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Abstract

This thesis is a collection of studies in the field of multivariate Bayesian statistics.

In the first part we concentrate on model uncertainty in factor models by propos-
ing a novel reversible jump MCMC algorithm that accounts for model uncertainty
directly in the model setting. For comparison we consider a variety of strategies to
compute normalizing constants. We study briefly cases where little prior informa-
tion is available and default analysis must take place. We end with some simulated

examples and a real application.

In the second part we use factor models to describe the covariance structure
of time series, with special attention to financial time series where the factor vari-
ances have a multivariate stochastic volatility structure. We extend previous work
by allowing the factor loadings, in the factor model structure, to have a time-varying
structure. Simulation-based sequential analysis techniques are used in some real data

applications, where predictive and financial performance are the main interest.

In the third and final part of the thesis, we propose a new way of combining infor-
mation from related studies. We extend traditional random effects models to random
measure models by allowing parameters in the model to be partially described by a
probability measure common to all studies, and partially by a probability measure
that is specific to each study. Both measures, common and specific, are represented
by mixtures of normals. First we consider a model where the numbers of components
in the mixtures are fixed; then we extend the model to an encompassing model where
the number of components are treated as random in a second stage, in which case
a reversible jump MCMC algorithm is needed to assess the posterior probability for
the competing models. The motivation comes from meta analysis over related cancer

studies.
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Chapter 1

Introduction

The last decade has witnessed an unprecedented increase in the interest in the
Bayesian paradigm. The Bayesian approach to statistical inference has been de-
veloped since quite a while, at least since the thirties, due to researchers like Bruno
de Finetti, Harold Jeffreys and Leonard Savage. However, despite the fact that the
Bayesian approach is intuitively simple, only recently, with the flourishing of power-
ful computers, has it gained researchers’ and pratictioners’ full attention. Because of
such technology, in the late eighties and early nineties many statistical researchers
became interested in Bayesian statistics and more specifically in Monte Carlo sim-
ulation. Markov chain Monte Carlo (MCMC) simulation made many practical and
complex statistical problems accessible, and most importantly, is helping to spread
the Bayesian viewpoint to all areas of knowledge. This thesis is a collection of stud-
ies in the field of multivariate Bayesian statistics, been exposed above. The thesis is
divided into three parts, and we will briefly explain each of them.

The first part, which comprises chapters 2, 3 and 4, is focused on model un-
certainty in factor models. Factor models have received enormous attention since
the beginning of the century, but only recently have Bayesian researchers introduced

sound inference techniques. Literature review, modeling issues and computing in



factor models are presented in Chapter 2. In Chapter 3 we propose a novel MCMC
scheme that accounts for model uncertainty directly in the model setting. Also in
Chapter 3 we apply to factor models a variety of recently developed strategies to com-
pute normalizing constants required in Bayesian model assessment. We study briefly,
in Chapter 4, cases where little prior information is available and default analysis

must take place. We end with some simulated examples and a real application.

In the second part, correspoding to Chapters 5 and 6, we use factor models to
describe the covariance structure of time series. More specifically, we concentrate
on financial time series where the factor variances have a multivariate stochastic
volatility structure. In Chapter 5, we extend previous work by allowing the factor
loadings, in the factor model structure, to have a time-varying structure. Models
are compared through their predictive and financial performance, the latter based on
portfolio assessment. Simulation-based sequential analysis techniques are introduced
in Chapter 6. In the two chapters, a real data application is extensively used for

motivation and discussion.

Finally, Chapter 7 is part three of the thesis. We propose a new way of combin-
ing information from related studies. We extend traditional random effects models
to random measure models by allowing parameters in the model to be partially de-
scribed by a probability measure common to all studies, and partially by a probability
measure that is specific to each study. Both measures, common and specific, are rep-
resented by mixtures of normals. The numbers of components in the mixtures are
fixed in a first model and treated as random in an extended model, in which case a
reversible jump MCMC (RJMCMC) is needed to assess the posterior probability for

the competing models. The motivation comes from analyzing related cancer studies.



Chapter 2

Factor analysis

2.1 Introduction

Methodological innovations and real-world applications of factor analysis, and latent
structure models more generally, have developed rapidly in recent years, partly due to
increased access to appropriate computational tools. In particular, iterative MCMC
simulation methods have very naturally opened up access to fully Bayesian treatments
of factor analytic models, as developed and applied in, for example, Geweke and Zhou
(1996), Polasek (1997), Arminger and Muthén (1998) and, with extensions to dynamic
factor components in financial time series modelling (Aguilar and West, 2000; Pitt and
Shephard, 1999b). The growing range of developments and creative applications in
increasingly complex models, and with larger data sets in higher dimensions, justifies
the view that computational advances have been critically enabling; the near future
will very likely see much broader use of factor analysis in routine applied statistical
work.

The above studies, and others, explore fully Bayesian inference in latent factor
models in which the number of factors is a modelling choice; applied work typically

studies sensitivity of predictions and variations/ambiguities of interpretations as the



number of factors is varied as a control parameter. Formal inference on the number of
factors itself has been relatively ignored in the Bayesian literature, though there are
ranges of standard likelihood and frequentist methods available. Some key additional
references, Bayesian and non-Bayesian, include (in order of appearance) Lawley and
Maxwell (1963), Joreskog (1967), Martin and McDonald (1981), Bartholomew (1981),
Press (1982) (chapter 10), Lee (1981), Akaike (1987), Bartholomew (1987), Press and
Shigemasu (1989), Press and Shigemasu (1994). The book by Bartholomew (1987)

is an excellent overview of the field up to about ten years ago.

In this chapter we formally introduce the factor model along with some of its basic
properties. Section 2.2 introduces the basic notation and the probabilistic framework
in a k-factor model. Sections 2.3 and 2.4 discuss identification issues, invariance to
linear transformation and the independence assumption of common factors in some
details. We see, for instance, that assuming a nondiagonal covariance structure for
unobserved common factor scores is irrelevant from an estimation viewpoint. The
incorporation of prior information is touched in Section 2.5, while posterior analysis

through Markov chain Monte Carlo is introduced in Section 2.6.

2.2 Basic model form

Data on m related variables are considered to arise through random sampling from
a zero-mean multivariate normal distribution denoted by N(0,€2) where € denotes
the m x m non-singular variance matrix !. A random sample of size T is denoted by
{y,,t = 1,...,T}. For any specified positive integer k < m, the standard k—factor
model relates each y, to an underlying k—vector of random variables f,, the common
factors, via

Yy, =Bf te (2.1)

1See Appendix A for the definition and some properties of the multivariate normal distribution.




where

e the factors f, are independent with f, ~ N (0, I}),

e the ¢ are independent normal m—vectors with €, ~ N(0,3), and

3 = diag(o?,---,02),

m

e ¢, and f, are independent for all ¢ and s,

e (3 is the m x k factor loadings matrix.

Under this model, the variance-covariance structure of the data distribution is con-

strained; we have Q = V(y,|Q) = V(y,|3, X) given by
Q=88+ (2.2)

The model implies that, conditional on the common factors, the observable variables
are uncorrelated: hence the common factors explain all the dependence structure
among the m variables. For any elements y;; and y;; of y,, we have the characterising

moments:

Var(yit|/37 f7 2) = 0'7;2, VZ,
Cov(yit7 yjt|/87 f7 2) - 0, VZ,],Z 7é j,

k
Var(yit|/37 2) = Z /81,2l + 0.7227 VZ,

=1

k
cov(yir, yje| B, X) = Zﬁizﬁjz, Vi, j, 1 # J.
I=1

In practical problems, especially with larger values of m, the number of factors &

will often be small relative to m, so that much of the variance-covariance structure is

2

i

explained by the common factors. The uniquenesses, or idiosyncratic variances, o



measure the residual variability in each of the data variables once that contributed

by the factors is accounted for.

The model (2.1) can be written as

y=Fp +e¢ (2.3)

" are matrices of

where y = (yy,- -, y7), F = (f1,---, fr) and € = (€1, €r)
dimension (T" x m), (T x k) and (T x m), respectively. The elements € and F are
mutually independent matrix variate normal random variables, as in Dawid (1981),
Press (1982) and West and Harrison (1997) 2. The notation, as in Dawid (1981), is

simply € ~ N (0, I, X). We then have densities
p(y|F,B, %) x |Z| T etr(—0.5%"e€) (2.4)
and, marginalising over F',
P(y|8. %) o |27 Zetr(-0.52"y'y) (2.5)

where etr(A) = exp(trace(A)) for any square matrix A. The likelihood function
(2.4) will be subsequently used in Gibbs sampling for the parameters of a factor
model with k fixed, whereas the likelihood form (2.5) will be extensively used in the
RJMCMC algorithms and other techniques that also treat uncertainty about k to be

presented in Chapter 3.

2.3 Model structure and identification issues

As is well-known, the k—factor model must be further constrained to define a unique
model free from identification problems. First we address the standard issue that

the model is invariant under transformations of the form 8* = 8P’ and f; = Pf,,

2See Appendix A for the definition and some properties of the matrix variate normal distribution.



where P is any orthogonal k x k matrix. There are many ways of identifying the
model by imposing constraints on 3, including constraints to orthogonal 8 matrices,
and constraints such that 'Y '3 is diagonal (see Seber (1984), for example). The
alternative preferred here is to constrain 8 to be a block lower triangular matrix,

assumed to be of full rank. That is,

B 0 0 e 0 0
Ba1 B2 0 e 0 0
P31 P32 P33+ 0 0
_ : : : .. : : 56
p Br-11 Br-12 Brk-13 - Br-1k-1 O (2:6)
Brkai  Br2  Brs - Brk—1 Brk
Bm,l Bm,Z Bm,?) e Bm,k—l Bm,k

where the diagonal elements (;; are strictly positive. This form is used, for example,
in Geweke and Zhou (1996) and Aguilar and West (2000), and provides both identifi-
cation and, often, useful interpretation of the factor model. In this form, the loadings
matrix has r = mk —k(k —1)/2 free parameters. With m non-zero o; parameters, the
resulting factor form of Q has m(k+1) — k(k — 1)/2 parameters, compared with the
total m(m+1)/2 in an unconstrained (or & = m) model. This leads to the constraint
that

m(m+1)/2—=m(k+1)+k(k—-1)/2>0 (2.7)

which provides an upper bound on k. For example, m = 6 implies £ < 3, m = 12
implies £ < 7, m = 20 implies k£ < 14, m = 50 implies £ < 40, and so on. Even
for small m, the bound will often not matter as relevant k£ values will not be so
large. In realistic problems, with m in double digits or more, the resulting bound
will rarely matter. Finally, note that the number of factors can be increased beyond
such bounds by setting one or more of the residual variances o; to zero. This is
similar to rank restrictions usually present in simultaneous equations estimation of
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econometric data. When £ is larger than the maximum number of factors we have

an overidentified model, in econometric terms, and 2 from equation 2.2 is not well

defined.

A question arises about the full-rank assumption for 8. This was addressed in
Geweke and Singleton (1980) who shown that, if 8 is rank deficient, then the model
is unidentified. Specifically, if 8 has rank r < k there exists a matrix @ such that
BQ =0, Q'Q = I and, for any orthogonal matrix M,

Q=pB'"+X=(B+MQ)(B+MQ)+ (X - MM). (2.8)

This translation invariance of €2 under the factor model implies lack of identification
and, in application, induces symmetries and potential multimodalities in resulting
likelihood functions. This issue relates intimately to the question of uncertainty of

the number of factors, discussed further below.

A final question concerns the ordering of the y; variables and the connection
between a chosen ordering and the specific form of the factor loading matrix above.
The order of variables is a modelling decision that has no effect on the resulting
theoretical model nor on predictive inferences under the model. Given the k-factor
model (2.1) specified and appropriate for the y with variables in a specific order,
alternative orderings are trivially produced via Ay, for some rotation matrix A.
Model (2.1) then transforms to a similar factor model for the reordered data Ay,
with the same latent factors but transformed loadings matrix AB. This new loadings
matrix does not have the lower triangular structure. However, we can always find an
orthonormal matrix P such that AB P’ is lower triangular, and so simply recover the
factor model in precisely the form (2.1) with the same probability structure for the
underlying latent factors P f,. This result confirms that the order of the variables
in y, is theoretically irrelevant assuming that £ is properly chosen. However, when
it comes to model estimation, the order of variables has a determining effect on the

8



choice of k£, and the interaction between variable order and model fitting can be quite

subtle, as we illustrate in examples below.

2.4 Independent common factors

In this section we show that whether E(ff') is diagonal or not is irrelevant, as far

as a static factor model is concerned.

Let us start assuming that y follows a k-factor model with dependent common
factors, ie. y = Bf + € with € ~ N(0,X) and f ~ N(0,H) where H > 0 is not
restricted to be diagonal.

Since H > 0, L we can found such that H = LL'and L 'H(L') ' = L 'H(L ')
I. Then, the new factor model with B replaced by 8 = BL and the common factors

replaced by f = L™ f, has independent common factor structure.

To recover the lower triangular property of 3, the following fact is used; there

exists P such that PP = PP’ = I and
B*=pBP =BLP

is lower triangular with positive real numbers on the main diagonal.

A particular expression for P is U’IBI, where

~ ~1 ~1

B = (161762>l

and

It follows that,

PP = (U'B)U'8)=5U)"U"'5



by the definition of P; P, and

PP = U BB /(U™

= U'vU'(U) ' =1,

This result has been overlooked by most researchers in factor analysis and simpli-
fies matters considerably. For the rest of the next few chapters we will assume that
the common factors are, a priori, independent. In the next section we set up the

prior information.

2.5 Elements of prior specification

To complete the model specification we require classes of priors for the model pa-
rameters B and X. Our reported analyses are based on very diffuse but proper priors
with the following ingredients. For the factor loadings, we take independent priors
such that ;; ~ N(0,Cy) when i # j, and S; ~ TN(0,Cp)? for the upper-diagonal
elements of positive loadings ¢ = 1,---, k. The latter simply truncates the basic nor-
mal prior to restrict the diagonal elements to positive values. Analysis now requires
only that we specify the variance parameter Cy, which we take to be rather large in

the studies below.

2

For each of the idiosyncratic variances o; we assume a common inverse gamma
prior, and take the variances to be independent. Specifically, the o7 are independently
modelled as 0 ~ IG(v/2,vs*/2) with specified hyperparameters v and s?. Here s? is
the prior mode of each ¢? and v the prior degrees of freedom hyperparameter?. Our
examples below assume values of v to produce diffuse though proper priors. Note

that we eschew the use of standard improper reference priors p(c?) o 1/0?. Such

3See Appendix A for the definition and some properties of the truncated normal distribution.

4See Appendix A for the definition and some properties of the inverse gamma distribution.
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priors lead to the Bayesian analogue of the so-called Heywood problem (Martin and
McDonald, 1981; Thara and Kano, 1995). In terms of these variance parameters,
likelihood functions in factor models are bounded below away from zero as o? tends
to zero, so inducing singularities in the posterior at zero. Proper priors that decay

to zero at the origin obviate this problem and induce proper posteriors.

2.6 MCMC methods in a k—factor model

With a specified k—factor model, Bayesian analyses using MCMC methods are
straightforward. We simply summarise the main ingredients here, referring to Geweke
and Zhou (1996), Polasek (1997), and Aguilar and West (2000) for further details.
MCMC analysis involves iteratively simulating from sets of conditional posterior dis-
tributions which, in this model, are standard forms. A basic method simulates from
the conditional posteriors for each of F', 8 and X in turn, utilising the following sets
of full conditional posteriors arising from our model as specified. These are as follows.

First, the factor model in (2.3) can be seen as a standard multivariate regression
model with “parameters” F' when 3, ¥ and k are fixed (e.g., Press (1982), Box and
Tiao (1973), Broemeling (1985) and Zellner (1971)). It easily follows that the full
conditional posterior for F' factors into independent normal distributions for the f,,
namely

fo~ NI +B27'8) ' 82y, (I + B27'8) )
independently for t =1,....7T.

Second, the full conditional posterior for 8 also factors into independent margins
for the non-zero elements of the rows of 3, as follows. For rows i = 1,...,k, write
B, = (Bi,-..,0:i) for just these non-zero elements. For the remaining rows i =
E+1,...,m, write 8, = (B, ..., Bi). Similarly, for i = 1,...,k denote by F; the
T x i matrix containing the first 7 columns of F', and for all 7 let y, be the column i

11



of y.

Finally, it is trivially deduced that full conditional posterior for the elements of 3
reduces to a set of m independent inverse gammas, with o? ~ IG((v + T)/2, (vs* +
d;)/2) where d; = (y, — F3;)'(y;, — F3;).

Then we have full conditionals as follows:

o fori=1,....k B, ~ N(m;, C;)1(53; > 0) where m; = C; (C’U_lugli + ai_ZF;yi)

and C;' = Cy'I; + 0, *FF;;

o fori=k+1,...,m, B, ~ N(m;,C;) where m; = C; (C()_luolk + U{ZF'yi)
and C;' =C;'I, + 0 *F'F.

These distributions are easily simulated.

2.7 Summary

In this chapter we reviewed the state of the art in Bayesian factor models along with
model issues, such as invariance to linear transformation, identifiability constraints,
prior information and MCMC methods for posterior inference analysis when the
number of common factors, k is fixed. Chapter 3 explores simulated and real data
applications that rely on the methodology here.

We have explored a variety of simulated and real datasets to test the MCMC
algorithm. Some of them are fully explored in the next chapter, when model uncer-
tainty for the number of factors is also considered. However, before moving forward,

the following comments are worth making:

e When the number of factors is known to be correct and the factor loadings’ prior
information is relatively scarce (represented by large values for Cy, for instance),
the MCMC algorithm converges quickly for fairly large datasets and posterior
first moments converge to the classical maximum likelihood estimators.

12



e When the number of fitted factors is larger then what is really necessary, pos-
terior multimodality shows up. We have anticipated this behavior in Section

2.3.

e In most of the applications, the convergence of the MCMC outputs were basi-
cally assessed by eyeballing trace plots from different starting values. In some
particular cases, where more formal jugdment was needed, we used some of
the well-known convergence diagnostic tests available in the BOA software’.

Mengersen et al. (1999), and Cowles and Carlin (1996), amongst others, pro-

vide up-to-date and thorough reviews of MCMC convergence diagnostics.

SBOA stands for “Bayesian Output Analysis” Program. As of spring 2000, BOA is publicly
available at http://www.public-health.uiowa.edu/boa
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Chapter 3

Inference on the number of factors

3.1 Introduction

The focus of this chapter is inference on, and selection of the number of factors.
Most recently, Polasek (1997) explored approaches to computing approximate pos-
terior probabilities on the number of factors based on using MCMC methods for
separate models differing only in the number of factors. Such an approach requires
the computation of the marginal data densities (prior predictive densities) under each
of these separate models, for it is just these values that define the (marginal) likeli-
hood function for inference on the number of factors, and the resulting Bayes’ factors
for pairwise model comparisons. This computation lies at the heart of the model se-
lection and comparison problem. There are serious practical questions about choice
and specification of prior distributions within the individual models, but that is not
our primary focus here initially.

A variety of methods are available for computing these marginal data density
values — often referred to as the normalising constant problem. Some are specific
to analyses based on MCMC methods for each individual sub-model, and some are

generic and based on analytic and asymptotic arguments. A review of some stan-
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dard methods appears in Kass and Raftery (1995), where the connections between
various methods of approximating Bayes’ factors using combinations of analytic and
asymptotic arguments are explored. These standard methods are closely related to
non-Bayesian model selection criteria, including the AIC, BIC/Schwartz criteria, and
extensions of them using information-theoretic ideas, such as the ICOMP methods
of Bozdogan and Ramirez (1987) and Bozdogan and Shigemasu (1998). In this dis-
sertation we focus on methods of approximating the marginal data densities that
utilize outputs from MCMC analyses of separate models. Some of the methods we
consider below are: the so-called candidate formula (Chib, 1995), the harmonic mean
estimator (Newton and Raftery, 1994), Gelfand and Dey’s estimator (Gelfand and
Dey, 1994), the Laplace-Metropolis estimator (Lewis and Raftery, 1997), and vari-
ous novel approaches based on the recent innovative developments in bridge sampling
(Meng and Wong, 1996). Additional useful references in this general area include, for
example, Gilks et al. (1996), DiCiccio et al. (1997) and Godsill (1998), which study

comparisons and connections between some of the various methods just referenced.

First, we introduce, in Sections 3.2 and 3.3, a customised reversible jump Markov
chain Monte Carlo (hereafter RIMCMC, see Green (1995)) algorithm for moving
between models with different numbers of factors. RIMCMC approaches avoid the
need for computing marginal data densities by treating the number of factors as a
parameter, but require ingenuity in designing appropriate jumping rules to produce
computationally efficient and theoretically effective methods. To compare with this,
we introduce, in Section 3.4 alternative methods based on bridge sampling ideas
(Meng and Wong, 1996) that are specifically designed for computing the required
marginal data densities in MCMC contexts. Section 3.4 also presents other alterna-
tive ways of computing normalizing constants based on MCMC outputs as mentioned

in the last paragraph. Likelihood-based criteria, such as Akaike’s information crite-
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rion, are explored in Section 3.5. Simulated and real data applications are studied
in Sections 3.6 and 3.7. Section 3.8 closes the chapter with some final comments
about the simulated and real data application and perspectives concerning model

uncertainty in factor analysis situations.

3.2 Preliminary parallel MCMC analyses

The last chapter provided the basis for posterior simulations in a model with &
specified. For this and the following sections, we make explicit the dependence of the
factor loading matrix on & by refining the notation, replacing 8 by B, and F by F.
Further, we write 6}, for the parameters (8, ¥) of a k—factor model. The number &
now appears explicitly in the conditioning of all model density functions. Reversible
jump MCMC (RJMCMC) methods are useful for exploring posterior distributions
for model parameters in the context of uncertainty about k, and with k included
as a parameter. As we move between models with different numbers of factors, the
dimension and meaning of the model parameters change, and RIMCMC methods are
designed for just such problems. See Appendix B for further detail and references

about the RIMCMC algorithm.

Our method builds on a preliminary set of parallel MCMC simulations that are
run over a set of prespecified values k£ € K for the number of factors. These chains
produce a set of K posterior samples for (8, F) that approximate the posterior
distributions p(@g, Fi|k,y) for the sub-models £ =1,... K.

From these samples we compute posterior means and other summaries, and use
these to guide choice of analytically specified distributions to be used to generate
proposals in the RIMCMC algorithm. This component of the analysis operates only
with the samples for the parameters 0, the simulated values of the actual factors

F';. being relevant but incidental to moving between models with different values of
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k. Write by and By, for the approximate posterior mean and variance matrix of 3,
from the MCMC analysis, and, for each ¢ = 1,...,m, write vi, for the approximate
posterior mode of 67 from the analysis. In our current implementation we introduce
the following analytic forms as components of a proposal distribution. For each model

order k € K,
° qk(ﬁk) = N(bk,ka) and
o fori=1,...,m, q(c?) = IG(a,av;),

where a and b, two positive scale parameters to be specified. These density functions

are combined to produce the distributions
0(0r) = (B, B) = 4u(By) [[an(0),  keK (3.1)
i=1

for use as now described.

3.3 A reversible jump algorithm

Following the set of preliminary MCMC analyses for the sub-models, we explore the
space of models as k varies using the following version of RIMCMC. The summary
here is also schematically represented in Figure 3.1. In addition to the k—factor
models and within model priors specified above, we need to specify the marginal

prior probabilities p(k) over k € K. Then the RIMCMC analysis proceeds as follows.

0. Choose a starting value of k. Set the current values of 8, to a draw from the
posterior p(@|k,y) by using one (or more) steps of the MCMC algorithm as
described above and based on past sampled values from this £—factor model.
Note that this step produces both new sampled values of 8, and the factors
F', though only the former are used in exploring moves to models with other

k values.
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J(1->2) 32->2)
O G

J(2->3)
J3->1)

q(8 [k=3)

Figure 3.1: Representation of RJIMCMC algorithm for exploring the space of
k—factor models over a range of k values. The figure represents the example
ke K=(1,2,3)

1. Between model move step:

1.a Draw a candidate value of the number of factors &’ from a proposal distribu-

tion defined by prespecified transition probabilities Pr(k'|k) = J(k — E').

1.b Given k', draw the parameters 8 from the distribution g (6y) of equation

(3.1).

1.c Compute the accept/reject ratio

(3.2)

o = min {1 p(y|k', Ok )p(Op |ENp(E") qr (k) J (K — k) } |

p(ylk, 04)p(O|k)p(k) qu (Ow)J (k — k)
Here, for each value j € (k,%'), p(ylj, 0;) = p(ylj, B,, X) is the likelihood
function in equation (2.5), p(0;|j) is the prior density function for the
parameters within the j—factor model, and p(j) is the prior probability
on k factors. With probability a, accept the jump to the &'—factor model
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and the new parameter values @, just sampled as candidates.

2. Within model move step:

If the jump to model &’ is accepted, run one step of the MCMC analysis in
this &'—factor model, producing new sample values of the full set of quantities
(Or, Fr). Otherwise, remain in model k& and use the MCMC to produce new
values of (0, Fy).

3. Repeat [1] and [2] until practical convergence is judged to have been achieved.

The chosen proposal distributions ¢x(8y) are not generally expected to provide
globally accurate approximations to the conditional posteriors p(6|k,y). However,
if that happened to be the case then the resulting accept/reject probabilities above
reduce directly to Metropolis-type probabilities on the parameter k alone. Our algo-
rithm is a particular case of what Dellaportas et al. (1998) and Godsill (1998) call
the Metropolized Carlin and Chib method, where the proposal distributions gener-
ating both new model dimension and new parameters depend on the current state
of the chain only through k. More specifically, our proposal densities, px(8y) and
pr (Or) from equation (3.1) replace the pseudo-prior densities p(0|k') and p(6)|k)
that appears in the metropolized Carlin and Chib method from equation (B.9) (see
appendix B). This is true here as we use proposals based on the initial, auxilliary
MCMC analyses. A more descriptive name is independence RIJIMCMC, analogous
to the standard terminology for independence Metropolis-Hastings methods. See

Appendix B for further details.

3.4 Computing normalizing constants

The RIMCMC technology is becoming standard in Bayesian work with compet-
ing models with differing numbers of parameters. By comparison with traditional
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approaches based on nesting models in a “super-model”, RJIMCMC is often more
efficient computationally and in terms of computing time to pratical convergence of
the Markov chains, and it has an established theory that guarantees convergence of
the chains in very general frameworks. Thus, in addition to having a very natural and
direct specification in our factor model context, convergence of the chain to sampling
from the full posterior across models, as well as for parameters and factors within
models, is ensured. There are, however, ranges of existing methods for approximate
inference on the number of factors, and we aim to compare these methods in exam-
ples below. This section provides a brief catalogue description of methods and model
selection criteria, as well as introducing a novel approach based on recent work in
bridge sampling.

In our Bayesian framework the within-model analysis provides, in theory, the

marginal data density functions

p(ylk) = /p(ylk, 61)p(0k|k)dby, (3.3)

for each value of £ € K. If these could be computed, then inference on % follows
from Bayes’ theorem via p(k|y) o p(k)p(y|k). The problem is computational: the
marginal data densities are generally not easily computed and so much be approxi-

mated numerically. The following standard methods are of interest.

3.4.1 Candidate’s estimator

The so-called candidate’s estimator, first referred in Besag (1989) and fully analysed
by Chib (1995), is of interest when the k—factor models are each analysed using

MCMC. The approach observes that, for any value of 8, Bayes’ theorem implies that

p(ylk, 0x)p(0 k)
p(Oclk, y)

p(ylk) = (3.4)
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The idea is then to estimate the components of this equation that are not available
analytically, then plug-in a chosen value of 8, to provide an estimate of p(y|k). Our
analysis uses the posterior means from the MCMC analyses as these plug-in values.

Now, the numerator in equation (3.4) factors as p(y|k, By, X)p(B:|k)p(X|k) each
component of which can be directly and easily evaluated. The posterior density
function in the denominator requires approximation, and with some creativity. The-

oretically, this is given by

where the two terms in the right hand side are approximated, respectively by:

1 X Y (m
p(Bilk.y) ~ 57 32 p(Bylk. B F . y) (3.6)
m=1
and
1 & (m)
m=1

where the sum, in the first approximation, is over draws (F,(Cm), ™) from the MCMC

analysis and can be easily performed, since it is a sum of multivariate normal distri-
butions (truncated).

The second approximation, however, is a sum (of products of inverse gammas)
over draws F;T) from an MCMC analysis conditional on 3. To do this we need to run
additional MCMC chains in each k—factor model with the 3, fixed at its chosen value.
This naturally introduces a significant additional computational burden, especially
in larger models.

In studies below we denote by pc the resulting approximation to p(yl|k).
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3.4.2 Harmonic mean estimator

In a similar spirit to the candidate’s estimator, the harmonic mean estimator makes

use of the identity

pylt) ™ = [ plylk. 00 p(Olk,y)d6;. (3.5)

As discussed in Newton and Raftery (1994), the resulting estimator is based on
the importance sampling approximation to the integral using the exact posterior as

importance sampling distribution. This results in the approximation p(y|k) ~ py

where
- (m)
b =M plylk,6,™)7! (3.9)
m=1

where the Oém) are posterior samples from the MCMC analysis and the density eval-
uations are made using equation (2.5). Note that py is an harmonic mean of the
likelihood values, hence the name. Newton and Raftery (1994) discuss the accuracy
of py among other issues. Though it has been quite widely used, it can be unstable
in some applications since small likelihood values can overly influence the resulting

harmonic mean value.

3.4.3 Newton and Raftery’s estimator

Partly motivated by the stability issues associated with py, Newton and Raftery
(1994) suggested estimators defined as follows. Let g(0;) = dp(O0x|k)+(1—0)p(0k |k, y)
be a mixture of the prior and posterior for @, for some small mixing probability 0.
Sampling from g¢(-) is easy — simply randomly replace values in the available pos-
terior sample by independent draws from the prior. Do this iteratively, repeatedly

computing the sequence of v values defined by

,ynew — A(’yOld>/B(’)/OZd>
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where

= Z fm{57 + (1 - 6)fm}_1

D=3 5+ -0

where the quantities f,, are the likelihood values f,, = p(y|k, O;m)) evaluated at the

current sample of M points O,Em)

from the mixture g(-). Iterations of this procedure
lead to a stable limiting value v = pyg that provides the proposed estimator of
p(y|k). Notice that the case 6 = 0 implies that pypr = py. Implementation of this
method depends on the choice of §.

The main problem with this estimator is that is depends on draws from both
the posterior and the prior. Newton and Raftery (1994) have suggested combining
the M draws from the posterior with M /(1 — ¢) draws from the the prior, all of
them with the same likelihood equal to their expected value, p(y|K), the predictive

density. Once again, the solution is found iteratively by,

,ynew — A(’yOld>/B(’)/OZd>
where

A(y) = eM + 3 fu{dy + (1= 8) fn} ™,

m=1

B(y)=eMy '+ > {6y + (1 —6)fm}

m=1

and e =0/(1—90).
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3.4.4 Gelfand and Dey’s estimator

Related estimators introduced by Gelfand and Dey (1994) are inspired by the iden-
tities
p(ylk)” /9 (8x)p(Ok |k, y){p(Ok|k)p(ylF, Ox)} "6 (3.10)

that hold for arbitrary densities g(-). These authors study approximations pep given

by

ﬁéb—Mlzg "N {p(ylk, 00" )p(07" |k)} (3.11)

where, again, the 9,(€m) are posterior samples.

3.4.5 Laplace-Metropolis estimator

The Laplace-Metropolis estimator combines analytic posterior approximations with
MCMC output to modify traditional Laplace asymptotics (Tierney and Kadane,

1986). Discussed in Lewis and Raftery (1997), the resulting estimator has the form
o = (2m) 1@ p(y |k, 64)p(6 k) (3.12)

where 6, maximises p(y|k, 8),)p(0x|k) among the M posterior draws, W is the MCMC
approximation to the posterior variance of 8y, and d is the dimension of 8. Variations

on this method replace 0, by the MCMC approximation to the posterior mean.

3.4.6 Bridge sampling

Innovative methods based on bridge sampling have recently been studied by Meng
and Wong (1996). In our context this applies as follows. If g(6j) is any chosen
proposal density function with the same support as the posterior p(0x|k, y), note the

identity p(y|k) = N/D where

N = [ a(64)g(61)p(0: k) p(ylk, 05)d6
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and

D= /a(@k)g(ek)p(9k|k,y)d9k.

Based on the MCMC sample values 0,8’“ from the posterior and a parallel importance

sample of some L values OZ(Z) from ¢(-), we now have an easy approximation p(y|k) ~

N/D where
L 6:0)
= Z |k)p(y|k, ;)
and
R M
D=M"3 a(6)g(6y")
m=1

Generally, we aim to choose ¢(-) to be as accurate an approximation to the posterior

as possible, while remaining easy to compute and simulate.

Different choices of the “arbitrary” function «(-) define different bridge sampling

estimators. Some discussed by Meng and Wong (1996) are as follows.

o If a(0;) = (p(Oklk)p(ylk,0x)g(0:))~" the corresponding estimator resembles

the harmonic mean estimator. We label this psy and note that it obtains when

and

D= MlZ{p )p(ylk, ")}

o If o = (p(6:]k)p(ylk,0:)g(0;)) "'/ we have what is called the geometric esti-

mator pg. This is given by

/\

IZ{p (ylk, 6;.")/g(6;")11/?
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and

D= M3 {g(0")/ (0" IWp(ylk. 07}

e The optimal estimator of Meng and Wong (1996), denoted by peyt, is obtained
by an iterative procedure. Specify the initial value r = ps and, defining s; =

1 — sy =M/(M + L), iterate the equation

e — A(’I“Old)/B(TOZd)

where
L
A(T’) = Z ng/(81W2[ + 827“)
=1
and
M
B(r) =Y 1/(s1Wip, + sor)
m=1
where

W = p(ylk, 0;)p(0;" k) /9(6;")
fori=1,...,L, and
Wim = p(ylk, 00 )p(0™ k) /g(8™)
m y Uk k k

form=1,..., M.

3.5 Likelihood and information criteria

Traditional model selection criteria based on likelihood include variants of AIC Akaike
(1987), the Schwartz or Bayesian criteria, or BIC, and related information criteria
such as the ICOMP methods of Bozdogan and Ramirez (1987) and Bozdogan and

Shigemasu (1998). Explicit equations for some of these criteria, that we use below
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in comparative studies, are provided here. For each k—factor model, write [, =

—2log(p(ylk, 8;)) where 8, is MLE of ), = (8,,%) and the likelihood function is

the standard form in equation (2.5). Write €2, = Bk,@;ﬂ + 3 for the corresponding
MLE of €. It is easily deduced that

I, =T {mlog(27r) + log || + trace(Q:S)}

where S = y'y/T. The various model selection criteria are defined as follows:

e BIC=[; + log(T)px

e BIC* =), + log(T)py
o ICOMP= [, + Cy (%)
where
pe = m(k+1) = k(k—1)/2,
T = T—(2m+11)/6 —2k/3,
Ci1(Zg) = 2(k+1)((m/2)log(traceX;/m) — 0.5log |Xk])
In the following two sections we study the empirical performance of the strategies

presented in so far to compute normalizing constants along with the likelihood and

information criteria and our proposed reservible jump strategy.

3.6 Simulation studies

Here we simulated two factor models with one and three common factors respectively.
In the first simulation m = 7, which allows up to three factor to be fitted, while in

the second simulation m =9, or a maximum of five factors.
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3.6.1 A first simulation study

An initial simulation study considers a one-factor model for a seven-dimensional
problem generating one hundred observations; thus m = 7,k =1 and T" = 100. In
each of a series of simulations, T" observations were drawn from a one-factor models

defined by parameters

B = (0.995,0.975,0.949,0.922,0.894, 0.866, 0.837),

diag(S) = (0.01,0.05,0.10,0.15,0.20, 0.25, 0.30).

Each such simulated data set was analysed using the MCMC and reversible jump
methodologies, and also subject to study using the range of model selected criteria
and methods described above. This study explored k—factor models for each data
set, with up to three possible factors in each case.

MCMC analyses utilised the prior distributions based on the following hyper-
parameter values: my = 0 and Cy = 1 define the prior distribution for @, while
o2, vo; = 2.2 and 1g;s5; = 0.1 define the prior distribution for each o such that
E(c}?) = 0.5. The MCMC and reversible jump samplers were based on M, = 10, 000
iterations as burn-in, followed by a further 10,000 iterates that were sampled every
ten steps to produce a final MCMC sample of size 1,000. In generating proposals in
the RIMCMC methods, we adopted a = 18, b = 2 and

0.0 1.0 0.0
J=105 00 0.5
0.0 1.0 0.0

Among the candidate methods for model selected, the “Newton and Raftery”
technique requires the specification of a control parameter, §; this was set at 6 = 0.05,
and the number of iterations at 1,000.

Table 3.1 displays results from this simulation analysis. We repeated the model
fitting exercises for 1,000 different data sets generated independently from the one-
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k
Method k=1 k=2 k=3

RJMCMC 1000 0 0
P 954 46 0
DH 428 258 314
PNR 467 234 299
Pap 1000 0 0
Prv 1000 0 0
Pa 1000 0 0
Dopt 1000 0 0
Criterion k=1 k=2 k=3
AIC 854 135 11
BIC 1000 0 0
BIC* 1000 0 0
ICOMP 607 296 97

Table 3.1: Comparison of model uncertainty assessment methods on simulated data
set I: m=7,k=1and T = 100.

factor model. The table provides simple counts of the number of times that each
k-factor model achieved the highest posterior probability. For example, the harmonic
estimator method selected the one-factor model 428 times out of 1,000, and the three-
factor model 314 times out of 1,000. Evidently, most of the approximation methods
are very reliable in favouring the one-factor model, as is the RIMCMC (the “gold
standard”) approach. Bridge sampling methods agree with our RIMCMC approach.
Relatively poor results are achieved by the harmonic mean method, Newton-Raftery
estimator, AIC, ICOMP, and at some extent the candidate’s estimator, which all tend
to prefer higher numbers of factors a significant proportion of the time. In terms of
model selection per se, as opposed to exploring model uncertainty more formally, the

BIC methods are relatively accurate and, of course, rather easier to compute.

In analysis of a real data, we run into multi-modalities in posterior distributions

that require some thought and explanation. In anticipation of this, we here ex-
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Figure 3.2: Marginal posteriors of the o7 (i = 4,...,7) from analysis of the sim-
ulated data set from a one-factor structure but analysed using a model with £ = 3
factors (See our first simulated study at Section 3.6.1).

plore some summaries of a three-factor model fitted to one of the simulated data
sets arising from this true one-factor model. Figure 3.2 displays marginal posterior
densities of some of the idiosyncratic variances from such an analysis. Note the
multi-modality; marginal posteriors for elements of the 8 matrix exhibit correspond-
ing multiple modes. This arises due to the mis-match between the model assumption
of £ = 3 and the data structure based on k = 1, and is driven by the identification
issues arising in such cases, as discussed in Section 2.3 in the text around equation
(2.8). Encountering such multi-modality in posteriors from a specified model can

therefore be taken as a suggestion that the chosen value of £ is too large.

3.6.2 A second simulation study

A second study follows the pattern of the above example, but now using data sets

simulated from a model with m = 9 variables, k£ = 3 factors, and with a sample size
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of just T'= 50. The true model in this case has parameters

0.99 0.00 0.00 0.99 0.99 0.00 0.00 0.00 0.00
=1 0.00 0.95 0.00 0.00 0.00 0.95 0.95 0.00 0.00
0.00 0.00 0.90 0.00 0.00 0.00 0.00 0.90 0.90

and

diag(S) = (0.02,0.19,0.36,0.02, 0.02, 0.19, 0.19, 0.36, 0.36).

k

Method k=1 k=2 k=3 k=4 k=5
RIMCMC 7 0 993 0 0
Pe 0 12 848 138 2
P 0 0 650 228 122
PNR 0 0 615 258 127
PGp 0 0 998 2 0
PLum 0 1 999 0 0
Pe 0 11 985 4 0
Dopt 0 11 985 4 0
Criterion k=1 k=2 k=3 k= k=

AIC 0 0 857 125 18
BIC 0 0 995 5 0
BIC* 0 0 993 7 0
ICOMP 0 0 886 97 17

Table 3.2: Comparison of model uncertainty assessment methods on simulated data
set 22m =9,k =3 and T = 50.

The analyses used the same hyper-parameters and MC sample size choices as in
the first simulation study. As there, we summarise one aspect of performance of model
selection methods by simply counting the number of times, out of a total of 1,000
analyses of simulated data sets, that each possible k-factor model received the highest
posterior probability using each of the methods of computation. These summaries
appear in Table 3.2. Again, it is clear that several of the approximation methods
reliably identify the true model structure, which gives some indication of their likely
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utility in real data analyses. Among the approximate Bayesian methods, those based
on the candidate’s estimtor, the harmonic mean estimator and the Newton-Raftery
technique are the only failures, their performances being quite poor in comparison to
the other Bayesian approaches and to the information criteria. Once again, AIC and

ICOMP choose the wrong model in at least 12 percent of the simulations.

3.7 International exchange rate returns

We now explore the factor structure underlying the changes in monthly international
exchanges rates using the data studied in West and Harrison (1997) (pp 610-618).
These time series are the exchange rates in British pounds of the following m = 6
currencies: US dollar (US), Canadian dollar (CAN), Japanese yen (JAP), French
franc (FRA), Italian lira (ITA), and the (West) German mark (GER). The data span
the period from 1/1975 to 12/1986 inclusive, and the monthly changes in exchange
rates appear in Figure 3.3. Each series has been standardised with respect to its
sample mean and standard deviation over the period for comparability (this does not
affect the modeling process and factor structure analysis). Earlier studies in West
and Harrison (1997) used various principal component analyses that indicated up to
three meaningful latent components, suggesting up to three factors may be relevance
in our analyses.

Our illustrative analysis first explores uncertainty about the number of factors as
in the foregoing simulated data analyses, and then investigates questions about the
dependence of conclusions from such analyses on the chosen order of the series. This
latter point is of interest as the particular factor model structure adopted — with the
upper triangle of zero elements in the factor loading matrix — introduces an apparent

order dependence.

Prior distributions are specified exactly as in the simulated examples, the general
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Figure 3.3: Standardized first differences of monthly observed exchange rates.

scales for all parameters now being comparable with those of the simulation examples
as the data are modelled after standardisation. Specifically, we have o =0, Cy =1,
vo; = 2.2 and vy;s3, = 0.1. For the Gibbs sampling and RJIMCMC analyses we
burn-in the algorithms for 10, 000 iterations, and then save equally spaced samples
of 5,000 draws from a longer run of 100,000. Newton and Raftery (1994) suggest
using 0 small, so we decided to use 6 = 0.05. Alternative values were used and little
or none variation was observed. Proposal distributions in the RJIMCMC analysis are

based on defining parameters a = 18 and b = 2, and the transition matrix is

0.0 0.5 0.5
J=1[05 00 0.5
0.5 0.5 0.0
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The analyses were run on the data with currencies ordered by country as: US,
CAN, JAP, FRA, ITA, GER. Table 3.3 provides summaries of the various approxi-
mate Bayesian and information criteria for assessment of the number of factors. The

overall suggestions is that k = 2 is strongly favoured.

log p(ylk) p(kly)

Method k=1 k=2 k=3 k=1 k=2 k=
RJMCMC — — — 0.00 0.88 0.12
Pe -1013.5  -935.3 -925.5 0.00 0.00 1.00
Py -988.0 -871.0 -871.8 0.00 0.71 0.29
DPNR -991.9 -880.1 -881.4 0.00 0.78 0.22
Pap -1017.7  -907.1 -906.4 0.00 0.34 0.66
PLm -1014.8  -904.5 -897.3 0.00 0.00 1.00
o -1014.5  -903.7 Inf 0.00 1.00 0.00
Dopt -1014.5  -903.7 Inf 0.00 1.00 0.00
Criterion k=1 k=2 k=3

p-value 0.00 1.00 1.00

AIC 1978.4 1745.0 1751.0

BIC 2013.9 1795.4 1813.2

BIC* 2013.6 1794.8 1812.3

ICOMP 19579 1776.1 1724.0

Table 3.3: Comparison of model uncertainty assessment methods from analyses of
the international exchange rate time series.

From the MCMC analysis of the £ = 2 factor model, we have the following

posterior summaries:

e The posterior means of 8 and ¥ parameters are, to two decimal places,

0.99 0 0.05
0.95 0.05 0.13
0.46 0.42 . 0.62
0.41 0.77 0.25
0.40 0.77 0.28
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The marginal posterior densities of the elements of 8 are displayed — in terms

of histograms of the posterior samples — in Figure 3.4.

The marginal posterior densities of the o parameters are displayed — also in

terms of histograms of the posterior samples — in Figure 3.5.

The time trajectories of the posterior means of the two factor time series are dis-
played in Figure 3.6. The first factor is plotted together with the US and CAN
series, and the second factor is plotted together with the JAP and European

currencies.

For each currency series 1 = 1,..., 6, the percentage of the conditional variance
explained by each factor j = 1,2 is simply 100(1 + 37;/07). Table 3.4 below
provides estimated values of these quantities with the (. and o. parameters

estimated at their posterior means.

Country Factor 1 Factor 2

US 95.1 0
CAN 87.6 0.2
JAP 20.5 17.6
FRA 14.7 81.8
ITA 16.4 58.6
GER 16.1 38.5

Table 3.4: Percentage of the variance of each series explained by each factor in
analysis of the international exchange rate time series.

These summaries indicate the following broad conclusions. The first factor repre-

sents the value of sterling relative to a basket of currencies in which the North Amer-

ican currencies are dominant. US and CAN are roughly equally weighted, which is

expected as CAN rates are heavily determined in international markets by US rates.

This first factor may be termed the North American factor. The second factor may be
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similarly termed the European Union (EU) factor. It represents a restricted basket
of currencies dominated by the EU currencies, with a relatively reduced weighting on
JAP. US is absent from this factor, by design of the factor loading matrix, and CAN is
practically absent, with the posterior for 3, ; indicating very small values. Inferences
about the idiosyncratic variances strengthen and extend these conclusions. Those for
US and GER are very small, indicating that these two currencies play determining
roles in defining their sector factor. CAN, FRA and ITA have larger idiosyncratic
variances, indicative of their departures from their sector factors. JAP has a large
idiosyncratic variance, contributing about two-thirds of the overall conditional vari-
ance. A k = 3 factor model would move most of this variability over to the third,

JAP factor, as further studies verify.

Notice that the marginal posteriors graphed are all unimodal. This is of interest
in view of the earlier discussion about multiple posterior modes induced by multiple
local maxima in the likelihood functions when the specified value of £ is larger that
is consistent with the data. Multiple modes appear in analysis of a 3-factor model,
as shown in Figures 3.7 and 3.8. The margins from the 2-factor model analysis are
consistent with the view that £ = 2 is not too large, and therefore provide additional

support for the 2-factor model.

It is of interest to explore possible dependence on the order of the series in this
analysis. This is especially indicated here due to the high dependence between US
and CAN and the resulting very small values of (3,2, the diagonal factor loading
element that is constrained to be positive. The above analysis was therefore re-run

with the orders of CAN and JAP interchanged. The resulting posterior means of the
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factor loadings and idiosyncratic variances are

0.98 0.00 0.06
0.45 0.42 0.62
0.95 0.03 . 0.12
EBlY) =1 y39 001 and - E(diag(Z)ly) = o4 |
0.41 0.77 0.25
0.41 0.77 0.26

where the figures in bold font simply indicate JAP and CAN in the new order.
Comparing with the original analysis we see that these numbers are in extremely
close agreement, suggesting the order has essentially no effect on the estimation. To
further explore this, Table 3.5 provides the summaries of model assessment methods
based on this ordering of variables. There are differences in the numbers presented,

though the overall conclusion of support for k£ = 2 factors stands.

log p(y|k) p(kly)
Method k=1 k=2 k=3 k=1 k=2 k=3
RJMCMC — — — 0.00 0.98 0.02
Pe -1013.5 -934.5 -985.8 0.00 1.00 0.00
P -088.3 -874.6 -873.0 0.00 0.16 0.84
PNR -985.5 -867.3 -867.9 0.00 0.65 0.35
PGp -1017.8 -907.0  -909.6 0.00 0.93 0.07
PLm -1015.5 -904.4 -910.3 0.00 1.00 0.00
Pe -1014.5 -903.5 -Inf 0.00 1.00 0.00
Dopt -1014.5 -903.5 -Inf 0.00 1.00 0.00

Table 3.5: Comparison of model uncertainty assessment methods from the reanal-
yses of the international exchange rate time series under a different order of the
currencies.

3.8 Summary

As discussed in the introduction of this chapter, our interest has been to study MCMC
methods for factor models and novel RIMCMC and other methods for assessing the
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issue of model uncertainty induced by an unknown number of factors. In doing so, we
have explored empirical studies with two simulated and one real data example, high-
lighting ranges of methodological and modelling issues. A few additional comments

are of interest in conclusion of the chapter.

e In the Newton and Raftery’s estimator, the quantity ¢, that defines the propor-
tion of draws coming from the prior was studied in the context of the real data
application. Table 3.6 shows that for ¢ between 0.01 and 0.10 the right model
is always selected and convergence, of the iterative scheme, is achieved around

10 iterations. Another finding is that starting values are not relevant at all.

) k=1 k=2 k=3
0.00 -987.8 -871.5 -872.2
0.01 -986.6 -868.8 -869.6
0.02 -986.2 -868.2 -868.9
0.03 -9859 -867.8 -868.5
0.04 -985.7 -867.5 -868.2
0.05 -985.5 -867.3 -867.9
0.06 -985.4 -867.1 -867.7
0.07 -985.2 -866.9 -867.5
0.08 -985.1 -866.8 -867.4
0.09 -985.0 -866.6 -867.2
0.10 -984.9 -866.5 -867.1

Table 3.6: Analysing the sensitiveness of Newton and Raftery’s estimator in factor
analysis, to the choice of ¢ in the international exchange rate time series under the
second ordering of the currencies.

e Our customised RIMCMC method, using empirical proposal distributions based
on parallel MCMC analyses for a range of models with specified numbers of fac-
tors, is effective and efficient, as tested in a range of simulation studies (beyond
those reported here). Development of effective proposal distributions and jump-
ing rules in models with even moderate dimensional parameters is usually very
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challenging, and the approach used here will be useful in other such models.
We note that the computation of approximate posterior probabilities on k using
bridge sampling approaches, though also requiring some tuning, is similarly ac-
curate in a range of studies, providing answers close to those from RIJIMCMC;
these methods deserve further study too. By contrast, we have found that
none of the other “standard” methods of approximation reviewed in Section
3.4 is consistently accurate in identifying correct models in ranges of simulation
studies, and none consistently superior to the formal RJIMCMC, Newton and
Raftery and bridge sampling approaches. On purely empirical grounds, we find
the BIC methods — though lacking in formal interpretation — generally provide
more stable and reliable initial guides to the choice of k than the other standard

methods.

The selected order of data variables influences the likelihood function and hence
posterior inferences about the number of factors. The effect can be marked, al-
though inferences about the factor loadings and other parameters are generally
relatively stable by comparison. Thus, very naturally, the order of variables is
relevant in connection with the interpretation and the number of common fac-
tors. Of course, the conditional variance-covariance matrix of the variables is
unaffected by the ordering, and hence so are the predictive inferences resulting

from the model.

In further empirical studies we have explored a range of predictive exercises.

Two situations are illustrated here:

— For example, in studies of simulated data and of the industrial stock in-
dices analysed in Geweke and Zhou (1996) we have explored out-of-sample

predictions based on sequential data analysis and one-step ahead predic-
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tions, as are standard in time series work. These studies have indicated
a general point; rather often, posterior uncertainty about the number of
factors based on a set of historical data may understate the practically
relevant uncertainties when forecasting ahead. For example, sequential
forecasting performance using a four-factor model can often out-perform
a three-factor model even when analysis of past data has given almost no
posterior probability to the four-factor model. Table 3.7 and Figures 3.10
and 3.11 present the results we found when exploring Geweke and Zhou’s

industry portfolio groups (Figure 3.9).

p(kly)
Method L=1 k=2 k=3 k=4 k=5 k=6 k=7
RIMCMC  0.00 0.00  0.99 0.0l 0.00  0.00  0.00

D 1.00 0.00 0.00 0.00 0.00 0.00 0.00
Du 0.00 0.00 0.00 0.00 0.79 0.07 0.14
Pcp 0.00 0.00 1.00 0.00 0.0 0.00 0.00
PLm 0.00 0.00 0.84 0.16 0.00 0.00 0.00
DG 0.00 0.00 1.00 0.00 0.00 0.00 0.00
Dopt 0.00 0.00 1.00 0.00 0.00 0.00 0.00
Criterion k=1 k=2 E=3 k=4 k=5 k=6 k=7
AIC 2467.9 2353.9 2302.4 2288.2 2271.3 2278.5 2285.7
BIC 2534.8 2451.5 2427.8 2438.7 24441 2470.8 2494.8
BIC* 2533.5 2449.3 2424.8 2434.8 2439.1 2464.9 2487.9

ICOMP 2424.7 2319.4  2317.3 2289.5 2246.5 2347.6 2410.6

Table 3.7: Posterior model probabilities and information criteria for the m = 12 in-
dustry portfolio groups from Only a stretch of 12 years of data is used (from JAN /1984
to DEC/1995, or T' = 144 months. See Figure 3.9).

— In the previous example, based on real data, we have seen that as far
as predicting into the future is concerned a higher order factor model
presented higher posterior predictive performance. We have applied the
same idea to various simulation studies. Here we present one of them.
A simulation with a one-factor model over T" = 200 observations and
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m = 7 variables. We fit factor models (k=1,2 and 3) for the first 180
observations and forecast into the future up to the 200th observation.
This simulation data we will use later on on Section 4.4.1. Table 3.8
shows h-step ahead forecasts based on the k-factor model, for £ = 1,2
and 3. As it will be learned in Section 4.4.1 the one factor model has
the highest posterior model probability. However, it can be seen that a
2-factor model is more appropriate for forecast purposes as opposed to the
one-factor model, as also shown in the industry portfolio example. Even
thought this result emphasizes our previous empirical findings, we believe

that predictive comparisons and model mixing are worthy of further study.

log posterior predictive

h k* k=1 k=2 k=3

1 1 -391 -4.17 -4.11

2 3 -12.29 -11.83 -11.72

3 2 -22.74 -21.87 -22.06

4 2 -26.26 -25.39 -25.60

5 2 -30.99 -30.03 -30.38

6 2 -36.95 -35.95 -36.06

7 2 -41.36 -40.49 -40.63

8 2 -43.65 -42.80 -42.97

9 2 -47.14 -46.25 -46.52

10 2 -53.32 -52.55 -52.87

15 2 -71.23 -70.92 -71.02

20 2 -87.75 -87.59 -87.75
Table 3.8: Posterior predictive analysis of the one-factor model. The models fore-
cast performances were measured from time 7+ 1 to T+ h, for T" = 180 and
h =1,2,...,20. The second column indicates the order of the factor model with

highest posterior predictive value.

Beyond these issues, we note that related developments in dynamic factor mod-
elling Aguilar and West (2000), in financial time series and portfolio studies are fo-

cussed almost exclusively on short-term forecasting and the potential improvements

41



available in forecasting moderate to high-dimensional time series using factor struc-
tures. Here the assessment of the number of factors is also a live issue, and one that
is complicated by the time-varying nature of such models that leads to the notion of
time-variation in the number of (practically relevant) factors. Some of those points

are extended in Chapters 5 and 6.
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Figure 3.4: Marginal posteriors of the factor loadings when fitting a two-factor
structure to the international exchange rates.
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plus US and CAN (upper frame) and second factor plus FRA,ITA and GER (lower

frame).
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Figure 3.9: Monthly observed returns on industry portfolios from JAN/1984 to
DEC/1995. The last two years of data were reserved for forecasting performance
comparisons.
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Chapter 4

Expected posterior priors in factor
analysis

4.1 Introduction

In this Chapter we explore default analysis of factor models using ezpected posterior
priors (Pérez and Berger, 2000). Our main motivation is the difficulty in assess-
ing prior information in factor models, both because it involves multivariate prior
assessment and because of the highly nonlinear structure in a factor model.

More specifically, we want to study the sensitivity of the predictive distribution
in factor models with respect to the values of the hyperparameters Cy, v and vs?
introduced in Section 2.5, or more generally, sensitivity with respect to the prior
distribution chosen for the loadings, 8, and for the idiosyncratic variances, 3.

As far as estimation and posterior analysis is concerned, the effect of the prior
decreases as the sample size increases (this can be found in any Bayesian textbook,
such as Migon and Gamerman, 1999). Also, even in the case where improper priors
are used posterior distribution are often proper. However, when it comes to model
comparison, the importance of the prior does not decreases with sample size. Par-

ticularly, when priors are improper, Bayes’ factor are arbitrarily as large or as small
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as the decision makers might please. On the other hand, there are many situations
where the investigator wants to use vague prior information, at least as an initial
“benchmark” analysis.

In factor analysis there might be situations where a psychologist wants, for in-
stance in a exploratory factor analysis, to identify possible traits that his patients
share. In order to do so, we might want to consider factor models with different num-
ber of factors to base his conclusions. If the researcher has little prior information,
she will find it hard to assess prior distributions and might be willing to use default
methods, especially when the procedure is used routinely.

Many proposals have been made for such “objective” Bayesian model selection.
Among others, Spiegelhalter and Smith’s (1982) imaginary samples, Berger and Per-
icchi’s (1996) intrinsic Bayes factors and O’Hagan’s (1995) fractional Bayes factor,
are just some examples of how important (partial) solutions for this problem might
be.

The rest of this chapter is organized as follows. Section 4.2 reviews Pérez and
Berger’s expected posterior priors, while in Section 4.3 an algorithm is proposed to
compute Bayes’ factors in the factor analysis context by using MCMC algorithms
for each entertained model. Simulated datasets are analysed in Section 4.4. We
revisit the international exchange rate returns introduced in Section 3.7. Section 4.6

summarizes our empirical findings.

4.2 Expected posterior prior

In a recent article, Pérez and Berger (2000) propose ezpected posterior priors (or,
EP priors). In the factor model, an expected posterior prior for 8, under m* can be

defined as
7100 = [ 7 (Ouly' )’ (y")dy" (4.1)
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where y* is a training sample and m* is a probability measure on the training sample
space. Here 7} (0|y*) is the posterior density for @) based on a specific “vague”
or noninformative (usually improper) prior and under model Mj. In our notation,
0. corresponds to the loading matrix and the uniquenesses variances in a k-factor

model, as earlier.

The Bayes factor of My to My is given by

Biu(y) =

J P (y|0r) i (6, )dOy,
fpk’ (y|9k’)ﬂ—z’ (ok;l)dek/

*

(") dy
Y () dy (42)

_ ly
ly
where mg (y|y*) = my (y, y*) /my (y)-

Pérez and Berger (2000) list some properties of the EP priors, such as: (i) Only
one m* is used across competing models; () Impropriety is immaterial, since any
multiplicative constant factor in the priors cancel out; (ii7) Coherent Bayes’ factors
are induced, i.e. B}, = 1/Bj},, and B, = By, By (iv) The EP prior approach is,
in certain cases, essentially equivalent to Berger and Pericchi’s (1996) intrinsic Bayes
Factor approach. (v) EP priors are easily embedded in a MCMC methodology.

It is this last property that will be given more attention in the next section. We
present an approximation to Bayes’ factors using EP priors in the factor analysis
context. More detailed information about and applications of expected posterior

priors can be found in Pérez (1998).
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4.3 Computational issues

In order to compute the Bayes factor in (4.2) for the factor model at hand, we need
first to obtain an approximation for mg-. But, firstly, let us rewrite m;. as a function

of my and m*. Notice that
(W) = [ o100 (64)6
= [uwlo) | [ = Ouly ' ')y oy

/V (Y, y |9k: (Ok:)dek] (") dy”

my (Y. Y* )/ my (Y*)

N *
— M (y) / M YY) ey (43)
’ my (")
and, accordingly, the Bayes factor By, (y) can be written as

(y)f,fjvy'y “(y)dy*

) [

By (y) = (4.4)
Expression (4.3) gives us a hint of how to obtain an MCMC approximation for
mg(y). Typically, y* will be much smaller than y, because it will be based on a
minimal training sample (Pérez and Berger, 2000).
Initially, let y3,...,y% be random draws taken from m*(y*). An approximation

for the integral in (4.3) is

il ity )

and according to well established MC results (Geweke, 1989), it can be shown that

my (y*|y)
my (y*)

o4

I— m*(y*)dy*



as R goes to infinity. Therefore,

approximates mx: (y) in the same sense. The question that remains now is how such
predictive measures can be computed. Rephrasing it, the question is how normalizing
constants can be computed. Section 3.4 described alternative ways of computing this
quantity.

In order to compute 7, (y), we need first to compute my (y), my (y;|y) and

my (yr) for r = 1,..., R. Firstly, it is easy to see that

i (y'ly) = [ ply" 1007 (Oxly) b (4.6)

where, having at hand draws from the posterior distribution under model My, say

9,(61), cen O,E:M), this integral can be approximated by
N R (m)
my (Y ly) = i Z p(y*10,") (4.7)
m=1

which has the same asymptotic properties as I. On the other hand, to compute
my (y) (or myy (y*)) we need to rely on other kinds of approximations. However, now
we need an estimator that (7) is minimally reliable, (i) is based on a sample from
the posterior distribution, and (7ii) is fast enough to be used many times.

In the last Chapter, when comparing alternative methods of computing predic-
tives, we have seen that the Laplace-Metropolis estimator was considerably reliable
and easy to implement, therefore a natural candidate to compute predictives in an

automatic way. Recalling equation (3.12),
iy (y) = (2m) 71 p(y0))y (1) (4.8)
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where 6}, is the posterior mode, ¥}, is minus the inverse Hessian of log {p(y|9k)ﬁ,iv(9k)}

evaluated at ), = 0., and d is the dimension of ;. Raftery (1996) suggests comput-
ing log {p(y|9,(f))7r,iv(9,gi))} for each t = 1,..., M and estimating 8 as the value that
maximizes the discrete log-posterior. ¥, is approximated by the sample variance of

obtained from the posterior draws. The final approximation for m- (y) is

oy [P0 (60 S p(yiley) (49)
Tk RM —1 |‘I’k,r|1/2p(y:f|0k,r>7rl]cv(9k,r>

where ék,r and Wy, are analogous to ék and W, respectively, but based on the
sample 9,(017,)", o 9,(;‘{) taken from 72 (@|y*), forr =1,..., R.

Notice that 7 (.) appears in both the numerator and denominator of (4.9), so
cancelling out any multiplicative constant factor. In the next two sections we investi-
gate the robustness of the expected posterior prior in three simulated situations and

in the international exchange rate returns problem, extensively analysed in the last

chapter.

4.4 Simulation studies

We studied three simulated dataset generated by: (i) one-factor model, (ii) a two-
factor model, and (iii) a three-factor model. The main purpose is to investigate how
sensitive to the choice of m* is model comparison. We compare the EP prior approach

with the naive analysis with proper but diffuse priors.

4.4.1 A one-factor model

We simulated 7" = 200 observations from a k& = 1-factor model for a vector y of

m = 7 variables. The factor loading matrix and the uniquenesses variances are fixed
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at

B, = (0.995,0.975,0.949,0.922, 0.894, 0.866, 0.837)

and

diag(X) = (0.01,0.05,0.10,0.15, 0.20, 0.25, 0.30)

respectively. We have run the Gibbs sampler for My = 5000 iterations, after which
every tenth draw has been stored in a sample of size 1000 for further computation.
In this model, the maximum number of parameters, i.e. when a three-factor model
is fitted, is 25. Therefore, we have chosen to make y* represent a sample with 26
observations taken from a multivariate normal distribution with zero mean. The co-
variance matrix used was the sample covariance matrix based on y, ..., Y. Notice
that this would correspond to a factor model with no factors at all, which in a sense
represents the basic or null model, as suggested by Pérez and Berger (2000) as a
natural candidate for m*.

As prior hyperparameters we have tried three different sets, with pp; = 0 and
other parameters specified with values as specified in table 4.1 for + = 1,...,7 and
k= 1,...,3. With these choices we believe we can express decreasing amounts
of information present in the prior distributions, with (III) representing a rather

noninformative prior distribution.

Cro Ve VkiSi
I 1 2.2 0.1000
II 10 2.2 0.0100
IIT | 100 2.2 0.0001

Table 4.1: Prior hyperparameters. C}, represents the variance of the factor loadings
and vg;/2 and vy, st /2 represent the shape and scale of the prior for the idiosyncratic
variances, o7.

Finally, we have chosen R = 1000 in order to compute the predictive distribu-
tions. Table 4.2 summarizes our findings. It can be seen that the predictive density
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varies considerably when computed with different priors, while it is more stable or

“robust” when based on expected posterior prior distributions. If the prior model

probabilities are uniform, then posterior model probabilities, PY (k) and ﬁ’ﬁz(k) can
also be computed. From table 4.2 it seems that in the context of the simulated exam-
ple either prior set up leads to the same answer. In the next simulation we introduce
a second but relatively unimportant factor in order to see whether or not the EP

prior captures such characteristic.

Prior iy (y) M (y)

F=1 k=2 k=3|k=1 k=2 k=3

(I) [-933.7 941.1 -948.6|-006.0 -908.4 -911.0

(II) |-950.2 -962.4 -970.9 | -907.1 -911.1 -914.3

(IIT) | -989.4 -1009.3 -1030.4 | -910.8 -916.3 -928.1
BY (k) P (k)

=1 k=2 k=3]k=1 k=2 k=3

O 0.999  0.00L  0.000 | 0.804 0.182 0.014

(I) | 1.000  0.000  0.000 | 0.980 0.019 0.001

(IT) | 1.000  0.000  0.000 | 0.996 0.004 0.000

Table 4.2: Comparative results (one-factor model). m) (y) and ﬁ%;(y) are given

by equations (4.8) and (4.9), respectively. Also, PY (k) and P (k) are the posterior
model probabilities.

4.4.2 A two-factor model

In this example, we simulated again T = 200 observations, but from a k = 2-
factor model for a vector y of m = 7 variables. The factor loading matrix and

the uniquenesses variances are fixed at

8 = 0.995 0.000 0.949 0.922 0.894 0.866 0.600
~ 1 0.000 0.975 0.000 0.000 0.000 0.000 0.200
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and diag(X) = (0.01,0.05,0.10,0.15,0.2,0.25,0.6), respectively. Notice that we chose
these so that the second factor is virtually an independent factor. We ran the Gibbs
sampler for M, = 5000 iterations, after which 10000 simulations where peformed
and every tenth stored for further computation. In this model the maximum number
of parameters is still 25 and, as before, y* represents a sample of size 26 taken
from a multivariate normal distribution with zero mean. The covariance matrix was
computed accordingly. We used the same three different prior sets and R = 100.
Our findings are summarized in tables 4.3 and 4.4. In table 4.4, m; represents
a multivariate normal distribution, with zero mean vector and covariance matrix
defined as the maximum likelihood estimator obtained in a classical k-factor model.

Technically, if Bk and 3, are the ML estimators of B, and ¥ in a k-factor model,

then mj ~ N (O, Bkﬁ; + ﬁlk) Notice that, as in the first example, a one-factor model
is selected according to all priors when the EP prior approach is not used, even though
the predictive estimates vary considerable for different prior hyperparameters. On
the other hand, under the EP prior approach, the posterior model probabilities for
a two-factor model is not negligible, being at least around 20%, while the estimated
predictives are relatively similar across all hyperparameter specifications. Finally,
as illustrated in Table 4.4, the choice of the probability measure, mj; seems to be

unimportant since the results are virtually the same across alternative measures.

4.4.3 A three-factor model

We simulated 7" = 200 observations from a k& = 3-factor model for a vector y of
m = 7 variables. The factor loading matrix and the uniquenesses variances are fixed

at

0.795 0.000 0.000 0.722 0.000 0.000 0.722
B = 0.000 0.775 0.000 0.000 0.794 0.000 0.000
0.000 0.000 0.749 0.000 0.000 0.766 0.000
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Prior iy (y) M (y)

= = k= = F=2 k=3
(1) | -1306.7 -1310.2 -1312.0 | 1280.1 -1281.2 -1279.4
(I) |-1325.9 -1334.7 -1337.0 | -1280.7 -1284.2 -1282.7
(IT) |-1362.3 -1374.6 -1389.9 | -1281.2 -1282.0 -1285.0

PN (k) P (k)
k=1 k=2 k=3 k=1 k=2 k=3
(I) 0.968 0.003 0.002 0.293 0.102 0.604

(IT) 1.000 0.000 0.000 0.865 0.026 0.109
(I1I) 1.000 0.000 0.000 0.669 0.315 0.015

Table 4.3: Comparative results (two-factor model). 7} (y) and ﬁzﬁz (y) are given

by equations (4.8) and (4.9), respectively. Also, P,gv(k) and ﬁﬂz(k) are the posterior
model probabilities. m* ~ N (0, S), where S is the sample covariance matrix.

and diag(X) = (0.368,0.399,0.439,0.479,0.370,0.413,0.479), respectively. We ran
the Gibbs sampler for My = 1000 iterations, after which M = 1000 draws were stored
for further computation. In this model the maximum number of parameters is still
25 and, as before, y* represents a sample of size 26 taken from a multivariate normal
distribution with zero mean. The covariance matrix was computed accordingly. We
used the same three different prior sets and R = 1000. Our findings are summarized
in table 4.5. The posterior probabilities were all one hundred percent in favor of
the & = 3-factor model. Notice that, even though all methods pointed out towards
the correct model, more robust estimates were found for the various hyperparameter
sets by using the expected posterior priors regardless of the choice of the probability

measure, my..

4.5 International exchange rate returns (revisited)

In this section we revisited the real data application extensively analysed in Section

3.7 of last Chapter. As before, we set pro = 0,Cro = 1 and vy = 2.2, vps3; = 0.1
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m* =mj

Prior M (Y) P (k)

k= k=2 k=3|k=1 k=2 k=3
(I) -1280.3 -1281.4 -1279.7 | 0.317 0.106 0.578
(IT) -1281.5 -1286.0 -1284.4| 0.938 0.010 0.052
(ITI) |-1280.7 -1281.2 -1286.4 | 0.621 0.377 0.002
m* = m;

=

Prior M (Y) P (k)

k= k=2 k=3|k=1 k=2 k=3
(I) -1279.7 -1281.1 -1279.4 | 0.385 0.095 0.520
(IT) -1281.5 -1285.2 -1284.1| 0.910 0.022 0.068
(IIT) | -1280.7 -1281.1 -1284.7 | 0.592 0.397 0.011

* *
m* = mj

=

Prior mﬁz (y) P,T;:(k)

k=1 k=2 k=3|k=1 k=2 k=3
(I) -1280.8 -1281.6 -1280.8 | 0.408 0.183 0.408
(IT) | -1281.5 -1284.8 -1283.3| 0.832 0.031 0.137
(III) | -1280.2 -1280.4 -1280.6 | 0.402 0.329 0.269

Table 4.4: Comparative results (two-factor model). Tﬁﬂz (y)’s are defined in (4.9),

while f’,ﬁ: (k)’s the posterior model probabilities. mj} represents a multivariate normal

distribution, with zero mean vector and covariance matrix defined as the maximum
likelihood estimator obtained in a classical k-factor model.

fori=1,...,6 and k£ =1,...,3. The prior hyperparameters are the same ones used
in the simulated cases, described in Section 3.6, also from last Chapter. The Gibbs
sampler and the computation of normalizing constants were done in the same way,
with My = M = 1000 and R = 1000. Table (4.6) summarizes our findings.

As can be seen, there is not much difference when we look at the posterior proba-
bility for each model (here, the number of factors). However, it is clear how unstable
the predictive is when based on noninformative priors indicating, as one would have
expected, that the predictive is arbitrary in this case. On the other hand, by using

expected posterior prior distributions the predictives are fairly robust. We have also
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tried m* ~ N(0,£2), where € is the maximum likelihood estimator of 88’ + X based
on a one factor model. Despite the fact that intuition would suggest that such choice
would rather favor a one-factor model, we have found, at least in this simulation,
that this is not the case. As a matter of fact, the results are virtually the same as
the one in table 4.6.

From the simulated and real data situations presented in this chapter, it can be
seen, at least empirically, that Pérez and Berger’s expected posterior prior performs

considerably well in factor analysis context when prior information is lacking.

4.6 Summary

In this chapter we have specialized Pérez and Berger’s (2000) expected posterior pri-
ors to the factor analysis context. Particular interest was focused on the sensitivity
of Bayes factors (posterior model probabilities) to the choice of m*. Despite the fact
that, in our simulations, we notice that virtually all methods pointed out towards the
truth (correctly assessing the number of factors), more robust estimates were found
for the various hyperparameter sets by using the expected posterior priors. Alter-
native choices for m*, the training sample size, the shape of the expected posterior
prior distributions, among other issues, need further and deeper investigation and we

anticipate their important practical impact into the field of latent factor models.
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m* ~ N(0, S)
Prior i (y) M (y)
k=1 k=2 k=3| k=1 k=2 k=3
(I) -1954.4 -1915.9 -1884.5|-1923.5 -1887.2 -1853.5
(IT) -1978.8 -1944.3 -1918.6 | -1928.6 -1886.7 -1856.2
(ITI) |-2022.1 -1988.2 -1970.5 | -1926.3 -1874.4 -1840.5
m* =mj
Prior i (y) M (y)
k= k=2 k=3| k= k=2 k=3
(I) -1954.4 -1915.9 -1884.5 | -1929.0 -1893.0 -1862.9
(IT) -1978.8 -1944.3 -1918.6 | -1921.6 -1896.2 -1868.5
(ITI) |-2022.1 -1988.2 -1970.5 | -1929.6 -1880.2 -1855.7
m* =mj
Prior i (y) M (y)
k= k=2 k=3]| k= k=2 k=3
(I) -1954.4 -1915.9 -1884.5 | -1922.1 -1881.5 -1858.0
(IT) -1978.8 -1944.3 -1918.6 | -1925.7 -1880.7 -1861.4
(III) |-2022.1 -1988.2 -1970.5 | -1924.9 -1874.2 -1850.5
m* =mg
Prior my (y) M (Y)
k=1 k=2 k=3| k=1 k=2 k=3
(I) -1954.4 -1915.9 -1884.5 | -1924.0 -1884.0 -1850.0
(IT) -1978.8 -1944.3 -1918.6 | -1922.4 -1887.2 -1858.4
(ITI) |-2022.1 -1988.2 -1970.5 | -1922.6 -1874.2 -1844.8

Table 4.5: Comparative results (three-factor model). ) (y) and ﬁzﬁz(y) are given

by equations (4.8) and (4.9), respectively. Also, PN (k) and ﬁﬂ;(k) are the posterior
model probabilities. m* ~ N (0, S), where S is the sample covariance matrix.
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~
~

Prior g (y) Mz (y)

k=1 k=2 k= k= k= k=
(I) -1015.5 -904.4 -910.3 | -994.4 -878.4 -884.1
(IT) -1034.7 -924.0 -936.2 | -994.3 -870.3 -888.5
(ITI) |-1071.6 -960.4 -973.4 |-996.0 -855.7 -859.4

P (k) Pr; ()
k=1 k=2 k=3|k=1 k=2 k=3
(I) 0.0 0.997 0.003 0.0 0.997 0.003
(IT) 0.0 1.000 0.000 0.0 1.000 0.000
(I1T) 0.0 0.994 0.006 0.0 0976 0.024

Table 4.6: Comparative results for the exchange rate data. mi (y) and ﬁzﬁz (y)

are given by equations (4.8) and (4.9), respectively. Also, PN (k) and Pﬂ;(k) are

the posterior model probabilities. m* ~ N (0, S), where S is the sample covariance
matrix.
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Chapter 5

Factor stochastic volatility and
time-varying loadings

5.1 Introduction

The first part of this thesis, which comprises chapters 2, 3 and 4, were primarily
devoted to studying model uncertainty issues in static factor models. It has been
argued that, conditional on the number of common latent factors, a straightforward
Gibbs sampler is available for posterior analysis (Geweke and Zhou, 1996; Aguilar
and West, 2000; Pitt and Shephard, 1999b), as studied in chapter 2. For the case
in which the number of common factors is unknown, an extensive list of alternative
procedures to compute posterior model probability where extensively studied with
theoretical and empirical findings summarized in chapters 3 and 4.

Factor models have received great academic attention since the early days at the
beginning of the century with the work of Spearman (Bartholomew, 1995). How-
ever, until recently, with the advent of powerful and fast computer machinery, factor
models have received less than full attention of practitioners. These models are now
emerging in problems in the fields as diverse as geology, credit analysis, and financial

markets. In this chapter and the next, we concentrate on factor models to character-
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ize covariance structures in certain classes of multivariate stochastic volatility models,
or more specifically, factor stochastic volatility models (FSV), with a particular view

to applications in finance.

Stochastic volatility models are basically a class of time-series models that allow
the time-series variances and covariances to evolve with time as stochastic function-
als of past variances, covariances and possibly other information available. Further
details about univariate stochastic volatility models, as well as comparisons with the
well-known class of autoregressive conditionally heterokedastic (ARCH) models, can
be found in Shephard (1996) and Kim et al. (1998). Although generalizations to
multivariate situations are theoretically and conceptually simple, their implementa-
tion makes them practically infeasible to handle. Many attempts have being made
to overcome dimensionality problems and the factor analysis model seems to be a
natural candidate for the same reasons stressed above.

Diebold and Nerlove (1989) introduce the latent factor ARCH models, which is
further explored and compared with other variance models in Sentana (1998) and
Giakoumatos et al. (1999). The former studied the differences between Diebold and
Nerlove’s latent factor ARCH models and Engle (1987)’s factor ARCH models, while
the latter compared a latent one-factor ARCH model with Shephard’s unobserved
ARCH model.

The works of Harvey et al. (1994) followed by Jacquier et al. (1995) and Kim et al.
(1998), and more recently by Aguilar and West (2000) and Pitt and Shephard (1999b),
form the basis for the model developments we consider in the next two chapters of the
thesis. They basically model the levels of a set of time-series by a factor model where
both the common factor variances and the specific (or idiosyncratic) variances follow

multivariate and univariate first order stochastic volatility structures, respectively.

We extend these works in some theoretical and practical directions, our main
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contributions consisting of (i) allowing the factor loadings to evolve in time, and (ii)
estimating sequentially the parameters of the model, as opposed to fixing them at

certain levels.

The first main contribution will be fully described in this chapter. To some ex-
tent, we believe that by allowing the factor loadings to change over time we maintain
the factor scores interpretability virtually the same across time. In other words, the
weight that some factors have on a particular time series might change with time,
mimicking real financial/economic scenarios. One such example is when a country
(or countries) enter/leave a particular market, and when such a market is been repre-
sented by a group of stable latent factors. The second main contribution is explored in
the next chapter where filtering techniques recently proposed for sequential analysis

of dynamic systems are adapted to the factor stochastic volatility context.

The rest of the Chapter is organized as follows. Section 5.2 sets up the model
which can be split in two parts. In the first part a factor model is used to represent
the level of time series dependence structure, while in the second one the variances of
common factor follow a multivariate stochastic volatility model. Also in this section
we lay down the prior distributions for the model’s parameters. Section 5.3 presents
in full details the posterior analysis, performed by an MCMC algorithm (hybrid
Gibbs and Metropolis-Hastings algorithms) on both parts of the model. We close the
chapter with an application in Section 5.4. For illustrative and comparative purposes
we revisit the same dataset used in Aguilar and West (2000); these data are the
returns on weekday closing spot prices currencies of six countries relative to the US
dollar. We start with static factor analysis to gain some exploratory intuition about
the time series covariance structure. We then implement factor stochastic volatility
models with and without stochastic volatility structure for the specific variances.

We close the chapter with some comments regarding the application and the overall
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research on factor stochastic volatility models.

5.2 Model and prior

As in equation (2.1) from Chapter 2, we assume that y, is a m-dimensional vector of

time series, whose levels follow a k-factor model,

(Yl Frs e B Be) ~ N(v, + B f 13 ) (5.1)

where, again, 7, is the m-dimensional mean level vector, 8, is the m x k factor loading
matrix, f, is the k& x 1 vector of common factors and ¥, is the m x m diagonal matrix
with the specific or idiosyncratic variances. The main differences lie in the time

structure of the parameters in «, 3,3 and the variances of f:

e We assume that the mean level, v, follows a simple multivariate random walk

process of the following form,

(’Yth/tfla W?) ~ N(')’tﬂa W?) (5-2)

to capture constant local (myopic) levels in the series. We will further assume
that the evolution matrices W are completely specified by a single and known
discount factor d, € (0,1). We refer to West and Harrison (1997) and to

developments from Section 5.3 for further details.

e We assume that the common factors are independent and normally distributed

over time, conditional on H,
(fi|H}) ~ N(0; Hy) (5.3)

with H, = diag(huy, . . ., hit)
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e The factor log-variances, or simply \; = log(hy), will follow a multivariate

first-order autoregressive (VAR) model,
AeA 1, @0, U) ~ N+ oA 1 — a);U) (5.4)

for Ay = (Mg, -, Ak), @ = (aq,...,ax), and ¢ = diag(¢y, ..., o). Aguilar
and West (2000) argue that allowing U to have nonzero covariances has impor-
tant practical implications. We will follow this parametrization in this thesis.
We also assume that 0 < ¢; < 1 for ¢ = 1,...,k, to guarantee nonexplosive
behaviour in the final time series variances and covariances. This restriction
also implies that changes in variances in a period of time are most certainly
followed by consecutive changes in the same direction in the near future, an
assumption that is fairly reasonable and observed quite oftenly in practice.
Under such constraints it is easy to see that A ~ N(u, W), where W satisfies
W = oW ¢ + U and results in an unknown full conditional for ¢, even when
the prior is conjugate. See Aguilar and West (2000) for further details and the

discussion in Section 5.3.

e We also assume univariate stochastic volatility structures for the nonzero el-

2

ements of ¥; = diag(c},,...,02,). More specifically, the idiosyncratic log-

variances, 1;; = log(c2) follow standard first-order autoregressive models,
(|11, &, p, S) ~ N+ p(m,-y — @); ) (5.5)

for n = (nlta B '777mt)la a = (&17 ) dm)a pP= (pla e 7pm> and
S = diag(sy,. .., Sm). As for the common factor variance equations, we assume

that 0 < p; <lfori=1,...,m.

e Finally the loading matrices, 3,, are constrained for identification reasons in

the same manner described in Chapter 2; that is the upper diagonal elements
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equal zero, B;;; = 0 for all j > 7. The main difference lies in the fact that
the diagonal elements are now set to one, 3;;, =1 foralli =1,... k to avoid

confounding them with the common factor variances.

The unconstrained elements of B are stacked up in 8, = (Bo1.ts P31ty - -+ Brkert)s
a d = mk — k(k — 1)/2 dimensional vector. As for the mean level vector,
v, we will assume a first-order autoregression evolution for the unconstrained
loadings,

(/Bt|18t717 ¢, A, Wtﬁ) ~ N(C + ABtﬂ; W?) (5-6)

with ¢ = (¢1,...,0), A = diag(dy,...,04). We will further assume that the
evolution matrices Wf are completely specified by a single and known discount

factor 05 € (0, 1).

It is worth mentioning that this model structure generalizes a number of currently

available factor model structures:

1. 6, = 03 = 1: Aguilar and West’s dynamic factor model;

2. u;; = 0 for i # j, 6, = 0 = 1: Pitt and Shephard’s factor stochastic volatility

model;

3. U = 0,S = 0 recovers the traditional static factor model (Geweke and Zhou,

1996).

In order to complete the requisites for the Bayesian analysis, prior distributions
must be defined and in this thesis will be restricted to conditionally conjugate prior
distributions to facilitate the already complicated posterior analysis. To begin with,

the prior distribution for the time series mean level at time £ = 1 is

Y1~ N (7o, o) (5.7)
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for v, and ¥, known hyperparameters. Analogously, the prior distribution for the

unconstrained loadings at time ¢ =1 is,
BO ~ N(mo, Co) (58)

with my and C\ known hyperparameters. In our applications we will focus on the
particular case where mgy = (41, and Cy = Cyl 4, for my and Cj scalars. The prior

distributions for components of ¢ and the nonzero components A are

G ~ N (Coj» Coj) (5.9)

8; ~ N(bo;, Vo) (5.10)

respectively, for j =1,...,d.

For the parameters that define both the factors’s log-volatility equations, o, ¢, U,
and the idiosyncratic factors’s log-volatility,&, p, s, we follow Aguilar and West (2000)
suggestions. They assume independent normal priors for the univariate terms of
and a and independent truncated normal priors for the terms in ¢ and p. Inverted
Wishart and inverted gamma distributions are assigned to U and to the diagonal

elements of S, respectively. More specifically,

U ~ IW(To,TOR()) (5].].)

si ~ IG(vyi/2,vpi55;/2) i=1,....,m (5.12)

with 79, Ry, 1; and s3; given hyperparameters.

5.3 Posterior analysis

This section presents the proposed MCMC algorithm to obtain samples from the
smoothed posterior disbribution of the parameters and the states (for t < T'), i.e. the

posterior distribution that are obtained when conditioning on all the observations
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up to time 7. In the following chapter we will relax this assumption. There we use
algorithms that produce samples of the parameters and states sequentially, i.e. at

each time t < T
[Distribution of the mean vector]

Defining z; = y, — B, f,, it is easily seen from equations (5.1) and (5.2) that
zZy = "Yt+€t €tNN(0,2t>

Yo = Y1t wi wy ~ N(0, W)

defines a multivarite dynamic linear model. Using (5.7) as the distribution of ~,
given initially and assuming that Cy is diagonal, an algorithm to sample ~, for all ¢

can be built as simply as follows:
Forward: Foreacht=1,....T,
(Y¢|Dy) ~ N(my, Cy)
with m; and C; given by,

my = my_ + Az —my_)

Ct - Ct—l/é'y_AtQtAg

with Q, = C;1/0, + 3, and Ay = C, 1 [Cy1 /0, + =) /0y

It is worthnoting that, being C| diagonal, so will Q, and C, which simplifies
considerably the calculations, which is crucial in a problem that already has

so many parameters. For further details see West and Harrison (1997), pages

582-583.

Backward: Sample v,,t =1,...,T as follows:
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1. For t =T draw ~; from N(my, Cr);

2. For all other t < T draw =, recursively and backwards from N(h;, H})

where,

H; = (1-4,)C,

using results from West and Harrison (1997), pages 112-115, about filtering

recurrences.

When ~, = « for all ¢, the full conditional for 7 can be easily obtained by
combining the prior distribution (5.7) and the likelihood (5.1). In this case, the full

conditional distribution of ~ is multivariate normal with mean and variance given by

-1

T -1, T
(Z ¥+ 2#) (Z S (y, — B fr) + 25%) and (Z DI 3 1)

t=1 t=1 t=1
respectively.

[Distribution of the common factor scores|

Combining the prior distribution (5.3) and the likelihood (5.1) it is also easy to see
that the full conditional distribution of f, is multivariate normal with mean vector

and variance-covariance matrix given, respectively, by:
(HEI + 18;2;1189—1,3;271(yt —7:) and (H;I + /3;2;1:39_1

independently for t =1,....T.

[ Distribution of the factor loading equations|
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Conditionally on W7, B, for all t, equation (5.6) when combined with the prior dis-
tribution for ¢ and A, (5.9) and (5.10), respectively, gives rise to a multivariate regres-
sion model, Y ~ N(X~, W) with prior 4 ~ N(aq, Bg) where Y = (Bll, . ,BIT)’,
v = (¢1,01,.-.,Ca04), X = diag(Xy,...,Xr) with elements X, = (1d,Bt) for
all ¢+ and 1, is a vector with d ones. Similarly, W = diag(W[f, ) ..,Wjﬂv), ay =
(Co1, 001, - - - Cody 00a) and By = diag(Cor1, Vor, ..., Coa, Voa). Here, Wf is given by
equation (5.16).

Therefore, from standard multivariate regression analysis (Zellner, 1971; Press,
1982; Broemeling, 1985), it follows that the posterior distribution of 4 (in our case, a
full conditional distribution) is also multivariate normal with mean vector and covari-
ance matrix given by a, = B1(X'W™'Y + B;'a¢) and B, = (X'W'X + B;')~!
respectively, which can be easily computed if we further notice that X'W 11X =
SEXIW X and X'WT'Y =Y XIW Y,

[Distribution of the factor loadings]

Notice that equation (5.1) can be rewritten as y;; = v1; + f1; + €1;- Also, define

2y = (th, ceey Zmﬂ,t) by

Yier — Vigr — fipre f 1=1,... k=1
Zit = | | t 5.13
" {yiﬂ,t—%ﬂ,t if i=k,...,m—1, (5.13)

and Ft = diag(Flt, ceey FN*I,L‘) with

(f1t7"'7fit> lflzl,,k—l
! {(flt,...,fm) if i=k ....om-—1. (5.14)

Notice that F; is a d x (m —1) matrix. Equations (5.13) and (5.6) when combined
with (5.8) form, conditionally on F;,¥s, ¢, A and W7, an well-known multivariate
dynamic linear model as presented in West and Harrison (1997), pages 112-115 and
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582-583. Recalling,

z, = FB,+e & ~N(0,V)) (5.15)

B, = CH+AB, +& &~ N(OW))

with By ~ N(mg, Cy), & = (€, ..., €em)s and V, = diag(c3,,...,02,). Therefore,
an algorithm to sample the ,[:]t for all ¢ can be performed as follows:

Forward: Foreach t =1,...,T,

(B:|Dy) ~ N(m,, C,)

with m; = a; + At(zt — F;at), Ct = Rt — AtQtAga a; = C + Amt,l, Rt =
AC, A +W/ Q,=F,RF,+V,and A, = R,F,Q;". In this step W7 is

computed indirectly as a function of the discount factor ds as

14,
0p

Wi = AC,_ A (5.16)

Further details can be obtained from West and Harrison (1997), pages 582-583.
Backward: Sample Bt,t =1,...,T as follows:

1. For t = T draw By from N(mg,Cr);

2. For all other t < T draw (3, recursively and backwards from N (h}, H?)
where,hy = m; + Bt(BtJrl —ayy1) and H; = C, — B,R;, B}, with B; =
C:A'R, . Once again, additional details are found in West and Harrison

(1997), pages 112-115.

When B, = B for all ¢, combining the likelihood from (5.15) with the prior from
(5.8) the full conditional is a multivariate normal with mean vector and variance-
covariance matrix given, respectively, by,

T -1 T
(Cgl +>° F;V;lFt> <C’0_1m0 +> F;V;lzt>
t=1 t=1
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and
-1

T
(Co—l +3 F;V;lFt>
t=1

[Distribution of the stochastic volatility parameters]

This section is based on Appendix B from Aguilar and West (2000).

a: Conditional on values of each of A;, ¢ and U, equation (5.4) can be thought
of as describing a multivariate normal linear regression. When combined with
conjugate priors for u, it produces a multivariate normal as full conditional,

which in turn is easy to sample from.

¢: Sampling ¢ is carried out through a Metropolis-Hastings algorithm that takes

advantages of ¢’s full conditional distribution; see Aguilar and West (2000).

U: As in the case of ¢, the full conditional for U is affected by the nonlinearity of
W = ¢W ¢+U, the unconditional variance of A; (see equation 5.4). Therefore,
Aguilar and West (2000) propose a Metropolis-Hastings algorithm that takes

advantages of U’s full conditional distribution.

a: Conditional on values of each of v, p and S, equation (5.5) can be thought of as
describing a multivariate normal linear regression. When combined with conju-
gate priors for a;, it produces a multivariate normal as full conditional. Notice
that the very nature of § makes the multivariate normal factor in products of

marginal univariate normals for each component of c.

p: Conditional on values of each of v;, p and S, equation (5.5) can be thought of as
describing independent univarite normal linear regression which combined with
a conjugate prior for p; produces another univariate normal as full conditional.

Since p; is restricted to be in (0, 1) those normal are truncated.
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S: Finally, conditionally on v;, & and p, equation (5.5) can be thought of as de-
scribing normal linear regressions, which combined with 5.12 produces inverse

gammas as full conditionals.

[ Distribution of the common and idiosyncratic factors’ volatilities|

When the i-th common factor equation (expression 5.3)
log(fit) = Xt +vie v~ log — X3 (5.17)

is combined with the equation for A; (expression 5.4) a non-Gaussian linear model
is formed (Kim et al., 1998; Aguilar and West, 2000). Kim et al. (1998) propose an
algorithm to sample the states in this non-Gaussian linear model,while Aguilar and
West (2000) extends it to the multivariate case.

Their idea, roughly speaking, is the following: (i) approximate the distribution of
v, alog-x?, by a specified finite mixture of normals, (7) then introduce T indicator
variables (traditional in estimating mixture of normals Diebolt and Robert, 1994) in
order to identify from which term of the mixture each of the v; comes; and (iii)
finally apply, conditionally on the set of indicators, a forward-filtering, backward
sampling (FFBS) algorithm (Carter and Kohn, 1994; Frithwirth-Schnatter, 1994) in
order to sample A; = (Ai1,..., \ir). Notice that the FFBS algorithms were already
used when sampling v, and B, (Section 5.3).

The same strategy is applied to sample the idiosyncratic volatilities, n,. Firstly,
define e, = y, — v, — B,f, from equation (5.1). Then when the i-th idiosyncratic

factor equation (expression 5.1),
log(e},) = m + vt vie ~ log — X7 (5.18)

is combined with the equation for n; (expression 5.5) forms a non-Gaussian linear
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model and the whole procedure used to sample the Bt’s can be identically be used to
sample n,’s.
In the next section we apply this machinary to a real problem that involve six

countries’s exchange rates returns and over ten years of daily observations.

5.4 Daily exchange rate returns

We analyse the same dataset used in Aguilar and West (2000), namely the returns on
weekday closing spot prices for six currencies relative to the US dollar. The dataset
contains 2872 observations that range from 12/31/1987 to 01/01/1999. The 2872
observations will be transformed in order to use one-day-ahead returns, resulting in
the lost of the first observation. Figure 5.1 shows the transformed time series in
the order used by Aguilar and West (2000): German Mark (DEM), British Pound
(GBP), Japanese Yen (JPY), French Franc (FRF), Canadian Dollar (CAD) and
Spanish Peseta (ESP).

5.4.1 Exploratory analysis: the whole dataset

We first develop traditional exploratory analyses. To gain more knowledge about the
data and to set the ground for further and deeper investigations with more complex
factor models.

Figure 5.1 presents the 2871 observations. The two vertical lines represent 1/1/1992
and 10/31/95, respectively. We will focus on the final two thirds of the data to keep

the analysis as close as possible to that presented in Aguilar and West (2000). The
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following matrix represents the time series sample correlations:

1.000
0.732
0.541
0.935
0.010
0.783

Figures 5.2 and 5.3 present the sample autocorrelogram for the time series and

0.732

1.000

0.430
0.721
0.063
0.625

their square transformations.

Classical static factor analysis is performed and the following estimates for the
factor loading matrix and idiosyncratic variances were found when fitting a £ = 3-

factor model (expression 2.1 of Session 2.2 might be helpful to recall the notation

and the model used here):

1.00
0.77
0.57
0.98
0.01
0.82

These are crude estimates which do not take into consideration any time-varying

structure for the time series covariance. Nevertheless, they point out some interesting

0.00
1.00
0.04
0.01
0.12
0.05

0.00
0.00
1.00
—0.05
—0.34
—17.86

directions; we summarize below.

e The GBP, DEM, FRF and ESP time series are overall fairly correlated, with

a slight decrease after 10/31/95 (827 observations, not graphically presented

here);

e The CAN time series does not seem to be correlated to any of the other returns.

e The JPY time series seems to be correlated with DEM, FRF and ESP, to some

0.541 0.935 0.010 0.783
0.430 0.721  0.063 0.625

1.000 0.527 —-0.011
0.527 1.000  0.021

0.408
0.769

—0.011 0.021  1.000 0.026

0.408 0.769  0.026 1.000

and X = diag

1.975419¢ — 06
2.944112e — 11
4.137319e — 05
3.393270e — 06
9.090150e — 06
3.211583e — 06

extent. Once again, this is somewhat diminished after 10/31/95.
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e The first factor weights (first column of the factor loading matrix) has basically
the same structure when one, two or three factor models are fitted to the data.
Basically, DEM, GBP, FRF and ESP dominate this factor, with JPY having

minor influence and CAD placing no influence at all.

e The second and third factors seem to be less important and represent an unique

time series each, GBP and JPY, respectively:;

e The sample autocorrelation functions for the squared time series suggest the

presence of marked correlations in the variances of the time series.

5.4.2 Exploratory analysis: the shorter dataset

In this second part of our exploratory analysis we focus on the time series from
1/1/1992 to 10/31/1995, the same portion used by Aguilar and West (2000) in their
work. This correspond to 1000 observations. They used this dataset to perform what
they call retrospective model analyses, in which posterior inference for the states and
parameters of the model, as defined at the beginning of this chapter, are assessed
based on the whole information set, as opposed to sequential analysis, discussed in
the next chapter. However, following analysis of the previous section, we will perform

some exploratory investigation to learn more about some aspects of the data.

Figure (5.4) magnifies the time series within the period analysed, while

1.000 0.442 0.377 0966 —0.021  0.876
0.442 1.000 0.185  0.441  0.031  0.415
0.377 0.185 1.000 0.366  0.108  0.325
0.966 0.441 0.366 1.000 —0.014  0.877
—0.021 0.031 0.108 —0.014  1.000 —0.009
0.876 0.415 0.325  0.877 —0.009  1.000

represents their sample correlations. Also for that period, Figures 5.5 and 5.6 show
the time series and its squared transformation’s sample autocorrelation functions.
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Static factor model analysis was performed and the following estimates found:

1.00  0.00  0.00 2.921264¢ — 06

0.74  1.00  0.00 9.963879¢ — 06

0.72 —0.39  1.00 . 2.656160¢ — 06

B=1 o096 005 o000 | 2 Z=diag| oaocomc. 06
—0.05 024 —0.08 8.535363¢ — 06

0.87  0.39 —0.08 1.268561¢ — 05

The results are quite similar to those stated when using the whole dataset. Next
our model is fitted to the shortened dataset. We decided to fit a three-factor model

with stochastic volatilty for the common factor variances.

5.4.3 Factor stochastic volatility model

In this section we use the model structure developed in Section 5.2 for the thou-
sand observations on the international exchange rate returns data from 1/1/1992 to
10/31/1995. Relatively vague prior were implemented for all model parameters fol-
lowing Aguilar and West (2000). For this section we will assume that 3; = % for
all ¢, such its i-th component, o2, follows, a priori, an inverse gamma distribution
with parameters vy = 3 and 1/0,-5%@» = 1 (following the notation from Section 2.5, from
Chapter 2). Notice that the prior is set up for the data in standardized form. The
hyperparameters for the time series mean level, 4, in expression (5.7) are v, = 0 and
3o = 100, 00014, describing quite vaguely the information about the time series loca-
tions. The unconstrained elements of 3, are normally distributed with zero mean and
unit variance. Finally, the prior for the stochastic volatility regression parameters,
a;, ¢; are N(0,25) and 2Be(20;1.5) — 1, respectively. For U we chose Ry = 0.00151
and rg = 20, in Aguilar and West’s notation. Other combinations of Ry, and ry
where tested resulting in most of the parameters being unaffected, apart from those
concerning the stochastic volatility equations. The discount factors d3 and 4, were
both set equal to 0.9975 representing slight moves on the levels of the series and on
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the factor loadings, respectively. Similar results were achieved with lower values for
the discount factors, such as 0.99. The MCMC was run for 35,000 iterations, being
the last 5,000 used for perform the analysis. Different starting values were tried as
well as different MCMC burn-in lengths. In general the results were pretty much the

same, with the chain pratically converging after 20,000 iterations.

Tables 5.1 and 5.2 present posterior estimates (posterior means and standard
deviations), for the time series levels and their idiosyncratic variances. Also, an
estimate of the correlation matrix at time t = 7" = 1000 is

0.004

0.629  0.003

0.419  0.352  0.006

0.726  0.640  0.425  0.004

-0.119 -0.101 -0.073 —-0.120  0.003
0.726  0.643 0.418  0.737 —0.119 0.004

with standard deviations along the main diagonal. Notice that similarity between this
estimate with the one obtained in the preliminary analysis in Section 5.4.2. Figure 5.7
present the time series standard deviations and correlations through time. Also, the
following exhibit shows point estimates (posterior means) for 8, for ¢t = 1,500, 1000,

while the parameters defining the stochastic volatility equations are summarized in

Table 5.3.
t=1 t = 500 t = 1000
1.00 0.00 0.00| 1.00 0.00 0.00| 1.00 0.00  0.00
0.85 1.00 0.00] 0.75 1.00 0.00| 0.63 1.00  0.00
Bt =1 054 024 100 063 —-0.04 1.00| 0.79 —0.20  1.00
0.94 010 0.52] 0.95 0.03 —0.02| 0.96 0.02 —-0.03
0.04 0.15 0.15|—0.05 0.03 —0.12 | —0.10 0.01 —0.20
0.93 0.08 —2.77| 0.93 0.02 —-3.40| 0.92 0.02 —3.40

Finally, some graphical results are presented in Figures 5.8 to 5.10. Figure 5.8

shows the posterior means for the factor loadings through time, while Figure 5.9
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presents the posterior means for the common factors itself and their standard de-
viations. Finally, Figure 5.10 present the proportion of the time series variances

explained by each of the factors, common and specific ones.

Some interesting points arise from this analysis.

e [t is interesting to note how similar the first factor loadings are to their coun-

terparts obtained in Section 5.4.2.

e Since the discount factor dz was set at a very high level (0.9975), very smooth
trends describe the evolution of the factor loadings. Nonetheless, the second
and third factor demonstrate non-constancy in some of their loadings. More
specifically, the second factor’s importance in explaining the Japanese Yen de-

creases with time.

e To some extent, the third factor seems to provide little or no contribution to the
fit of the model. In the next section, we discuss stochastic volatility structure
for the idiosyncratic variances, which sheds light at the interpretation of the
third factor. It seems that the second and third factors are responsible for time
evolving movements in the variances of two currencies, the British Pound and

the Japanese Yen, respectively.

e Looking at the common factor standard deviations, it can be argued that the
first two factors are indeed more important than the third one. As far as
forecasting performance is concerned, it might be that the third factor is in

fact important, even though it may seem not from a model fitting standpoint.

e The high correlation between the log-volatilities (see Table 5.3, might indicate
that a three-factor model is not needed to explain the codependence among the

time series.

83



t DEM GBP JPY FRF CAD ESP

1 18 116 296 203 -215 1.28
100 227 1.09 281 230 -2.20 1.05
300 236 1.07 4.04 2.08 -1.80 0.99
500 231 1.06 2.79 2.08 -1.47 1.04
700 233 098 1.61 206 -0.75 1.18
900 224 093 0.20 208 -0.25 1.31
1000 227 093 -0.32 2.08 -0.16 1.32

Table 5.1: Three-factor model:

retrospective posterior

means for 6;(x10°%),

t = 1,100, 300, 500, 700, 900 and 1000 (1/1/1992 to 10/ 31/ 1995)

e From Figure 5.10 it can be observed that the first common factor explains at

least 60 percent of all time series variances at all times, for all but the Canadian

currency. As a matter of fact, that currency’s variance is completely determined

by its idiosyncratic variance. Also according to this plot, the second factor is

responsible for about 40 percent of the British currency’s variability and is

meaningless for the others, while the third factor exhibits the same behavior

with respect to the Spanish currency’s variance. These results reinforce our

view that including stochastic volatility structure for the specific variances can

reduce the number of factors by two, since the second and third factors are

basic describing individual countries’ variabilities.

Overall it seems that a two-factor model would suffice to explain the exchange

rate returns comovements. However, before more exploration we will structure the

idiosyncrasies by allowing them to follow independent first-order stochastic volatility

autoregressive models. This is done in the next section.

5.4.4 Stochastic volatility model for the idiosyncrasies

In this part, we allow for heterokedasticity in the idiosyncratic variances, o7, as

described in Section .
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Figure 5.1: Returns from 1/1/1988 to 01/01/1999 (2871 observations). The vertical
lines indicates 1/1/1992 and 10/31/95, respectively.

We set the same hyperparameters and MCMC quantities as fully described in

Section 5.4.3. The prior for a;, p; are relatively vague, while for s; we have an inverse

gamma with mean 0.0004 and 25 degrees of freedom. As before, Tables 5.4 and 5.5

present the time series levels and idiosyncratic variances posterior estimates for some
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Country E(0?) SD(c?)
DEM 3.69 0.42
GBP 2.20 0.44

JPY 3237 1.51
FRF 2.98 0.34
CAD 8.75 0.40
ESP 1.71 0.23

Table 5.2: Three-factor model: retrospective posterior means and standard devia-
tions for oZ(x107%) (1/1/1992 to 10/31/1995)

1 Q; O U

1 -10.021(0.479) 0.977(0.010) 0.058(0.017) 0.979(0.011) 0.969(0.018)
2 -11.106(1.744) 0.994(0.003) 0.110(0.026) 0.198(0.048) 0.989(0.005)
3 -13.951(3.396) 0.994(0.004) 0.225(0.060) 0.397(0.076) 0.737(0.190)

Table 5.3: Three factor model: retrospective posterior means and standard devi-
ations (in parenthesis) for the stochastic volatility parameters. The upper diagonal
entries for U represent correlations. (1/1/1992 to 10/ 31/ 1995)

periods of time. An estimate of the correlation matrix at time ¢t =T = 1000 is

0.004

0.664  0.003

0.584  0.500  0.004

0.683  0.600  0.520  0.005

—0.098 —-0.087 —0.117 —-0.088  0.003
0.719 0.639 0.541  0.647 —0.092 0.004

which is a function of the MCMC samples’ ergodic average of B8, H B, + Y.

Also, the following exhibit shows point estimates (posterior means) for 8, for
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t = 1,500, 1000,

t=1 t =500 t = 1000
1.00 0.00 0.00| 1.00 0.00 0.00f 1.00 0.00 0.00
0.80 1.00 0.00| 0.70 1.00 0.00] 0.58 1.00  0.00
B,=1 053 034 100, 0.63 0.03 1.00| 0.79 —0.06 1.00
0.96 0.03 —0.01| 095 0.02 —-0.01| 0.95 0.02 —-0.01
0.04 0.11 -0.03|-0.05 0.02 -0.09|-0.09 —-0.01 —-0.09
092 013 0.03| 092 0.05 -0.02| 0.89 0.06 —0.03

The inferences for parameters defining the stochastic volatility equations for both
the common factor variances and for the idiosyncratic variances are summarized in
the Tables 5.6 and 5.7, respectively.

As in the case where the idiosyncratic variances were static, graphical summaries
are presented in Figures 5.12 to 5.10. Figure 5.12 shows the posterior means for the
factor loadings through time, while Figure 5.13 presents the posterior means for the
common factors itself and their standard deviations. Finally, Figure 5.14 present the
proportion of the time series variances explained by each of the factors, common and

specific.

5.5 Summary

In the next chapter we will compare the predictive performance of two models. How-
ever, some interesting facts show up in the analysis performed up to this point and

deserve to be mentioned. They are as follows:

e Allowing the idiosyncratic variances to follow stochastic volatility models has
little or impact on the point estimates for most of the parameters. Apart from
some of the entries in 8,, most of the quantities of interest remains virtually at

the same estimates.
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e The extended model just exarcebates our previous comment about the neces-
sity of fewer common factors. Previously, a common factor that represented
only one the variables could be understood as a adaptation of the model to
allow some of the series to have specific variances that varied with time. Now,
however, by allowing the specific variances of the series to follow independent
stochastic volatility models, we force the factors to fully represent real interac-

tions (possibly dynamic) between the time series at hand.

e An identification problem arises when a particular factor is represented by just
one of the time series. The reason is quite simple. In such a situation, the model
cannot distinguish between that common factor and the series’ idiosyncratic
variance. Some preliminary analysis with just two, or even one, common factor
revealed that the first factor is unchanged, but the other two seems to be
unnecessary in the model. Once again, to confirm this some sort of model

comparison based on predictive and/or forecast issues must be performed.

e The previous comment is exacerbated if we compare Figures 5.10 and 5.14
describing the relevance of each factor, common and specific, in each one of the
time series. The proportion of the variance explained by the first common factor
is virtually unchanged, the same being said about the second common factor.
The third factor is the one that sheds more light on our previous comments.
For instance, when the idiosyncratic variances were not modeled through time
(see Figure 5.10), the variability of the Japanese currency was explained by
the first common factor (40%), the third common factor (40%), and by its
idiosyncratic factor (20%), for most of the time period. When a stochastic
volatility is included to explain its specific variance (see Figure 5.14), all the
weight attributed to the third factor is relocated to its specific factor, indicating

that, in fact, the third factor is unimportant. The Spanish Peseta has a similar
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behaviour too.

e Following the previous discussion we have considered a one and two-factor

model. In the one-factor model, the posterior distribution for the parame-

ters defining the factor stochastic volatility are such that: F(«)

= —9.904,

SD(a) = 0.313, E(¢) = 0.9891, SD(¢) = 0.0057 and E(U) = 0.0037, SD(U) =

0.0015. Also, the following exhibit shows point estimates (posterior means) for

B, for t = 1,500, 1000

t=1 t=>500 t=1000

1.00 1.00 1.00

0.84 0.74 0.65

B,=| 046| 0.55 0.69

0.96 0.96 0.96

0.05| —0.04| —0.10

0.93 0.92 0.90

for the one-factor model and,
t=1 t =500 t =1000

1.00 0.00] 1.00 0.00] 1.00 0.00
0.73 1.00| 0.73 1.00| 0.73  1.00
B,=1| 041 032] 054 0.00| 0.67 —0.11
0.96 0.03| 0.96 0.03| 096 0.03
0.03 0.12|—0.05 0.04|—0.10 0.01
0.91 0.15| 0.92 0.06| 090 0.08

for the two-factor model. As we expected, the time series variances explained by

the second and third factors moves to the idiosyncratic components in the one-

factor model. The second and third factors are basically responsible for part of

the variances of GBP and JPY, respectively, and are those two currencies that

have their idiosyncratic variances changed as the number of factors is decreased

from three to one. Changes on DEM, FRF, CAN and JPY’s idiosyncratic

variances are immaterial, suggesting that an one-factor model is enough to
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t DEM GBP JPY FRF CAD ESP

1 241 149 025 287 -1.81 2.06
100 248 1.50 0.32 287 -1.82 1.70
300 262 150 043 285 -1.38 1.53
500  2.68 1.50 0.37 284 -1.18 1.48
700 276 149 0.31 283 -0.55 1.58
900 276 1.48 0.23 2.84 -0.20 1.58
1000 277 148 0.20 2.84 -0.19 1.56

Table 5.4: Three-factor model: retrospective posterior means for 6;(x107%),
t = 1,100, 300, 500, 700,900 and 1000 when the idiosyncrasies have stochastic volatil-
ity structures (1/1/1992 to 10/31/1995)

t DEM GBP JPY FRF CAD ESP

1 0.36 0.2 1.13 023 800 3.86
100 0.44 0.2 1.13 0.25 682 0.76
300  0.54 0.2 1.13 016 830 39.36
500  0.84 0.2 1.13 293 10.89 15.15
700  0.88 0.2 1.13 071 7.07 5.51
900  1.88 0.2 1.13 0.70 852 945
1000  2.58 0.2 1.13 9.83 12.07 4.49

Table 5.5: Three-factor model: retrospective posterior means for o7(x107%) when
the idiosyncrasies have stochastic volatility structures (1/1/1992 to 10/31/1995).

explain the co-movements in those currencies. We will discuss further this issue
later on in the next chapter when conducting sequential predictive and portfolio

comparisons amongst alternative models.

e Finally, it is interesting to observe, from figure 5.14, that the importance of
the European factor in explaining Great Britain’s volatility decreases by the
end of 1992 the year in which England withdrew from the European Union
agreement. From that point on, Britain’s volatility is partially explained by

the second common factor.
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i o o U

1 -10.191(0.376) 0.078(0.008) 0.053(0.015) 0.990(0.005) 0.990(0.008)
2 _11.828(1.351) 0.991(0.004) 0.076(0.020) 0.060(0.016) 0.994(0.004)
3 -10.942(0.866) 0.988(0.005) 0.115(0.030) 0.089(0.023) 0.078(0.024)

Table 5.6: Three-factor model: retrospective posterior means and standard devia-
tions (in parenthesis) for the stochastic volatility parameters when the idiosyncrasies
have stochastic volatility structures . The upper diagonal entries for U represent
correlations (1/1/1992 to 10/31/1995).

Q; i s

1 i
1 -13.665(1.507) 0.999(0.001) 0.001(0.000)
2 -15.446(0.212) 0.843(0.105) 0.000(0.000)
3 -13.758(0.323) 0.879(0.093) 0.000(0.000)
4 -14.351(0.411) 0.922(0.023) 0.648(0.181)
5 -11.651(0.190) 0.992(0.005) 0.001(0.000)
6 -11.967(0.248) 0.937(0.020) 0.201(0.061)

Table 5.7: Three-factor model: retrospective posterior means and standard devia-
tions (in parenthesis) for the stochastic volatility parameters when the idiosyncrasies
have stochastic volatility structures (1/1/1992 to 10/31/1995).
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Chapter 6

Simulation-based sequential analysis

6.1 Introduction

Smoothed estimation of factor models with multivariate stochastic volatilities were
extensively explored in the previous chapter. However, in many applications such as
financial time series analysis, where data arrive almost continuously, it is imperative

to have statistical approaches that allow sequential analysis and forecasting.

Sequential analysis and estimation are old topics amongst researchers, especially
engineers, applied economists and statisticians. Kalman filters or dynamic models are
particularly famous and widely used within and outside academy. West and Harrison
(1997) and Harvey (1989) are two good examples of the extent of attention that
sequential methods have taken in time series analysis. The field has been extensively
investigated, especially when dealing with normal linear dynamic models.

However, when it comes to larger nonlinear and nonnormal dynamic models, there
had not, until the 1990s, been sufficient statistical development. Not until recently,
with the revival of Monte Carlo techniques, that simulation-based sequential analysis

has come to the fore. Simultaneous appearance of related approaches can be tracked

back to West (1993a, 1993b) and Gordon et al. (1995). Broadly speaking, they
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propose approximating and sampling from the posterior distribution of the state
space vector at a certain period in time based on discrete random approximations
of the prior distribution at previous times. The samples that summarize the state
space distribution have been commonly called particles. More recent research has
explored and generalized in many directions the particle filter algorithms, such as
Liu and Chen (1995), Berzuini et al. (1997), Kitagawa (1998b), Doucet (1998), Pitt
and Shephard (1999a) Liu and West (2000), and Godsill et al. (2000), to cite a few.

In this chapter we apply some of the most recent developments in simulation-based
sequential analysis for the factor model with multivarite stochastic volatility problem.
We improve upon methods in Aguilar and West (2000), and Pitt and Shephard
(1999b), by allowing the model parameters to be estimated sequentially, since this is
very important when comparing competing models, either by their predictive capacity
or by their performance when measured by other mechanisms, such as porfolio returns
in financial settings. On one hand, we rely on Pitt and Shephard (1999a)’s auxiliary
particle filters ideas to deal with the state parameters in our model structure. On
the other hand, the fixed parameters are sampled sequentially according to a neat
and new idea developed in Liu and West (2000), following previous work from West
(1993a, 1993b).

We start the chapter with a review of the general notation for dynamic models in
Section 6.2, followed by the presentation of the auxiliary particle filter in Section 6.3.
Section 6.4 treats the fixed parameters and describe the general sequential algorithm.
Predictive analysis is rapidly presented in Section 6.5, while Section 6.6 specializes
the sequential procedure for the factor analysis with multivariate stochastic volatility

context.
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6.2 General notation

We adopt the following general notation for a Markovian dynamic model:

Observation Equation : p(y,|x;, 0) (6.1)
Evolution Equation : p(x|x:1,0). (6.2)

where y, is the vector of observable time series, x; is the vector of unobservable state
parameters and @ is the vector of static parameters, sometimes referred to as the
hyperparameters.

For the moment suppose that 6 is known and omitted from the notation. Later on
we will show how to include @ in the analysis. Therefore, and using the terminology

of West and Harrison (1997), the evolution equation at each time ¢ is:

p(xy|Di—y) = /p(33t|33t—1)p(33t—1|Dt—1)dil3t—1 (6.3)
while the updating equation at each time t is

p(@e|Dy) o< p(xi| Dir)p(yy]0).- (6.4)

Apart from the traditional Gaussian case, extensively studied in West and Har-
rison (1997), the filtering densities cannot be obtained analytically and numerical
methods must be used. There are many alternative methods proposed in the lit-
erature for approximating these densities. We will focus our attention to recent
developments on auxiliary particle filtering by Pitt and Shephard (1999a) combined
with an ingenious algorithm proposed by Liu and West (2000) that takes into account

uncertainty driven by fixed parameters, such as 8 = {X, a, ¢} in our case.

6.3 Auxiliary particle filtering

Here we will describe the rationale behind the auxiliary particle filtering we will use

later on. Detailed explanation and applications can be found in Pitt and Shephard
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(1999a). First, here we are at time ¢ — 1. We want to use equations (6.3) and (6.4)
to update to time ¢ posterior. As mentioned before, apart from very simple cases,
neither the prior in (6.3) nor the posterior in (6.4) are analytically tractable. Instead,
we will assume that a weighted sample 3351,)1, cee a:%) with weights w&)l, cee wﬁ? can
be taken from the states posterior distribution at time ¢t — 1, p(@; _1|D;_1). In other
words, the distribution of the state space vector x; is approximated discrete particles
with discrete probability mass. We will use the set Z;_; = {(zi_1,wi 1)), j =

1,...M} to summarize p(x;—1|D;—1). Hence, a natural Monte Carlo approximation

(as M — oo) for the prior (6.3) is

M . .
pla|Dyq) = Zp(a:tkc?_)l)w,gj_)l (6.5)

J=1

which, following Pitt and Shephard’s (1999a) terminology, is called the empirical
prediction density. Combining this approximate prior with the observation equation
produces, by Bayes’ theorem, the following approximation for the state space vector

posterior distribution at time ¢.

M .
(x| Dy) o ply,lz:) Z $t|f’3t 1) (])1
Jj=1
- )y, ()
Z (y|ze)p wt|wtil>wtil' (6.6)
J=1

the empirical filtering density according to Pitt and Shephard (1999a). A sampling
scheme from the approximate posterior (6.6) is needed in order to complete the
evolution/update cycle. More specifically, the empirical filtering density should be
summarized by a set of particles and corresponding probability masses. Gordon et
al. (1995), Kitagawa (1998a) and Berzuini et al. (1997), for instance, suggest us-

ing sampling/importance resampling (SIR) where samples are drawn from the prior
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p(x|D;—1) and reweighted according to the likelihood p(y,|x;). As well-known the
SIR method becomes ineffective either when the prior is relatively diffuse or the like-
lihood is highly informative. Adaptive SIR, rejection and MCMC sampling methods
are possible alternatives (Pitt and Shephard, 1999a, Section 2.2).

Pitt and Shephard improve on particle filter methods by addressing to practi-
cal and importante issues: (i) Efficiently sampling from the approximate posterior
distribution (equation 6.6) and (i) Efficiently approximating tails’ behavior of the
approximate prior (equation 6.5). They developed a generic filtering algorithm that
is currently well known as auziliary particle filtering. The basic feature of a auxiliary
particle filter is to take advantage of the mixture of densities (6.6) to obtain draws
from p(x;|D;) by introducing latent indicator variables to identify the terms in the
mixture (an idea commonly used in mixture modeling, Diebolt and Robert, 1994).

In other words, if (x;, k) is sampled from the following joint density

plas, k) o< p(y,|z)p(@]e) ) w) (6.7)

and the index discarded, the resulting @, is a sample from (6.6). Pitt and Shephard
describe various sampling methods. In this work we focus our attention to their STR

algorithm, which can be summarized in the following steps:
Step 1: Sample {(x;, w,)V, 1 =1,... L} from an importance function, say g(x;, k| D;);
Step 2: Compute the weights

l [ k!
o Pz e zt)

Wy
g(z . ¥|D,)

. I=1,...,L. (6.8)

Therefore, E; = {(x;,w;)?, [ =1,... L} summarizes p(z;|D;). A third step can

be included depending on whether or not an iid sample is desired, in which case L
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is usually much larger than M. In our applications we use M = L = 10000 draws to
compute posterior and predictive quantities.

Pitt and Shephard (1999a) suggest using the following generic importance function,g:

g(wt7k|Dt) OCp(yt|u§k)>p(wt|wgﬁ)l>w§ﬁ)lv k= 17"'7M' (69)

where ugk) is an estimate of x; given :c§’i)1. In our applications, pu, = E(x|x; 1),

even though modes or any other likely value from p(x;|z;_1) would be as convenient.

Therefore, the form of g(k|D;) is

g(k1D) o wl® [ oy p(@lel)dz,

x ply ) w). (6.10)

The previous two-step algorithm can then be rewritten as:

Step 1a: Sample k' with probability proportional to g(k|Dy) o p(yt|u§k))w§ﬁ)1;

Step 1b: Sample a:,gl) from p(wt|wgﬁl1)>;

Step 2: Compute the weights

w® o P(yt|-”3§l))

I=1,...,L. (6.11)
t 1y, ) )
(™)

Choosing ¢(-) is a nontrivial task and is inherent in all Monte Carlo methods (SIR,
adaptive, MCMC,etc.). Pitt and Shephard’s wise argument is that the simulation
algorithm will favour particles with larger predictive likelihoods. By doing so, they
continue, the resampling step will have lower computational cost and will improve
on statistical efficiency of the procedure.

In the next section we incorporate the parameter vector, @ in the filtering analysis.
We consider Liu and West’(2000) approach to this problem.
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6.4 Treatment of model parameters

In this section we extend the auxiliary particle filter from last section to incorporate
uncertainty about the fixed parameter vector, 8. This and the next sections are based
on Liu and West (2000). They combine kernel density estimation techniques with
artificial parameter evolution and propose a novel algorithm to sequentially treat
fixed parameters in general dynamic model settings.

Initially, let (6.4) be rewritten as
p(@e, 0|1Dy) o p(y,|@e, 0)p(x:|6, Di—1)p(0] D1 ) (6.12)

where the uncertainty about 6 is explicited by adding the term p(@|D;_1). As before,

and conditional on @, the evolution density p(x;|@, D; 1) can be approximated by

M . .
pla]0, Di_y) = 3 plai|0, ) )w ) (6.13)

=1

where Z;_; = {(x/_1, 0,1, w;_1)Y), j=1,..., M} summarizes p(z,_1,0|D;_,).

A natural solution, firstly explored by Gordon et al. (1995), is to pretend that
the fixed parameters are states in the dynamic modeling, for instance, by adding
small random disturbances to artificial evolutions, and proceed the analysis with the
auxiliary particle filters presented in the previous section. Such artificial evolution
reduces the sample degeneracy problems, however it imputes unnecessary uncertainty
into the model and also creates artificial loss of information resulting on overdispersion
of the posterior distributions.

Liu and West (2000) reinterpret Gordon et al.’s artificial parameter evolution idea
and combine it with West’s kernel smoothing techniques. Approximations for p(8|D;)
based on mixtures of multivariate normals were suggested by West (1993b),

M
pOID; 1) =S N@OmY, iV, 1 )w, (6.14)
j=1

111



where h is a smoothing parameter, V', | = Var(@|D; ), and ;1,,9_)1 are the locations
of the components of the mixture. In standard kernel methods, p,,gj_)l = 0,@1. Also,
for large M, it is also common practice h as a decreasing function of M. West (1993b)

introduces a shrinkage rule for the locations,

m\?, = a6, + (1 -a)8,_, (6.15)

where 0, ; = E(0; 1|D; 1). The variance of the resulting mixture of normals is
(a®+ h?)V;_y, which is always larger then V;_; for a® + h? > 1. West suggests using
a? = 1 — h? to guarantee that the correct variance is used in the approximation,
crucial in sequential schemes.

Liu and West (2000) show that if 0 is the discount factor used in Gordon et al.’s

artificial evolution method, then defining
h* =1—((36 —1)/26)* (6.16)

produces an algorithm that links the kernel estimation (equation 6.13) with the
shrinkage idea (equation 6.15).

Liu and West (2000) apply their novel strategy in a couple of situations, including
a simpler version of Aguilar and West’s (2000) dynamic factor model for financial time
series, which are similar to the models we explored in the last chapter. Amongst
other empirical findings, they argue that MCMC methods should be combined with
sequential algorithm in real applications. They show that, when performed for longer
periods of time the filtering algorithm starts to deteriorate and diverges from the “gold
standard” MCMC results.

Combining Pitt and Shephard’s (1999a) auxiliary particle filters with Liu and
West’s (2000) developments on parameter and state estimation can be schematically

summarized in the following algorithm. Fort =1,...,1:

~
[1

1 = {(@1o1, 01,0 )Y), =1, M} summarizes p(x;_1,0|D;).
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2. Compute V1 = Ej”il(Ogi)l — ﬁt,l)(e,@l - ﬁt,l)'w,ﬁf_')l and 0;_, = ij‘il 9§j_)1w,@
3. Compute u,@ = E(azt|m§91, 9(‘7)) and m,gj_)l = a9§j_)1 +(1—a)8;_
4. Forl=1,....M
I. Sample k' with Pr(k' = j) o< w p(y,|ut?, m\7))
II. Sample 6\ (k). p2
. ple 8;" from N(m_{;h*V;_;)
III. Sample V" from the p(wﬂw,&ﬁ?, 0,@)

IV. Caleulate w” x p(y, |z, 0") /p(y |, m*))

Looping through I-1V, for each time t, produces Z; = {(x, 0;,w,)9), j=1,..., M}
summarizing p(x;, @|Dy).
The next section includes an extra step in the algorithm in order to obtain pre-

dictive distributions.

6.5 Computing predictive densities

Suppose, as before, that Z;_; = {(z,—1,0;—1,w,—1)Y), j = 1,..., M} summarizing

p(xi_1,0|D; 1). Then the one-step predictive density

p(Y|Di—1) = /p(yt|wtae)p(mt70|Dt—1)dwt
can be approximated by

1 L

. ~ (1) p®
p(yt|Dt,1) = T Zp(yt|w§)70t )
j=1
where {(2;,0,)", 1 =1,..., L} form a sample from the states and parameters’ joint

prior distribution at time ¢, p(x;, @|D; 1). Forl=1,...,L,

113



1. Sample an indicator k' = j with probability w\;

2. égl) = Olglill) ;
= (1) : ~ » (k') o)
3. Sample &;’ from the evolution equation (6.2), conditional on x;"{ and 6,".

Predictive moments can be approximated similarly by

1 L

P - z®
E(yt|Dt71) = i3 ZE(yt|w§l)v 0, ) (6-17>
=1
and
~ 1 & ~ a0
V(yt|Dt71> = E ZV(yt|:I}t 70t ) (6-18>

=1
These quantities will be used in the next chapter when comparing models based on

their forecasts and porfolio performances.

6.6 Sequential analysis with stochastic volatility

and time dependent loadings

In this section we specialize the previous algorithms to our factor stochastic volatility
model. The state vector x; ; now comprises Bt,l, Ai1,7, and n,_,, according to
equations 5.6, 5.4, 5.2, and 5.5, respectively. It has, therefore, py = d + k 4+ 2m
elements, where d = mk — k(k + 1)/2. The parameter vector @ comprises elements
a, p, &, p,vech(U), s, ¢ and A, following the same equations as for the state vectors.
In our applications we have ¢ = 0 and A = 1, so the factor loadings follow random

walk processes. Also, the full form of the evolution equation at time t is
p(mt|wt—179) = p(Bt|C7AalBt717Wtﬁfl)p(At|At—17a7¢v U)
X p(Vilvi s Wiip(ndn, 1, &, p, s).

The technical details about each step of Liu and West’s method are now presented.

114



3. New state vector

¢+ afp
) _ QEQI + ¢§]—)1()‘§]—)1 - azg]—) )

By =
oo
5‘?—)1 + P,g]—)1(77gj—)1 - &?—)1)
4.1 (7) )y N () 'Q(j) h
-1. (yt|l="t y My ) (l“l’t,[d+k:+1,---,d+k:+m]’ t—l) where

‘I’EJ) = diag(exp(uﬁ,’[)dﬂ ..... d+k]))

553) = dz’ag(exp(ugi)1,[d+k+m+1 pﬂ))

.....

with f(8) = B being a m by k matrix. In other words, f transforms a d-

dimensional vector back to the lower triangular structure of B (see equation

.....

(J?a, ce ,a:b)'.

4.IT. We have transformed some of the parameters to better accomodate the mix-
ture of normal approximations in the kernel method. That is, we apply the

multivariate normal kernel method in the parametrisation defined on:
o log(gi/(1—¢i)),  i=1,...k
o log(uy), i=1,...,k;
o log(pi/(1 = pi)),  i=1,...,m;
e log(s;), i=1,...,m.
4.IT1. This step is divided into four parts.

(a) Sample B,El) from N(agl), W?), where

0 _ g

a; J[p2+1,...,p2+d] + 2 Bl‘*l’
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and Wf is estimated by

14
0

=0 |3 BB

J=1

Y ~)
with 8;,_; = ij\g Btilwt(]f) () = dzag(@i [)pz-l-d-i—l p2+2d}>-

(b) Sample A" from N(a!",E") where
a) =6 +of) O =6y, =1k,

and

=0 _ ~190)
B, = vech I(Ot,[2k+2m+1 ..... 2k+2m+k(k+1)/2]>'

(c) Sample v\ from N (4" WV) with W7 estimated by

with 7, , = Z]‘A/i1 7§Q1w£1)1-

(d) Sample 5\ from N(a\", =) where

l Kk .
ag,g = gt( %k—l—z + gt( %k—l—m-i—z(nz(t ) - gt(,%k—l—i)v t = 17 cee, M,

and

—(l . l
:-5) = dlag(OE,[)Zk+2m+k(k+1)/2+1 ----- pﬂ)'

In the next Section, we combine the methods presented and developed in this
chapter and in the previous one. We reanalyse the financial time series of Aguilar

and West (2000) in that setting.
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6.7 Daily exchange rate returns: revisited

As opposed to Chapter 5, where we basically discussed modeling issues and focused
on smoothed analysis of multivariate financial time series, here we entertain two
competing factor stochastic volatility models (see equations (5.1) through (5.6) from
the previous chapter). The difference between the two models lies in whether or
not the unconstrained elements of the factor loading matrix, 8, follow univariate
random walk processes. In other words, models with different discount factors, d,
are compared (see the discussion after equation (5.6)). The constant factor loading

model, d3 = 1, is the benchmark model.

6.7.1 Implementation

The model structure considered here is the same as presented in Section 5.4.3. Recall-
ing, a k = 3-factor stochastic volatility model (Chapter 5) is fitted to the thousand
observations on the international exchange rate returns (m = 6), from 1/1/1992 to
10/31/1995 (T = 1000). Posterior inferences, at time T, are based on a MCMC
sample of size M = 10, 000 from the joint posterior. The state and parameter vectors

are
~r
Ty = (/Btv A:tv 7:57 772>I
and

0, = (d, ¢, a, p,vech(U), s

of size p; = 27 and p, = 30, respectively. In order to investigate the impact of time-
varying loadings in the factor stochastic model, we fixed all other parameters at their

(approximate) posterior expected values for time ¢ = 0 (T = 1000 in the previous
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analysis). Those values, from Tables 5.4, 5.6 and 5.7, are

~10.19 ~13.67 0.99 0.001
~11.83 ~15.45 0.84 0.001
o &) — ~10.94 (. p.8) = ~13.76 0.88 0.001
) - 008 [P = 1435 092 0648 |°
0.99 ~11.65 0.99 0.001
0.99 ~11.97 0.94 0.201
0.000277
0.053 0.076 0.060 88885;‘5
U = | 0076 0115 0.089 | . ¥=| 00084 |-
0.060 0.089 0.078 0.000019
0.000156

where ¥ = E(~,|Dy) is the time series (approximate) posterior expected value based
on the first thousand observations. We argue that by doing this we narrow down
the sources of discrepancies between the alternative models only to the components
of x; and 6, that contribute to the computation of the financial time series one-step
ahead forecast covariance matrices. Such matrices play important roles in both the
computation of posterior predictive densities and in assessing portfolio performance,
as will be clear in the following section. Identical steps were performed for the one
and two-factor models, and these are compared to the three-factor model in the next
section. Finally, the discount factor from Section 6.4 was fixed at 6 = 0.83, which
correspond to a shrinkage parameter ¢ = 0.9 and a smoothing parameter A = 0.4.
Basically, when centering the terms in the kernel mixture, 90% of the weight goes to
the sampled values from the posterior at time ¢ — 1, while the components variances
are 40% of the variances of the draws. This is an arbritary choice and other values
should be considered if robustness in the forecast/portfolio performance is a major
concern. The results, measured in goodness of fit and forecast performance terms,

were virtually the same when § was chosen to be in (0.8,0.99).

118



6.7.2 Predictive analysis

In the above framework, we perform sequential analysis based on the filtering algo-
rithm presented earlier in the chapter. We use data from 11/01/95 (t = 1) up to
10/31/97 (t = 523). We have seen, in Section 6.5, how the one-step ahead forecast
distributions are computed based on the parameter and state prior samples. Equa-

tions (6.17) and (6.18) are particularly important in performing portfolio allocation.

For illustrative purposes, five models were entertained, for each £ =1, 2, 3:

Model 1: The loading matrix, 8, is fixed at its posterior mean at ¢ = 0 and kept

constant throughout the sample period.

Model 2: The loading matrix, 3, does not evolve with time, even though p(8) is

updated as new observations arrive. In other words, dz = 1.
Model 3: 63 = 0.9975.
Model 4: 3 = 0.99.

Model 5: 63 = 0.95.

Table 6.1 shows the log-predictive densities when performing the sequential pro-
cedure for a period of two years, i.e. 523 daily observations. According to the table, a
k = 2 factor model has the highest posterior predictive density for all five alternative
models of the factor loadings evolution. Therefore, if one-step ahead forecast per-
formance is the analyst’s ultimate goal, the two factor model with dg = 0.95 would
provide the best results, among the fifteen entertained models. Figure 6.1 empha-
sizes the argument. The number of factors seems to be unimportant up to mid-April,
1996. After that, and more evidently after December, 1996, the one and three-factor
models deteriorate as far as predictive capability is concerned. The one and three
factor models exhibit fairly similar predictive performances.
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Model | k=1 k=2 k=3
-353.4 -196.3 -276.6
-353.0 -200.1 -270.5
-294.8 -182.5 -256.6
-272.1 -137.8 -257.0
-238.5  -96.8 -228.8

O i W N =

Table 6.1: Predictive analysis for the k-factor stochastic volatility model (k=1, 2,
3) based on data from 11/01/95 to 10/31/97. Model 1: B, = E(B|Dy); Model 2:
0z = 1.0000; Model 3: 65 = 0.9975; Model 4: 63 = 0.9900; Model 5: 63 = 0.9500.

Another way of comparing models, at least in the present context, is by assessing

practical portfolio performance. Some results are presented in the following section.

6.7.3 Portfolio comparisons

In many situations statistical performance is not the only interest. In our applica-
tion, where the modeler or decision maker is, for instance, a risk manager or portfolio
analyst, more interest might be given to cumulative returns of competing portfolios,
generally based upon competing models. In the previous section we compared fifteen
different models in terms of their predictive performance. In this section we will com-
pare their performance based on portfolio cumulative returns as explored in Aguilar

and West (2000), for instance.

Broadly speaking, a portfolio is a vector a (in our case of size m) that comprises
the amount invested on a set of risky assets (exchange rates in our application).
At time ¢t — 1, a portfolio a; with target return m, i.e. aj;vy, = m, is obtained by
minimizing its one-step ahead variance. In our application we simply take one of
Aguilar and West’s (2000) target values, m = 0.0016. Hence, the investor’s problem
can be seen as solving a quadratic programming problem:

I
a;yy =1m

1= 1 (6.19)

ncllina'tﬂtat subject to {
t
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where 1 is the unity vector of size m and €, = Var(y,|D;—1). The second constraint
can be interpreted as forcing the investor to fix the total amount invested at each
time. Without the second constraint, the investor is allowed to take long and short
positions across the currencies in order to optimize the portfolio.

Let the unconstrained fixed-target portfolio, i.e. the solution of the quadratic
programming equation (6.19) without the sum-one constraint, be denoted by &,gm).

The closed form solutions for the dynamic programming problem are (Markowitz,

1959):

a™ = Q' (e, —vie1)) (6.20)
a; = Qt_l')’t/')’;ﬂt_l')’t (6-21)

where e, = Q, ' (1m — ~,)/d; and d; = (1’2, 1) (v, Q; v,) — (1'Q; 1v,)%.
Besides being the minimum-variance fixed-target portfolio, the optimal portfolios,

(m) )

a; ' and a,ﬁ’" , are the ones that maximize one-step ahead expected returns amongst

all portfolios with common variances.
Without any constraints, the minimization problem from equation (6.19) yields
two well-known portfolios. The minimum variance portfolio,

Q1
19,1

minvar

a, ==

(6.22)

From a statistical viewpoint, Polson and Tew (1997) argue that the global min-
imum variance portfolio, which does not depend on ~,, is suitable for comparing
models that parameterize €2, differently, which turns out to be our main concern in
this application. Further details can be found in Aguilar and West (2000, Section
5.3) and Polson and Tew (1997, Section 2) and their references.

Figure 6.2 and Table 6.2 focus on comparing the performance of three portfolios
when three of the entertained models were fitted to one, two or three common factors.
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Portfolio Number of factors
k=1 k=2 k=3
After half a year: 4/30/96
M, M, Ms M, M, M; M, M, Ms
1(-042 -1.34 -1.38| 0.56 -1.59 -1.67|-1.42 -1.75 -2.23
1.55 092 054 1.79 055 0.18| 0.09 -0.07 -0.37
31 -211 -206 -1.71|-1.7 -1.73 -1.50]|-147 -1.70 -1.75
After one year: 10/31/96
M1 M4 M5 M1 M4 M5 M1 M4 M5
11 898 3.21 3.41]10.04 242 219 | 3.67 3.40 3.32
412 393 3.78| 4.05 343 3.06| 3.68 3.56 3.17
31 115 130 189 1.17 122 226| 1.14 1.36 284
After one year and a half: 4/30/96

M1 M4 M5 M1 M4 M5 M1 M4 M5
111463 051 0.21]16.90 -1.00 -2.27| 3.42 261 1.32
2 (11.05 533 5.21|11.36 5.16 3.56| 829 7.94 5.26
31 -3.10 -2.50 -243 | -3.72 -3.26 -2.62|-2.61 -2.38 -0.15
After two year: 10/31/97
M, M, Ms M, M, M; M, M, Ms
111843 1.89 1.07 ] 20.47 -0.25 -1.57] 4.70 3.96 2.98
211247 6.04 5.29|13.15 599 3.79] 9.29 9.15 648
31 -242 -1.18 -1.39| -3.87 -3.07 -2.15|-2.17 -1.87 1.12

(\]

Table 6.2: Comparing portfolio performances for the k-factor stochastic volatility
models (k=1,2,3) based on data from 11/01/95 to 10/31/97. Portfolio one is the con-
strained fixed-target (6.20), two is the unconstrained fixed-target (6.21) and three is
the global minimum variance portfolio (6.22). M, : B8, = E(B|Dy); My : d3 = 0.99;
Ms - 65 = 0.95.

Figure 6.3 presents the performance of the three portfolios strategies discussed
above. Portfolio one is the constrained fixed-target (6.20), two is the unconstrained
fixed-target (6.21), and three is the global minimum variance portfolio (6.22). The
rows represent the five models entertained (Section 6.7.2). As far as cumulative
returns are concerned, the mean-variance efficient portfolio and the minimum variance
portfolio have the lowest returns, as is to be expected. Additionally, the constrained
fixed-target portfolio appears to exhibit the best performance across the models.

The constrained fixed-target portfolio with fixed factor loadings and a two-factor
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structure seems to be the best overall model. However, when comparing the global
minimum variance portfolios, the models with time-varying loadings give better re-
sults especially in the two or three-factor models. Figure (6.4) shows the portfolio
composition through time for two competing models (M; and M;) when two-factor
models are fitted and three different portfolio strategies performed: constrained fixed-
target portfolio, unconstrained fixed-target portfolio (middle), and global minimum

variance portfolio. The elements of o, ¢, &, p, U, s and 7 were fixed at,

—13.51 0.99 0.001

a _9.90 &\ ~11.31 0.99 0.020
6 | = 0.99 o) | —1048 0.99 0.002
v\ o036 ) 'Z, | 1451 099 0693 |°

—11.64 0.93 0.001
—11.97 0.99 0.220

and 10'%' = (2.60,0.75,0.64, 2.65, —0.25, 1.55) for the two-factor model, and

jg:;i ~13.55 0.99 0.001
o — ~19.10 0.87 0.001

6 | - 0.88 | (6 ps)= | 1052 0.99 0.002 |
vech(U) 352 ~14.49 0.92 0.741
0303 ~11.64 0.99 0.001
0248 ~11.96 0.93 0.210

and 10%' = (3.52,2.41,0.94, 3.57, —0.28, 2.36), for the three-factor model.

6.8 Summary

In this chapter simulation-based sequential time series analysis were and adapted
to a class of factor stochastic volatility models where the factor loading matrices
are allowed to evolve with time. We have revisited the international exchange rate

application discussed in Chapter 5. We note some interesting summary findings.
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e When the comparison amongst competing models, particularly models M; and
M5, were made with respect to their predictive capability, we found increasing
performance when the factor loading’s discount, 3, was diminished. In other
words, the faster the factor loadings aadapt the better is the one-step ahead
forecasting performance. This behavior is presented in one, two or three factor
models, with more emphasis on the one factor model (see Figure 6.1). Unfor-
tunately, this empirical result can not be state in general, for as dg decreases
the one-step forecasting accuracy will eventually get very bad, for small values

of 55.

e The fixed-target portfolios (constrained and unconstrained) indicate that mod-
els M, has the best financial performance, as measured by percen cumulative
returns. On the other hand, Mj; is the best when the global minimum variance
portfolio is the chosen strategy (see Figure 6.2). We argue that, when com-
paring different models, the minimum variance portfolio should be the one to
be used because its is insensitive to changes in the levels of the time series. In
other words, since this portfolio strategy is a function of €, (and not of =,),
we are able to see the effect of allowing the factor loadings evolve through time

without such effect being confounded with variations in the levels.
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Figure 6.1: Predictive analysis for the fifteen competing model based on data
from 11/01/95 to 10/31/97. Row i corresponds to the log(p(y,|D;_1, M;)) (left) and
log(TTi_, p(y,|Dy_1, M;)) (right), where M; is model i (i = 1,...,5). In each frame,
the solid line represents the one factor stochastic volatility model, while the dashed
line and the dotted line indicates the two and three factor models, respectively.
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Figure 6.2: Comparing portfolio performances for the k-factor stochastic volatil-
ity models (k=1,2,3) based on data from 11/01/95 to 10/31/97. The columns are
the number of common factors: k& = 1(left), & = 2(middle) and k& = 3(right). The
rows are the different portfolio strategies: constrained fixed-target portfolio (top),
unconstrained fixed-target portfolio (middle), and global minimum variance portfo-
lio (bottom). Each frame has the cumulative returns for three competing models:
B, = E(B|Dy) (solid line), §3 = 0.99 (dashed line), and d3 = 0.95 (dotted line).
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Figure 6.3: Portfolio comparisons. Each column represents the one-step ahead
performance of a particular portfolio. For instance, portfolio 1 (left column) is repre-
sented by equation 6.21, while portfolios 2 (middle column) and 3 (right column) are
described by equations (6.20) and (6.22), respectively. Models 1 to 5 are presented
in the text (Section 6.7.2). In each frame, the solid line represents the one factor
stochastic volatility model, while the dashed line and the dotted line indicates the
two and three factor models, respectively.
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Figure 6.4: Portfolio weights for the two-factor stochastic volatility model based on
data from 11/01/95 to 10/31/97. The columns are the different portfolio strategies:
constrained fixed-target portfolio (left), unconstrained fixed-target portfolio (mid-

dle), and global minimum variance portfolio (right). The rows correspond to the six
countries: DEM, GBP, JPY, FRF, CAN and ESP. Each frame has the weights for
two competing models: 8, = E(|Dy) (solid line) and d3 = 0.95 (dotted line).
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Chapter 7

Longitudinal modeling using mixture
priors

7.1 Introduction

We propose a class of longitudinal data models with random effects that generalizes
currently used models in two important aspects. First, the random effects model is
a flexible mixture of multivariate normals, accomodating population heterogeneity,
outliers and non-linearity in regression on subject-specific covariates. Second, we
extend the model to allow for meta-analysis over related studies.

Models for Bayesian inference in longitudinal data models with random effects
are reviewed, for example, in Wakefield et al. (1998), with a focus on population
pharmacokinetic/pharmacodynamic (PK/PD) studies similar to the motivating ap-
plication in this chapter. Let y;; denote the j-th measurement on the ¢-th patient, let
0; denote a random effects vector for patient ¢, and let x; denote patient-specific co-
variates, including treatment dose. The usual structure of population PK/PD models
is

p(yisl6:),  p(Oilri, d),  p(9). (7.1)

Here p(y;;|0;) is typically a parametric non-linear regression for expected response
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over time. For example, 6; could be the parameters in a compartmental model for
drug concentrations. The second level of the model specifies the prior distribution
for the random effects vectors 6;, possibly including a regression on patient-specific
covariates x;, with ¢ denoting the hyperparameters. Bayesian models similar to (7.1)
have been considered in Zeger and Karim (1991) for generalized linear mixed models,
in Wakefield et al. (1994) for the general population model assuming a multivariate
normal population distribution, in Dellaportas and Smith (1993), and in Wakefield

(1996) with multivariate t priors.

Heterogeneity in the patient population, outliers and over-dispersion make a strict
parametric model for the population distribution p(6;|z;, ¢) unreasonable in our ap-
plication. Instead, we consider an essentially non-parametric extension. In maxi-
mum likelihood-based inference, popular non-parametric extensions to the popula-
tion model (7.1) are NPML (Mallet, 1986), with no restrictions on the distribution of
the random-effects in the model and yielding a discrete estimate of this distribution;
and SNP (Davidian and Gallant 1992, 1993), a method that assumes the model’s
random effects have a “smooth” density and produces estimates from such a class of
densities. Bayesian approaches to non-parametric extensions are described in Ros-
ner and Miiller (1997), Miiller and Rosner (1997), Kleinman and Ibrahim(1998a,b),
Walker and Wakefield (1994). Walker and Wakefield (1994) use Dirichlet process pri-
ors, the other references use Dirichlet process mixtures. In this chapter we propose
an alternative approach, based on finite mixture of normal models. A similar idea is
proposed by Magder and Zeger (1996), where the mixing distributions in univariate
and multivariate linear mixed-effects models are estimated by using mixtures of gaus-
sians. Unrelated with the application in population models, Richardson and Green
(1997) and Neal (1998) argue for the use of finite mixture of normal models in place

of Dirichlet process mixtures, citing issues of computational efficiency, flexibility of
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prior specifications, and interpretability.

Another important extension of the basic model (7.1) is to allow joint analysis of
several related studies meta-analysis. Meta-analysis is a popular theme in statistical
inference, often modeled with a hierarchy asin (7.1). But there is little work on meta-
analysis over related non-parametric models. One approach is discussed in Miiller
et al. (1999), which extends Dirichlet process mixtures to allow for hierarchical

extensions suitable for meta-analysis.

The chapter is organized as follows. In Section 7.2 we introduce the motivating
application. The random-effects model based on finite mixtures of multivariate nor-
mals is presented and discussed in Section 7.3. In this section, we also propose a
new hierarchical model across related studies to allow for meta-analysis. Posterior
analysis is presented in Section 7.4. In section 7.5 we extend the model to include
uncertainty analysis about the number of terms in the finite mixtures of multivari-
ate normals. Section 7.6 presents results based on the motivating application, and

Section 7.7 concludes with a final discussion.

7.2 Data: Meta-analysis over related studies

The motivating application is the analysis of two studies carried out by the Cancer
and Leukemia Group B (CALGB, Lichtman et al., 1993). CALGB 8881 was a phase
I study that sought the highest dose of the anti-cancer agent cyclophosphamide one
could give cancer patients every two weeks. Patients also received the drug GM-CSF
to help reduce the ill effects of cyclophosphamide on the patients marrow. The other
study, CALGB 9160, built upon the experience gained in 8881. The drug amifostine
had been shown in some studies to reduce some of the toxic side effects of anticancer
therapy, such as cyclophosphamide and radiation therapy (Spencer and Goa, 1995).

A common toxicity of cancer therapy is myelosuppression, in which the immune
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system is suppressed by the therapy’s killing cells involved in immune functions. The
objective of CALGB 9160 was to determine if adding amifostine would reduce the
myelosuppressive side effects of aggressive chemotherapy with cyclophosphamide and
GM-CSF. CALGB 9160 randomized patients to receive amifostine or not, along with
cyclophosphamide (3 grams per square meter of body surface area) and GM-CSF (5
micrograms per kilogram of body weight). The main study question in CALGB 9160
concerned the effect of amifostine on various measures of hematologic toxicity, such as
nadir (i.e., minimum) blood cell counts or days of life-threatening myelosuppression.
Since only 46 patients entered the randomized trial, we wished to use data already
gathered in the earlier study to help make inference in CALGB 9160 more precise.
Let K = 2 be the number of studies under consideration, and n; be the number
of patients in study k. In study 8881, we have data on ny = 52 patients. The other
study includes data on ny, = 46 patients. In both studies, the main response was
white blood cell count (WBC) for each patient over time. We will use yy;; to denote
the j-th blood count measurement on the i-th patient in study £ on day #;;;, recorded
on a log scale of thousands/microliter, i.e., yx;; = log(WBC/1000), and t;;; denotes
the corresponding times of measurements. In CALGB 8881 and 9160, we had a total
of 674 and 706 observations, respectively, with the number of observations for one

patient varying between 2 and 19.

Rosner and Miiller (1997) used a non-linear regression model
Yrij ~ N [f(ekiatkij>a 02] - (7.2)

to fit the data. The vector @ = (z1, 29, 23, 71, T2, B0, /1) parametrizes a mean function
f(8,t) that is defined piecewise as: (i) a horizontal line for 0 < ¢ < 7; (ii) a straight

line connecting parts (i) and (iii) (7 <t < 7); and (iii) a shifted and scaled logistic
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curve (t > 1):

21 t<mn
FO.0) =1 ra+(1-1)g0.m) n<t<n (7.3)
g(0,1) t> Ty

where r = (1 — t)/(m2 — 1) and ¢(0,t) = 2z + z3/(1 + exp{—PFo — B1(t — ™) }).
The horizontal line (i) represents the initial base-line count; the steep decline (ii)
corresponds to the start of the WBC decline; and (iii) models an S-shaped recovery.

Figure 7.2 illustrates the nonlinar function f(8,-).

7.3 The random effects model
7.3.1 A mixture of normal models

We start by describing the random effects model for just one study, i.e., assuming
K =1. To simplify notation, we will drop the k£ subindex until we discuss extension
to K > 1. Also, we shall first consider a prior distribution without a regression on

covariates ;.

To generalize a multivariate normal prior p(6;|¢), we use a mixture-of-normal
model p(6;|¢) = Sr_, m N(u+d;, S). The mixture is parametrized by ¢ = (m, p, dy, | =
1,..., L), including an overall location parameter p and offsets d; for the individual
terms, with the constraint d; = 0. Under such parametrization, p can be assigned
a non-informative prior, since it is present in all terms of the mixture. The same
parametrization is used, for example, in Mengersen and Robert (1995) and Roeder
and Wasserman (1997). As Celeux et al. (1999) point out, the parametrization
of mixture models can be critical for convergence and meaningful interpretation of
posterior simulation.

With sufficiently large L, the mixture-of-normal model can approximate any de-

sired random effects distribution (Dalal and Hall, 1983; Diaconis and Ylvisaker, 1985).
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As in any non-linear, non-normal modeling context, the specific choice of L is guided
by two competing principles. Low L leads to parsimony and easier estimation. In
the extreme case of a single normal distribution, L = 1, it reduces to the single mul-
tivariate normal prior. On the other hand, by choosing a large L, one can increase
flexibility when fitting the population distribution p(8;|¢). Later, in Section 7.5, we
discuss formal selection of L as a model selection problem.

We follow an approach used, for example, in Mallet, et al. (1988). We now consider
a model extension to include a regression on covariates x; in p(6;|x;, ¢) (Miiller and
Rosner, 1997). We augment the prior mixture of normal model to a probability model

n (0;, ;) jointly, i.e.
p(0;, zi|o) = Zm (w+d;,S). (7.4)

The implied conditional distribution p(0;|x;, ¢) formalizes the desired regression and
takes the form of a locally weighted mixture of linear regressions.

Finally, we extend the mixture of normal random effects model to a hierarchical
model across related studies to allow the desired meta-analysis. The construction
of this hierarchical extension is driven by the following considerations. First, the
model should include the extreme cases of one common random effects distribution
on one hand, and entirely different random effects distributions for each study on the
other hand. Second, the hierarchical extension should not unreasonably complicate
posterior simulation. And third, the hierarchical model should allow interpretation

of the additional parameters. Based on these considerations, we propose a model

P(Oki, 01i| ) = € De(Okis Tri| Do) + (1 — &) Dk (Okis Tr| D1, (7.5)

where p. represents a commom measure shared among all studies and pg, & =
1,..., K, is a study-specific measure. The vector of hyperparameters ¢ is split into
subvectors ¢y and ¢, k = 1,..., K. The additional mixing parameter ¢ determines

134



the amount of borrowing strength across the related studies. We shall refer to p, as
the common measure, and p; as the idiosyncratic measure. Figure 7.3 illustrates this
split of the random effects distributions for the K studies. By assuming a prior dis-
tribution p(e) with support including 0 and 1 we could a priori include the extreme

cases: total lack of or complete exchangeability across all studies, respectively.

For p;, and p. we assume mixtures of multivariate normal models,

Ly

Pe(Oris ri|do) = D mN(p+d,S) (7.6)
=1
Lo

pr(Okis Tilok) = D muN(p + di, S) (7.7)

=1

with possibly different numbers (L; and L) of components in the mixtures. For the
moment we assume fixed size mixtures, i.e., L; and L, are fixed hyperparameters.
Later, in Section 7.5, we shall extend the model to random size mixtures. Also, w
represents the overall mean, while d; (and dy;) are deviations from p.

To avoid identifiability problems, d; is set to 0, and the variance S is assumed
equal across terms of the mixtures, even though we recognize that letting S vary
across studies would not be a major computational problem.

Using a mixture of normal model to represent the unknown measures p.(.) and
pi(.) we face identification problems common to any mixture model. We impose an
order constraint on the weights m; and 7 to avoid lack of likelihood identifiability
due to arbitrary permutations of indices.

There are at least two more sources of possible identifiability concerns. The
additional level of mixture introduced in (7.5) allows alternative representations of
the same random effects distribution p(.) by (i) including a idiosyncratic term in p.(-),
and/or (i) duplicating the same term in all idiosyncratic measures, py(-). The latter
concern can be addressed by choosing as informative prior for Lo, one that favors
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smaller size idiosyncratic mixtures. Also, by replacing one term in p. by K copies in
each of the idiosyncratic measures, p; increases the model’s complexity unnecessarily.
The Bayesian paradigm inherently favors the more parsimonious alternative ((i) on
the previous page) by intrinsically applying Occam’s razor principle (Jefferys and
Berger, 1992). The former concern, i.e. including a idiosyncratic term in the common
measure, is not a problem of likelihood identifiabilty because such representation
actually has [ower likelihood than the alternative one, in which the idiosyncratic

term is in the idiosyncratic measure, where it belongs.

7.3.2 Implementation

A common device in posterior simulation with mixture models like the proposed
random effects model is the introduction of indicator variables to break the mixture
(Diebolt and Robert, 1994). Consider indicators ry; to break the mixture in (7.5),
(7.6) and (7.7), such that

it 1<I<I4

Priry, =1} = { Thyp, if Ly <I<Li+ Ly (7.8)

Conditional on the indicators ry;

N(p+d,S) if 1<I<IL
POk, pilryi = 1) = { N(p+dy,S) if Ly <1< L +Ly
In words, [ < L; indicates that the random effect is sampled from the common,
while [ > L; indicates a sample from the idiosyncratic part of the random effects
distribution.

We complete the model with prior distributions on 02, S, u, d;, and dy;. For o2 we
assume a conditionally conjugate inverse gamma distribution, o ~ IG(ag/2, 5/2)
with oy and f, positive hyperparameters. The prior on ® = S~' is a Wishart
distribution with hyperparameters vy and ®g, i.e., ® ~ W (v, vy ' ®g). For ¢ we use
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a beta prior, ¢ ~ Beta(ag,by). Alternatively, we could include prior point mass at 0

and 1 without significantly complicating posterior simulations.

For p and d we choose conjugate multivariate normal priors, g ~ N(f,6V),
dy ~ N(d, V), dy ~ N(dg, Vi) and dy, ~ N(d, V), with fi,d,d, V, V;, and V fixed
hyperparameters (See Section 7.6). Finally, the prior distributions for 7 are Dirichlet,
(Tk1y -y TrL,) ~ Dir(ay) for k=1,...,K and [ = 1,..., Ly; while (my,...,7,) ~
Dir(a), with fixed hyperparameters oy = (a1, ..., axr,) and o = (g, ..., ar,).

In the following section we describe in full details the Markov chain Monte Carlo

algorithm designed for simulating from the full posterior and predictive distributions.

7.4 Posterior analysis

The posterior distribution for all parameters involved in the longitudinal model is

X p(r|7r76)p(5|57ﬂ7 (Niv ‘77 ‘717 RIS ‘7[(7 V)

X p(@|vy, Po)p(m|a, ey, . .., e )p(elag, bo) (7.9)
where,
e 0={0; k=1,.... K i=1,...,n4}
e E={p.dy,....dy, dpd, k=1,...,K [=1,... L}

° 71':{71'1,...,7TL1,7Tkl ]{3:1,...,[\” lzl,...,Lz}

w:{xk, ]{3:1,,[( 2:1,,nk}

r={r, k=1,...,K i=1,...,n;}
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Closed form solutions for posterior integrals with respect to the posterior in (7.9)
can not be achieved, even when conditionally conjugate prior distributions are used.
We use Markov chain Monte Carlo simulation in order to overcome such problems.
In this section we detail the sampler used in order to implement posterior inference
in our proposed model. We are essentially using a Gibbs sampler. Most of the full
conditionals are easy to find and to sample. Metropolis-Hastings steps are proposed
for those parameters in 6;;. Further details can be found, for instance, in Miller and

Rosner (1997).

[ Distribution of 0]

The conditional posterior for o2 is obtained by combining its inverse-gamma prior

and the likelihood from equation (7.2),

p(o*|-++) o< p(o*|ao, o)p(y|6, ¢, 0%)
which is recognized as the kernel of an inverse gamma distribution with parameters
(ap +n)/2 and {50 + 0 Sk S (Ykis — f (O, tkij))Z} /2.
[Distribution of @]

The conditional posterior for ® is obtained by combining its Wishart prior and

the likelihood from equation (7.2). Let 0, = (Ori, xr;)" and d = dzm(ékl) Then,
p(®[-++) o p(@|w, Ro)p(O|r,E,, @, )

is recognized as the kernel of a Wishart distribution with v + n, degrees of freedom
and scale matrix [1/0<I>0_1 + K S (O — pgy) (Opi — uki)’].
The p,,; are functions of the indicators, whose full conditional distributions are

given below. Such indicators, as well known in the literature of mixture models,
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are used to facilitate the exposition and computation of the likelihood of the model.

More specifically,

B = BTk ) { prdyg—rp,y Li<lI<Li+ 1L

[Distribution of r;]

Initially, let us define # = (74, ..., 7y,) as the collection of indicators for all patients
under all studies. Notice that the 7’s are the ry;’s from above without discriminating
from studies. Analogously, @ = (6,...,0,,) corresponds to the patient specific

parameters. The objective is to compute
Pr(7; = m|r, 0,7, ®,¢)

where 7 = (71,...,7i—1,Tit1,...,7n,). Some results used in this section are pre-

sented in the Appendix C.

m =1,...,L; It can be shown that

Pr(f; = ml|ry, 0,7, ®,¢) < empdN (05|, 5,8 + Vi)

Vi = n®+ ‘771/5
i, = Vi (m,i@ém + ‘71[1,/5>
Vﬁl. = nm,,‘I)-F‘M/il/(l“‘é) m = 27"-7-[/1

i = Vo (nm,@ém,i FV Nt d)/0+ 5)) m=2....L

with I,,; = {l : 7 = m,l = 1,...,n, and | # i}, n,,;, = card(l, ;) and

nm,iem,i = Zzgzm,i 0,.
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m=Ly+1,...,L1 + Ly It can be shown that

Pr(ii=m|rg, 0,7, ®,2) o (1 — &)1, AN (0| i s S+ Vinik)
where k indexes those observations from study k, and
Volie = @+ 6V +Vy)™!

Boie = Vonik(nix®0p i+ (6V + V)T (1 + dy))

with I ={l: 7 =m,l=1,...,n, 1 #i and study k}, nyix = card(Ip)

and 1y, kOmik = 2ier ., 01

m,ik

[ Distribution of €]

The conditional posterior for ¢ is obtained by combining its Beta prior distribution

and the likelihood from equation (7.2),

p(5|> X p(€|a0,bg)p(r|7r,5)

which is recognized as the kernel of a beta distribution with parameters ay + 7 and
bo + 1y — 1, for ) = Sply iy N = Xhoy Tty L(Fgg = m), m=1,..., Ly, and I(A)

is the indicator function that equals one if A is true and zero otherwise.

[Distribution of (7y,...,71,)]

Analogously, the conditional posterior for (7, ..., 7,) is obtained by combining

its Dirichlet prior distribution and the likelihood from equation (7.2),
p(ﬁ, SORNIY 21 | . ') X p(ﬂ—lv <oy Ty |O£>p(’l"|7‘l', 5)

which is recognized as the kernel of a Dirichlet distribution with parameter a + 7.

[Distribution of (71, .., Trr,)]
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Analogously, for each k = 1,..., K, the conditional posterior for (w1, ..., Txr,)
is also a Dirichlet distribution with parameter ay + n,, where n, = (9k1, .-+, MkL,)

and Mg m—r, = iy I(Fp; =m), for m =Ly +1,..., Ly + Lo.

[Distribution of p]

The conditional posterior for the baseline mean, p, is obtained by combining its
multivariate normal prior distribution and the likelihood from equation (7.2). Notice

that according to equation (7.5) and conditional on r; = m,
Ori — di; ~ N (1, S) .

where dj; = d,, if m < Ly and d; = dj(,—r,) if m > L. Once again, the traditional
multivariate Bayesian linear model arises when combining the previous model for
p with its multivariate normal prior, i.e. N(f,dV). Therefore, it can be shown
that the conditional posterior for p is multivariate normal with mean vector and

variance-covariance matrix given, respectively, by
~ 1 4 —1 ~ 1. 4 K ng .
(V7' 4ms ) (VTR/5+ 8750 (00— di)
k=11i=1

and

~ —1 -1
(V /6 + np51>

[ Distribution of d, ..., dr, and dyy,...,dgr,]

Analogously, the full conditionals for ds, . ..,d;, and dyy,...,dkr, can be found
by focusing only on those 0y; such that r,; = m and m = 1,...,L; or r; = m and

m:L1—|—1,...,L1+L2.

[Distribution of dy]
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For each k£ =1,..., K, the conditional posterior for d;; is obtained by combining
its multivariate normal prior, N(Elk|c:l, ‘:/'), and the likelihood, [T>2, dN(dkm|£lk, Vk),
which also has a multivariate normal kernel. Therefore, conditional on all other
unknown parameters, the full conditional of d; is a multivariate normal with mean

vector and covariance matrix given by,

d+V(Vi/Ly+ V) (d, — d)

and

V-V(V/L+ V)V

respectively.
[ Distribution of z1, 23, 23]

For the sake of notation we will omit the subscript of @ and of all results for the
rest of this section, since we will focus on each patient’s random effects. Initially, let
y be an n dimensional vector containing the log WBC for the patient.

Conditionally on all the other parameters, such as 71, 7, 5y and 3 it can be seen

that y can be split in three parts y = (y,, ¥, y3)" as follows

Yy, = 1z, +02+0z3+¢;
eBo
Yy, = rzl—i-(l—r)zz—l—(l—r)ngjLsZ
eBo+B1(t—72)
ys; = 0z + 12+ Z3 + €3

14+ eBo+B1(t—72)
or more concisely,
y=Xz+e

for z = (21, 22, 23)". Therefore, if the prior for z is a normal distribution with mean
vector a and variance covariance matrix B, then its full conditional is also a multi-
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variate normal with mean vector and variance-covariance matrix given by,
m = C {Bila + X'y/aQ}
-1
Cc = {B'+(X'X)/0?}

respectively.
[ Distribution of 71 and 73]

The following steps are performed to update 7y :

1. Draw a candiate 77 from N(a, B) where a and B are the conditional mean and
variance for 7, derived from equation (7.5) when conditioning on the other

coordinates being equal to the current values.

. 0" . .
2. Accept 71 with probability min {1, %}, otherwise keep it unchanged. Here

0 and 6" differ only with respect to 7.

See the appendix from Miiller and Rosner (1997) for more details. 7 is updated

analogously.
[ Distribution of By and (1]

We use here Miiller and Rosner’s idea in which the moments of the normal ap-
proximation to the likelihood based on the linearized logistic link function in a logistic
regression with Gaussian error is used. For all y; in y such that m, < t; < 7 the

transformation is

yi — iz — (L —1)2
(]_ - TZ')Zg

gi =

while for all y; such that ¢; > 7 the transformation is,

Yi — 22
Z3

g9; =
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and defining y; = log(g;/(1 — ¢;)),
Yy =XpB+e

where 8 = (fy, /1)’ and X is the design matrix (the first column is filled with ones
and the second with zeros or t; — 7 depending on whether t; is greater than 7 or
not).

As for the 7’s, we will assume that the prior for this model will be the conditional
distribution obtained by equation (7.5) when conditioning on the other coordinates
being equal to the current values; this distribution turns out to be a bivariate normal
distribution with mean vector and covariance matrix, say, a; and B;. Looking at
this (approximate) likelihood as a function of 3 it can be seen that it has the kernel
of a multivariate normal with mean vector and variance covariance matrix, say, as
and B,. This kernel when combined with the prior yields an approximate posterior
distribution that is also normal with mean and variance, as and B3 and that will be
used as the probing distribution for Sy and ;. In other words, 8 is sampled from

the (approximate) posterior, N(as, B3), and accepted with probability

n{l p(yl0") o(B;az, Bs) }
" p(yl0) ¢(B"; az, Bs)

where, again, @ and 0" differ only with respect to 8. ¢(8;a, B) denotes a normal
density with moments a and B (for further details see the appendix of Miiller and
Rosner (1997).

In the next section we discuss model selection and model averaging. There the

number of terms in the mixtures defining the common and specific measures, L; and

Lo, will be also considered uncertain.
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7.5 Selecting the number of terms in the mixture

There are two main aspects to model assessment. The first is related to model
selection. In many situations, even if no particular model is thought to be the true
one, it is convenient to select one for scientific reporting. On the other hand, in
many applications there are quantities of interest, like predictive inference for future
patients, that do not depend on a particular model and might be averaged across
models. General issues of model averaging and model selection are discussed in
Raftery et al. (1997), Wasserman (1997) and Clyde (1999). Hoeting et al. (1999)

provide a recent tutorial on Bayesian model averaging.

Let M = {1,2,..., M} denote the set of indices representing all models under con-
sideration and assume that A is an outcome of interest, such as the future profile of a
new patient from the population, or the time at which the white blood cell counts of a
new patient drops below a critical threshold. Let 6,, denote the parameter vector un-
der model m. The posterior distribution for A is p(A|D) = ! _, p(A|m, D) Pr(m|D)

where D denotes the data,

M

Pr(m|D) = p(D|m)Pr(m) { > p(Dlm) Pr(m)}

m=1

is the posterior probability of model m and p(D|m) = [p(D|0p, m)p(8m|m) db,, is
the marginal likelihood for model m.

In the proposed population model, neither p(6,,|m, D) nor p(A|m, D) are analyt-
ically tractable. Additionally, p(D|m), the predictive distribution under m, involves
the solution of a possibly high-dimensional integral. Possible approaches for comput-
ing marginals p(D|m) are discussed, among others, in Gelfand and Dey (1994), Chib
(1995) and Meng and Wong (1996). Chib uses the candidate formula to compute

the predictive density based on draws from the posterior distribution; Gelfand and
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Dey use importance resampling; and Meng and Wong suggest a bridge estimator that
links an importance sampling density and the target function, usually the posterior
distribution. These and other approaches were presented and extensively studied in
the factor analysis context in Chapter 3.

As in Chapter 3, we will use again the a reversible jump MCMC sampler. Re-
call that a RJIMCMC algorithm is a Markov chain simulation that jumps between
models of different dimensions (Green, 1995). Dellaportas et al. (1998) and God-
sill (1998) have shown the relationship with alternative methods of model selection.
The frequency with which the algorithm visits each particular model approximates
Pr(m|D). Detailed information about the RIMCMC is also available in appendix B.

Green (1995) and Richardson and Green (1997) propose RIMCMC algorithms for
general mixture-of-normal models. However, these general algorithms are difficult to
apply in the possibly high dimensional context of our application. Instead, we suggest
below an RJIMCMC scheme that exploits the fact that we have only few competing

models to consider.

We will use posterior draws from fitting each model M,,, m = 1,..., M. This
strategy is feasible since we only have a small number, say 4 to 16, of competing
models to consider. Suppose the current state of the Markov chain is (m, 6y, ...,0y),

then the proposed algorithm proceeds as follows:
Step 1 Propose a visit to model M~ with probability J(m — m). See the notation
from Section 3.3.

Step 2 Generate 6, from p(-|ly,m), O~ from p(-|y,m) and make 6, = 6, for all
k # m,m.

Step 3 The acceptance probability of the new model can be calculated as the mini-
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mum of 1.0 and

p(y105, 1)p(65 [)p(m) J (i — m) [Thl, p(6kly. k)
PY1On, m)p(O|m)p(m) J(m — ) [L, p(Ok|y, k)

model ratio propos;l ratio

which can be rewritten as

p(y|65,m) p(m) J(m — m)
p(y|6,m, m) p(m) J(m — m)

Step 3 Cycle through 1 and 2 until convergence has been achieved.

In Step 2, we proposed a new model m and new parameters for both the current
model m and the proposed model m. Of course, we do not need to always keep
parameter values for all competing models in memory. Only when and as a value 0,
is required in Step 2 must we read a value from the appropriate file of posterior Monte
Carlo simulations. This assumes that the samples from model M, are approximately
independent. This can be achieved, for example, by using sufficiently large batches
when saving the MCMC simulations.

There are many alternative ways to propose the jumps between the models. The
main motivation for using this particular algorithm is the easy access to posterior
draws from each competing model and the lack for an easier way to find approximate
proposals, especially when the size of the vector @ varies considerably from model to
model. Appendix B presents the RIMCMC algorithm in greater details.

In previous chapters, we have compared the performance of most of these esti-
mators in the context of factor analysis. We have found that RIMCMC outperforms
some of the alternative methods, and it is usually easier and faster to compute. The
Schwartz Criterion, commonly known as Bayesian Information Criterion (BIC), was

also found to perform considerably well. Recalling Section 3.5, the BIC for model m

147



is defined as

BIC(m) = log(Pr(D|6;,m)) — 0.5d;log(N)

where NN is the sample size, d; is the number of parameters in model m and 0 is the
maximum likelihood estimator for 8. When Pr(m) = Pr(m) for all m and m in M,

the BIC approximation for Pr(m|D) is:

P(m|D) Pr(Dlm) eBIc(m)
T = S PrDm) T eBIoG

7.6 Results

We used the proposed model (7.2) with the hierarchical mixture of normal prior (7.5),
(7.6) and (7.7) to analyze the data described in Section 7.2. Here x is composed, in
this order, by the covariates CTX,GM-CSF and amifostine.

We considered maximum likelihood fits to the non-linear regression (7.2) for each
patient separately to obtain initial starting values for the Markov chain Monte Carlo

posterior simulation. The hyperparameters were set at:

ap = 425 Bp=1.125 =12 S;' =1
B o= (2,-1.5,4.5,5,8,-2,0.5, -0.9, -2, —0.5)'

d, = dy=(0,-0.5,00,0,00—-1,0,0)

oV = V.=V =1

and § = 5, where ay, By were chosen such that E(c?) = 0.5 and V(0?) = 2. The
Dirichlet parameters v and o, were set to the unity. For L; and L, we used uniform
priors on the models presented in Table 7.1.

The reported inference is based on 10,000 MCMC iterations, beyond a burn-in

of 100,000 iterations and saving only every tenth iteration. The credible intervals
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for posterior predictive profiles are based on a subsample of size 500 taken from the
final 10,000 MCMC samples. Also, we are entertaining four possible models with
1 < Ly,Ly < 2 (Table 7.1). In preliminary analysis we let L; (and L) go up to 4,
but the change in the final inference was negligible. As starting values for the latent
variables, r;, we have applied some recently developed techniques for model-based
cluster analysis (Fraley and Raftery,1998, 1999) to the set of initial values for 6,
which in turn were obtained by maximum likelihood estimation per patient and per
study. The final results are virtually the same when using either the smart initial
values or any naive ones.

Table 7.1 compares the four competing models using the traditional Bayesian
information criterion (BIC,Schwarz,1978) and the proposed RIMCMC algorithm.
The model with L; = L, = 2 has the highest posterior probability based both the
BIC and the RIMCMC criteria. Although the RIMCMC points to a particular
model, it also reports significant posterior probabilities for other models. Those
probabilities will later be used for model averaging. Figure 7.4 shows a trace plot of
imputed model indicators when we ran the RJIMCMC. The sampler is mixing well

across competing models.

Model L, L, BIC RJMCMC
My, 1 1 0.000 0.138
M, 1 2 0.000 0.147
Ms; 2 1 0.000 0.187
My 2 2 1.000 0.528

Table 7.1: Model’s posterior probabilities based on the Bayesian information crite-
rion and the proposed RIMCMC algorithm.

We now consider inference in the a posteriori most likely model, Ly = Ly = 2.
Figure 7.5 shows the posterior means for the weights, i.e.

{67’[’1, £, (]_ — 6)7’[’11, (]_ — 6)7’[’12, (]_ — 6)7’[’21, (]_ — 6)7’['22},
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given to the mixture terms in each study. We show in Figure 7.6 profiles f(6 = p +
d;,-) and f(0 = p+dy, -) corresponding to simulated posterior draws for (u, d;, d;)
to summarize the posterior distribution on u, d,, and dj; . The predictive profile
for the second idiosyncratic component (I = 2) from study k& = 1 is considerably
different from the other components, indicating the presence of some patients whose
measurements are not in agreement with the rest of the patients in both studies.
The lower the weight allocated to a component, the wider are the credible intervals,
indicating that less information is present in such components.

Figure 7.7 shows scatterplots of univariate maximum likelihood estimators (used
as initial values in the MCMC algorithm) and posterior means (with 90% credibility
interval) for the elements of @;. The patients’ initial base lines z; j; have posterior
means that are virtually the same as the MLE ones. Conversely, the borrowing
strength or shrinkage effect can be clearly seen in 7y and 7, the change points, and
in the parameters that define the recovery logistic curve, since the posterior means
appear more constant across individuals than do the MLEs.

Figure 7.8 shows the definition of two clinically meaningful summaries of the
profiles: the number of days with WBC below a critical threshold (T"), and the nadir
WBC (N). Figure 7.9 shows posterior predictive inference for 7" and N under study
k =1 (CALGB 8881). For medium/high doses of GM-CSF, the higher the dose of
CTX, the longer the time below threshold. The higher the dose of CTX, the lower
the nadir WBC. In both cases, the higher the dose of GM-CSF, the less the patient
will be at risk. From the posterior predictive plots, the relationships seem non-linear,
confirming the need for extensions beyond single multivariate normal population
models (implying linear regression).

Bayesian model averaging is presented in Table 7.2 and figure 7.10. CTX and

GM-CSF doses were fixed at 3.0mg/m? and 5.0ug/kg, respectively, since our main
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objective here is to illustrate how posterior inference varies when more uncertainty is
included in the modeling. The entries are white blood cell counts for a new patient
taken from study one (CALGB 8881), from study two (CALGB 9160) and from the
population, respectively. The first four columns are based on the maximal model,
which is, once again, the model with two components in p.,p; and p,, while the
last four columns represents the Bayesian model averaging, when average across the
four entertained models. The key feature in this picture are the wider credibility
intervals obtained when allowing for model uncertainty in the number of mixture
components. Finally, it seems that posterior inference for the base line parameter,
z1 1s similar across models suggesting, as already discussed, that this parameter is

roughly constant across studies.

We compared our methodology with alternatives currently used in the literature in
order to see whether combining the studies in the way we propose improves predictive
performance. Figure 7.11 compares posterior predictive profiles for a new patient from
study CALGB 9160, based on two competing models, when the levels of CTX and
GM-CSF where fixed at 3.0mg/m? and 5ug/kg, respectively. The alternative model
is a particular case of our own model structure where the prior for ¢ is degenerated
at zero, i.e. Pr(e =0) =1 (or L; = 0). In such situation, information from related
studies are combined in a higher level in the hierarchy through the hyperparameters.
Notice that up to five days into the treatment both models give similar results. The
reason for that, as mentioned earlier, is due to the fact that during such period
of time the patients from both studies behave quite similarly. However, during the
most critical period, between the fifth and the fifteenth days, the meta-analysis model
presents profiles slightly shifted up and wider intervals, indicating the influence of
study CALGB 8881 in the analysis (see the left upper corner of table 7.2). It is worth

to mention that the competing models are easily entertained in our methodology by
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simply allowing L; to be zero.

Best Model (L; =L, =2) | Bayesian Model Averaging
Number of Percentiles Percentiles Number of
Days 5th  50th  95th || 5th  50th  95th | Days

CALGB 8881 CALGB 8881

7 =3.00 | 3176 7258 17889 || 2651 6883 16163 | 4 = 3.75
T =9.25 114 556 7284 39 523 7265 | 7, =8.75
T =15.0 152 3128 24959 35 1584 18334 | 7 =15.0
CALGB 9160 CALGB 9160
=275 |3934 7609 14697 || 3474 7183 14190 | 3 = 3.25
Ty = 9.25 120 458 4221 41 419 3303 | 7, =9.00
T =15.0 168 3119 19118 47 1691 18531 | 7 =15.0
Population Population
T =3.75 | 3841 7371 13643 || 3822 7680 14436 | 14 = 3.25
T = 8.75 104 371 2535 85 416 4066 | T, =8.75
T =15.0 174 3713 20228 | 114 2651 20963 | 7" = 15.0

Table 7.2: Predictive profile for a new patient’s white blood cells (WBC) counts.
For each study/model 71 and 7, represent the time at which the patient’s WBC starts
to decline and recover, respectvely. Also, 7* is the measurement after two weeks from
chemotherapy. The first four columns are the results obtained by the best model,
i.e. model 4 with a L;=2-component mixture of normals for the common measure
and a Ly=2-component mixture of normals for the specific measures. The last four
columns represent the results from Bayesian model averaging (see Table 7.1).

7.7 Summary

We proposed an approach to meta-analysis over related random-effects models, allow-
ing one to pool strength across similar studies. The mixture-of-normal random-effects
models allow considerable flexibility while exploiting the computational simplicity of
conjugate models. The proposed implementation includes Bayesian model averaging
over mixtures of different size using a version of RIMCMC simulation. We pro-
pose a variation of RJIMCMC that enables us to implement model averaging for the

relatively high dimensional parameter vectors.
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The proposed approach has some practical and methodological limitations. The-
oretically the number of terms in the mixture is treated as random. However, com-
putational issues become relevant when more than a few models (number of terms)
are entertained. From a more theoretical viewpoint, meta-analytic structures beyond
exchangeable studies are ruled out, for instance, when we want to borrow strength
only in some key features, and leave others specific to the respective study.

Although the discussion was in the context of meta-analysis over longitudinal
data models, the proposed methods are more generally applicable. The approach is
relevant whenever hierarchical modeling over related random probability distributions

is required.
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Figure 7.1: Observed white blood cell count (log(WBC/1000)) for some typical
patients from studies CALGB 8881 and CALGB 9160. The solid lines represent
posterior means, 5th and 95th percentiles for the patients’ profiles when fitting the
“best model” (Table 7.1 from Section 7.6).
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Figure 7.2: The profile for the a patient is a horizontal line between days 0 and 7y,
a logistic curve after day 75, a line between the two changing points. Day 7y is the
day when blood cell counts start to drop from the initial level z; and 7, indicates the
beginning of (logistic) recovery.
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Figure 7.3: Graphical representation of the hierarchical model across related studies
in expression (7.5). The vector of random-effects, f;, parametrizes the mean profile
for the i-th patient from the k-th study, while x;; the patient’s corresponding covari-
ate measurements. ¢, and ¢, are study-specific and common hyperparameters (see

equation 7.2).
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Figure 7.4: Trace plot for the RIMCMC algorithm. Model 1 through 4 represent,
respectively, the following pairs (L1, Lo): (1,1),(1,2),(2,1) and (2,2). See Table 7.1.
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Figure 7.5: Weights of each component in the mixture for 8;;, when fitting a model
with Ly = Ly = 2. The posterior expectation for (my, mo, 711, T2, T21,
Toz) is (0.4185,0.069, 0.4267,0.0859, 0.4773,0.0352).
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Figure 7.6: Posterior means and 90% credibility intervals for profiles as functions
of the mixture locations, p, u + d; and p + dy, for [ = 1,2 and k£ = 1,2. The left
column represents study 8881 (k = 1) and the right column represents study 9160
(k=2).
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Figure 7.7: Plots of maximum likelihood estimators (obtained for each patient
separately) against posterior means, 5th and 95th percentiles for the components of
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Figure 7.8: T represent the time length in which the patient has its white blood
counts below 1000 (or log(W BC/1000) < 0). N measures how low one patients white
blood counts can achieve. The events starting times, namely ¢; and t,, are also of
interest to decision makers.
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Figure 7.9: (a) Time length in which the patient’s white blood counts was below
1000 (or log(W BC'/1000) was below zero). (b) Nadir: patient’s minimum level of
WBC (in log(WBC/1000) units). See Figure 7.8.
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Figure 7.10: Predictive profile for new patients. Left column represents the best
single model (Model 4: L; = Ly = 2). The right column is Bayesian model averaging
across the four competing models (see Figure 7.4). Rows are profiles from patients
taken from studies CALGB 8881 (top row), CALGB 9160 (middle row) and from
the population (bottom row), respectively. CTX=3.0mg/m? and medium level of
GM-CSF.
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Figure 7.11: Predictive profile for new patients from study CALGB 9160. The solid
lines represent posterior means, 5th and 95th percentiles based on our meta-analysis
model (L; = Ly = 2). The dashed lines represent the same percentiles for the
alternative model where Pr(e = 0) = 1 (see the last paragraph of Section 7.6 for
further details). CTX=3.0mg/m? and GM-CSF=5ug/kg.
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Chapter 8

Final comments and perspectives

As mentioned in the abstract and in the introduction, this thesis combines theoreti-
cal, methodological and empirical findings in multivariate Bayesian statistics. More
specifically, the work is divided in three major parts: (i) modeling uncertainty in fac-
tor analysis, (77) modeling and sequentially analysing factor models with stochastic
variance components, and (4ii) modeling longitudinal data models using multivariate
mixture priors.

Summary sections are provided in each chapter. They are mainly designed to
highlight and elucidate the theoretical and empirical nuances of the problem at hand.
The following general comments indicate possible generalizations and open issues in

each of the three sections.

8.1 Model uncertainty in factor models

Chapters 2, 3 and 4 dealt basically with factor analysis’ oldest problem of choosing
the number of common factors. Markov chain Monte Carlo is relatively simple when
fixing the number of factors. We reviewed the literature on the subject and we
proposed a RJIMCMC algorithm. We compared our methodology with alternative
approaches, most of which tackled the problem of computing normalizing constants
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or ratios of normalizing constants. Factor models are used, routinely and most of
the time automatically, by scientific researchers and practitioners in many fields.
However, issues concerning prior information and its influence in the analysis certainly
provides a barrier to the wider use of the Bayesian paradigm more often. Hence, in
Chapter 4, we assess model uncertainty to the number of common factors when prior

information is lacking. Additional comments are given below:

e As we have said, inference is straightforward when the number of common
factors is kept fixed. However, posterior inference becomes extremely difficult
when the number of factor is larger than necessary, i.e. when the model is
overparametrized. Posterior multimodality is one of the problems we have
encountered in our empirical analysis. Sections 2.3 presents some theoretical
arguments that help to explain this problem, which is basically due to the

apparent rank deficiency of the factor loading matrix.

e Also related to the previous discussion is the question of how to incorporate
this inadequacy in the prior for the factor loadings and idiosyncratic variances.
In our applications we have studied sensitivity of the posterior to the choice of
the prior hyperparameters. In most cases, and with datasets, as small as fifty
observations, the effect of the hyperparameters were negligible or immaterial.
However, we believe that further research should be undertaken assess prior

information in factor models to more intelligently.

e Except in the case of posterior multimodality caused by likelihood unidenti-
fiability, prior issues are not the major problems in factor models with fixed
numbers of factors. The same cannot be said when it comes to models of differ-
ent orders. In Chapter 4 we have learned, from simulation studies, that model
choice is not sensitive to how vague the prior distributions for the factor load-
ings and idiosyncratic variances are. Contrarily, the expected posterior prior
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approach seemed to be much more robust and the results relatively satisfactory.
A question that remains unclear and unanswered is how to choose the training
measure m* and what is the final shape of the prior. We anticipate more inter-
est in those questions in the near future, for factor models are extensively used

and software for automatic Bayesian procedures will be developed.

Our RJMCMC algorithm worked relatively well in analyses of all simulation and
real datasets. For small numbers of alternative models, we have also found, as
expected, that the BIC generally provided robust and reliable initial guides to
the choice of the number of factors. We attribute the success of the RIMCMC
to the fact that we carefully choose the proposal densities to be as close as pos-
sible to the posterior distribution under each competing model. As stressed in
the conclusions of Chapter 3, we have found that the other “standard” meth-
ods of approximation are not consistently accurate in identifying the correct
models in ranges of simulation studies, except for the Newton and Raftery, the
bridge sampling and the Laplace-Metropolis estimators. Among the alternative

methods the Laplace-Metropolis is relatively simple to compute.

8.2 Factor models with stochastic variance com-

ponents

Chapters 5 and 6 presented new developments in factor analysis with covariance

structures in certain classes of multivariate stochastic volatility models. In Chapter

5 we extended existing works in some theoretical and practical directions and our

main contributions consisted of (i) allowing the factor loadings to evolve in time,

and (7)) estimating sequentially the parameters of the model, as opposed to fixing

them. In order to perform estimation and forecasting in the generalized models, new

MCMC algorithms were proposed or existing ones adapted.
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e One of the most important empirical results, we believe, is the relationship be-
tween the number of factors, and therefore, common stochastic variances, and
whether or not the idiosyncratic variances are modeled by stochastic volatility
models. We have found the rather intuitive result that more factors are neces-
sary when the idiosyncratic variances does not follow stochastic volatility mod-
els. Those extra factors basically influenced just one of the time series involved
in the analysis, therefore using the factor model without its most appealing

characteristic, which is to explain co-movements between the time series.

e Also related to the previous comment is the fact that an indeterminacy may
occur when one of the common factors influences just one of the time series and
the idiosyncratic variances follow stochastic volatility processes. In this case it
is impossible to identify in the likelihood which term is the common factor and
which is the idiosyncratic factor and the posterior distribution of the param-
eters related to those processes are bound to exhibit multimodality. Possible
solutions are to restrict the prior distributions to avoid such indeterminacy and

assign higher prior probability to models with lower number of common factors.

e In our applications of the simulation-based sequential analysis, we found the
corroborative fact that models with lower numbers of factors have higher one-
step ahead posterior probabilities and build portfolios with higher one-step
ahead cumulative returns then models with higher number of common factors.
Even though we found this only in our applications, we believe that it can be

generalized to other financial time series datasets.

e More complex structures for the factor loadings, such as higher order auto-
regressions, are possible extensions of the models we have studied. Also, the

loadings discount factor, which plays an important role in the estimation pro-
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cess, deserves more attention. For instance, replacing the discount factor by
a constant variance matrix for the factor loadings would be an alternative so-
lution, even though the discount factor has a natural appeal in expressing the

amount of information retained by the model through time.

e When treating the parameters in the sequential analysis, the tuning quantities
d,a and h, that govern the posterior-to-prior evolution (section 6.4) play impor-
tant roles. Another open question is how to transform nonnegative parameters
in the mixture of normal used in the kernel approximation for the posterior of

the parameters.

8.3 Longitudinal data models

In chapter 7, we propose a new class of longitudinal data models where random effects
are replaced by random measures represented by a flexible mixture of multivariate
normals in a way that allows us to implement meta-analysis over related studies. The
number of terms in the mixture models is random and a novel RIMCMC sampler
is proposed. We apply our methodology to two cancer studies. Some of our main

findings and open issues are as follows:

e The idea of splitting the source of variability into common and specific is not
new. However, our formulation is innovative in the sense that instead of random

effects we have random measures.

e Since we are modeling the random measure through a multivariate mixtures
of normals, we face problems related to identifiability issues. Unfortunately,
general solutions and guidance do not exist, as far as we know. Additional
identification problems appear in our context, where there is a mixture of two
mixtures: the first representing the measure common across studies and the
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second representing the measure specific to each particular study. In section
7.3.1 we fully discuss these identification problems. An alternative approach
would be to build the hierarchical structure on the weights instead of the normal
locations. We believe that in this way we would be better able to control

identifiability. This is current research.

We consider Bayesian model averaging. The averaging is across a rather small
number of competing models and a RJIMCMC sampler is designed to jump
across those models. The RIMCMC sampler mixes well and the estimated
posterior model probabilities are used for Bayesian model averaging. As ex-
pected, the profiles for new patients have larger posterior bounds in averaged

model than in the model with the highest posterior probability.
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Appendix A

Univariate and multivariate distributions

In this appendix we present some of the main univariate and multivariate distribu-
tions used within the main body of this thesis. Even though all of them can be
found in basic/intermediate statistical textbook, we believe that restating then will
be profitable for the sake of uniformity since there are many available parametriz-
tions out there. References include Zellner (1971),Johnson and Kotz (1972), Dawid
(1981),Press (1982), Dreze and Richard (1983) and West and Harrison (1997), among
many others. We tried to follow very closely the notation provided by Gelman et al.

(1995).

A.1 Univariate distributions

In this section define the univariate distributions we have used throughout the thesis.

[Normal]

A random variable y is said to follow a normal distribution with parameters p
and o? if and only if its probability density function is,
2\ _ 2\—1/2 (y — M)2

p(ylp, %) = (2mo™) " “exp T og7 yeRr (A.1)
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e E(y)=peR
o V(y) =0">0;

e Notation : y ~ N(u,o?)

[Truncated-normal]

A positive random variable y is said to follow a truncated-normal distribution at

zero with parameters p and o? if and only if its probability density function is,
N2
plylp, o) = (2r0?) Y2exp {—%} [®(1/0) y>0 (A.2)
where ®(z) = Pr(Z < z) and Z ~ N(0,1).

2

o E(y) = pu+ gZ=eap{—1?/(20%)} /®(u/0);

e Notation : y ~ TN (u,0?)

[Gamma]

A random variable y is said to follow a gamma distribution with parameters «

and [ if and only if its probability density function is,

«

plyla, B) = Fﬁ(a)ya‘leﬂ:p{—ﬁy} 0<y,a,fp (A.3)
o E(y) =%
o V(y) = 3

e Notation : y ~ G(a, )
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[Inverse-gammal|

A random variable y is said to follow an inverse-gamma distribution with param-

eters o and [ if and only if its probability density function is,

plyla, B) = %y‘(““)ea:p{—ﬁ/y} 0<y,af (A1)

o E(y)=-L, fora>1;

[ ] V(y>:#2(0472)’ fOI'Oé>2;

e Notation : y ~ IG(a, )

Beta]

A random variable y is said to follow a beta distribution with parameters o and

g if and only if its probability density function is,

F(Oé—FB) a—1

F(amﬁ)y (1—y)t 0<y<1l,a>0,>0 (A.5)

pyla, B) =

o

* V) = Grtarsn’

e Notation : y ~ Be(a, 3)

A.2 Multivariate distributions

In this section define the multivariate and matricvariate distributions we have used

throughout the thesis.
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[Multivarite normall]

A n-dimensional random vector y is said to follow a multivariate normal dis-
tribution with parameters g and X if and only if its probability density function

is,
plp D) =k 12 ep{ - w @ - w) weRn (A9
where k = (27)~"/2.
o B(y)=p R
e V(y) =X is symmetric and positive definite;

e Notation : y ~ N(u, X)

[Multinomial]

A n-dimensional random vector y is said to follow a multinomial distribution with

parameters ¢ and 7 if and only if its probability function is,

t! LI
[~ (A7)

pylt, ™) =
?:1 yl' i=1

fory = (y1,-..,yn) MY ={y:y1 =t 0<y; <ni=1,....,n} and w =

(m1yeooym) inM={w:w'l=1,0<m <ni=1,...,n}.
o B(y) = nm;
o V(y,) =nm(l—m);
° Cov(yi,yj) = —NT;Ty;

e Notation : y ~ M(n, )
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[Dirichlet]

A n-dimensional random vector y is said to follow a Dirichlet distribution with

parameter a if and only if its probability density function is,

plyle) = g o T (A5)

fory=(y1,...,yn) mY={y:y'1=1y;>0i=1,....,n} and a = (g, ..., )
in{a:a'l=ay a;>0i=1,...,n}.

o E(y;) = i/ ;

o V(y) = Cifooan,

ag(ao+1) ?

;0

o Cov(y;,y;) = T aZ{aot1)

e Notation : y ~ Dir(«)

[Matrix variate normal]

A T x n random matrix y is said to follow a matricvariate normal distribution

with parameters g and € and X if and only if its probability density function is,

Py p Q%) =[2n)™ | = Q |”]1/26wp{—%tr2‘1(y — )y —p)} (A9)

where p is a (7" x n) matrix and Q and ¥ are (T x T') and (n x n) symmetric and

definite positive matrices, respectively.

o E(y) =p e R

o V(vec(y)) = @ Q, where vec(y) is the TN-dimensional vector obtained after
stacking the columns of y;
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e (2 is the matrix that describes the covariance among the columns of y, while

3} is the matrix that describes the covariance among its rows;

o Definingy = (y1,Y2, -+, ¥,) = (Ya), Y2)> -+ Y(r))', Where y;’s are T-dimensional
vectors and y(;)’s are n-dimensional vectors, it can be shonw that E(y,y}) =

0;;§2 and E(y(i)y’(j)) = w;;;

e Notation: y ~ N(©,Q, X).

[Wishart]

A nxn symmetric and positive definite random matrix €2 is said to follow Wishart
distribution with parameters v and S if and only if its probability density function
is,

1
p( QU S) =k | QD2 e {—itrslﬂ} (A.10)

where k! = 2vn/2pn(n=D/ATIY. T[(v +1—14)/2] | 8 |V/2.

e v > n is the number of degrees of freedom;

e S is an xnsymmetric and positive definite scale matrix;

Notation: Q ~ W (v, S);

e E(Q)=vS,

o Viwy) = v(s}; + sis55);

o COV(wij,wr) = v(siksj + SusSjk)

If n =1, then w ~ G(r/2,57"/2).
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[Inverse-Wishart]

A nxn symmetric and positive definite random matrix X is said to follow Wishart
distribution with parameters v and @ if and only if its probability density function
is,

1
PE, Q) = k | T [WHH/2 ey {—§tr21Q} (A11)
where kfl — 21/n/2ﬂ.n(n71)/4 H?:1 F[(l/ +1— Z)/Q] | Q |*l//2‘

e v > n is the number of degrees of freedom;

Q is a n x n symmetric and positive definite scale matrix;

Notation: X ~ IW (v, Q);
e B(X) = mQ, for v>n+1;

If n =1, then 0 ~ IG(v/2,Q/2).
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Appendix B

Reversible jump MCMC and
metropolized Carlin and Chib

In this appendix we present the Reversible Jump algorithm as introduced in Green
(1995). Among many others, Richardson and Green (1997), Dellaportas et al. (1998),
Denison et al. (1997), Troughton and Godsill (1997), Insua and Miiller (1998), Bar-
bieri and O’Hagan (1996) and Huerta and West (1999) applied the reversible jump
sampler to mixture models, variable selection, curve fitting, autoregressive models,
neural networks, ARMA models and component structure in AR models, respectively.

We also explore its relationship to Carlin and Chib’s (1995) pseudo-prior method.
Particular attention is given to the Metropolized Carlin-Chib algorithm simultane-
ously introduced by Dellaportas et al. (1998) and Godsill (1998).

The results presented here are mainly based on the developments from Dellaportas
et al. (1998) and Godsill (1998). Additional overview and/or further extensions can
be found in Chen et al. (2000), Section 9.5, and Gamerman (1997), Section 7.3.

177



B.1 The RIMCMUC algorithm

Suppose that the competing models can be enumerable and are represented by the

set M = {M;j, My,...}. Under model My, the posterior distribution is

p(Orly, k) o< p(y|Op, k)p(6k|F) (B.1)

where p(y|0y, k) and p(8y|k) represent the probability model and the prior distribu-

tion of the parameters of model My, respectively. Then,

p(Ok, kly) < p(k)p(Ok |k, y) (B.2)

The RIMCMC methods involve Metropolis-Hastings type algorithms that move a
simulation analysis between models defined by (k, 8y,) to (k’, 8;,) with different defin-
ing dimensions £ and &’. The resulting Markov chain simulations jump between such
distinct models and form samples from the joint distribution p(6y, k). The algorithm
are designed to be reversible so as to maintain detailed balance of a irreducible and
aperiodic chain that converges to the correct target measure. Further details of the
general methodology and ideas can be found in Green (1995).

Here we present the algorithm in a schematic form. If the current state of the
Markov chain is (k, 8y), then one possible version of the RIMCMC algorithm is as

follows:
Step 1. Propose a visit to model My, with probability .J(k — E').
Step 2. Sample u from a proposal density ¢(u|0y, k, k').

Step 3. Set (0, u') = g (Ox, u), where gi s (+) is a bijection between (0, u) and
(O, u'), where u and u’ play the role of matching the dimensions of both

vectors.
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Step 4. The acceptance probability of the new model, (8, k") can be calculated as

the minimum between one and

PO, K )p(Ow )p(K') J(K — k)q(uw'|0, K, k) ‘3%#(9@“)
( |0, ) (Or)p (k)J J(k— E)q(u|Ok, k, k) | OO, u)

model ratio proposgl ratio

(B.3)

Looping through steps 1-4 generates a sample {k;,[ = 1,..., L} for the model

indicators and Pr(k|y) can be estimated by

where 1(k;) = 1 if & = k; and zero otherwise. The choice of the model proposal
probabilities, J(k — k'), and the proposal densities, ¢(u|k, 8y, k'), must be cautiously

made, especially in highly parameterized problems.

Independent sampler: If all parameters of the proposed model are generated from
the proposal distribution, then (6, u’) = (u, 6)) and the Jacobian in (B.3) is
one. We implement an independent RJIMCMC sampler for the factor model
from Chapter 3. There, the proposal density q(u|6y, k, k') is reduced to suitably

chosen ¢y () (equation 3.1 from Section 3.2).

Standard Metropolis-Hastings: When the proposed model k' equals the current
model k, the loop through steps 1-4 corresponds to the traditional Metropolis-
Hastings algorithm (Metropolis et al., 1995; Hastings, 1970; Peskun, 1973; Chib
and Greenberg, 1995).

Posterior densities as proposal densities: If p(8;|y, k) is available in close form
for each model My, then q(u'|0y, k', k) = p(6k|y, k) and the acceptance prob-

ability (equation B.3) reduces to the minimum between one and

p(K)p(ylk') J(K — k)
p(k)p(ylk) J(k — k')
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using the fact that p(y|Ox, k)p(Or)p(k) = p(Ok, k|ly)p(ylk). Again, the Jaco-
bian equals one. The predictive density or normalizing constant, p(yl|k), is
also available in close form. Moreover, if J(k' — k) = J(k — k'), the ac-
ceptance probability is the minimum between one and the posterior odds ratio
from model Mj, to model My, that is the move is automatically accepted
when model My, has higher posterior probability than model My; otherwise
the posterior odds ratio determines how likely is to move to a lower posterior

probability model.

B.2 Metropolized Carlin and Chib’s algorithm

Let ® = (0,0 _) be the vector containing the parameters of all competing models.

Then the joint posterior of (@, k) is

p(©, kly) o< p(k)p(y|Ok, k)p(Ok|k)p(O -k |6k, k) (B.6)

where p(@ 1|0y, k) are pseudo-prior densities (Carlin and Chib, 1995). Carlin and

Chib propose a Gibbs sampler where the full posterior conditional distributions are

p(6ily. k.0 5) { gggﬁgl,>k)p(ek|k> o=k (B.7)
and
p(k|©,y) < p(y|Os, k)p(k) T[ p(Omlk) (B.8)
meM

Notice that the pseudo-prior densities and the RJIMCMC’s proposal densities
have similar functions. As a matter of fact, Carlin and Chib suggest using pseudo-
prior distributions that are close to the posterior distributions within each competing
model. This is basically what we do when implementing our RIMCMC sampler for

the factor model (see Chapter 3).
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The main problem with Carlin and Chib’s Gibbs sampler is the need of evaluating
and drawing from the pseudo-prior distributions at each iteration of the MCMC
scheme. This problem can be overwhelmingly exacerbated in large situations where
the number of competing models is relatively large (See Clyde, 1999, for applications
and discussions in variable selection in regression models).

To overcome this last problem Dellaportas et al. and Godsill (1998) proposes
“Metropolizing” Carlin and Chib’s Gibbs sampler. If the current state of the Markov
chain is at (0, k), then they suggest proposing and accepting/rejecting a move to a

new model in the following way:

Step 1. Propose a new model My, with probability J(k — £').
Step 2. Generate 6y from the pseudo-prior p(8y|k).

Step 3. The acceptance probability of the new model, &’ can be calculated as the

minimum between one and

p(y|Or, K )p(k") J (K" = k) [Tesm P(Om k')
p(ylOk, k)p(k)J(k — k') ITmer (O k)

which can be simplified to

p(Y|6x, K)p(k) T (K" = k)p(Ow |K)p(6) k')
p(Y|Ok, k)p(k)J (k — K )p(Ok|F)p(Ow[F)

since the other pseudo-prior densities cancel out.

Once again, if p(@ly, k) is available in close form for each model M, and
p(Br|k") = p(Ok|y, k), then the acceptance probability in (B.9) reduces to (B.5). As
we have mentioned earlier the pseudo-prior densities and the RJMCMC’s proposal
densities have similar functions and the closer their are to the competing models’

posterior probabilities the better the sampler mixing.
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Appendix C

Mixture of normals

In Chapter 7 latent indicators where introduced in order to break the nonlinearity
in the multivariate mixture prior (see equations 7.6, 7.7 and 7.8). Such simplication
comes with a cost, i.e. it is likely that the sampled Zj;’s will be highly correlated
to the sampled p’s causing poor mixing of the Markov chain and slowing down the
convergence to the posterior distribution. In this section we elaborate more on the

mixture of normal model and show to overcome such problem.

C.1 Model and prior setting

Initially, let @y, ..., &, be a random sample from a (multivariate) mixture of normals,
ie.
K
p(w“j'v ™, S) = Zﬁde(fUWk,S) (Cl>
k=1

where dN (x|, S) denotes the probability density function of a (multivariate) normal®
with mean (vector) p and variance(-covariance matrix) S, evaluate at the point @.
Also, p = (py, ..., ) and @ = (my,...,wg). We will assume throughout this

appendix that = and S are known quantities.

1See Section of Appendix A for further details about the multivariate normal distribution.
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Traditionally, latent indicator variables z; are included in the model for clarity in
such a way that

Pr(z;=j)=m, (C.2)

forall i = 1,...,n and j = 1,..., K. Therefore, the likelihood in (C.1) can be

rewritten as,

K

p(xlz, p, S) = [[ I] dN(zilp;, S) (C.3)
j=liel;
where * = (@1,...,2,), 2 = (21,...,2), I; = {i : 2z = j,i = 1,...,n} and

nj = card(l;). Consequently, when combining the likelihood in (C.3) with prior
distributions for z and p; ( z|w ~ M(K,w) and p;, ~ N(p, Vo), respectively),
the joint posterior for g and z is,
p(p, 2|z, m, 8) {ﬁ 11 dN(wimj,S)] [11_[ dN(ujlujo,Vjo)] (C.4)
=ier | b= J
Obviously, analytically tratable posterior inference is impossible. Next, we present

the full conditional distributions z and p to be used in the Gibbs sampler algorithm.

C.2 Full conditionals

Full conditionals for g and z are given below. Notice that the full conditional for
the elements of z are not conditional on pu. We believe that this strategy improves
the Markov chain mixing since it eliminates, at least partially, high dependence of u

and z, usually observed in practical applications.

C.2.1 Full conditionals of the locations

Sampling p given z and @ is straightforward. It is easily shown that

p(plz, @) HHH dN(w¢|uj,S)} dN(”j|“i07Vj0)} (C.5)

Jj=1 ie[j
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which has the kernel of a multivariate normal distribution with mean vector and

covariance matrix given by
. _ _ -1

respectively, for n;&; = Y icr, (i)

C.2.2 Full conditionals of the latent indicators
Sampling z; given zg) = (21,. .., Zi—1, Zit1, - - - 2n) and @ is less clear. Initially,
Pr(zi = jlzg,®) o< Pr(z = jlzu), zu)p(®ilz = j, 26), Ta)

where @) = (1,..., % 1, Tiy1,...,&,) and Pr(z; = j) = ;. Also,
p(xilz = J, 24y, ©py) = /p(-’Bz'|Zi = J, Z(i), (i), )D(1] 25y, T (i) ) A
= /dN(mz’“'l'jvS>p(l'l'j|z(i)7w(i)>du'j

X H/p(ll»z|z(i),$(i)>dliz
I#]

where the last product of integrals is equal to one, following the conditional indepen-
dence of pu’s given & and z shown above. It is easy to show that

P12y, ®iy) = AN (gl Vi)

. . —-1 -1 -1 _ -1 -1
gously, I;; = {l : zy = j,l = 1,...,n and [ # i}, n;; = card(l;;) and n;;&;; =

Yler;; T Therefore,

p(xi|z = j, z@), Te)) o /dN($i|ll»j75)dN(ll»j|uj1,i7le,i>dll»j
o dN(xilpjy;, Vijri+ S)
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and

Pr(zi = jlzw), ®) o mjdN (x| 8 + Vi)

which can be sampled from straighforwardly.
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