0.5, 1, 2, 4}, which works quite well for many cases. The

MCMC was run for 10,000 iteration after a burn-in of 5,000. Figure 3.22 plots the

means of ρ1, ρ2, ..., ρ10. As we can see that the means of ρ1, ρ2 are much larger

than the means of ρ3, ρ4, ..., ρ10, which indicates that the algorithm can identify the

relevant predictors successfully. Figure 3.24 shows the simple summary of predictive

probabilities for the training data. The posterior means of predictive probabilities

pi = Φ(ŷi), with approximate 90% uncertainty interval, are plotted against posterior

means of predictors ŷi = kT
i w. The data are labelled by case number and color

coded – red for 1 and blue for zero. Figure 3.25 shows a similar summary for the

test data. Note that there are increases of uncertainty in predictive probabilities

compared to the previous analysis when the kernel parameter is fixed, which is due

to the introduction of the noise in data and the uncertainty in kernel parameters.

Taking pi = 0.5 (ŷi = 0) as the hard decision boundary, the error rate for the

training data is 0 and the error rate for the test data is 5%. Note that the SVMs’s

error rate on the same data is 45%. Our result is much better.

3.5.3 MAP estimation via ECM algorithm

In the cases where we are just interested in the MAP estimate, we can still incorporate

inference on kernel parameters ρ into the EM algorithm in Subsection 3.4.6. Now the

parameters of interests are the regression parameters w and kernel parameters ρ. All

other parameters are considered as latent variables. Thus the maximum a posteriori

(MAP) estimate of w and ρ can be obtained by maximizing the marginal posterior

106

p(w, ρ|D). In this subsection, we will derive the EM algorithm for the binary probit

regression model.

To simplify our illustration, we denote kernel matrix K(ρ) as a function of ρ;

the element kij(ρ) is defined by the kernel function (3.4). Thus w and ρ are the

parameters to be estimated and T = diag(τ 2
1 , τ 2

2 , ..., τ 2
n), G = diag(g2

1, g
2
2, ..., g

2
p) and

y is the latent variable or “missing data”. We then have:

Q(w, ρ|wold, ρold)
= Eold(log p(w, ρ|T,G,y, D)),

=
∫

(log p(w, ρ|T,G,y, D))p(T,G,y|wold, D)dTdy,

=
∫

(log p(w, ρ,T,G,y|D))p(T |wold, D)p(G|ρold, D)p(y|wold, D)dTdy.

Ignoring the terms that are unrelated to w and ρ, the logarithm of the joint posterior

density log p(w,T,y|D) can be written as

log p(w, ρ,T,G,y|D) = −1

2

(
(y−K(ρ)Tw)T (y−K(ρ)Tw) + wTT−1w + ρTG−1ρ

)

= −1

2
(wT K(ρ)K(ρ)Tw + wTT−1w − yT K(ρ)Tw,

−wT K(ρ)y + ρTG−1ρ.

For the E-step of the EM algorithm, we need to calculate Eold(log p(w, ρ,T,G,y|D))

over T,G,y and conditional on the current value wold,ρold. This is

Q(w, ρ|wold, ρold) = Eold(log p(w, ρ|T,G,y, D)),

= −1

2
(wT K(ρ)K(ρ)Tw + wTEold(T

−1)w−Eold(y)T K(ρ)Tw,

−wT K(ρ)Eold(y) + ρTEold(G
−1)ρ+constant.

Given the conditional posterior for τ−2
i (3.27) and g−2

i (3.36), Eold(T
−1) and Eold(G

−1)

can be calculated analytically as

Eold(τ
−2
i) =

k + 1

kτ 2
0 + (w2

i)
old

,

107

and

Eold(g
−2
i) =

k + 1

kg2
0 + (ρ2

i)
old

.

The conditional posteriors for latent variables yi are independent truncated normals.

Let ŷi = k(ρold)T
i wold, pi = N(ŷi|0, 1) and Pi = Φ(−ŷi). The expectation Eold(yi) is

Eold(yi) = ŷi + (2zi − 1)
pi

zi − (2zi − 1)Pi

.

For the M-step, we must now find the w and ρ that maximizes the the Q function

Q(w, ρ|wold, ρold). Since K(ρ) is a nonlinear function of ρ, it is difficult to find the

analytical solution. Instead, we use a series of conditional maximization (CM) to

replace the single M-step. The components of (w, ρ) are calculated one at a time,

leaving the other component at its previous value. Given the current value of ρ as

ρ(s), we can find the analytical solution for w(s+1) as

w(s+1) =
(
Eold(T

−1) + K(ρ(s))K(ρ(s))T
)−1

K(ρ(s))Eold(y).

To find the ρ(s+1) that maximizes the the Q function Q(w(s+1), ρ|wold, ρold), we have

to apply numerical nonlinear optimization procedures, such as the conjugate gradient

algorithm that is available in Matlab.

In summary, the EM algorithm can be described as follows:

1. Set a initial value for y and T−1 and ρ, then calculate the initial estimate of

w(0) as

w(0) =
(
T−1 + K(ρ)K(ρ)T

)−1

K(ρ)y.

2. For t = 0, 1, ... :

108

(a) E-step: calculate the expectations

Eold(τ
−2
i) =

k + 1

kτ 2
0 + (w2

i)
(t)

,

Eold(g
−2
i) =

k + 1

kg2
0 + (ρ2

i)
(t)

.

and

Eold(yi) = ŷi + (2zi − 1)
N(ŷi|0, 1)

zi − (2zi − 1)Φ(−ŷi)
,

where

ŷi = k(ρ(t))T
i w(t).

(b) CM-step: For s = 0, 1, ... :

i. calculate the new estimate of w(s+1) as

w(s+1) =
(
Eold(T

−1) + K(ρ(s))K(ρ(s))T
)−1

K(ρ(s))Eold(y).

ii. find the ρ(s+1) that maximizes the the Q function Q(w(s+1), ρ|wold, ρold)

using conjugate gradient algorithm.

iii. Repeat step (i) and step (ii) until the log-likelihood converges.

(c) Set w(t) = w(s+1) and ρ(t+1) = ρ(s+1).

(d) Repeat step (a) and step (b) until the log-likelihood converges.

We fit the model for the XOR example with 8-dimensional random noise, x3i, ..., x10i

via ECM algorithm. Figure 3.23 plots the value of ρ1, ρ2, ..., ρ10. As we can see that

the value of ρ1, ρ2 are much larger than the value of ρ3, ρ4, ..., ρ10, which indicates that

the algorithm can identify the relevant predictors successfully. Figure 3.26 and Figure

3.27 show the predictive probabilities for the training data and test data respectively.

The point estimate of predictive probabilities pi = Φ(ŷi) are plotted against the pre-

dictors ŷi = kT
i w. The data are labelled by case number and color coded – red for 1

109

and blue for zero. Taking pi = 0.5 (ŷi = 0) as the hard decision boundary, the error

rate for the training data is 0 and the error rate for the test data is 5%, which is

similar to that of MCMC.

Note that it is possible for the numerical nonlinear optimization procedure and

corresponding ECM algorithm to find the local maximum instead of global maximum

though we have not conducted any investigation into this issue. One possible solution

to this problem is to use the stochastic ECM (SECM). In the E-step of above ECM

algorithm, we draw a sample of T−1, G−1 and y from their conditional posteriors.

Then the CM steps are conditional on those samples instead of the expectations.

SECM algorithm generates a Markov chain of (w, ρ,T−1, G−1,y) that can be used in

the inference of interested parameters.

3.6 Experimental results

Besides the artificial XOR data examples, we have tried our Bayesian kernel models

on some real world benchmark datasets to evaluate the classification performance.

The comparison with SVMs, RVM and other quoted classifiers are provided.

MATLAB implementation of SVM is from the Spider project that are available

in http://www.kyb.tuebingen.mpg.de/bs/people/spider/main.html. The Gaussian

kernel function

k(xj,xi) = exp

(
−ρ2

p∑
h=1

(xhi − xhj)
2

)
, (3.37)

is used and the parameter ρ2 is pre-selected or chosen by cross validation.

MATLAB implementation of RVM is available in Microsoft’s RVM site:

http://research.microsoft.com/mlp/rvm/relevance.htm. The same Gaussian kernel

function and kernel parameters in SVM are used.

Two Bayesian kernel models are applied here: BKM1 is the orthogonalized kernel

110

models. We choose the SVD factors with largest k eigenvalues that have explained

95% of linear structure. BKM1 uses the exact same Gaussian kernel function and

kernel parameters as in SVM and RVM. It is trained via EM algorithm. BKM2 uses

the Gaussian kernel function

k(xj,xi) = exp

(
−

p∑
l=1

ρ2
l (xli − xlj)

2

)
,

where ρ2
l is an individual scale parameter for each dimension. The model is trained

via ECM algorithm where the kernel parameters are trained in CM step as described

in previous section.

In the following subsections, the comparison results for different benchmark datasets

are reported. All continuous variables are standardized so that they have zero mean

and unit variance on the training dataset.

3.6.1 Diabetes in Pima Indians

The data were collected by the US National Institute of Diabetes and Digestive

and Kidney Diseases (Smith et al, 1988). It is the result of diabetes testing for a

population of women who were at least 21 years old, of Pima Indian heritage and

living near Phoenix, Arizona. The data set includes 8 predictor variables and 1

binary response variable. We used the data as made available in Ripley (1994) with

his training test split of 200 training data 322 test data respectively. The baseline

error obtained by simply classifying each record as coming from a diabetic gives rise

to an error of 33%. Table 3.1 reports the number of test errors by different classifiers.

The results of neural network and linear discriminant are from Ripley (1996). The

performance of BKM2 is the best of the methods in comparison, and both Bayesian

kernel models give performance comparable to SVM and RVM.

111

3.6.2 Leptograpsus crabs

The data are from Campbell & Mahon (1974) on the morphology of rock crabs of

genus Leptograpsus. In this problem we attempt to classify the sex of crabs on the

basis of five anatomical attributes with an optional additional color attribute. There

are 50 specimens available for crabs of each sex and color making a total of 200

labelled examples. These are split into a training set of 20 crabs of each sex and

color, making 80 training examples with the other 120 examples used as the test set.

Table 3.2 reports the number of test errors by different classifiers. Again the results

of neural network and linear discriminant are from Ripley (1996). The performance

of BKM1 and BKM2 are the best of the methods in comparison.

3.6.3 Titanic

The data is available in http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm.

It includes 3 predictor variables and 1 binary response variable. We use a total of 10

training/test splits provided. Table 3.3 reports the test errors rate by different classi-

fiers. The result of Kernel Fisher Discriminant is from Mika et al. (1999). The result

of various AdaBoost methods are from Rätsch et al. (2001). The performance of

BKM1 and BKM2 are comparable to results provided by those state-of-art nonlinear

classifiers.

3.6.4 Breast cancer

The data was obtained from the University Medical Center, Inst. of Oncology, Ljubl-

jana, Yugoslavia. It is available in

http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm. It includes 9 predic-

tor variables and 1 binary response variable. The number of train data is : 200 and

number of test data is 77. We use a total of 10 training/test splits provided. Table

112

3.4 reports the test errors rate by different classifiers. The result of Kernel Fisher

Discriminant is from Mika et al. (1999). The result of various AdaBoost methods

are from Rätsch et al. (2001). The performance of BKM2 is among the best of the

methods in comparison.

113

Method Pima Indians
Neural network 75

Linear discriminant 67
SVM 64
RVM 64
BKM1 65
BKM2 63

Table 3.1: Number of test errors by different classifiers on Pima Indians dataset:
The results of neural network and linear discriminant are from Ripley (1996). Both
Bayesian kernel models give comparable performance with SVM and RVM .

Method crabs
Neural network 3

Linear discriminant 8
SVM 4
RVM 3
BKM1 2
BKM2 1

Table 3.2: Number of test errors by different classifiers on Leptograpsus crabs:
The results of neural network and linear discriminant are from Ripley (1996). The
performance of BKM1 and BKM2 are the best of the methods in comparison.

Method Titanic
Kernel Fisher Discriminant 23.25%

AdaBoost with RBF-Network 22.58%
LP Reg-AdaBoost 23.98%
QP Reg-AdaBoost 22.71%

AdaBoost Reg 22.64%
SVM 23.55%
RVM 24.02%
BKM1 23.11%
BKM2 23.61%

Table 3.3: Test errors rate by different classifiers on Titanic: The result of Kernel
Fisher Discriminant is from Mika(1999). The result of various AdaBoost methods
are from Ratsch (2001). The performance of BKM1 and BKM2 are comparable to
results provided by those state of art nonlinear classifiers.

114

Method Breast cancer
Kernel Fisher Discriminant 24.77%

AdaBoost with RBF-Network 30.36%
LP Reg-AdaBoost 26.79%
QP Reg-AdaBoost 25.91%

AdaBoost Reg 26.51%
SVM 26.98%
RVM 29.56%
BKM1 28.23%
BKM2 25.12%

Table 3.4: Test errors rate by different classifiers on Breast cancer: The result
of Kernel Fisher Discriminant is from Mika(1999). The result of various AdaBoost
methods are from Ratsch (2001). The performance of BKM2 is among the best of
the methods.

115

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x1

x2

Figure 3.1: 2-dimensional XOR training data: 60 independent samples are drawn
from a mixture of Gaussians as training data. Blue ’+’ represents class 0 and red ’o’
represents class 1.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x1

x2

Figure 3.2: 2-dimensional XOR data: 100 independent samples are drawn from a
mixture of Gaussians as test data. Blue ’+’ represents class 0 and red ’o’ represents
class 1.

116

−1 −0.5 0 0.5 1
15

20

25

30

35

40

45

50

rho : 0.1

un
ifo

rm

−1 −0.5 0 0.5 1
−30

−20

−10

0

10

20

30

rho : 1

un
ifo

rm

−1 −0.5 0 0.5 1
−30

−20

−10

0

10

20

rho : 4

un
ifo

rm

−1 −0.5 0 0.5 1
−20

−10

0

10

20

30

rho : 10

un
ifo

rm

Figure 3.3: One-dimensional simulations of f(x): F ∼ U(−1, 1). Four figures
correspond to the four different Gaussian kernel parameters ρ = {0.1, 1, 4, 10}. Each
of figures shows three samples of function f(x). It is shown that f(x) is just a
stationary Gaussian process with stationary smoothing kernel k.

−1 −0.5 0 0.5 1
−5

0

5

10

15

20

25

rho : 0.1

D
P

 a
lp

ha
 :

1

−1 −0.5 0 0.5 1
−60

−40

−20

0

20

40

rho : 1

D
P

 a
lp

ha
 :

1

−1 −0.5 0 0.5 1
−10

0

10

20

30

40

50

rho : 4

D
P

 a
lp

ha
 :

1

−1 −0.5 0 0.5 1
−30

−20

−10

0

10

20

30

rho : 10

D
P

 a
lp

ha
 :

1

Figure 3.4: One-dimensional simulations of f(x): F ∼ DP (F |F0, α) with
α = 1. Four figures correspond to the four different Gaussian kernel parameters
ρ = {0.1, 1, 4, 10}. Each of figures shows three samples of function f(x). It is shown
that the function f(x) is no longer stationary due to the Dirichlet process prior, and
it is clearer with larger value of ρ.

117

−1 −0.5 0 0.5 1
0

10

20

30

40

50

60

rho : 10

D
P

 a
lp

h
a

 :
 0

−1 −0.5 0 0.5 1
−20

0

20

40

60

80

rho : 10
D

P
 a

lp
h

a
 :

 1

−1 −0.5 0 0.5 1
−20

−10

0

10

20

30

rho : 10

D
P

 a
lp

h
a

 :
 1

0

−1 −0.5 0 0.5 1
−20

−15

−10

−5

0

5

10

15

rho : 10

D
P

 a
lp

h
a

 :
 1

0
0

0

Figure 3.5: One-dimensional simulations to show the effect of different scalar pre-
cision parameters α on f(x): F ∼ DP (F |F0, α) with fixed ρ = 10. Four figures
correspond to the four different scalar precision parameters α = {0, 1, 10, 1000}.
Each of figures shows three samples of function f(x). With the increase of the α, we
have more confidence on our baseline prior F0, and f(x) looks more like a stationary
Gaussian process.

118

−1 −0.5 0 0.5 1
−40

−30

−20

−10

0

10

20

30

rho : 10

D
P

 a
lp

h
a

 :
 0

−1 −0.5 0 0.5 1
−40

−30

−20

−10

0

10

20

30

rho : 10

D
P

 a
lp

h
a

 :
 1

−1 −0.5 0 0.5 1
−40

−30

−20

−10

0

10

20

rho : 10

D
P

 a
lp

h
a

 :
 1

0

−1 −0.5 0 0.5 1
−20

−15

−10

−5

0

5

10

15

rho : 10

D
P

 a
lp

h
a

 :
 1

0
0

0

Figure 3.6: One-dimensional simulations to show the effect of different scalar pre-
cision parameters α on f(x): F ∼ DP (F |F0, α) with fixed ρ = 10. we assume that
the first three samples of u are u1 = −0.5,u2 = 0,u3 = 0.5. Four figures correspond
to the four different scalar precision parameters α = {0, 1, 10, 1000}. Each of figures
shows three samples of function f(x). As we can see, the function f(x) has a high
concentration on initial distinct values for small α. But as we increase the α, u has
more distinct values drawn from F0. Thus the baseline prior F0 has more smoothing
effects on f(x). It is consistent with the fact that the asymptotic mean of kn is an
increasing function of α (West 1992). The larger α implies larger number of distinct
values.

119

−1 −0.5 0 0.5 1
−30

−20

−10

0

10

20

30

rho : 10

D
P

 a
lp

h
a

 :
 0

−1 −0.5 0 0.5 1
−30

−20

−10

0

10

20

30

rho : 10
D

P
 a

lp
h

a
 :

 1

−1 −0.5 0 0.5 1
−30

−20

−10

0

10

20

30

rho : 10

D
P

 a
lp

h
a

 :
 1

0

−1 −0.5 0 0.5 1
−60

−40

−20

0

20

40

rho : 10

D
P

 a
lp

h
a

 :
 1

0
0

0

Figure 3.7: One-dimensional simulations with sum of Gaussian kernel and linear
kernel: F ∼ DP (F |F0, α) with fixed ρ = 10. The kernel function is the sum of
Gaussian kernel and linear kernel. Four figures correspond to the four different scalar
precision parameters α = {0, 1, 10, 1000}. Each of figures shows three samples of
function f(x).

120

−8 −6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 31
32

33 34
35

36
37

383940

41

4243
44

45

46474849

50

51
52

5354 555657 5859

60

1 23 4

5
6

7 891011
12

13

14
15

16

17
1819 20

21

22 2324
25

26

27 282930

Predictive probabilities: Training cases

Predictor

P
ro

ba
bi

lit
y

Figure 3.8: Bayesian kernel models via MCMC: summary of predictive probabilities
for the training data in the XOR example. The posterior means of predictive prob-
abilities pi = Φ(ŷi), with approximate 90% uncertainty interval, are plotted against
posterior means of predictors ŷi = kT

i w. The data are labelled by case number and
color coded – red for 1 and blue for zero.

−8 −6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

49

50
51

52

53 5455
56

5758

59

60 61
62

63

64

65 66
67

68

69

7071 7273

74
75

76

77
78

79 8081

82

83

84

85

86

87

8889

90

9192

93
94

95969798

99

100

1 2 3
4 5 67

8910

11

12
13

14 1516171819 20

21

22

23

24

252627 2829

30

313233

34
35

36

37

38
39

40

41

42

43

44

45

46

47

48

Predictive probabilities: Test cases

Predictor

P
ro

ba
bi

lit
y

Figure 3.9: Bayesian kernel models via MCMC: summary of predictive probabilities
for the test data in the XOR example. The posterior means of predictive probabilities
pi = Φ(ŷi), with approximate 90% uncertainty interval, are plotted against posterior
means of predictors ŷi = kT

i w. The data are labelled by case number and color coded
– red for 1 and blue for zero.

121

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1 31
32

3334
35

36
37

383940

41

4243
44

45

46474849

50

51
52

5354 5556575859
60

1 23 4

5
6

7 891011 1213

1415

16

17 181920

21

22 2324 25

26

27 28 2930

Predictive probabilities: Training cases

Predictor

P
ro

b
a
b
ili

ty

Figure 3.10: Bayesian kernel models via EM: predictive probabilities for the training
data in the XOR example. The point estimate of predictive probabilities pi = Φ(ŷi)
are plotted against the predictors ŷi = kT

i w. The data are labelled by case number
and color coded – red for 1 and blue for zero.

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1
49

50
51

52

53 5455
56

5758

59

60 61
62

63

64

65 66
67

68

69

7071 7273

7475

76

7778

79 8081

82

83

84

85

86

87

8889

90

9192

93
94

95969798

99

100

1 2 3
4 5 67 8910

11

12
13

1415 1617181920
21

22

23

24

252627 2829

30

31 3233
3435

36

37

38
39

40

41

42

43

44

45

46

47

48

Predictive probabilities: Test cases

Predictor

P
ro

b
a
b
ili

ty

Figure 3.11: Bayesian kernel models via EM: predictive probabilities for the test
data in the XOR example. The point estimate of predictive probabilities pi = Φ(ŷi)
are plotted against the predictors ŷi = kT

i w. The data are labelled by case number
and color coded – red for 1 and blue for zero. The error rate for the test data is 5%,
which is similar to that of SVMs.

122

10 20 30 40 50 60

10

20

30

40

50

60

Figure 3.12: Kernel matrix for the XOR training data: The kernel function is the
Gaussian kernel (3.3) with ρ2 = 1. Data points are reorganized to show the cluster
structure of the kernel matrix.

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Factors

%
 s

tr
u

ct
u

re
 e

xp
la

in
e

d

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

First k factors

%
 s

tr
u

ct
u

re
 e

xp
la

in
e

d

Figure 3.13: The percentage of variance explained by the SVD factors: The up-
per frame provides display of elements d2

i as a percentage of total
∑n

i=1 d2
i , the

lower frame shows the percentage of variance explained by the largest k factors,
i.e., (

∑k
i=1 d2

i)/(
∑n

i=1 d2
i). It is suggested that we can approximate K setting m ¿ n

without significant decrease in the accuracy of the solution.

123

−20 −15 −10 −5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 3132 333435 3637 38394041 42 434445 4647 4849

50

5152 5354 555657 585960

1 234

5

6

7 891011 1213 14151617 1819 20 2122 2324 25 2627 282930

Predictive probabilities: Training cases

Predictor

P
ro

ba
bi

lit
y

Figure 3.14: Orthogonalized kernel models via MCMC: summary of predictive prob-
abilities for the training data in the XOR example. The posterior means of predic-
tive probabilities pi = Φ(ŷi), with approximate 90% uncertainty interval, are plotted
against posterior means of predictors ŷi = kT

i w.

−20 −15 −10 −5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 49 505152 53 545556 5758

59

60 6162 6364 65 66676869 70 71 72737475 7677 7879 808182 83

84

85

86

87

888990 91929394 9596979899 100

1 2 34 567 8910 1112 1314 151617181920 2122 2324252627 2829 3031 3233 3435 36

37

3839 4041 4243 4445

46

47
48

Predictive probabilities: Test cases

Predictor

P
ro

ba
bi

lit
y

Figure 3.15: Orthogonalized kernel models via MCMC: summary of predictive prob-
abilities for the test data in the XOR example. The posterior means of predictive
probabilities pi = Φ(ŷi), with approximate 90% uncertainty interval, are plotted
against posterior means of predictors ŷi = kT

i w. The error rate for the test data
is 1%, which is better than the Bayesian kernel model built on the kernel matrix
directly.

124

0 1 2 3 4 5 6 7 8 9 10
−10

0

10

20

30

40

SVD factors

R
eg

re
ss

io
n

co
ef

fic
ie

nt
s

0 1 2 3 4 5 6 7 8 9 10
−50

−40

−30

−20

−10

0

Number of SVD factors

lo
g(

B
F

)

Figure 3.16: Bayes factors: The upper frame plots the posterior mean of γ in the
MCMC analysis of XOR data with m = 10. We can clearly see that the 4th principal
component is most important for regression though its eigenvalue is much smaller that
first 3 principal components that have already explained majority of linear structure.
The lower frame shows the value of marginal distribution in log scale, log p(z), for 10
different models with m = 1, 2, ..., 10. It shows a significant increase in m = 4, which
implies the importance of 4th principal component in the regression model.

125

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1 3132 333435 3637 38394041 42 4344

45

4647 4849

50

5152 5354 555657 5859
60

1 234

5

6

7 891011 1213

1415

1617 1819 20 2122 2324 25
26

27 282930

Predictive probabilities: Training cases

Predictor

P
ro

b
a
b
ili

ty

Figure 3.17: Orthogonalized kernel models via EM: predictive probabilities for the
training data in the XOR example. The point estimate of predictive probabilities
pi = Φ(ŷi) are plotted against the predictors ŷi = kT

i w.

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1 49 5051

52

53 545556 5758

59

60 6162 63

64

65 666768

69

70 71 7273
7475

76
77 7879 8081

82
83

84

85

86

87

8889
90

91929394 95969798

99

100

1
2 3

4 567 8910

11

12

13

14 151617181920 2122

23

24252627 2829
30

313233 3435

36

37

3839 4041 4243

44

45

46

47

48

Predictive probabilities: Test cases

Predictor

P
ro

b
a
b
ili

ty

Figure 3.18: Orthogonalized kernel models via EM: predictive probabilities for
the test data in the XOR example. The point estimate of predictive probabilities
pi = Φ(ŷi) are plotted against the predictors ŷi = kT

i w. The error rate for the test
data is 1%, which is similar to that of MCMC.

126

Figure 3.19: Illustrative example of linear PCA on the data with nonlinear struc-
ture, copied from Schoelkopf (1997). We can see that the linear PCA cannot capture
the nonlinear structure in the data.

Figure 3.20: Illustrative example of kernel PCA, copied from Schoelkopf (1997). All
necessary calculations are done by using polynomial kernel function in the original
input space, which is equivalent to the linear PCA in the nonlinear feature space by
polynomial transformation.

127

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−10

−5

0

5

10

15

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−20

−15

−10

−5

0

5

10

15

20

25

Figure 3.21: Simulations in two-dimensional space: The effect of scale parameters
on f(x) in two-dimensional space. On the left side ρ2

1 = ρ2
2 = 20, while on the right

ρ2
1 = 1 and ρ2

2 = 20.

128

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Kernel parameters

Predictor variables

K
er

ne
l p

ar
am

et
er

s

Figure 3.22: Estimation of kernel parameters via MCMC: In the XOR example, we
add 8-dimensional random noises, x3i, ..., x10i, to the training data. This figure plots
the posterior means of ρ1, ρ2, ..., ρ10 after MCMC analysis. As we can see that the
means of ρ1, ρ2 is much larger than the means of ρ3, ρ4, ..., ρ10, which indicate that
the algorithm can identify the relevant predictors successfully.

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Kernel parameters

Predictor variables

K
er

ne
l p

ar
am

et
er

s

Figure 3.23: Estimation of kernel parameters via ECM: In the XOR example, we
add 8-dimensional random noises, x3i, ..., x10i, to the training data. This figure plots
the estimates of ρ1, ρ2, ..., ρ10 after ECM analysis. As we can see that the means of
ρ1, ρ2 is much larger than the means of ρ3, ρ4, ..., ρ10, which indicate that the algorithm
can identify the relevant predictors successfully.

129

−4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 31

32

33 34

35

36
37383940

41

4243

44

45

4647 4849

50

51

52
5354

555657 58
59

60

1

2

34

5

6

7 8910 11
12

13

14

15

16

1718

19

20

21

22
2324

252627
28

29

30

Predictive probabilities: Training cases

Predictor

P
ro

ba
bi

lit
y

Figure 3.24: Bayesian kernel models with the estimation of kernel parameters via
MCMC: summary of predictive probabilities for the training data in 10-dimensional
XOR example. The posterior means of predictive probabilities pi = Φ(ŷi), with ap-
proximate 90% uncertainty interval, are plotted against posterior means of predictors
ŷi = kT

i w.

−4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

49

50

51

52

53

54
55

56

57

58

59

60 61

62

63

64

65

66

67

68

69

7071
72

7374

75

76

77

7879

8081
82

83

84

85

8687

888990
91

92
93

949596 97
98

99

100

1

2

3

4

5

6 78
9

10

11

12

13

14
15

16
1718192021 22

23

24

25262728 29

30

31
32

33

34

35

36

37

38

39

40

41

42 43

44

45

46

47

48

Predictive probabilities: Test cases

Predictor

P
ro

ba
bi

lit
y

Figure 3.25: Bayesian kernel models with the estimation of kernel parameters via
MCMC: summary of predictive probabilities for the training data in 10-dimensional
XOR example. The posterior means of predictive probabilities pi = Φ(ŷi), with ap-
proximate 90% uncertainty interval, are plotted against posterior means of predictors
ŷi = kT

i w. The error rate for the test data is 5%. Note that the SVMs’s error rate
on the same data is 45%. Our result is much better.

130

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1 31

32

33 34

35
36

37383940

41

4243

44

45

46474849

50

51

52

53
54

55
5657

58
59

60

1
2

34

5

6

7 8
9 1011

12
13

14
15

16

17
18

19
20

21

22
23

24 25
26 2728

29
30

Predictive probabilities: Training cases

Predictor

P
ro

b
a
b
ili

ty

Figure 3.26: Bayesian kernel models with the estimation of kernel parameters via
ECM: predictive probabilities for the training data in the 10-dimensional XOR ex-
ample. The point estimate of predictive probabilities pi = Φ(ŷi) are plotted against
the predictors ŷi = kT

i w.

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

49

50

51

52

53

54
55

56

57

58

59

60 61
62

63

64

65

66

67

68

69

7071
72

7374

75

76

77
78

79
8081

82 83

84

85

86

87

88
8990 91

92
93

94959697
98

99

100

1

2
3

4
5

6 789 10
11

12

13

141516
171819 2021

22

23

24

2526272829

30

31
32

33

34

35

36

37

38
39

40

41

42
43

44

45

46

47

48

Predictive probabilities: Test cases

Predictor

P
ro

b
a
b
ili

ty

Figure 3.27: Bayesian kernel models with the estimation of kernel parameters via
ECM: predictive probabilities for the test data in the 10-dimensional XOR example.
The point estimate of predictive probabilities pi = Φ(ŷi) are plotted against the
predictors ŷi = kT

i w.

131

Chapter 4

Conclusions and future work

The current thesis consists of two major parts. In the first part, a method to estimate

gene expression indexes in the Bayesian framework is developed. In the second part,

a new class of Bayesian kernel models is proposed. This Chapter presents some of

the current ideas about possible extensions of each part.

4.1 Bayesian estimation of gene expression index

In Chapter 1, A Bayesian model of gene expression index is proposed. In terms of

model specifications and applications, it is possible to extend the Bayesian model in

the following ways.

4.1.1 Random effect models

One important assumption of LW model and our Bayesian model is that the probe-

specific affinity φj is the same across the arrays, which is suggested by the observed

reproducibility of probe-specific effects. However, it is more realistic to allow different

probe-specific affinities cross the arrays due to the potentially complex experimental

sources of variation.

132

We could introduce a random effect model,

yij = φijθi + εij, (4.1)

εij ∼ N(εij|0, σ2
j /λij),

where φij is the probe-specific affinity for jth probe pair in ith array. We can specify

the following hierarchical prior for φij,

φij ∼ N(φij|µj, τ
2
j)I(φij > 0),

where µj and τ 2
j are the hyperparameters for jth probe pair. The hyperpriors for

these hyperparameters can be specified as uninformative priors,

µj ∼ U(µj|0,∞),

τ−2
j ∼ Ga

(
τ−2
j

∣∣∣n0

2
,
n0

2

)
,

where n0 is a small value.

The full conditional posteriors for φij, µj, τ 2
j can be easily derived and plugged

into the Gibbs sampling procedure in Chapter 1. This random effect model can be

further improved if we know more about the experiment design, such as cell line,

treatment, replicate etc.

4.1.2 PM only model

In oligonucleotide microarrays, hybridization of MM probes should be attributed to

either cross-hybridization, or background signal caused by the hybridization of cell

debris and salts to the probes. The rationale behind the use of difference of PM

and MM is that PM-MM can be used to correct non-specific binding. However,

various exploratory analysis (Naef et al., 2001; Irizarry et al., 2003a) suggest that

MM may detect signal as well as non-specific binding. Based on the observations

that PM-MM could remove the signal, researchers propose various measures based

133

only on PM or background corrected PM. One popular measure is robust multi-array

average (RMA) (Irizarry et al., 2003a; Irizarry et al., 2003b). We can also extend our

Bayesian analysis to these background adjusted PM based models. Assuming each

array has a common background, a random effect lognormal model for background

corrected PM can be

log(PMij − BGi) = αi + βij + εij, (4.2)

εij ∼ N(εij|0, σ2
j /λij),

λij ∼ Ga(λij|
k

2
,
k

2
),

where BGi is the estimated background for chip i. Irizarry et al. (2003a) suggests

that log(BGi) can be estimated by the mode of log(MM) distribution. αi is the log

scale expression index for array i, which can be considered as log(θi) in the original

Bayesian model (1.1). βij is the probe-specific affinity for jth probe pair in ith array,

which can be considered as log(φij) in the random effect model (4.1). To make the

model identifiable, we can impose constraints on βijs as
∑

j βij = 0. This model

can be considered as a multiplicative model on the original scale, while the original

Bayesian model (1.1) is an additive model.

The prior specification for αi, βij and σ2
j is similar to the original Bayesian model

(1.1) and the random effect model (4.1) except that the positive constraints are

removed.

It is possible to extend this model to account for the scaling factor for each array

for the purpose of linear normalization. Let PMijk be the PM probe data for chip

i, probe j, and gene k. Assuming the normalization can be done linearly, i.e., each

array has a common scaling factor, a random effect model is

log(PMijk − BGi) = γi + αik + βijk + εijk,

εijk ∼ N(εijk|0, σ2
jk/λijk),

134

where γi is the scaling factor for array i. To make the model identifiable, we have to

impose constraints on γis as
∑

i γi = 0.

4.1.3 Integration with high-level analysis

Currently, all probe-level analyses of microarray data are independent of high-level

analysis, such as clustering, classification and regulatory network. Some possible

limitations include:

• The probe-level analyses, such as Bayesian model-based methods, not only

can provide point estimate of gene expression index, but also can provide the

posterior distribution to access the uncertainty. However, most of current high-

level analysis just use the point estimate discarding the uncertainty totally.

• The current model based gene expression index are estimated gene by gene

independently. The results for a specific gene k could be greatly affected by the

factors like cross-hybridization and image contamination. Sometimes high-level

analysis could provide useful information of other genes to make adjustment for

the results of this specific gene k. For example, suppose that gene k is found

to be highly correlated to a group of genes by high-level analysis or biological

experiments, the expression index of gene k is supposed to be highly correlated

those of other genes too. However, some local image contaminations distort

the probe data for gene k in some arrays, which result in the wrong estimate

of αiks. By pooling the expression index of those correlated genes, it will be

possible to correct the estimates of αik to a certain extent. In that case, it will

be useful to integrate the information in high-level analysis into the probe-level

analysis, which will improve the results of both analyses.

While it could be difficult to conduct a fully integrated analysis in classical way,

Bayesian analysis with the help of MCMC provides such possibilities. In the setting

135

of binary probit regression, an integrated Bayesian model including model-based

estimation of gene expression index, factor analysis and probit regression could be

log(PMijk − BGi) = αik + βijk + εijk,

αi = Bfi + vi,

yi = fT
i λ + εi,

where αi = [αi1, αi2..., αip]
T is a p-dimensional vector of gene expression index for p

genes in ith array, fi is a k-dimensional vector of latent factors, B is the p× k factor

loading matrix, λ is the k-dimensional vector of regression coefficient and yi is the

latent variable corresponding to the binary output variable zi in ith sample. The

detailed illustration of factor regression model can be found in West (2000) and West

(2003) .

Note that we now make the inference of αik corresponding to the gene k from the

joint posterior distribution p(αi1, ..., αik, ..., αip, fi, λ|PM,y). As we can see, it does

not only depend on PM, the probe data for all p genes, but also depends on y which

includes the clinical or physiological states, while the estimation of αik in original

model (4.2) only depends on the probe data corresponding to the gene k.

4.2 Bayesian kernel models

In Chapter 3, we propose a novel Bayesian kernel model whose performance on some

benchmark datasets are among the best of tested nonlinear models, including the

state-of-art support vector machines. One of major advantages of our Bayesian kernel

models over SVMs is that it is very flexible to be extended in various ways. In terms

of applications, future works include the extension to survival analysis, multinomial

choice models, multivariate regression, time series analysis etc. In the following, we

discuss some possible future works in term of model structures.

136

4.2.1 Additive models

When the responses have linear relationship with some of covariates while having

nonlinear relationship with others. For example, the responses are generated by the

following function

yi(X1, X2) = 0.5x1i+0.8 sin(x2i) + εi.

An additive model with a linear term and a nonlinear kernel term would be more

appropriate, i.e.,

f(x) = xT β +
n∑

j=1

wjk(xj,x). (4.3)

It is straightforward to implement the additive model by extending the MCMC

procedures of Bayesian kernel models in Chapter 3. Let

f1(x) = xT β,

f2(x) =
n∑

j=1

wjk(xj,x).

We can develop a two-step posterior simulation algorithm by Gibbs sampling, which

is also call backfitting (Tibshirani and Hastie, 1998). In the first step, we draw the

samples of conditional posterior for the parameters in the linear model given the

sparse kernel model f2(x) at their “current” imputed values in the MCMC. Given

the prior for linear regression coefficients β as:

β ∼ N(β|0, Σβ),

where Σβ could be a spherical matrix σ2
βIp or diagonal matrix diag(σ2

1, ..., σ
2
p). The

conditional posterior distribution given f2 and other hyperparameters is as follows:

β|D, f2, Σβ, σ2 ∼ N(β|β̂, V −1
β),

137

where

β̂ =
1

σ2
V −1

β X(y−f2),

and

Vβ = Σ−1
β +

1

σ2
XXT .

In the second step, we draw samples of the conditional posterior for the parameters

in the kernel model, given the linear model f1(x) at their “current” imputed values in

the MCMC. It can be done easily by replacing y with y−f1 in the previous analysis

shown in Section 3.

4.2.2 Tree models

Tree based models date back to Morgan and Sonquist (1963) and Morgan and Messen-

ger (1973). Breiman et al. (1984) popularized it and propose a new binary recursive

partitioning algorithm, regression and classification trees (CART). CART partition

the predictors space into a finite number of homogeneous set, and then fit a simple

model in each one in the regression or classification framework. It is a simple yet

powerful method. In this subsection, we suggest how some ideas from kernel models

can be extended to the tree based models.

Classic CART is based on recursive partition of the original coordinate. The splits

at each node are restricted to be of the form Xj ≤ t. Though it works great on many

cases, it does have limitations on some situations. For example, in the XOR problem,

a simple nonlinear transformation will be a better choice for the recursive partition

than the original coordinate. We may extend the tree models in the following ways:

• A straightforward idea is to partition the predictors space not only on the

original coordinate X1, X2, ..., Xp, but also on the nonlinear basis functions and

its interaction φ(Xi), φ(Xi, Xj), Due to the extremely large number of such

138

basis functions, an ideal choice is the kernel function we use in the kernel models.

We may simply add the kernel matrix Kn×n to the original design matrix, so

that the final design matrix for the tree model becomes a (p + n) × n matrix

Xnew =

[
Xp×n

Kn×n

]
.

• Another idea is to allow the nonlinear discrimination splitting rule at each node.

Breiman et al. (1984) had already considered linear discrimination splitting rule

by allowing linear combination of predictors. Thus the splitting rule is the form

of
∑

βjXj ≤ t. Based on similar idea, Utgoff (1988) proposed perceptron trees,

and Strömberg et al. (1991) (and Sankar and Mammone (1993)) proposed

neural trees. To allow nonlinear combination of predictors, Guo and Gelfand

(1992) included feed-forward neural networks in the CART. Similarly, we can

consider a CART in which some of splitting rules are based on the kernel models,

i.e.,
∑

j wjk(xj,x) ≤ t, while some of them are still based on the original

predictors. One potential benefit of nonlinear discrimination splitting rules is

that it could create a simple tree with only a few nodes, in the case that original

CART requires a large number of nodes to solve a complex problem. Of course,

there is a trade-off between the power of splitting rules within a tree and the

complexity of resulting tree. Thus it raises the problem of choosing the optimal

tree, which is more complex than the classical CART.

Instead of choosing the optimal tree, we can develop both tree models and kernel

models in the Bayesian framework, and then apply Bayesian model averaging. Key

references for Bayesian tree models are Chipman et al. (1998), Denison et al. (1998),

Holmes et al. (1999) and Chipman et al. (2002). A Bayesian tree model can be de-

scribed as a sampling distribution of the responses Y conditional on predictor X and

tree model T . The tree model T can be explicitly defined as an array of parameters

139

which can be inferred from the data in the Bayesian framework. Then a Bayesian

tree model with nonlinear discrimination splitting rule will include three kinds of pa-

rameters: the parameters specifying tree structure, the parameters specifying kernel

models served as splitting rule and the parameters specifying sampling distribution

at the leaf nodes. Future works will include the prior specification on the parameters

and the MCMC algorithm to draw samples in the both model and parameter space.

4.2.3 Mixtures of experts

Mixtures of experts (ME) and hierarchical mixtures of experts (HME) are condi-

tional mixtures of regression/classification models. The key references are Jacobs et

al. (1991), Jordan and Jacobs (1992) and Jordan and Jacobs (1994). They can be

regarded as generalizations to the standard mixture models. In mixtures of experts,

the ‘experts’ are typically regression or classification models that are relatively sim-

ple, and ‘experts’ are combined by a set of local mixing weights called the ‘gating

networks’ which can depend on the predictors. In hierarchical mixtures of experts,

this mixing process is done recursively. Consequently, the HME model has a tree-

structure and can be considered as a tree-based methods with soft probabilistic split.

ME is based on the assumption that the process generating the data can be

decomposed into a set of sub-processes defined on the regions of predictor space.

For each data item, the conditional probability distribution of yi given xi and model

parameters Θ is given by the mixture density

P (yi|xi, Θ) =
∑

l

πlP (yi|xi, Ul)

where

• l is a label representing region l. It is chosen from a multinomial distribution

with covariate-dependent probability πl = P (l|xi, V), where V = [v1,v2, ...,vL]

140

is the matrix of ‘gating networks’ parameters for the multinomial distribution.

• P (yi|xi, Ul) is the conditional probability distribution of yi given xi in each

region l, where Ul is the corresponding ‘experts’ parameters.

In classical ME and HME, both ‘gating networks’ and ‘experts’ are a linear model

or generalized linear model of predictors. For example, in a ME regression model,

the output of ‘gating networks’ is

πl =
exp(ηl)∑L
1 exp(ηk)

,

ηl = xTvl.

and the ‘experts’ have the form

P (yi|xi, βl, σ
2
l) = N(yi|xT

i βl, σ
2
l),

where (βl, σ
2
l) is the regression parameters for ‘expert’ l.

While the classical MEs try to model nonlinear relationship using a mixture of

simple linear models, the nonlinear kernel models can be integrated into ME to

produce simpler model, in the case that original ME requires a large number of

‘experts’ to solve a complex problem. One possible way is to introduce nonlinear

functions in some of ‘gating networks’, i.e., ηl =
∑

j wjk(xj,x), which is similar to

the nonlinear discrimination splitting rule in tree-based models. A more interpretable

way is to introduce nonlinear functions in some of ‘experts’. For example, a simple

ME with two experts has the form

P (yi|xi, Θ) = πN(yi|xT
i β, σ2) + (1 − π)N(yi|

∑

j

wjk(xj,xi), σ
2),

whicg is supposed to work well when some of data has linear relationship with re-

sponeses while others have nonlinear relationship.

141

By introducing latent variable zi ∈ {0, 1}, where π = P (zi = 1), we can rewrite

the model as

yi = zix
T
i β + (1 − zi)

∑

j

wjk(xj,xi)+εi,

εi ∼ N(εi|0, σ2),

and implement it via MCMC.

4.2.4 Robust regression

The Bayesian kernel regression model with Gaussian noise could lead to poor results

when there are outliers in the data. In general, we can obtain a robust regression

model by replacing the Gaussian noise with a heavy-tailed noise distribution, such

as Student-t distribution, which allows for the possibility of extreme observations.

While it is difficult to implement this idea in support vector regression models, it

is quite straightforward in the Bayesian kernel models. Based on the fact that a

Student-t distribution can be interpreted as a mixture of normal distributions with

a common mean and variances distributed as inverse gamma, we can write a robust

kernel model as

yi =
n∑

j=1

wjk(xj,xi)+εi,

εi ∼ N(εi|0, Viσ
2),

V −2
i ∼ Ga

(
V −2

i

∣∣∣∣
k

2
,
k

2

)
,

where k is the degrees of freedom for implied Student-t distribution.

The conditional posterior for Vi is simply an inverse gamma posterior

p(V −2
i |yi, X,wj , σ

2) = Ga(V −2
i |k + 1

2
,

kσ2 + (yi −
n∑

j=1

wjk(xj,xi))
2

2σ2
),

142

then this component can be plugged into the MCMC procedures in Chapter 3 to

construct the MCMC implementation of robust kernel models.

4.2.5 Nonlinear factor regression models

The “large p small n problem” refer to a class of ill-posed statistical problems in which

the sample size n is substantially smaller than the number of predictor variables p.

One context is the regression models with large sets of higher-order interactions be-

tween predictor variables, in which the predictors are discretized versions of continu-

ous functions or values of processes, such as spectral profiles or time series. Another

key motivating application comes from the molecular phenotyping using large-scale

gene expression as predictors of clinical or physiological states. In this scenario, the

number of genes is the several or ten of thousands, whereas the samples of data are

fewer than one hundreds due to the huge cost and effort required by current microar-

ray technologies. West (2000) and West (2003) proposed Bayesian factor regression

models that have shown great results on those applications. In this subsection, we

discuss the ideas that extend them to nonlinear models using kernel models.

A simple nonlinear factor regression model can be obtained by building the kernel

models on the orthogonal SVD factor fi instead of original input vector xi = ADfi,

i.e.,

xi = ADfi, (4.4)

yi =
n∑

j=1

ωjk(fi, fj) + εi,

εi ∼ N(εi|0, σ2),

where

• A is the p×n SVD loading matrix with orthonormal columns so that AT A = I;

143

• D = diag(d1, d2, ..., dn) is the diagonal matrix of positive singular values, or-

dered as d1 ≥ d2 ≥ · · · ≥ dn ≥ 0; and

• F is the n × n orthogonal matrix with F T F = FF T = I. The ith column of

F is denoted as ith factor fi that is a linear combination of original p predictor

variables.

The detailed discussion of principal component regression models can be found in

West (2000). The implementation of (4.4) is straightforward by simply replacing xi

with fi in our Bayesian kernel models.

West (2003) proposed the factor regression models by replacing the principal

component analysis with more general Bayesian factor analysis models. The corre-

sponding nonlinear model can be written as

xi = Bfi + vi, (4.5)

yi =
n∑

j=1

ωjk(fi, fj) + εi,

vi ∼ N(vi|0, Ψ),

εi ∼ N(εi|0, σ2),

where

• B is the p× k factor loading matrix, whose element is bij(gene i,factor j) with

the prior

bij ∼ N(bij|0, 1).

• fi is the k−dimensional latent factors for case i with the prior

fi ∼ N(fi|0, D),

where D is diagonal, which implies that k-components in fi are, a priori, un-

correlated.

144

• vi is the independent p−dimensional normal vectors with

vi ∼ N(vi|0, Ψ),

where the covariance matrix Ψ is diagonal. It implies that the input variable

xi is uncorrelated conditional on the latent factors.

Under the factor models, the variance-covariance structure of input data is con-

strained as

Ω = BBT + Ψ.

which implies that the factor models attempt to explain the variance-covariance struc-

ture in the observed data by putting all the variance unique to each coordinate in

the diagonal covariance matrix Ψ, and putting all the correlation structure into the

factor loading matrix B, which is a linear mapping of k−dimensional latent factor

space to p−dimensional data space.

Note that in Bayesian factor regression models, we model the joint distribution

of covariates and responses P (Y,X|θ, φ), where θ and φ are the parameters in the

factor model and regression model respectively, and θ and φ are dependent. Thus

the latent factor fi is not only based on covariates X, but also based the responses Y ,

which share the similar ideas as Partial Least Squares (PLS). The implementation of

(4.5) via MCMC requires the posterior sampling of fi, which is quite different from

the implementation of linear Bayesian factor regression models illustrated in West

(2003).

In the factor kernel regression model (4.5), the conditional posterior distribution

for fi is

p(fi|xi,y, B, Ψ, f−i,W,D) ∝ p(xi|fi, B, Ψ)p(y|fi, f−i,W)p(fi|f−i, D), (4.6)

145

where

p(y|fi, f−i,W) =
n∏

i=1

N

(
yi

∣∣∣∣∣

n∑

j=1

ωjk(fi, fj), 1

)
,

and

p(fi|f−i, D) = p(fi|D).

It is difficult for us to draw the samples of fi directly from its conditional posterior

distribution. Instead, we use the Metropolis algorithm to draw the samples of fi.

Denoting f
(t)
i as the tth sample of fi, a appropriate choice of proposal is the random

walk, i.e.,

f∗i ∼ N(f∗i |f
(t)
i , ∆),

where ∆ could be simple spherical matrix σ2Ik×k or be adjusted adaptively during

tune-in steps.

In some situations, the second term of (4.6), p(y|fi, f−i,W), plays a much less im-

portant role than the first term p(xi|fi, B, Ψ). This motivates us to use the conditional

posterior distribution of fi in the standard factor model for importance sampling or

as an independent proposal:

f∗i ∼ N(f∗i |̂fi, V −1
fi

),

f̂i = BT Ψ−1xi,

Vfi
= BT Ψ−1B + D−1.

In the situation when the second term p(y|fi, f−i,W) does play an important role,

we can use a mixture of independent proposal and random walk proposal:

f∗i ∼ πN(f∗i |f
(t)
i , ∆) + (1 − π)N(f ∗i |̂fi, V −1

fi
),

where π is a specified value dependent on how well the independent proposal per-

forms.

146

References

Aizerman, M., Braverman, E. and Rozonoer, L. (1964) Theoretical foundations of
the potential function method in pattern recognition learning. Automation and
Remote Control, 25, 821 – 837.

Akaike, H. (1974) A new look at statistical model identification. IEEE Transactions
on Automatic Control, 19, 716–723.

Albert, James H. and Chib, Siddhartha (1993) Bayesian analysis of binary and
polychotomous response data. Journal of the American Statistical Association,
88, no. 422, 669–679.

Antoniak, C. (1974) Mixtures of Dirichlet processes with applications to Bayesian
non-parametric problems. Annals of Statistics, 2, 1152–1174.

Aronszajn, N. (1950) Theory of reproducing kernels. Transactions of the American
Mathematical Society, 68, 337 – 404.

Basilevsky, A. (1983) Applied matrix algebra. New York: North-Holland.

Bennett, K. and Demiriz, A. (1998). Semi-Supervised Support Vector Machines, in
Advances in Neural Information Processing Systems 11.

Bertsekas, D. P. (1995) Nonlinear Programming. Belmont, MA: Athena Scientific.

Bishop, C. M. and Tipping, M. E. (2003) Bayesian regression and classification.
Advances in Learning Theory: Methods, Models and Applications, 190, 267285.

Blum, Avrim and Mitchell, Thomas (1998) Combining labeled and unlabeled data
with co-training. In COLT: Proceedings of the Workshop on Computational Learn-
ing Theory, San Francisco, pp. 92–100. Morgan Kaufmann.

Boser, B. E., Guyon, I. M. and Vapnik, V. N. (1992) A training algorithm for
optimal margin classifiers. In Proceedings of the 5th Annual ACM Workshop on
Computational Learning Theory, Pittsburgh, PA (ed. D. Haussler), pp. 144–152.
ACM Press.

Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J. (1984) Classification and
Regression Trees. Chapman and Hall, New York.

147

Brown, M., Grundy, W., Lin, D., Cristianini, N., Sugnet, C., Furey, T., Jr, M. and
Haussler, D. (2000) Knowledge-based analysis of microarray gene expression data
by using suport vector machines. In Proc. Natl. Acad. Sci., vol. 97, pp. 262–267.

Brown, Patrick O. and Botstein, David (1999). Exploring the new world of the
genome with DNA microarrays. Nature Genetics Supplement, 21: p. 33-37.

Burges, Christopher J. C. (1998) A tutorial on support vector machines for pattern
recognition. Data Min. Knowl. Discov., 2, no. 2, 121–167.

Carlisle, A.J., Prabhu, V.V., Elkahloun, A., Hudson, J., Trent, J.M., Linehan, W.M.,
Williams, E.D., Emmert-Buck, M.R., Liotta, L.A., Munson, P.J. and Krizman,
D.B. (2000). Development of a prostate cDNA microarray and statistical gene
expression analysis package. Mol Carcinog, May;28(1):12-22.

Chen, Y., Dougherty, E.R. and Bittner, M.L. (1997). Ratio-based decisions and
the quantitative analysis of cDNA microarray images. J. Biomed. Optics, 2(4): p.
364-374.

Chernick, M. R., Murthy, V. K. and Nealy, C. D. (1985) Application of bootstrap
and other resampling techniques: evaluation of classifier performance. Pattern
Recognition Letters, 3, 167–178.

Cheung, V.G., Morley, M., Aguilar, F., Massimi, A., Kucherlapati, R. and Childs,
G. (1999). Making and reading microarrays. Nature Genetics Supplement, 21: p.
15-19.

Chib, Siddhartha (1995) Marginal likelihood from the Gibbs output. Journal of the
American Statistical Association, 90, no. 432, 1313–1321.

Chipman, Hugh A., George, Edward I. and McCulloch, Robert E. (1998) Bayesian
CART model search. Journal of the American Statistical Association, 93, 935–947.

Chipman, Hugh A., George, Edward I. and McCulloch, Robert E. (2002) Bayesian
treed models. Machine Learning, 48, no. 1/3, 299–320.

Consortium, I.H.G.S. (2001) Initial sequencing and analysis of the human genome.
Nature, 409, 860–921.

Denison, D.G.T., Mallick, B.K. and Smith, A.F.M. (1998) A Bayesian CART algo-
rithm. Biometrika, 85, 363–377.

148

Duane, S., Kennedy, A. D., Pendleton, B. J and Roweth, Roweth (1987) Hybrid
Monte Carlo. Physics Leters B, 195, no. 2, 216–222.

Duggan, D.J. (1999). Expression profiling using cDNA microarrays. Nature Genetics
Supplement, 21: p. 10.

Efron, B. (1982) The Jackknife, the Bootstrap and Other Resampling Plans. Philadel-
phia: SIAM.

Eisen (1999). SCANALYZE, University of Berkely, CA: Berkely.

Escobar, M.D. (1994) Estimating Normal means with a Dirichlet process prior.
Journal of the American Statistical Association, 89, 268–277.

Escobar, M.D. and West, M. (1995) Bayesian density estimation and inference using
mixtures. Journal of the American Statistical Association, 90, 577–588.

Fahlman, S. E. and Lebiere, C. (1990) The cascade-correlation learning architec-
ture. In Advances in Neural Information Processing Systems 2. Proceedings of the
1989 Conference, San Mateo, CA (ed. D. S. Touretzky), pp. 524–532. Morgan
Kaufmann.

Ferguson, T.S. (1973) A Bayesian analysis of some non-parametric problems. Annals
of Statistics, 1, 209–230.

Ferguson, T.S. (1974) Prior distributions on spaces of probability measures. Annals
of Statistics, 2, 615–629.

Ferguson, T.S. (1983) Bayesian density estimation by mixtures of Normal distribu-
tions. Recent advances in Statistics (M. Rizvi, J. Rustagi, and D. Siegmund, eds.);
Academic Press, New York, 287–302.

Frean, M. (1990) The upstart algorithm: A method for constructing and training
feedforward neural networks. Neural Computation, 2, no. 2, 198–209.

Friedman, J. H. (1991) Multivariate adaptive regression splines (with discussion).
Annals of Statistics, 19, 1–141.

Girosi, Federico, Jones, Michael and Poggio, Tomaso (1995) Regularization theory
and neural networks architectures. Neural Computation, 7, no. 2, 219–269.

Golub, G. H. and Van Loan, C. F. (1989) Matrix Computations, Second edn. Balti-
more: Johns Hopkins University Press.

149

Green, P. J. (1995) Reversible jump markov chain monte carlo computation and
bayesian model determination. Biometrika, 82, 711–732; Workshop on Model
Criticism of Highly Structured Stochastic Systems, Weisbaden, Sept 1994.

Green, P.J. and Richardson, S. (1998) Modelling heterogeneity with and without the
Dirichlet process. Scandinavian Journal of Statistics, 28, 335–375.

Guo, H. and Gelfand, S. B. (1992) Classification trees with neural network feature
extraction. IEEE Transactions on Neural Networks., 3, 923–933.

Hastie, T., Tibshirani, R. and Friedman, J. (2001) Elements of Statistical Learning:
Data Mining, Inference, and Prediction. New York: Springer Verlag.

Hastie, T. J. and Tibshirani, Robert J. (1990) Generalized Additive Models. London:
Chapman & Hall.

Higdon, Dave (2000). Space and Space-Time Modeling Using Process Convolutions,
ISDS discussion papers, Duke University.

Holmes, C. C. and Mallick, B. K. (1998) Bayesian radial basis functions of variable
dimension. Neural Computation, 10, no. 5, 1217–1233.

Holmes, C.C., Denison, D.G.T. and Mallick, B.K. (1999) Bayesian partitioning for
classification and regression. Technical Report, Imperial College London.

Hughes, Timothy R., Mao, Mao, Jones, Allan R., Burchard, Julja, Marton,
Matthew J., Karen W. Shannon2, Michael Ziman Steven M. Lefkowitz2, Schelter,
Janell M., Meyer, Michael R., Kobayashi, Sumire, Davis, Colleen, Dai, Hongyue,
He, Yudong D., Stephaniants, Sergey B., Cavet, Guy, Walker, Wynn L., West,
Anne, Coffey, Ernest, Shoemaker, Daniel D., Stoughton, Roland, Blanchard,
Alan P., Friend, Stephen H. and Linsley, Peter S. (2001). Expression profil-
ing using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nature
Biotechnology. 19: p. 342-347.

Insua, R. and Muller, D. (1998). Feedforward neural networks for nonparametric
regression, Technical Report 98–02, Institute of Statistics and Decision Sciences,
Duke University. Available at http://www.stat.duke.edu.

Irizarry, RA, Hobbs, B, Collin, F, Beazer-Barclay, YD, Antonellis, KJ, Scherf, U and
Speed, TP (2003a) Exploration, normalization, and summaries of high density
oligonucleotide array probe level data. Biostatistics, 4, no. 2, 249–264.

150

Irizarry, Rafael. A., Bolstad, Benjamin M., Collin, Francois, Cope, Leslie M., Hobbs,
Bridget and Speed, Terence P. (2003b) Summaries of affymetrix genechip probe
level data. Nucleic Acids Research, 31, no. 4.

Jackson, J. E. (1991) A User’s Guide to Principal Components. New York: Wiley.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J. and Hinton, G. E. (1991) Adaptive
mixtures of local experts. Neural Computation, 3, 79–87.

Joachims, Thorsten (1999) Transductive inference for text classification using support
vector machines. In Proc. 16th International Conf. on Machine Learning, pp. 200–
209. Morgan Kaufmann, San Francisco, CA.

Johnson, Valen E. and Albert, James H. (1999) Ordinal Data Modeling. Berlin:
Springer-Verlag.

Jolliffe, I. T. (1986) Principal Component Analysis. New York: Springer.

Jordan, M. I. and Jacobs, R. A. (1992) Hierarchies of adaptive experts. In Advances
in Neural Information Processing Systems 4 (eds J. E. Moody, S. J. Hanson and
R. P. Lippmann), pp. 985–992. San Mateo, California: Morgan Kaufmann.

Jordan, M. I. and Jacobs, R. A. (1994) Hierarchical mixtures of experts and the EM
algorithm. Neural Computation, 6, 181–214.

Kohonen, T. (1995) Self-Organizing Maps. Berlin: Springer.

Le Cun, Y., Denker, J. S. and Solla, S. A. (1990) Optimal brain damage. In Advances
in Neural Information Processing Systems 2. Proceedings of the 1989 Conference,
San Mateo, CA (ed. D. S. Touretzky), pp. 598–605. Morgan Kaufmann.

Lee, Herbert, Higdon, David, Bi, Zhuoxin, Ferreira, Marco and West, Mike (2002)
Markov random field models for high-dimensional parameters in simulations of
fluid flow in porous media. Technometrics, 44, no. 3, 230–241.

Li, C. and Wong, W. H. (2001a) Model-based analysis of oligonucleotide arrays:
Expression index computation and outlier detection. PNAS, 98, no. 1, 31–36.

Li, C. and Wong, W. H. (2001b) Model-based analysis of oligonucleotide arrays:
model validation, design issues and standard error application. Genome Biology,
2, no. 8, 1–11.

151

Lipshutz, R.J., Fodor, S.P., Gingeras, T.R. and Lockhart, D.J. (1999). High density
synthetic oligonucleotide arrays. Nature Genetics Supplement, 21: p. 20-24.

Lockhart, D., Dong, H., Byrne, M., Follettie, M., Gallo, M., Chee, M., Mittmann, M.,
Wang, C., Kobayashi, M., Horton, H. and Brown, E. (1996). Expression monitoring
by hybridization to high-density oligonucleotide arrays. Nature Biotechnology. 1996
Dec;14(13):1675-80.

Lowe, D. (1995) Radial basis function networks. In The Handbook of Brain The-
ory and Neural Networks (ed. Michael A. Arbib), pp. 779–783. Cambridge, Mas-
sachusetts: MIT Press.

MacKay, David J. C. (1994) Bayesian methods for backpropagation networks. In
Models of Neural Networks III (eds E. Dormany, J. L. van Hemmen and K. Schul-
ten). New York: Springer-Verlag.

MacKay, David J. C. (1995) Bayesian non-linear modelling for the 1993 energy
prediction competition. In Maximum Entropy and Bayesian Methods, Santa Babara
1993 (ed. G. Heidbreder). Dordrecht: Kluwer.

Mercer, J. (1909) Functions of positive and negative type and their connection with
the theory of integral equations. Philos. Trans. Roy. Soc. London A, 209, 415–446.

Mika, S., Rätsch, G., Weston, J., Schölkopf, B. and Müller, K.-R. (1999) Fisher
discriminant analysis with kernels. In Neural Networks for Signal Processing IX
(eds Y.-H. Hu, J. Larsen, E. Wilson and S. Douglas), pp. 41–48. IEEE.

Moody, J. and Darken, C. (1989) Fast learning in networks of locally-tuned processing
units. Neural Computation, 1, no. 2, 281–294.

Morgan, J. N. and Messenger, R. C. (1973) THAID : a sequential search program
for the analysis of nominal scale dependent variables. Survey Research Center,
Institute for Social Research, University of Michigan.

Morgan, J. N. and Sonquist, J. A. (1963) Problems in the analysis of survey data,
and a proposal. Journal of the American Statistical Association, 58, 415–434.

Naef, Felix, Lim, Daniel A., Patil, Nila and Magnasco, Marcelo O. (2001). From
features to expression: High-density oligonucleotide array analysis revisited. Tech
Report 1, 1-9.

Neal, R. M. (1998). Regression and classification using Gaussian process priors

152

(with discussion), in J. M. Bernardo, et al (editors) Bayesian Statistics 6, Oxford
University Press, pp. 475-501.

Neal, Radford M. and Hinton, Geoffrey (1995) Bayesian learning for neural networks.
Ph.D. Thesis.

Platt, J. (1991) A resource-allocating network for function interpolation. Neural
Computation, 3, no. 2, 213–225.

Poggio, T. (1975) On optimal nonlinear associative recall. Biological Cybernetics,
19, 201–209.

Press, W. H. et al. (1992) Numerical recipes in C (second edition). Cambridge
University Press.

Rasmussen, C. (1996) Evaluation of Gaussian processes and other methods for non-
linear regression. Ph.D. Thesis. Department of Computer Science, University of
Toronto. ftp://ftp.cs.toronto.edu/pub/carl/thesis.ps.gz.

Rasmussen, Carl Edward (1996) Bayesian regression using Gaussian process priors.
In Meet. American Statistical Association. Invited talk.

Rätsch, G., Onoda, T. and Müller, K.-R. (2001) Soft margins for AdaBoost. Machine
Learning, 42, no. 3, 287–320; also NeuroCOLT Technical Report NC-TR-1998-021.

Richardson, S. and Green, P. (1997) On bayesian analysis of mixtures with an
unknown number of components. Jrnl. Royal Stat. Soc., 59, 731–792.

Ripley, Brian D. (1996) Pattern Recognition and Neural Networks. Cambridge,
United Kingdom: Cambridge University Press.

Rissanen, J. (1987) Stochastic complexity. Journal of the Royal Statistical Society
B, 49, no. 3, 223–239.

Sankar, A. and Mammone, R. J. (1993) Growing and pruning neural tree networks.
IEEE Trans. on Computers, 42, 291–299.

Schena, M., Shalon, D., Davis, R.W. and Brown, P.O. (1995). Quantitative monitor-
ing of gene expression patterns with a complementary DNA microarray. Science.
1995 Oct 20;270(5235):467-70.

Schena, M., Shalon, D., Heller, R., Chai, A., Brown, P.O. and Davis, R.W. (1996).

153

Parallel human genome analysis: Microarray-based expression monitoring of 1000
genes. PNAS, 1996. 93(20): p. 10614-10619.

Schoelkopf, B., Smola, A. J. and Mueller, K.-R (1997) Kernel principal component
analysis. Lecture Notes in Computer Science, 1327, 583–596.

Schölkopf, B. (1997) Support Vector Learning. Munich: R. Oldenbourg Verlag.

Schölkopf, B., Burges, C. J. C. and Smola, A. J. (1999) Advances in Kernel Methods
— Support Vector Learning. Cambridge, MA: MIT Press.

Schölkopf, B. and Smola, A. J. (2002) Learning with Kernels. Cambridge, MA: MIT
Press.

Schwarz, G. (1978) Estimating the dimension of a model. Annals of Statistics, 6,

461–464.

Shalon, S. Smith D. and Brown, P. (1996). A DNA microarray system for analyzing
complex DNA samples using two-color fluorescent probe hybridization. Genome
Research, 6: p. 639.

Shawe-Taylor, John and Cristianini, Nello (2004) Kernel Methods for Pattern Anal-
ysis. Cambridge, MA: Cambridge University Press.

Southern, E. M. (1998). Method and apparatus for analysing polynucleotide se-
quences. UK Patent Application, Isis Innovation. 03 May, 1988.

Southern, K. Mir E. and Shchepinov, M. (1999). Molecular interactions on microar-
rays. Nature Genetics Supplement, 21: p. 5-9.

Spang, R, Zuzan, H., West, M., Nevins, J., Blanchette, C. and Marks, J.R. (2002)
Prediction and uncertainty in the analysis of gene expression profiles. Silico Biol.,
2, no. 3, 369–381.

Stone, M. (1974) Cross-validatory choice and assessment of statistical predictions
(with discussion). Journal of the Royal Statistical Society series B, 36, 111–147.

Strömberg, J. E., Zrida, J. and Isaksson, A. (1991) Neural trees—using neural nets in
a tree classifier structure. In IEEE International Conference on Acoustics, Speech
and Signal Processing (Toronto, 1991), Long Beach, CA, pp. 137–140. IEEE Press.

Suykens, J. A. K. and Vandewalle, J. (1999) Least squares support vector machine
classifiers. Neural Process. Lett., 9, no. 3, 293–300.

154

Szummer, Martin and Jaakkola, Tommi (2001) Partially labeled classification with
markov random walks. In Advances in Neural Information Processing Systems,
vol. 14.

Tibshirani, Robert and Hastie, Trevor (1998) Bayesian backfitting. Technical Report.
Department of Statistics, Stanford University.

Tipping, Michael E. (2001) Sparse Bayesian learning and the relevance vector ma-
chine. J. Mach. Learn. Res., 1, 211–244.

Tipping, Michael E. and Bishop, Christopher M. (1997) Probabilistic principal
component analysis. Technical Report NCRG/97/010. Neural Computing Research
Group, Aston University, Aston St, Birmingham, B4 7ET, UK.

Utgoff, P. E. (1988) Perceptron trees: a case study in hybrid concept representations.
In Proceedings of the Seventh AAAI National Conference on Artificial Intelligence,
St Paul, San Mateo, CA (eds R. G. Smith and T. M. Mitchell), pp. 601–606.

Vapnik, V. (1995) The Nature of Statistical Learning Theory. New York: Springer
Verlag.

Vapnik, V. (1998) Statistical Learning Theory. New York: Wiley.

Venter, J. and et al. (2001) The sequence of the human genome. Science, 291,

1304–51.

Wahba, Grace (1990) Spline models for observational data. SIAM [Society for
Industrial and Applied Mathematics].

Wahba, Grace (1999) Support vector machines, reproducing kernel Hilbert spaces,
and randomized GACV. Advances in kernel methods: support vector learning,
69–88.

Watson, A., Mazumder, A., Stewart, M. and Balasubramanian, S. (1998). Technology
for microarray analysis of gene expression. Current Opinion in Biotechnology, 9:
p. 609-614.

West, M. (1984). Outlier models and prior distributions in Bayesian linear regression,
Journal of the Royal Statistical Society (Ser. B), vol. 46 (1984), pp. 431-439 .

West, M. (1992) Hyperparameter estimation in Dirichlet process mixture models.
ISDS discussion papers, Duke University, 92-03.

155

West, M. (2000) Bayesian regression analysis in the ”Large p, Small n” paradigm.
ISDS discussion papers, Duke University, 00-22.

West, M. (2003) Bayesian factor regression models in the ”Large p, Small n”
paradigm. In: Bayesian Statistics 5; Oxford University Press, Oxford.

West, M., Müller, P. and Escobar, M. (1994) Hierarchical priors and mixture models,
with application in regression and density estimation. In: Aspects of Uncertainty:
A tribute to D. V. Lindley, (A.F.M. Smith and P. Freeman editors); Wiley pub-
lisher, 63–386.

West, M., Nevins, J., Marks, J.R., Spang, R and Zuzan, H. (2002) DNA microarray
data analysis and regression modeling for genetic expression profiling. Methods for
gene expression analysis, ed. G.Parmigiani.

Williams, C. K. I. (1998) Prediction with gaussian processes: From linear regression
to linear prediction and beyond. In Learning and Inference in Graphical Models
(ed. M. I. Jordan). Kluwer. To appear. Also: Technical Report NCRG/97/012,
Aston University.

Williams, C. K. I. and Rasmussen, C. E. (1996) Gaussian processes for regression. In
Advances in Neural Information Processing Systems (eds D. S. Touretzky, M. C.
Mozer and M. E. Hasselmo), vol. 8. Cambridge, MA: MIT Press.

Williams, Christopher K. I. and Barber, David (1998) Bayesian classification with
gaussian processes. IEEE Trans. Pattern Anal. Mach. Intell., 20, no. 12, 1342–
1351.

Wodicka, L., Dong, H., Mittmann, M., Ho, M.H. and Lockhart, D.J. (1997). Genome-
wide expression monitoring in Saccharomyces cerevisiae. Nature Biotechnology. 15:
p. 1359-1367.

Zellner, A. (1986) On assessing prior distributions and bayesian regression analysis
with g-prior distributions. Bayesian Inference and Decision Techniques,P. Goel
and A. Zellner, Eds., 233–243.

Zhu, J. and Hastie, T. (2001). Kernel logistic regression and the import vector
machine. In Proc. of Neural Information Processing Systems. Submitted.

Zhu, X., Ghahramani, Z. and Lafferty, J. (2003). Semi-supervised learning using
Gaussian fields and harmonic functions. In ICML, volume 20, 2003.

156

