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Abstract

Functional data analysis (FDA) – inference on curves or functions – has wide

application in statistics. An example of considerable recent interest arises when

considering computer models of processes; the output of such models is a function

over the space of inputs of the computer model. The output is functional data in

many contexts, such as when the output is a function of time, a surface, etc. In

this research, we develop or extend four Bayesian FDA approaches to computer

model validation, tailored to interdisciplinary problems in engineering and the

environment.

The first approach we consider is a nonparametric Bayesian statistics approach,

utilizing a separable Gaussian Stochastic Process as the prior distribution for

functions. This is a natural choice for smooth functions. The methodology is

applied to a thermal computer model challenge problem, proposed by the Sandia

National Laboratory.

Direct use of separable Gaussian stochastic processes is inadequate for irregular

functions, and can be computationally infeasible for high dimensional functions.

The approach developed for such functions consists of representing the function in

the wavelet domain; reducing the number of nonzero coefficients by thresholding;

modeling the nonzero coefficients as functions of the associated inputs, using the

nonparametric Bayesian method; and reconstructing the functions (with confi-

dence bands) in the original (time) domain.

The third approach extends the second in terms of function representation.

We represent the functions in the eigen-space whose basis elements are linear

combinations of the wavelet basis elements. The number of nonzero coefficients is
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greatly reduced in this eigen-space, as consequently is the computational expense

for the statistical inverse problem. This method is applied to computer modeling

of vehicle suspension systems.

The fourth approach models functions as multivariate Dynamic Linear Models.

This approach is useful when the functions are highly variable and, as opposed

to attempting to represent the functions exactly, one seeks primarily to capture

relevant stochastic structure of the functions. The method has been tested with

a simulated data set.

In addition to the basic issue of functional data, all the above approaches

must also contend with three other issues associated with computer model valida-

tion. First, emulators must typically be constructed for expensive-to-run computer

models, by treating them as spatial processes defined on the input space. Second,

computer model bias – the discrepancy between the computer model output and

reality – must be taken into account. Third, the computer models typically have

unknown parameters, requiring solution of an inverse problem in their estima-

tion. Because these issues must all be addressed simultaneously and with limited

data, extensive use is made of Markov Chain Monte Carlo (MCMC) algorithms.

Some modular versions of MCMC are also introduced to reduce the confounding

between some of the elements in the corresponding statistical models.
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Chapter 1

Introduction

Computer models have become essential tools for describing complex physical pro-

cesses in many scientific disciplines. Applications range from modeling climate to

engineering new technology. Computer models in such areas are essential because

physical experiments may be too expensive or simply be impossible to carry out.

The computer model takes input and returns output. Typically, the model is

deterministic – it produces identical output values with the same inputs. We view

the model as a function of the input z, denoted by yM(z). Statistical analysis of

computer models faces the following challenges. First, it is often time consuming

to run the computer model. As a result, we can only observe yM(·) at a limited

number of choices for the input. Second, the values for the input variables may be

unknown for the real physical process. Field runs, data obtained by conducting

real physical experiments, are often used to calibrate those unknowns. Third,

the computer models are never completely accurate representations of the real

processes being modeled. Statistical analysis should be able to incorporate the

model inadequacy.

This dissertation is motivated by the methodological need to handle irregular

functional outputs produced by computer models and uncertainty in the com-

puter model inputs. Within the general framework of Bayesian statistics, this

dissertation develops four approaches, each illustrated by a specific application.
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1.1 Statistical Analysis of Computer Models

Statistical principles have been actively involved in the study of computer models,

especially in the following areas.

Designing computer experiments - The goal is to choose z1, . . . , zn, the

input values at which the computer model will be exercised. McKay et al. (1979)

first introduced Latin hypercube sampling to design computer experiments. The

intuition is to cover the range of the key input values and fill the space effectively

(Sacks et al. (1989); Bates et al. (1996)). In the examples we consider here,

the design points are selected by a Latin Hypercube Design that maximizes the

minimum distance between the design points. More precisely, we choose z1, . . . , zn

subject to

maxLHDmini,jd(zi, zj) ,

where d(zi, zj) is the distance between design points zi and zj.

Uncertainty and sensitivity analysis - The problem of uncertainty analysis

is to study the distribution of the output induced by the input distributions, and

sensitivity analysis is more focused on identifying inputs to which the output

is relatively sensitive. Saltelli et al. (2000) presents the large literature on this

problem. See also Santner et al. (2003) for a review. Recent research papers

include Oakley and O’Hagan (2002), Oakley (2004), Oakley and O’Hagan (2004)

and Linkletter et al. (2006).

Model the computer model outputs - The objective is to predict the com-

puter model output yM(z), at any untried input z, conditional on the computer

model runs at the design points yM(z1), . . . , y
M(zn). The resulting prediction,

together with the associated uncertainty, is then used as a fast surrogate to the
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computer model, often called an emulator. The Gaussian Response Surface Ap-

proximation method (GaSP), following on work in Sacks et al. (1989), Currin

et al. (1991), Welch et al. (1992), and Morris et al. (1993), has received consid-

erable attention in the literature and has become the most common approach to

constructing an emulator. The main idea of GaSP is to assign a Gaussian process

as the prior distribution for yM , and update our knowledge of the computer model

yM(·) upon observing the evaluations of yM(·) at inputs DM = {zi : i = 1, . . . , n}.
This yields a fast emulator for yM at any untried input z.

Bayarri et al. (2005b) and Bayarri et al. (2006) incorporate GaSP with func-

tional output. Bayarri et al. (2005b) treat time t as another input, and allow

hierarchical modeling to combine experimental data from different conditions.

Bayarri et al. (2006) represent functional data by a basis expansion. A related

approach for computer models with high dimensional outputs is in Higdon et al.

(2007), where the data is represented by principle components.

Calibration - Some of the computer model inputs are typically unknown pa-

rameters. The objective of calibration is learn about them in conjunction with

the field runs. The traditional approach to calibration is to search for the values

of the unknown inputs whose corresponding model outputs best fit the field runs.

This ad hoc search takes no account of the parameter uncertainty and model inad-

equacy in the subsequent analysis. Kennedy and O’Hagan (2001) classify sources

of uncertainty arising in the use of computer models. The Bayesian approach they

proposed is the first attempt to explicitly model all the sources of uncertainty. A

fully Bayesian version is described in Bayarri et al. (2002).

Another Bayesian approach to calibration is given by Craig et al. (1997), Craig

et al. (2001), Goldstein and Rougier (2003), Goldstein and Rougier (2004) and
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Goldstein and Rougier (2006), which focus on the use of linear Bayes methodology

Goldstein (1998).

Validation - As we have discussed, a computer model is often a biased represen-

tation of the real process. The reasonable objective of validation is thus to answer

the relevant question “Does the computer model adequately represent reality?”

Bayarri et al. (2005a) described a general framework for validation of com-

plex computer models and applied the framework to two examples involving

scalar data. The procedure treats the combined calibration/validation process,

and assesses the possible systematic differences between model outcomes and test

outcomes (so-termed biases), by estimating these biases along with uncertainty

bounds for these estimates. Bayarri et al. (2005b) generalized this work to the

situation of smooth functional data, arising within a hierarchical structure, and

Bayarri et al. (2006) generalized to the situation of irregular functional data.

1.2 Computer Model Validation Framework

The Simulator Assessment and Validation Engine (SAVE ) (Bayarri et al., 2005a)

is a Bayesian-based analysis that combines computer simulation results with out-

put from field experiments to produce assessment of the adequacy of a computer

model. The method follows these six steps:

(1) Specify the Input/Uncertainty (I/U) map, which consists of prior knowl-

edge on uncertainties or ranges of the computer model inputs and parameters.

(2) Set the evaluation criteria for intended applications.

(3) Collect data – both field and computer runs;

(4) Approximate, if necessary, computer model output;

4



(5) Compare computer model output with field data using Bayesian statistical

analysis;

(6) Feed back the analysis to improve the current validation scheme and com-

puter model, and feed forward to future validation activities.

The central technical issues for SAVE lie in implementing Steps (4) and (5).

Letting yM(·) be the computer model output, Step (4) aims at obtaining a fast

surrogate of yM(·), ŷM(·), that is easy to evaluate. The Gaussian Response Surface

Approximation method (GaSP), following on work in Sacks et al. (1989), Currin

et al. (1991), Welch et al. (1992), and Morris et al. (1993), is the key component

for implementing Step (4) for scalar output. The main idea of GaSP is to assign

a Gaussian process as the prior distribution for yM ,

yM ∼ GP

(
Ψ

′
(·)θL,

1

λM
cM(·, ·)

)
,

where Ψ(·) is a vector of known functions, θL is a vector of unknown regression

coefficients, λM is the precision (inverse of variance) of the Gaussian process,

and cM(·, ·) is the correlation function. Denoting the arguments/inputs to the

computer model by z, we assume that cM(·, ·) has the form

cM(z, z∗) = exp

(
−

d∑
j=1

βM
j | zj − z∗j |α

M
j

)
.

In the definition of the correlation function, d is the number of coordinates in z; the

βM
j ’s are range parameters controlling the decay of the spatial correlations, βM

j ≥
0; the αM

j ∈ [1, 2] are called roughness parameters which reflect the smoothness of

the realizations from the Gaussian process – the function is infinitely differentiable

if and only if αM
j = 2 for all j. For simplicity, we denote the hyper-parameters by
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θM = (λM , θL, αM , βM).

The correlation structure in the GP prior implies that close-by values of inputs

lead to high correlations and hence similarity of outputs, while far apart inputs

lead to near zero correlations and a lack of similarity between the outputs. These

are typical features of smooth functions, the kind expected to come from many

computer models in engineering.

Our knowledge of the computer model yM(·) will be updated upon observ-

ing the evaluations of yM(·) at inputs DM = {zi : i = 1, . . . , m}. Let yM =

(yM(z1), . . . , y
M(zm)) be the outputs of the model at DM . The conditional pos-

terior distribution of yM given the hyper-parameters, is a Gaussian process with

updated mean and covariance function given by

E(yM(z) | yM , θL, θM) = Ψ
′
(z)θL + γ

′
z(Γ

M)−1(yM −XθL)

Cov(yM(z), yM(z∗) | yM , θL, θM) =
1

λM
cM(z, z∗)− γ

′
z(Γ

M)−1γz∗ ,

where γ
′
z = (cM(z, z1), . . . , c

M(z, zm)), ΓM = (cM(zi, zj))i,j, and X is the matrix

with rows Ψ
′
(z1), . . ., Ψ

′
(zm). This yields a fast emulator for yM at any untried

input z,

E(yM(z) | yM , θL, θM) = Ψ
′
(z)θL + γ

′
z(Γ

M)−1(yM −XθL)

Var(yM(z) | yM , θL, θM) =
1

λM
− γ

′
z(Γ

M)−1γz . (1.1)

The variance in Equation (1.1) is zero for z ∈ DM . Therefore, the emulator given

by GaSP is an interpolator of the data.

The statistical structure for implementing Step (5) must contend with model

bias and uncertainty (Kennedy and O’Hagan, 2001), and thus is done as follows:

View the computer model yM(·) as a possibly biased representation of the un-
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derlying real physical phenomenon yR(·) by defining a bias process, b to satisfy

yR(·) = yM(·) + b(·). Field data yF are realizations of the real process

yF (·) = yM(·) + b(·) + e(·), (1.2)

where e(·) is (field) measurement error. Arguments (inputs) of yR(·), yM(·), b(·), e(·)
will differ in kind depending on the specific situation being considered.

1.3 Outline of the Dissertation

This dissertation is concerned with validation of computer models with functional

outputs, in the presence of uncertain inputs. We specifically consider the case

where, given the input vector z, the computer model produces a function of time,

denoted as yM (z, t). In practice, each functional output is given in terms of a

vector, whose elements are evaluations of the function yM (z, t) at grid points

t1, . . . , tT . We use yM (z) to represent the output,

yM (z) =
(
yM(z, t1), . . . , y

M(z, tT )
)t

.

In addition, due to the fact that running the computer model is very time con-

suming, yM(z) is only evaluated at selected values of z, {zi, i = 1, . . . , n}.
In many problems, z can be written as z = (v, δ, u), where v is a vector of

controllable inputs, δ is a vector of unknown parameters that reflect key charac-

teristics of the field runs, and u consists of calibration parameters. We use δ∗ij

and u∗ to represent the true values (related with the real process), for the jth

tested specimen in the ith configuration vi, and the true calibration parameters,

respectively. The statistical structure in Equation (1.2) suggests the following

statistical model to connect the computer model with field runs,

yF
r (vi, δ

∗
ij; t) = yM(vi, δ

∗
ij, u

∗; t) + bu∗(vi, δ
∗
ij; t) + eijr(t) , (1.3)
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where yF
r , yM , b, er stand for the rth field run, the computer model, the bias term,

and the measurement error, respectively.

In Chapter 2, we consider the situation in which the responses are smooth

functions of t, so that t can simply be treated as another input. The number of

unknown δ∗ is as many as that of the field specimens, and must be dealt with in

the analysis. We propose to incorporate the many δ∗ij by assuming a hierarchical

structure for the biases. The approach will be discussed in the context of a problem

involving a computer model of thermal flow in materials.

The major challenge in Chapter 3 and Chapter 4 is irregular functional time-

data, precluding simply treating t as another input to the computer model. In-

deed, to adequately represent an irregular function of time, so many time points

would need to be included that the computation would become infeasible. The

key components of the methodology consist of employing a basis representation

over time and using GaSP to model the resulting basis coefficients. Chapter 3

uses a wavelet basis to represent the functional outputs. The study there only

involves a single field specimen from a single computer code, which corresponds

to the situation of a single v, a single δ∗ and a single u∗ in Equation (1.3).

Chapter 4 further extends this approach to model multiple computer codes

with multiple field specimens for each v. This involves multiple δ∗ and multiple v

as in Chapter 2. In view of the fact that more computational effort is then needed,

we reduce the number of coefficients to a manageable level by using eigen-basis

elements, which are essentially principle components of the wavelet basis. More-

over, we build statistical surrogates to emulate computer model runs across all the

codes and utilize a hierarchical structure of the biases due to the manufacturing

variations. We will illustrate the analysis in Chapter 3 and Chapter 4 through a

8



test-bed computer model for analyzing stress on vehicle suspension systems that

are subjected to forces over time.

Finally, in Chapter 5, we focus on computer models that produce time se-

ries data with an underlying stochastic structure. The grid points t1, . . . , tT are

consecutive and equally spaced, labeled as 1, 2, . . . , T . Use of dynamic processes

to emulate such models has the capability of capturing stochastic structure. We

develop an approach that builds emulators using a multivariate Bayesian dynamic

linear model. The resulting emulators also work as an interpolator of the data

given the first few initial conditions.
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Chapter 2

Dealing with Uncertain Inputs

The real physical process often involves uncertainty in some of the model inputs.

We consider the two types of uncertain inputs that were introduced in Chapter 1,

namely the calibration parameters u and the unknown parameters δ. In practice,

u is often a vector of constants that are involved in the computer modeling. It

does not vary over the different field runs. There is supposedly a true value for

u, denoted by u∗, and the well-studied calibration problem is to learn about this

parameter.

In contrast, less attention has been given to modeling possible uncertainty in

δ, which can vary over the field runs. For instance, in many engineer applications,

δ is the manufacturing variation of the tested field specimen. In this chapter, we

extend the SAVE methodology to incorporate uncertain inputs (both calibration

and unknown), in the context of a fast computer model. We will illustrate the

approach with a thermal computer model challenge problem (Dowding et al.,

2006).

2.1 Introduction and Statistical Model

Consider a computer model yM(z, t), where z is the input and t is time. In this

chapter, we assume that yM(z, t) is fast, i.e. we can evaluate the computer code

as many times as we wish.

Following the discussion in Chapter 1, we further write the input z as (v, δ, u),

and denote by (δ∗, u∗) the true values in the real process. Letting vi be the

10



controllable input for the ith configuration and δ∗ij be the unknown input for

the jth tested specimen in the ith configuration, we use the following statistical

structure to connect the computer model with field runs,

yF
r (vi, δ

∗
ij; t) = yM(vi, u

∗, δ∗ij; t) + bu∗(vi, δ
∗
ij; t) + eijr(t) , (2.1)

where yF
r (vi, δ

∗
ij; t), bu∗(vi, δ

∗
ij; t) and eijr(t) stand for the rth field replicate of the

jth tested specimen in the ith configuration, the bias function associated with that

specimen, and measurement errors, respectively. The v is a vector (of length pv)

which consists of the controllable inputs and (δ, u) consists of unknown inputs.

We assume that u∗ is the same for all field runs, while δ∗ depends on the tested

specimen in a particular field run. Some field runs may have the same values of

v if they have the same configuration.

There are two challenges to analyzing the model in Equation (2.1).

Many unknowns. The δ∗ij are unknown and vary from specimen to specimen,

leading to a large number of unknown parameters. When the δ∗ij arise

as manufacturing variations from nominal values µi, a simple solution is

to apply the traditional SAVE methodology by fixing δ∗ij at the nominal

values. However, this ignores information inherent in the field data about

the individual specimen-specific values. This can have a non-trivial effect

on predictions and must be dealt with.

Structured bias. The bias term bu∗(vi, δ
∗
ij; t) in Equation (2.1) is associated

with the particular individual tested specimen. Unfortunately, there is con-

founding between each bu∗(vi, δ
∗
ij; t) and the corresponding δ∗ij, and, in gen-

eral, no amount of data can sort this out. Moreover, there is very limited
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data to estimate these different bias functions. We thus make the simplifying

assumption that the bias depends only on the configuration vi. Understand-

ing that this cannot be strictly correct, we then add in a different “nugget”

error term for each replication to accommodate possible differences among

the specimens, leading to the model

bu∗(vi, δ
∗
ij; t) = b(vi; t) + εb

ij(t) . (2.2)

Thus the final model for analysis is

yF
r (vi, δ

∗
ij, u

∗; t) = yM(vi, δ
∗
ij, u

∗; t) + bu∗(vi, t) + εb
ij(t) + eijr(t) . (2.3)

2.2 The Bayesian Analysis

The unknowns in the structure of Equation (2.3) are
(
u∗, δ∗ij, bu∗(vi, t), ε

b
ijr(t)

)
.

The Bayesian analysis proceeds by placing prior distributions on the unknowns

and then produces a posterior distribution of the unknowns given the data. The

posterior distribution provides all the necessary information for prediction, toler-

ance bounds, etc.

2.2.1 The prior distributions

π(u∗) and π(δ∗ij), the prior distributions for the uncertain inputs, is clearly context

specific. For the unknown function bu∗(vi, t), we use a Gaussian process (GP) as its

prior distribution. The GP is characterized by its mean and covariance function.

As typical, we here take the mean of the GP to be an unknown constant µb. The

covariance function of the GP is from a family whose parameters become part of

the unknowns and are incorporated into the Bayesian analysis. Specifically,

b(·, ·) ∼ GP
(
µb, τ

2C ((·, ·), (·, ·))) ,
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where τ 2 is the variance of the GP, and the correlation function is assumed to be

C
(
b(v; t), b(v

′
; t
′
)
)

= cv

(
v, v

′
)

ct

(
t, t

′
)

, (2.4)

with cv

(
v, v

′)
= exp

(−∑pv

1 βk|vk − v
′
k|αk

)
and ct

(
t, t

′)
= exp

(
−β(t)|t− t

′|α(t)
)
.

We model the εb
ij(t) and the eijr(t) as independent Gaussian processes,

εb
ij(t) ∼ GP

(
0, σ2

b ct(·, ·)
)

and eijr(t) ∼ GP
(
0, σ2ct(·, ·)

)
.

In the above Gaussian processes, we adopt the correlation function ct(·, ·) from

Equation (2.4). This will dramatically simplify the computations as we shall see

in Section 2.2.2.

Let θ denote the hyper-parameters,

θ =
(
σ2; σ2

b ; τ
2; α1, . . . , αpv ; β1, . . . , βpv ; α

(t); β(t)
)

.

The prior π(θ) for these parameters is typically chosen in an objective fashion,

but its complexity is often related to the nature and extent of the available data.

Hence we defer further discussion of this choice until the applied example.

2.2.2 The posterior distribution

The likelihood function of the data, when combined with the prior distribution of

the unknowns, leads to the posterior distribution, following Bayes Theorem. Let

(t1, . . . , tT ) be the time grid for the observations, v1, . . . , vm be the configurations,

ni be the number of tested specimens with configuration vi, and rij be the number

of replicated runs of the jth tested specimen with configuration vi. We order the

field data so that yF
k (t), the kth field run is yF

r (vi, δ
∗
ij, u

∗; t), the rth replicated

run of the jth tested specimen with configuration vi, k =
∑i

s=1

∑j−1
t=1 rst + r,
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i = 1, . . . , m, j = 1, . . . , ni, r = 1, . . . , rij. Let (v(k), δ
∗
(k)) stand for the inputs

associated with the kth field run. The field runs with the same tested specimen

have the same values for v(k) and δ∗(k). Integrating out the bias function, we have

yF ∼ N
(
yM + µb1,

(
τ 2Σb + σ2

bI + σ2I
)⊗Σt

)
, (2.5)

where the vectors and matrices are defined as

yF =

(
yF

k (tl), k ∈ {1, . . . ,
m∑

i=1

ni∑
j=1

rij}, l ∈ {1, . . . , T}
)t

,

yM =

(
yM(v(k), δ

∗
(k), u

∗; tl), k ∈ {1, . . . ,
m∑

i=1

ni∑
j=1

rij}, l ∈ {1, . . . , T}
)t

,

(Σb)k,k′ = cv(v(k), v(k′)) , (Σt)k,k′ = ct(tk, tk′) .

The Kronecker product operation ⊗ is defined in Appendix A and some of its

properties are listed. These properties are crucial for easy evaluation of the like-

lihood.

To obtain the posterior distribution, we use what is called a modular MCMC

approach, necessitated by the confounding between (δ∗ij, u
∗) and the bias func-

tion. For explanation and justification, see Section 2.3. This begins by fixing

(δ∗ij, u
∗) at their prior means, and then running an MCMC for the other param-

eters (α, β, b, µb, τ
2, σ2

b , σ
2). From this initial MCMC, we estimate α and β by

their posterior medians α̂ and β̂. Subsequently we view α and β as fixed at these

values, and rerun the MCMC with (δ∗ij, u
∗) again viewed as unknown. The details

are in Section 2.3.

Letting {b} be the vector of the bias function b(v; t) and given (α̂, β̂), the full
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conditional distribution can be factorized as

π({b}, {δ∗ij}, u∗, µb | τ 2, σ2
b , σ

2, α̂, β̂, yF ) = π({b} | {δ∗ij}, u∗, µb, τ
2, σ2

b , σ
2, α̂, β̂, yF )

×π(µb, {δ∗ij}, u∗ | τ 2, σ2
b , σ

2, α̂, β̂, yF ) .

(2.6)

The first factor in Equation (2.6) is a multivariate normal distribution, with mean

vector and covariance matrix given by

E(b) = (yF − yM)− τ 2Σb

(
τ 2Σb + σ2

bI + σ2I
)−1 ⊗ I(yF − yM − µb1) ,

C(b) =
(
(σ2

b + σ2)(σ2
bI + σ2I + τ 2Σb)

−1τ 2Σb

)⊗Σt . (2.7)

2.3 MCMC Algorithm

To obtain draws from the second factor in Equation (2.6), we use a Gibbs sampler.

The full conditional distribution for µb, π(µb | {δ∗ij}, u∗, τ 2, σ2
b , σ

2, α̂, β̂, Data), is

normal with mean

1t
(
yF − yM

)

1t (τ 2Σb + σ2
bI + σ2I)

−1 ⊗ (Σt)
−1 1

,

and variance

1

1t (τ 2Σb + σ2
bI + σ2I)

−1 ⊗ (Σt)
−1 1

.

The full conditional distribution for {δ∗ij} and u∗, π({δ∗ij}, u∗ | µb, τ
2, σ2

b , σ
2, α̂, β̂, Data),

does not have closed form. We use a Metropolis-Hastings algorithm to draw sam-

ples from this distribution. The proposal distribution depends on the context,

and will be illustrated in the example.

Finally, conditional on {b}, {δ∗ij}, u∗, µb, α̂, β̂, we draw samples from the

posteriors of τ 2, σ2
b and σ2. Their distributions will depend on the prior, and will

be illustrated in the example.
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We do the computation by the following modular MCMC approach, to improve

the convergence of the Markov Chain. The algorithm has two separate MCMC

steps - estimation of (α, β) and drawing samples of the remaining unknown quan-

tities, given the estimate α̂, β̂. We will detail these two steps.

2.3.1 Estimation of α and β

Approximating the computer model output yM(v, δ, u; t) by ŷM = yM(v, δ̂, û; t),

we can approximate the SAVE formula in Equation (2.3) as

yF
r (vi, δ

∗
ij, u

∗; t) ≈ ŷM(vi, δ̂, û; t) + b(vi, t) + εb
ij(t) + eijr , (2.8)

where (δ̂, û) is the vector of the prior means (nominal values) for (δ, u). We use

the following MCMC algorithm to draw from π
(
α, β, µb, τ

2, σ2
b , σ

2 | yF , ŷM
)
.

At iteration h, (h = 1, . . . , 10000),

Step 1: Make draws of αh, βh conditional on µ
(h−1)
b , τ 2(h−1), σ

2(h−1)
b , σ2(h−1), yF ,

ŷM . There are no closed forms for this distributions; we use the Metropolis-

Hastings algorithm. The algorithm will be later detailed for the example.

Step 2: Given αh, βh, τ 2(h−1), σ
2(h−1)
b , σ2(h−1), yF , ŷM , make a draw of µh

b according

to the distribution in Section 2.2.2.

Step 3: Given αh, βh, µh
b , τ 2(h−1), σ

2(h−1)
b , σ2(h−1), yF , ŷM , make draws of {bh}

according to Equation (2.7).

Step 4: Given αh, βh, µh
b , and {bh}, make a draw of τ 2h, make a draw of σ2h

b , and

make a draw of σ2h. Their distributions depend on the prior. We will give

the distributions later for the example.
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At the end of the MCMC, {αh, βh, h = 1, . . . , 10000} are produced. We take

the posterior medians of the MCMC draws as our estimates α̂, β̂.

2.3.2 Modular MCMC algorithm

Given
(
α̂, β̂

)
, the estimate we obtained above, the modular MCMC algorithm

works as follows.

Step 0: Run the algorithm described above to obtain estimate for α̂ and β̂. We fix

these parameters at their estimates for the rest of the analysis, and redo the

MCMC, now incorporating the unknown {δ∗ij} and u∗.

Step 1: At iteration h,

Step 1.1: Given µ
(h−1)
b , τ 2(h−1), σ

2(h−1)
b , σ2(h−1), make draws for {δ∗hij }, u∗ by

Metropolis-Hastings algorithm. This depends on the context and we

will give details for the example.

Step 1.2: Given {δ∗hij }, u∗h, τ 2(h−1), σ
2(h−1)
b , σ2(h−1), make a draw for µh

b according

to the distribution given in Section 2.2.2.

Step 1.3: Given {δ∗hij }, u∗h, µh
b , σ

2(h−1)
b , σ2(h−1), τ 2(h−1), yF , ŷM , make draws of

{bh} according to Equation (2.7).

Step 1.4: Given µh
b , {δ∗hij }, u∗ and {bh}, make a draw of τ 2h, a draw of σ2h

b , and

a draw of σ2h. These distributions again depend on the prior, and will

be given later for the example.
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2.3.3 Extrapolation of the bias

We can extrapolate the bias to a new configuration vnew. Denote the bias at the

new configuration by b(vnew) = (b(vnew, tk), k ∈ (1, . . . , T ))
′
, and the biases for

all the field data configurations by b = {bi}. The posterior distribution for b(v)

is

π(b(v) | yF ) =

∫
π(b(v) | b, θ)π(b, θ | yF )dbdθ .

We can make draws from this distribution as follows. At iteration h, in the

MCMC described above, we have draws from b, θ | yF . It then suffices to draw

bh(v) from π
(
b(v) | bh, θ(h)

)
, which under the Gaussian process prior, is a normal

distribution with mean and covariance given by

E(b(v)) = µb1 + ct (Σb ⊗Σt)
− (b− µb1), Cov (b(v)) = τ 2

(
1− ctΣ−1

b c
)
Σt ,

where c = (cv(v1, v), . . . , cv(vm, v))t is the correlation vector between the new

configuration and the experimented configurations.

This modular MCMC approach results in a sequence of draws from the poste-

rior distribution of all unknowns given the data. Statistical inference is based on

these posterior draws.

We will devote the rest of this chapter to the analysis, feeding backward to

improve the current validation scheme and computer model, and feeding forward

to future validation activities. The approach will be illustrated with the example

of the thermal computer model challenge problem (Dowding et al., 2006).
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2.4 An Example

2.4.1 The thermal computer model challenge problem

Dowding et al. (2006) proposes a 1-d thermal computer model as a challenge

problem for validation. This thermal computer model simulates transient heat

conduction through a slab. The output of the thermal computer model is

yM(κ, ρ,T0, x, L, q; t) = T0

+
qL

κ

[
κt/ρ

L2
+

1

3
− x

L
+

x2

2L2
−

6∑
N=1

2

π2n2
exp

(
−n2π2κt

L2ρ

)
cos

(
nπ

x

L

)]
, (2.9)

where κ is the thermal conductivity of the device, ρ is the volumetric heat capacity,

q is applied heat flux, L = thickness, x = distance from the surface, T0 = initial

temperature and t is time. The inputs, (κ, ρ), are physical properties varying from

specimen to specimen; they are unknown for a particular device. T0 is fixed at

25oC for all data and analyses and is therefore ignored. The controllable inputs

(x, L, q) are assumed to be known exactly and their specification corresponds to

a configuration.

In the general notation of Equation (2.3), the unknown input vector δ consists

of the two physical properties, δ = (κ, ρ), that vary from specimen to specimen.

The controllable inputs defining the configuration of the experiment are v =

(x, L, q). The calibration parameter u does not exist in this example.

Let yR(κ, ρ, x, L, q; t) be the real temperature at time t for a specimen with

properties κ, ρ under the associated experimental configuration. The principal

application is to predict the (real) temperature at t = 1000 under the regulatory

configuration (x = 0, L = 0.019, q = 3500), and determine whether

P [yR(κ, ρ, x = 0, L = 0.019, q = 3500; t = 1000) > 900] < .01, (2.10)
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the stated regulatory requirement. Because κ, ρ are unknown, interpretation of

this probability must be dealt with. In fact, the Bayesian analysis we use treats

these unknowns as random and their distribution is incorporated into the calcu-

lation of the probability.

There are three sets of field (experimental) data. The material characterization

data (MC) are used to provide prior distributions for the κ, ρ’s that go with each

specimen. The ensemble data (EN) are used to produce assessments of the bias as

well as tolerance bounds on model and reality predictions and are then further used

to compare the predictive distribution π
(
yR (κ, ρ, x = 0, L = .019, q = 3000, t) | EN

)

with the accreditation configuration data (AC). The EN and AC data are then

taken together and lead to a follow-on analysis providing new assessments of bias

and tolerance bounds for predictions. This second analysis is used to predict

temperature at the regulatory configuration.

Each of the EN and AC data has its own (unknown) κ, ρ and so there are

as many parameters κi, ρi as there are EN and AC measurements. These many

unknowns are assumed to have a common prior distribution. Additionally, the AC

data are observed on a finer grid than the EN data. Instead of investing in extra

computational effort we choose an innocuous simplification by only using the AC

data on the common, albeit coarser, time grid. The purpose of this simplification is

to achieve computational efficiency by utilizing a Kronecker product specification

for the correlation matrices of the involved Gaussian processes.

The analyses are carried out for two situations: the so-termed medium-level

data and the high-level data; the medium-level data is a subset of the high-level

data. There are some limited data with x 6= 0 in the accreditation data set but we

ignore them because only surface temperature (x = 0) is involved in the intended
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application (regulatory condition) and little benefit is expected by including them.

We summarize the six steps of SAVE procedure for the thermal computer

model challenge problem as follows.

(1) We give the I/U map for the thermal challenge problem in table 2.1.

Input Impact Uncertainty Current status
κ 5 π(κ) unknown
ρ 5 π(ρ) unknown
q 5 None 1000, 2000, 3000
L 5 None 0.0127, 0.019, 0.0254
x 1 None 0
T0 1 None 25
t 5 None 0, 50, 100, . . ., 1000

Table 2.1: the Input/Uncertainty Map for thermal computer model. π(κ), π(ρ)
is given in section 2.4.2.

(2) We identify the evaluation criteria as the regulatory requirement in Equation

(2.10).

(3) Field runs are available at the configurations defined in Table 2.1. The

computer model runs are also available as in Equation (2.9).

(4) We bypass this step because the thermal computer model in Equation (2.9),

is fast and can be evaluated as many times as we wish.

(5) The statistical structure to compare the computer model output with field

data is given by Equation (2.3).

(6) We will discuss later in this chapter the feed backward and feed forward

analysis.
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2.4.2 Material Characterization

The MC data are used to obtain posterior distributions for κ and ρ that are then

used as priors in later analyses. Figure 2.1 shows the quantile-quantile plots of the

normalized data for all MC data. Though the plots suggest that κ and ρ might

be assumed to be normally distributed, κ ∼ N(µκ, σ
2
κ) and ρ ∼ N(µρ, σ

2
ρ), closer

examination of the data for κ indicates that the assumption of constancy is not

tenable; κ is, more plausibly, a linear function of temperature. But replacing the

constant κ by a linear function in Equation (2.9) does not conform to the physics.

Therefore, we only use the data at temperatures 500oC or higher, to estimate

(µκ, σ
2
κ, µρ, σ

2
ρ), in the hope that doing so will make π(κ | MC) and π(ρ | MC)

close to the distributions under the regulatory condition.
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Figure 2.1: Left: qq-norm plot of κ; Right: qq-norm plot of ρ

The assumption that κ and ρ are independent is borne out by the data. The

parameters of the normal distribution of κ are estimated in the traditional way as

κ̄mc,
∑

i(k
mc
i − κ̄mc)2/(n − 1) and similarly for ρ. Table 2.2 gives the priors π(κ)

and π(ρ) for medium and high level experimental data that result.
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Prior Medium High
π(κ) N(0.0671, 0.00702) N(0.0687, 0.00722)
π(ρ) N(405420, 384322) N(398220, 336902)

Table 2.2: Prior distributions for κ and ρ

A naive (and generally wrong) answer to the question “Does the device meet

the regulatory requirement?” is to sample κ and ρ from these priors, plug them,

along with the regulatory configuration, into Equation (2.9), and count the pro-

portion of times the regulatory criterion is violated. In Figure 2.2, we show the

histograms (for medium- and high-level data) of the temperatures so obtained.

The proportions above 900 are 0.08 and 0.06 for the two levels respectively. An

initial conclusion is that the device might not be safe for the intended application.

But we are not predicting the correct quantity: the correct quantity is reality at

the regulatory configuration and bias, if present, must be accounted for before

making conclusions.
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Figure 2.2: Computer model predictions for the surface temperature at regula-
tory configuration based on medium (left)- and high (right)- level MC data
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2.4.3 Assumptions and Analysis

With x fixed at 0 the controllable inputs defining a configuration are v = (L, q).

The prior distribution for the δ∗ij is given in Table 2.2. Now we specify the prior

distributions for the hyper-parameters. Data limitations and the belief that the

responses are smooth functions of input lead us to fix the αi’s at 2 (but not α(t)).

We specify prior distributions for the other parameters as:

π(σ2
b ) ∝ 1/σ2

b , π(τ 2) ∝ exp(−1000/τ 2),

π(β1) ∝ exp(−0.001β1), π(β2) ∝ exp(−105β2),

π(α(t)) ∝ I(1,2)(α
(t)), π(β(t)) ∝ exp(−100β(t))I[10−4,∞)(β

(t)) ,

where IA(x) equals one if x ∈ A and zero otherwise, is the indicator function

of the set A. We choose the standard objective prior for σ2
b because there are

multiple field runs at each configuration. The remaining priors are chosen to be

mildly informative due to the sparsity of the real data, and are chosen to reflect

the scales of the parameters. For example, exploratory analysis suggests that β1

is around 1000. Hence, we choose 0.001 as the rate parameter of its exponential

prior. β(t) is truncated to guarantee non-singularity of Σt and avoid numerical

issues. We fix σ2 at 0 since the field data is assumed to be measured with no error

and rij = 1.

These priors induce the posterior conditional distributions for τ 2 and σ2
b in

Section 2.2.2 as follows.

τ 2 ∼ IG

(
n

2
rank(Σb)− 1,

1

2
(b− µb1)t (Σb ⊗Σt)

−1 (b− µb1) + 1000

)
, (2.11)

and

σ2
b ∼ IG

(
mn

2
,
1

2

(
yF − yM − b

)t
(I ⊗Σt)

−1 (
yF − yM − b

))
. (2.12)
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In the MCMC algorithm, the step involving α and β is as follows. We propose a

new value of α(t) by α(t) = α(t)h+N(0, 0.012), and then we calculate the acceptance

ratio

ρ = min


 L

(
ŷM , µ

(h−1)
b , τ 2(h−1), σ

2(h−1)
b , α(t), β(h−1); yF

)

L
(
ŷM , µ

(h−1)
b , τ 2(h−1), σ

2(h−1)
b , α(t)(h−1), β(h−1); yF

) I(1,2)(α
(t)), 1


 ,

where L is the likelihood function, defined through Equation (2.5). Set α(t)h = α(t)

with probability ρ, and α(t)(h) = α(t)(h−1) with probability (1 − ρ). (Recall that

αi, i = 1, 2, are fixed throughout at 2.)

New values of β = (β1, β2, β
(t)) are proposed by βi ∼ N(β

(h−1)
i , s2

i ), i = 1, 2,

and β(t) = β(t)(h−1) + N
(
0, 1

16
(β(t)(h−1) − 10−4)2

)
, where s1 = 500 and s2 = 10−7.

The acceptance ratio is

ρ = min


 L

(
ŷM , µ

(h−1)
b , τ 2(h−1), σ

2(h−1)
b , α(t)h, β; yF

)
π(β)

L
(
ŷM , µ

(h−1)
b , τ 2(h−1), σ

2(h−1)
b , α(t)h, β(h−1); yF

)
π(β(h−1))

, 1


 .

We set β(h) = β with probability ρ, and β(h) = β(h−1) with probability 1 − ρ.

The Metropolis-Hastings algorithm usually yields highly correlated samples. We

thus cycle through the algorithms 200 times saving only the last draws before

proceeding to the next step of the MCMC.

The Metropolis-Hastings algorithm to draw samples for {u∗ij} in Section 2.3

proceeds as follows. We propose new values by κi = κ
(h−1)
i + N(0, 1

20
σ2

κ), ρi =

ρ
(h−1)
i + N(0, 1

20
σ2

ρ), and calculate the acceptance ratio as

ρ = min





L
(
yM(u∗ij), µ

(h−1)
b , τ 2(h−1), σ

2(h−1)
b ; Data

) ∏
i π(u∗ij)

L
(
yM(u

∗(h−1)
ij ), µ

(h−1)
b , τ 2(h−1), σ

2(h−1)
b ; Data

) ∏
i π(u

∗(h−1)
ij )

, 1



 .
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We set {u∗hij } = {u∗ij} with probability ρ, and {u∗(h−1)
ij } otherwise. Again, we

cycle through 200 times at each iteration, and save only the last draws of the

parameters.

2.4.4 Results

The MCMC produces a sequence of draws
({κh

i , ρ
h
i }, µh

b , τ
2h, σ2h

b

)
. yMh is obtained

by plugging the draws
(
κh

i , ρ
h
i

)
into Equation (2.9) and evaluating. Also obtain

bh by drawing from multivariate normal distribution in Equation (2.7).

We obtain 10000 such draws. With these MCMC draws, we obtain the model

prediction (sometimes called the pure model prediction) by averaging yMh over

h. Call the result ŷM . Because the (κi, ρi)’s are different for each replicate, the

predictions will differ from replicate to replicate. Reality at a specimen in the

experiment is the same as the field value, since there is no measurement error. It

follows that a 95% point-wise tolerance bound at time t for the model prediction

at such a specimen can be obtained as the set of values δM(t), such that 95% of

the yMh(t) for this specimen satisfy |yMh(t)− ŷM(t)| < δM(t) for all t.

For predicting at a new configuration, vnew (and therefore a new specimen with

parameters κnew, ρnew), we first generate bh(vnew) =
(
bh(vnew, tj), j = (1, . . . , n)

)′

by drawing from the multivariate normal generated by the GP assumption on b

while conditioning on the data and the draws on all parameters including bh. Then

add εh to bh(vnew), where εh ∼ N(µb1, σ2h
b Σ̂t). Then generate yMh(κh

new, ρh
new, vnew)

by drawing κh
new, ρh

new from their prior distributions and plugging them into Equa-

tion (2.9). Draws of reality, yR = yM(κnew, ρnew, vnew) + b(vnew) + ε, can also be

obtained. Letting yRh be the MCMC draws of yR, we have reality prediction, ŷR,

as the average of the yRh and a 95% point-wise tolerance bound can be obtained
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as the δR(t) such that 95% of the h satisfy |yRh(t)− ŷR(t)| < δR(t) for all t.

We next give the results conditional on EN data, conditional on EN+AC data,

and the regularity assessment.

Ensemble analysis

For the EN data, the posterior distributions of the parameters θ = (µb, α, β, τ 2, σ2
b )

based on the analysis described above are given in Table 2.3. (α1, α2) are fixed

at 2 due to the limitation of the data, reflecting our belief of the smoothness of

the outputs as functions of L and q. In Figure 2.3, we see the scatter plots of the

Parameter Medium Level High Level
β1 549.96(47.67, 2314.27) 851.41(227.30, 2660.50)
β2 1.80(0.37, 6.21)× 10−7 3.25(1.23, 8.91)× 10−7

α(t) 1.9987(1.9969, 1.9995) 1.9989(1.9980, 1.9994)

β(t) 1.33(1.09, 1.63)× 10−3 1.02(0.89, 1.15)× 10−3

µb −0.57(−23.10, 23.38) −11.56(−41.52, 18.15)
τ 2 269.72(148.86, 512.02) 473.89(251.25, 906.29)
σ2

b 22.59(15.10, 35.53) 66.02(50.97, 87.30)

Table 2.3: Posterior medians with 95% credible intervals for the indicated pa-
rameters given EN data

last 1000 {(κh
i , ρ

h
i )} draws given the EN high level data. The four different colors

correspond to the four replicates. The model prediction and the bias function

for each of the replicates and each configuration can be calculated as described

at the beginning of this Section. To illustrate, the upper left panel of Figure 2.4

shows the model prediction (solid black) with 95% tolerance bounds for the first

replicate of the high level EN data at configuration L = 0.0127, q = 1000. The

red curve plots the experimental data. In the upper right panel we have the bias

plotted along with 95% uncertainty bounds for the same setting. For the same

configuration and a new specimen, with parameters (κnew, ρnew), the lower right
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Figure 2.3: Scatter plots of (κi, ρi) given EN data (high level) with the configu-
rations: L = 0.0127, q = 1000 (Upper-Left), L = 0.0127, q = 2000 (Upper-Right),
L = 0.0254, q = 1000 (Lower-Left), L = 0.0254, q = 2000 (Lower-Right).

panel gives the corresponding result for the bias and the lower left panel gives

the reality prediction (not the model prediction) as solid black line with dashed

lines as tolerance bounds. For predicting (extrapolating) at the AC configuration

x = 0, L = 0.019, q = 3000, a new pair (κnew, ρnew) is also involved. We can

use the same θh’s found above but draw κh, ρh from their prior distribution. In

addition, we must draw ε from the distribution and draw from the distributions

of b(0, 0.019, 3000) given the four values of bh at the EN configuration. Every-
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Figure 2.4: Bias function (upper-left) for the first run in the first ensemble config-
uration (L = 0.0127, q = 1000); bias function (upper-right) for a new specimen at
this configuration; Model prediction (lower-left) for the first run of this configura-
tion; and reality prediction (lower-right) for a new specimen at this configuration.
The observations are plotted as red lines, the posterior medians as solid black
lines, and the 2.5% and 97.5% point-wise confidence bands as dashed black lines.

thing else is done as above and produces the bias function in Figure 2.5, the

model prediction in the left panel of Figure 2.6, and reality prediction for the AC

configuration in the right panel.
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Figure 2.5: The bias function at the accreditation configuration
(L = 0.019, q = 3000) given high-level EN data.
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Figure 2.6: Pure model prediction (left) and Reality prediction (right) at the
accreditation configuration with tolerance bounds in black; experimental data are
in red; the green line is the prediction by plugging in the prior means of κ and ρ.

Accreditation analysis

With the addition of the accreditation data, a reprise of the ensemble analysis is

summarized as follows:

• The posterior distribution of unknown parameters is shown in Table 2.4.
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• Scatter plots of the last 1000 {(κi, ρi)} draws for the two replicates (distin-

guished by color) in the AC configuration given high level EN + AC data

are plotted in Figure 2.7.

• Figure 2.8, the counterpart to Figure 2.4, displays model prediction and bias

prediction for the first AC replicate as well as the reality prediction and bias

prediction for a new specimen with parameters κnew, ρnew.

Parameter Medium Level High Level
β1 11.93(0.92, 45.52) 17.42(4.22, 53.20)
β2 1.30(0.62, 3.68)× 10−6 1.19(0.59, 3.43)× 10−6

α(t) 1.9967(1.9918, 1.9988) 1.9983(1.9970, 1.9989)

β(t) 1.33(1.09, 1.71)× 10−3 1.05(0.94, 1.17)× 10−3

µb −62.92(−140.65, 18.56) −95.25(−245.31, 52.60)
τ 2 6500.37(4121.96, 10786.89) 22423.07(14239.77, 36243.67)
σ2

b 9.84(6.50, 15.96) 43.97(34.12, 57.82)

Table 2.4: Posterior medians with 95% credible intervals for the indicated pa-
rameters given EN + AC data.
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Figure 2.7: Scatter plots of (κi, ρi) for the 2 AC replicates given EN + AC data
(high level)
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Figure 2.8: The bias function (upper-left) for the first run in the accreditation
configuration (L = 0.019, q = 3000); bias function (upper-right) for a new run at
this configuration; pure model prediction (lower-left) for the first run in this con-
figuration; and reality prediction (lower-right) for a new run at this configuration.
Red lines are the experimental data.

We first compare the results given EN data in Table 2.3 and the results given

EN+AC data in Table 2.4. The GP parameters associated with time change

very little; however β1, β2 are changed a lot, since the accreditation data adds

a new configuration in the sparse design space of (L, q). The big change lies in

the variances for the stochastic process and for the nugget. The variance in the
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accreditation analysis is much larger than the variance in the ensemble analysis.

Next, we compare the bias function given EN data at accreditation configura-

tion in Figure 2.5 with the bias function given EN+AC data in Figure 2.8. These

are very different, since the accreditation data provides more information about

the bias function at the accreditation configuration.

The pure model prediction in Figure 2.8 is also different from the one given

in Figure 2.6. This is because the pure model prediction in Figure 2.6 only takes

into account the variability of the input variables (κ, ρ), while the pure model

prediction in Figure 2.8 has to take into account the bias structure defined in

Equation (2.2).

The prediction of reality in Figure 2.8 also exhibits more variability than the

prediction of reality in Figure 2.6.

The regulatory assessment

Let yM
R , bR, yR

R be the model prediction, bias function and reality prediction, re-

spectively, under the regulatory configuration xR = 0, LR = 0.019, qR = 3500 at

time tR = 1000. We get posterior draws for yM
R , bR, yR

R as in the discussion of bias

extrapolation.

Figure 2.9 gives the posterior histograms of the reality prediction of the device

surface temperature under the regulatory configuration at time 1000, given the

EN+AC data at both medium and high levels. The distributions are summarized

in Table 2.5.

The proportion of values that exceed 900 is the estimate of the probability

that the regulatory requirement is unmet. For the medium level this number is

0.02; for high-level data the number is 0.04. Though chance of failure decreases,
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Figure 2.9: Histograms of the device surface temperature under regulatory con-
figuration with medium (left)- and high (right)- level AC + EN data.

Value Medium Level High Level
Mean 697.13 719.20

Median 695.93 717.90
Standard deviation 91.52 105.32

Table 2.5: Summary of the device surface temperature under regulatory config-
uration

compared with the pure model predictions we have discussed in Section 2.4.2, the

requirement of 0.01 is still not met.

2.5 Discussion

The formulation of the problem and the process described above provides an

answer to the question of how to assess a computer model, in the presence of

uncertain inputs. For computer models that are not fully reliable, such as the

thermal problem, the ability to use the model is enhanced by producing “legiti-

mate” estimates of reality (the reality predictions described above). The approach

requires good prior knowledge of the unknown inputs δ∗ij and u∗.
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The type of computer model discussed in this chapter is special, in that we can

evaluate the computer model as many times as we wish. Thus we bypass Step (4)

in the SAVE procedure. In many applications, however, the computer models are

computationally expensive and thus can be evaluated only at a limited number of

input parameters. Under such circumstances, as we shall see in Chapter 4, GaSP

approximation of the computer model can be combined with the hierarchical bias

structure discussed in this chapter, still allowing the statistical inference in the

presence of uncertain inputs for expensive-to-run computer models.
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Chapter 3

Functional Output

This chapter is motivated by methodological needs in analyzing computer models

that produce functional data. An example is given by a computer model that

analyzes stress on a vehicle suspension system, subject to the forces over time

(the problem is described in Section 3.1). We use this problem as our test bed

example to illustrate the approach. Methodological development of the approach

to deal with functional data, especially irregular functional data, greatly widens

the applicability of Bayarri et al. (2005a)’s strategy.

The following important and technically challenging problems are involved and

must be taken into account. First, the functions are not smooth in many engineer-

ing scenarios with functional output. Consequently, the approach in Bayarri et al.

(2005b) can result in a computationally intractable problem. This is so in the

test bed problem, for instance, with typical irregular functional data indicated in

Figure3.1. A second ubiquitous problem in engineering scenarios is that (unmea-

sured) manufacturing variations are present in tested components; incorporating

this uncertainty into the analysis, as in Chapter 2, can be crucial. Finally, the

point of computer modeling in engineering contexts is typically to allow use of the

computer model to predict outcomes in altered or new settings, for which no field

data are available. We consider several approaches to this problem.
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3.1 Introduction

The computer model we consider in this chapter is a time-dependent system.

Given a vector of inputs, x = (v, δ), to the system, denote the “real” response

over time t as yR(x; t). Field measurement of the real response has error and we

write the rth replicate field measurement as

yF
r (x; t) = yR(x; t) + εr(t) , (3.1)

where the εr(·)’s are independent mean zero Gaussian processes that will be fur-

ther discussed in Section 3.2.2. Some inputs may have error; we must also take

that into account.

In addition, there is a computer model aimed at producing the same re-

sponse. The computer model may have within it calibration/tuning parameters

u = (u1, . . . , um) that need to be estimated (or tuned) to produce a matching re-

sponse. The model output is then of the form yM(x, u; t); it is affected by u but

the real response, yR, is not. The connection between model output and reality

is then expressed in

yR(x; t) = yM(x, u∗; t) + b(x; t) , (3.2)

where u∗ is the true value of the (vector) calibration parameter; yM(x, u∗; t) is

the model response at time t and the true value of u; and b(x; t), defined by

subtraction, is the associated bias. In situations where u is a tuning parameter

there is no “true value” so u∗ should be thought of as some type of fitted value

of u, with the bias defined relative to it.

These two equations, (3.1) and (3.2) describe the calibration/validation struc-

ture we address. Data from the field and from the computer model runs pro-

vide information for estimating the unknowns in equation (3.1) and (3.2). The
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Bayesian analysis we employ takes note of the fact, as in Bayarri et al. (2005a),

that the unknowns u∗ and the bias are not statistically identifiable and, conse-

quently, specification of their prior distributions is of particular importance for

the analysis.

An example computer model of this type is the test bed case study described

as follows. The problem is to predict loads resulting from stressful events on a

vehicle suspension system over time e.g., hitting a pothole. In the initial part of the

study there are seven unmeasured parameters of the system with specified nominal

(mean) values xnom (referred to later on as Condition A), which corresponds to

the configuration input v in Equation (1.3). Additionally, these parameters are

subjected to unknown manufacturing variations, represented by δ∗. There are

other relevant parameters that are known and fixed and hence not part of the

experiments.

Field data are obtained by driving a vehicle over a proving ground course and

recording the time history of load at sites on the suspension system. The curves

must be registered (Appendix B) to assure that peaks and valleys occur at the

same place.

In addition, there is a computer model aimed at producing the same response.

The computer model is a so-termed ADAMS model, a commercially available,

widely used finite-element based code that analyzes complex dynamic behavior

(e.g., vibration, stress) of mechanical assemblies. The computer model has within

it two calibration parametters u∗ = (u∗1, u
∗
2) quantifying two different types of

damping (unknown levels of energy dissipation) that need to be estimated (or

tuned) to produce a matching response.

For proprietary reasons the specific parameters are not fully described – they
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include characteristics of tires, bushings and bumpers as well as vehicle mass. In

addition, the values assigned to these parameters are coded on a [0,1] scale and

the ouput responses are also coded. In the coded scale the fixed values of xnom

are all 0.50. The uncertainty ranges for the nine parameters were elicited through

extensive discussion with engineers and modelers; they are given in Table 3.1, the

so-termed Input/Uncertainty map (Bayarri et al., 2005a). Along with the ranges,

prior distributions were elicited for (u∗, δ∗) in Section 3.2.4.

Parameter Type Uncertainty Range
Damping1 Calibration [0.125, 0.875]
Damping2 Calibration [0.125, 0.875]

x1 Nominal+Variation [0.1667, 0.8333]
x2 Nominal+Variation [0.1667, 0.8333]
x3 Nominal+Variation [0.2083, 0.7917]
x4 Nominal+Variation [0.1923, 0.8077]
x5 Nominal+Variation [0.3529, 0.6471]
x6 Nominal+Variation [0.1471, 0.8529]
x7 Nominal+Variation [0.1923, 0.8077]

Table 3.1: I/U Map. Uncertainty ranges for calibration parameters and param-
eters subject to manufacturing variation.

Field data:

In the initial study with Condition A inputs a single vehicle was driven over

a proving ground course seven times. The recorded field data consist of the time

history of load at two sites on the suspension system. Plots of the output for Site

1 can be seen in Figure 3.1 for two of the time periods of particular interest. Thus

there are seven replicates and a single xnom in the field data.

Computer model runs:

A typical model run for the test bed example takes one hour, limiting the

number of runs that can feasibly be made. To select which runs to make we
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adopted the design strategy used in Bayarri et al. (2005a):

The 9-dimensional rectangle defined by the ranges of the parameters in Ta-

ble 3.1 is first transformed into the 9-dimensional unit cube. We then selected

a 65 point Latin Hypercube Design (LHD) using code by W. Welch that finds

an approximately maximin LHD. In addition, we added a point at the center

(0.5,...,0.5), the nominal values. One run failed to converge and was deleted from

the experiment leaving a total of 65 design points.

3.2 Formulation, Statistical Model and Assump-

tions

3.2.1 Formulation

We formulate the problem following the notation in Section 3.1. In addition, some

inputs in Equation (3.2) may be specified or physically measured with essentially

perfect accuracy. Those that remain fixed for both field data and model runs

play no further role and are not part of x. Other (unmeasured) inputs will have

specified nominal values (generally, they will vary in the experiments) that are

subject to manufacturing variation with specified distributions. We write these as

x = xnom + δ (3.3)

where xnom is the known nominal value and the distribution of the manufacturing

variation δ can be specified. In effect this transforms Equation (3.1) and Equation

(3.2) into

yR(xnom + δ∗; t) = yM(xnom + δ∗, u∗; t) + b(xnom + δ∗; t) (3.4)

and

yF
r (xnom + δ∗; t) = yR(xnom + δ∗; t) + εr(t) , (3.5)
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Figure 3.1: Model output (bottom) and registered field output (top) for Site 1
at Region 1 (left) and Region 2 (right). Vertical lines indicate the reference peak
locations.
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where δ∗ is the actual (unknown) value of δ. The parameters δ are like calibration

parameters in that they are unknown but physically real.

Prior to making computer runs or collecting field data, the unknowns in Equa-

tion (3.4) and Equation (3.5) are
(
yM , u∗, δ∗, b, Vε

)
, where Vε is the covariance

function of ε. A full Bayesian analysis would contemplate placing priors on

these unknowns and, given field data and model runs, produce posterior dis-

tributions. But the complexity (for example, of irregular functional output) and

high-dimensionality militate against such a strategy unless simplifications can be

made. One such is the use of a basis representation of the functional data. In

particular, to handle the irregular functions, we will consider wavelet decomposi-

tions. Other settings may allow different representations such as Fourier series or

principal components (Higdon et al., 2007).

3.2.2 Wavelet decomposition

The nature of the functions in Figure 1, for example, suggests that wavelet de-

composition would be a suitable basis representation (see Vidakovic (1999);Müller

and Vidakovic (1999) and Morris et al. (2003) are among the other references with

applications related to ours).

The wavelet decomposition (more details are in Appendix B) we use for yM is

of the form

yM(x, u; t) =
∑

i

wM
i (x, u)Ψi(t) (3.6)

where the wavelet basis functions Ψi(t) are default choices in R wavethresh (Daubechies

wavelets of index 2; for simplicity of notation, we include the scaling function as

one of the basis elements). Similarly, the field curves (rth replicate) are repre-
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sented as

yF
r (x; t) =

∑
i

wF
ir(x)Ψi(t) . (3.7)

A thresholding procedure, used to produce a manageable number of coefficients

while maintaining adequate accuracy, leads to the approximations

yM(x, u; t) =
∑
i∈I

wM
i (x, u)Ψi(t)

yF
r (x; t) =

∑
i∈I

wF
ir(x)Ψi(t) . (3.8)

(The accuracy of the approximations using the reduced set of elements for the

test bed problem is indicated in Figure 3.2.) We also assume that reality and the
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orginal curve
wavelet reconstructed curve

Figure 3.2: The original curve and wavelet reconstructed curve for the first
field-run at Site 1.
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bias function can be accurately represented by the same basis elements, and write

yR(x; t) =
∑
i∈I

wR
i (x)Ψi(t)

b(x; t) =
∑
i∈I

wb
i (x)Ψi(t) . (3.9)

Matching coefficients and using Equation (3.4) and Equation (3.5), we get

wR
i (x) = wM

i (x, u∗) + wb
i (x) ∀i ∈ I , (3.10)

wF
ir(x) = wR

i (x) + εir ∀i ∈ I . (3.11)

We assume that the measurements errors, εir, in the wavelet domain are nor-

mally distributed with mean zero and are independent across replications r, a

standard assumption. However, we also assume that they are independent across

i and, indeed, that they are independently normally distributed with mean 0 and

possibly differing variances σ2
i . This independence assumption is needed for the

later computations to be feasible, but might seem unrealistic, given that the seven

residual functions (yF
r (x; t)− ȳF

r (x; t)) – shown in the left hand side of Figure 3.3

– can be seen to be correlated in time t, suggesting that the perhaps the εir should

be correlated in i.

Interestingly, however, even independent εir can lead to correlated error pro-

cesses, as long as the σ2
i differ. Indeed, the error process corresponding to our

assumptions on the εir is a Gaussian process with mean zero and covariance func-

tion
∑

i∈I σ2
i Ψi(t)Ψi(t

′). The right hand side of Figure 3.3 gives seven realizations

of this process, with the σ2
i being estimated by the usual unbiased estimates, based

on the replicates. The correlation patterns appear to be quite similar between the

two processes.
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Figure 3.3: The seven residual field processes (left) and seven simulated error
processes (right).

Our approach is to analyze each of the retained wavelet coefficients, in equation

(3.10) and (3.11), and recombine them to obtain estimates and uncertainties for

the “original” functions, in Equation (3.4) and Equation (3.5).

3.2.3 GASP approximation

For yM , the wavelet coefficients are functions of (x, u). Because we cannot freely

run the computer model for every (x, u) we approximate each of the retained

coefficients using data from computer runs. Formally, we start with a Gaussian

process prior distribution on a coefficient wM
i (x, u). Given computer model runs,

yM(xk, uk), where {(xk, uk), k = 1, . . . , K} are the design points in a computer

experiment, we extract the data {wM
i (xk, uk)} and approximate wM

i (x, u) as the

Bayes predictor, the posterior mean, of wM
i (x, u) given the data.

The Gaussian process priors we use are as in the GASP methodology described

in Chapter 1: Let z = (x, u). For each i ∈ I (the set of retained wavelet
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coefficients), the GASP assumption is that wM
i (z) is a Gaussian process with

mean µM
i , constant variance 1/λM

i , and correlation function

cM
i (z, z′) = exp

(
−

nM∑
p=1

βM
ip |zp − z′p|2−αM

ip

)
,

where nM is the number of coordinates in z, the β’s are non-negative parameters

and the α’s are between 0 and 1.

Let θM
i = {µM

i , λM
i , αM

ip , βM
ip ; p = 1, . . . , nM} be the collection of the (hyper)

parameters determining the Gaussian prior distribution of wM
i . To produce the

Bayes predictor we have to deal with the θM
i ’s; we do so in section 3.3.

3.2.4 Other prior specifications

Priors for u∗, δ∗ are context specific. Engineering advice led to adopting uniform

priors for u∗ on their ranges in Table 3.1. For the manufacturing variations of

the unmeasured parameters in Table 3.1, the advice led to normal priors with

standard deviations equal to 1/6 of the ranges of the uncertainty intervals in

Table 3.1. Specifically,

π(u1) = π(u2) = Uniform on [0.125, 0.875]

π(δ1) = π(δ2) ∼ N(0, 0.11112) truncated to[−0.3333, 0.3333]

π(δ3) ∼ N(0, 0.097232) truncated to [−0.2917, 0.2917]

π(δ4) = π(δ7) ∼ N(0, 0.10262) truncated to[−0.3077, 0.3077]

π(δ5) ∼ N(0, 0.049032) truncated to[−0.1471, 0.1471]

π(δ6) ∼ N(0, 0.11762) truncated to[−0.3529, 0.3529]

The σ2
i are given the usual noninformative priors π(σ2

i ) ∝ 1/σ2
i .
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Priors for the wavelet coefficients, the
(
wb

i

)
’s, will be Gaussian but restricted to

depend only on those coordinates of xnom that vary in the experiments. Because

there is only one xnom in the test bed experiment, we only consider the case where

the
(
wb

i

)
’s are constants, though a similar approach can be taken for more general

settings.

In the wavelet decomposition, each i ∈ I belongs to some resolution level,

j(i)(in the test bed – see Appendix B – the levels go from 0 to 12). It is natural and

common to model wavelet parameters hierarchically, according to their resolution

level. The priors for the biases are then taken as

π(wb
i | τ 2

j(i)) ∼ N
(
0, τ 2

j(i)

)
. (3.12)

This is a strong shrinkage prior, shrinking the biases to zero. One might be

concerned with such strong shrinkage to zero, but the computer modeling world

is one in which biases are typically assumed to be zero, so that utilizing a strong

shrinkage prior has the appeal that any detected bias is more likely to be believed

to be real in the community than would bias detected with a weaker assumption.

(Of course, there are also statistical arguments for using such shrinkage priors.)

The hypervariances τ 2
j are assigned a variant of a typical objective prior for

hypervariances,

π(τ 2
j | {σ2

i }) ∝
1

τ 2
j + 1

7
σ̄2

j

,

where σ̄2
j = average of σ2

i for i at level j. The σ̄2
j provide a ‘scale’ for the τ 2

j and

are necessary – or at least some constants in the denominators are necessary – to

yield a proper posterior.
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3.3 Estimation and Analysis

We restrict attention, for the most part, to the context of the test bed. It will be

clear that much of what is done can be generalized.

3.3.1 Approximating wavelet coefficients

In Appendix B we find that, for the test bed, there are 289 wavelet coefficients, wM
i ,

to be treated. The Gaussian prior for each has 20 hyperparameters (coordinates of

θM
i ). A full Bayesian treatment would then require treatment of 5780 parameters,

an infeasible process. Instead, we treat each coefficient separately and estimate

each θM
i by maximum likelihood based on the model-run data wM

i = {wM
i (zk)},

using code developed by W. Welch. Recall that z = (x, u) and denote the kth

design point in the computer experiment by zk. For the test bed there are 65 zk’s.

Letting θ̂
M

i = {µ̂M
i , λ̂M

i , α̂M
ip , β̂M

ip ; p = 1, . . . , nM} be the maximum likelihood

estimates of the θ’s, it follows that the GASP predictive distribution of wM
i (z) at

a new z is

wM
i (z) | wM

i , θ̂
M

i ∼ N(m̂M
i (z), V̂ M

i (z)) , (3.13)

where

m̂M
i (z) = µ̂M

i + γ̂M
i (z)′(Γ̂

M

i )−1(wM
i − µ̂M

i 1)

V̂ M
i (z) =

1

λ̂M
i

− γ̂M
i (z)′(Γ̂

M

i )−1γ̂M
i (z) ,

with 1 the vector of ones, Γ̂
M

i (65 × 65 in the test bed example) the covariance

matrix for the model-run data wM
i estimated by plugging-in θ̂

M

i , and

γ̂M
i (z) = (1/λ̂M

i )(ĉM
i (z1, z), . . . , ĉM

i (zk, z))′ ,
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where ĉ is the estimated correlation function. For the rest of the paper we will

use equation (3.13) as the definition of the GASP predictive distribution.

Full justification of the use of the plug-in maximum likelihood estimates for

the parameters βi, αi is an open theoretical issue. Intuitively, one expects modest

variations in parameters to have little effect on the predictors because they are

interpolators. In practice, “studentized” cross-validation residuals (leave-one-out

predictions of the data normalized by standard error) have been successfully used

to gauge the “legitimacy” of such usage (for examples and additional references

see Schonlau and Welch (2005) and Aslett et al. (1998)). Only recently, Nagy

(2006) has reported simulations indicating reasonably close prediction accuracy

of the plug-in MLE predictions to Bayes (Jeffrey priors) predictions in dimensions

1-10 when the number of computer runs = 7×dimension.

All α’s and β’s are graphed in Figure 3.4. Recall that a β near zero corresponds

to a correlation near one, and hence a function that is quite flat in that variable.

An α near zero corresponds to a power of two in the exponent of the correlation,

suggesting a very smooth functional dependence on that variable. Interestingly,

for most of the pairs (α, β), one or the other is near zero.

3.3.2 The posterior distributions

Restricting to the test bed problem we simplify the notation by referring only to

δ, the deviation of x from the nominal inputs xnom, and rewrite equation (3.10)

and (3.11), ∀i ∈ I, as

wR
i (δ∗) = wM

i (δ∗, u∗) + wb
i

wF
ir(δ

∗) = wR
i (δ∗) + εir , (3.14)
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Figure 3.4: (α, β) for all the wavelet coefficients and for each input variable

where the εir are independent N (0, σ2
i ).

The field data can be summarized (and simplified) by using the (independent)

sufficient statistics

w̄F
i =

1

7

7∑
r=1

wF
ir(δ

∗) , s2
i =

7∑
r=1

(wF
ir(δ

∗)− w̄F
i )2 .

(We drop the argument δ∗ for these statistics, since the statistics are actual num-

bers given from the data.) Key facts to be retained, using equation (3.13) and
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(3.14) and properties of normal distributions:

s2
i

σ2
i

| σ2
i ∼ χ2

6 ,

w̄F
i | wM

i (δ∗, u∗), wb
i , σ

2
i ∼ N

(
wM

i (δ∗, u∗) + wb
i ,

1

7
σ2

i

)
,

w̄F
i | δ∗, u∗, wM

i , wb
i , σ

2
i ∼ N

(
m̂M

i (δ∗, u∗) + wb
i , V̂

M
i (δ∗, u∗) +

1

7
σ2

i

)
, (3.15)

where (3.13) is used to get the last expression.

Let wb, τ 2, σ2, δ∗, and u∗ denote the vectors of the indicated parameters and

write their prior distribution as

π(wb, τ 2, σ2, δ∗, u∗) =π(wb | τ 2)× π(τ 2, δ∗, u∗ | σ2)× π(σ2) (3.16)

=
∏
i∈I

π(σ2
i )π

(
wb

i | τ 2
j(i)

)×
[

12∏
j=0

π
(
τ 2
j | {σ2

i }
) 7∏

i=1

π(δ∗i )
2∏

i=1

π(u∗i )

]
.

The data, from field and computer model runs, can be summarized as D =

{w̄F
i , s2

i , w
M
i ; i = 1, . . . , 289}. Using equation (3.13), (3.15) (3.12) and (3.16), to-

gether with standard computations involving normal distributions, it is straight-

forward to get the posterior distribution of all unknowns as

πpost(w
M(δ∗, u∗), wb, δ∗, u∗, σ2, τ 2 | D) = πpost(w

M(δ∗, u∗) |wb, δ∗, u∗, σ2, D)

×πpost(w
b | δ∗, u∗, σ2, τ 2, D)× πpost(δ

∗, u∗, τ 2 | σ2, D)× πpost(σ
2 | D) , (3.17)

where

πpost(w
M(δ∗, u∗) | wb, δ∗, u∗, σ2, D) ∼

∏
i∈I

N(m1i, V1i) ; (3.18)

m1i =
V̂ M

i (δ∗, u∗)

V̂ M
i (δ∗, u∗) + 1

7
σ2

i

(w̄F
i − wb

i ) +
1
7
σ2

i

V̂ M
i (δ∗, u∗) + 1

7
σ2

i

(m̂M
i (δ∗, u∗))

V1i =
V̂ M

i (δ∗, u∗) 1
7
σ2

i

V̂ M
i (δ∗, u∗) + 1

7
σ2

i

,
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and

πpost(w
b | δ∗, u∗, σ2, τ 2, D) ∼

∏
i∈I

N(m2i, V2i) ;

m2i =
τ 2
j(i)

V̂ M
i (δ∗, u∗) + 1

7
σ2

i + τ 2
j(i)

(w̄F
i − m̂M

i (δ∗, u∗)) ; (3.19)

V2i =
τ 2
j(i)(V̂

M
i (δ∗, u∗) + 1

7
σ2

i )

V̂ M
i (δ∗, u∗) + 1

7
σ2

i + τ 2
j(i)

.

The third factor in (3.17) is

πpost(δ
∗, u∗, τ 2 | σ2, D) ∝ L(wF , s2 | δ∗, u∗, σ2, τ 2)×π(δ∗, u∗, τ 2 | σ2, ) , (3.20)

where the marginal likelihood, L, found by integrating out wb and wM(δ∗, u∗) in

the product of the full likelihood and π(wb | τ 2), is

L(wF , s2 | δ∗, u∗, σ2, τ 2) =
∏
i∈I

1√
V̂ M

i (δ∗, u∗) + 1
7
σ2

i + τ 2
j(i)

× exp

{
−1

2

(
(w̄F

i − m̂M
i (δ∗, u∗))2

V̂ M
i (δ∗, u∗) + 1

7
σ2

i + τ 2
j(i)

)}
.

Finally, the fourth factor in (3.17) is

πpost(σ
2 | D) ∝

[∏
i∈I

1

(σ2
i )

3
exp

{
− s2

i

2σ2
i

}]
(3.21)

×
∫

L(wF , s2 | δ∗, u∗, σ2, τ 2) dδ∗ du∗ dτ 2 .

At this point we make an approximation, and ignore the integral in (3.21); i.e.,

we simply utilize the replicate observations to determine the posteriors for the

σ2
i . The reason for this is not computational; indeed, one can include the σ2

i in
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the posterior in (3.20) and deal with them by a Metropolis algorithm. Instead,

the motivation is what we call modularization, which is meant to indicate that

it can be better to separately analyze pieces of the problem than to perform

one global Bayesian analysis. The difficulty here is that there is a significant

confounding in the posterior distribution between the calibration parameters, the

bias function, and the σ2
i and this, for instance, allows bias to be replaced by larger

σ2
i . Here we have seven replicate observations for each σ2

i , so simply utilizing

the replicate observation posteriors and preventing the confounding has intuitive

appeal. (Making this argument formally is not so easy; in a sense, it occurs

because part of the model – here the modeling of the bias – is quite uncertain.

Better or more robust modeling of the bias can correct the problem within a full

Bayesian analysis, but the difficulty of doing so argues for the simpler modular

approach. We will discuss these issues more fully in Section 3.6.)

Simulating from equation (3.18) and (3.19) and the first factor of (3.21) is,

of course, trivial, but simulating from equation (3.20) requires MCMC method-

ology. Given the complexity of the problem, the MCMC requires careful choice

of proposal distributions in order to achieve suitable mixing. Discussion of these

proposals is relegated to Section 3.3.3 because of the level of detail needed to

describe them, but we note that these are technically crucial for the methodology

to work and required extensive exploration.

3.3.3 The MCMC algorithm

We first describe the MCMC algorithm being used to draw the posterior samples.

The algorithm has the following four steps within each iteration.
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Step 1: For h = 1, . . . , 1000, sample the σ2h
i from the following distribution:

InverseGamma

(
3,

2

s2
i

) (
shape = 3, scale =

2

s2
i

)
.

Step 2: For h = 1, . . . , 1000, make draws δ∗h, u∗h, τ 2h from the posterior distribution

in equation (3.20). (This is complicated – the process is described last.)

Step 3: Given δ∗h, u∗h, σ2h, τ 2h draw wbh from the distribution in equation (3.19).

(This is simply done by making a draw, for each i, from a normal distribution

with the specified means and variances).

Step 4: Given δ∗h, u∗h, σ2h, τ 2h, wbh, make a draw of wMh from the distribution in

equation (3.18). (Again this is simply done by draws from normal distribu-

tions).

For Step 2, we use a Metropolis-Hastings scheme to generate the (h+1)st sample.

We break this up into two sub-steps.

Step 2.1 Propose τ 2 by generating from q(τ 2 | τ 2h) =
∏12

i=0 qi(τ
2
i | τ 2h

i ), where

qi(τ
2
i | τ 2h

i ) ∝
{ 1

τ2
i

if τ 2 ∈ [τ 2h
i e−0.7, τ 2h

i e0.7]

0 otherwise .

The posterior density of τ 2 is not very spiked, so this type of fairly broad

local proposal works well. Finally, form the Metropolis-Hastings Ratio

ρ =
π(δh, uh, τ 2 | σ2h, D) q(τ 2h | τ 2)

π(δh, uh, τ 2h | σ2h, D) q(τ 2 | τ 2h)

and define τ 2(h+1) = τ 2 with probability min(1, ρ); τ 2(h+1) = τ 2h otherwise.
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Step 2.2 Let T δ
k = [aδ

k, A
δ
k] and T u

k = [au
k , A

u
k ] denote the intervals on which the prior

densities for the corresponding variables are nonzero, and define

T ∗δh
k = [max(aδ

k, δ
h
k − 0.05), min(Aδ

k, δ
h
k + 0.05)]

T ∗uh
k = [max(au

k , u
h
k − 0.05), min(Au

k , u
h
k + 0.05)] .

Propose δ, u from

g(δ, u | δh, uh) =

7∏

k=1

(
1

2
U(δk | T δ

k ) +
1

2
U(δk | T ∗δh

k )

) 2∏

k=1

(
1

2
U(uk | T u

k ) +
1

2
U(uk | T ∗uh

k )

)
.

The logic here is that the posterior densities for some of the parameters is

quite flat, so that sampling uniformly over their support (T δ
k or T u

k ) would

be quite reasonable as a proposal. On the other hand, some of the posteriors

are quite concentrated, and for these it is effective to use a locally uniform

proposal, centered around the previous value and with a maximum step of

0.05; this leads to uniforms on T ∗δh
k or T ∗uh

k , which are the regions defined

by the intersection of the local uniforms and the support of the priors. Since

the goal here was to create a procedure that can be automatically applied

for this type of problem, 50-50 mixtures of the two proposals were adopted.

Finally, form the Metropolis-Hastings Ratio

ρ =
π(δ, u, τ 2(h+1) | σ2h, D) g(δh, uh | δ, u)

π(δh, uh, τ 2(h+1) | σ2h, D) g(δ, u | δh, uh)

and set (δ(h+1), u(h+1)) = (δ, u) with probability min(1, ρ), and equal to

(δh, uh) otherwise.
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These Metropolis-Hastings steps typically yield highly correlated iterations, so we

actually cycle through them 200 times (with fixed σ2h) before saving the variable

values for feeding into Steps 3 and 4.

The end result of the simulation is a sample of draws from the posterior dis-

tribution in equation (3.17): each saved draw from the first factor of (3.21) is

used to generate the MCMC sample for the third factor, with both being used to

generate a draw from the second and the first factors, using equations (3.18) and

(3.19). We saved every 200th draw from 200,000 MCMC iterations for the third

factor, thereby obtaining a final sample of 1000 draws

{wM,h(δ∗h, u∗h), wbh, δ∗h, u∗h, σ2h, τ 2h; h = 1, . . . , 1000} . (3.22)

The results in Section 3.4 are based on this sample from the posterior.

3.4 Results

3.4.1 Estimates of δ∗, u∗

Histograms for δ∗, u∗ (Figure 3.5) are obtained by forming a histogram for each

component of δ∗, u∗ from the corresponding elements in equation (3.22). The cali-

bration parameters are moderately affected by the data but, of the input variables,

only x5 and x6 have posteriors that are significantly different than the priors. The

posterior for x6 is piled up at the end of the allowed range for the variable, which

suggests the (undesirable) possibility that this uncertain input is being used as

a tuning parameter to better fit the model; a case could be made for preventing

this by additional modularization.
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Figure 3.5: Histogram of the posterior draws for the input and calibration pa-
rameters with their priors (solid lines).
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3.4.2 Estimation of bias and reality

Posterior distributions of the bias and reality curves are obtained by recombining

the wavelets with the posterior wavelet coefficients from equation (3.22). For

instance, the posterior distribution of b is represented by the sample curves

bh(t) =
∑
i∈I

wbh
i Ψi(t); h = 1, . . . , 1000 . (3.23)

The posterior mean curve, b̂(t) = 1
1000

∑1000
h=1 bh(t), is plotted as the dashed line in

Figure 3.6. The uncertainty of this estimate of b is quantified by producing upper

and lower uncertainty (tolerance) bounds at each t by, for example, taking the

lower α/2 and upper 1− α/2 quantiles of the posterior distribution of b(t) i.e.,

Lb(t) =
α

2
quantile of {bh(t); h = 1, . . . , 1000}

U b(t) =
(
1− α

2

)
quantile of {bh(t); h = 1, . . . , 1000}. (3.24)

These lower and upper bounds are also plotted in Figure 3.6. It is apparent in

Figure 3.6 that the bias function is significantly different from 0 especially in the

neighborhood of 8.7 and 9.1.

The bounds in equation (3.24) are symmetrically defined. Alternative toler-

ance bounds can be defined by only requiring that 100α% of the curves lie outside

the bounds; a useful choice would satisfy this condition and minimize the width

of the bounds: U b(t)− Lb(t).

Figures 3.5 and 3.6 provide marginal distributions of u∗, xnom + δ∗ and the

bias, but it is important to note that these are highly dependent in the posterior.

Hence most analyses involving these quantities must be based on their joint, rather

than marginal, distributions.
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Figure 3.6: The estimate of the bias function (solid line) with 90% tolerance
bounds (dashed lines)for Suspension Site 1 and at Region 1.

Estimating reality with uncertainty bounds is done similarly: take the sample

of wavelet coefficients wRh
i = wMh

i (δ∗h, u∗h) + wbh
i and form

yRh(t) =
∑

i

wRh
i Ψi(t), ŷR(t) =

1

1000

∑

h

yRh(t) ,

LR(t) =
α

2
quantile of {yRh(t); h = 1, . . . , 1000} ,

UR(t) =
(
1− α

2

)
quantile of {yRh(t); h = 1, . . . , 1000} . (3.25)

We call ŷR(t) the bias-corrected prediction of reality. Figure 3.7 exhibits the bias-

corrected prediction and associated uncertainty band.

Figure 3.7 further shows a comparison between bias-corrected prediction and
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pure model prediction, the latter being defined as follows:

ŷM(t) =
∑

i

m̂M
i

(
δ̂, û

)
Ψi(t) , (3.26)

where δ̂ = 1
1000

∑
h δ∗h and û = 1

1000

∑
h u∗h and m̂M

i

(
δ̂, û

)
is the posterior mean

of the wavelet coefficients with plugged-in estimates for the unknown parameters

(use equation (3.13)). In practice, it may be that running the computer model
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Figure 3.7: Bias-corrected prediction of reality (solid black line) with 90% toler-
ance bands (dashed black lines), pure model prediction (solid grey line), and field
runs (solid yellow lines).

after estimating δ∗, u∗ is feasible. Then an alternative (and preferred) pure model

prediction is yM(δ̂, û; t).

Assessing the uncertainty for predicting reality of the pure model prediction

(equation 3.26) (or a new model run producing yM(δ̂, û; t)) can be done by con-

sidering samples {yRh(t)− ŷM(t)} or {yRh(t)− yM(δ̂, û; t)} and forming bounds.
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Here it may be useful to consider asymmetric bounds because the pure model

predictions may lie entirely above or below the realizations of reality. But plots

like that of Figure 3.7 already show the gap between pure model prediction and

reality.

3.4.3 Predicting a new run; same system, same vehicle

(new run)

In some prediction settings, not necessarily the one of the test bed, there is in-

terest in predicting a new field run with the same inputs (and the same system).

Prediction is done by adding in draws, εh
i , from a N(0, σ2h

i ) distribution and then

following the same prescription as in equation (3.25) to form ŷF (t) and correspond-

ing uncertainty bounds. This, of course, produces wider uncertainty bounds.

3.4.4 Extrapolating

There are many follow-on settings where prediction is called for. We single out

three such: (i) the same system/vehicle except that xnom changes; (ii) same sys-

tem/same vehicle type but new components that is, same nominal values and

prior distributions for the manufacturing variations but a new realization of the

δ’s from the prior distribution; (iii) new system, same vehicle type: different

nominal (x1, . . . , x7) inputs, but the same prior distributions for the δ’s.

Any analysis we perform is severely constrained by the fact that we have

limited field data on one set of inputs measured with error.
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Same system/vehicle, different load

Here the same system was tested with the same vehicle but with added mass. This

causes a known change in xnom, with everything else (including the δ’s) remaining

unchanged. The effect of a simple change in inputs such as this can be addressed

using the difference in computer model runs at the nominal values of the inputs.

More formally, suppose we add a computer model run at (xnom +∆, unom) where

∆ is the modest change in the nominal inputs (∆ has only one non-zero coordinate

if the only change is in the mass). Suppose we also have a run at the old nominals

(xnom, unom) − if not, use the GASP prediction based on the existing runs. Our

assumption then is that (with x∗ referring to the true unknown input values for

the original system)

yM(x∗+∆, u∗; t)−yM(x∗, u∗; t) ' yM(xnom+∆, unom; t)−yM(xnom, unom; t) ≡ D(t).

We can then make predictions under the new inputs by simply adding D(t) to

the old predictions.

This is illustrated in Figure 3.8; the given bias corrected prediction and toler-

ance bands for the system with the additional mass is simply the results of Section

3.4.3 translated by D(t). The yellow line is the actual result from a field test of

the system with added mass, and the strategy appears successful in the critical

Region 1.

New Components in vehicle of same type

In this setting the nominal values xnom remain the same but the new δ’s are

random draws from their prior (population) distribution and are therefore different

than those for the field-tested system. This is of particular interest in practice,
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Figure 3.8: Prediction at Site 1 for both Regions 1 and 2 for a run with additional
mass.

in that it is prediction for the population of vehicles of the given type that is of

prime interest, rather than just prediction for the single system/vehicle tested.

The calibration parameters u∗ do not change; they belong to the model and,

if physically real, are inherently the same for all systems/vehicles of the same

type. Denote the parameters of the new components by znew = (xnom +δnew, u∗).

The input parameters of the computer runs remain zk = (xnom + δk, uk) and

z∗ = (xnom + δ∗, u∗) are the true values for the tested system. Denote the

associated model wavelet coefficients for the new components by wM(znew).

Since δnew is independent of (wb, δ∗, u∗, σ2, τ 2, D), the predictive (posterior)
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distribution is (with the Li’s denoting likelihood terms arising from the data)

πpost(w
M(znew), wM(z∗), wb, δnew, δ∗, u∗, σ2, τ 2 | D)

∝π(δnew)π(wb, δ∗, u∗, σ2, τ 2)L2({w̄i}, {s2
i } | wM(z∗), wb, σ2)

× L1(w
M(znew), wM(z∗), {wM

i (zk)} | δnew, δ∗, u∗)

∝πpost(w
M(znew) | wM(z∗), {wM

i (zk)}, δnew, δ∗, u∗)π(δnew)

× π(wb, δ∗, u∗, σ2, τ 2)L2({w̄i}, {s2
i } | wM(z∗), wb, σ2)

× L3(w
M(z∗), {wM

i (zk)} | δ∗, u∗) . (3.27)

To sample from equation (3.27), note that the last three factors in the expression

yield exactly the same posterior for (wM(z∗), wb, δ∗, u∗, σ2, τ 2) as before (with

the same modularization used), so the draws from the previous MCMC can be

used in the new computations. Since δnew can be drawn from its prior π(δnew),

it only remains to draw from πpost(w
M(z) | wM(z∗), {wM

i (zk)}, δnew, δ∗, u∗). But

this is simply the GASP distribution where wM(z∗) has to be added to the model

run data. Therefore one simply determines the GASP for the augmented runs

wM0
i = (wM

i (z1), w
M
i (z2), . . . , w

M
i (zk), w

M
i (z∗)), i.e.

wM
i (znew) | wM0

i , θ̂
M

i ∼ N(m̂M0
i (znew), V̂ M0

i (znew)) , (3.28)

where θ̂
M

i is as in Section 3.3 and

m̂M0
i (znew) = µ̂M

i + γ̂M0
i (znew)′(Γ̂

M0

i )−1(wM0
i − µ̂M

i 1)

V̂ M0
i (znew) =

1

λ̂M
i

− γ̂M0
i (znew)′(Γ̂

M0

i )−1γ̂M0
i (znew) ,

where γ̂M0
i (znew) = (1/λ̂M

i )(ĉM
i (z1, znew), . . . , ĉM

i (zk, znew), ĉM
i (z∗, znew))′ and Γ̂

M0

i

is obtained by appending the column γ̂M0
i (z∗) and row γ̂M0

i (z∗)′ to Γ̂
M

i . Note that
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to calculate (Γ̂
M0

i )−1, one can utilize the standard updating formula

[
1 a
aT Γ

]−1

=

[ 1
q

−1
q
aT Γ−1

−1
q
Γ−1a Γ−1 + 1

q
Γ−1aaT Γ−1

]

where q = 1− aT Γ−1a.

Application of these expressions yield draws h = 1, . . . , 1000 from the posterior

distribution of the ith wavelet coefficient for the new system as

wFh
i (zh) = wM

i (zh) + wbh
i + εh

i

where εh
i ∼ N(0, σ2h

i ). Figure 3.9 plots the predictions of the new system with

uncertainty bands. The uncertainty has increased because the prior for δnew is

used rather than the posterior for the tested system, compare with Figure 3.7.

7 8 9 10

0
5

10

Time

Lo
ad

Figure 3.9: Predictions for a new components, same vehicle type.
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New vehicle with new nominals

The primary engineering use of computer models is to extrapolate to a system

with new nominals when there is no new field data. This will require strong

assumptions, especially about the bias. The simplest assumption about the bias,

which we make here, is that the new system has the same bias function as the old

system. The calibration parameters u∗ are also assumed to remain the same. We

use the joint – and highly dependent – posterior distribution of the bias and u∗

from the original system extensively in what follows.

The new system has the same I/U map as the original system, but with new

nominal values xB
nom (which we refer to as Condition B). The new δ’s are taken

to have the same priors as for Condition A. The same 65 point design on (δ, u)

was used as before with the addition of one central value. Again one run failed,

leaving 65 usable model runs. Registration of the output curves is unnecessary

because there are no field data and the computer runs are assumed to be inherently

registered. The resulting computer runs were passed through the same wavelet

decomposition as before retaining only those coefficients that appeared earlier.

The resulting GASP for the ith wavelet coefficient is

wBM
i (z) | wBM

i , θ̂
BM

i ∼ N
(
m̂BM

i (z), V̂ BM
i (z)

)
(3.29)

exactly as in equation (3.13).

This new GASP analysis is done only with Condition B data. A GASP analysis

combining the model runs for Condition B and the model runs for the original

system is not used because the changes in the nominals are too large to safely

assume connections between the computer model runs for the two systems.

The situation now is analogous to that of the previous argument for new
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vehicles of the same type with the same nominals. In the current case, again

using the independence of δB from the other unknowns, the predictive (posterior)

distribution of the relevant unknowns can be written as

π(wBM(zB), wb, δB, u∗, σ2, τ 2 | D)

= π(wBM(zB) | wb, δB, u∗, σ2, τ 2, D)× π(δB)× π(wb, u∗, σ2, τ 2 | D)

= π(wBM(zB) | δB, u∗, D)× π(δB)× π(wb, u∗, σ2, τ 2 | D) ;

here π(wBM(zB) | δB, u∗, D) is just the GASP distribution in equation (3.29)

and π(δB) is the prior for B inputs from the I/U map. Draws of wb, u∗, σ2, τ 2

are made from the old posterior distribution for the original system. Because wb

and u∗ are highly dependent in the posterior, they must be jointly sampled for

the extrapolation; naive approaches – such as simply trying to add the bias from

Figure 3.6 to the pure model prediction – will not succeed.

The “carry-over” assumptions for the bias and the field variances lead to draws

from the posterior distribution of the wavelet coefficients for B to be

wBFh
i (zBh) = wBM

i (zh) + wbh
i + εh

i

where εh
i ∼ N(0, σ2h

i ).

In the left of Figure 3.10 the prediction for B is presented. Actual field data

(8 replicate runs for B) were afterwards available (not used in constructing the

predictions and tolerance bands) and they are superimposed on the plots in the

left of Figure 3.10. The effectiveness of carrying over the assumptions from A to

B is apparent. If such strong assumptions, as the constancy of bias, are to be

made it is best to be extremely careful about implementing the assumption. Here,

for instance, physics considerations might suggest that an assumption of constant
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Figure 3.10: Prediction at Site 1 of a new system under Condition B in Region
1. Left: additive bias. Right: multiplicative bias.

multiplicative bias might be more sensible than an assumption of constant additive

bias. The standard way of implementing this would be to analyze the log of the

output data. A simpler alternative is to transform the additive biases obtained

above into multiplicative biases, and apply these multiplicative biases to the GASP

draws under Condition B. Bias in the additive system can be written

bh(t) = yRh(t)− yMh(t) ;

the corresponding multiplicative representation of the bias is

bh
mult(t) =

yRh(t)

yMh(t)
− 1 ,

which would lead to draws from the posterior for reality under Condition B of

yBRh(t) = yBMh(t)× (1 + bh
mult(t)) .

The right of Figure 3.10 presents the analogue of the left using the multiplica-

tive bias. The additive and multiplicative predictions are not notably different;
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the edge going to the additive predictions at the high peak and otherwise to the

multiplicative predictions. The next section discusses another site in the suspen-

sion system for which the analysis in the paper was implemented, called Site 2.

For this site, the multiplicative predictions under Condition B were significantly

better than the additive predictions, as indicated in Figure 3.11.
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Figure 3.11: Prediction at Site 2 of a new system under Condition B in Region
1. Left: additive bias. Right: multiplicative bias.

3.5 Site 2 Analyses

Analyses for Site 2 of the system proceed in exactly the same way as those for Site

1. The posterior distributions for the calibration parameters (u1, u2) as well as for

δ are in Figure 3.12. These are somewhat different than those for Site 1 in Figure

3.5. These parameters are, of course, the same for either site, but the limited data

available at each site lead to somewhat different posterior distributions. Also,

separately analyzing the sites can result in over-tuning while accommodating the

biases at each site individually. A natural solution is to do a bivariate functional
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analysis of the two sites jointly. This is being pursued separately.

Figure 3.14 presents the bias corrected predictions, together with tolerance

bounds, along with the pure model prediction; other figures for Site 2 are omitted

since, with the exception of Figure 3.11, they do not provide further insight.

3.6 Modularization

As we have discussed in Section 3.3.2, there is significant confounding in the

posterior distribution between the calibration parameters, the bias function, and

the σ2
i , which allows bias to be replaced by larger σ2

i . To illustrate this, we perform

a global Bayesian analysis, dealing with the σ2
i ’s by a Metropolis algorithm. As

we see from Figure 3.15, the bias function given by the global Bayesian analysis

is shrunk much more toward 0 than that in the modular analysis in Figure 3.6.

Consequently, as shown in Figure 3.16, the posterior mean for the prediction of

reality is much closer to the computer model runs and consequently has much

wider confidence bands than those for the modular analysis in Figure 3.7.

To understand the situation, it is useful to consider a simplified situation - the

random effects model

yir = µi + bi + εir, i = 1, . . . , K; r = 1, . . . , n ,

where µ = {µi} are assumed known, bi ∼ N (0, τ 2), and εir ∼ N (0, σ2
i ). We can

write the likelihood as

L(τ 2,
{
σ2

i

}
;
{
ȳi, s

2
i

}
) ∝

K∏
i=1

σ1−n
i√

τ 2 + 1
n
σ2

i

exp

(
− (ȳi − µi)

2

2
(
τ 2 + 1

n
σ2

i

) − s2
i

2σ2
i

)
(3.30)

where ȳi and s2
i are sufficient statistics, ȳi =

∑n
r=1 yir, s2

i =
∑n

r=1 (yir − ȳi)
2.
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Figure 3.12: Posterior distributions for the unknown input parameters for Site
2 of the system.
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Figure 3.13: Bias estimate with 90% tolerance bounds for Site 2 at Region 1.
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Figure 3.14: Bias-corrected prediction of reality with 90% tolerance bands for
Site 2 at Region 1.
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Figure 3.15: Posterior mean of the bias function with 90% confidence bands
under the full Bayes approach Normal model assumption.
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Figure 3.16: Posterior mean of the prediction for reality with 90% confidence
bands under the full Bayes approach with Normal model assumption.
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Suppose now that (ȳi − µi)
2 is large for some i, as would be true if bi were

an “outlier” (as could be expected for the biases arising in the testbed problem).

One usually expects this to be at least partially accommodated by the analysis

gravitating to large values of τ 2, the variance of the bi. However, if K is large,

Equation (3.30) suggests that large values of σ2
i will result instead. Indeed, in

the factor before the exponent in Equation (3.30), the order of τ is τ−K , while

that of σ2
i is σ−n

i . When K is large and n small, as in the testbed example, it

follows that the outliers effect in the exponent will be accommodated by making

σ2
i large, rather than τ 2. Equation (3.19) shows that the corresponding bias bi will

then be greatly shrunk towards 0. Therefore, we use modularization to separate

the pieces of the problem, i.e., making inference about the {σ2
i } only from the

replicate observations.

Another solution to this confounding problem is to use robust distributions

for the biases. Thus we consider modeling the biases in Equation (3.12) by the

Cauchy distribution

π(wb
i | τ 2

j(i)) ∼ Cauchy
(
0, τ 2

j(i)

)
. (3.31)

We can write the Cauchy distribution as a normal mixture, i.e.,

π(wb
i | τ 2

j(i), λi) ∼ Cauchy
(
0, τ 2

j(i)/λi

)
, (3.32)

with λi ∼ Gamma(1
2
, 2). Letting λ = {λi}, we have

π(wb, λ, τ 2, σ2, δ∗, u∗) =π(wb | τ 2, λ)π(τ 2, δ∗, u∗ | σ2)π(σ2)π(λ) (3.33)

=
∏
i∈I

π(σ2
i )π(λi)π

(
wb

i | λi, τ
2
j(i)

)

×
[

12∏
j=0

π
(
τ 2
j | {σ2

i }
) 7∏

i=1

π(δ∗i )
2∏

i=1

π(u∗i )

]
.
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Therefore the posterior distribution of all unknowns is

πpost(w
M(δ∗, u∗),wb, δ∗, u∗, σ2, λ, τ 2 | D)

=πpost(w
M(δ∗, u∗) | wb, δ∗, u∗, σ2, λ, τ 2D)

× πpost(w
b, δ∗, u∗, σ2, λ, τ 2 | D) , (3.34)

where πpost(w
M(δ∗, u∗) | wb, δ∗, u∗, σ2, D) is given in Equation (3.18). Sampling

from the second factor in Equation (3.34) is done by a Gibbs sampler. Grouping

the parameters as {wb, δ∗, u∗, σ2, τ 2}, {λ}, We have

πpost

(
λi | wb, δ∗, u∗, σ2, τ 2, D

) ∝ exp

(
−

τ 2
j(i) + (wb

i )
2

2τ 2
j(i)

λi

)
, (3.35)

and

πpost(w
b, δ∗,u∗, σ2, τ 2 | λ, D) (3.36)

=πpost(w
b | δ∗, u∗, σ2, λ, τ 2, D)πpost(δ

∗, u∗, σ2, τ 2 | λ, D) .

The first factor in Equation (3.36) is

πpost(w
b | δ∗, u∗, σ2, λ, τ 2, D) ∼

∏
i∈I

N(m2i, V2i) ; (3.37)

m2i =
τ 2
j(i)/λi

V̂ M
i (δ∗, u∗) + 1

7
σ2

i + τ 2
j(i)/λi

(w̄F
i − m̂M

i (δ∗, u∗)) ,

V2i =
τ 2
j(i)/λi(V̂

M
i (δ∗, u∗) + 1

7
σ2

i )

V̂ M
i (δ∗, u∗) + 1

7
σ2

i + τ 2
j(i)/λi

.

The second factor in Equation (3.36) is

πpost(δ
∗, u∗, τ 2,σ2 | λ, D) (3.38)

∝Lc(wF , s2 | δ∗, u∗, σ2, τ 2, λ)× π(δ∗, u∗, τ 2, σ2 | λ) ,
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where the marginal likelihood under the Cauchy assumption and given λ, Lc, is

Lc(wF , s2 | δ∗, u∗, σ2, τ 2, λ) =
∏
i∈I

1√
V̂ M

i (δ∗, u∗) + 1
7
σ2

i + τ 2
j(i)/λi

× exp

{
−1

2

(
(w̄F

i − m̂M
i (δ∗, u∗))2

V̂ M
i (δ∗, u∗) + 1

7
σ2

i + τ 2
j(i)/λi

)}
.

The MCMC algorithm to draw samples under the Cauchy assumption proceeds

as follows.

Step 1: For h = 1, . . . , 1000, propose σ2
i from the following distribution:

InverseGamma

(
3,

2

s2
i

) (
shape = 3, scale =

2

s2
i

)
.

Calculate the acceptance ratio by

ρ =
πpost(δ

h, uh, τ 2h, σ2 | λh, D)

πpost(δ
h, uh, τ 2h, σ2h | λh, D)

and define σ2(h+1) = σ2 with probability min(1, ρ); σ2(h+1) = σ2h otherwise.

Step 2: For h = 1, . . . , 1000, propose τ 2 by generating from q(τ 2 | τ 2h) defined as

in Equation (3.22) and form the Metropolis-Hastings Ratio

ρ =
πpost(δ

h, uh, τ 2, σ2(h+1) | λh, D) q(τ 2h | τ 2)

πpost(δ
h, uh, τ 2h, σ2(h+1) | λh, D) q(τ 2 | τ 2h)

and define τ 2(h+1) = τ 2 with probability min(1, ρ); τ 2(h+1) = τ 2h otherwise.

Step 3: For h = 1, . . . , 1000, propose δ, u as before, and form the Metropolis-

Hastings Ratio

ρ =
πpost(δ, u, τ 2(h+1), σ2(h+1) | λh, D) g(δh, uh | δ, u)

πpost(δ
h, uh, τ 2(h+1), σ2(h+1) | λh, D) g(δ, u | δh+1, uh+1)
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and define δh+1 = δ, uh+1 = u with probability min(1, ρ); δh+1 = δh,

uh+1 = u otherwise.

Step 4: Given wbh, τ 2(h+1), draw λh+1 according to Equation (3.35).

Step 5: Given δ∗(h+1), u∗(h+1), σ2(h+1), λh+1, τ 2(h+1) draw wb(h+1) from the distribu-

tion in Equation (3.37).

Step 6: Given δ∗(h+1), u∗(h+1), σ2(h+1), λh+1, τ 2(h+1), wb(h+1), make a draw of wM(h+1)

from the distribution in Equation (3.18).

Again, we cycle through 200 times between Step 1, 2, 3 before saving the final

values for feeding into Step 4, 5, and 6. The results in Figure 3.17 and Figure

3.18 are based on this sample from the posterior. The bias function in Figure

3.17 is quite close to the one given by the modularization in Figure 3.6. And

the prediction for reality in Figure 3.18 is also quite close. The confidence bands

are somewhat wider due to the Cauchy assumption, but are again much closer to

those from the modular analysis than those from the full normal analysis.

In fact, we first because aware of this issue, not through the size of the bias,

but because the MCMC under the full normal model would not mix well. This is

illustrated by looking at the trace plots of σ2
170 with each of the three approaches.

Clearly there is little mixing under the full normal model, and reasonable mixing

under the modular normal and Cauchy models. Indeed, improvement of mixing

of the MCMC is a general feature of incorporating modularity.
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Figure 3.17: Posterior mean of the bias function with 90% confidence bands
under the full Bayes approach with Cauchy model assumption.
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Figure 3.18: Posterior mean of the prediction for reality with 90% confidence
bands under the full Bayes with Cauchy model assumption.
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Figure 3.19: Trace plots for σ2
170. Upper: global Bayesian analysis with Normal

assumption; Middle: global Bayesian analysis with Cauchy assumption; Lower:
modularized Bayesian analysis with Normal assumption.
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Chapter 4

Multiple Computer Models

Computer model inputs often occur at different scales, which we will call structural

and controllable. In engineering systems, for instance, structural inputs are the

basic elements of the computer model, e.g., the finite element representation of

the object being studied. Controllable inputs are inputs that can be varied for a

given structure.

An example is computer modeling of vehicle suspension systems, as discussed

in Chapter 3. The structural inputs here relate to the type of vehicle for which

the suspension system is being modeled. The controllable inputs are those that

can be varied for a given vehicle, such as damping and vehicle weight. (Note that

it is not the whole vehicle that is being modeled, in which case weight would be

determined by the structural inputs; it is just the suspension system of the vehicle

that is being modeled.)

These are not precise definitions and relate, in part, to operational uses of the

computer model. The computer model (and possibly the field data) will typically

be run over a wide range of the controllable inputs, but only a modest number

of values of the structural inputs, as changing the structural inputs requires very

significant alterations in the computer model. Because of this, we will refer to the

problem as that of dealing with multiple computer models.

Often, prediction is required across computer models, i.e., for a new set of

structural inputs. This was the case in Chapter 3, where field data and computer

model runs (for varying controllable inputs) were available for the structural input
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labeled Condition A, and prediction was desired for the structural input labeled

Condition B (a different vehicle type) based solely on computer model runs (for

varying controllable inputs). With no way to quantify the difference between the

two structural inputs, we were forced to make predictions under the simplifying

assumption that the bias for the two situations was the same.

In this chapter we suppose that we have available data from multiple com-

puter models (multiple structural inputs), and that we have surrogate input vari-

ables that relate to the structural input. (We do not deal with the structural

input directly, because it is too high-dimensional – e.g., the entire finite element

representation of a vehicle suspension system.) For the example of the vehicle

suspension systems, the available surrogate variables are the xnom discussed in

Chapter 3, which were different for Condition A and Condition B. Assuming we

have data from a number of such differing structural inputs, we can include xnom

as a variable in the analysis, thus hoping to at least partly account for the dif-

ferences in the structural inputs. The controllable inputs are then the calibration

parameters and the unknown manufacturing variations δ, as discussed in Chapter

3. Note the oddity, for this testbed example, that we do not directly deal with

the original inputs, which were given as x = xnom + δ, as would be done if these

were for a single computer model; this is not appropriate here because changes

in xnom imply that there were serious changes made in the code itself. Hence

we separately include xnom and δ as inputs; implicit is the assumption that the

manufacturing variations δ have the same impact across computer models.

Performing computations across multiple computer models is very expensive,

so we develop an alternative approach that greatly simplifies the computation.

Specifically, we utilize composite basis elements selected by a principal components
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analysis; this greatly reduces the dimension of the problem.

4.1 Introduction

In this chapter, we consider multiple time-dependent computer models. The differ-

ence across the models is essentially the nominal inputs for the key characteristics

inputs. Thus, we need the nominal inputs xnom to identify which code to run and

the manufacturing variation δ to run that particular code. For simplicity, we use

x to represent the nominal inputs in the rest of this chapter. x corresponds to

the configuration v in Equation (1.3).

Given the nominal inputs x = (x1, . . . , xd1) and the manufacturing variation

inputs δ = (δ1, . . . , δd1) to the system, denote the “real” response over time t as

yR(x, δ; t). Field measurement of the real response has error, so that we write the

rth replicate field measurement as

yF
r (x, δ; t) = yR(x, δ; t) + εr(t) , (4.1)

where the εr(·)’s are independent mean zero Gaussian processes as in Chapter 3.

Additionally, the actual manufacturing variations δ are essentially unknown in

the field runs; we must also take that into account.

We assume that the computer codes are based on the same physics, so u =

(u1, . . . , ud2) denotes common calibration/tuning parameters of all computer mod-

els. The model output is then of the form yM(x, δ, u; t).

The connection between model output and reality is then expressed as

yR(x, δ; t) = yM(x, δ, u∗; t) + b(x, δ; t) , (4.2)

where u∗ is the true value of the (vector) calibration parameter; yM(x, δ, u∗; t)
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is the model response at time t and the true value of u; and b(x, δ; t) is the

associated bias.

We illustrate the analysis of multiple computer codes by the following test bed

case study. The problem is about predicting loads from stressful events on vehicle

suspension systems (manufacturing platforms) over time. A single platform has

been described and studied in Chapter 3. The computer model requires d = 9

inputs, with d1 = 7 key characteristics inputs and d2 = 2 calibration parameters.

We use u∗ = (u∗1, u
∗
2) to represent the true values for the calibration parameters.

The other inputs are key characteristics associated with the tested vehicles, with

the nominal values for these inputs equal to x and variations equal to δ, i.e., for a

particular tested vehicle with specified variation δ, the corresponding inputs are

equal to x + δ. Table 3.1 in Chapter 3 gives information about these inputs for

the single platform studied there.

Each tested vehicle belongs to a different manufacturing platform. The key

characteristics for that tested vehicle are usually unknown, centering around the

nominal values x for the corresponding platform. The difference is due to manu-

facturing variation. We use δ to represent such variation, and δ∗ stands for the

unknown true variation. Our study involves six manufacturing platforms, labeled

as A, B, C, D, E, F. Table 4.1 gives the nominal values for these platforms.

Each datum is a time history of load at a site on the vehicle suspension system.

The computer model data are available under m = 6 platforms, namely A-F. Each

platform has n = 64 runs at various inputs values. The values of the calibration

parameters and manufacturing variations are selected according to a Latin Hyper-

cube Design (LHD), and are common to all the platforms.

The field data consists of the runs from 20 vehicles, 5 from Platform A, 4 from
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Platform A B C D E F
x1 0.5 0.5 0.5 0.5 0.5 0.5
x2 0.5 0.5 0.5 0.5 0.5 0.5
x3 0.5 0.5 0.5 0.5 0.5 0.5
x4 0.5 0.5 0.5 0.5 0.5 0.5
x5 0.5 2.5 4.5 6.5 8.5 10.5
x6 0.5 2.5 4.5 6.5 8.5 10.5
x7 0.5 0.5 0.5 0.5 0.5 0.5

Table 4.1: The nominal values for Platform A-F.

Platform B, 4 from Platform C, 3 from Platform E, and 1 from Platform F. All

have replicated runs. We label every vehicle in the study as follows by its platform

name and the order it has been tested. For example, the first vehicle in Platform

A is labeled as A1. A1 and F1 are the two vehicles involved in the analysis in

Chapter 3. For illustrative purposes, we only use field runs under Condition A-

D and F. The goal is to combine the data across all platforms to predict under

Platform E.

Our focus is on the methodological development for the multiple computer code

scenario. Figure 4.1 shows the computer model runs and the first field vehicle runs

in each platform. Part of the data is simulated, as described in Section C.1 of

Appendix C, since we were unable to obtain sufficient model-run or field data to

adequately exercise the methodology.

4.2 Function Representations

Let δ∗ij be the true manufacturing variation of the jth tested specimen with the

nominal value xi. We represent the rth replicate of that tested specimen by

yF
r

(
xi, δ

∗
ij; t

)
. The approach in Chapter 3 uses wavelets to represent these func-

tions, and reduces the number of nonzero coefficients by a hard thresholding al-
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Figure 4.1: The computer model runs (grey) and the first field vehicle runs
(orange) in platform A to F.
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gorithm (Vidakovic, 1999). This leads to

yM(x, δ, u; t) =
∑
i∈I

ωM
i (x, δ, u)ψi(t)

yF
r (x, δ; t) =

∑
i∈I

ωF
ir(x, δ)ψi(t) , (4.3)

where {ψi(t)} are the wavelet basis elements and I is the index set of nonzero

wavelet coefficients after thresholding.

The reduction of the computational expense via the hard thresholding method,

however, may not be sufficient when statistical analysis requires many evaluations

of the functions {ωM
i (x, δ, u)}, or correspondingly the emulators. Consequently,

a representation is needed which has fewer coefficients. We achieve this by using

functional principle components (Ramsay and Silverman, 1997), as follows.

Consider a set of functions {yi(t), i = 1, . . . , N}. Define the covariance function

v(s, t) as

v(s, t) = N−1

N∑
i=1

yi(s)yi(t) .

Functional principle component analysis seeks a set of eigen-functions {ξi(t)},
which satisfy

∫
v(t, s)ξi(s)ds =< v(t, ·), ξi >= ρiξi(t) . (4.4)

In Equation (4.4), < ·, · > is the inner product defined on the functional space,

and {ρi} are the eigen values.

Suppose the functions are originally written in terms of the basis expansion

yi(t) =
K∑

k=1

ωikψk(t) ,
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where K is the number of basis elements being used, {ψk(t), k = 1, . . . , K} are

the basis elements and {ωik} are the coefficients. To compute the functional

principle components, we first discretize the functions to an equally spaced fine

grid {t1, . . . , tn}. This yields

Y = WΨ ,

where Y is an N ×n matrix, (Y )ij = yi(tj); W is an N ×K matrix, (W )ij = ωij;

and Ψ is a k × n matrix, (Ψ)ij = ψi(tj). The sample covariance matrix is thus

v(t, s) = N−1ψ(t)
′
W

′
Wψ(s) . (4.5)

Letting ξi(t) =
∑K

k=1 bikψk(t) = ψ(t)
′
bi, combining Equation (4.4) and Equation

(4.5) yields

N−1W
′
W

(∫
Ψ(t)Ψ(t)

′
dt

)
bi = ρibi .

For an orthonormal basis such as wavelets,

∫
Ψ(t)Ψ(t)

′
dt = I .

Therefore, we can obtain the eigen functions {ξi(t)} by solving the eigen equations

N−1W
′
Wbi = ρibi . (4.6)

Letting B = (b1, . . . , bk), we have

[ψ1(t), . . . , ψk(t)] = [ξ1(t), . . . , ξk(t)]B
−1 .
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As a result,

yi(t) =
k∑

k=1

ωikψk(t)

= (ωi1, . . . , ωik)(B
−1)t




ξ1(t)
...

ξk(t)




=
K∑

k=1

aikξk(t) ,

where {aik, k = 1, . . . , K} are the eigen coefficients for representing yi(t) by the

set of eigen functions {ξk(t)}.

For the multiple vehicle suspension system data, using the first p = 10 principle

components captures 99% of the variation in the data. Using these functional

principle components yields the following representation:

yM(x, δ, u; t) =

p∑
i=1

aM
i (x, δ, u)ξi(t) ,

yF
r (x, δ; t) =

p∑
i=1

aF
ir(x, δ)ξi(t) . (4.7)

The left panel of Figure 4.2 shows the eigen-function with the largest eigen-

value. This function alone can capture the functional shape close to the two

potholes - the most important feature of the data. To show the accuracy of the

functional principle component representation, we show the reconstructed curve

of the first field run of vehicle A1 in the red curve in the right panel of Figure 4.2,

together with the corresponding original data that has been plotted as black.
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Figure 4.2: Left: the first principle component. Right: the original data of the
first field run (black) and the reconstructed functional curve using the first ten
principle components (red).

4.3 The Validation Model

4.3.1 Notation

We use the following notation throughout the rest of this chapter.

m: number of studied computer codes; m = 6 in the example.
n: number of runs of each computer code; n = 64 in the example.
p: number of eigen coefficients being used; p = 10 in the example.
i: code type; i = 1 stands for code A, i = 6 for code F in the example.
ni: number of tested specimen for code type i.
rij: number of replicates for the jth tested specimen of the ith type.
xi: nominal inputs of the ith type.
δ∗ij: true manufacturing variations of the jth tested specimen of the ith type.
z: z = (x, δ).
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4.3.2 Formulation

The SAVE methodology (Bayarri et al., 2005a) formulates the computer model

validation problem as “reality = model + bias”. In Chapter 3, we applied this for-

mulation to the wavelet coefficients. In this chapter, we apply the formulation to

the eigen-coefficients. For the jth vehicle within the ith platform, denoting the k’th

eigen-coefficient for reality and bias, respectively, by aR
k (xi, δ

∗
ij) and aB

k (xi, δ
∗
ij),

we have

aR
k (xi, δ

∗
ij) = aM

k (xi, δ
∗
ij, u

∗) + aB
k (xi, δ

∗
ij), ∀k . (4.8)

For complex computer systems, the aM
k (x, δ, u)’s, as functions of (x, δ, u), can

only be observed at limited design points. Therefore emulators are needed and

will be considered in the next section.

The field data, aF
kr(xi, δ

∗
ij), are viewed as reality, with measurement error,

aF
kr(xi, δij) = aR

k (xi, δij) + εF
ijkr, ∀k . (4.9)

We assume that the field measurement errors, εF
ijkr in Equation (4.9), are normally

distributed with mean zero and are independent across replications r and across

the coefficient index k. This is similar to the wavelet approach in Chapter 3,

where there is discussion of this assumption.

4.3.3 Building the emulator

Treating the nominal inputs as separate inputs to the computer model, we build

an emulating system for the kth eigen coefficient, aM
k (x, δ, u), by assigning a

Gaussian stochastic process prior distribution

aM
k (x, δ, u) ∼ GP

(
µk, σ

2M
k CorrM1

k (·, ·)CorrM2
k (·, ·)) . (4.10)
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In Equation 4.10, the CorrM1
k ’s are across-code correlations and the CorrM2

k are

within-code correlations. We use the power exponential family to model these

correlations as

CorrM1
k

(
x, x

′
)

= exp

(
−

d1∑

l=1

βx
kl | xl − x

′
l |α

x
kl

)
(4.11)

and

CorrM2
k

(
(δ, u), (δ

′
, u

′
)
)

= exp

(
−

d1∑

l=1

βδ
kl | δl − δ

′
l |α

δ
kl −

d2∑

l=1

βu
kl | ul − u

′
l |α

u
kl

)
.

(4.12)

We assume that the design points, z = (δ, u), are chosen to be the same across

the multiple codes. Defining

(
ΣM1

k

)
ij

= CorrM1
k (xi, xj) ,

(
ΣM2

k

)
ij

= CorrM2
k (zi, zj) ,

the likelihood can then be written as

aM
k ∼ N

(
µM

k 1, σ2M
k ΣM1

k ⊗ ΣM2
k

)
, (4.13)

where aM
k is the vector of the kth coefficients from the computer model runs,

(aM
k )n(i−1)+j = aM

k (zi, zj) (i = 1, . . . , m; j = 1, . . . , n) .

Model-run data is typically so limited as to require some constraints on the

GP parameters. For the kth coefficient, define the distance between δ and δ
′
as,

dδ
k(δ, δ

′
) =

d1∑

l=1

βδ
kl | δl − δ

′
l |α

δ
kl .
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We extend this distance to the distance defined in the nominal space, dx
k(x, x

′
),

by an adjustment factor φk (φk < 1.0),

dx
k(x, x

′
) = φkd

δ
k(x, x

′
) .

We then define the GP parameters as

βx
kl = φkβ

δ
kl, and αx

kl = αδ
kl .

We thus are assuming common roughness parameters across the computer models,

but allow range parameters to differ by a multiplicative constant across computer

models. This keeps the total number of unknown parameters reasonable, while

allowing some variation across the models.

4.3.4 Modeling the bias

We model the kth bias coefficient aB
k (xi, δ

∗
ij) for the jth tested vehicle within the

ith platform by

aB
k (xi, δ

∗
ij) = bk(xi) + εB

k (xi, δ
∗
ij) , (4.14)

where bk(x) is the mean bias of the kth coefficient for the field specimen with

nominal input x and εB
k (xi, δ

∗
ij) is the difference between the total bias and the

mean bias bk(xi); this is due to the differing δ∗ij. We assign bk(xi) a Gaussian

stochastic process prior

bB
k (·) ∼ GP

(
µB

k , σ2B
k CorrB

k (·, ·)) , (4.15)

with power exponential correlation function specified as

CorrB
k (x, x

′
) = exp

(
−

d1∑

l=1

βB
kl | xl − x

′
l |α

B
kl

)
.
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The other term, εB
k (xi, δ

∗
ij), is modeled as a normal distribution ∼ N(0, σ2Bε

k ).

This is an approximation, necessitated by the fact that the δ∗ij are unknown, and

hence there is no information in the data about the εB
k (xi, δ

∗
ij). Modeling these

differences as random error is similar to assuming a nugget in GaSP if there are

small unknown systematic errors.

4.3.5 Other prior specification

The context specific priors for u∗, δ∗ are chosen as follows:

π(u1) = π(u2) = Uniform on [0.125, 0.875] ,

π(δ1) = π(δ2) ∼ N(0, 0.11112) truncated to[−0.3333, 0.3333] ,

π(δ3) ∼ N(0, 0.097232) truncated to [−0.2917, 0.2917] ,

π(δ4) = π(δ7) ∼ N(0, 0.10262) truncated to[−0.3077, 0.3077] ,

π(δ5) ∼ N(0, 0.049032) truncated to[−0.1471, 0.1471] ,

π(δ6) ∼ N(0, 0.11762) truncated to[−0.3529, 0.3529] .

These are the same as in Chapter 3. Since there are replicates for the field runs,

we can use non-informative priors for µB
k , σ2B

k , σ2Bε

k and σ2F
k as follows:

π(µB
k ) ∝ 1 , π(σ2B

k ) ∝ 1

σ2B
k

,

π(σ2Bε

k ) ∝ 1

σ2Bε

k

, π(σ2F
k ) ∝ 1

σ2F
k

.

4.4 Estimation and Analysis

The spirit of “modularity” is to stabilize the MCMC computation, by separating

components of the model to the extent possible, using methods such as maximum
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likelihood estimates (Bayarri et al., 2005a). Here we separate the analysis into

three components: (1) estimating the GP parameters of the emulators; (2) esti-

mating the GP parameters of the biases; (3) Bayesian analysis for the remaining

parameters.

4.4.1 Estimation

Let θM
k be the GP parameters for the emulator,

θM
k =

(
µM

k , σ2M
k , φM

k , {αδ
kl, β

δ
kl, l = 1, . . . , d1}, {αu

kl, β
u
kl, l = 1, . . . , d2}

)
,

and θ̂
M

k be the estimates of θ. We use iterative weighted maximum likelihood to

determine θ̂
M

k . The algorithm is detailed in Section C.2 of Appendix C. These

parameters are fixed for the rest of the analysis.

We can then write the predictive distribution for aM
k (x, δ, u) as

aM
k (x, δ, u) | θ̂M

k , aM
k ∼ N

(
m̂M

k (x, δ, u) , V̂ M
k (x, δ, u)

)
, (4.16)

where m̂M
k (x, δ, u) and V̂ M

k (x, δ, u) are

µ̂M
k +

(
γ̂M1

k (x)t
(
Σ̂

M1

k

)−1
)
⊗

(
γ̂M2

k (δ, u)t
(
Σ̂

M2

k

)−1
)

(aM
k − µ̂M

k 1) ,

σ̂2M
k

(
1− γ̂M1

k (x)t
(
Σ̂

M1

k

)−1

γ̂M1
k (x)γ̂M2

k (δ, u)t
(
Σ̂

M2

k

)−1

γ̂M2
k (δ, u)

)
.

In the above equations, 1 represents the vector of ones, Σ̂
M1

k is an m×m correlation

matrix and Σ̂
M2

k is an n × n correlation matrix obtained by plugging θ̂
M

k into

Equation (4.13). γ̂M1
k (x) and γ̂M2

k (x) are defined as

γ̂M1
k (x) =

(
ĈorrM1

k (x1, x), . . . , ĈorrM1
k (xm, x)

)′

γ̂M2
k (x) =

(
ĈorrM2

k ((δ1, u1), (δ, u)) , . . . , ĈorrM2
k ((δn, un), (δ, u))

)′
,
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where ĈorrM1
k and ĈorrM2

k are the estimated correlation functions (plug in θ̂
M

k ).

Equation (4.16) is the emulator we use for aM
k (x, δ, u).

We estimate the GP parameters in the biases as follows. Combining Equation

(4.8), Equation (4.9), Equation (4.14), and Equation (4.16), we have,

aF
kr(xi, δ

∗
ij) = m̂M

k

(
xi, δ

∗
ij, u

∗) + aB
k (xi, δ

∗
ij) + εF

kr + N(0, V̂ M
k

(
xi, δ

∗
ij, u

∗)) .

We further approximate it by

aF
kr(xi, δ

∗
ij) ≈ m̂M

k (xi, δ̂, û) + aB
k (xi, δ

∗
ij) + εF

kr + N(0, V̂ M
k

(
xi, δ

∗
ij, u

∗)) ,

where δ̂ and û are the prior means for δ, u ( δ̂ = 0, and û = 0.5 for the vehi-

cle suspension systems) and m̂M
k (xi, δ̂, û) is defined in Equation (4.16). Letting

āF
k (xi, δ

∗
ij) = 1

nij

∑nij

r=1 aF
kr(xi, δ

∗
ij), it follows that the distribution of āF

k (xi, δ
∗
ij)−

m̂M
k (xi, δ̂, û) is close to a normal distribution, with mean equal to aB

k (xi, δ
∗
ij)

and variance equal to σ2F
k /rij + V̂ M

k

(
xi, δ

∗
ij, u

∗). V̂ M
k

(
xi, δ

∗
ij, u

∗) is usually small,

since we are interpolating the space of δ∗, u∗ for a given xi. Consequently, we can

obtain estimates

θ̂
B

k = (α̂B
kl, β̂

B
kl) (l = 1, . . . , p1)

by applying Welch’s GASP code (with a nugget that accommodates the normal

errors above) to the {āF
k (xi, δ

∗
ij) − m̂M

k (xi, δ̂, û)}. We fix θB
k at θ̂

B

k for the rest

of the analysis. Thus we use plug-in estimates of the correlation matrices, Σ̂B
k ,

for the bB
k (x)’s. However, we do not fix µB

k and σ2B
k ; we include them in the

subsequent Bayesian analysis.
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4.4.2 The posterior distributions

For i = 1 . . .m, j = 1 . . . ni, k = 1 . . . p, r = 1 . . . rij, we rewrite Equation (4.8),

Equation (4.9) and Equation (4.14) as

aF
kr(xi, δ

∗
ij) = aR

k (xi, δ
∗
ij) + εF

ijkr ,

aR
k (xi, δ

∗
ij) = aM

k (xi, δ
∗
ij, u

∗) + aB
k (xi, δ

∗
ij) ,

aB
k (xi, δ

∗
ij) = bk(xi) + εB

ijk . (4.17)

In Equation (4.17), the εF
ijkr’s are independent, εF

ijkr ∼ N(0, σ2F
k ); the εB

ijk’s are in-

dependent, εB
ijk ∼ N(0, σ2Bε

k ); aM
k (xi, δ

∗
ij, u

∗) ∼ N
(
m̂M

k

(
xi, δ

∗
ij, u

∗) , V̂ M
k

(
xi, δ

∗
ij, u

∗))

is given in Equation (4.16); and bk(·) is a Gaussian process with the correlation

parameters estimated as in Section 4.4.1.

Summarizing the field data by the sufficient statistics āF
ijk = 1

rij

∑rij

r=1 aF
kr(xi, δ

∗
ij)

and s2
ijk =

∑rij

r=1

(
aF

kr

(
xi, δ

∗
ij

)− āF
ijk

)2
, we have

āF
ijk ∼ N

(
aM

k (xi, δ
∗
ij, u

∗) + aB
k (xi, δ

∗
ij),

1

rij

σ2F
k

)
,

and

1

σ2F
k

m∑
i=1

ni∑
j=1

s2
ijk ∼ χ2P

i,j(rij−1) .

The posterior distributions can be written as the product of the following two

factors,

∏

k

∏
i,j

π
(
aM

k (xi, δ
∗
ij) | aB

k (xi, δ
∗
ij), bk(xi), δ

∗
ij, u

∗, µB
k , σ2F

k , σ2B
k , σ2Bε

k ,D
)

, (4.18)

and

∏

k

∏
i,j

π
(
aB

k (xi, δ
∗
ij), bk(xi), δ

∗
ij, u

∗, µB
k , σ2F

k , σ2B
k , σ2Bε

k | D)
. (4.19)
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The full conditional distributions for the aM
k (xi, δ

∗
ij)’s in Equation (4.18) are in-

dependent normal distributions, with mean

V̂ M
k (xi, δ

∗
ij, u

∗)
(
āF

ijk − aB
k (xi, δ

∗
ij)

)

V̂ M
k (xi, δ

∗
ij, u

∗) + σ2F
k /rij

+
σ2F

k /rij

(
m̂M

k (xi, δ
∗
ij, u

∗)
)

V̂ M
k (xi, δ

∗
ij, u

∗) + σ2F
k /rij

,

and variance given by

V̂ M
k (xi, δ

∗
ij, u

∗)σ2F
k /rij

V̂ M
k (xi, δ

∗
ij, u

∗) + σ2F
k /rij

.

We define the integrated likelihood LI
({δ∗ij}, u∗, {µB

k }, {σ2F
k }, {σ2B

k }, {σ2Bε

k })

by integrating out aM
k (xi, δ

∗
ij, u

∗), aB
k (xi, δ

∗
ij) and aB

k (xi) with respect to their

prior distributions. We represent the integrated likelihood as

LI
({δ∗ij}, u∗, {µB

k }, {σ2F
k }, {σ2B

k }, {σ2Bε

k }) =
∏

k

LI
k

({δ∗ij}, u∗, µB
k , σ2F

k , σ2B
k , σ2Bε

k

)
,

with

LI
k

({δ∗ij}, u∗, µB
k , σ2F

k , σ2B
k , σ2Bε

k | D) ∝
(

1

σ2F
k

) 1
2

P
i,j(rij−1)

1

| E + σ2B
k Σ̂B

k |1/2

exp

(
− 1

2σ2F
k

∑
i,j

s2
ijk −

1

2

(
āF

k − m̂M
k − µB

k 1
)t (

E + σ2B
k Σ̂B

k

)−1 (
āF

k − m̂M
k − µB

k 1
))

.

(4.20)

where the diagonal matrix E is

E = diag

(
V̂ M

k (xi, δ
∗
ij, u

∗) + σ2Bε

k +
1

rij

σ2F
k

)
.

The draws from the distribution in Equation (4.19) are obtained from an

MCMC algorithm. The algorithm is detailed in Section 4.5. Here, we derive

the conditional distributions that are needed for the algorithm.
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• π
(
bk(xi), i = 1, . . . , m | δ∗ij, u∗, µB

k , σ2F
k , σ2B

k , σ2Bε

k ,D
)
:

Letting bk = (bk(x1), . . . , bk(xm))
′
, we obtain the conditional distribution

for bk by integrating out the aB
k (xi, δ

∗
ij)’s in Equation (4.19). Letting

āF
k =

(
āF

ijk, i = 1, . . . , m; j = 1, . . . ni

)′
,

and

m̂
M
k =

(
m̂M

k (xi, δ
∗
ij, u

∗), i = 1, . . . , m; j = 1, . . . ni

)′
,

bk follows a multivariate normal distribution, with mean vector

(
āF

k − m̂
M
k

)
− E

(
E + σ2B

k Σ̂B
k

)−1 (
āF

k − m̂
M
k − µB

k 1
)

,

and covariance matrix

E− E
(
E + σ2B

k Σ̂B
k

)−1

E .

• π
(
aB

k (xi, δ
∗
ij) | bk(xi), δ

∗
ij, u

∗, µB
k , σ2F

k , σ2B
k , σ2Bε

k ,D
)
:

Conditional on bk(xi), i = 1, . . . , m, aB
k (xi, δ

∗
ij) are independent normal vari-

ables with mean

σ2Bε

k

σ2Bε

k + σ2F
k /rij + V̂ M

k (xi, δ
∗
ij, u

∗)

(
āF

ijk − m̂M
k (xi, δ

∗
ij, u

∗)
)

+
σ2F

k /rij + V̂ M
k (xi, δ

∗
ij, u

∗)

σ2Bε

k + σ2F
k /rij + V̂ M

k (xi, δ
∗
ij, u

∗)
aB

k (xi) ,

and variance

σ2Bε

k

(
σ2F

k /rij + V̂ M
k (xi, δ

∗
ij, u

∗)
)

σ2Bε

k + σ2F
k /rij + V̂ M

k (xi, δ
∗
ij, u

∗)
.
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• (
µB

k | {δ∗ij}, u∗, σ2F
k , σ2B

k , σ2Bε

k ,D
)
:

Further integrating out bk(xi) in the likelihood leads to the conditional dis-

tribution for µB
k as normal with mean and variance given by

(
1
′
(E + σ2B

k Σ̂B
k )−11

)−1 (
1
′
(E + σ2B

k Σ̂B
k )−1(āF

k − m̂
M
k )

)
,

and
(
1
′
(E + σ2B

k Σ̂B
k )−11

)−1

.

• (
σ2B

k | bk(xi), a
B
k (xi, δ

∗
ij), δ

∗
ij, u

∗, µB
k , σ2F

k ,D
)
:

The conditional distribution for σ2B
k is

σ2B
k ∼ IG

(
1

2
rank

(
Σ̂B

k

)
,
1

2

(
bk − µB

k 1
)t

(
Σ̂B

k

)− (
bk − µB

k 1
))

. (4.21)

• (
σ2Bε

k | bk(xi), a
B
k (xi, δ

∗
ij), δ

∗
ij, u

∗, µB
k , σ2F

k ,D
)
:

The conditional distribution for σ2Bε

k is

σ2Bε

k ∼ IG

(
1

2

∑
i,j

rij,
1

2

∑
i,j

(
aB

k (xi, δ
∗
ij)− bk(xi)

)2

)
. (4.22)

4.5 The MCMC Algorithm

Grouping the parameters as {aB
k (xi), a

B
k (xi, δ

∗
ij)}, {δ∗ij, u∗, µB

k , σ2F
k }, and {σ2B

k , σ2Bε

k },
we use Gibbs sampling to draw the samples from their joint posterior distribution.

The MCMC algorithm has the following seven steps at each iteration.

For iteration h,
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Step 1: Draw µ
B(h)
k from

π
(
µB

k | {δ∗(h−1)
ij }, u∗(h−1), σ

2F (h−1)
k , σ

2B(h−1)
k , σ

2Bε(h−1)
k ,D

)
.

The distribution has been given in Section 4.4.2.

Step 2: Given µ
B(h)
k , σ

2F (h−1)
k , σ

2B(h−1)
k and σ

2Bε(h−1)
k , draw {δ∗(h)

ij }, u∗(h) from

(
{δ∗ij}, u∗ | {µB(h)

k , σ
2F (h−1)
k , σ

2B(h−1)
k , σ

2Bε(h−1)
k },D

)
,

by a Metropolis-Hastings algorithm described later. The Metropolis-Hastings

algorithm usually yields highly correlated iterations, so we cycle through

this step for 200 times (fixing the other parameters) and keep only the last

sample of the parameters.

Step 3: Given µ
B(h)
k , σ

2B(h−1)
k , σ

2Bε(h−1)
k , {δ∗(h)

ij }, and u∗(h), draw {σ2F (h)
k } from

(
σ2F

k | {δ∗(h)
ij }, u∗(h), {µB(h)

k , σ
2B(h−1)
k , σ

2Bε(h−1)
k },D

)
,

by a Metropolis-Hastings algorithm described later. Again, we cycle through

this step for 200 times and keep the last draw.

Step 4: Given {µB(h)
k }, {δ∗(h)

ij }, u∗(h), {σ2F (h)
k } and {σ2B(h−1)

k , σ
2Bε(h−1)
k }, draw

b
(h)
k (xi) from

π
(
bk(xi), i = 1, . . . , m | δ∗(h)

ij , u∗(h), µ
B(h)
k , σ

2F (h)
k , σ

2B(h−1)
k , σ

2Bε(h−1)
k ,D

)
.

The distribution has been given in Section 4.4.2.

Step 5: Given b
(h)
k (xi), {µB(h)

k }, {δ∗(h)
ij }, u∗(h), {σ2F (h)

k } and {σ2B(h−1)
k , σ

2Bε(h−1)
k },

draw {aB(h)
k (xi, δ

∗
ij)} from

π
(
aB

k (xi, δ
∗
ij) | b(h)

k (xi), δ
∗(h)
ij , u∗(h), µ

B(h)
k , σ

2F (h)
k , σ

2B(h)
k , σ

2Bε(h)
k ,D

)
.
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The distribution has been given in Section 4.4.2.

Step 6: Given b
(h)
k (xi), a

B(h)
k (xi, δ

∗(h)
ij ), µ

B(h)
k , draw samples {σ2B(h)

k } and {σ2Bε(h)
k }

according to Equation (4.21) and Equation (4.22).

Step 7: Given a
B(h)
k (xi, δ

∗(h)
ij ), a

B(h)
k (xi), δ

∗(h)
ij , u∗(h), µ

B(h)
k , σ

2F (h)
k , σ

2B(h)
k , σ

2Bε(h)
k , draw

samples of a
M(h)
k (xi, δ

∗(h)
ij , u∗(h)) according to distribution (4.18).

The Metropolis-Hastings algorithm in Step 2 propose new samples of the δ∗hij ’s

and u∗h from mixture distributions of the prior and a local random walk. Let

T δ
l = [aδ

l , A
δ
l ] and T u

l = [au
l , A

u
l ] denote the intervals on which the prior densities

for the corresponding variables are nonzero, and define

T ∗δh
ijl = [max(aδ

l , δ
h
ijl − 0.01), min(Aδ

l , δ
h
ijl + 0.01)] ,

T ∗uh
l = [max(au

l , u
h
l − 0.01), min(Au

l , u
h
l + 0.01)] .

Propose {δ∗ij} and u∗ from

g({δ∗ij},u∗ | {δ∗hij }, u∗h) =

∏
i,j

p1∏

l=1

(
9

10
U(δ∗ijl | T ∗δh

ijl ) +
1

10
π(δ∗ijl)

)
×

p2∏

l=1

(
1

2
U(u∗l | T ∗uh

l ) +
1

2
U(au

l , A
u
1)

)
.

The Metropolis-Hastings Ratio for this proposal distribution is

ρ =
π

(
{δ∗ij}, u∗, {µB(h)

k }, {σ2F (h−1)
k } | {σ2B(h−1)

k }, {σ2Bε(h−1)
k },D

)

π
(
{δ∗(h−1)

ij }, u∗(h−1), {µB(h)
k }, {σ2F (h−1)

k } | {σ2B(h−1)
k }, {σ2Bε(h−1)

k },D
)

×
g

(
{δ

∗(h−1)
ij }, u∗(h−1)

ij | {δ∗ij}, u∗
)

g
(
{δ∗ij}, u∗ | {δ∗(h−1)

ij }, u∗(h−1)
) ,
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where

π
({δ∗ij}, u∗, {µB

k , σ2F
k } | {σ2B

k , σ2Bε

k },D) ∝

LI
({δ∗ij}, u∗, {µB

k , σ2F
k , σ2B

k , σ2Bε

k } | D)
π

({δ∗ij}, u∗, {µB
k , σ2F

k }) . (4.23)

Set ({δ∗(h)
ij }, u∗(h)) = ({δ∗ij}, u∗) with probability min(1, ρ), and equal to ({δ∗(h−1)

ij }, u∗(h−1))

otherwise.

In Step 3, we propose σ2F
k from

gk(σ
2F
k ) = IG

(
1

2

∑
i,j

(rij − 1),
1

2

∑
i,j

s2
ijk

)
,

and calculate the Metropolis-Hastings Ratio

ρk =
LI

k

(
{δ∗(h)

ij }, u∗(h), µ
B(h)
k , σ2F

k , σ
2B(h−1)
k , σ

2Bε(h−1)
k | D

)

LI
k

(
{δ∗(h)

ij }, u∗(h), µ
B(h)
k , σ

2F (h−1)
k , σ

2B(h−1)
k , σ

2Bε(h−1)
k | D

)

× π(σ2F
k )

π(σ
2F (h−1)
k )

gk(σ
2F (h−1)
k )

gk(σ2F
k )

.

Set σ
2F (h)
k = σ2F

k with probability min(1, ρk), and equal to σ2F (h−1) otherwise.

At the end of MCMC, we have a sample of 1000 draws (h = 1, . . . , 1000),

{
{δ∗hij }, u∗h, {aM(h)

k (xi, δ
∗
ij), {aB(h)

k (xi, δ
∗
ij), b

h
k(xi), µ

B(h)
k , σ

2F (h)
k , σ

2B(h)
k , σ

2Bε(h)
k }

}
.

Our inferences are based on these samples.

4.6 Results

In this section, we illustrate the analysis by the example introduced earlier involv-

ing multiple vehicle suspension systems. Figure 4.3 gives posterior histograms for
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u∗ and for δ∗ for the first tested vehicle in Platform A. Note that these results

are reasonably consistent with the corresponding posteriors in Figure 3.5, for the

situation in which the first tested vehicle in Platform A was analyzed in isolation.

Posterior distributions of the bias and reality curves are obtained by recon-

structing the posterior eigen-coefficients with the functional principle components.

For example, the posterior distribution of b with nominal input xi and manufac-

turing variations δ∗ij, is represented by the sample curves

bh
ij(t) =

∑

k∈I

abh
k (xi, δ

∗h
ij )ξk(t); h = 1, . . . , 1000 .

The posterior mean curve, b̂ij(t), is estimated as

b̂ij(t) =
1

1000

1000∑

h=1

bh(xi, δ
∗h
ij ; t) ,

with the upper and lower uncertainty (tolerance) bounds at each t, produced by

taking the lower α/2 and upper 1− α/2 quantiles of the posterior distribution of

bj(xi; t),

Lb
ij(t) =

α

2
quantile of {bh

ij(t); h = 1, . . . , 1000}

U b
ij(t) =

(
1− α

2

)
quantile of {bh

ij(t); h = 1, . . . , 1000} .

Figure 4.4 shows, on the upper panel, the bias function for the first tested vehicle

in Platform A and, on the lower panel, the bias function for the first tested vehicle

in Platform F. (Recall that these were the two data sets from real vehicles.) It

is apparent in Figure 3.6 that the bias function is significantly different from 0

especially in the neighborhood of 8.7 and 9.1 – the location of the first pothole.
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Figure 4.3: Histogram of the posterior draws for the calibration parameters and
the manufacturing variations for the first tested vehicle of Platform A.
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Figure 4.4: Posterior mean curves (in solid lines) with 90% uncertainty bounds
(in dashed lines) for the bias function of Vehicle A1 (in the left panel) and of
Vehicle F1 (in the right panel).
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We estimate reality with uncertainty bounds similarly: take the sample of

eigen-coefficients aRh
k (x, δ∗h) = aMh

k (x, δ∗h, u∗h) + abh
k (x, δ∗h, u∗h) and form

yRh
ij (t) =

∑

k

aRh
k (xi, δ

∗h
ij , u∗h)ξk(t), ŷR

ij(t) =
1

1000

∑

h

yRh
ij (t) ,

LR
ij(t) =

α

2
quantile of {yRh

ij (t); h = 1, . . . , 1000} ,

UR
ij (t) =

(
1− α

2

)
quantile of {yRh

ij (t); h = 1, . . . , 1000} .

Figure 4.5 shows the prediction of reality and associated uncertainty bands for

Vehicles A1 and F1. These predictions are capturing the major features of the

data, although they do not match perfectly. The mismatches seem to be primarily

due to the errors resulting from keeping only 10 eigen-basis elements to represent

the functions.

Finally, we extrapolate the analysis of Platform A-D, F to Platform E. First,

we extrapolate the biases to the new platform. Denote the bias for Platform E as

aB
k (x5, δ

∗
ij, u

∗), aB
k (x5, δ

∗, u∗) ∼ N(bk(x5), σ
2Bε

k ). To obtain the posterior draws

for bk(x5), it suffices to draw bh
k(x5) at each iteration h from π

(
bk(x5) | bh

k, θ
(h)

)
,

which under the Gaussian process prior, is a normal distribution with mean and

covariance given by

E(bk(x5)) = µh
b + ctΣ̂

−
k (bh − µh

b1), Var (bk(x5)) = σ
2B(h)
k

(
1− ctΣ−1

k c
)

,

where c =
(
CorrB

k (x1, x5), . . . ,CorrB
k (x4, x5),CorrB

k (x6, x5)
)t

is the correlation

vector between Platform A-D, F and Platform E, and Σ̂
−
k is the correlation

matrix of the mean biases of Platform A-D, F. We henceforth obtain a draw

aBh
k (x5, δ

∗, u∗) by sampling from N
(
bh
k(x5), σ

2Bε

k

)
. Figure 4.6 shows the mean

curve with uncertainty bands for the bias function of Platform E. This is the bias
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Figure 4.5: Prediction of reality (in solid black lines) with 90% uncertainty bands
(in dashed black lines)for Vehicle A1 (in the upper panel) and F1 (in the lower
panel). The original field data are plotted in orange lines
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function for a generic vehicle of type E, thus the uncertainty bands are much

wider. Again, as we observe, the bias is significant in the region close to the

pothole.
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Figure 4.6: Posterior mean curve (in solid lines) with 90% uncertainty bands (in
dashed lines) for the bias function of Platform E.

Define the pure model prediction for Platform E as

yM(x5, δ
∗, u∗; t) =

∑

k

aM
k (x5, δ

∗, u∗; t) ξk(t) ,

where δ∗ ∼ π(δ∗) and u∗ ∼ π(u∗ | D). Consequently, for each h, we obtain the

sample of yMh(x5, δ
∗h, u∗h; t) by drawing δ∗h from the prior and drawing the coeffi-

cients from the emulators N
(
m̂k(x5, δ

∗h, u∗h), V̂k(x5, δ
∗h, u∗h)

)
. yRh(x5, δ

∗, u∗; t),

the bias-corrected prediction of reality for Platform E, is thus obtained by trans-

forming the coefficients of the sum of the bias coefficients and the model coeffi-

cients,

yRh(x5, δ
∗, u∗; t) =

∑

k

(
aMh

k (x5, δ
∗, u∗; t) + aBh

k (x5, δ
∗, u∗)

)
ξk(t) .
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Figure 4.7 shows, on the upper panel, the pure model prediction for a generic

vehicle of Platform E and, on the lower panel, the bias-corrected prediction of

reality. The real field runs for Platform E are also plotted on the same figures.

Note that these data are not included in the analysis. The model prediction

mismatches with the real data, while the bias-corrected prediction of reality gives

prediction that is much closer to the real data. The uncertainty bands of bias-

corrected prediction of reality are also wider.
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Figure 4.7: Pure model prediction for Platform E (in the upper panel) and
Bias-corrected prediction of reality for Platform E (in the lower panel). The
posterior mean curves are plotted in solid black lines; the 90% uncertainty bands
are plotted in dashed black lines; the original field data are plotted in the orange
lines on each of the figures.
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Chapter 5

Emulating Computer Models by

Dynamic Linear Models

Dynamic linear models (DLMs) are powerful tools for analyzing time series pro-

cesses. Modeling complex computer systems by DLMs is appealing when the

analysis aims at understanding the underlying stochastic structure of the sys-

tems. Typical applications arise in environmental science, where data is usually

stochastically structured. Many other applications can be found ranging from

engineering to biological systems. The input parameters to these systems, in

practice, can be time dependent. But for simplicity, we restrict attention to the

simple case where they do not vary over time.

The approach considered here for emulating such systems is to combine a

Bayesian multivariate dynamic linear model with Gaussian Processes defined on

the input parameter space of the computer model. We apply the approach to

some simulated data, based on data from a real computer model.

5.1 Bayesian Multivariate Dynamic Linear Model

West and Harrison (1997) gives a comprehensive discussion of Bayesian Dynamic

Linear Models. The focus of this chapter is the Multivariate normal DLM, provid-

ing a the joint stochastic structure for multiple series. Letting Y t = (Yt1, . . . , Ytr)
′

be the vector of observations (obtained at time t, t = 1, . . . , T ) on the r studied
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series, the DLM is defined by a quadruple,

{F , G, V , W }t = {F t, Gt, V t, W t} .

Here, F t is a n×r dynamic regression matrix; Gt is a n×n state evolution matrix;

V t is a r× r observational variance matrix; and W t is a n×n evolution variance

matrix. Correspondingly, we can represent the model in terms of the state-space

model,

Observation: Y t = F
′
tθt + νt , νt ∼ N(0, V t) ,

Evolution: θt = Gtθt−1 + ωt , ωt ∼ N(0, W t) .

In the state-space model, θt is the n-dimensional state vector. The sequence {νt}
is independent of {ωt}; for t 6= t

′
, νt is independent of νt′ and ωt is independent

of ωt′ .

Define Dt = {Y t, Dt−1}, the information set at time t. D0 is the initial

information set. Suppose that the prior distribution for the state vector θ0 is,

θ0 | D0 ∼ N(m0, C0) .

West and Harrison (1997) gives the one-step forecast and posterior distributions,

for each t, as follows, based on the forward filtering algorithm:

(a) Posterior at t− 1:

(θt−1 | Dt−1) ∼ N(mt−1, Ct−1) .

(b) Prior at t:

θt | Dt−1 ∼ N(at, Rt)

where

at = Gtmt−1 and Rt = GtCt−1G
′
t + W t .
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(c) One-step forecast:

(Y t | Dt−1) ∼ N(f t, Qt) ,

where

f t = F
′
tat and Qt = F

′
tRtF t + V t .

(d) Posterior at t:

(θt | Dt) ∼ N(mt, Ct) ,

with

mt = at + Atet and Ct = Rt −AtQtA
′
t ,

where

At = RtF tQ
−1
t and et = Y t − f t .

5.2 Modeling Complex Computer Model Out-

puts

The goal is to develop methodology to model the time series data generated by a

complex computer system. Figure 5.1 presents time series data of this type. Each

time series in the figure is obtained by running the computer model at an input

value z, specified to the left of the sequence. Each sequence contains observations

at T = 3000 consecutive time points. The details of this data are discussed in

Appendix D.

Let y(z, t) represent the computer model output at input z and time t (t =

1, . . . , T ). Define Y 1:t(z) = (y(z, 1), . . . , y(z, t))
′
. The first six time series (blue

colored) in Figure 5.1 are obtained respectively at inputs z1 = 0.25, . . . , zn = 0.75.

In the following analysis, we use data Y 1:T (zi), i = 1, . . . , n, to build the DLM
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model, and predict the time series for an untried z0 = 0.5. The result will be

compared with the real computer model output at z0, shown as the red colored

sequence in Figure 5.1.

Figure 5.1: The time series outputs of a computer model obtained by simulation
at various input values specified at the beginning of each series.

5.2.1 The emulator

The statistical model we will use to emulate the computer model is

y (z, t) =

p∑
j=1

φt,jy(z, t− j) + εt(z) , (5.1)

where εt(z) ∼ GP(0, vtCorr(·, ·)) with the power exponential correlation defined

as Corr(z, z
′
) = exp(−∑

i βi | zi − z
′
i |αi). The time-varying autoregressive

coefficients, Φt = (φt,1, . . . , φt,p)
′
, are modeled as

Φt = Φt−1 + wt , wt ∼ N(0, W t) .
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Φ0, vt, W t, α and β are unknown parameters. We will specify their prior distri-

butions in Section 5.2.2.

Note that according to the above model, the distribution of data observed at

z1, . . . , zn, given Φ, is




y(z1, t)
...

y(zn, t)


 =




y(z1, t− 1) . . . y(z1, t− p)
...

. . .
...

y(zn, t− 1) . . . y(zn, t− p)







φt,1
...

φt,p


 +




εt(z1)
...

εt(zn)


 ,

where (εt(z1), . . . , εt(zn))
′ ∼ N(0, vtΣ) with Σi,j = Corr(zi, zj). This corresponds

to a multivariate DLM, concerning the state vector {Φt},

{Ft, Gt, V t,Wt}T
t=1 ,

where

F
′
t =




y(z1, t− 1) . . . y(z1, t− p)
...

. . .
...

y(zn, t− 1) . . . y(zn, t− p)


 ,

Gt is the identity matrix of size p, and V t = vtΣ.

The above model can be partly justified as an approximation to the GaSP

methodology. Let us start with the Gaussian Response Surface Approximation

(GaSP) methodology for functional data with a time component that was pro-

posed in Bayarri et al. (2005b). They put a prior distribution for y(z, t) as

y (z, t) ∼ GP

(
µ,

1

λ
Corr (·, ·)

)
,

where Corr (·, ·) is the correlation function defined on the combined space of z

and t. A frequently used correlation function is the separable power exponential
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function, which defines the correlation between the random variables y(z, t) and

y(z
′
, t
′
), Corr

(
y(z, t), y(z

′
, t
′
)
)
, as

exp

(
−

d∑
i=1

βi | zi − z
′
i |αi

)
exp

(
−β(t) | t− t

′ |α(t)

)
.

In the definition of the correlation function, d is the dimension of the input vector

z and {αi, βi, i = 1, . . . , d} and {α(t), β(t)} are hyper-parameters.

For any finite inputs z1, . . . , zn and time series data at those inputs, suppose

that t = 1, . . . , T are the time grid points at which we observe each time series.

Let Σ1 be the n × n correlation matrix defined on the z space, and Σ2 be the

T × T correlation matrix on the t space,

(Σ1)k,l = exp

(
−

d∑
i=1

βi | zki − z
′
li |αi

)
,

(Σ2)k,l = exp
(
−β(t) | tk − t

′
l |α(t)

)
.

We have



Y 1:T (z1)
...

Y 1:T (zn)


 ∼ N

(
µ× 1,

1

λ
Σ1 ⊗ Σ2

)
. (5.2)

Letting yt = (y (z1, t) , . . . , y (zn, t))
′
, we next approximate the model in Equation

(5.2) by a DLM.

Let f(yT , yT−1, . . . , y1 | θ) be the joint distribution of yT , yT−1, . . . , y1 which

is defined in Equation (5.2), where θ are the hyper-parameters of the model. The
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joint distribution can be represented as the product of a sequence of conditionals,

f(yT , yT−1, . . . , y1 | θ)

=

(
T∏

i=p+1

f
(
yi | yi−1, . . . , y1, θ

)
)

f
(
yp, yp−1, . . . , y1 | θ

)
, (5.3)

where p is an integer ranging from 1 to T − 1. The power exponential correlation

is decaying very fast. Suppose after a maximum lag of p time points, that the

correlations on t become negligible. Then we have

f
(
yt | yt−1, . . . , y1, θ

) ≈ f
(
yt | yt−1, . . . , yt−p, θ

) ∀t > p . (5.4)

The right hand side of Equation (5.4) is a multivariate normal distribution that

truncates the original one (given on the left side of that equation) up to step

p. Using properties of the Kronecker product given in Appendix A, we have the

mean vector of the distribution on the right hand side of Equation (5.4) is

E
(
yt | yt−1, , . . . , yt−p, θ

)
=

(
ρt,t−1:t−p ⊗ Σ1

)′ (
Σ̃2 ⊗ Σ1

)−1




yt−1
...

yt−p




=
(
ρ
′
t,t−1:t−pΣ̃

−1
2

)
⊗ In×n




yt−1
...

yt−p


 , (5.5)

where ρ(k, l) = exp
(−β(t) | k − l |α(t)

)
, ρt,t1:t2 = (ρ(t, t1), . . . , ρ(t, t2))

′
, and Σ̃2

is a p × p matrix with (k, l) element equal to ρ(k, l). Letting (φ1, . . . , φp) =

ρ
′
t,t−1:t−pΣ̃

−1
2 , Equation (5.5) yields the autoregressive mean vector in Equation

(5.1). The covariance matrix of the truncated distribution in Equation (5.4),
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Cov(yt | yt−1, . . . , yt−p, θ), is

1

λM
Σ1 − 1

λM
(ρ

′
t,t−1:t−p ⊗ Σ1)

′
Σ̃−1

2 ⊗ Σ−1
1

(
ρ
′
t,t−1:t−p ⊗ Σ1

)

=
1

λM

[
1− (

ρt,t−1:t−p

)′ (
Σ̃2

)−1 (
ρt,t−1:t−p

)]
Σ1 . (5.6)

Defining vt = 1
λM

[
1− (

ρt,t−1:t−p

)′ (
Σ̃2

)−1 (
ρt,t−1:t−p

)]
results in a covariance ma-

trix of the desired form vtΣ1, where Σ1 does not depend on t.

Combining Equation (5.5) and Equation (5.6) leads to

y (z, t) =

p∑
j=1

φjy(z, t− j) + εt(z) , εt(z) ∼ GP(0, vtCorr(·, ·)) . (5.7)

This is generalized to be a non-stationary time series by allowing time-varying

autoregressive coefficients and time-varying variances, resulting in the model in

Equation (5.1).

5.2.2 The prior distributions

To complete the model specifications, we need to specify the prior distributions

for {Φ0}, {W t, t = 1, . . . , T}, {vt, t = 1, . . . , T} and {αi, βi, i = 1, . . . , d}.

The prior distributions for W t and vt are specified sequentially, by employing

two discounting factors δ1 and δ2,

v−1
t | Dt−1 ∼ Gamma(δ1nt−1/2, δ1dt−1/2) , (5.8)

and

W t | Dt−1 = (1− δ2)Ct−1/δ2 . (5.9)
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The values for (n0, d0,m0, C0) will be pre-specified. Ct−1 = Cov (Φt−1 | Dt−1) can

be calculated by the forward filtering algorithm. {nt} and dt will be updated

sequentially. The updating equation is given in Section 5.3.

For the spatial parameters α = {αi} and β = {βi}, we use the Jeffereys’ rule

prior π (α, β) discussed in Berger et al. (2001) and Paulo (2005),

π (α, β) ∝| I (α, β) |1/2∝
√
| tr(Σ−1Σ̇)2 | ,

where I (α, β) is the Fisher information matrix, and Σ̇ = ∂Σ
∂(α,β)

.

5.3 MCMC

An MCMC method is used to draw joint samples from the posterior distribu-

tions π ({v1, . . . vT}; {Φ1, . . . , ΦT}; {α, β} | DT )). The MCMC algorithm has the

following three steps within each iteration.

At iteration i:

Step 1: Sample
(
{α(i), β(i)} | DT , {v(i−1)

1 , . . . , v
(i−1)
T }, {Φ(i−1)

1 , . . . ,Φ
(i−1)
T }

)
by the Metropolis-

Hastings algorithm. We fix α at 2 for the analysis of the example data in

Figure 5.1.

Step 2: Sample
(
{v(i)

1 , . . . v
(i)
T } | DT , {α(i), β(i)}

)
. This is complicated and will be

described later.

Step 3: Sample
(
{Φ(i)

1 , . . . ,Φ
(i)
T } | DT , {v(i)

1 , . . . v
(i)
T }, {α(i), β(i)}

)
.

Given {vt}, make the draw Φ
(i)
T from (ΦT | DT ). The distribution (ΦT | DT )

is known after applying the forward filtering algorithm in Section 5.1,

(ΦT | DT , {v1, . . . , vT}) ∼ MVN (mT , CT ) .
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Then we make draws of Φ
(i)
t , t = T − 1, . . . , 1 recursively from

(Φt | DT , Φt+1, {v1, . . . , vT}) ∼ MVN ((1− δ2)mt + δ2Φt+1, (1− δ2)Ct) .

To describe the method to make draws from ({v1, . . . vT} | DT , {α, β}), we first

give in Theorem 5.1 the forward filtering algorithm for the model defined in Equa-

tion (5.1) with discounting updates for W t and vt in Equation (5.8) and Equation

(5.9).

Theorem 5.1. Suppose W t and vt follow the discounting relationship in Equation

(5.8) and Equation (5.9). Given Σ and (m0, C0, s0, n0, d0), the forward filtering

algorithm for the DLM in Equation (5.1) is as follows:

With m0, C0, s0, n0, d0,

(a). Posterior at t− 1: (Φt−1 | Dt−1) ∼ N(mt−1, Ct−1).

(b). Prior at t: (Φt | Dt−1) ∼ N(at, Rt), with

at = mt−1, Rt = Ct−1/δ2 .

(c). One-step forecast: (yt | Dt−1) ∼ N(f t, Qt), with

f t = F
′
t at = F

′
t mt−1; Qt = F

′
t Ct−1Ft/δ2 + st−1Σ .

(d). Posterior at t: (Φt | Dt) ∼ Tnt(mt, Ct), and, (V −1
t | Dt) ∼ G(nt/2, dt/2),

with

At = RtFtQ
−1
t = Ct−1FtQ

−1
t /δ2 ,

where mt = mt−1 + Atet, et = yt−F
′
t mt−1, Ct = st

st−1

(
Ct−1

δ2
− AtQtA

′
t

)
, and

nt = δ1nt−1 + n; dt = δ1dt−1 + st−1e
t
tQ

−1
t et . (5.10)
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Proof. See West and Harrison (1997) for (a), (b), (c). We thus need only to derive

(d).

At time t, the prior for v−1
t is

(
v−1

t | Dt−1

) ∼ Gamma(δ1nt−1/2, δ1dt−1/2) .

Coupled with the likelihood

(
et | Dt−1, v

−1
t

) ∼ N(0, Qt) ,

we have

π(v−1
t | Dt) ∝ 1

| vtQt |1/2
exp(−st−1

vt

εt
tQ

−1
t εt)

× (v−1
t )δ1nt−1/2−1 exp(−δ1dt−1v

−1
t /2) .

This implies

(v−1
t | Dt) ∼ Gamma

(
(n + δ1nt−1) /2,

(
δ1dt−1 + st−1ε

t
tQ

−1
t εt

)
/2

)
.

Consequently, we have

nt = δ1nt−1 + n;

dt = δ1dt−1 + st−1e
t
tQ

−1
t et;

st = dt/nt .

Therefore, after applying the forward filtering algorithm (assuming unknown {vt})
in Theorem 5.1, we obtain the posterior distribution of

(
v−1

T | DT

)
,

(
v−1

T | DT , {α, β}) ∼ Gamma (nT /2, dT /2) . (5.11)
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We make the draw v
(i)
T according to Equation (5.11), and draw v

(i)
t , t = T−1, . . . , 1

recursively,

1

v
(i)
t

=
δ1

v
(i)
t+1

+ Gamma ((1− δ1)nt/2, dt/2) .

At the end of the MCMC algorithm, we obtain the posterior draws

{v(i)
1 , . . . , v

(i)
T ;Φ

(i)
1 , . . . ,Φ

(i)
T ; α(i), β(i); i = 1, . . . N} .

Inference in the following section is based on this set of random draws.

5.4 Results

p is chosen to be 20 for the example data. We run the Markov Chain for 200000

iterations and keep one sample after every 100 steps. The first 1000 iterations

are treated as burn-in and are therefore discarded in the following inferences.

Figure 5.2 gives the trace plot, prior distribution (up to a normalizing constant),

posterior distribution, and autocorrelation function for β. For the purpose of

making comparisons between the prior and the posterior distribution for β, we

highlight with a red line the prior distribution in the interval (1, 2), within which

the posterior draws are concentrated.

Suppose
{

φ
(i)
t,j

}
is the i’th MCMC draw for the TVAR coefficients {φt,j}. We

calculate the posterior mean φ̂t,j and v̂t by

φ̂t,j =
1

N

N∑
i=1

φ
(i)
t,j , v̂t =

1

N

N∑
i=1

v
(i)
t .

Figure 5.3 and Figure 5.4 show the point-wise posterior means for φ
(i)
t,j and {vt},

respectively.
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Figure 5.2: Upper-left: trace plot of the MCMC samples for β; Upper-Right:
autocorrelation functions of the MCMC samples for β; Lower-Left: posterior dis-
tribution of β; Lower-Right: prior density of β.

The prediction of the computer model output at an untried input value x is

obtained by spatial interpolation. Letting et(zi) = yt(zi)−
∑p

j=1 yt−j(zi)φt,j and

ρz = (Corr(z, z1), . . . ,Corr(z, zn))
′
, we have

(y(z, t) | Y t−1:t−p(z), Data, {Φi, vi, i = 1, . . . T}, {α, β}) ∼ N
(
µt(z), σ2

t (z)
)

.

(5.12)

The mean and the variance in the above normal distribution is given by

µt(z) =

p∑
j=1

y(z, t− j)φt,j + v−1
t ρ

′
zΣ

−1




et(z1)
...

et(zn)


 ,

and

σ2
t (z) = vt

(
1− ρt

zΣ
−1ρz

)
.
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Figure 5.3: Posterior means for the TVAR coefficients {φt,j}.

Figure 5.4: Posterior means for the time varying variances {vt}
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Equation (5.12) defines an emulator for the computer model. This emulator is an

interpolator. If z ∈ {z1, . . . , zn}, we have µt(z) = yt(z) and σ2
t (z) = 0.

Figure 5.5 gives the result for emulating the computer model output at z0 =

0.5, with the example data shown in Figure 5.1. We only show the result at the

time intervals (1100, 1300) and (2700, 2900), since the data is exhibiting interesting

features. The posterior predictive curve is colored in green, with pointwise 90%

confidence bands plotted in red. For comparison, we plot the original data as the

blue curve in the picture. The prediction given by the DLM emulator indeed is

quite close to the real data.

Figure 5.5: Posterior predictive curve (green), true computer model output (red),
and 90% piece-wise predictive intervals for spatial interpolation with input value
x = 0.5.
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Appendix A

Kronecker Product

The Kronecker product of two matrices A = (aij)i,j and B = (bij)i,j is defined as,

A⊗B =




a11B · · · a1nB
...

. . .
...

am1B · · · amnB


 .

It has the following properties.

1. (A⊗B)−1 = A−1 ⊗B−1 if A and B are both invertible.

2. |A⊗B| = |A|d2|B|d1 , where d1 and d2 are the dimensions of A, B.

3. (A⊗B)(C ⊗D) = (AC)⊗ (BD) if the dimensions are matched.

If we assume A = U1U
′
1, B = U2U

′
2, then (A⊗B) = (U1 ⊗ U2)(U1 ⊗ U2)

′
.
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Appendix B

Data Registration and Wavelet

Decomposition in Chapter 3

For the wavelet representations of the output curves it will be important for the

same wavelet basis elements to simultaneously represent the important features of

all of the curves. In the test bed problem, the heights of the peaks and valleys of

the curves from the field data are of primary importance, and their locations are

not the same across the curves, due to random fluctuations in the tests. Thus we

first align the curves so that the major peaks and the major valleys occur at the

same location. In other applications, alignment would likely be based on other

key features of the curves. (In the test bed, the timing of the major events is not

of concern - only the forces at these events are of interest. If it were important

for the computer model to accurately reflect timing, as in the analysis of airbag

deployment in Bayarri et al. (2005b), this mode of registration could not be used.)

We did not try to align the curves from the computer model runs, since varia-

tion in these curves could not be ascribed to random fluctuation. (One might think

that the computer model curves would be automatically aligned but, surprisingly,

in the test bed they did show some misalignment, perhaps due to differences in

the damping parameters.) We construct a reference curve (for alignment of the

field curves) by averaging the model-run curves and use piecewise linear transfor-

mation to align the peaks and valleys of the field curves to this reference curve.

The details are as follows:
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Step 1. Construct a dyadic grid (points of the form j/2q on the interval where the

function is defined. For the test bed, the interval [0, 65] covered the range of

importance and q = 12). For each computer run extract the output values

on the dyadic grid. Construct a pseudo output for points not in the grid by

linear interpolation. Henceforth treat the pseudo outputs as if they are the

actual outputs.

Step 2. From the K computer runs (there K = 65 in the test bed, define the refer-

ence curve as ȳM(t) = 1
K

∑K
k=1 yM(xk, uk; t).

– For the first major event, located in the region 6 < t < 11, define

∗ A = location (value of t) of the maximum of the reference curve

ȳM(t);

∗ AF
r = location of the maximum of yF

r ;

∗ a = location of minimum of ȳM(t);

∗ aF
r = location of minimum of yF

r ;

– For the second major event, located in the region 37 < t < 41, define

B, BF
r , b, bF

r analogously. Assume a < A < b < B.

Step 3. For each r, match aF
r , AF

r with a,A by transforming t in [aF
r , AF

r ] to

t′ = a + (t− aF
r )

A− a

AF
r − aF

r

.

Now define the registered yF
r on the interval [a,A] as registered yF

r (t′) =

original yF
r (t), where t′ and t are connected as above.
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Step 4. Assume that b < B. As in Step 3, register yF
r on the interval [AF

r , bF
r ] by

mapping [AF
r , bF

r ] into [A, b] via t′ = A+(t−AF
r ) b−A

bF
r −AF

r
. Similar registrations

are done for the intervals [0, aF
r ], [bF

r , BF
r ] and [BF

r , 65].

Figure 3.1 shows the registered data for Site 1 of the suspension system.

“Time” in the figures is not literal time, but is a convenient scaling of the re-

aligned time.

The wavelet decompositions are described in part in Section 3.2.2. The ba-

sis functions are such that at “level” 0 there is a scaling constant and for level

j = 1, . . . , 12 there are 2j−1 basis functions. To balance the need for approxima-

tion accuracy with the need to minimize the number of terms for computational

feasibility, we considered each model-run and field curve and retained all coeffi-

cients at levels 0 through 3; for levels j > 3, we retained those coefficients that, in

magnitude, were among the upper 2.5% of all coefficients at all levels for the given

function, according to the R wavethresh thresholding procedure. We then took the

union of all resulting basis functions for all the model-run and field curves. For

the test bed there were 231 retained elements for the output from Site 1 on the

system, and 213 for the output from Site 2. The combined (from both sites) num-

ber of retained elements was 289 and we used these for all analyses.The indices

attached to these 289 retained basis elements are denoted by I.
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Appendix C

Supplementary details for Chapter 4

C.1 The Example Data

The vehicle suspension system A and vehicle suspension system F correspond to

the two systems in Chapter 3. We first generate the computer model runs for

system B, C, D, E conditional on the runs of system A and F.

In Chapter 3, we have obtained ωM
i (xA, δj, uj) and ωM

i (xF , δj, uj). The esti-

mates of the GP parameters for system A is also available as

θ̂
A

i = {µ̂M
i , λ̂M

i , α̂i, β̂i} .

We set φi = 0.5, µi = µ̂M
i , σ2M

i = 1/λ̂M
i and

βu
ik = β̂ik , αu

kl = α̂ik , k = 1, 2 ,

βδ
i(k−2) = β̂ik , αδ

i(k−2) = α̂ik , k = 3, . . . , 9 ,

βx
ik = φiβ

δ
ik , αx

ik = αδ
ik , k = 1, . . . , 7 .

Consequently, for the ith wavelet coefficients, we define the correlation functions

in Equation 4.11 and Equation 4.12.

Assume that

ωM
i (x, δ, u) ∼ GP

(
µi, σ

2M
i CorrM1

i (·, ·)CorrM2
i (·, ·)) . (C.1)

Letting ΣM1
i and ΣM2

i be the resulting correlation matrix, ωS
i be the vector of

ωM
i (xS, δj, uj)(S = A, . . . , F ), and

ωi =
(
(ωA

i )
′
, (ωB

i )
′
, (ωC

i )
′
, (ωD

i )
′
, (ωE

i )
′
, (ωF

i )
′
)′

,
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we have

ωi ∼ N
(
µM

i 1, σ2M
i ΣM1

i ⊗ ΣM2
i

)
.

As a result, given ωA
i and ωF

i ,

ωB−E
i =

(
(ωB

i )
′
, (ωC

i )
′
, (ωD

i )
′
, (ωE

i )
′
)′

is distributed as a multivariate normal distribution with mean vector

µ14n×1 + A12A
−1
22 ⊗ In×n

(
ωA

i − µ1n×1

ωF
i − µ1n×1

)
,

and covariance matrix

σ2M
i (A11 − A12A

−1
22 A

′
12)⊗ ΣM2

i .

The matrices A11, A12, A22 are sub-matrices of ΣM1
i ,

A11 =



CorrM1

i (xB, xB) . . . CorrM1
i (xB, xE)

...
. . .

...

CorrM1
i (xE, xB) . . . CorrM1

i (xE, xE)


 ,

A22 =

(
CorrM1

i (xA, xA) CorrM1
i (xA, xF )

CorrM1
i (xF , xA) CorrM1

i (xF , xF )

)
,

A12 =



CorrM1

i (xB, xA) CorrM1
i (xB, xF )

...
...

CorrM1
i (xE, xA) CorrM1

i (xE, xF )


 .

We generate the wavelet coefficients ωB−E
i from the above conditional distribution.

For the field runs, we first generate bi(x
S) for S ∈ {A,B,C,D,E, F} (i ∈ I).

We first set

bi(x
A) =

1

n11

n11∑
r=1

ωir(x
A, δ∗11)−

1

n

n∑
j=1

ωM
i (xA, δj, uj) ,
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and

bi(x
F ) =

1

n61

n61∑
r=1

ωir(x
F , δ∗61)−

1

n

n∑
j=1

ωM
i (xF , δj, uj) .

Letting bi = (bi(x
A), . . . , bi(x

F ))
′
, we assume

bi ∼ N

(
0,

σ2M
i

25
ΣM1

i

)
.

We generate bi(x
B), . . . , bi(x

E) from its conditional distribution given bi(x
A) and

bi(x
F ).

For each individual vehicle with nominal xS and manufacturing variation δ∗ij,

we generate

ωB
i (xS, δ∗ij) = bi(x

S) + N(0, σ2M
i /25) ,

and

ωF
i (xS, δ∗ij) =

1

n

n∑

l=1

ωM
i (xS, δl, ul) + ωB

i (xS, δ∗ij) + N(0, σ̂2F
i ) ,

where

σ̂2F
i =

n11∑
r=1

(ωir(x
A, δ∗11)− ω̄i(x

A, δ∗11))
2/(n11 + n61 − 2)

+

n61∑
r=1

(ωir(x
F , δ∗61)− ω̄i(x

F , δ∗61))
2/(n11 + n61 − 2) .

At the end, we generate ωB−E
i for the computer model runs and ωF

i (xS, δ∗ij)

for the field runs (i ∈ I and S ∈ {A, . . . , E}). Reconstructing these wavelet

coefficients produces the functional curves in Figure 4.1.
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C.2 The Iterative Maximum Likelihood Estimate

Algorithm

For simplicity, we use the following notation:

(µk, σ
2
k, ξk) =

(
µk, σ

2
k, φk, {αδ

kl, β
δ
kl, l = 1, . . . , p1}, {αu

kl, β
u
kl, l = 1, . . . , p2}

)
.

The algorithm has two steps. In the first step, we estimate (σ2
k, ξk) by maximizing

the integrated log-likelihood log LI(σ2
k, ξk; a

M
k ),

log LI(σ2
k, ξk; a

M
k ) ∝ log

∫
L

(
µk, ξk; a

M
k

)
dµk

= −mn− 1

2
log(σ2

k)−
1

2
log | Σk | −1

2
log | 1′Σ−1

k 1 | − 1

2σ2
k

S2
ξk

,

where S2
ξk

= (aM
k )

′
QaM

k , Q = (Σ1 ⊗ Σ2)
−1 P , and P = I−1(1

′
(Σ1 ⊗ Σ2)

−1 1)−1
′
(Σ1 ⊗ Σ2)

−1.

Then, in the second step, we estimate µk given ξ̂k by

µ̂k =
1
′
Σ−1

1 ⊗ Σ−1
2 aM

k(
1
′
Σ−1

1 1
) (

1
′
Σ−1

2 1
) .

The first step is carried out by using Fisher’s scoring method (see Berger et al.

(2001) and Paulo (2005)). We first re-parametrize as

η(ξk) =

(
log

(
φk

1− φk

)
, log

(
αk − 1

2−αk

)
, log (βk) , log

(
αu

k − 1

2−αu
k

)
, log (βu

k)

)
.

Fisher’s scoring method yields, at the l’th iteration,

η(l+1) = η(l) + λ
(
I
(
η(l)

))−1 ∂ log LI
(
η; aM

k

)

∂η

∣∣∣∣
η=η(l)

,

σ2(l+1) =
1

mn− 1
S2

ξ(l+1) ,
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Figure C.1: The maximum log-likelihood of the first eigen-coefficient.

where
∂ logLI

(η;aM
k )

∂η
and I (η) can be computed (Berger et al., 2001) as

d

dηi

log LI
(
η; yM

)
=

1

2
yMtQWiy

M − 1

2
tr (Wi) ,

I(η) =

(
1

2
tr (WiWj)

)

i,j

,

where Σ = Σ1⊗Σ2, Σ̇i = d
dηi

Σ, and Wi = Σ̇iQ. Note that Σ̇i = Σ̇i
1⊗Σ2 +Σ1⊗ Σ̇i

2.

As a result, we have

Wi =
((

Σ̇i
1Σ

−1
1

)
⊗ In + Im ⊗

(
Σ̇i

2Σ
−1
2

))
P .

We ran the algorithm for 30 iterations for every coefficient. After 30 iterations,

the maximum log-likelihoods for all the coefficients have converged. Figure C.1

shows the maximum log-likelihood of the first coefficient, which stabilizes after 15

steps.
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Appendix D

Supplementary details for Chapter 5

In Figure 5.1, the data with z = 0.5 (in red) is obtained from a real engineering

system. This data is observed at T = 3000 time points. We use Y (0.5) =

(y1(0.5), . . . , yT (0.5)) to represent the whole sequence. We choose p = 20, α = 2,

and β = 1.6. Given Y (0.5) and its fit {φt,j, vt, j = 1, . . . , p}, we simulate the data

for Y (z) at z = 0.25, . . . , 0.75 as follows:




yt(z1)
yt(z2)

. . .
yt(zn)


 | {yt−1(zi)}, {Φt}, yt(z) ∼ MVN


µt =




µt(z1)
µt(z2)

. . .
µt(zn)


 , vtΣ̃


 ,

where

µt(zi) =
∑

j

φt,jYt−j(zi) + v−1
t ρ

′
(

y(0.5, t)−
∑

j

φt,jyt−j(0.5)

)
,

and

Σ̃ = Σ− ρρ
′
.

Σ is the n×n matrix with (i, j) element (Σ)i,j = Corr(zi, zj). ρ is an n×1 vector

with i’th element equal to Corr(0.5, zi).
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