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Abstract

This dissertation develops Bayesian theory and computation to address important

issues in two main socio-economic areas: financial modeling and institutional assess-

ment.

The first part focusses on computational developments for model fitting and fore-

casting of multiple series of crude oil futures prices. The methodology is motivated by

the central role that the stochastic behavior of commodity prices plays in the evalua-

tion of commodity-related securities. A class of Bayesian multivariate dynamic linear

models for oil future prices is developed based on a theoretical financial model that

assumes two latent factor processes: a notional equilibrium price level and a process

representing short-term deviations from equilibrium levels. A customized Markov

Chain Monte Carlo (MCMC) sampling scheme is developed for inference and anal-

ysis of such model. In addition, several structures on the observational variance

are explored including the challenging case of a singular variance matrix. Relevant

and supporting theory of singular densities and DLMs under singular observational

variance is reviewed and developed.

The second part involves the development of large-scale longitudinal models for

institutional comparisons. Complex non-Gaussian hierarchical models are developed

to profile providers in health-care delivery systems. The key motivating concern

is to estimate health-care return-time distributions for individuals, and to evaluate

differences due to year of care and hospital, in the context of a range of possible

individual-level explanatory variables. Results indicate significant system-wide im-

provement in the health-care areas of study, in addition to large amounts of variation

in this improvement across medical centers. Covariates such as age of patient, treat-

ment priority, and diagnoses help to illustrate important potential new health policy
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interventions and the outcomes of previous interventions. The study involves inno-

vation in hierarchical/longitudinal models for the very large and complex data set,

a range of exploratory data analytic developments, customized MCMC for Bayesian

model fitting and some creativity in exploring the very high-dimensional posterior

distributions and summarizing MCMC outputs.
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Chapter 1

Introduction

Bayesian methodology has played a central role in developing complex models of real

world phenomena in many areas. This dissertation develops, under the Bayesian

framework, two realistic and complex mathematical models to address specific issues

in the social and economic sciences.

The dissertation is divided into two main parts. The first is focussed on com-

putational developments for model fitting and forecasting of a financial model for

crude oil futures prices. The second involves the development of a large-scale longi-

tudinal model for institutional comparisons. The latter is exemplified by studies of

quality-of-care measures to profile providers in health-care delivery systems.

In the first part the focus is on crude oil which is a natural resource that serves

as an underlying asset of many financial instruments (Gibson and Schwartz, 1990).

Its availability and cost play a central role in the economies of all countries. More

than ever, statistical models are key to explaining the behavior of price movements

to manage exposure to market fluctuations and reduce risk. Chapter 2 introduces

general features of the crude oil related markets and describes the structure of oil fu-

tures prices data which is the major motivation for the models studied in subsequent

chapters. Chapter 3 develops a class of Bayesian multivariate dynamic linear mod-
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els for oil futures prices based on theoretical foundation in the financial literature.

Customized Markov Chain Monte Carlo (MCMC) sampling schemes are developed

for inference and computation on model parameters. The highly complicated model

presented in this chapter is especially designed to follow standard financial theory for

commodity pricing and represents important methodological contributions to both

Bayesian statistics and financial science. To complete the model specification, Chap-

ters 4 and 5 present different structures on the variance-covariance matrix of the

observational errors. Chapter 4 starts by assuming a simple diagonal matrix struc-

ture followed by a traditional non-diagonal matrix and moving into a matrix where

the correlations are functions of the difference of maturities in the futures contracts.

Finally, a factor model for observation errors is assumed implying a decomposition

of the covariance matrix into two sources of variability, one common across all se-

ries, and another specific of each one. Chapter 5 models the observational variance

as non-diagonal and singular, representing a very challenging approach due to the

complexity of the model. Important theory on singular densities and DLMs under

singular observational variance is reviewed and developed. Results of the futures

prices model under this singular structure are discussed for a particular data set

including model diagnostics and forecasting.

In the second part of the dissertation, complex non-Gaussian hierarchical models

are developed to profile providers in health-care delivery systems. The key motivating

concern is to evaluate differences in return-time distribution by hospital and across

years in the context of a range of possible individual-level explanatory variables.

This study is part of a research project developed in collaboration with the Veterans

Affairs (VA) Management Science Group. Chapter 6 introduces a class of hierarchical

logistic models design to profile VA facilities within the fiscal year 1997. Chapter 7

extends the models to include a time series structure for the analyses of multiple

2



years of data. The study involves innovation in hierarchical/longitudinal models for

a very large and complex data set, a range of exploratory data analytic developments,

customized MCMC for Bayesian model fitting and some creativity in exploring the

very high-dimensional posterior distributions and summarizing MCMC outputs.

Finally, further potential developments and model extensions are discussed.
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Chapter 2

Crude Oil Futures Prices Data

This chapter gives a general overview of crude oil markets and the kind of stochastic

processes observed in commodity pricing. The main characteristics of the crude oil

markets are addressed in the first part of the chapter emphasizing, among other

things, the volatility structure present in oil-related products and general behavior

of spot markets. The rest of the chapter describes a specific futures prices data set

for different maturities together with a brief explanation on how futures markets are

used to overcome spot market inefficiencies.

2.1 Crude Oil Markets and Volatility in Prices

Energy is perhaps the most strategic “material” in world commerce. The availability

and cost of energy plays a central role in the economies of all countries. Among

all energy products, crude oil dominates the energy market, being the largest cash

commodity and a dominating influence on the rest of the products.

The worldwide oil market has five main components: spot, forward, futures,

derivative and off-exchange (over-the-counter) markets. Crude oil and specific deriva-

tive products such as heating oil, gasoline, natural gas, among others, are traded in

each market. The oil market has expanded enormously during the past twenty years.
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In the early 1980s, the price most buyers paid was the official price set by the seller

whereas today, almost all oil moving in international and domestic trade is sold at

market price (Verleger, 1993).

The spot oil markets1 are not very old and they have grown rapidly; until the early

1980s, the major oil companies used the spot markets only rarely. Now almost every

oil related company has in some way a use of spot market services. They emerged

when the supply chain from oil well to consumer was no longer in the hands of few

entities and more participants appeared in the market.

Some important points to notice regarding oil markets are that there are many

different spot prices due to the fact that crude oil is not uniquely definable. There

are different grades and locations for this commodity and each spot contract may

have its own unique characteristics. Furthermore, the market transactions are still

not very well regulated (Verleger, 1993), and when the spot price is not very reliable,

the corresponding futures contract2 closest to maturity is used as an approximation

for the spot price (Schwartz, 1997); especially for types of crude that match the

subjacent commodity closely.

On the other hand, oil prices are generally more volatile than the prices of other

commodities, stock market indices, interest rates or exchange rates. Moreover, the

volatility in this market is naturally transferred into the prices of other energy prod-

ucts.

One of the major factors contributing to the volatility of oil prices is the disruption

of supply and the drastic implications to the economy. For instance, the disruptions

that followed the 1973 Arab embargo, the fall of the Shah of Iran in 1979, and the Iraqi

invasion of Kuwait in 1990, each had roughly similar impacts on short-run supplies

1Market in which physical volumes of oil are exchanged for cash within two to four weeks of closing
the deal.

2A futures contract is an agreement between two parties to buy or sell a specific amount of a
commodity or financial instrument at a certain time in the future for a certain price (Hull, 1997).
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and roughly identical impacts on both price levels and volatility (Verleger, 1993).

High levels of volatility may lead to adverse impacts on producers or consumers. For

example, credit institutions might reduce the amount of credit available to producers

when prices are more volatile and the reduction in credit might depress long-run

supply. On the other hand, consumers may be induced to make irrational investments

to cut demand because prices have become more volatile.

These problems in the spot market and the levels of volatility in prices highlight

the important role of futures markets and other financial derivative products in the

oil industry.

2.2 Futures Market

The futures market for crude oil was established in March 1983 by the NYMEX after

three main conditions for any futures market were satisfied (Dadkhah, 1992). These

conditions are:

• the commodity is homogeneous, standardized and storable,

• the physical market is competitive with a large number of buyers and sellers,

and

• the price of the commodity is uncertain, with no interventions and no govern-

ment interferences.

The establishment of the futures market was one of the most important developments

in the oil industry during the 80s. Since then, the futures market for oil has increased

rapidly mainly due to the impressive influence of futures prices on the physical market.

Futures provide a mechanism for the transfer of commodity risks and they make

it possible for private information to be channeled into a forecast of commodity
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prices (Dadkhah, 1992). They provide a means by which oil producers can stabilize

their incomes and reduce their exposures to financial risk associated with volatile

prices (Verleger, 1993), and they make the inter-temporal allocation of supply and

demand of the commodity more efficient. On the other hand, they also provide the

energy industries with benchmark prices used as reference in numerous spot market

transactions.

As a matter of fact, oil futures represent one of the most commonly used channels

to combine investments on the energy sector with the use of financial instruments

designed to diversify risk. See for instance Hull (1997), Stoll and Whaley (1993),

Luenberger (1998) and NYMEX (1998b, 1998c), Clubley (1998), Verleger (1993),

Dadkhah (1992), Rauscher (1989) for a more extensive review on futures and oil

futures markets.

2.3 Crude Oil Futures Data

In order to understand, describe and eventually obtain reliable crude oil prices, twelve

series of weekly observations of prices for crude oil futures contracts are analyzed.

Figure 2.1 shows settlement prices3 for crude oil futures contracts from January 1st,

1990 to October 18th, 1999, with a total of 512 data points in each series. These prices

are publicly available and were obtained from data vendor DataStream. Each futures

contract is on 1,000 U.S. barrels (42,000 gallons) of light, sweet crude oil4 delivered at

Cushing Oklahoma, see NYMEX (1998b, 1998c) for more detailed specifications on

the contracts. In the plot, each series represents a different contract maturity from

within a month to within seventeen months. To take a closer look at the data series

3The final price, established by exchange rule, for the prices prevailing during the closing period
(NYMEX, 1998a).

4This includes six domestic and five foreign grades: West Texas Intermediate, Low Sweet Mix,
New Mexican Sweet, North Texas Sweet, Oklahoma Sweet, South Texas Sweet, North Sea Brent
and Forties Blend, Nigerian Bonny Light, Norwegian Oseberg Blend, and Colombian Cusiana.
The foreign streams are delivered at a prespecified discount or premium (NYMEX, 1998b).
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Figure 2.1: Crude Oil futures prices (settlement) from 01/01/90 to 10/18/99. Ver-
tical scale is US dollars.
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Figure 2.2: Crude oil futures prices from 01/01/90 to 03/11/91.
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Figure 2.3: Term structure of Crude Oil futures prices at 05/09/94.

Figure 2.2 displays only three series: Ft,t+k denotes the price at time t of a futures

contract that matures at time t+k; in the left panel, prices of futures contracts with

three different maturities are displayed whereas in the right panel the “roll-over” of

contracts is exemplified. That is, continuous line segments represent the prices of

individual futures contracts rolling-over in time. For example, the price of one new

contract that was first registered at week 35 is marked. In this case, the first data

point in the first series (maturity within a month) is the price of a futures contract

at week 35 that matures in 3 more weeks. The next observation in that series is

from the same contract but one week later with maturity in 2 more weeks. In the

same fashion, the price of the same contract is registered for four or five weeks until

its maturity does not belong to the correspondent maturity of the series and the

price of a different contract is recorded. For consistency, the changes in contracts are

performed at the same time across all series.

Figure 2.3 provides a longitudinal view of the data at the beginning of the week

of May 9th, 1994. This is one example of the behavior of futures prices at a given day

over different maturities. It is clear that prices are not necessarily monotonic as a

function of maturity. Actually, the figure displays a convex function with a downward

trend in prices until they reach a minimum and then slowly growing price movements

following a positive slope. Note that in this example, it takes approximately one year
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for the prices to “reach and follow” the long term line. This deviation from the line

is usually associated with the effects on prices of stock-out and convenience yield5

of the commodity. For some commodities, such as oil, inventories are small relative

to consumption, and they can be quickly depleted if production is interrupted or

if demand is suddenly increased. Therefore, prices can be dramatically affected in

the short term by supply or demand shocks, inducing short term deviations from

the equilibrium level as it is shown in Figure 2.3. Series with this characteristic are

known as mean-reverting processes where prices tend to revert to the mean after a

short term shock (Hull, 1997; Schwartz and Smith, 2000).

2.4 Summary

In this chapter, the importance of oil futures markets was highlighted together with

a brief description of a data set of futures prices that will be used in subsequent

chapters. As a matter of fact, oil futures markets play a central role in the physical

market as instruments for hedging and also to help with pricing the products. An

understanding of price risk management is key for the oil industry and related en-

terprises. The availability of insurance through futures and options markets allows

buyers and sellers to use strategies to manage their exposure to market fluctuations

and reduce their risk, making intervention less necessary. For these reasons, statisti-

cal analyses of futures prices are important in explaining commodity price movements

and in making informed explanations available to market participants, observers and

commentators.

5Benefits from owning an asset that are not obtained by the holder of a long futures contract on
the asset (Hull, 1998).
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Chapter 3

Multivariate Dynamic Linear Model for

Oil Futures Prices

In order to understand and explain the sources of variability of oil futures prices

and their impact on commodity pricing, a class of Bayesian multivariate dynamic

linear models for oil futures prices is developed in this chapter. This new modeling

framework represents direct generalizations of continuous-time models for commodity

prices analyzed in Schwartz and Smith (2000) and reviewed in the first part of this

chapter. A discrete-time version of this model and its state-space representation

are then presented and discussed in a dynamic linear modeling framework. Due to

the high complexity of the model, novel and customized Markov Chain Monte Carlo

(MCMC) sampling schemes are developed for inference and computation representing

a major component of the work presented here. These new highly complicated models

are especially designed to follow standard financial theory for commodity pricing and

hence represent important methodological contributions to both Bayesian statistics

and financial science.
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3.1 Latent Processes in Commodity Prices

In the previous chapter, the idea of mean reversion of oil futures prices was mentioned

as one of the interesting characteristics of these financial instruments. It is said that

prices are mean-reverting when they tend to revert to an equilibrium level after a

short-term shock. In general, prices for some raw commodities tend to fluctuate

randomly up and down in the short run in response to external shocks. In the

particular case of crude oil, fluctuations are often attributed to reactions to political

news and events such as wars, economic and diplomatic problems in oil-producing

countries or strategic decisions made by the Organization of the Petroleum Exporting

Countries (OPEC). However, “in the longer run [the price] ought to be drawn back

towards the marginal cost of producing oil” (Dixit and Pindyck, 1994). Therefore, it

is reasonable to assume that oil prices follow mean-reverting processes. For instance,

Smith and Mccardle (1999) propose a model for commodity prices, including oil,

where the log-prices follow an Ornstein-Uhlenbeck process, one of the simplest mean-

reverting processes. On the other hand, Schwartz and Smith (2000) state that the

log of the spot price is driven by two unobserved or latent processes where one of

them follow an Ornstein-Uhlenbeck process. They claim that, under mean reversion,

the log of the spot price can be decomposed into an equilibrium price level, and

short-term deviations of the price from such level. The deviations might be caused

by unexpected events affecting inventories due to the demand or the supply of the

commodity, they are not expected to persist and should always be fluctuating around

zero.

Although observed spot prices could be used to estimate the two latent processes

mentioned above, some identifiability issues may emerge.1 Therefore, information

coming from futures prices will be key to explore the latent structure of crude oil

1In addition to the fact that the spot prices are not very reliable, as discussed in previous chapters.
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markets. As a matter of fact, it is believed that changes in long maturity futures

prices provide information about the equilibrium price level and changes in the price

difference between near and long-term futures contracts provide information about

the short-term deviations.

3.1.1 Continuous-Time Model

In this section, stochastic models for the two latent processes present in commodity

prices are introduced and described following standard stochastic processes notation

(Schwartz and Smith, 2000). Let St denote the spot price of a commodity at time t

and define an instantaneous latent decomposition as

Xt = ξt + χt,

where Xt = log(St), ξt represents the equilibrium level at time t and χt the corre-

sponding short-term deviation in log prices at time t. The equilibrium level is then

assumed to follow a Brownian motion process with drift µξ, namely

dξt = µξdt+ σξdzξ. (3.1)

The short-term deviations are assumed to revert towards zero, following an Ornstein-

Uhlenbeck process

dχt = −κχtdt+ σχdzχ, (3.2)

where the mean reversion coefficient κ describes the rate at which the short-term

deviations are expected to disappear. In these equations, dzχ and dzξ are correlated

increments of standard Brownian motion processes.

Equations (3.1) and (3.2) imply normal distributions for the χT and ξT processes

with mean and covariance functions given by:

E(χT , ξT ) =
(
e−κTχ0, ξ0 + µξT

)
,
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Cov(ξT , χT ) =

(
(1− e−2κT )σ2

χ/2κ (1− e−κT )ρχξσχσξ/κ
(1− e−κT )ρχξσχσξ/κ σ2

ξT

)
,

where χ0 and ξ0 are initial values of the respective processes and ρχξ is the correlation

of the Wiener processes zχ and zξ. Therefore, given χ0 and ξ0, the log of the future

spot price is normally distributed with mean and variance:

E(XT ) = e−κTχ0 + ξ0 + µξT,

Var(XT ) = (1− e−2κT )
σ2

χ

2κ
+ 2(1− e−κT )

ρχξσχσξ

κ
+ σ2

ξT.
(3.3)

On one hand, the equations presented above give a neat decomposition of the spot

price into latent processes that could be estimated if spot prices were reliable. On the

other hand, theory suggests that futures prices are a legitimate source of information

to estimate the short-term deviations and the equilibrium price level. Therefore, a

link between futures prices and the two latent processes is needed and the traditional

relationship between futures and expected spot prices arises as the best candidate. In

the next section, possible modifications to the stochastic processes are proposed and

analyzed in order to develop a natural connection between futures and spot prices.

3.1.2 Risk-Neutral Process

One of the oldest controversies in the theory of futures pricing is the relationship

between futures price and the expected value of the spot price of the commodity at

some future date. There are three hypotheses that propose a different relationship

between futures and spot prices,

F0,T < E0(ST ), (3.4)

F0,T > E0(ST ), (3.5)

F0,T = E0(ST ). (3.6)

where F0,T is the price today of a futures contract that matures in t = T , and E0(ST )

is the expected value today of the spot price at t = T . Note that even in the case that

14



either inequality (3.4) or (3.5) hold, a certain quantity could be added to one of the

sides so that (3.6) will always be true. The latter equation relies on the notion of what

is called “risk neutrality” where the expected profit to either position (buyer/seller)

of a futures contract would be equal to zero; see Bodie et al. (1999) for more details

on these hypotheses and futures pricing.

The risk-neutral or risk-adjusted assumption provides a natural link between the

futures and spot prices and hence a necessary modification to estimate the two latent

processes. Schwartz and Smith (2000) modified the continuous-time model presented

in the previous section to include the risk-neutral assumption into the model. To

support (3.6) under the risk-neutral assumption, two additional parameters are in-

troduced, the risk premiums λχ and λξ, which specify a constant reduction in the

drifts of the processes (3.1) and (3.2). Namely,

dξ∗t = (µξ − λξ)dt+ σξdz
∗
ξ , (3.7)

dχ∗t = (−κχ∗t − λχ)dt+ σχdz
∗
χ. (3.8)

The risk-neutral long-term process (3.7) follows a Brownian motion process with

drift µ∗ξ = µξ − λξ and the risk-neutral short-term process (3.8) follows an Ornstein-

Uhlenbeck process reverting to −λχ/κ.

As in (3.1) and (3.2) the processes χ∗T and ξ∗T are normally distributed with mean

and covariance given by

E(χ∗T , ξ
∗
T ) =

(
e−κTχ0 −

(
1− e−κT

)
λχ/κ, ξ0 + µ∗ξT

)
,

Cov(ξ∗T , χ
∗
T ) = Cov(ξT , χT ),

where χ∗0 = χ0 and ξ∗0 = ξ0. Therefore, under this risk-neutral assumption, the log of

the future spot price is normally distributed with mean and variance:

E(X∗
T ) = e−κTχ0 + ξ0 −

(
1− e−κT

)
λχ/κ + µ∗ξT,

Var(X∗
T ) = Var(XT ).
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At this point and under the modification induced by the risk-neutral hypothesis, a

relationship between futures prices and the expected spot price is established and in

theory, the two unobserved latent processes could be estimated using the information

from futures commodity prices. However, continuous-time models assume instanta-

neous price movements and in practice only a finite amount of prices are recorded.

Therefore, equivalent discrete-time process have to be developed in order to have

realistic estimations of the latent processes and hence to understand the role that

they play in commodity pricing.

3.1.3 Discrete-Time Model

The immediate discrete-time analogue of the continuous-time Ornstein-Uhlenbeck

process is an AR(1), autoregressive process of order one. Hence the natural choice of

discrete-time model for the short-term deviations is

χt = φχt−1 + ω1t, ω1t ∼ N(0, σ2
χ),

where t now indexes discrete-time. Likewise, a Brownian motion process can be

thought of as a continuous random walk, and therefore the natural discrete-time

model for the equilibrium price level is

ξt = µξ + ξt−1 + ω2t, ω2t ∼ N(0, σ2
ξ ),

ω1t and ω2t are correlated innovations at each point in time.

Under the risk-neutral hypothesis, two new parameters λχ and λξ, representing

the risk premiums and specifying a constant reduction in the drifts, are incorporated

into the model as follows:

χ∗t = φχ∗t−1 − λχ + ω∗1t, ω∗1t ∼ N(0, σ2
χ),

ξ∗t = µξ − λξ + ξ∗t−1 + ω∗2t, ω∗2t ∼ N(0, σ2
ξ ).

(3.9)
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Equations (3.9) imply that the processes χ∗T and ξ∗T are marginally normally dis-

tributed with mean and covariance functions:

E(χ∗T , ξ
∗
T ) =

(
φTχ0 − 1− φT

1− φ
λχ, ξ0 + Tµ∗ξ

)
,

Cov(χ∗T , ξ
∗
T ) =


 1−φ2T

1−φ2 σ2
χ

1−φT

1−φ
σχξ

1−φT

1−φ
σχξ Tσ2

ξ


 .

Furthermore, given χ0 and ξ0, the log of the future spot price is marginally normally

distributed with mean and variance:

E(X∗
T ) = φTχ0 − 1−φT

1−φ
λχ + ξ0 + Tµ∗ξ,

Var(X∗
T ) = 1−φ2T

1−φ2 σ2
χ + 21−φT

1−φ
σχξ + Tσ2

ξ ,
(3.10)

and finally, the spot price at time T is marginally lognormally distributed with mean

and variance:

E(ST ) = exp
{
E(X∗

T ) +
1

2
Var(X∗

T )
}
,

Var(ST ) = (E(ST ))2 (exp {Var(X∗
T )} − 1) .

The equations above yield the desired relationships between futures prices, spot prices

and the corresponding latent processes,

log F0,T = log E(ST ) = E(X∗
T ) +

1

2
Var(X∗

T ), (3.11)

which implies

log F0,T =

(
1− φ2T

1− φ2
,
φT − 1

1− φ
, T

)
1
2
σ2

χ

λχ − σχξ

µ∗ξ + 1
2
σ2

ξ


+ (φT , 1)

(
χ0

ξ0

)
, (3.12)

where F0,T and T are recoded data and represent an observed price/maturity pair in

one day.
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3.1.4 Interpretation of Parameters

The expected value of the spot price on the log scale is equal to E(Xt) + 1
2
Var(Xt).

Given equation (3.3), this can be written as a function of time to maturity T as

gS(T ) =

(
φTχ0 + ξ0 + (1− φ2T )

σ2
χ

4κ
+ (1− φT )

ρχξσχσξ

κ

)
+
(
µξ +

1

2
σ2

ξ

)
T,

where φ = e−κ. The expression above will tend, for large2 values of T , to

lim
T→∞

gS(T ) =

(
ξ0 +

σ2
χ

4κ
+
ρχξσχσξ

κ

)
+
(
µξ +

1

2
σ2

ξ

)
T.

A similar expression could be obtained for the futures prices from (3.10) and (3.11),

gF (T ) =

(
φTχ0 + ξ0 +

φT − 1

1− φ
λχ + (1− φ2T )

σ2
χ

4κ
+ (1− φT )

ρχξσχσξ

κ

)
+
(
µ∗ξ +

1

2
σ2

ξ

)
T,

which for large values of T , will tend to

lim
T→∞

gF (T ) =

(
ξ0 − λχ

1− φ
+
σ2

χ

4κ
+
ρχξσχσξ

κ

)
+
(
µ∗ξ +

1

2
σ2

ξ

)
T.

Note that µξ and µ∗ξ = µξ − λξ play a central role on the slope of the long-term

behavior of spot and futures prices, respectively, whereas λχ acts on the difference

of these two price series. Consequently, spot and futures prices will be needed for

inferences on these parameters. However, spot prices are never directly observed, as

explained in Section 2.1, and there is not enough information in the futures prices

and maturities to estimate µξ. Consequently the precise location of the curve cannot

be determined accurately (Schwartz and Smith, 2000). Furthermore, the meaning of

“long-term” in this context is approximately six years, that is, the data would have

to include prices with maturities in the range of about six years so that the long-term

2Note that for a value of φ = 0.98 a “large” value of T would be at least 300 weeks (≈ 6 years).
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growth rate could be estimated. Futures prices with this long-term maturity are not

presently publicly available.3 Therefore, one has to bear in mind that inferences on

µξ, µ
∗
ξ and λχ will not be easy using only futures prices data, and that informative

priors may be needed.

3.1.5 State-Space Representation

It is well-known that Bayesian dynamic linear models provide a flexible framework

to estimate linear models where certain parameters evolve stochastically over time.

In this case, a state-space representation of the discrete-time model for commodity

prices can be obtained by combining equations (3.9) and (3.12). Namely, if the data

consist of r price/maturity pairs per day, then the r equations (3.12) combine in a

multivariate model

yt = Dtµ0 + Ztθt, (3.13)

where yt is the r × 1 vector of observations with yit = log Ft,t+Ti
, θ′

t = (χt, ξt) is the

state vector of a DLM, µ′
0 =

(
1
2
σ2

χ, λχ − σχξ, µ
∗
ξ + 1

2
σ2

ξ

)′
, Dt and Zt are matrices with

(1−φ2Tit

1−φ2 ,−1−φTit

1−φ
, Tit) and (φTit , 1) as the ith rows, respectively, and i = 1, ..., r.

Moreover, following the suggestions of Schwartz (1997), an observational error

with zero mean and variance V is included in (3.13). This error may take into account

spreads, price limits, non-simultaneity of the observations and possible measurement

errors in the data. Hence, the complete observation equation would be:

yt = Dtµ0 + Ztθt + εt, εt ∼ N(0,V), (3.14)

On the other hand, equations (3.9) will form the system equation,

θt = µ + Gθt−1 + ωt, ωt ∼ N(0,W), (3.15)
3Futures on crude oil traded in a “formal” market are relatively new. As a result, the publicly
available price history for long-term contracts is short. Moreover, futures with term to maturity
greater than two years have almost no activity for days, therefore the “assigned” price may not
reflect the future contracts supply and demand in that day.
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where µ′ = (0, µξ), W =

(
σ2

χ σχξ

σχξ σ2
ξ

)
is the evolution variance and G =

(
φ 0
0 1

)
.

The observation equation (3.14) and system equation (3.15) together comprise the

state-space representation of the discrete-time model. Finally, recall that the only

observed quantities are the log futures prices yt and their corresponding maturities

k1t, ..., Trt.

3.1.6 Modified Discrete-Time Model

In this section, two modifications to the discrete-time model presented above are

proposed. First, a change of measure of central tendency of the spot price is proposed

when linking the futures prices to the state vector in order to add flexibility to the

model and to simplify the estimation process. Second, heavy-tailed distributions

are introduced into the system innovations to reflect the possibility of non-Gaussian

errors.

Change of Measure of Central Tendency of the Spot Price

Under the risk-neutral assumption, the expected value of lognormally distributed

spot prices proved to be the perfect link between the futures prices and the two

latent processes: the equilibrium price level and short-term deviations. However, if a

different measure of central tendency is taken instead of the mean, say the median,

then equation (3.12) can be simplified to:

log F0,T =

(
−1− φT

1− φ
, T

)(
λχ

µ̃∗ξ

)
+ (φT , 1)

(
χ0

ξ0

)
. (3.16)

This slight modification transforms the observation equation in (3.14) to have Dt as

a matrix with ith row (−1−φTit

1−φ
, Tit) and µ′

0 = (λχ, µ̃
∗
ξ). It is important to highlight

that:
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• The modified version of the discrete-time model simplifies the estimation pro-

cess.

• If most of the variability on the log futures prices is explained by the state

vector, then the first term in equation (3.12) will not be very important in the

short-term.

• If the evolution variance is relatively small, differences between (3.12) and (3.16)

will be negligible since the main difference in the two expressions lies in a term

that is a function of the elements of the evolution variance.

• An even more important observation is that a linear, one-to-one, relationship

between the parameters µ∗ξ and µ̃∗ξ can be easily established so that inferences

on µ∗ξ and µ̃∗ξ are easily computed.

Heavy-tailed Distributions for System Innovations

A natural and critical extension to the already modified model is to consider heavy-

tailed distributions for the system innovations. This new assumption enables the

model to account for the volatile nature of crude oil futures prices that could be

observed as outlying changes in the equilibrium price level and/or in the short-term

deviations. Consequently, standard weight parameters γt are introduced to allow for

innovation errors with heavy-tailed distributions constructed as a continuous scale

mixture of normals with prior mixing distributions (West, 1984). In this way, non-

normal behavior of the stochastic changes can be appropriately modeled with com-

putational advantages due to the fact that these innovations are still conditionally

normal.

The choice of the prior for the weight parameters will lead to different error distri-

butions. For example, if a Gamma prior for the weights is selected, Gamma(p/2, p/2),
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it implies that the innovations are marginally Student-T distributed with p degrees

of freedom. The traditional normal model is a particular case of this general setting

when p→∞ or equivalently γt = 1 for all t.

Thus the evolution equation (3.15) is now rewritten as

θt = µ + Gθt−1 + ωt, ωt ∼ N(0,Wγ−1
t ),

with µ′, W and G as in (3.15).

Summarizing, a new class multivariate dynamic linear models for oil futures prices

can be defined as

yt = Dtµ0 + Ztθt + εt, εt ∼ N(0,V),
θt = µ + Gθt−1 + ωt, ωt ∼ N(0,Wγ−1

t ),
(3.17)

where yt is a r×1 vector of observations with yit = log Ft,t+Ti
, θ′

t = (χt, ξt) is the state

vector, µ′
0 =

(
λχ, µ̃

∗
ξ

)
, V is the observation variance, Dt and Zt are matrices with

(−1−φTit

1−φ
, Tit) and (φTit , 1) as ith row respectively and i = 1, ..., r, µ′ = (0, µξ), W =

(
σ2

χ σχξ

σχξ σ2
ξ

)
is the evolution variance, G =

(
φ 0
0 1

)
and γt ∼ Gamma(p/2, p/2).

3.2 Bayesian Analysis

Classical estimation methods for model (3.17) are based on approximate maximum

likelihood estimators. The Bayesian framework allows for posterior estimates even

when the likelihood function is intractable as it is in this case. To perform a full

Bayesian analysis, the joint posterior distribution of all the unknown parameters

should be calculated by updating the prior distribution via Bayes’ rule. Here, the

unknown parameters are

Ω = {φ,µ0, µξ,V,W, γ1, . . . , γN} and Θ = {θ0, θ1, θ2, . . . ,θN}.
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From model (3.17) the following joint distribution can be derived:

p(Ω,Θ,y) = p(Ω)p(y,Θ|Ω)

= p(Ω)
N∏

t=1

N(yt|Dtµ0 + Ztθt,V)N(θt|µ + Gθt−1,Wγ−1
t ).

3.2.1 Prior Distributions

To complete the model specification, the joint prior distribution is specified in terms

of conditionally independent components where the marginal priors are proper and

generally chosen to be conditionally conjugate

p(Ω) = p(φ)p(µ0)p(µξ)p(V)p(W)p(γ1) . . . p(γN).

For some parameters vague priors are appropriate, but for others, prior information is

essential for the analysis. As explained in Section 3.1.4, inference on parameters µξ,

µ∗ξ and λχ will be almost impossible using futures prices data, and so informative prior

distributions will be needed for the analyses. For these three parameters, informative

conditionally conjugate priors centered on values suggested by Schwartz and Smith

(2000) were used. They consider reasonable values µξ ≈ 3%, µ∗ξ ≈ 1.61% and λχ ≈ 5%

(annual terms), given investor expectations during the time period they analyzed,

1/15/93-5/16/96. For the persistence parameter φ, a beta prior is used with mode

at 0.95, and a concentration mass of approximately 96% between 0.85 and 1. For the

rest of the parameters for now, vague conditionally conjugate priors are used.

3.2.2 Implementation of the Gibbs Sampler

A Markov Chain Monte Carlo algorithm (MCMC) specifies an irreducible and aperi-

odic Markov Chain with stationary distribution given by the desired joint posterior

distribution (Gelfand and Smith, 1990). An implementation of the posterior sam-

pling algorithm is outlined here for the unknown parameters Ω and Θ. The sampling
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scheme is based on iterative updating using the full conditional densities of any sub-

sets of the parameters. A generic such subset will be denoted by ζ , and the remaining

variables combined with the full data set will be represented by ζ−.

Sampling the state vector Θt|Θ−
t

Simulations from the conditional posterior distribution for the state vector Θt|Θ−
t

are performed by implementing the algorithm Forward Filtering, Backward Sampling

(FFBS) (Carter and Kohn (1994) and Frühwirth-Schnatter (1994)). See West and

Harrison (1997) for a detailed explanation of this sampling scheme.

Sampling the evolution variance W|W−

Assuming a conjugate prior for the evolution matrix W, the full conditional posterior

distribution is given by

Inv-Wishartn


W

∣∣∣∣∣∣ν +N,

(
N∑

t=1

ωtω
′
tγt + S

)−1



where ν and S are the degrees of freedom and the scale parameter respectively of the

inverse-Wishart prior distribution.4

Sampling the evolution variance weights γt|γt
−

The weights on the stochastic changes in the state vector have a common Gamma

prior, Gamma(p/2, p/2), which yields a Gamma full conditional posterior γt|γt
− ∼

Gamma
(
γt|p+2

2
, 1

2

(
p+ ω′

tW
−1ωt

))
. The degrees of freedom parameter p is set a

priori; the traditional value of p = 5 (West, 1984) is chosen for future analysis.

4The notation for the Wishart and inverse-Wishart is given by W ∼ Wishartn(W|ν, S) where W
is a n× n matrix with E(W) = νS and U ∼ Inv-Wishartn(U|ν, S−1) where U is a n× n matrix
with E(U) = S/(ν−n− 1). In general, all the density distributions presented in this dissertation
follow closely the notation provided by Gelman et al. (1995).
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Sampling the trend µξ|µ−ξ

Assuming a prior distribution p(µξ), the full conditional posterior distribution is given

by p(µξ)N (µξ |m, c2 ), where

m =

(
N∑

t=1

γt

)−1 ( N∑
t=1

(ξt − ξt−1)γt − ρχξσξ

σχ

N∑
t=1

(χt − φχt−1)γt

)

and c2 =

(
N∑

t=1
γt

)−1

σ2
ξ (1− ρ2

χξ). If a conjugate normal prior N (µξ |m0, c
2
0 ) is chosen,

the posterior distribution is given by N(µξ |m1, c
2
1 ) where m1 = c21

(
m
c2

+ m0

c20

)
and

c21 =
c2c20

c2+c20
.

Sampling the vector µ0|µ−
0

Assuming a prior distribution p(µ0), the full conditional posterior distribution is

given by p(µ0)N2 (µ0 |m,C), where m = C

(
N∑

t=1
Z′

tV
−1(yt − Ftθt)

)
and C−1 =

N∑
t=1

Z′
tV

−1Zt. If a conjugate normal prior N2 (µ0 |m0,C0 ) is chosen, the poste-

rior distribution is N(µ0 |m1,C1 ) where m1 = C1

(
C−1m + C−1

0 m0

)
and C1 =

(
C−1 + C−1

0

)−1
.

Sampling the persistence parameter φ|φ−

Conditional on φ−, the posterior for the autoregressive parameter is proportional to

q(φ) = p(φ)
N∏

t=1

N(yt|Dt(φ)µ0 + Zt(φ)θt,V)N(θt|µ + G(φ)θt−1,Wγ−1
t ).

Since this is not of known form, a Metropolis-Hastings sampler is required (Tierney,

1994). A uniform distribution is used as a proposal distribution in the Metropolis
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algorithm (Chib and Greenberg, 1995). That is, given a current value of φ, a candidate

value φ∗ is sampled from

U(φ∗|φ− δ, φ+ δ)

and accepted with probability min{1,q(φ∗)/q(φ)}. A Beta distribution is used as a

prior, as discussed in Section 3.2.1.

Sampling the observational variance matrix V|V−

The sampling of the observational variance-covariance matrix will depend on how V

is modeled. Section 3.1 detailed a model on commodity prices based on financial and

economic principles where observational error is added to include bid-ask spreads,

price limits, non-simultaneity of the observations, errors in the data (Schwartz, 1997)

and everything else that is not explained by the theoretical model. So far, it is not

clear which structure should be assumed for the variance of these errors. For instance,

it is possible that they are correlated depending on a function of the different times to

maturity, or that their variability is being generated by a common source for all the

series. Inferences on V are of critical relevance here due to the structure of futures

prices data as noted before. Therefore, an in-depth study of the structure on V is

needed to ensure proper understanding of crude oil prices structures.

3.3 Summary

In this chapter a class of multivariate dynamic linear models for oil futures prices

is introduced. These models are based on theoretical foundations of a continuous-

time model developed by Schwartz and Smith (2000). The models presented here

use information on the futures prices to make inferences on two latent processes: an

equilibrium price level and corresponding short-term deviations. Proper estimation

of these unobserved series will play a central role in valuing financial contingent
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claims on the crude oil and in the procedures for evaluating investments to extract or

produce it. An implementation of a posterior sampling algorithm via Gibbs sampling

was outlined here for all model parameters, except for the observation variance V.

The structure of V will be analyzed in the next two chapters.
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Chapter 4

Structures for the Observational Variance
Matrix

The main purpose of this chapter is to emphasize the important role that the ob-

servational variance matrix plays in the estimation of the latent processes inherent

in futures pricing for some commodities. Therefore, the modified discrete model, in-

troduced in the previous chapter, is now completed by exploring different structures

of the observational variance. First, a simple diagonal variance matrix is proposed

following traditional approaches in the literature. Second, a more appropriate non-

diagonal matrix is assumed to include potential non-zero correlations between futures

contracts. Third, a variance matrix where the correlations are functions of the differ-

ences between maturities of the futures contracts is analyzed. Finally, the variance

matrix is assumed to have a factor structure and is then decomposed into common

and specific sources of variability. In each case, full Bayesian analyses are performed

by obtaining the corresponding full conditional distribution of the observational vari-

ance and including it into the overall sampling scheme described above.
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4.1 Diagonal Observational Variance

The first structure to explore for the observational variance is a simple diagonal

matrix V = diag(σ2
1 , . . . , σ

2
r ) where r is the number of observed series (in this case

r = 12). This structure assumes uncorrelated errors and has been the standard

approach used in the literature due to the complexity of the models and the diffi-

culties that maximum likelihood estimation methods encounter. Under the Bayesian

framework, common inverse-Gamma prior distributions are assumed for each vari-

ance, Inv-Gamma(σ2
j |ν/2, νS2/2), so that the conditional posterior distribution for

σ2
j , j = 1, . . . , r is then Inv-Gamma

(
σ2

j

∣∣∣∣∣ν+N
2
, 1

2

(
N∑

t=1
ε2jt + νS2

))
.

The Gibbs sampler algorithm described in the previous chapter is then completed

with the full conditional posterior for V, and samples from the desired joint posterior

distribution are drawn for all parameters. As it turns out, the persistence parameter φ

experiences slow convergence rates.1 At first sight, one could think that this could be

caused by either a problem with the Metropolis step in sampling φ as a consequence

of the flat likelihood function or that the model is not appropriate.

A simulation study showed that the Metropolis step is indeed sampling from the

correct posterior distribution for the autoregressive parameter with a model where

observational errors are assumed uncorrelated. In this study, the original/true values

for the parameters were included in their corresponding posterior distributions and

convergence was achieved. Therefore, it can be concluded that the problem may

come from assuming the wrong structure for the observational variance. For a closer

evaluation of the uncorrelated-errors assumption (i.e. diagonal V), the Gibbs sampler

1For this MCMC sampling output and for the rest of the MCMC simulations studied in this
dissertation, convergence was assessed generally by a visual inspection of the autocorrelation and
trace plots from different starting values. For some cases, a more formal analysis was done using
convergence diagnostic tests implemented in CODA (Best et al., 1995) and BOA (Smith, 2000)
softwares. See, for example, Cowles and Carlin (1996), Brooks (1998) and Mengersen et al. (1999)
for a review of convergence diagnostics.
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Figure 4.1: Correlation structure of the estimated residuals in a particular iteration.

was performed again with the persistence parameter held at a fixed value of 0.977 as

suggested by (Schwartz and Smith, 2000). To further confirm our findings, Figure

4.1 presents a graphical representation of the correlation structure of the estimated

residuals in a particular iteration selected at random. The range of color is (0,1),2

where darker regions correspond to larger correlation values. As can be seen from

the image, the empirical correlation structure of the residuals is quite inconsistent

with the assumption of a diagonal observational variance matrix V.

4.2 Non-diagonal Observational Variance

In this section, a more realistic, non-diagonal, full rank structure for V is considered

to account for possible correlations between oil futures price errors at different ma-

turities. In this case, the corresponding full conditional posterior distribution for V

2The complete correlation range (-1,1) is not shown here, since all correlations are positive and it
would limit the visual appreciation of the results.
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Figure 4.2: A sample from the posterior distribution of V.

is easily computed as

Inv-Wishartr


V

∣∣∣∣∣∣ν +N,

(
N∑

t=1

εtε
′
t + S

)−1



when an inverse-Wishart prior distribution is assumed, namely Inv-Wishartr(ν, S
−1).

As in the previous section, this full conditional will be incorporated into the Gibbs

sampling scheme for the modified discrete time model as described in Section 3.2.2.

After a reasonable burn-in period, when the MCMC sampling output started to

present convergence, the computer program experienced numerical instabilities when

trying to invert a near singular matrix sampled from the posterior distribution of V.

This interesting behavior can be easily appreciated from the image representation of

a sample from the posterior distribution of V as displayed in Figure 4.2. The graph

suggests that the estimated residuals are highly collinear; the collinearity is especially

marked between series with short-term maturities and between series with long-term

maturities. These results indicate that either the observational variance V is close to

singular or that the correlations implied by the covariance matrix are related through

a function of the differences between maturities in the series. The latter conclusion
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Figure 4.3: Autocorrelation function for the observed residuals ε̂t estimated under
the model assuming a non-diagonal V.

will be explored in the next section by imposing a correlation structure of the series

in function of their difference in maturities.

4.3 Structure in Function of Difference in Matu-

rities

As with spatially correlated data, the observational errors corresponding to maturi-

ties within x months should be more highly correlated with errors corresponding to

maturities within y months when d = x− y is small. Therefore, a function of the dif-

ference in times to maturity between the series should be included in the correlation

structure of the observational variance. A nice way to validate the hypothesis of “spa-

tial structure” in the correlation matrix of the errors is to explore the autocorrelation

function or correlogram of the estimated residuals as suggested in Cressie (1993) and

Wackernagel (1998). Figure 4.3 displays the autocorrelation function of one subset

of the posterior mean of the residuals estimated under the model with non-diagonal

V above. The plot shows a decreasing trend in correlations as the difference in time

to maturity increases supporting the “spatial” structure hypothesis.

Note that since maturities on the futures contracts change over time (see descrip-

tion of the data set in Section 2.3), the spatial structure yields to different correla-

tion matrices at each point in time and therefore a time-varying structure for the
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observational variance is implicitly introduced into the model. Actually, write the

observational variance Vt as

Vt = Σ1/2RtΣ
1/2,

where Σ = diag(σ2
1 , . . . , σ

2
r ) and Rt is the correlation matrix. In this case, the {Rijt}

element of Rt will be a function of dijt, the difference in time to maturity between

series i and j at time t. The choice of the correlation function usually is a hard and

complex task. The most commonly used class of correlation function is adopted here,

it has a simple functional form and allows for some flexibility in modeling correlations:

Rijt = exp

{
−|dijt|a

τ

}
(4.1)

where 0 < a ≤ 2 and τ > 0 (Wackernagel, 1998). In the spatial statistics literature,

a is usually assumed to determine commonly used correlation functions, for example

a = 1 corresponds to exponential correlation structure and a = 2 corresponds to

Gaussian correlation structure.

Now, the observational variance is defined in terms of the parameters a, τ , and

Σ. In this case, full Bayesian posterior inferences will be performed for a fixed value

of a which implies sampling from the full conditional distributions for parameters

Υ = {τ, σ2
1, . . . , σ

2
r} as part of the overall Gibbs sampling algorithm presented in the

previous chapter.

It is important to bear in mind that a key assumption for this model is that the

correlation structure should depend only on the difference in maturities. That is, that

series corresponding to maturities within sixteen and fifteen months should have very

similar correlation than series with maturities within one and two months.

33



4.3.1 Bayesian Analysis and Implementation of the Gibbs

Sampler

This section provides an outline of the iterative posterior sampling algorithm for the

unknown parameter Υ as part of a sampling scheme to make inferences to the rest

of the parameters. The full conditional distributions of the additional parameters Σ

and τ , are presented in the two following sections, Metropolis-Hastings sampling is

necessary for both of them. To start, given a prior density for Σ and τ and the joint

distribution

p(Ω,Θ,y) = p(Ω)p(y,Θ|Ω)

= p(Ω)
N∏

t=1

N(yt|Dtµ0 + Ztθt,V)N(θt|µ + Gθt−1,Wγ−1
t ),

where Ω = {φ,µ0, µξ,Σ, τ,W, γ1, . . . , γN} and Σ = diag(σ2
1, . . . , σ

2
r), the full con-

ditionals on Σ and τ can be derived, and therefore, a sample from their posterior

distribution can be obtained. Again, prior independence is assumed for all the pa-

rameters:

p(Ω) = p(φ)p(µ0)p(µξ)p(Σ)p(τ)p(W)p(γ1) . . . p(γN).

Sampling the parameter τ |τ−

With a Gamma prior distribution p(τ), the conditional posterior density for τ is

proportional to

q(τ) = p(τ)
N∏

t=1

|Rt|−1/2exp
{
−1

2
ε∗′t R−1

t ε∗t

}
,

where ε∗t = Σ−1/2εt, εt = yt−(Dtµ0 +Ztθt) and Rt(τ) as defined in (4.1). A Gamma

distribution is adopted as the proposal density. The proposal distribution at the

current value τ in the MCMC is π(τ ∗|τ) = Gamma(τ ∗|α(τ, b), β(τ, b)) where β(τ, b) =
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τ/b and α(τ, b) = τβ(τ, b), so that the proposal mean is τ and the variance is b = 0.1.

Therefore, the candidate τ ∗ will be accepted with probability min
{
1, q(τ∗)π(τ |τ∗)

q(τ)π(τ∗|τ)

}
.

Sampling Σ|Σ−

Assume independent prior densities for each of the variances, σj , j = 1, . . . , r so that

p(Σ) = p(σ2
1) . . . p(σ

2
r). The conditional posterior distribution is proportional to

q(Σ) = p(Σ)
N∏

t=1

|Σ|−1/2exp
{
−1

2
ε′t
(
Σ−1/2R−1

t Σ−1/2
)−1

εt

}
.

The following proposal is used to approximate the conditional distribution of Σ:

π(Σ∗) ∝
N∏

t=1

|Σ∗|−1/2exp
{
−1

2
ε′t(Σ

∗)−1εt

}
,

or equivalently inverse-Gamma distributions, Inv-Gamma

(
σ2

j

∣∣∣∣∣N2 , 1
2

N∑
t=1

ε2
jt

)
, for each

variance σ2
j , j = 1, . . . , r. The candidate Σ∗ will be accepted with probability

min

{
1,
q(Σ∗)π(Σ)

q(Σ)π(Σ∗)

}

to ensure that the samples are from the true posterior distribution. An important

point to note here is that informative inverse-Gamma priors were used in this case,

giving a negligible prior probability that the variances are close to zero; this is vital

for the good mixing behavior of the parameters.

4.3.2 Analysis Results

The MCMC sampling scheme described in Section 3.2.2 was performed to draw

500,000 samples after discarding the first 100,000 iterations as the “burn-in” pe-

riod. Of these, 10,000 equally spaced subsamples were extracted. Figure 4.4 displays
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Figure 4.4: Histogram of simulated sample from the posterior density of τ (left)

and the posterior mean of the correlation function ρ(d) = exp
{

d1/2

τ

}
(right).

posterior summaries of the parameter τ assuming a fixed value3 of a = 1/2. The

first panel shows a histogram of the simulated values of τ and the second displays

the posterior mean of the correlation function. The second graph shows small values

of correlations between observational errors corresponding to series with maturities

more than 10 weeks apart. Recall that the data include maturities between zero and

seventy weeks where traditional differences are 4, 8, 13, 17, 22, 26, 30, 34, 39, 44, 48,

52, 56, 60 and 65 weeks. Therefore, based on posterior inferences on τ , most of the

resulting estimated correlations implied from the observational variances are small

and close to zero. However, analyses from Section 4.1 suggested that errors are pos-

itively correlated and that a diagonal structure for the observational variance is not

appropriate. Figure 4.5 displays 95% posterior intervals for Σ1/2 = diag(σ1, . . . , σr),

with the posterior median indicated by the symbol ×. Note that the variances present

a U-shaped pattern with the minimum value at five months to maturity. Moreover,

the variances are small for all but the short maturity series. It is important to note

that, although convergence of the MCMC was eventually achieved, many iterations

were needed since the parameters φ and Σ presented slow mixing due to near singular

variances implied by the small values of some elements in Σ.

3The analysis was done for other values of a = 0.1, 1, 2. However, the mixing of τ and Σ was
notoriously slower and convergence was barely achieved. Further study to infer a might be
worthwhile where this model to be pursued in new applications.
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Figure 4.5: 95% posterior intervals for Σ.

To further study the structure of the observational variance, a principal com-

ponents analysis (PCA) was performed on the observed residuals4 to explain the

possibility of common latent sources of variability. As it turns out, approximately

85% of the overall variability is explained by the first component, and around 97%

of the variability is due to the first three components. The first component has

important weights associated with the first four residual series, which correspond

to futures contracts with short-term maturities. The second and third components

have higher weights for series with mid-term and long-term maturities respectively.

These interesting findings suggest the existence of common latent processes driving

the variability of the model residuals. Therefore, a factor model representation seems

to be a reasonable tool to decompose the observational variance V into two sources

of variability: one representing common sources of variability across the series and

another one representing series-specific variations.

4Particular iterations selected at random.
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4.4 Factor Model

Factor analysis is a mathematical model which attempts to explain the correlation

between a large set of variables in terms of a small number of underlying factors

(Mardia et al., 1979). Factor analysis is primarily concerned with explaining the

covariance between variables by identifying the sources of variation. The factor model

assumes that all the correlations are explained by the common factors and the residual

variation comes from uncorrelated variable-specific sources (Press, 1985). In this

section, a factor model representation is assumed for the observational errors with

the purpose of identifying common sources of variability across series and specific

contributions of individual series (maturities).

A basic k-factor model for the covariance matrix V is defined by:

V = XX′ + Ψ (4.2)

where X is the r×k factor loadings matrix with columns xj and Ψ = diag(ψ1, . . . , ψr)

is the diagonal matrix of instantaneous, series-specific or “idiosyncratic” variances.

The elements on the diagonal of the factor covariance matrix XX′ are sometimes

called commonalities xi =
∑k

j=1 x
2
ij for i = 1, . . . , r, and the elements of Ψ are

sometimes called specificities or uniquenesses. In terms of the residual series εt, this

is equivalent to the representation:

εt = Xft + νt (4.3)

where ft is a k-dimensional random vector of common factors, or factor scores, and

νt is a r-dimensional random vector of conditionally independent and series-specific

quantities, or unique factors. Traditional assumptions for this model are:

• νt ∼ N(νt|0,Ψ),

• uncorrelated and standardized factors ft ∼ N(ft|0, Ik) and
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• νt and fs mutually independent for all t, s.

Therefore, the observation equation of the futures prices in model (3.17) can be

rewritten as

yt = Dtµ0 + Ztθt + Xft + νt. (4.4)

As it is well known in the literature, the k-factor model must be constrained to

guarantee identifiability and uniqueness (Aguilar and West, 2000). To ensure this,

the loadings matrix X is traditionally constrained to have a lower triangular shape,

see Aguilar (1998), Chapter 6 and references therein for details. That is,

X =




x11 0 0 · · · 0
x21 x22 0 · · · 0
...

...
... · · · ...

xk1 xk2 xk3 · · · xkk

xk+1,1 xk+1,2 xk+1,3 · · · xk+1,k
...

...
... · · · ...

xr1 xr2 xr3 · · · xrk




(4.5)

where xii > 0 for i = 1, · · · , k, and xij = 0 for i < j, i, j = 1, · · · , k. This form of

the loadings matrix ensures invariance of the model under invertible linear transfor-

mations of the factor vectors, and induces a full rank loadings matrix. On the other

hand, the conditions imposed on the loading matrix yield nice interpretations of the

factor scores. In addition, it induces an upper bound on the number of factors k,

given by the integer part of

r + 1/2−√1 + 8r/2. (4.6)

The main idea is to impose enough conditions to ensure that the number of free

parameters in the factor representation does not exceed the r(r + 1)/2 parameters

in the unrestricted V; see Aguilar and West (2000) and Aguilar (1998) for further

details.
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4.4.1 Bayesian Analysis and Implementation of the Gibbs

Sampler

The previous Bayesian/MCMC analysis is now extended to incorporate the factor

representation on the observational variance V. Full conditional distributions are

computed for the unknown parameters Υ = {Ψ,X, ft; ∀t} along the lines of Geweke

and Zhou (1996), Polasek (1999), Aguilar (1998), Pitt and Shephard (1999) and

Aguilar and West (2000).

Traditional prior distributions for factor model parameters are assumed to calcu-

late the full conditional distributions. Namely,

p(Υ) = p(Ψ,X,F) = p(F)p(X)p(Ψ), (4.7)

where F ∼ N(0, IN , Ik)
5 is the N × k factors matrix F = (f1, f2, . . . , fN )′, p(xij) ∝ c

for the non-zero entries of the loadings matrix X, and independent priors

p(τi) = Gamma(τi|α0, β0), i = 1, . . . , r, for the precisions τi = 1/ψi.

Now the conditional distribution of the residuals εt = yt − (Dtµ0 + Ztθt), as

described in (4.3), is given by

εt|X, ft,Ψ ∼ N(εt|Xft,Ψ), (4.8)

and the corresponding distribution unconditional on the factors is

εt|X,Ψ ∼ N(εt|XX′ + Ψ). (4.9)

Samples from the posterior distribution for Υ can be obtained by sampling itera-

tively from the full conditional densities of each unknown parameter. Using the same

notation as before, any subsets of the unknown parameters Υ will be denoted ζ and

ζ− will represent the remaining variables combined with the full data set.6

5Notation for a matrix normal distribution; Dawid (1981) and West and Harrison (1997).
6The author thanks Omar Aguilar for provision of the code to sample the factor model parameters.
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Sampling the factors F|F−

Assuming a prior ft ∼ N(ft|0, Ik), the full conditional distribution for the factors can

be written in matrix normal form allowing to sample all the factors at once,

F|F− ∼ N
(
F
∣∣∣ε∗Ψ−1X(Ik + X′Ψ−1X)−1, In, (Ik + X′Ψ−1X)−1

)
,

where F = (f1, f2, . . . , fn)′ is the N × k factors matrix and ε∗ is an N × r matrix with

rows εt for t = 1, ..., N .

Sampling the idiosyncratic variances Ψ|Ψ−

Assuming independent inverse-Gamma priors, the full conditional posterior distribu-

tion for the variances are conditionally independent inverse-Gamma posteriors. For

the precisions τi|τ−i ∼ Gamma(τi|(α0+N)/2, (β0+ei)/2), where ei =
∑n

t=1(εit−x′ift)
2

and xi is the i-th row of the loadings matrix X for each i = 1, . . . , r. Informative

priors are used for the specific variances to give a small prior probability that the

variances are close to zero.

Sampling the loadings matrix X|X−

Under non-informative priors, the elements in each row of the loadings matrix (4.5)

can be sampled independently:

1. The full conditional posterior distribution for the first element x11 is a truncated

normal,

x11|(x11)
− ∼ N

(
x11

∣∣∣(f ′1tf1t)
−1(f ′1tε1), ψ1(f

′
1tf1t)

−1
)
I{x11>0},

where ε1 = (ε11, . . . , ε1N )′ is the first series with ε1t = x11f1t + ν1t for t =

1, . . .N .
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2. The full conditional posterior distribution for the j-th row xj· = (xj1, . . . , xjj)

is the following truncated multivariate normal,

xj·|(xj·)− ∼ N
(
xj·

∣∣∣(B′
jBj)

−1(B′
jεj), ψj(B

′
jBj)

−1
)
I{xjj>0},

where εj is the N × 1 vector of the first j series and Bj is a N × j matrix with

rows (f1t, . . . , fjt)
′ for t = 1, . . . N .

3. The remaining r − k rows of the loadings matrix and mean components are

sampled jointly using a matrix normal distribution. Let X =

(
X1

X2

)
, where

X2 represents the last r − k rows of the loadings matrix. The full conditional

distribution for the (r − k)× k matrix Z = X2 is,

Z|Z− ∼ N
(
Z
∣∣∣(B′ε(k+1):r)

′(B′B)−1,Ψ(k+1):r, (B
′B)

)

where Ψ(k+1):r = diag(ψk+1, . . . , ψr),ε(k+1):r is the N × j matrix of series k + 1

through r and B is a N × k matrix with rows (f1t, . . . , fkt)
′ for t = 1, . . . N .

Note that in the factor model, the number of factors k is assumed to be known and

in this case the PCA from previous section pointed out the possibility of two or three

common factors. Model selection on the number of factors is addressed in the next

section.

4.4.2 Model Selection Using the BIC

In this section, an approximate Bayesian model selection method will be used to

guide choice of the appropriate number of factors in model (4.4).

The first issue to address is how many models have to be considered. As mentioned

above, in order to have full model identification, the number of factors k is subject to

an upper bound given by the integer part of (4.6). In this case, the maximum number
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of factors to account is seven, therefore the models to compare are M1, . . . ,M7 where

Mj assumes j factors. Denote the prior probability of Mj by p(Mj). Bayes’ theorem

implies that the posterior probability of Mj is given by

p(Mj|D) =
p(D|Mj)p(Mj)∑7
i=1 p(D|Mi)p(Mi)

where D is the observed data and p(D|Mj) represents the marginal data density

under model Mj .

Using a standard asymptotic approximation based on the Laplace method for

integrals, these posterior probabilities can be approximated using the Bayesian In-

formation Criterion (BIC) (Schwarz, 1978),

p(Mj|D) ≈
exp

(
−1

2
BICj

)
∑7

i=1 exp
(
−1

2
BICi

) ,

where, for each integer k,

BICk = −2lk + d(k)log(N), (4.10)

d(k) is the number of parameters in model Mk and lk is the maximum of the log-

likelihood. Specifically, lk = log p(Y|Ω̂k, k) where

p(Y|Ω̂k, k) =
N∏

t=1

p(yt|Dt−1, Ω̂k, k), (4.11)

Y = (y1, . . . ,yN), Ω̂ is MLE of Ω = {φ,µ0, µξ,Xk,Ψ,W, γt; ∀t} and

p(yt|Dt−1, Ω̂k, k)

is the one-step forecast distribution obtained by Forward Filtering (West and Harri-

son, 1997).
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No. Factors 1 2 3 4 5 6 7
BIC -34663 -34836 -34763 -34699 -34627 -34573 -34527

Table 4.1: BIC values assuming different number of factors.

On the other hand, the BIC is an approximation of the log of the Bayes factor.

The Bayes factor, Bij for comparing two models Mi and Mj , is the ratio of the

posterior odds in favor of Mi to the prior odds in favor of Mi, this is, the posterior

odds in favor of model i are

p(Mi|D)

p(Mj |D)
=
p(D|Mi)

p(D|Mj)

p(Mi)

p(Mj)
,

the Bayes factor is defined as

Bij =
p(D|Mi)

p(D|Mj)

and

2log(Bij) ≈ BICj − BICi.

Thus two models can be compared by taking the difference of their BIC values,

with the model having the smaller BIC value being preferred. See Kass and Raftery

(1995) for modern applications of Bayes factors in model selection, Raftery (1995),

Wasserman (1997), Lee (1998) for Bayesian model selection and a summary of other

model selection methods, and Lopes and West (1999) for an in-depth study on model

selection addressing the uncertainty on the number of factors.

Table 4.1 displays the BIC values for each model Mj , j = 1, . . . , 7 where the

two-factor model seems to be more appropriate for the residuals εt. It is important

to bear in mind that the BIC is only an approximation to the log of the Bayes

factor where the usual error is of order O(1) (Kass and Wasserman, 1995; Raftery,

1995).7 In certain special cases, the error goes to zero asymptotically, but in general,

7O(bn) represents any quantity such that O(bn)
bn

→ k as n →∞, where k is a constant.
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Figure 4.6: Posterior mean of factors ft.

it does not vanish even with an infinite amount of data. Actually, under certain

situations, the BIC can be inconsistent also when the dimension of the parameter

goes to infinity (Berger et al., 2000).

In order to confirm results from the BIC, approximate posterior means for the k

factor processes and the correspondent loadings matrix X were explored for k > 2.

In all cases, the loadings for the third factor were negligible supporting the results

given by the BIC.

4.4.3 Analysis Results

After a “burn-in” period of 10,000 iterations, 10,000 samples were drawn out of

100,000 simulations using the Gibbs sampler algorithm described in Section 3.2.2

complemented with the full conditionals for the factor model parameters above. The

graphs in Figure 4.6 display the trajectories of approximate posterior means for the

two factor processes. As can be seen in the picture, there is a clear correlation between
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the two factor processes especially in high volatility periods (e.g., the early part of

the Gulf war). Recall that the factors are assumed uncorrelated apriori and with zero

prior mean whereas the posterior mean of the factors show high correlation over time

and significant departures from zero. Figure 4.7 provides histogram approximations

to the marginal posterior distributions for the elements of the loadings matrix X.

The graphs indicate that the first factor can be attributed to series with short-term

maturities and the second factor can be attributed to series with long-term maturities.

Figure 4.8 displays posterior inferences for the idiosyncratic variances ψi. The

first frame shows 95% posterior intervals for the ψi variances observing a U shape

pattern reaching the lowest value approximately at the series with thirteen months

to maturity. The second frame displays margins for 100ψi/σ
2
i where σ2

i is the i-th

diagonal element of V. These ratios measure the percentage of total variation in

each of the series explained by the idiosyncratic terms. In general, the idiosyncratic

variances are relatively small suggesting that the common factors take care of more

than the 80% of the variability across the board being even more dramatic for series

with short-term maturities. In fact, informative priors have to be used to avoid

having zero idiosyncratic variances.

Figure 4.9 displays a normal quantile plot of the posterior means of the standard-

ized ordered estimated residuals ν̂t. Each plot includes vertical lines representing

approximate 95% intervals showing the uncertainty in the marginal posteriors. These

graphs suggest that when the factor representation is included in the model and the

factors correctly estimated the series-specific factors, ν̂t evidence reasonable normal

behavior. However, there are still some outlying residuals corresponding to periods

of high volatility in the futures prices.
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Figure 4.7: Posterior summaries for the factor loadings matrix X.
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Figure 4.9: Normal quantile plot for the posterior means of the standardized ordered
observed residuals ν̂t. The vertical lines represent 95% posterior intervals. Each panel
represents one dimension of ν̂t.
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4.5 Summary

In this chapter, different structures for the observational variance matrix of the dis-

crete time model for futures prices are proposed and analyzed.

• First, the traditional diagonal variance assumption yielded poor estimates of

the parameters. This indicates that there may be common response of the

futures prices at external shocks besides those characterized in the state vector.

• Second, a non-diagonal variance matrix V was assumed. This structure takes

into account for potential correlations in observational errors. The results

showed nearly singular covariance estimates and the possibility of a correla-

tion structure in function of the difference in maturities of the series.

• Third, a “spatial” structure for V was assumed under the notion that the dif-

ference in maturities are driving the behavior of the correlation between errors.

Once again, the parameter estimation procedure presented numerical instabili-

ties due to the smaller values of the eigenvalues of the estimated observational

variance. Moreover, principal components decompositions suggested possible

common latent factors as the main sources of variability.

• Finally, a factor representation of the observational variance was established

to identify common and series-specific sources of variability. Results show two

main latent factors driving the correlations between the residual terms. More-

over, the loadings matrix estimates suggested that these factors correspond

to short-term and long-term maturity contracts respectively. A critical result

from the factor model representation was the fact that some of the idiosyncratic

variance estimates were very small suggesting that most of the variability is ex-

plained by the two main factors.

49



The fact that the posterior mean of the factors present some dependence over

time may suggest a time varying structure for the persistence parameter. On

the other hand, it may also suggest the addition of potential stochastic volatility

structure present in the factors variance.

Furthermore, the heavy tailed distributions of the standardized observed resid-

uals ν̂t could be handled with a scale mixture of normals as performed on the

evolution variance or by incorporating independent stochastic volatility models

for the idiosyncrasies.

A key point to note here is that in all the assumed structures for the observational

variance V, the results evidenced nearly singular behaviors. This was even more

clear with the factor model representation where informative priors had to be used

to avoid having zero idiosyncratic variances. This is an extremely important issue

that will be addressed in the next chapter and that eventually will have a relevant

impact on the analyses results for the futures prices data. Moreover, this application

opens the possibility for developing new theory and methods in the dynamic linear

models arena where the observational variances could be singular or nearly singular.
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Chapter 5

Singular Observational Variance Matrix

Extensive analyses of the modified discrete time model for oil futures prices were

performed in the previous chapter under different structures of the observational

variance V. Results have indicated that some components of the observation errors a

have linear relationship within each other implying singular covariance matrices. In

this chapter, Bayesian dynamic linear models theory is extended to include the pos-

sibility for singular observational covariance matrices. First, key results on singular

distributions are presented. Second, filtering algorithms and updating mechanisms

are outlined for the general dynamic linear model when the observational variance is

singular. Finally, a Gibbs sampling algorithm is developed to sample from the joint

posterior distribution for model parameters.

5.1 Singular Densities

This section reviews two densities that play a key role in the Bayesian modeling

of the futures prices database and in general when the observational variances V

are singular. These densities are the Singular Multivariate Normal and the Singular

Wishart distributions. The former involves a singular variance matrix and the latter

a singular scale matrix.
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Figure 5.1: Singular bivariate normal density

The singular multivariate normal distribution has been around for the past forty

years, Radhakrishna (1962), Marsaglia (1964), Khatri (1968), Mitra and Rao (1968),

Styan (1970), Rao (1978), Siotani et al. (1985), Bhimasankaram and Sengupta (1991)

have developed theory and applications around it. Studies on singular Wishart are

more recent, see for example Siotani et al. (1985), Bhimasankaram and Sengupta

(1991), Oktaba and Kieloch (1993) and Uhlig (1994). In the following subsections the

singular multivariate normal and the singular Wishart distributions are introduced.

5.1.1 Singular Multivariate Normal

For starters, a general definition for a multivariate normal distribution that includes

both the non-singular and the singular variance matrix cases is needed. Following

studies described in Siotani et al. (1985), a random vector x in the ρ-dimensional

space <ρ is said to have a r-variate normal distribution of rank1 ρ with mean µ and

covariance matrix Σ if x has the same distribution as Bu + µ where Σ = BB′,

B : r × ρ, rank(B) = ρ ≤ r and u ∼ Nρ(u|0, Iρ). Note that x is simply defined as

a linear transformation of a non-singular normal random vector that induces non-

1For a practical issue on the rank of a matrix see Appendix A.1.

52



singular distributions when ρ = r and singular distributions when ρ < r. Observe

also that the matrix B is not unique2 and can be obtained in many ways such as the

spectral matrix decomposition. For instance, Σ can be decomposed as Σ = HDH′

where H′H = HH′ = Ir, D = diag(l1, . . . , lr), l1, . . . , lr eigenvalues of Σ; therefore

Σ = BB′ for B = H1D
1/2
0 where H1 : r×ρ in H = (H1,H2) and D0 = diag(l1, . . . , lρ)

with li > 0.

Singular Multivariate Normal Density

As stated above, if Bu+ µ and x have the same distribution, then the characteristic

function of x can be written as φx(t) = E (exp {it′x}). On the other hand, consider

the following linear transformation on y = H′x = (y1,y2), where H : r × r is an

orthogonal matrix as defined above, y1 = H′
1x and y2 = H′

2x. The characteristic

function of y is now given by,

φy(s) = E (exp {is′y}) = exp
{
is′1δ1 − 1

2
s′1D0s1 + is′2δ2

}
,

where s′ = t′H = (s1, s2) and δ′ = (δ′1, δ
′
2) = µ′H. Therefore, y1 and y2 are indepen-

dently distributed random variables with y1 ∼ Nρ(y1|δ1,D0) a non-singular density

and y2 = δ2 with probability one. Since the Jacobian of the linear transformation of

x to y is one, the density of x can be written as,

p(x|µ,Σ) =
1

(2π)ρ/2|D0|1/2
exp

{
−1

2
(x− µ)′Σ+(x− µ)

}
, (5.1)

where x lies on the ρ-dimensional linear subspace defined by y2−δ2 = H′
2(x−µ) = 0

and Σ+ = H1D
−1/2
0 H′

1 is the generalized inverse of Σ (see Appendix A for a general

review on generalized inverse methods). Figure 5.1 shows an example of a singular

bivariate normal distribution where the probability mass is concentrated in a linear

set of dimension one.

2Σ can be rewritten as Σ = B̄B̄′ where B̄ = BL and L is any ρ× ρ orthogonal matrix.
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proper improper
n ≥ ρ n < ρ

Σ positive
definite Regular Pseudo
ρ = p

Σ singular Singular
ρ < p Singular pseudo

Table 5.1: Different Wishart distributions Wishartr (n,Σ) depending on rank(Σ)=ρ
and degrees of freedom n.

5.1.2 Singular Wishart

Siotani et al. (1985) provides a general definition for the Wishart that includes the

non-singular and the singular cases. A random matrix W : r × r is said to have a

Wishart distribution with scale matrix Σ and n degrees of freedom if W = YY′ =

BVB′ where Y = (y1, . . . ,yN), yi = Bui, ui ∼ Nρ(ui|0, Iρ) i.i.d. for i = 1, . . . , N ,

U = (u1, . . . ,uN), ρ× ρ full rank matrix, V = UU′, ρ× ρ full rank matrix, B : r× ρ
and B = H1D

1/2
0 as defined in the previous section. In this case, whenever ρ = r the

distribution is the standard (non-singular) Wishart distribution and when ρ < r the

distribution is called singular Wishart.

Singular Wishart Density

Bhimasankaram and Sengupta (1991) present the Wishart p.d.f., denoted by

Wishartr (n,Σ), in three main cases; when (a) Σ is positive definite, n ≥ r, (b) Σ is

positive semidefinite of rank ρ < r and n ≥ ρ, and (c) Σ is positive semidefinite with

rank ρ < r, n < ρ and n integer. Table 5.1 introduces the so called traditional names

of the Wishart distributions for the (a)-(c) cases. The first case has been studied

extensively in the past decade; see for example Uhlig (1994) and references therein.

In general, a Wishart distribution, W ∼ Wishartr (n,Σ), is called singular if its
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density function is of the form,

p(W|Σ) =
1

2ρn/2Γρ

(
n
2

) |Σ+|n/2|D0|(n−r−1)/2exp
{
−1

2
tr
(
Σ+W

)}
(5.2)

and (I−ΣΣ+) (W) = 0, where n ≥ r, Σ is singular with rank ρ < r, W = H1D0H
′
1

and D0 = diag(l1, . . . , lρ) for li > 0 the ρ non-zero eigenvalues of W. Here Σ+ denotes

the generalized inverse of Σ and E(W) = nΣ. A sketch of the derivation of this p.d.f.

is given in Appendix A.5 for integer values of n.

At this point, most of the necessary tools to include singular distributions into

the dynamic linear models methodology have been introduced. The next step is then

to apply the results presented above to the standard DLM theory which will be done

in the following section.

5.2 Forward Filtering under Singular Observational

Variance

In this section, the Forward Filtering mechanism for the DLMs will be extended to

include singular (or near-singular) observational variances V.

Let yt be a time series vector recorded at equally spaced time points t = 1, 2, . . .

following a standard dynamic linear model, as presented in West and Harrison (1997).

Assume now that the observational variance is singular with the usual state-space

representation, namely

yt = F′
tθt + νt,

θt = Gtθt−1 + ωt,

where θt is the n × 1 state vector, Gt is the n × n evolution matrix, Ft is a n × r

matrix and νt and ωt are error terms assumed independent, mutually uncorrelated
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and normally distributed, νt ∼ N(νt|0,Vt), ωt ∼ N(ωt|0,Wt). In this case, since

Vt is singular with rank ρ < p, νt is then distributed as a singular normal with

density given by function (5.1).

The goal here is to generalize the “updating equations” from Theorem 4.1 in West

and Harrison (1997) by defining the one-step forecast for the data and the posterior

distribution of the state vector for a multivariate DLM under singular distributions.

In this case and following standard notation in West and Harrison (1997), the Forward

Filtering algorithm of a DLM with singular observational variance will be:

(a) Posterior at t− 1: (θt−1|Dt−1) ∼ N(θt−1|mt−1,Ct−1).

(b) Prior at t: (θt|Dt−1) ∼ N(θt|at,Rt)

where at = Gtmt−1 and Rt = GtCt−1G
′
t + Wt.

(c) One-step forecast: (yt|Dt−1) ∼ N(yt|ft,Qt)

where ft = F′
tat and Qt = F′

tRtFt + Vt.

(d) Posterior at t: (θt|Dt) ∼ N(θt|mt,Ct)

with mt = at + RtFtQ
+
t et and Ct = Rt −RtFtQ

+
t F′

tRt, where et = yt − ft.

where Q+
t denotes the generalized inverse of Qt. Note that the key modification here

is in relation to the singularity of the distributions. Whether a normal distribution

is singular or not depends on whether the corresponding variance-covariance matrix

is singular or not. This is usually determined by the rank of such matrices,

rank(Qt) ≤ rank(F′
tRtFt) + rank(Vt) = min(n, rank(Rt)) + ρ,

rank(Rt) ≤ rank(GtCt−1G
′
t) + rank(Wt) = rank(Ct−1) + rank(Wt),

rank(Ct) ≤ rank(Rt) + min(rank(Rt), n, rank(Qt)),

observe that Qt may be full rank if n ≥ rank(Rt) ≥ r − ρ.
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The proof of (b)-(d) is by induction and mimics the proof of Theorem 4.1 in

West and Harrison (1997) with a small change to manage the singular observational

variance V. It proceeds as follows,

(a) Suppose (a) holds.

(b) (θt|Dt−1) follows a normal distribution since it is a linear function of θt−1, and

ωt which are independent normally distributed random variables. The mean at

and the variance Rt are easily deduced.

(c) Although (yt|θt) has a singular normal distribution, yt is a linear transforma-

tion of a normal distribution, and therefore (yt|Dt−1) is normally distributed

with mean E(yt|Dt−1) = F′
tat and variance Var(yt|Dt−1) = Vt + F′

tRtFt.

(d) Finally, yt and θt are jointly normally distributed conditional on Dt−1 with

covariance Cov(yt, θt|Dt−1) = Var(θt|Dt−1) = F′
tRt. Then

(
θt

yt
Dt−1

)
∼ N

(
θt

yt

(
at

ft

)
,

(
Rt RtFt

(RtFt)
′ Qt

))
.

Therefore, to obtain the posterior distribution of the state vector at time t, the

conditional distribution of θt|yt, Dt−1 is needed. In this case, since yt|Dt−1 may

be singular, standard normal theory cannot be applied to obtain the desired

conditional distribution. However, Muirhead (1982) proofs that under these

circumstances, the conditional distribution exists and θt|Dt ∼ N(θt|mt,Ct),

with mt = at + RtFtQ
+
t (yt − ft) and Ct = Rt −RtFtQ

+
t F′

tRt. See Appendix

A.4 for the theorem on the conditional distributions when the joint distribution

is singular as developed in Muirhead (1982).

Once the theory for DLMs under singular distributions has been established, the final

step consists on finding the full conditional distributions for the model parameters in

an MCMC framework.
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5.3 Implementation of the Gibbs sampler

In this section, a Gibbs sampler algorithm is outlined to sample from the joint pos-

terior distribution of the modified discrete time model described in Chapter 3 with

the main difference that now V is assumed to be singular:

yt = Dtµ0 + Ztθt + εt, εt ∼ SN(0,V), (5.3)

θt = µ + Gθt−1 + ωt, ωt ∼ N(0,Wγ−1
t ), (5.4)

where yt is a r × 1 vector of observations with yit = log Ft,t+ki
, θ′

t = (χt, ξt) is

the state vector, µ′
0 =

(
λχ, µ̃

∗
ξ

)
, V is the singular observation variance, Dt and Zt

are matrices with (−1−φkit

1−φ
, kit) and (φkit , 1) as ith row respectively and i = 1, ..., r,

µ′ = (0, µξ), W =

(
σ2

χ σχξ

σχξ σ2
ξ

)
is the evolution variance, G =

(
φ 0
0 1

)
and

γt ∼ Gamma(γt|p/2, p/2).

The joint posterior distribution of the unknown parameters

Ω = {φ,µ0, µξ,V,W, γ1, . . . , γN} and Θ = {θ0, θ1, θ2, . . . ,θN}

is given by

p(Ω,Θ,y) = p(Ω)p(y,Θ|Ω)

= p(Ω)
N∏

t=1
SN(yt|Dtµ0 + Ztθt,V)N(θt|µ + Gθt−1,Wγ−1

t ).
(5.5)

Sampling the state vector Θt|Θ−
t

Simulations from the full conditional posterior distribution for the state vector Θt|Θ−
t

can be performed by implementing the Forward Filtering, Backward Sampling algo-

rithm (FFBS) where the Forward Filtering part is described in Section 5.2 and for

the Backward Sampling part standard DLMs theory applies.
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Sampling the vector µ0|µ−
0

Basically, the full conditional distribution for µ0 remains unchanged as the one pre-

sented in Section 3.2.2. The only modification is to consider the generalized inverse

V+ instead of V−1 since the observational errors εt are now singular normally dis-

tributed.

Sampling the persistence parameter φ|φ−

Given the joint distribution (5.5), the posterior distribution for the autoregressive

parameter is proportional to

q(φ) = p(φ)
N∏

t=1

SN(yt|Dt(φ)µ0 + Zt(φ)θt,V)N(θt|µ + G(φ)θt−1,Wγ−1
t )

which requires similar iteratively resampling mechanisms, as the Metropolis step

described in Section 3.2.2, to approximate the full conditional posterior distribution.

Sampling the singular observational variance matrix V|V−

Assuming a singular Wishart prior distribution for the generalized inverse of V,

SWishartr

(
V+|ν,S

)
as in (5.2), the full conditional distribution is given by

SWishartr

(
V+

∣∣∣∣∣ν +N,
N∑

t=1

εtε
′
t + S

)
.

To simulate from this singular distribution, a simple procedure based on multivariate

normal simulations could be applied in the case of integer degrees of freedom. In

other words, in order to obtain a sample from SWishartr (n,Σ) where n ≥ r and

rank(Σ) = ρ < r,

(a) generate y1, . . . ,yn, n independent samples from a ρ-dimensional multivariate

N(0, I) distribution;
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(b) compute Zi = Byi where Σ = BB′ and B is a r × ρ matrix. For example

B = H1D
1/2
0 with H1 and D0 as detailed in Section 5.1.1; and

(c) finally, W =
n∑

i=1
ZiZ

′
i will be a sample from SWishartr (n,Σ).

In the previous sections, new developments in the dynamic linear model the-

ory were presented when singular observational variances were assumed. Moreover,

the sampling mechanisms for this new class of models were outlined in an MCMC

framework. The theory presented here represent the final “piece of the puzzle” to

implement the modified discrete time model for the futures prices data set.

5.4 Analysis Results

In this section, results from the modified discrete time model for the oil futures

data set are presented assuming that the observational variance is singular. The

complete Gibbs sampler algorithm was implemented by including the singular DLM

full conditional distributions, presented in previous sections. The remaining MCMC

components are developed earlier in Section 3.2.2.

Discussion of model fitting and analyses below are based on specific rank ρ for

the observation variance matrix. Even though inference on ρ is not formally address

here, some discussion on empirical experiences with different ranks are illustrated.

The sampler was run separately assuming different values of the rank of V, ρ =

1, . . . , r. For each of the ranks assumed, a total of 10,000 samples from the posterior

distributions for all model parameters were obtained by subsampling from 500,000

iterations after a burn-in period of 5,000. The main points to highlight from analyses

under different values of ρ are:

• For these models MCMC algorithms tend to experience convergence difficulties

in models with large ρ (i.e. close to full rank matrices). On the other hand, in
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Figure 5.2: Autocorrelation functions for the persistence parameter φ assuming
ρ = 1, . . . , r where r = 12.

a model in which the rank appears to be appropriate for the data under study,

empirical evidence shows that MCMC algorithms converge rapidly. Figure 5.2

displays autocorrelation functions of the sampled values of the persistence pa-

rameter φ which was the parameter with slowest convergence rates. The plots

show that φ converges faster with ranks ρ = 4 and 5.3

• Poor model fitting and forecasts occur when a large or very small value of ρ is

assumed.

• Following earlier studies with this kind of data, a fixed value for rank(V) = 4

was chosen for the analyses presented here; although results from posterior

distributions of model parameters are very similar for rank ρ = 3, 4, 5 and 6.

3Previous work on oil futures prices, under similar ranges of maturities, used an observational
matrix of rank four (Schwartz, 1997; Schwartz and Smith, 2000).
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•
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Figure 5.3: Posterior summaries of observation variance matrix V. The elements in
the diagonal are standard deviations, the elements in the off-diagonal are correlations.
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Figure 5.4: Posterior summaries for the persistence parameter φ (top left) κ in
annual terms (top right) and the half-life in months of the short-term deviations
(bottom).

Figure 5.3 to 5.6 inclusive provide histogram approximations to marginal posteriors

for the parameters {φ,µ0, µξ,V,W} and some functions of them. Figure 5.3 displays

posterior summaries of the estimated observation variance V. The diagonal elements

represent the standard deviations and the off-diagonal histograms correspond to cor-

relations between the twelve observational errors. Note that, as expected, there are

many correlations close to one and the estimated posterior standard deviations de-

crease as the corresponding maturity increases. In other words, the errors for futures

prices with short-term maturities have higher volatility than the ones with long-term

maturities as one might expect.

Figure 5.4 provides posterior summaries for parameters that represent the rate

at which the short-term deviations, χt, are expected to disappear. The top frames

display summaries of the persistence parameter φ and its continuous version in annual
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Figure 5.5: Posterior summaries of the equilibrium drift rate µξ, equilibrium
risk-neutral drift rate µ∗ξ and risk premiums λχ and λξ = µξ − µ∗ξ. The prior dis-
tribution is indicated by the solid line.

terms, κ = −52log(φ). The bottom frame displays summaries of the half-life of the

deviations defined as the time h in which the deviation χt+h is expected to be halve

the value of χt. That is, the value of h where E(χt+h) = 1
2
E(χt) which in months

is equivalent to h = 12
52

log(0.5)

log(φ)
. These graphs indicate that the persistence on the

short-term deviations are expected to halve in about seven and a half months and it

will take at least 300 weeks4 (≈ 6 years) to reach the long-term trend (see also Figure

5.10).

Figure 5.5 shows posterior summaries for the equilibrium drift rate µξ, equilibrium

risk-neutral drift rate µ∗ξ and risk premiums λχ and λξ = µξ − µ∗ξ, where the solid

line indicates the prior distribution. Recall that these parameters needed strong

priors, since there is not enough information in the data to correctly estimate them,

4This is the number of weeks k for which φk is “small”, see Section 3.1.4.
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Figure 5.6: Posterior summaries of the system variance matrix W. The standard
deviations σχ and σξ are in annual terms.

especially for λχ and µξ as explained in Sections 3.1.4 and 3.2.1. The first two

graphs suggest that the posterior distributions of λχ and µξ are slightly different

from their corresponding priors, as expected. The bottom graph, shows that the

posterior estimates of the equilibrium risk-neutral drift rate µ∗ξ are smaller than the

one assumed apriori. Recall that the long-term slope of the log of the futures prices in

model (3.13) is a function of µ∗ξ and even though the data have information about it,

the range of maturities is not enough to make precise inference about the long-term

slope without prior information.

Figure 5.6 shows a histogram of samples from the posterior distribution of the

evolution variance W where the standard deviations σχ and σξ are in annual terms.

Figure 5.7 shows the trajectories of approximate posterior means for the log of the

heavy-tailed weights, log(γ−1
t ). These weight parameters were introduced to allow for
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Figure 5.7: Posterior mean of the log of the heavy-tailed weights, log(γ−1
t ).

the system errors to have heavy-tailed distributions in the evolution equation (5.4):

θt = µ + Gθt−1 + ωt, ωt ∼ N(0,Wγ−1
t ),

t = 1, . . . , N , where γt is assumed apriori Gamma(γt|p/2, p/2), p = 5.5 The graph

clearly illustrates that in periods of high crude oil price volatility, the innovations for

the short-term deviations and equilibrium price level observed heavy-tailed behavior.

For example, the most notorious volatile period is during the Gulf War in the summer

and fall of 1990; another highly volatile period is during the end of 1993 and beginning

of 1994 when high production levels by OPEC and other countries were more than

sufficient to satisfy global demand, leading to an increase in the worldwide crude oil

inventory levels (Schwartz and Smith, 2000), and finally there is a general increased

in volatility starting in 1997. Moreover, the graph suggests serial autocorrelations

which may point to the addition of stochastic volatility structures to the system

5Some other values p = 3, 4, 6, 7, 10 for degrees of freedom were used and main results were basically
the same.
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Figure 5.8: 95% posterior intervals for χt (upper frame) and ξt (lower frame) indi-
cated by vertical segments. The dotted line in the lower frame represents the posterior
mean of the log of the spot price.

variance matrix.

Figure 5.8 shows 95% posterior intervals for the two main latent processes present

in crude oil prices; namely the short-term deviations, χt (upper frame) and the equi-

librium price level, ξt (lower frame). The dotted line in the lower frame represents

the posterior mean of the spot price on the log scale. Observe that, as expected,

the χt process evidences substantial short-term volatility that is then transmitted to

the spot prices. On the other hand, equilibrium price levels ξt evidence smoother

patterns due to their long-term horizon.

Figure 5.9 shows normal quantile plots of the posterior means of the ordered

standardized observed residuals ε̂t of dimension ρ = 4.6 As can be seen, they evidence

heavier than normal tails. Actually, outlying observations 32, 43, 39, 50 and 55

correspond to dates lying between 08/06/90 and 01/14/91, which is the volatile period

6See Appendix A.3 for details on standardization of a random vector with singular variance.
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Figure 5.9: Normal quantile plot of the posterior means of the ordered observation
standardized residuals ε̂t of dimension ρ = 4. The vertical lines represent 95% poste-
rior intervals. Each panel represents one dimension of the standardized residuals ε̂t.
The labeled points indicate the percentages that particular observations contributed
in the computation of the posterior mean residual.

of the Gulf War. This suggests the addition of either heavy-tailed distributions for

εt or potential stochastic volatility structure in the variance of such errors.

Figure 5.10 presents actual futures prices data and 95% posterior intervals of the

estimated term structure in years for three different dates. The first column shows

plots with the intervals of short-term maturities of the futures prices in the data and

the second column plots the same intervals but in a longer time frame. The term

structure for observation t is the pattern of futures prices under various maturities

at day t, given by

tst(k) =

(
−1− φk

1− φ
, k

)(
λχ

µ̃∗ξ

)
+ (φk, 1)

(
χt

ξt

)
.

Note that the graphs show that the short span of maturities in the data makes it

difficult to estimate the long-term slope, µ̃∗ξ, with only the data as mentioned in
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Figure 5.10: Futures prices data and 95% posterior intervals of the term structure
(years) of oil futures prices for 02/13/95, 01/06/97 and 11/16/98 under short-term
(first column) and long-term (second column) time span.

Section 3.1.4. Another point to observe here is the narrow posterior intervals for the

term structure, which reflects quite precise posterior inferences on φ, χt, ξt and µ∗ξ,

combined with a fairly informative prior for λχ.

Non-informative priors for λχ, µξ and µ∗ξ

Similar analyses were performed assuming less informative priors for the parameters

λχ, µξ and µ∗ξ. Results show that posterior inferences for λχ and µξ evidence high

levels of uncertainty as expected. The approximate posterior median and end-points

of a 95% interval for µ∗ξ (annual %) are 0.1686-0.3769-0.5784, this is, that the esti-

mated long-term slope is flatter when using only the information in the futures prices

with short-term maturities.

For the rest of the parameters, the posterior inferences remained basically un-

changed, except for the persistence parameter φ that observed slight modifications.
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The approximate posterior median and end-points of a 95% interval for φ are 0.9705-

0.9721-0.9737. The distribution observed lower values than the one with informative

priors for λχ, µξ and µ∗ξ. This implies a slightly shorter period for the short-term

deviations to revert to the mean, which is mainly caused by the change in the long-

term slope. One important point to note here is that under these non-informative

priors, parameters φ and µ∗ξ show slower convergence rates. This supports the idea

of the lack of data-based information for λχ, µξ and µ∗ξ.

5.5 Forecasting

Finally, to validate the model, out-of-sample forecasts will be generated for the next

23 values (about six months) of the series. That is, random samples from the poste-

rior predictive distributions and one-step-ahead forecast distributions are drawn for

the period 10/25/99 through 03/27/00 and are compared with the actual observed

values.

5.5.1 Posterior Predictive Distributions

A basic technique for model validation is to draw simulated values from the posterior

predictive distribution of future outcomes p(ỹ|y) where y = (y1, . . . ,yN ) and ỹ =

(yN+1, . . .). These samples are then compared to the actual observed data points.

See for example Berger (1985) and Bernardo and Smith (1994) for details on posterior

predictive distributions and Gelman et al. (1995) for similar examples.

In this case, given the j-th simulated value from the posterior distribution of

the parameters: φ(j),µ
(j)
0 , µ

(j)
ξ ,V(j),W(j), θ

(j)
N for j = 1, . . . , 10000, the next 23 state

vectors θ
(j)
N+1, . . . ,θ

(j)
N+23, hence latent processes, were generated from the system

equation (5.4).7 In addition, the next 23 simulated values y
(j)
N+1, . . . ,y

(j)
N+23 were

7Using variance weights γN+1, . . . , γN+23 generated from the prior Gamma(p/2, p/2).
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generated from the observation equation (5.3). Figure 5.11 shows seven randomly

selected samples (path) from the predictive distribution of the next 23 values of the

series. The first part of each plot represents the last 94 points from the observed

series, futures prices from 01/01/98 to 10/18/99. Simulated values, from 10/25/99

to 03/27/00, and observed values are separated by a dashed line. The first panel

shows the actual futures prices (log scale) from 01/01/98 to 03/27/00.

The plots give an idea of the potential path of the series in the next six months,

according to the model. As a matter of fact, the actual data and the simulations

are undistinguishable (first frame versus the rest) exhibiting the same general pat-

terns and structure as the twelve time series at hand. Figure 5.12 shows marginal

histograms of samples from the posterior predictive distribution of the first out-of-

sample data point one week ahead (i.e. futures prices, in log scale, for 10/25/99

for twelve different maturities). The observed value is always in the middle of the

histogram showing that the model is generally adequate. Figure 5.13 displays 95%

posterior intervals of the predictive distribution of the futures prices in the log scale.

The first two or three new observations are in the middle of the predictive interval,

however, the last eleven observations, from 01/17/00 to 03/27/00, are systematically

biased towards the upper part of the distribution. This is a common behavior in

most financial data series were accurate forecast for such wide horizons are difficult

to obtain.

To complement this analysis and to explore the potential advantages of the model

in short-term forecasting, one-step-ahead forecasts for the same 23 values will be

generated sequentially in the next section.
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Figure 5.11: Seven randomly selected samples from the predictive distribution of
the next 23 values of the series. The first panel shows the actual data (log scale) from
01/01/98 to 03/27/00. Observed values, from 01/01/98 to 10/18/99, and simulated
values, from 10/25/99 to 03/27/99, are separated by a dashed line.
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Figure 5.12: Samples from the posterior predictive distribution for 10/25/99 for
the twelve futures prices series in the log scale. The solid line indicates the observed
price, each panel represents one of the twelve price series.

••••
••••••••••

••••
•••••

•
••••••••

••••
•••

••
••

2.
8

3.
2

6/99 1/00

••••
••••••••••

••••
•
••••

•••••••••
••••

•••
••

••

2.
8

3.
2

6/99 1/00

••••
••••••••••

••••
•
••••

•••••••••
•••••••

••
••

2.
8

3.
2

6/99 1/00

••••
••••••••••

••••
•
••••

•••••••••
•••••••

••••

2.
8

3.
2

6/99 1/00

••••••••••••••
••••

•
••••

•••••••••
•••••••

••••

2.
8

3.
2

6/99 1/00

•••••••••••••••••••
••••

•••••••••
•••••••

••••

2.
8

3.
2

6/99 1/00

••••••••••••••••••••••••••••••••
•••••••

••••

2.
8

3.
2

6/99 1/00

••••••••••••••••••••••••••••••••
•••••••

••••

2.
8

3.
2

6/99 1/00

••••••••••••••••••••••••••••••••
•••••••

••••

2.
8

3.
2

6/99 1/00

••••••••••••••••••••••••••••••••
•••••••••••

2.
8

3.
2

6/99 1/00

•••••••••••••••••••••••••••••••••••••••••••

2.
8

3.
2

6/99 1/00

•••••••••••••••••••••••••••••••••••••••••••

2.
8

3.
2

6/99 1/00

1 month 2 months 3 months

4 months 5 months 7 months

9 months 11 months 13 months

14 months 15 months 16 months

Figure 5.13: 95% posterior intervals for the predictive distribution of the futures
prices in the log scale. Each panel represents one futures prices series with certain
maturity.
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5.5.2 One-Step-Ahead Forecast

The exact one-step-ahead forecast distribution p(yl+1|Dl), where l = N, . . . , N + 22

andDl = (y1, . . . ,yl) for the modified discrete time model with singular observational

variances can be obtained using the forward filtering algorithm for DLMs (West and

Harrison, 1997),

p(yl+1|Dl) ∼ N(yl+1|fl+1,Ql+1)

where fl+1 = Zl+1al+1 + Dl+1µ0,
Ql+1 = Zl+1RtZ

′
l+1 + Vl+1,

al+1 = Gml + µ,
Rl+1 = GClG

′ + Wl+1/γl+1,
ml+1 = al+1 + Rl+1Z

′
l+1Q

+
l+1et,

Cl+1 = Rl+1 −Rl+1Z
′
l+1Q

+
l+1Zl+1Rl+1,

el+1 = yl+1 − fl+1.

In this case, parameters {φ,µ0, µξ,V,W} were fixed at their posterior means and

γl+1 = 1 for each l = N, . . . , N + 22. Note that the one-step forecast distribution,

p(yl+1|Dl), considers information of the data until t = N on inference of the param-

eters {φ,µ0, µξ,V,W} and considers data until t = l only in computing the forecast

error el+1 = yl+1− fl+1. Figure 5.14 shows 95% posterior intervals for the term struc-

ture of oil futures prices for the next 23 observations, the solid line is the posterior

mean, ml+1, l = N, . . . , N+22 and the points are the actual observed data. Basically,

the posterior mean delineates future outcomes well, except in some days of abnormal

increments in price, for example in 1/17/00 and 3/6/00. In addition, each graph

displays at maturity equal to zero, the posterior mean of the log of the spot price

defined as the sum of the equilibrium price level and the short-term deviations (the

sum of the two estimated latent processes). Observe that when the futures contract

is close to maturity (for example 12/20/99, 1/17/00, 2/21/00, 3/20/00), the spot

price and the futures price at short-term maturity are extremely close.
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Figure 5.14: 95% posterior intervals for the term structure of oil futures prices for
10/25/99 to 03/27/00. The solid line is the posterior mean, the points are the actual
data.
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5.6 Summary

In previous chapters, analyses suggested the singular structure of the observational

variance in the modified discrete time model. This challenging assumption was de-

scribed, developed and analyzed in this chapter using the futures prices data set. In

general, although singular normal theory has been developed for many years, its use

in practical problems has always been avoided.

In the first part of the chapter, key statistical theory is reviewed and developed to

complete the sampling scheme for the parameters described in Section 3.2.2 assuming

singular observational covariance matrices. The singular normal and singular Wishart

distributions were presented as simple linear transformations of a non-singular nor-

mally distributed random vector. Furthermore, the standard dynamic linear model

mechanisms were extended to include singular distributions. In other words, the for-

ward filtering algorithm under singular observational variance is defined completing

the pieces for a sampling algorithm for V.

In the second part of the chapter, the MCMC sampling scheme is implemented and

results are analyzed for all model parameters assuming a fixed value of rank(V) = 4.

Finally, out-of-sample forecasts are generated and compared to the actual observed

values for model validation and general assessment. Some important findings are

summarized as follows,

• Prices reach the long-term trend at approximately six years.

• Informative priors are necessary to estimate the risk premium λχ, equilibrium

drift rate µξ and equilibrium risk-neutral drift rate µ∗ξ since there is not enough

information in the data.

• Volatile periods commonly observed in commodity pricing are difficult to cap-

ture without the “heavier than normal tails” assumptions. Outlying residuals
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are observed especially in the Gulf War period. This could be resolved by

extending the theory to incorporate either time-varying singular observational

variances in the model or singular T-student distributions.

• Results under singular distribution assumptions, and with a factor decompo-

sition of the observational variance, yield similar conclusions for most model

parameters. Especially when some of the idiosyncratic variances are extremely

close to zero.

• Simulations from posterior predictive distributions generate sample paths for

“future futures” prices that exhibit the same general patterns and structure

evident in the twelve time series at hand, especially it seems that there is some

potential for this model to improve short-term forecast. Apart from possible

stochastic volatility extension, the model is generally adequate.
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Chapter 6

Non-Gaussian Hierarchical Models in
Institutional Profiling

In previous chapters, a dynamic linear model for crude oil futures prices was de-

veloped where latent processes played a central role in modeling these challenging

multiple series over time. In the next two chapters, a latent time series structure

for non-Gaussian processes is assumed, analyzed and discussed under a hierarchical

framework where some of the parameters are related over time. Hierarchical logistic

regression models are then developed to attempt to profile providers in health-care

delivery systems.

Profiling is the process of comparing quality of care, use of services or cost of

providers (care-providing networks, hospitals, physicians, schools) against normative

or community standards. The use of statistics to assess institutional performance

started before 1840 when the Statistical Society of London set up a Committee on

Hospital Statistics (Macfarlane, 1996). However, the use of comparative performance

measures of health-care became widespread only recently (Goldstein and Spiegelhal-

ter, 1996). Provider profiling is currently being conducted by a wide range of institu-

tions for a variety of purposes. These applications range from quality improvement

through provider feedback, provider selection, provider compensation, provider mar-
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keting and sometimes punitive sanctions (e.g., McNeil, 1992; Normand et al., 1997;

Stangl and Huerta, 2000).

In the work presented here, complex non-Gaussian hierarchical models are devel-

oped to profile US Department of Veterans Affairs (VA) facilities. The main question

to be addressed is whether or not there are relevant differences in performance in

out-patient substance abuse programs at the hospital level across the entire VA hos-

pital system. This chapter introduces a class of hierarchical models suitable for the

problem at hand including a preliminary analysis of a single year of data.

The next chapter extends the model to include a time series structure to ana-

lyze ten years worth of data. Contributions and methodology in this work represent

research performed in consultation and collaboration with the Veterans Affair Man-

agement Science Group, Bedford MA.

6.1 The VA Hospital System

The VA operates over 170 hospitals as one of the largest U.S. health-care delivery sys-

tems. The system provides a broad spectrum of medical, surgical, and rehabilitative

care to US military veterans with a priority on poor veterans and those with service

connected injuries. Intense interest has arisen in the development of performance

indicators to make quantitative comparisons between VA facilities. These indicators

can be used also by the hospitals to identify variations in practice patterns or po-

tential quality problems and can be compared to evolving standards being developed

outside the VA.

In particular, the VA Management Science Group is interested in assessing and

comparing clinical and health-care process performance between facilities. Primary

goals of statistical analysis are to help define and estimate measures of hospital level

performance over time and to include information on individual patients in the study.
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The VA has collected and analyzed data from across the system (Burgess et al.,

2000). Time to follow-up care of individuals for selected mental-health disorders has

been tracked as a measure of quality of care in the medical center facilities.

The study of VA quality over time began with a series of analyses in West and

Aguilar (1997), Aguilar and West (1998), and West et al. (1998) that focused on

annual quality measures over the years 1988-1995. These studies developed statistical

models for patient “return for follow-up” data at a highly aggregated level. The

data studied annual quality measures at hospital-level. Similar issues are explored

here, but now focusing on patterns of variability in more disaggregated data, namely

the individual patient return-times categorized by hospital and several other socio-

demographic and medical history covariates. As with the earlier studies, the key

motivating concern is to evaluate differences in return-time distributions by -hospital

and across years- in the context of a range of possible individual-level explanatory

variables.

6.2 Data Structure

The data provided by the VA Management Science Group are based on a uniform

process of data collection and consolidation across national databases. The focus

here is entirely on the Substance Abuse Psychiatric care area, of key current interest

to VA policy makers, and an example of over eighty VA care areas. The data consist

of 463,015 records of individual visits in substance abuse psychiatric care across the

system in the ten fiscal years 1988 to 1997, inclusive. Each record consists of (a) the

return-time in days, measured from the day of discharge from initial visit to the day

of return to follow-up care; (b) hospital/station number where the patient is receiv-

ing treatment; and (c) particular information on the individual which will be used

as covariates in the models described later in the chapter. Following initial consulta-
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tion with VA personnel, the following definitions and groupings of the covariates are

adopted:

• Age factor: classifying cases as in Age group 1 (age≤ 44 years), 2 (45 ≤age≤
64 years), and 3 (age≥ 65 years).

• Diagnosis related group (DRG): classifying cases in four groups by diagno-

sis. Patients in the same DRG will use roughly the same amount of health-care

resources: (1) DRG 434, alcohol/drug abuse with complications or comorbidi-

ties, (2) DRG 435, alcohol/drug abuse without complications or comorbidities,

(3) DRG 436, alcohol/drug dependency with rehabilitation therapy and (4)

DRG 437, alcohol/drug dependency with rehabilitation and detoxification.

• Marital status: classifying cases as of Marital status 1 (Married), 2 (SDW,

Separated - Divorced - Widowed), and 3 (UN, Unknown - Never married).

• Priority code status: based on a means test indicator that defines eligibility

priority codes for use of VA services. Classifying cases in as 1 (AN, poor

veterans), 2 (AS, veterans with service connected injuries) and 3 (Others).

• Gender: classifying cases as 1 (Male) and 2 (Female).

• Race or national origin: classifying cases as 1 (White), 2 (Black, not Hispanic),

3 (Hispanic) and 4 (Other, including Asian, American Indian and unknown).

• Diagnosis: classifying cases into one of 11 groups, labeled 1 − 11 and associ-

ated with the principal medical diagnosis code of the case from The Interna-

tional Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-

CM), as follows: (1) Chronic alcohol dependency, (2) Other drug dependency,

(3) Acute alcohol dependency, (4) Alcoholic psychoses, (5) Opiate dependency

and combinations, (6) Drug psychoses, (7) Alcohol abuse, (8) Drug abuse, (9)
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Figure 6.1: Cumulative empirical proportions of return-times at specific “cut-offs”:
1, 7, 14, 21, 30 and 367 days.

All non-mental health diagnoses, (10) Other disorders and (11) Non-substance

abuse psychoses.

• Other variables: a few additional categorical covariates relating to socio-

economic and military service history of individuals, and region of country in

which the facility is located. These variables will not be used in this work.

It is important to bear in mind that the measure of “quality” for this study is the

reported time of return to follow-up care where a high probability of “long” return

represents “poor quality” and a high probability of “rapid” return represents “high

quality”.

Figure 6.1 summarizes proportions of individuals classified according to a certain

“cut-off” on the return-time scale based on information based on the VA. For every

year, the proportion of individuals having return-time less than or equal to the cut-off

is displayed. The plot illustrates an increasing trend on time of the proportions for
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all cut-offs, consistent with a general quality improvement in the system. Return-

times are truncated at one year (367 days) and patients with return-times greater

than 367 days are considered as uninformative censored cases, i.e essentially as non-

returners.1 The rational here is that after some period of time, veterans that did

not return can be assumed to be censored and possibly receiving follow-up care in

another health-care setting. With no way of linking data across systems to prove

this, a one year follow-up is used as a potential censored cut-off for leaving the VA

health-care system.

6.3 The GLM

Consider data only collected on one year for all individuals visiting VA facilities in

the substance abuse psychiatric care area. Let zi be 1 if patient i returned for an

out-patient visit within t days of discharge and 0 otherwise for i = 1, ..., N . Here the

cut-off t is specified in advance. Assume conditional independent Bernoulli models,

zi|pi ∼ Bernoulli(pi), (6.1)

for each individual i = 1, .., N , where pi is the success probability of the event Ti ≤ t

and Ti is the time to return of patient i. Covariates described in Section 6.2 are

used to explain the variability of pi, that is, following the standard logistic regression

framework, a linear relationship between µi = logit(pi) = log(pi/(1− pi)) and the set

of explanatory variables implies

µi = β0 + x′iθ

for i = 1, ..., N , where β0 represents a baseline return logit probability, xi is the

column vector of values of the covariates for patient i, and θ is a regression parameter

1VA services are not provided based on strict health system enrollment, as with a managed care
system.
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column vector relative to the specified covariate structure in xi. Note that since all

of the candidate covariates are categorical, xi is a vector of binary dummy variables.

By convention, the base level of each categorical covariate is taken as level 1 and

the regression parameter is set to zero at the base level, so that the effects of the

covariates are fixed and need to be estimated. This applies to all covariates except

the variable Hospital, which is treated as a random effect.

Note that positive values of effects correspond to increases in return probabilities.

In case of the fixed effects this increment is relative to the base level of the covariate; in

case of the random effects the increment is relative to an “average” hospital. Larger

positive effects correspond to higher return probabilities, hence to shorter return-

times and higher quality of care. On the other hand, larger negative effects correspond

to lower return probabilities, hence to longer return-times and lower quality of care.

It is important to mention that there are substantive and empirical reasons to

think that the model should include main effects only, that is, with no terms repre-

senting interactions between covariates. This issue is discussed later in the chapter.

6.3.1 Discrete Duration Model

Now consider model (6.1) for different cut-offs t. For any individual, the dependence

of the return-time probability on cut-off is made explicit via

p(t) = P(T ≤ t)

with

logit(p(t)) = β0(t) + x′θ(t). (6.2)

This is known as a duration model (e.g., McCullagh and Nelder, 1989 and Lindsey,

1997) and in particular as a discrete duration model when t is discrete, as it will be

for this work. Different values of cut-offs to consider will be t = 1, 7, 14, 21, 30 and

367.
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6.3.2 Discrete Proportional Odds Model

The duration model on the odds scale implies that, for any t > s and for an individual

with regression vector x,

p(t)

1− p(t)
= π(t, s)

p(s)

1− p(s)

where

log(π(t, s)) = β0(t)− β0(s) + x′(θ(t)− θ(s)),

and the odds ratio, π(t, s), represents the ratio of the odds on a return-time no greater

than t to the odds on a return-time no greater than s.

A very special case arises if all the covariate effects are constant, θ(t) = θ for all

t, which implies that log(π(t, s)) = β0(t) − β0(s) for any t > s. Hence, the odds on

the individual returning before time t is that of returning before time s < t adjusted

by the multiplicative factor π(t, s) which in this special case, depends only on the

difference between the baseline effects β0(t) − β0(s). That is, the odds ratio does

not depend at all on the covariates. This model is known as a discrete proportional

odds model (e.g., McCullagh, 1980 and McCullagh and Nelder, 1989) and will be

mentioned again later. The models will be introduced with an in-depth analysis of

the data in the most recent year, 1997.

6.4 Single-year Model

The study begins with an in-depth analysis of just one year’s worth of data, 1997.

Independent analyses are done for each cut-off under the duration model (6.2) to

address the key aspects of the study. Namely, to find (1) patterns of hospital specific

random effects compared across hospitals for a given cut-off and across cut-offs, (2)

patterns of covariate (fixed) effects, and (3) how such patterns may vary with cut-off.

85



0 100 200 300

29 %

0 5 10 15 20 25 30

timetime

Figure 6.2: Histograms of return-times in FY97. The first histogram includes all
35,368 individuals; the second includes only patients with return-time less or equal
to 30 days.

6.4.1 Data Specification

The fiscal year 1997 data set (FY97) includes a total of 35,368 individuals treated at

140 hospitals. This represents a decline from over 50,000 inpatients treated in FY88.

Figure 6.2 shows histograms of return-times for these individuals. The first panel

includes all observations showing significative numbers of censored cases in this year.

The second panel includes only patients with return-times within 30 days, revealing

high returns at 14, 21 and 28 days. Both panels indicate that many patients return

within a week.

Tables 6.1 and 6.2 provide summary frequencies of individuals classified according

to a moving cut-off on the return-time scale. Each row of the table is an estimate of a

discretized version of the marginal distribution function of return-times in the specific

covariate group of that row. In addition, the total numbers of individuals in each

sub-category are indicated by the entries n: · in each row. Table 6.2 includes such

frequencies for four hospitals selected from the full 140 (hospital numbering serves

only to provide labels for hospitals).

From these tables, note that some 14.67% of the total of 35,368 individuals had a

return-time of exactly 1 day, 38.03% returned within 7 days, 46.78% returned within

14 days, and so forth. The return-times are truncated at 367 days, with 28.71% of all
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Return-time cut-off: t = 1 t ≤ 7 t ≤ 14 t ≤ 21 t ≤ 30 t ≤ 367

All data (n: 35,368) 14.7 38.0 46.8 51.6 56.0 71.3
Age group:

≤44 (n: 16,255) 15.9 40.1 48.5 52.9 57.3 71.9
45-64 (n: 16,963) 14.4 37.9 47.0 52.2 56.8 72.5
65+ (n: 2,150) 7.6 23.3 32.0 36.3 40.5 57.1

DRG:
434 (n: 7,404) 13.6 35.0 43.7 48.9 54.2 71.2
435 (n: 15,407) 16.5 38.0 45.9 50.4 54.8 70.5
436 (n: 9,422) 13.4 40.4 50.3 55.2 59.4 72.5
437 (n: 3,135) 12.3 38.3 48.1 52.6 56.6 71.9

Marital Status:
M (n: 7,463) 12.4 35.2 44.7 49.8 54.5 69.2
SDW (n: 20,527) 15.3 39.0 47.5 52.2 56.5 72.0
UN (n: 7,378) 15.2 38.2 46.9 51.6 56.2 71.5

Priority:
AN (n: 23,617) 15.5 38.5 46.9 51.4 55.6 69.9
AS (n: 10,078) 13.6 38.5 48.7 54.4 59.9 78.3
Other (n: 1,673) 9.9 28.4 34.2 37.1 39.2 48.2

Diagnosis:
1. (n: 17,787) 14.5 38.4 47.3 52.0 56.3 70.8
2. (n: 5,829) 17.0 42.0 51.0 55.8 60.1 74.4
3. (n: 2,937) 16.3 37.6 45.6 51.0 55.7 69.7
4. (n: 2,425) 12.4 33.0 40.6 45.2 48.9 64.3
5. (n: 2,309) 15.9 38.4 46.3 50.1 54.7 72.4
6. (n: 1,505) 10.7 33.9 44.5 50.4 54.8 75.0
7. (n: 1,112) 11.6 31.9 40.7 46.0 52.5 70.5
8. (n: 1,006) 14.6 39.2 47.2 51.9 57.4 77.3
9. (n: 194) 8.8 25.3 32.0 36.6 41.2 61.3
10. (n: 196) 9.7 33.2 45.4 52.6 60.7 80.1
11. (n: 68) 2.9 26.5 35.3 44.1 52.9 73.5

Gender:
Male (n: 34,566) 14.7 38.0 46.7 51.5 56.0 71.3
Female (n: 802) 13.2 39.3 48.0 53.2 58.9 71.3

Race:
White (n: 20,432) 14.2 37.3 46.1 51.1 55.6 70.6
Black (n: 12,095) 16.1 40.0 48.4 52.9 57.1 72.9
Hispanic (n: 1,662) 11.3 34.4 44.7 50.4 54.5 69.8
Other (n: 1,179) 13.3 36.1 44.5 49.1 53.9 68.7

Table 6.1: Cumulative empirical frequency distributions of return-times at specific
cut-offs, categorized by levels of several primary covariates.

87



Return-time cut-off: t = 1 t ≤ 7 t ≤ 14 t ≤ 21 t ≤ 30 t ≤ 367

Hospital:
135(n: 314) 46.8 62.1 66.2 69.4 72.3 80.3
115(n: 400) 16.3 49.5 60.0 64.8 69.3 82.8
1(n: 373) 3.0 11.8 18.5 23.3 26.3 39.4
126(n: 271) 30.6 59.4 66.8 69.0 70.1 84.5

Table 6.2: Cumulative empirical frequency distributions of return-times at specific
cut-offs, categorized by four specific hospitals.

individuals returning at a time greater than 367 days or not at all; these are regarded

as uninformatively censored cases and essentially as non-returners as discussed above.

In the case of the covariates, for example, 15.90% of all the 16,255 individuals in Age

group 1 (less than 45 years of age) have return-times of exactly 1 day, compared to

only 7.63% in Age group 3 (greater than 65 years of age).

6.4.2 Screening Covariates

This section describes initial work of exploratory Bayesian modeling as a screening

analysis to identify potentially relevant covariates from the set of key variables dis-

cussed above. Approximate Bayesian model selection methods were used based on

approximate Bayes’ factor and corresponding model probabilities as discussed in Sec-

tion 4.4.2. The study here used a slight modification of code by Volinsky (1996). The

logistic regression in (6.2) with a chosen set of covariates is identified as a model and

suppose the set of such models is indexed by k = 1, . . . , H. Therefore models, labeled

Mk, k = 1, . . . , H, will differ in the specific covariates they select as “in” the model.

Theoretically, assuming a uniform prior probability of 1/H on each possible model,

Bayes’ theorem implies that the posterior probability of model k is given by

p(Mk|D) =
p(D|Mk)∑H
i=1 p(D|Mi)

, (6.3)
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where D is the observed data and p(D|Mk) represents the marginal data density un-

der model Mk. A standard asymptotic approximation to these posterior probabilities

provides for simplified computations that are useful in preliminary screening for co-

variates. This approximation, based on the Laplace method for integrals commonly

used in Bayesian asymptotics, delivers the standard Bayesian information criterion

(BIC)-based posterior probabilities

p(Mk|D) ≈ exp
(
−1

2
BICk

)
∑H

i=1 exp
(
−1

2
BICi

) ,

where the BIC measure for model k is BICk = Devk − dfklog(N); here Devk is the

classical deviance of model Mk, N is the total number of observations, and dfk is

the degrees of freedom associated with Mk (i.e., N minus the number of regression

parameters in the model).

The approximate posterior model probabilities are computed in this way for all

possible combinations of covariates. This preliminary screening analysis assumed that

the Hospital effects are fixed effects, rather than random, to simplify the computa-

tions. Tables 6.3 and 6.4 provide summaries of the results, identifying key covariates

and giving summaries of the approximate posterior probabilities and BIC measures

for several of the most relevant models. The full screening analysis was performed

twice for each possible return-time cut-off: once using only uncensored data (Table

6.3), and secondly using all the data (Table 6.4). The tables indicate, by the en-

tries × in each column, which covariates are selected in a set of chosen models and

analyses, represented by the rows. For example, the first three rows of Table 6.3

refer to the analyses of the uncensored data alone with models having return-time

cut-off t = 1. It turns out that three models were selected. The first model has an

approximate posterior probability of 0.97 for covariates Hospital, DRG, Age, Priority

and Diagnosis, excluding Marital Status, Gender and Race.
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In the analyses based on all the data, relevant selected models include the co-

variates Hospital, DRG, Age, Priority and Diagnosis, across all possible return-time

cut-offs. In analyses using only the uncensored data, the covariates Hospital, DRG

and Diagnosis are always selected, and Age and Priority are only excluded in a few

models with low probability. Gender and Marital Status are present in some models

with low posterior probability. The most important case for Gender is at return-time

cut-off t = 30, when there is a small but non-negligible posterior probability to in-

clude this variable in the model. Marital Status is included in some lower probability

models in the analyses using all data, but only at return-time cut-offs t = 1, 7. Based

on this exploratory screening analysis, covariates Hospital, DRG, Age, Priority and

Diagnosis will be included in models for more formal study. Even though Gender,

Marital Status and Race factors appear to be only of marginal relevance, they will

be included in formal analysis as specific interests from the VA Management Science

Group exist in quantifying their effects.

Full Bayesian and maximum likelihood analyses were performed on the primary

Hospital effects for the models selected as displayed in the tables. It is of real note

that, across various models with different subsets of covariates, these point estimates

of Hospital effects are very stable indeed, varying negligibly across models. This is

most reassuring, as it indicates that inferences about these primary effects will be

robust to the issue of whether or not to include marginally interesting covariates, and

also that unmodelled interaction effects are likely small and may be safely ignored.

6.4.3 Model Specification and Implementation

The analysis strategy involved fitting the full logistic model of equation (6.2) to

the data, and repeating the analysis in separate studies based on cut-offs at t =

1, 7, 14, 21, 30 and 367 respectively. Including the covariates displayed in Table 6.1
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× × × × × 96.50 -124812.93
t = 1 × × × × 2.39 -124805.53

× × × × × × 1.11 -124804.01
t ≤ 7 × × × × × 100.00 -119399.98
t ≤ 14 × × × × × 100.00 -119985.11

× × × × × 94.86 -121003.07
t ≤ 21 × × × × 2.78 -120996.02

× × × × 1.38 -120994.61
× × × × × × 0.98 -120993.93
× × × × 79.94 -122626.23
× × × × × 13.97 -122622.74

t ≤ 30 × × × × × 4.53 -122620.49
× × × × × × 0.89 -122617.23
× × × × 0.68 -122616.68

Table 6.3: Selected covariates using the BIC based on uncensored data.
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× × × × × 97.65 -167137.68
t = 1 × × × × × × 1.28 -167129.01

× × × × × × 1.07 -167128.65
t ≤ 7 × × × × × 98.60 -158916.50

× × × × × × 1.40 -158907.99
t ≤ 14 × × × × × 100.00 -157769.12
t ≤ 21 × × × × × 99.09 -157536.78

× × × × × × 0.91 -157527.40
t ≤ 30 × × × × × 96.71 -157713.02

× × × × × × 3.29 -157706.26
t ≤ 367 × × × × × 100.00 -160494.80

Table 6.4: Selected covariates using the BIC based on all data.

91



and the random effects, equation (6.2) is:

logit(p(t)) = β0(t) + εj(t) +




δd(t) for Age group d = 2, 3,
γg(t), for DRG level g = 2, 3, 4,
κk(t), for Marital status group k = 2, 3,
ηe(t), for Priority level e = 2, 3,
ξx(t), for Diagnosis group x = 2, . . . , 11,
χc(t), for Gender group c = 2(women),
ζz(t), for Racial group z = 2, 3, 4,

(6.4)

where all parameters are cut-off t specific, β0 is the baseline return logit probability,

εj is the random effect associated to hospital j and δd, γg, κk, ηe, ξx, χc and ζz are

fixed effects associated to each level d, g, k, e, x, c, z of the covariates.

West and Aguilar (1997), Aguilar and West (1998), and West et al. (1998) con-

sidered similar models at the single cut-off of t = 30 and using highly aggregated data

at the hospital level involving no individual-level covariates. On the other hand, the

models presented here expand the scope to several cut-offs on the return-time scale,

so providing access to information about hospital and covariate effects at fine levels

of detail that may be relevant in assessment and interpretation in connection with

possible VA policy questions and appropriate profiling of VA psychiatric care units.

In addition, these generalizations of previous models imply significant complications

technically and computationally in terms of dealing with a vastly larger and more

complex database.

Each specific analysis involved completing the model specification with prior dis-

tributions for covariate effects and hyperparameters, and then computation of pos-

terior distributions. Within each analysis, the hospital specific random effects were

assumed drawn from a normal population model εi(t) ∼ N(0, w(t)2) where the cut-off

dependent standard deviation w(t) represents the dispersion in effects across the VA

system. On the other hand, very vague but proper priors are adopted for all fixed

effects parameters, the effects of all other covariates. Specifically, the elements of θ(t)
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have independent, zero-mean normal priors with variances of 1000, and the hospital

precision parameter 1/w(t)2 has a gamma prior with shape and scale parameters both

equal to 0.001.

Posterior analysis uses Markov chain Monte Carlo (MCMC) methods to iteratively

simulate from the full joint posterior distribution of θ(t) and w(t) producing large

Monte Carlo samples for summary inferences on all parameters and effects. Separated

and uncorrelated analyses were performed for each chosen cut-off t. The sampler was

implemented using WinBUGS software (Gilks et al., 1996; Spiegelhalter et al., 1999).

6.4.4 Analysis Results

Posterior summaries for the single-year model are displayed in Figures 6.3 to 6.12 in-

clusive. The graphs show, for selected model parameters, approximate 95% posterior

intervals with posterior medians and quartiles. These intervals are all presented as

vertical lines in frames designed so that it is straightforward to make comparisons.

In addition, each frame displays intervals from each of the independent analyses cor-

responding to different cut-offs t. All such analyses were performed twice, one set

of analyses used only individuals whose return-times were less than 367 days and a

second set of analyses used all the data, including those censored. The analyses are

distinguished using dotted lines for intervals based on the full data set and solid lines

for intervals based on the data set excluding censored cases. In the next sections,

comments on the posterior graphs are made.

Baseline Duration Model Parameters

The baseline parameters β0 in (6.2) represents the response probability on the logit

scale at an “average” hospital and for individuals in the base levels of all other

covariates.
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Figure 6.3: 95% posterior intervals for baseline return-time probabilities p0(t).

Posterior distributions of these parameters are plotted in Figure 6.3 in the prob-

ability scale. The graph displays intervals for p0(t) = 1/(1 + exp(−β0(t)) in each of

the independent analyses with different cut-offs in the restricted data set ignoring the

censored return-times (solid) and with all the data (dotted). The × symbols indicate

posterior medians. Note that p0(t) increases as a function of t, as expected, although

the analyses were not linked to enforce monotonicity.

Analysis of Covariates

Considering the regression parameters, Figures 6.4 to 6.9 present intervals and esti-

mates of the fixed effects; recall that the effects are referenced to the effect of zero

in the base level of each covariate. Figure 6.4 displays Age effects δj(t). The plot

suggests some evidence of non-proportional odds behavior in the Age covariate, with

group 2 (45-64) effects being less than zero for thresholds t = 1, 7 and 14, but not

obviously different from zero for higher values of t. This corresponds to initially de-

creased quality, in terms of lower return probabilities, at early times for Age group 2

relative to the younger group, but that these differences disappear after 3 weeks. The

older individuals have uniformly lower probabilities of return at all stages, and the
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Figure 6.4: 95% posterior intervals for Age effects δd(t) relative to Age group 1
(≤ 44 years).

effect seems to be roughly constant with respect to cut-off. The results are consistent

between the two data sets (with and without censored cases) in Age group 2, but

clearly not in Age group 3. In this elderly category, the effects are apparently lower

in the analysis of the full data set, consistent with the raw frequencies that indicate

larger numbers of older individuals as non-returners. The generally negative effects

in group 3 may reflect the possibility that elderly veterans who are also eligible for

Medicare may find it easier to have out-patient psychiatric follow-up care covered in

the private sector rather than in VA hospitals.

Figure 6.5 plots DRG effects γg(t). The graph illustrates that there is a decreasing

trend with t in the posterior median for DRG 435. Though there is considerable

uncertainty, this is suggestive of a non-proportional odds effect and would imply a

persistent decrease in return probability with threshold at later times. In DRG 436

and 437, there are clear differences between estimated effects for t = 1 relative to

later cut-offs. These DRG categories have generally higher return probabilities than

the rest, with the very significant exception of the immediate returns. At t = 1, the

return probabilities in these two groups are essentially consistent with the base level
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Figure 6.5: 95% posterior intervals for DRG effects γg(t) relative to DRG 434.
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Figure 6.6: 95% posterior intervals for Marital Status effects κk(t) relative to Mar-
ried status.

DRG 434; by comparison, DRG 435 is clearly above the base level at t = 1.

Figure 6.6 shows Marital Status effects κk(t). Although it is believed that marital

status would affect the efficacy of the support network where married patients might

have different pattern in follow-up appointments than the rest, the plot suggests

that there are no major differences between the groups except perhaps at the early

return-times t = 1, 7. The overall effects are small in terms of their impact on return

probabilities. There is some evidence of increased probabilities of return immediately,
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Figure 6.7: 95% posterior intervals for Priority effects ηe(t) relative to AN (poor
veterans).

t = 1, in both groups 2 and 3 relative to that among Married individuals, and perhaps

a minor increase up to t = 7 among Separated - Divorced - Widowed individuals.

Figure 6.7 displays Priority effects ηe(t). The graph presents different results for

the analysis of the data excluding the censored cases and the analysis of the full data

set. When excluding the censored cases, Priority group AS (veterans with service

connected injuries) has consistently lower return probabilities than the rest, and the

Other group is consistently higher except at t = 1 and 30. The estimated effects gen-

erally appear constant, consistent with a proportional odds structure, with that one

exception. On the other hand, when including all data, Priority group AS evidences

increasing return probabilities that are higher than average apart from at t = 1, and

the Other group has dramatically lower return probabilities which appear to decrease

at higher return-times. VA Priority levels are hypothesized to have two possible ef-

fects which are important in interpreting these results. First, higher priority veterans

(AN,AS) may be given better access to the system and priority in getting favorable

appointments, although once veterans are accepted for care they are supposed to

be treated the same. Second, Priority level also affects the likelihood of leaving the
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Figure 6.8: 95% posterior intervals for Gender effects χ2(t), Female category relative
to Male.

system to receive private sector care, specifically, the Other category has a higher

probability of leaving and hence a lower probability of returning. Therefore, once the

censored cases are excluded, this effect should be reduced. Censored individuals may

well be receiving their follow-up psychiatric care in the private sector, as mentioned

earlier.

Diagnosis covariate (not plotted), as explained in Section 6.2, has eleven lev-

els. Levels 9, 10 and 11 effects are much less precisely estimated than the rest due

to smaller sample size in these groups (see Table 6.1). There is some evidence of

non-proportional odds behavior in several of the Diagnosis categories, though this is

neither highly significant nor uniform across categories. The categories with higher

labels (j = 5, 6, . . .), tend to have generally negative effects, and hence return prob-

abilities lower than the earlier categories relative to the chronic alcohol dependency

reference group. The small sample sizes in many diagnosis groups suggests the merg-

ing of similar diagnosis groups.

Figure 6.8 displays Gender effects χ2(t). The plot suggests that there is a gen-

erally increased effect with longer return-times, consistent with small increases in

return probabilities for women relative to men at later times. The effects are rather
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Figure 6.9: 95% posterior intervals for Racial effects ζz(t) relative to White.

uncertain, though. Only at t = 30 in the analysis excluding censored data the effect is

really significant. At t = 1 the effect χ2(1) is rather uncertain, though the posteriors

do give more weight to negative values, which would indicate a small decrease in the

probability of an immediate return for women relative to men. There may be two

potentially offsetting effects for Gender. In general, women can be more compliant

with follow-up care effects; however, the dominance of male patients in the VA system

can encourage women to shy away from VA care or return to private sector care.

Figure 6.9 presents Racial effects ζz(t). The graph illustrates that there are no

important differences in the effects across levels. For example, the effects in the

Hispanic category are around zero, there is no evidence for a difference with respect

to White; and the effects in the Other category are lower but highly uncertain.

The effects in the Black category indicate a monotonic decreasing pattern in the

posterior medians that is at least suggestive of a small but persistent decrease in

return probabilities, relative to Whites, at later return-times. The median estimates

alone are consistent with slightly higher return probabilities for Blacks relative to

Whites at the early return-times up to 7 days, though the magnitude of the difference

is practically insignificant. In general non-Whites are more likely to use VA out-
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Figure 6.10: 95% posterior intervals for hospital specific random effects εj(t) for
four selected hospitals indicated by station numbers.

patient services (Burgess and DeFiore, 1994), however, conditional on admission,

Whites might follow-up more effectively after discharge.

Random Effects

Figure 6.10 displays inferences on hospital random effects for four arbitrarily selected

hospitals, those with station numbers 135, 115, 1 and 126. The most important gen-

eral finding is that there are general differences between hospitals and the differences

are consistent across analyses. These specific hospitals would be ranked (from low

quality to higher quality) as 1, 115, 126, 135. Of these, hospital # 1 is clearly below

average, with effects ε1(t) clearly negative. There is very clear evidence that the

effects represent non-proportional odds structure in the return-time regression model

for at least one of the hospitals; consider hospital # 135, and note that the clear dif-

ferences in inferences for this hospital’s effect at t = 1 compared to the other values

of return-times. The parameter ε135(1) is obviously higher than the rest, indicating

that the probability of return in exactly one day for this hospital is increased by

more, relative to the average, than is the probability of return at later days. For the

remaining cut-offs at this hospital, the intervals overlap so the differences are unclear;
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Figure 6.11: 95% posterior intervals for Hospital random effects εj(t) in analysis
with cut-off t = 30 (top) and t = 1 (bottom). Hospitals are ordered by the posterior
medians of the effects under the analysis with t = 30.

however, the decreasing pattern of the posterior medians as t increases is suggestive.

This would imply that the increased quality, in terms of increased probability of a

return, exhibits a diminishing effect at later times. The same may be said for hospital

# 126. For hospitals # 115 and # 1, the intervals are suggestive of a constant effect

across cut-offs, i.e., εj(t) ≈ εj for j = 115, 126. The results are similar between the

two data sets (with and without censored cases) for all but hospital # 1. Here the

effects are apparently lower in the analysis of the full data set, consistent with the

raw frequencies that indicate over 60% censored cases at this facility.

The hospital specific random effects εj(t) t = 1, 30 (all data set) are graphed using

line plots in Figure 6.11. The lines represent approximate 95% posterior intervals and

the segments indicate the median of each effect. The graphs serve to reinforce the

conclusion that some or many of the hospital effects are indeed different at different

return-time cut-offs t, consistent with a general non-proportional odds structure. The

hospitals have a common ordering across the two figures, chosen simply as the order

of the posterior medians on the effects in the analysis with t = 30. In the analyses
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Figure 6.12: 95% posterior intervals for the standard deviation w(t) of the popula-
tion distribution of hospital specific random effects εj .

with different cut-offs, the appearance is no longer monotonic, indicating that the

relative quality levels of hospitals is indeed quite variable with cut-off. Indications of

uncertainty are also clear in these graphs where hospitals with smaller samples sizes

present wider intervals.

The standard deviations w(t) determine the dispersion in the random effects dis-

tribution on the population of hospitals. Figure 6.12 provides posterior intervals and

medians for the w(t) in each of the analyses. The major point to note here is the

apparent decreasing pattern as the value of the cut-off t increases. This is particu-

larly significant in moving from t = 1 onward. Thus, variability in the distribution

of hospital-specific effects is significantly more marked at t = 1 than at later times,

and tends to decrease with increasing t. This is consistent with features evident in

Figure 6.11 where the variance of the effects for t = 1 is clearly higher than with

t = 30. And it is evident also in Table 6.1 where the differences in raw frequencies

across the 4 selected hospitals are less marked at higher cut-offs.
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6.5 Summary

This chapter presents a class of hierarchical logistic model to profile 140 VA facilities

within the fiscal year 1997. The key motivating concern is to evaluate differences in

return-time distributions that are specific to each hospital in the context of a range

of possible individual-level explanatory variables. Summary conclusions arising from

this analysis are as follows.

• Hospital-specific random effects are the means to compare hospital performance

within the VA system. Higher positive effect is translated as higher return

probability and therefore higher quality.

• The posterior distribution of the effects with the two data sets (with and with-

out censored cases) lead to similar conclusions in terms of profiling facilities.

It is believed that censored cases does not give significant information about

the effectiveness of health policy interventions, therefore the VA Management

is not interested in including specific modeling of the censored cases.

• Exploratory and confirmatory analyses of FY97 data alone help to understand

key aspects of the structure of this massive data set. In relation to the co-

variates, there are two explanatory variables, Marital Status and Race, where

the overall effects for all levels are small in terms of their impact on return

probabilities. These results suggest that Marital Status and Race should be

dropped for future analyses. On the other hand, within the two covariates Age

and Diagnosis, there are some levels with significant effects and some with no

major differences between them, therefore suggesting groupings within these

variables. Posterior distributions of the covariate effects and the exploratory

analysis using the BIC lead to similar conclusions.
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• A time to return threshold of 30 days has been commonly considered in many

studies in health-care profiling; actually, it is used as an industrial standard.

In this work, the analysis with a 30 day cut-off leads to somewhat less “noisy”

results than other potential cut-off times since it appears to limit the effects

of unobserved heterogeneity at the individual-level. This can be seen in the

hospital level comparisons and the random effects variances above.

The next chapter will extend the logistic model presented here to include a time

series structure to analyze ten years of data, and hence to develop the quality of care

comparisons across years both within and between hospitals.
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Chapter 7

Non-Gaussian Hierarchical Time Series
Structure for Models in Institutional
Profiling

This chapter contains extension of the models for profiling VA facilities as presented in

Chapter 6, to include dependencies between hospital-specific effects from year-to-year.

The motivation is based on policy interests to monitor impact of changes on internal

policy by assessing changes over time in measures of hospital-level performance. This

is of key interest for the VA system due to the close connection with the development

of management and economic incentives designed to encourage and promote care

provision at sustained and acceptable levels.

The idea is to extend the simple model presented in the previous chapter by in-

cluding a simple time series structure that relate the hospital-specific effects between

years, while maintaining the same natural random effects/hierarchical model within

years. The time series components are introduced to adequately capture aspects of

heterogeneity across the VA hospital system and to understand patterns of return-

time variability over time. This is a new class of time series models developed for

longitudinal data that relates individual and hospital level effects.
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7.1 Multi-year Model

Ten years of return-time data, 1988-1997 inclusive, are analyzed and discussed in this

chapter. Prior studies have similar objectives and developed models at a very highly

aggregated level, using as data only the total numbers of patients with return-times

at a specific cut-off, i.e, considering no covariates other than hospital.

The current work is therefore a generalization of previous models, aiming to assess

similar issues but now using the hugely larger data set based on data at the patient

level. The class of models adopted is again a set of logistic regressions with outcomes

classified by return-times below or exceeding one of a set of specified cut-offs. The

data analysis reported below is based on the return-time cut-off t = 30, using all

data.

7.1.1 Data Specification

A total of 463,015 individual psychiatric discharges were recorded across the 136

profiled hospitals in the VA system from 1988-1997. Note that there are 136 hospitals

compared to the 140 used in the FY1997 analysis above. The reduction is because

there are only 136 hospitals with annual records of patients for each year of study in

the psychiatric area. The annual numbers of patients among the 136 hospitals are:

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
52,837 51,451 48,514 46,163 47,054 45,175 47,325 46,438 43,062 34,996

Based on the results of the single-year analysis, some modifications were made on the

selection and specification of categorical covariates defined in Section 6.2.

• Hospital/station: a total of 136 facilities with patients recorded in the sub-

stance abuse psychiatric care area.

• Age factor: refined to classify cases into just two groups: Age groups 1 (age≤
64 years) and 2 (age≥ 65 years).
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• DRG factor: four levels, unchanged.

• Priority code status: three groups, unchanged.

• Gender: 1 (Male) and 2 (Female), unchanged.

• Diagnosis: refined to classify cases into one of just 3 groups (1) a Dependence

group that combines the original groups 1,2,3 and 5; (2) a Psychoses group

that combines the original groups 4,6,9,10 and 11; and (3) an Abuse group that

combines the original groups 7 and 8.

• Marital status and Racial covariates are not now included.

Given this categorical covariate structure, there are a 19,584 cells in the cross-

classification (Hospital×Age×DRG×Priority×Diagnosis×Gender). Of these, there

are a total of 7,848 cells that are non-empty for at least one year.

7.1.2 Model Structure and Implementation

The basic logistic regression model of equations (6.1) and (6.2) is modified to incor-

porate multiple consecutive years. Independently across individuals i = 1, . . . , N ,

and over all years r = 1, . . . , 10, the data are assumed to arise from the set of 10N

Bernoulli models

zi,r|pi,r ∼ Bernoulli(pi,r)

with logistic regression on the explanatory covariates and random effects:1

logit(pr) = β0,r + εj,r +




δd,r, for Age group d = 2,
γg,r, for DRG level g = 2, 3, 4,
ηe,r, for Priority level e = 2, 3,
ξx,r, for Diagnosis group x = 2, 3,
χc,r, for Gender group c = 2 (women).

(7.1)

1Note that there is no explicit indication of cut-off in the model. This is because the analysis will
focus on a chosen return-time cut-off t = 30, dropped from the notation. However, it should be
borne in mind that all parameters are cut-off specific.
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Observe that the model does not relate the population parameters β0,r over the years,

hence baseline quality levels are unconstrained in how they vary between years. This

neutral standpoint is adopted in order to “let the data speak” about any patterns of

variation, or lack thereof, in the baselines. The same attitude is adopted for the effects

parameters for all covariates with the exception of the hospital effects. Hence, the

covariate effects are treated as nuisance parameters without anticipating systematic

structure over time.

The model extensions developed relate to the hospital-specific effects εj,r across

years, in a way similar to prior work with aggregated data (West and Aguilar,1997;

Aguilar and West,1998 and West et al.,1998). The specific structure adopted involves

simple time series panel models to incorporate the view that the εj,r are expected

to remain relatively stable within each hospital from year-to-year, while allowing

for unexplained sources of variability at the hospital level that may induce random

changes. Unless policies and protocols in the care area are radically changed from

one year to the next, there should be stability in these quantities as representing

true quality levels; any changes beyond this will reflect random variations due to

hospital specific practices and the characteristics of the patient sample present at the

hospital (West and Aguilar, 1997). Therefore, each εj,r term is modeled as a simple

AR(1) time series over the years. This structure captures much of the random-effects

variability across hospitals within each year as well as the systematic dependencies

within hospitals from year-to-year.

The dependence structure allows for both between-year correlations and hospital

specific within year variability. For hospital j, the standard AR(1) model is consid-

ered, namely

εj,r = φjεj,r−1 + ωj,r,

for years r = 2, . . . , 10, where φj is the autoregressive parameter which will generally
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be close to one and is constrained to lie in part of stationary region 0 < φ < 1, and

the ωj,r are independent innovations distributed as

ωj,r ∼ N(ωj,r|0, u2
j)

for some innovations variance u2
j . The AR(1) model is such that, for all r and including

the first year r = 1, the implied marginal distribution of hospital effects within the

year is simply

εj,r ∼ N(εj,r|0, w2
j )

with marginal variance w2
j = u2

j/(1− φ2
j).

Whereas prior studies had assumed common parameters across hospitals, here the

parameters (φj, uj) are hospital specific, allowing for variations in both systematic

dependency and overall levels of variation in the εj,r across hospitals.

A hierarchical model structure is adopted for the hospital-specific parameters

(φj, uj). Assuming that (φj , uj) are exchangeable parameters drawn from a hospital-

population prior delivers a class of Bayesian hierarchical models. Furthermore, mod-

eling the (φj, uj) as a random sample from a common prior implies that the resulting

random effects εj,r follow a common marginal distribution within each year. This

hierarchical framework provides flexibility to assess different degrees of dependency

for random effects (through φj) and levels of contribution of the systematic compo-

nent of variation (through uj) across hospitals, while maintaining a “neutral” view,

initially, as to possible differences between hospitals and over years.

The specific prior distributions adopted here have the following main character-

istics. First, φj and uj are exchangeable across hospitals. Second, the dependence

parameters are drawn from a prior beta distribution,

φj ∼ Beta(φj |aµ, a(1− µ))
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where the underlying average dependence level is represented by the hyperparameter

µ, and variations among the φj are determined by the precision hyperparameter

a. These two hyperparameters are to be estimated, along with the φj themselves.

Third, the population of dispersion parameters u2
j is assumed an inverse-Gamma

distribution,

u−2
j ∼ Gamma(u−2

j |c, cρ)

where the hyperparameter ρ represents an underlying average dispersion level, and

variations among the uj are determined by the precision hyperparameter c. In the

same way as for φj, these two hyperparameters are to be estimated, along with the

uj themselves.

Posterior analysis uses Markov Chain Monte Carlo (MCMC) methods to simulate

iteratively from the full joint posterior distribution of all model effects and hyperpa-

rameters. The sampler was implemented using WinBUGS software (Gilks et al., 1996;

Spiegelhalter et al., 1999).

7.1.3 Analysis Results

Summaries of the posterior distributions of the parameters for model (7.1) are dis-

played in Figures 7.1 to 7.8 inclusive. The graphs present, for selected model param-

eters, 95% posterior intervals with posterior medians and quartiles marked as in the

previous chapter.

Baseline Duration Model Parameters

Figure 7.1 displays posterior intervals and estimates for the baseline return-time

probabilities p0,r = 1/(1 + exp(−β0,r)) in each of the ten years r = 1, . . . , 10. The

graph reveals that there is an increasing trend in probabilities of return over time.

Moreover, it shows a distinct change from FY96 to FY97, there being no overlap of the
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Figure 7.1: 95% posterior intervals for baseline return-time probabilities p0,r over
years r = 1, . . . , 10. The points correspond to the overall proportions returning within
30 days from the raw data.

FY97 interval with the rest. As it turns out, FY97 corresponds to the time period

where management efforts in the VA system were put in place aimed at reducing

psychiatric inpatient days and discharges, along with an emphasis on continuity of

care. Figure 7.1 also indicates an increase in the probability of return within 30 days

at an “average” hospital from around 35% in 1990 to nearly 55% in 1997. From the

raw data sets, the crude aggregate proportions of returners in each year, in terms of

percent returning within 30 days, are:

Year: 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
Percent: 42.0 40.5 41.9 46.1 48.3 48.2 49.5 51.6 52.2 55.9

These observed values are also displayed in the graph as points next to the corre-

sponding interval estimates. Their pattern over the years mainly agree with that of

the inferred baseline parameters. However, these data summaries generally exceed

the baseline parameters. This is simply a result of the fact that the majority of

the observations lie in covariate groups with generally positive effects. For example,

results discussed later in the chapter reveal that for FY92, the only categories with

negative effects are 65+ in Age group and Others in Priority group with 6% and 3%
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Figure 7.2: 95% posterior intervals for Age group effects δ2,r over years r = 1, . . . , 10
relative to Age group 1 (≤ 65 years).

of the FY92 data lying in these levels respectively. Thus, the proportion of returners

in less than 30 days for FY92, 48.3%, includes the baseline plus predominantly posi-

tive effects. The pattern of change over the years reflects hospital system-wide effects

on 30 day return-time probabilities. The effects of system-wide policy changes and

common management practices are clear in these improvements in 30-day returns.

Analysis of Covariates

Figures 7.2 to 7.6 present posterior intervals of the fixed effects; recall that the effects

are referenced to zero in the base level of each covariate. Figure 7.2 displays posterior

intervals of the fixed effects δ2,r for the Age covariate at level d = 2 (65+). The el-

derly group effect is clearly negative in each year, and the graph shows a mild though

significant decreasing pattern over the ten year period. Elderly veterans may have

greater transportation problems or may find it easier to have out-patient psychiatric

follow-up care covered in the private sector, since they are also eligible for Medicare.

Therefore, this category has a large number of non-returners. However, with changes

in the VA system beginning to mirror private sector psychiatric treatment patterns,
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Figure 7.3: 95% posterior intervals for DRG group effects γg,r over years
r = 1, . . . , 10 relative to DRG 434.

this effect should be lessening and not increasing. Thus, the decreasing pattern may

be reflecting the possibility that patients from this Age group are admitted on ex-

pensive drug treatments that they receive at VA prices,2 and later seek follow-up

out-patient visits in the private sector which would be reimbursable through Medi-

care. This explanation appears likely as the increasing prices of many psychiatric

pharmaceuticals can stretch elderly budgets, whether by direct payment or insured

through Medigap or Medicare+Choice plans purchased by the elderly.

Figure 7.3 provides intervals and estimates of the fixed effects γd,r for DRG. As

can be seen from the graph, DRG 436 and 437 have positive effects and meaningful

year-to-year variations in the DRG effects within each category. There is also an

apparently persistent deterioration in return probabilities in DRG 436 and 437 over

1995-1997. Actually, according to the VA, this may be more a result of relative

2Either free to the veteran or with a nominal co-pay depending on their eligibility class.
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Figure 7.4: 95% posterior intervals for Priority group effects ηe,r over years
r = 1, . . . , 10 relative to AN (poor veterans).

improvements in DRG 434, the reference group for this covariate, as well as DRG

435 rather than a deterioration in DRG 436 and 437.

Plots in Figure 7.4 show posterior intervals of the fixed effects ηe,r for the Priority

variable. Priority eligibility for using VA health-care services is obtained either from

having service connected injuries (AS) or from having income and wealth below a

means test threshold (AN). The plots suggest that the effects in Priority group AS are

accurately estimated, very stable and positive over the years, indicating a significant

and sustained relative level of 30-day return probability. By contrast, the effect in

Priority group Others is quite variable and generally negative; there is an indication

of improvement in later years following deterioration during 1989-92/3, but a sharp

drop-off in 1997. This corresponds with national budget policies to balance the

budget that mandated a constant nominal budget at $17 billion from 1996 through

2002 and started to put pressure on utilization in the non-priority category.
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Figure 7.5: 95% posterior intervals for Diagnosis group effects ξx,r over years
r = 1, . . . , 10 relative to Dependence category.

The categorization for Diagnosis groups, described in Section 6.2, are very broad

in order to obtain sample sizes large enough to recognize effects. Figure 7.5 displays

posterior intervals of the fixed effects ξj,r for Diagnosis categories: Psychoses and

Abuse relative to Dependence. The effect in the Psychoses group is generally negative

and consistent with lower return probabilities than in either the Dependence or Abuse

groups. The Psychosis patients are most likely to have psychological impairments

that would make follow-up care more difficult.

Figure 7.6 shows posterior intervals of the fixed effects χ2,r for the Female category

relative to the Male effect. Effects are always positive over the full ten year span of the

data. However, the levels are somewhat lower for FY92-93 and FY97; this requires

further consideration and interpretation from VA personnel.
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Figure 7.6: 95% posterior intervals for Gender effects χ2,r over years r = 1, . . . , 10,
Female category relative to Male.

Random Effects

Figure 7.7 presents posterior intervals of the random effects εj,r for five selected

hospitals; these are the four hospitals selected in the FY97 analysis above, plus a

fifth, hospital number #139.

These hospital effects display diverse patterns over the years. Hospitals # 135

and # 115 have apparently positive effects across all ten years, consistent with higher

return probabilities than the norm. Hospital # 1 is well below the norm across

the board with no evidence of improvement in recent years. Hospital # 126 has

tended to vary mildly about the system-wide norm, but has seen a marked increase

in return probability in 1997 implied by the large and positive effect in that year.

The additional hospital, number 139, has experienced return probabilities much lower

than the norm during the first nine years, but has seen a very marked increase in

1997, with a magnitude of improvement that exceeds that of hospital # 126. This

is an atypical behavior for a hospital, since it is not expected that effects will vary

so wildly year-to-year, and further investigation of circumstances at this hospital in
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Figure 7.7: 95% posterior intervals for hospital-specific random effects εj,r over years
r = 1, . . . , 10 in multi-year analysis with cut-off t = 30 days. Intervals are given for
the four hospitals selected in the earlier, single year analysis, as labeled, plus one
additional hospital (#139).
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Figure 7.8: 95% posterior intervals for the hospital-specific dependence parameters
φj (top) and intervals for the hospital-specific innovation variance uj (bottom) for
all 136 hospitals. Hospitals ordered by posterior median of φj . The five hospitals
selected earlier are highlighted.

1996-1997 may prove informative.

Persistence parameters φj and associated hyperparameters

Parameter µ represents a system-wide average value for year-to-year correlations

between hospital effects within hospitals. The approximate posterior median and

end points of a 95% interval for µ are 0.82-0.85-0.88, indicating a high correlation

structure generally across hospitals. The precision hyperparameter a measures the

dispersion of the actual, hospital-specific φj values about µ. A high value indicates

the φj are very tightly distributed around µ, lower values indicate more variability.

The approximate posterior median and end-points of a 95% interval for a are 6.67-

10.62-16.68; this range of fairly high values indicates that there is actually rather

little variability in the φj parameters across hospitals. This is confirmed in the top

panel of Figure 7.8 where posterior estimates and intervals for the φj are displayed

118



for all 136 hospitals. Hospitals are ordered according to increasing values of the

posterior medians of the φj . The plot shows generally large values for the persistence

parameters, implying that a hospital that is been generally “good” (“bad”) in one

year will have a high probability of remaining “good” (“bad”) the next year. On the

other hand, the concordance illustrated in the graph suggests that the model could

be reduced to a common value of φj = φ for all j. A reanalysis of the data was done

under this constraint and, as expected, the common parameter φ is close to µ and

the inferences on all other model parameters and effects are basically unchanged.

Variability parameters uj and associated hyperparameters

Parameter ρ represents a system wide average value for innovation variance; the

approximate posterior median and end points of a 95% interval for ρ are 0.04-0.05-

0.06. Parameter c measures the dispersion of the actual, hospital-specific innovation

variances u2
j values about ρ. A high value of c would indicate that the u2

j take

similar values, whereas lower values of c indicate more variation in the u2
j across

hospitals. The approximate posterior median and end-points of a 95% interval for

c are 2.06-3.07-4.73. This range of rather low values indicates that there is a fair

degree of heterogeneity in the actual set of 136 u2
j quantities across hospitals. This is

confirmed in the bottom panel of Figure 7.8, where posterior estimates and intervals

for the standard deviations uj are displayed. The plot shows some variation in both

estimates and uncertainties across the hospitals. The five hospitals noted earlier are

highlighted, hospital # 139 clearly stands out as a case of relatively high variability,

consistent with the earlier discussion about the significantly varying εj,r parameters

in this hospital.
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Figure 7.9: 95% posterior intervals for the hospital-specific random effects εj (top)
and hospital-specific residual terms νj (bottom) of all 136 hospitals for FY97. The
hospitals are ordered by posterior medians of the random effects.

7.2 Extensions

In this section, extensions of model (7.1) are proposed and discussed. First, the

addition of residual terms to model extra-binomial variation not explained by either

the covariates or the correlated hospital-specific random effects is considered. Second,

the analysis of model (7.1) under different cut-off values t = 1, 7, 14, 21, 30 and 367

is discussed.

7.2.1 Model with Additional Residual Terms

The AR(1) structure from the random effects εj,r of model (7.1) may not fully account

for the levels of overall extra-binomial variation apparent in the data, as discussed

in West and Aguilar (1997), Aguilar and West (1998) and West et al. (1998) for

aggregated data. To deal with this and to generalize previous work, residual or
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Figure 7.10: 95% posterior intervals for the hospital-specific residual terms νj of
all 136 hospitals for FY97. The hospitals are ordered by posterior medians of the
random effects. The five hospitals selected earlier are highlighted.

“idiosyncratic” random effects are included in the model to account for possible

residual variation not yet explained by the explanatory variables and hospital-specific

random effects. Namely, extending model (7.1),

logit(pr) = β0,r + εj,r + νj,r +




δd,r, for Age group d = 2,
γg,r, for DRG level g = 2, 3, 4,
ηe,r, for Priority level e = 2, 3,
ξx,r, for Diagnosis group x = 2, 3,
χc,r, for Gender group c = 2 (women)

(7.2)

where the new, residual terms are

νj,r ∼ N(νj,r|0, v2)

for j = 1, ..., 136 and r = 1, ..., 10.

The addition of the residual terms to the AR(1) process above would modify

the original correlation structure in εj,r over time. Actually, the combined hospital-

specific random effects εj,r + νj,r represent a time series with autoregressive and

moving-average structure: ARMA(1,1).

Figures 7.9 and 7.10 display 95% posterior intervals for hospital-specific random

effects εj,r and hospital-specific residual terms νj,r for FY97 under model (7.2). It is

clear that the residual terms are essentially negligible compared to the levels of vari-

ation in the random effects for FY97. This is supported by Figure 7.11 which shows
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0.02 0.04 0.06 0.08

Figure 7.11: Histogram of a sample from the posterior distribution of v, the standard
deviation of the hospital-specific residual/noise terms νj,r.

the histogram of a sample from the posterior distribution of the small standard devi-

ation v of the “unpredictable” components of variation in the random effects model.

Similar behavior is present across the other years. As it turns out, the extended

model (7.2) produces similar posterior distributions for the rest of the parameters

compared to earlier models. Hence, it can be concluded that the random effects and

the explanatory variables adequately explained most of the extra-binomial variation,

and therefore no additional terms are necessary.

7.2.2 Model Estimation for More Cut-off Values for Return-

Times

The analysis of Section 7.1.3 focused on a standard return-time cut-off t = 30. In this

section, similar analyses are presented for model (7.1) with different cut-off values

and using all the data. This is interesting because it will help to explore potential

differences among cut-off values and offer valuable information to the VA management

in terms of the effectiveness of a certain policy over different return-times. Figures

7.12 to 7.16 inclusive include similar displays to those presented in previous sections:

95% posterior intervals for the hyperparameters and random and fixed effects. In

addition, summaries of the implied differences relative to the baseline on a probability

scale are displayed in this section. The differences in return probabilities relative to
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Figure 7.12: 95% posterior intervals for baseline return-time probabilities p0,r(t)
over years r = 1, . . . , 10 and cut-offs t = 1, 7, 14, 21, 30, 367.

baseline are defined as pj,r(t) − p0,r(t) for each covariate level j, year r and cut-

off t. As previously stated, p0,r(t) = 1/(1 + exp(−β0,r(t)) is the baseline return

probability; moving to level j of any one of the covariates shifts this to pj,r(t) =

1/(1+exp(−β0,r(t)−τj,r(t))) where τj,r(t) represents the corresponding effect for that

level of the chosen covariate (e.g., τj,r(t) = δj,r(t) for Age group j, τj,r(t) = ξj,r(t) for

Diagnosis group j, and so forth).

Baseline Duration Model Parameters

Figure 7.12 shows posterior intervals and estimates for the baseline return-time prob-

abilities p0,r(t) = 1/(1 + exp(−β0,r(t))) for r = 1, . . . , 10 and return-time cut-offs

t = 1, 7, 14, 21, 30 and 367. The graph reveals a general increasing trend over time

and also an increasing pattern of p0,r(t) as a function of t, as expected from previous

analyses above.
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Figure 7.13: 95% posterior intervals for Age group effects δ2,r(t) (upper frame)
and the differences in implied return-time probabilities relative to the baseline (lower
frame).
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Analysis of Covariates

Figure 7.13 shows intervals and estimates of the fixed effects δ2,r(t) for the Age

covariate. The lower frame displays intervals for the implied differences in return-

time probabilities relative to baseline (i.e., for p2,r(t)− p0,r(t) where p2,r(t) = 1/(1 +

exp(−β0,r(t) − δ2,r(t))) for each t and r). The top graph suggests evidence of non-

proportional odds behavior for: FY89, FY90 and FY96, where clearly the intervals

with return-time cut-off t = 1 have a different level than the rest. The bottom graph

shows that the difference in probability of return in exactly one day for the elderly

is closer to the baseline probability than any other cut-off.

DRG and Priority effect estimates (not displayed) follow expected patterns given

the previous analyses above. On the other hand Diagnosis presents little evidence of

non-proportional odds behavior and for different cut-offs, the effects of this covariates

follow the same patterns as with cut-off t = 30.

Figure 7.14 shows intervals for the fixed effects χ2,r(t) of the Gender covariate

for different cut-off values. The lower frame displays similar intervals for the implied

differences in return-time probabilities relative to baseline (i.e., for p2,r(t) − p0,r(t)

where p2,r(t) = 1/(1 + exp(−β0,r(t)− χ2,r(t))) for each t and r).

Although there was the suspicion of a generally increased effect with longer return-

times for FY97, the upper frame Figure 7.14 shows that for FY89 the posterior me-

dians observe a decreasing trend not present for FY92-93, where there is no apparent

trend.

Random Effects for one Hospital

Figure 7.15 displays 95% intervals of the random effects for hospital #115 (randomly

selected). These plots illustrate posterior estimates of hospital-specific random effects

over time for different cut-offs. Intervals in the upper frame are those of the random
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Figure 7.14: 95% posterior intervals for Gender effects χ2,r(t) (upper frame) and the
differences in implied return-time probabilities relative to the baseline (lower frame).
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effects εj,r(t) for j = 115. The lower frame displays similar intervals for the implied

differences in return time probabilities relative to baseline (i.e., for pj,r(t) − p0,r(t)

where pj,r(t) = 1/(1 + exp(−β0,r(t) − εj,r(t))) for j = 115 and for each r and t).

Although there is very clear evidence that the effects represent non-proportional

odds structure for this hospital, the top graph in Figure 7.15 shows that the pattern

among cut-offs is just slightly different every year except for FY93-95. On one hand,

for FY96-97 the intervals overlap and differences are unclear, on the other hand,

for FY94 the parameter ε115,r(1) is obviously lower than the rest indicating that the

probability of return in exactly one day for this hospital is approximately the same

as the average hospital. Moreover, the bottom graph in Figure 7.15 shows that for

FY93-95, the probabilities p115,r(1) are the lowest over the ten years and p115,r(t) are

among the highest for the rest of the cut-offs t. That is, there are three years where

hospital # 115 exceeds the baseline probability by approximately 20% for all cut-offs

except for t = 1 where, on the contrary, the effects on the probability scale are the

same as the baseline probability.

Hyperparameters

Figure 7.16 displays approximately 95% posterior intervals of the posterior distribu-

tion of the hyperparameters associated with the autocorrelation parameter φj(t) (top

frames) and the hospital-specific innovation variances uj(t) (lower frames). In gen-

eral, intervals for the hyperparameters µ(t), a(t) and c(t) overlap over all return-time

cut-offs, leading to similar conclusions to those discussed in Section 7.1.3. However,

intervals for ρ(t), the system-wide average value for innovation variance, show a clear

decreasing trend with cut-off. This implies that the innovations have higher variance

under return-time probability cut-off t = 1 and in consequence the random effects

will have higher variance than with the rest of the cut-offs as observed earlier in
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Figure 7.15: 95% posterior intervals for hospital-specific random effects εj,r(t) for
hospital j =115. Graphs display the effects ε115,r(t) (upper frame) and the differences
in implied return-time probabilities relative to the baseline (lower frame).
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Figure 7.16: 95% posterior intervals for model hyperparameters for different re-
turn-time cut-offs t = 1, 7, 14, 21, 30, 367 days.

Figure 6.11.

7.3 Summary

In the past two chapters, complex non-Gaussian hierarchical models are developed to

profile VA facilities with the final goals of interpreting patterns of variability across

hospitals and years, and usefully summarizing the complex data for possible use

by VA policy makers concerned with improving quality of care and efficient and

appropriate budgetary decisions. The models presented, first for a single year of data

and then extended to include a time series structure, help to quantify differences

in performance in out-patient substance abuse programs at hospital level across the

system. Important issues arise from the discussion above and can be summarized as

follows:

• The diversity of inferred behavior of the hospital-specific random effects over
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the years is of use in providing insights to managers and policy analysts in

profiling providers.

• There are evident changes in the baseline parameter over the years that require

consideration and interpretation by VA personnel.

• The time series structure imposed in the model at the hospital level corrobo-

rated the consistency and persistence of hospital effects over time. However, in

this case, the hospital autoregressive parameters can be reduced to a common

value φj = φ yielding to a more parsimonious representation.

• The autoregressive structure of the random effects and the covariates explain

most of the extra-binomial variation observed in the data, suggesting that no

additional structure remains unmodeled. This conclusion differs radically from

previous work for aggregated data in West and Aguilar (1997), Aguilar and

West (1998) and West et al. (1998). They discussed the decomposition of the

hospital-specific random effects into two sources of variability, one coming from

the autoregressive structure and other from a very significant unpredictable

component. Evidently, this new analysis confirms that the chosen categorical

covariates, and model form, very adequately describe patterns of variability in

this large and complex data set at the highly disaggregated, individual patient

level.

• Different cut-off values were used to analyze the data including the industrial

standard threshold of 30 days. Analyses show different patterns of variability

and structure among thresholds over time. This material require special consid-

eration from the VA Management Science Group to assess different health-care

policies beyond the industrial standards.
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Chapter 8

Summary and Future Directions

This dissertation develops within a Bayesian framework, the structure and analysis

of realistic and complex mathematical models arising in the social and economic

sciences. Important results and future directions are outlined in this chapter.

8.1 Multivariate DLMs for Futures Prices

In the first part of the dissertation a new class of dynamic linear models was developed

to explore, understand, estimate and eventually predict latent processes that are

directly connected to crude oil futures pricing. These models are based on theoretical

foundations of continuous time models introduced recently in the financial literature

(Schwartz and Smith, 2000).

8.1.1 General Results

• A class of Bayesian multivariate dynamic linear models for oil future prices

is developed based on a theoretical financial model that assumes two latent

factor processes: a notional equilibrium price level and a process representing

short-term deviations from equilibrium levels. Novel and customized MCMC
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sampling algorithms are developed to sample from the joint posterior distribu-

tion of this new class of complicated models.

• The observational variance matrix plays a central role in the estimation of the

two latent processes inherent in commodity futures pricing. Different structures

for the observational variance were proposed and analyzed starting with tradi-

tional assumptions of uncorrelated full rank covariance matrices and potential

spatial structures. In all cases, results indicated singular or nearly singular ob-

servation variance matrices which in turn affected the convergence rates of the

MCMC algorithm.

• A factor model decomposition of the observational variance was implemented to

split the variability into two main components: a common source for all series

and idiosyncratic terms. As it turns out, two common factors were identified

and related to short term and longer term maturities, respectively. Moreover,

these two common factors explain more than 80% of the total variability across

the board. In addition, in some cases, informative priors have to be used to

avoid having zero idiosyncratic variances for some maturities.

• General definitions of normal and Wishart distributions are presented, which

include a singular variance for the normal density and a singular scale matrix

for the Wishart.

• Filtering algorithms and updating mechanisms are extended and outlined for

the general dynamic linear model when the observational variance matrix is

singular or nearly singular. The key modification is to consider generalized

inverse algorithms where needed.

• The Gibbs/Metropolis-Hastings algorithm was implemented for the so-called

modified discrete time model assuming a fixed value of four for the rank of the
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observational variance matrix. In general, convergence rates were reasonable

and estimation yield to nice interpretations of model parameters consistent with

financial theory and earlier studies in this area.

• Volatile periods commonly observed in commodity pricing are difficult to cap-

ture without “heavier than normal tails” assumptions. Outlying residuals are

observed especially in the Gulf War period in the series of oil futures prices.

• Results under singular distribution assumptions, and with a factor decompo-

sition of the observational variance, yield similar conclusions for most model

parameters.

• Out-of-sample forecast distributions were computed and compared to actual ob-

served values yielding promising improvements in short term forecasting which

could eventually represent a useful contribution in financial applications.

8.1.2 Future Directions

One of the main extensions of the oil futures prices model is the addition of poten-

tial stochastic volatility structure suggested from factor model decomposition and

singular matrix assumptions.

First, multivariate stochastic volatility models could be implemented on the com-

mon factors variance along the lines of Aguilar (1998) and Aguilar and West (2000).

The time varying covariance matrix Vt will then be defined by Vt = XHtX + Ψt,

where Ht = diag(ht1, . . . , htk), a diagonal matrix of instantaneous factor variances,

ft ∼ N(ft|0,Ht) are conditionally independent, and Ψt is a diagonal matrix of pos-

sibly time-varying idiosyncratic variances. The idea is to adopt a stationary vector

autoregression model of order one for the log volatilities of the factors, centered

around a mean α = (α1, . . . , αk). That is, for t = 1, 2, . . ., λt = α+Φ(λt−1−α)+ηt
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where λti = log(hti) for each i = 1, . . . , k, λt = (λt1, . . . , λtk)
′, Φ = diag(φ1, . . . , φk)

a matrix of individual AR parameters and ηt ∼ N(ηt|0,U) are independent innova-

tions for some innovations variance matrix U. In the same fashion, a multivariate

stochastic volatility model could be implemented on the observational variance under

the singular matrix assumption, for example by allowing some of the idiosyncratic

variances in the factor model to be exactly zero.

Second, unrelated univariate stochastic volatility models could be adopted for

the idiosyncratic variances as in Aguilar and West (2000) and Pitt and Shephard

(1999). The idea is to assume an autoregression model of order one on the log of

the idiosyncratic variances. That is, ζtj = δj + φj(ζt−1,j − δj) + ηtj for j = 1, . . . , r,

where ζtj = log(ψtj) are mutually independent series; ηtj ∼ N(ηtj |0, sj) and 0 <

φj < 1 for each j. It is important to emphasize that the inclusion of stochastic

volatility structure on the mentioned variances would potentially improve the forecast

performance of the model, as has been the experience with multivariate stochastic

volatility models in portfolio applications.

Another issue under current development is to extend the model to consider a

time-varying structure on the equilibrium growth rate µξ, as suggested in Schwartz

and Smith (2000) and also a time-varying structure on the persistence parameter φ

as the results under the factor model suggested.

Finally, a formal assessment of rank uncertainty, using model selection methods

for example, is necessary under the singular observational matrix assumption.

8.2 Hierarchical Models in Institutional Profiling

In the second part of the dissertation, complex non-Gaussian hierarchical models

are developed to profile hospitals in the VA system. The main goals are to interpret

patterns of variability across hospitals and years, and usefully summarize the complex
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and large data set for possible use by VA policy makers concerned with improving

quality of care and efficient and appropriate budgetary decisions.

8.2.1 General Results

• Exploratory and confirmatory analyses of FY97 data alone help us to under-

stand key aspects of the structure of the massive data set, especially in exploring

the individual level covariates.

• A “time to return” threshold of 30 days has been commonly considered in many

studies in health care profiling; actually, it is used as an industrial standard. In

the analysis of a single year of data under 30 day cut-off, results are somewhat

less “noisy” than under other potential cut-off times; it appears to limit the

effects of unobserved heterogeneity at the individual level.

• The diversity of inferred behavior of the hospital-specific random effects over

the years is of use in providing insights to managers and policy analysts in

profiling providers.

• The autoregressive structure of the random effects and the covariates explain

most of the extra-binomial variation observed in the ten years of data, suggest-

ing that no additional structure remains unmodeled. The chosen categorical

covariates and model form adequately describe patterns of variability in this

large and complex data set at the highly disaggregated, individual patient level.

8.2.2 Future Directions

An important issue under current development is regarding model diagnostics, resid-

ual analyses and general model validation. It is of primary concern to identify and

investigate any apparent residual variation in the data that could be still unmodeled.
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Generally, Bayesian residual analyses1 for a logistic regression model are based on

direct examination of the posterior probability distribution of the difference between

the observed proportion and the fitted proportion where the posterior distribution

of the parameters determines the posterior distribution of the residuals. However, in

this case, proportions are different per individual with certain attributes determined

by the covariates which complicates the analysis. Another diagnostic tool to explore

is the analysis of the posterior predictive distributions of observed values compared

to the actual values which will provide out-of-sample or cross-validatory assessment

of model adequacy. However, again, since there are many possible cells defined by

the covariates, the analysis of the posterior distributions is also complex. These im-

portant issues are under further investigation and are obviously of real relevance in

applications of large-scale, highly structured hierarchical models in many areas, as

well as in institutional profiling.

1For more on Bayesian residual analysis and goodness-of-fit see, for example, Johnson and Albert
(1999).
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Appendix A

Some Results on Singular Variance

Matrices

A.1 A Practical Issue of the Rank of a Matrix

Although the rank of a matrix is easy to define, it may be difficult to compute it in

practice. For example, eigenvalues could be very small but not exactly zero, thus a

tolerance error has to be settled in order to define when an eigenvalue is considered

zero or not. For example, Strang (1988) suggests a threshold of 10−6. For more

on rank of a matrix and singular matrices see, for example, Barnett (1990), Strang

(1988) and Graybill (1983).

A.2 Generalized Inverse

Generalized inverse matrix is a more general definition for an inverse matrix. Let Σ

be an r × q matrix of arbitrary rank. A generalized inverse of Σ is a unique q × r

matrix Σ+ which satisfies the following conditions:

ΣΣ+Σ = Σ
Σ+ΣΣ+ = Σ+

(ΣΣ+)′ = ΣΣ+

(Σ+Σ)′ = Σ+Σ

(A.1)
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Σ+ is also called g-inverse, Moore-Penrose inverse or pseudo-inverse. Note that if

Σ is square and non-singular, Σ−1 satisfies the conditions of a g-inverse. For more

on generalized inverse see for example Rao and Mitra (1971), Graybill (1983) and

Boullion and Odell (1971).

In particular, for symmetric matrices, the spectral decomposition can be used

to compute their generalized inverses. Σ : r × r can be factorized as Σ = HDH′

with the orthonormal eigenvectors in H : r × r and the eigenvalues l1, · · · , lr in

D =diag(l1, · · · , lr). If Σ is singular, there are some eigenvalues equal to zero; thus

Σ = (H1,H2)

(
D0 0
0 0

)(
H′

1

H′
2

)
where H = (H1,H2), H1 : r× ρ column orthonor-

mal and D0 =diag(l1, · · · , lρ) with li > 0 for all i = 1, · · · , ρ. Therefore Σ = H1D0H
′
1,

rank(Σ) = ρ, and the generalized inverse of Σ is Σ+ = H1D
−1
0 H′

1 which clearly sat-

isfies conditions (A.1). Given this decomposition, Σ and Σ+ can be rewritten as

follows:

Σ = BB′

Σ+ = T′T
(A.2)

where B = H1D
1/2
0 is r × ρ matrix and T = D

−1/2
0 H′

1 is ρ × r. Two main points

to note here, first, TB = Iρ, and second, that neither B nor T are unique since for

example Σ = B̄B̄
′
where B̄ = BL and L is any ρ× ρ orthogonal matrix.

A.3 Standardization of a Random Vector with Sin-

gular Variance

Let y be a random vector of dimension r with expected value zero and singular vari-

ance Σ of rank ρ ≤ r. The standardization of y consists on the linear transformation

z = Ty where Σ+ = TT′ implying that E(z) = 0 and Var(z) = TΣT′ = Iρ.
1 It is

important to note that the dimension of z is ρ ≤ r.

1One way to define T is T = D−1/2
0 H′

1 as is the previous section.
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A.4 Conditional distribution of y1 given y2 when

y2 is singular normally distributed

As in Muirhead (1982) (Theorem 1.2.11), let y be Nm(µ,Σ) and partition y, µ and Σ

as: y =

(
y1

y2

)
, µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
where y1 and µ1 are k×1 and Σ11

is k × k. Let Σ+
22 be a generalized inverse of Σ22 and let Σ11·2 = Σ11 −Σ12Σ

+
22Σ21.

Then

(a) y1 −Σ12Σ
+
22y2 is Nk(µ1 −Σ12Σ

+
22µ2,Σ11·2) and is independent of y2, and

(b) the conditional distribution of y1 given y2 is Nk(µ1 + Σ12Σ
+
22(y2 − µ2),Σ11·2).

A.5 Singular Wishart Distribution

If W ∼ Wishartr (n,Σ) n ≥ r and Σ is singular with rank r then W is distributed

as a Singular Wishart and the density function for W is:

p(W|Σ) =
1

2ρn/2Γρ

(
n
2

) |Σ+|n/2|D0|(n−r−1)/2exp
{
−1

2
tr
(
Σ+W

)}
(A.3)

if (I−ΣΣ+) (W) = 0 where W = H1D0H
′
1, D0 = diag(l1, . . . , lρ) li > 0 the ρ

non-zero eigenvalues of W, and Σ+ is the generalized inverse of Σ and E(W) = nΣ.

Note that the density is concentrated over the hypersurface (I−ΣΣ+) (W) = 0.

Derivation of the singular Wishart density for n integer.

Let W = Z′Z, where Z = (Z1, . . . ,Zn) is n×ρ matrix, zi ∼ N(0,Σ) i.i.d with Σ r×r
singular matrix. Since Var(zi) = Σ is singular, zi has a singular normal distribution

with (5.1) as density. Thus, the density for Z is given by:

(2π)−ρn/2 |Σ+|n/2exp
{
−1

2
tr
(
Σ+Z′Z

)}
(dZ) (A.4)
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if (I−ΣΣ+) (Z′Z) = 0 and zero otherwise. The Jacobian of the transformation from

Z to W is:

(dZ) = |D0|(n−ρ−1)/2 π
ρn/2

Γρ

(
n
2

)(dW) (A.5)

which can be derived following parallel steps in Muirhead (1982), Section 3.2, for the

non-singular Wishart Distribution. Replacing Z′Z by W in (A.4) and substituting

(A.5) in (A.4), the density (A.3) is obtained.
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Frühwirth-Schnatter, S. (1994) Data augmentation and dynamic linear models.
Journal of Time Series Analysis, 15, 183–202.

Gelfand, A.E. and Smith, A.F.M. (1990) Sampling-based approaches to calculating
marginal densities. Journal of the American Statistical Association, 85, 398–409.

Gelman, A., Carlin, J.B., Stern, H.S. and Rubin, D.B. (1995) Bayesian Data Anal-
ysis. London: Chapman & Hall.

142



Geweke, J.F. and Zhou, G. (1996) Measuring the pricing error of the arbitrage
pricing theory. The Review of Financial Studies, 9, 557–587.

Gibson, R. and Schwartz, E.S. (1990) Stochastic convenience yield and the pricing
of oil contingent claims. The Journal of Finance, 45, 959–976.

Gilks, W., Richardson, S. and Spiegelhalter, D. (1996) Markov Chain Monte Carlo
in Practice. London: Chapman and Hall.

Goldstein, H. and Spiegelhalter, D.J. (1996) League tables and their limitations:
Statistical issues in comparisons of institutional performance. Journal of the Royal
Statistical Society, 159, 385–443.

Graybill, F.A. (1983) Matrices with Applications in Statistics, Second edn. Belmont,
California: Wadsworth International Group.

Hull, J.C. (1997) Options, Futures, and Other Derivatives, Third edn. New Jersey:
Prentice Hall.

Hull, J.C. (1998) Introduction to Futures and Options Markets, Third edn. New
Jersey: Prentice Hall.

Johnson, V.E. and Albert, J.H. (1999) Statistics for Social Science and Public Policy.
New York: Springer-Verlag.

Kass, R.E. and Raftery, A.E. (1995) Bayes factors. Journal of the American Statistical
Association, 90, 773–795.

Kass, R.E. and Wasserman, L. (1995) A reference Bayesian test for nested hypothesis
and its relationship to the Schwarz criterion. Journal of the American Statistical
Association, 90, 928–934.

Khatri, C. G. (1968) Some results for the singular normal multivariate regression
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